WorldWideScience

Sample records for intermediate energy heavy

  1. Hard photon as probes of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Siemssen, R.H.

    1996-01-01

    Some recent results on the production of hard photons in intermediate energy heavy-ion reactions are reported. The topics covered are the use of hard photons as a means to study the energy dissipation mechanism in peripheral heavy ion reactions and the observation of second chance or thermal hard photons

  2. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  3. Heavy ion dynamics at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.F.

    1980-01-01

    Heavy ion collision theories are examined since, it is suggested, a mathematical description of such collisions is required which is simple enough to be solved on the computer while being sufficiently general to encompass the range of behaviour possible in a many-body system. In addition experiments must be identified which are most sensitive to the underlying dynamics and it is argued here that experiments which measure as many particles as possible emerging from each collision are most relevant to the analysis of the important parameters of nuclear matter dynamics. (UK)

  4. Scaling of anisotropy flows in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.

    2007-01-01

    Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments

  5. On intermediate energy heavy ion optical model potential

    International Nuclear Information System (INIS)

    Rihan, T.H.; Awin, A.M.

    1992-08-01

    We derive in this paper an approximate analytical expression for the heavy ion optical potential by solving the inversion problem based on the McIntyre parametrization of the S-matrix. The quasi-classical limit of high energy approximation is modified in our approach so as to account for the Coulomb distortion of the trajectory. (author). 5 refs, 2 figs

  6. Heavy residue properties in intermediate energy nuclear collisions with gold

    International Nuclear Information System (INIS)

    Aleklett, K.; Sihver, L.; Liljenzin, J.O.; Seaborg, G.T.

    1990-10-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 32, 44 and 93 MeV/nucleon argon, 35 and 43 MeV/nucleon krypton with gold. The fragment isobaric yield distributions, moving frame angular distributions and velocities have been deduced from these data. This fission cross section decreases with increasing projectile energy and the heavy residue cross section increases. The ratio v parallel /v cn increases approximately linearly with mass removed from the target. 21 refs., 8 figs

  7. Magnetic effects in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Ou Li; Li Baoan

    2011-01-01

    The time evolution and space distribution of internal electromagnetic fields in heavy-ion reactions at beam energies between 200 and 2000 MeV/nucleon are studied within an isospin-dependent Boltzmann-Uhling-Uhlenbeck transport model (ibuu11). While the magnetic field can reach about 7x10 16 G, which is significantly higher than the estimated surface magnetic field (∼1x10 15 G) of magnetars, it has almost no effect on nucleon observables because the Lorentz force is normally much weaker than the nuclear force. Very interestingly, however, the magnetic field generated by the projectilelike (targetlike) spectator has a strong focusing and defocusing effect on positive and negative pions at forward (backward) rapidities. Consequently, the differential π - /π + ratio as a function of rapidity is significantly altered by the magnetic field, whereas the total multiplicities of both positive and negative pions remain about the same. At beam energies above about 1 GeV/nucleon, while the integrated ratio of total π - to π + multiplicities is not, the differential π - /π + ratio is sensitive to the density dependence of nuclear symmetry energy E sym (ρ). Our findings suggest that magnetic effects should be carefully considered in future studies of using the differential π - /π + ratio as a probe of the E sym (ρ) at suprasaturation densities.

  8. Dynamical aspects of intermediate-energy heavy-ion collisons

    Science.gov (United States)

    Dempsey, James Francis

    1997-10-01

    The production of neutrons, light charged particles (LCPs), and intermediate-mass fragments (IMFs), from the four reactions 55 MeV/A [124,136Xe] + [112,124Sn], is studied with an experimental apparatus which is highly efficient for the detection of both charged particles and neutrons. The IMFs are found more localized in the mid-velocity region (parallel velocity close to center of mass) than are the LPCs, and the detected multiplicity of IMFs depends linearly on the charge lost from the projectile. IMF multiplicity is found to be largely independent of the neutron excess of the system, aside from a slight increase with increasing neutron excess that is expected from statistical-model simulations. Remnants of the projectile, with very little velocity reduction, are found for most of the reaction cross section. Isotopic and isobaric fragment yields in the projectile-velocity region indicate that charge-to- mass ratio neutralization is generally not achieved but is approached when little remains of the projectile. For all systems, the fragments found in the mid-velocity region are substantially more neutron rich than those found in the velocity region dominated by the emission from the projectile. This observation can be qualitatively accounted for if the mid-velocity source (or sources) is either more neutron rich or smaller, with the same neutron-to-proton ratio, than the source with the velocity of the projectile. The observations of this work suggest that the intermediate mass fragments are, to a large extent, formed dynamically by a multiple neck rupture or a proximity-fission type mechanism. Though it remains unexplained, this process enhances the neutron- to-proton ratio of the emitted fragments. This scenario is reminiscent of low-energy ternary fission and one predicted by Boltzmann-Uehling-Uhlenbeck (BUU) calculations. However, these calculations predict too much velocity damping of the projectile remnant and do not produce a mid-velocity neutron

  9. Probing in-medium spin–orbit interaction with intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu, Jun; Li, Bao-An

    2013-01-01

    Incorporating for the first time both the spin and isospin degrees of freedom explicitly in transport model simulations of intermediate-energy heavy-ion collisions, we observe that a local spin polarization appears during collision process. Most interestingly, it is found that the nucleon spin up–down differential transverse flow is a sensitive probe of the spin–orbit interaction, providing a novel approach to probe both the density and isospin dependence of the in-medium spin–orbit coupling that is important for understanding the structure of rare isotopes and synthesis of superheavy elements

  10. Production of nuclei far from the beta stability line using intermediate-energy heavy ions

    International Nuclear Information System (INIS)

    Guerreau, D.

    1986-05-01

    The production of far unstable nuclei using heavy ion accelerators in the intermediate energy domain is reviewed. The various mechanisms responsible for the production of exotic species, mainly the projectile fragmentation and transfer reactions, are discussed, and the first experimental results presented. Results can be summarized as follows: existence of 4 new isotopes 22 C, 23 N, 29 Ne, 30 Ne; indication of bound character of 71 Ni, 72 Ni; clear evidence for bound character of 23 Si, 27 S, 31 Ar, 35 Ca; indications of bound character of 43 V, 46 Mn, 47 Mn, 48 Fe, 50 Co, 52 Co, 52 Ni, 55 Cu, 56 Cu

  11. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  12. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  13. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  14. Intermediate energies heavy ion collisions : study of the charged particles emission dynamics and emitters characterization

    International Nuclear Information System (INIS)

    Bauge, E.

    1994-07-01

    In heavy ion collisions at intermediate energies, reaction processes are ranging from slow processes where equilibrium is achieved between every emission, up to direct processes where nucleon nucleon scattering and phase space availability are the deciding factors. In order to investigate this transition, both the emission dynamics and the characteristics of the emitter have been studied, both theoretically and experimentally in the AMPHORA detector, for the systems 7, 17, 27 and 34 AMeV, 40 Ar+Al, 40 Ar+Cu and 40 Ar+Ag. First, the linear momentum transfer of the most central collisions has been evaluated for these systems, by measuring the velocity of heavy residues. Then, by measuring azimuthal angle correlations functions, and by comparing them with statistical model predictions, the average angular momentum of the emitter has been evaluated. To study the charged particles emission dynamics, experimental azimuthal angle and relative momentum correlation functions have been compared with simulations based on a classical trajectory model. Finally, predictions of an advanced BUU model have been studied for the system 34 AMeV 40 Ar+Al. (authors). 69 refs., 52 figs., 5 tabs

  15. Role of compound nuclei in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-05-01

    Hot compound nuclei are frequently produced in intermediate-energy reactions through a variety of processes. Their decay is shown to be an important and at times dominant source of complex fragments, high energy-gamma rays, and even pions

  16. Inner-shell excitation in heavy ion collisions up to intermediate incident energies

    International Nuclear Information System (INIS)

    Reus, T. de.

    1987-04-01

    Electronic excitations in collisions of very heavy ions with a total nuclear charge Z greater than 1/α ≅ 137 at bombarding energies reaching from 3.6 MeV/n up to 100 MeV/n are the subject of this thesis. The dynamical behaviour of the electron-positron-field is described within a semiclassical model, which is reviewed and extended to include electronic interactions via a mean field. A detailed comparison with experimental data of K-vacancy formation, δ-electron and positron emission shows an improved agreement compared with former calculations. Structures in spectra of positrons emitted in sub- and supercritical collision are discussed in two respects: Firstly as a signal of the vacuum decay in supercritical electromagnetic fields which evolve in the vicinity of long living giant nuclear molecules. Secondly as an atomic effect, which might be related to an instaneous formation of molecular 1sσ- and 2p 1/2 σ- levels. However, beyond this speculation the emission spectra of electrons and positrons in deep inelastic reactions have proven to be a powerful tool for measuring nuclear reaction or delay times in the order of 10 -21 s. This property was transfered to the domain of intermediate energy collisions. In first order perturbation theory we derived a scaling law, exhibiting how nuclear stopping times could be extracted from the emission spectra of high energetic δ-electrons. Quantitative calculations within a coupled channel code have been carried out for the system Pb+Pb, yielding cross sections of up to 20 nb for the emission of electrons with a kinetic energy of 50 MeV in 60 MeV/n-collisions. (orig./HSI)

  17. Compound nuclei, binary decay, and multifragmentation in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-07-01

    Hot compound nuclei, frequently produced in intermediate-energy reactions through a variety of processes, are shown to be an important and at times dominant source of complex fragments. 13 refs., 12 figs

  18. Neutron-proton bremsstrahlung from intermediate energy heavy-ion reactions as a probe of the nuclear symmetry energy?

    International Nuclear Information System (INIS)

    Yong, G.-C.; Li Baoan; Chen Liewen

    2008-01-01

    Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn→pnγ. Very interestingly, nevertheless, the ratio of hard photon spectra R 1/2 (γ) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of 132 Sn + 124 Sn and 112 Sn + 112 Sn at E beam /A=50 MeV, for example, the R 1/2 (γ) displays a rise up to 15% when the symmetry energy is reduced by about 20% at ρ=1.3ρ 0 which is the maximum density reached in these reactions

  19. Identification of intermediate energy heavy ions in the focal plane of a spectrometer

    International Nuclear Information System (INIS)

    Buenerd, M.; Ballon, J.; Chauvin, J.; Lebrun, D.; Martin, P.; Bonin, B.; Bruge, G.; Lugol, J.C.; Alamanos, N.; Papineau, L.; Roussel, P.

    1985-01-01

    Heavy ions with mass A<14 and E/Aproportional120 MeV have been identified in the focal plane of a magnetic spectrometry by means of a simple telescope made of two slabs of plastic scintillator. The method should be applicable up to Aproportional20 in mass and down to E/Aproportional50 MeV in energy per nucleon. (orig.)

  20. Heavy Ion Physics at Low, Intermediate and Relativistic Energies using 4π Detectors. Proceedings of International Research Workshop

    International Nuclear Information System (INIS)

    Petrovici, M.; Sandulescu, A.; Pelte, D.; Stoecker, H.; Randrup, J.

    1997-01-01

    This monograph contains 37 communications presented at the International Research Workshop held at Poiana Brasov, Romania on October 7-14, 1996. The main subject was heavy ion reactions at low, intermediate and relativistic energies using 4π detectors. The following topics were focussed on: cold fragmentation of nuclear matter, preequilibrium and thermalization, thermal and chemical equilibrium, fragmentation and correlations in intermediate energy collisions, dynamical properties of hot and dense nuclear matter, in-medium effects, resonance and strange nuclear matter, signals of the deconfined state. The dynamical aspects and their role in triggering the liquid-gas phase transition at intermediate energies and the deconfined quark-gluon plasma at ultra-relativistic energies were of special interest. New experimental and theoretical results, illustrating the progress made during the last years in understanding the properties of nuclear matter in extreme conditions of pressure and temperature produced by heavy ion collisions, were presented and intensively discussed. The round table discussion, the last session of the Workshop, summarized through lively and extensive contributions the main subjects attacked during the Workshop. At the end the discussion focussed on the most important question, what strategy the nuclear physics community should embark on at this turn of the millennium

  1. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Jaworowski, J.; Leandersson, M.; El Bouanani, M. [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B. [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J.; Westerberg, L.; Van Veldhuizen, E.J. [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1996-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  2. Universal fluctuations: a new approach to the study of ''phase transitions'' in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Frankland, J.D.; Chbihi, A.; Hudan, S.

    2002-01-01

    The universal theory of order parameter fluctuations (Δ-scaling laws) is applied to a wide range of intermediate energy heavy-ion collision data obtained with INDRA. This systematic study confirms that the observed fragment production is compatible with aggregation scenarios for in- or out-of-equilibrium continuous phase transitions, while not showing any sign of critical behaviour or phase coexistence. We stress the importance of the methodology employed in order to gain further insight into the mechanism(s) responsible. (authors)

  3. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  4. Detection system with a large angular acceptance and an energy high dynamics, for heavy ion physics at intermediate energies: M.E.ω. detector

    International Nuclear Information System (INIS)

    Monnet, F.

    1985-01-01

    Built for intermediate energy heavy ions nuclear physics, the M.E.ω. detector uses various and complementary detection methods: ionization chamber, parallel plate avalanche counter, plastic scintillators. With these techniques, velocity, energy, mass and charge of nuclei were measured over wide range. From the detailed theoretical study of each method, limitations and perturbation causes are deduced. The solutions used for optimizing the detector, and the main results are exposed. The internal sectorisation of the detector, which permits a modulation in counting rate and electronical adjustments, has been revealed to be very suitable for heavy ions intermediate energy physics. Results of the first experiment realised with M.E.ω. (Ar + Ag at 35 MeV/u) are commented [fr

  5. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    International Nuclear Information System (INIS)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas

  6. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  7. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Elvira

    2008-02-15

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  8. Nuclear stopping and compression in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Fu Fen; Xiao Zhigang; Zhang, Ya-Peng; Feng Zhaoqing; Jin Genming; Xu Hushan; Yao Nan; Yuan Xiaohua; Zhang Xueying; Zhang Ming

    2008-01-01

    The nuclear stopping and the radial flow are investigated with an isospin-dependent quantum molecular dynamics (IQMD) model for Ni + Ni and Pb + Pb from 0.4 to and 1.2 GeV/u. The expansion velocity as well as the degree of nuclear stopping are higher in the heavier system at all energies. The ratio between the flow energy and the total available energy in center of mass of the colliding systems exhibits a positive correlation to the degree of nuclear stopping. The maximum density (ρ max ) achieved in the compression is comparable to the hydrodynamics prediction only if the non-zero collision time effect is taken into account in the later. Due to the partial transparency, the growing of the maximum density achieved in the central region of the fireball with the increase of beam energy becomes gradually flat in the 1 GeV/u energy regime

  9. Energetic proton emission in heavy ion collisions at intermediate energy. Pre-equilibrium and cooperative effects

    International Nuclear Information System (INIS)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Agodi, C.; Alba, R.; Zoppo, A. Del; Finocchiaro, P.; Migneco, E.; Bellia, G.; Greco, V.; Catania Univ.

    2002-01-01

    Energetic proton emission has been investigated as a function of the centrality in the reaction 58 Ni + 58 Ni at 30 AMeV. Protons with energy extending up to a relevant fraction of the total available energy in the reaction were measured and studied. The dependence on the reaction centrality has been extensively investigated and data have been compared with the results of microscopic transport calculations. The more striking observation concerns the extremely energetic proton (E p NN ≥ 130 MeV) multiplicity which is found to increase almost quadratically with the number of participant nucleons thus indicating the onset of a mechanism beyond one and two-body dynamics. (author)

  10. Towards a better understanding of hard photon emission in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Alba, R.; Maiolino, C.; Agodi, C.; Del Zoppo, A.; Coniglione, R.; Milazzo, P.M.; Sapienza, P.; Bellia, G.; Bruno, M.; Colonna, M.; Colonna, N.; D' Agostino, M.; Fiandri, M.L.; Finocchiaro, P.; Gramegna, F.; Iori, I.; Loukachine, K.; Margagliotti, G.V.; Mastinu, P.F.; Migneco, E.; Moroni, A.; Piattelli, P.; Rui, R.; Santonocito, D.; Tonetto, F.; Vannini, G

    1999-07-26

    High energy photon spectra have been measured in several {sup 58}Ni induced reactions at 30A MeV incident energy. A two source analysis of the data has been performed using a two exponential parameterization of the associated gamma spectra. The relative intensity of the two components has been deduced as a function of the total mass of the interacting system and of the impact parameter. To attempt a characterization of the emission sources, correlations between photons and IMF's have been measured for the first time.

  11. Towards a better understanding of hard photon emission in intermediate energy heavy ion collisions

    Science.gov (United States)

    Alba, R.; Maiolino, C.; Agodi, C.; Del Zoppo, A.; Coniglione, R.; Milazzo, P. M.; Sapienza, P.; Bellia, G.; Bruno, M.; Colonna, M.; Colonna, N.; D'Agostino, M.; Fiandri, M. L.; Finocchiaro, P.; Gramegna, F.; Iori, I.; Loukachine, K.; Margagliotti, G. V.; Mastinu, P. F.; Migneco, E.; Moroni, A.; Piattelli, P.; Rui, R.; Santonocito, D.; Tonetto, F.; Vannini, G.

    High energy photon spectra have been measured in several 58Ni induced reactions at 30A MeV incident energy. A two source analysis of the data has been performed using a two exponential parameterization of the associated gamma spectra. The relative intensity of the two components has been deduced as a function of the total mass of the interacting system and of the impact parameter. To attempt a characterization of the emission sources, correlations between photons and IMF's have been measured for the first time.

  12. Towards a better understanding of hard photon emission in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Alba, R.; Maiolino, C.; Agodi, C.; Del Zoppo, A.; Coniglione, R.; Milazzo, P.M.; Sapienza, P.; Bellia, G.; Bruno, M.; Colonna, M.; Colonna, N.; D'Agostino, M.; Fiandri, M.L.; Finocchiaro, P.; Gramegna, F.; Iori, I.; Loukachine, K.; Margagliotti, G.V.; Mastinu, P.F.; Migneco, E.; Moroni, A.; Piattelli, P.; Rui, R.; Santonocito, D.; Tonetto, F.; Vannini, G.

    1999-01-01

    High energy photon spectra have been measured in several 58 Ni induced reactions at 30A MeV incident energy. A two source analysis of the data has been performed using a two exponential parameterization of the associated gamma spectra. The relative intensity of the two components has been deduced as a function of the total mass of the interacting system and of the impact parameter. To attempt a characterization of the emission sources, correlations between photons and IMF's have been measured for the first time

  13. A hybrid model for the investigation of heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Heide, B.M.

    1995-09-01

    The following topics were dealt with: The coupling of the Botzmann-Uehling-Uhlenbeck (BUU) model with Kopenhagen multifragmentation model realising a new hybrid model, application on 197 Au+ 197 Au reactions between 100 and 250 A.MeV, calculation of the chracteristics of the fragmentation system including mass number, excitation energy, angular momenta, two-particle correlation function

  14. Pre-equilibrium particle emission in the heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bellia, G.; Migneco, E.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. del; Finocchiaro, P.; Loukachine, K.; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Peghaire, A.

    1996-01-01

    Hard photons and high energy protons from Ar and Xe induced reactions at 44 MeV/u were analysed in a series of experiments performed with the detector MEDEA. A careful analysis shows a strong correlation between hard γ and fast protons giving an unambiguous signature of the n-p first chance Bremsstrahlung hypothesis. Some preliminary results on the emission of fast protons are reported

  15. Hard Photons:. a Probe of Dynamical Effects in Heavy Ion Collisions at Intermediate Energy

    Science.gov (United States)

    Alba, R.; Agodi, C.; Maiolino, C.; Del Zoppo, A.; Colonna, M.; Bellia, G.; Coniglione, R.; Finocchiaro, P.; Loukachine, K.; Migneco, E.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Bruno, M.; D'Agostino, M.; Fiandri, M. L.; Vannini, G.; Colonna, N.; Gramegna, F.; Mastinu, P. F.; Iori, I.; Moroni, A.; Margagliotti, G. V.; Milazzo, P. M.; Rui, R.

    2002-01-01

    Thermal photons have been used as a clock to determine the time of IMF emission during the evolution of the nuclear reaction. The method has been applied to the reaction 58Ni + 197Au at 30 and 45 MeV/amu incident energy. The results put in evidence that the relative contribution of the two possible production mechanisms (dynamical and statistical) is quite different in the two cases. A comparison with theoretical calculations strongly supports the experimental findings.

  16. Hard photon and energetic proton emission in heavy ion collisions at intermediate energy

    Science.gov (United States)

    Sapienza, P.; Coniglione, R.; Migneco, E.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Loukachine, K.; Maiolino, C.; Piattelli, P.; Santonocito, D.; Blumenfeld, Y.; Le Faou, J. H.; Suomijarvi, T.; Frascaria, N.; Roynette, J. C.; Scarpaci, J. A.; Garron, J. P.; Gillibert, A.; Alamanos, N.; Auger, F.; Peghaire, A.; Chomaz, Ph.

    1998-02-01

    The emission of hard photons and pre-equilibrium protons has been investigated in exclusive clusive experiments performed with MEDEA detector. The observation of the γ-proton anticorrelation indicate that the dominant production mechanism is the first chance neutron-proton collisions. Very energetic protons, with energy more than twice the kinematical limit for nucleon-nucleon collisions, have been observed in several reactions.

  17. Salient features of heavy ion reactions in the intermediate energy region

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1987-01-01

    In this lecture the attention is focused on the most central and therefore generally also the most violent collisions. It is necessary to remember that the non-participating volumes could be very different for symmetric and asymmetric reactions. The onset of the multifragmentation channel or rather the cease of the fusion process is the first topic to be discussed. This question is directly related to the limitation in energy and momentum transfer and thus to the question about nuclear transparency. Exclusive data on multifragmentation on an event-by-event basis, which may help the model constructors, is presented as the second topic. In lecture the onset of fragmentation, fragment sizes in multifragmentation processes, the origin of light particle correlations and emission of pions and kaons close to the threshold are discussed

  18. The stopping of heavy ions in the low-to-intermediate energy range: The apparent velocity threshold

    Energy Technology Data Exchange (ETDEWEB)

    Lifschitz, A.F. [Laboratoire d’Optique Apliquèe, ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Arista, N.R., E-mail: arista@cab.cnea.gov.ar [División Colisiones Atómicas, Centro Atómico Bariloche, CNEA, 8400 Bariloche (Argentina)

    2013-12-01

    We present a non-linear study of the energy loss of heavy ions in solids, which is based on the transport cross section (TCS) and the extension of the Friedel sum rule (EFSR) for moving ions. We apply this approach to study the velocity dependence of the energy loss of heavy ions in the energy region below the stopping power maximum. With this formulation we are able to explain some striking effects in the energy loss of heavy ions which have been experimentally observed long time ago (Brown and Moak (1972) [14]), but have not been explained so far by the existing theoretical models: the deviations from the proportionality with ion velocity (predicted by alternative models in the low energy range), and the “apparent velocity threshold”.

  19. SU-E-T-334: Track Structure Simulations of Charged Particles at Low and Intermediate Energies: Cross Sections Needs for Light and Heavy Ions

    Energy Technology Data Exchange (ETDEWEB)

    Dingfelder, M [East Carolina University, Greenville, NC (United States)

    2014-06-01

    Purpose/Methods: Monte Carlo (MC) track structure simulations follow the primary as well as all produced secondary particles in an event-by-event manner, from starting or ejection energy down to total stopping. They provide useful information on physics and chemistry of the biological response to radiation. They depend on reliable interaction cross sections and transport models of the considered radiation quality with biologically relevant materials. Most transport models focus on sufficiently fast and bare (i.e., fully ionized) ions and cross sections calculated within the (relativistic) first Born or Bethe approximations. These theories consider the projectile as a point particle and rely on proton cross sections and simple charge-scaling methods; they neglect the atomic nature of the ion and break down at low and intermediate ion energies. Heavier ions are used in particle therapy and slow to intermediate and low energies in the biologically interesting Bragg peak. Lighter and slower fragment ions, including alpha particles, protons, and neutrons are also produced in nuclear and break up reactions of charged particles. Secondary neutrons also produce recoil protons and ions, mainly in the intermediate energy range. Results/Conclusion: This work reviews existing models for track structure simulations and cross section calculations for light and heavy ions focusing on the low and intermediate energy range. It also presents new and updated aspects on cross section calculations and simulation techniques for ions and discusses the need for new models, calculations, and experimental data.

  20. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  1. A review on recent light particle correlation data from heavy ion collisions at intermediate and low energies

    International Nuclear Information System (INIS)

    Ardouin, D.

    1996-01-01

    A review of recent two-particle interferometry data for heavy-ion collisions in the domain of energy between ten and a few hundreds of MeV/nucleon is presented. Not only identical particles but unlike particle correlations have been used successfully as a probe for space-time dynamics of the collision process. Due to the availability of new dedicated charged particles or photon multi-detectors, the field of particle interferometry is moving to a good level of quantitative description: excitation energy and impact parameter dependences are now provided which should stimulate additional theoretical calculations for two-particle cross sections and emission of light fragments. (author)

  2. Intermediate energy data

    International Nuclear Information System (INIS)

    Koning, A.J.; Fukahori, T.; Hasegawa, A.

    1998-01-01

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  3. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  4. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  5. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS)

    International Nuclear Information System (INIS)

    Matuoka, Paula Fernanda Toledo

    2016-01-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E < 20 MeV) from the p(1200 MeV) + 208 Pb reaction and of spallation residues from the p(1000 MeV) + 208 Pb reaction. The investigation of neutron multiplicity from proton-induced fission of 232 Th up to 85 MeV showed that it was being overestimated by CRISP model; on the other hand, fission cross section were being underestimated. This behavior is due to limitations of the intranuclear cascade model for low-energies (around 50 MeV). The p(1200 MeV) + 208 Pb reaction was selected for the study of a spallation neutron source. High-energy neutrons (E > 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated { both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  6. Dynamics of light, intermediate, heavy and superheavy nuclear ...

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 5 ... The dynamical description of light, intermediate, heavy and superheavy nuclei formed in heavy-ion collisions is worked out using the dynamical cluster ... School of Physics and Materials Science, Thapar University, Patiala 147 004, India ...

  7. Dynamics of light, intermediate, heavy and superheavy nuclear ...

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... Abstract. The dynamical description of light, intermediate, heavy and superheavy nuclei formed in heavy-ion collisions is worked out using the dynamical cluster decay model (DCM), with refer- ence to various effects such as deformation and orientation, temperature, angular momentum etc. Based on the ...

  8. Dynamics of light, intermediate, heavy and superheavy nuclear ...

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... Various features related to the dynamics of competing decay modes of nuclear systems are explored by addressing the experimental data of a number of reactions in light, intermediate, heavy and superheavy mass regions. The DCM, being a non-statistical description for the decay of a com- pound nucleus ...

  9. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1991-01-01

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do

  10. Nuclear structure at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  11. Statistical and off-equilibrium production of fragments in heavy ion collisions at intermediate energies; Production statistique et hors-equilibre de fragments dans les collisions d`ions lourdes aux energies intermediaires

    Energy Technology Data Exchange (ETDEWEB)

    Bocage, Frederic [Lab. de Physique Corpusculaire, Caen Univ., 14 - Caen (France)

    1998-12-15

    The study of reaction products, fragments and light charged particles, emitted during heavy-ion collisions at intermediate energies has shown the dominant binary dissipative character of the reaction, which is persisting for almost all impact parameters. However, in comparison with this purely binary process, an excess of nuclear matter is observed in-between the quasi-projectile and the quasi-target. To understand the mechanisms producing such an excess, this work studies more precisely the breakup in two fragments of the quasi-projectile formed in Xe+Sn, from 25 to 50 MeV/u, and Gd+C and Gd+U at 36 MeV/u. The data were obtained during the first INDRA experiment at GANIL. The angular distributions of the two fragments show the competition between statistical fission and non-equilibrated breakup of the quasi-projectile. In the second case, the two fragments are aligned along the separation axis of the two primary partners. The comparison of the fission directions and probabilities with statistical models allows us to measure the fission time, as well as the angular momentum, temperature and size of the fissioning residue. The relative velocities are compatible with Coulomb and thermal effects in the case of statistical fission and are found much higher for the breakup of a non-equilibrated quasi-projectile, which indicates that the projectile was deformed during interaction with the target. Such deformations should be compared with dynamical calculations in order to constrain the viscosity of nuclear matter and the parameters of the nucleon-nucleon interaction, (author) 148 refs., 77 figs., 11 tabs.

  12. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1990-01-01

    This paper discusses the following topics: antiproton nucleus interactions; strangeness production in heavy ion collisions; search for a J PC exotic hybrid meson; the SMC experiment; pion production in rvec np scattering; spin transfer measurements for rvec np elastic scattering; pion production in rvec n rvec p scattering; radiative muon capture (RMC) on hydrogen; radiative decays of low-lying hyperons; photoproduction of jets in nuclei; cylindrical multiplicity detector; MWPC detectors and electronics; lead glass array; cylindrical wire chamber; beam calorimeter; shower counter; and muon veto hodoscope

  13. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1989-01-01

    This paper discusses the following topics: Σdegree C Spin Transfer Experiment; Strangeness Production in Heavy Ion Collisions; Search for a J PC Exotic Hybrid Meson; Antiproton-Nucleus Interactions; Single Pion Production in np Scattering; Two-and Three-Spin Measurements in pp-pp; Proton-Deuteron Elastic Scattering at 800 MeV Two- and Three-Spin Observables; pp Elastic Absolute Cross-Section Measurements; Single Pion Production in np Scattering; Photojets from Nuclei; CCD Development; Computer Acquisition and Computer Software

  14. Relativistic Landau-Vlasov equations for hadronic matter and medium effect in the pion production in intermediate-energy heavy ion reactions

    International Nuclear Information System (INIS)

    Cubero, M.

    1990-08-01

    The present thesis deals with the medium effects, which occur both in the mean-field contributions and in the collisional term. As example medium effects in the production of pions in heavy ion reactions are studied. First an extended version of quantum hadrodynamics is introduced, which contains two baryon fields and three meson fields. Then the Keldysh formalism is explained, by which the Dyson equations for nonequilibrium systems can be derived. These Kadanoff-Baym equations are explicitely given for fermions (nucleons and deltas) and bosons (pions). Thereafter three coupled Landau-Vlasov equations for nucleons, deltas, and pions are derived from the Kadanoff-Baym equations by means of the gradient expansion and the quasi-particle approximation. Finally these three relativistic Landau-Vlasov equations are used to study the influence of the expansion of the fireball on the pion production in heavy ion collisions. (orig./HSI) [de

  15. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. By the explicit example of a scalar field theory in 2D we have solved the long-standing problem of how to treat the dynamics of the vacuum in light-front quantization. We now propose to solve the same problem for simple Fermion field theories in 2D such as the Gross-Neveu model. We propose in subsequent years to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We have completed our analysis of the SLAC E101 and E133 experiments on Deuterium to elucidate the degree to which a six-quark cluster contribution is admissable in the Bjorken x > 1 data. We have completed our development of a parameterized thermal liquid drop model for light nuclei. In addition we have completed a set of predictions for the formation of a ''nuclear stratosphere'' in nuclei created by intermediate energy heavy ion interactions. These results motivate a new investigation of the temperature dependence of the ion-ion potential with particular emphasis on the thermal dependence of the barrier height and radius. We have also shown that a consistent treatment of relativistic effects is important for a theoretical description of the elastic magnetic form factor of 17 O. 85 refs

  16. Nuclear photoreactions at intermediate energies

    International Nuclear Information System (INIS)

    Christillin, P.

    1989-02-01

    We review the interaction of real photons with nuclei up to the GeV region. The common microscopic description of exchange effects below threshold and of the corresponding real photoproduction above, is emphasized. The theoretical problems connected with π photoproduction in Δ region and vector meson photoproduction are spelled out and solved. The gross features of the reaction mechanism are shown to explain both the low energy region, the bulk properties around the Δ resonance as well as the appearance of shadowing only above ρ threshold

  17. Intermediate-energy light sources

    CERN Document Server

    Corbett, W

    2003-01-01

    Increasingly, atomic scale information underlies scientific and technological progress in disciplines ranging from pharmaceutical development to materials synthesis to environmental remediation. While a variety of research tools are used to provide atomic scale information, synchrotron radiation has proved invaluable in this quest. The rapid growth of soft- and hard X-ray synchrotron light sources stands as stark testimony to the importance and utility of synchrotron radiation. Starting from just a handful of synchrotron light sources in the early 1970s, this burgeoning field now includes over 70 proposed, in-construction, or operating facilities in 23 countries on five continents. Along the way, synchrotron light facilities have evolved from small laboratories extracting light parasitically from storage rings designed for high-energy physics research to large, dedicated sources using the latest technology to produce extraordinarily bright photon beams. The basic layout of a multi-GeV storage ring light sourc...

  18. Measurements of activation reaction rates in transverse shielding concrete exposed to the secondary particle field produced by intermediate energy heavy ions on an iron target

    International Nuclear Information System (INIS)

    Ogawa, T.; Morev, M.N.; Iimoto, T.; Kosako, T.

    2012-01-01

    Reaction rate distributions were measured inside a 60-cm thick concrete pile placed at the lateral position of a thick (stopping length) iron target that was bombarded with heavy ions, 400 MeV/u C and 800 MeV/u Si. Foils of aluminum and gold, as well as gold, tungsten and manganese covered with cadmium were inserted at various locations in the concrete pile to serve as activation detectors. Features of reaction rate distribution, such as the shape of the reaction rate profile, contribution of the neutrons from intra-nuclear cascade and that from evaporation to the activation reactions are determined by the analysis of measured reaction rates. The measured reaction rates were compared with those calculated with radiation transport simulation codes, FLUKA and PHITS, to verify their capability to predict induced activity. The simulated reaction rates agree with the experimental results within a factor of three in general. However, systematic discrepancies between simulated reaction rates and measured reaction rates attributed to the neutron source terms are observed.

  19. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  20. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  1. Nuclear structure at intermediate energies. Progress report

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1992-01-01

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS bar p experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance

  2. Heavy Section Steel Technology Program. Part II. Intermediate vessel testing

    International Nuclear Information System (INIS)

    Whitman, G.D.

    1975-01-01

    The testing of the intermediate pressure vessels is a major activity under the Heavy Section Steel Technology Program. A primary objective of these tests is to develop or verify methods of fracture prediction, through the testing of selected structures and materials, in order that a valid basis can be established for evaluating the serviceability and safety of light-water reactor pressure vessels. These vessel tests were planned with sufficiently specific objectives that substantial quantitative weight could be given to the results. Each set of testing conditions was chosen so as to provide specific data by which analytical methods of predicting flaw growth, and in some cases crack arrest, could be evaluated. Every practical effort was made to assure that results would be relevant to some aspect of real reactor pressure vessel performance through careful control of material properties, selection of test temperatures, and design of prepared flaws. 5 references

  3. Intermediate Energy Activation File (IEAF-99)

    International Nuclear Information System (INIS)

    Korovin, Yu.; Konobeev, A.; Pereslavtsev, P.; Stankovskij, A.; Fischer, U.; Moellendorff, U. von

    1999-01-01

    Nuclear data library IEAF-99, elaborated to study processes of interactions of intermediate energy neutrons with materials in accelerator driven systems, is described. The library is intended for activation and transmutation studies for materials irradiated by neutrons. IEAF-99 contains evaluated neutron induced reaction cross sections at the energies 0-150 MeV for 665 stable and unstable nuclei from C to Po. Approximately 50,000 excitation functions are included in the library. The IEAF-99 data are written in the ENDF-6 format combining MF = 3,6 MT = 5 data recording. (author)

  4. Hipse: an event generator for nuclear collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Van Lauwe, A.; Durand, D

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  5. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  6. q-Gamow states for intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Plastino, A. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Rocca, M.C., E-mail: mariocarlosrocca@gmail.com [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Ferri, G.L. [Fac. de C. Exactas, National University La Pampa, Peru y Uruguay, Santa Rosa, La Pampa (Argentina); Zamora, D.J. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina)

    2016-11-15

    In a recent paper Plastino and Rocca (2016) [18] we have demonstrated the possible existence of Tsallis' q-Gamow states. Now, accelerators' experimental evidence for Tsallis' distributions has been ascertained only at very high energies. Here, instead, we develop a different set of q-Gamow states for which the associated q-Breit–Wigner distribution could easily be found at intermediate energies, for which accelerators are available at many locations. In this context, it should be strongly emphasized Vignat and Plastino (2009) [2] that, empirically, one never exactly and unambiguously “detects” pure Gaussians, but rather q-Gaussians. A prediction is made via Eq. (3.4).

  7. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  8. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  9. Light fragment formation at intermediate energies

    International Nuclear Information System (INIS)

    Boal, D.H.

    1982-03-01

    This paper concerns itself mainly with the production of energetic protons and light fragments at wide angles. The experiments point to nucleon emission in proton-induced reactions as involving a mechanism in which the observed nucleon is directly knocked out of the nucleus. A similar feature seems to be required to explain (p,F) and (e,F) reactions: an energetic nucleon is produced in one scattering of the projectile, and the struck nucleon subsequently loses some of its energy as it traverses the remaining part of the nucleus, gathering up other nucleons as it goes, to become a fragment. This is what one might call the extreme snowball model, and a more accurate description probably involves multiple scattering of the projectile in addition to the extreme snowball contribution. This will be particularly true for fragments in the mass 6 to 9 region. This scenario also appears to apply to deuteron-induced fragment production. However, for alpha-induced reactions it would appear that the nucleons forming a fragment can originate from collisions involving different incident nucleons in the projectile. For heavy ions, this effect is even stronger, and the snowball contribution is greatly reduced compared to that of the traditional coalescence model

  10. Statistical and dynamical aspects of intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs

  11. Statistical and dynamical aspects of intermediate energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs.

  12. An analytic solution for energy loss and time-of-flight calculations for intermediate-energy light ions

    NARCIS (Netherlands)

    Snellings, RJM; Hulsbergen, W; Prendergast, EP; van den Brink, A; de Haas, AP; Habets, JJLM; Kamermans, R; Koopmans, M; Kuijer, PG; de Laat, CTAM; Ostendorf, RW; Peghaire, A; Rossewij, M

    1999-01-01

    Particle identification in intermediate heavy-ion collisions, using a modern 4 pi detector which contains several active layers, relies on a parametrisation or numerical integration of the energy loss in thick layers of detector material for different ions. Here an analytical solution applicable

  13. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1991-01-01

    This progress report discusses: the quark cluster model; solving quantum field theories in non-perturbative regime; relativistic wave equations, quarkonia and e + e - resonances; thermal properties of nuclei; and relativistic heavy ions and other projects

  14. High energy heavy ion collisions: Lessons from relativistic heavy ion ...

    Indian Academy of Sciences (India)

    crease in √s at RHIC brings us to a new regime of high energy heavy-ion collisions, ... Another scenario comes from the picture of particle production .... nuclear media. To study the effect on spectra, ratio between spectra from pA or AA with spectra from pp are taken. Spectra from pp are scaled for nuclear thickness.

  15. Medium energy heavy ion operations at RHIC

    International Nuclear Information System (INIS)

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes, M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-01-01

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in (1) and (2). Stochastic Cooling ((3)) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10 9 and 1.3 10 9 ions per bunch respectively.

  16. Medium energy heavy ion operations at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D' Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  17. Mechanism of intermediate mass fragment emission at low energy

    International Nuclear Information System (INIS)

    Dhara, A.K.; Bhattacharya, C.; Bhattacharya, S.; Krishan, K.

    1993-01-01

    The study of the dynamics of intermediate mass fragment emission in fusion-fission processes has been carried out. The average kinetic energies and relative yield ratio of different fragments are calculated and compared with experimental values

  18. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  19. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  20. Nuclear structure at intermediate energies: Progress report, January 1-December 31, 1988

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1988-01-01

    This report discusses the progress in the following experiments: Λ Spin Transfer Experiment; Σ 0 Spin Transfer Experiment; Strangeness Production in Heavy Ion Collisions; Measurement of the Imaginary Part of the I=1 /bar N/N S-Wave Scattering Length; Single Pion Production in np Scattering; Measurements of the π + d→Δ ++ n at Intermediate Energy; and PhotoJets from Nuclei

  1. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. Our primary emphasis in field theory continues to be the solution of non-perturbative problems. Two prominent examples are the development and solution of relativistic two-body wave equations for bound states and resonances and the development of methods for solving field theories via light-front quantization which include the treatment of a dynamical vacuum. An important spin-off from the relativistic two-body wave equation effort has been the solution of QED for electron-positron scattering which is complete through the order of one-photon exchange. Resonances are obtained which are in accord with the electron-positron peaks observed in the GSI heavy-ion experiments. In discovering this resonance phenomena we have uncovered a new scale for phenomena within QED. Although we have much progress to report, many outstanding problems remain. We propose a strong effort in the direction of eventually solving relativistic three-body wave equations for a model of the baryons. We also propose to continue our efforts to develop nonperturbative methods to solve quantum field theories with fermions both on the light-front and with equal time quantization

  2. (p,n) reaction at intermediate energy

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1979-01-01

    The use of the (p,n) reaction in exploring effective interactions is reviewed. Some recent data on self-conjugate nuclei taken at the Indiana University Cyclotron Facility (IUCF) are presented, and the differences between low- and high-energy data are emphasized. Experimental problems and techniques used are briefly described. It is concluded that forward-angle (p,n) spectra at energies greater than 100 MeV are dominated by Gamow-Teller (GT) transitions, while Fermi transitions (IAS transitions) dominate near 45 MeV. Prominent GT transitions are expected from a pion-exchange interaction, and it is expected that OPEP is the dominant component of the interaction in the energy range of 100 to 200 MeV. 27 figures, 2 tables

  3. Experiments on very high energy heavy ions

    International Nuclear Information System (INIS)

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  4. Innovative spin precessor for intermediate energy protons

    International Nuclear Information System (INIS)

    Hoffman, E.W.

    1979-01-01

    A spin precessor has been designed to provide arbitrary orientation of the polarization in the external proton beam at LAMPF. The device utilizes two superconducting solenoids, three conventional dipoles, and conversion of polarized H - to H + to provide an achromatic, undeflected beam with tunable spin orientation over a range of energies from 400 MeV to 800 MeV. A portion of this device is being installed to provide compatibility between two facilities which simultaneously use two branches of the external proton beam at LAMPF

  5. Role of near threshold resonances in intermediate energy nuclear ...

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Abstract. The presence of a resonance close to the threshold strongly effects the dynamics of the interacting particles at low energies. Production of 12C, the element for life, in 4He burning in. Sun is a classic example of such a situation. In intermediate energy nuclear physics, this situation arises in the ...

  6. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1987-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. We have solved a non-trivial model field theory in the strong coupling regime using a discretized light front quantization (DLFQ) scheme. The method we developed expands upon the method of Pauli and Brodsky by incorporating a dynamical treatment of the vacuum. This is a major result since we have shown directly that the light-cone vacuum is not structureless as has been traditionally claimed by some particle theorists. We have thus succeeded in elucidating the consequences of spontaneous symmetry breaking in light-cone quantization. We now propose to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We will complete our analysis of the SLAC NE3 data to explicate the degree to which they confirm the QCM prediction of ''steps'' in the ratio of nuclear structure functions when Bjorken x exceeds unity. In another effort, we will perform a search for narrow resonances in electron-positron interactions high in the continuum using the Bethe-Salpeter equation. We have completed our development of microscopic effective Hamiltonians for nuclear structure which include the explicit treatment of delta resonances. These effective Hamiltonians were successfully used in constrained mean field calculations evaluating conditions for nuclei to undergo a transition from nucleon matter to delta matter. 73 refs

  7. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  8. Hot nuclei and search for multifragmentation in medium-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Doubre, H.

    1988-01-01

    Some recent determinations of the excitation energies and temperatures of composite systems formed in intermediate-energy heavy-ion collisions are described and the issue of a limiting temperature is discussed. Several examples of experimental investigations of an eventual occurrence of a multifragmentation process are also described

  9. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  10. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  11. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  12. Heavy ion reactions at low energies

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    Some general features of the heavy ion reactions at low energies are presented. Some kinds of processes are studied, such as: elastic scattering, peripherical reactions, deep inelastic collisions and fusion. Both, theoretical and experimental perspectives on this field are discussed. (L.C.) [pt

  13. Intermediate- and heavy-Higgs-boson physics at a 0.5 TeV e+e- collider

    International Nuclear Information System (INIS)

    Barger, V.; Cheung, K.; Kniehl, B.A.; Phillips, R.J.N.

    1992-01-01

    We explore the potential of a future e + e- collider in the 0.5 TeV center-of-mass energy range to detect intermediate or heavy Higgs bosons in the standard model. We first briefly assess the logistics for finding a Higgs boson of intermediate mass, with M Z H W . We then study in detail the possibility of detecting a heavy Higgs boson, with m H >2M W , through the production of pairs of weak bosons. We quantitatively analyze the sensitivity of the process e + e-→ν bar νW + W-(ZZ) to the presence of a heavy-Higgs-boson resonance in the standard model. We compare this signal to various backgrounds and to the smaller signal from e + e-→ZH→μ + μ - W+W-(ZZ), assuming the weak-boson pairs to be detected and measured in their dominant hadronic decay modes W + W-(ZZ)→4 jets. A related Higgs-boson signal in 6-jet final states is also estimated. We show how the main backgrounds from e + e-W+W-(ZZ), eνWZ, and t bar t production can be reduced by suitable acceptance cuts. Bremsstrahlung and typical beamstrahlung corrections are calculated. These corrections reduce Higgs-boson production by scattering mechanisms but increase production by annihilation mechanisms; they also smear out some dynamical features such as Jacobian peaks in p T (H). With all these corrections included, we conclude that it should be possible to detect a heavy-Higgs-boson signal in the ν bar νW + W-(ZZ) channels up to mass m H =350 GeV

  14. Heavy Bearings Exploitation Energy and Reduction Methods

    Science.gov (United States)

    Szekely, V. G.; Cioară, R.

    2016-11-01

    The global trend of resource conservation so as “not to compromise the ability of future generation's development” is the fundamental basis of the concept of sustainable development. Concordant with this, the energy efficiency of products is increasingly discussed and frequently taken into account in the design stage. In more cases a product is more appreciated and more attractive as the energy consumption and its associated materials are lower. In the production stage, said consumption advantages primarily the manufacturer, particularly through low consumption thereof. In the operational phase, low energy and materials consumption represents an user advantage and it's a major argument in the decision to purchase and use a particular product. Heavy bearings are frequent products used in wind turbines that are producing non-conventional “clean” energy, as windmills. An enhanced energy efficiency bearing contributes to the enhancement of the overall efficiency of the wind turbines. Based on a suitable mathematical model, this paper identifies and recommends courses of action to reduce the operating energy of heavy bearing through the “cage” - which is the subject of a much larger research - with the highest priority. The identified actions may constitute from a set of requirements for the design stage of the heavy bearing predominantly oriented towards innovation-invention.

  15. Theoretical research in intermediate energy nuclear physics: Final report

    International Nuclear Information System (INIS)

    Seki, R.

    1987-01-01

    This paper discusses the progress that has been made on the following problems: a numerical calculation of Skyrmiron scattering; (e,e'p) at high momentum transfer; spin-orbit nucleon-nucleon potential from Skyrme model; pionic atom anomaly; and field theory problems. The problems deal with various topics in intermediate-energy nuclear physics

  16. Proceedings of the 5. National Meeting on Intermediate Energy Physics

    International Nuclear Information System (INIS)

    1984-05-01

    Several papers concerning the physics at intermediate energies (∼ 100-1000MeV) are presented in this proceedings. Almost all the works show overlapping between Nuclear and Particles Physics. There is a predominance in theoretical papers. (L.C.) [pt

  17. Electron emission in collisions of intermediate energy ions with atoms

    International Nuclear Information System (INIS)

    Garibotti, C.R.

    1988-01-01

    The aim of this work, is the analysis of the processes of electronic emission produced in the collisions of small ions (H + , He ++ ) of intermediate energy (50 a 200 KeV/amu) with light gaseous targets. (A.C.A.G.) [pt

  18. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  19. Heavy ion physics around the Fermi energy

    International Nuclear Information System (INIS)

    Ngo, C.

    1985-10-01

    Some aspects of heavy-ion physics between approximately 20-50 MeV/u are reviewed on two examples. First, one describes the present situation concerning the amount of linear momentum that a projectile can transfer to a fused system. One shows that this amount depends on the bombarding energy and on the mass of the projectile. The limit of incomplete fusion is discussed in terms of the maximum energy content of a nuclear system. Second, one describes some new results obtained with Kr projectiles on medium and heavy targets where one observes strongly inelastic events. These products are interpreted qualitatively in terms of a participants-spectators picture modified by the mean field interaction. The difference between Kr and lighter projectiles induced reactions is interpreted in terms of the Coulomb interaction as it is also the case at low bombarding energies

  20. (Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions)

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  1. Inelastic α-particle scattering at intermediate energy

    International Nuclear Information System (INIS)

    Bauer, T.S.; Beurtey, R.; Boudard, A.; Bruge, G.; Catz, H.; Couvert, P.; Escudie, J.L.; Fontaine, J.M.; Garcon, M.; Lugol, J.C.; Matoba, M.; Platchkov, S.; Rouger, M.; Terrien, Y.

    1979-01-01

    The rigid body approximation is used to extend the Glauber formalism to the analysis of inelastic scattering of 1.37 GeV α particles by 24 Mg and 58 Ni. Angular distributions for low-lying states in 24 Mg and 58 Ni are analyzed in this framework together with previously published data for Ca isotopes. Intermediate energy α particle scattering is tested as a tool to observe the isoscalar giant quadrupole resonance. Energy weighted sum rules are drawn from the analysis of L = 2 angular distributions measured in the proper energy range. Comparison is made with existing data

  2. Transport code and nuclear data in intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Akira; Odama, Naomitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-11-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  3. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  4. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  5. Experimental heavy ion physics at high energies

    International Nuclear Information System (INIS)

    1993-01-01

    This report summarizes the research activities of the experimental high energy heavy ion physics group at Vanderbilt University carried out under Grant No. DE-FG05092ER40712 with the Department of Energy during the period Oct 1, 1992 to Nov 30, 1993. This research encompasses four areas of related inquiry in relativistic and high energy nuclear reactions. The preparation of the PHENIX experiment which has been approved as one of the two major experiments at RHIC to start in 1998. The RD10/RD45 Muon Identifier experiment which will provide essential input for the design of the Muon Endcap arm detector sub-system in PHENIX. The E855 Soft Photon Experiment at the AGS designed to clarify the status of a possible quark-gluon-plasma signature with presently available heavy-ion collisions. The construction CsI Ball detector project at Texas A ampersand M which is designed as part of a comprehensive detector system which will probe the nuclear equation of state in the 50 MeV/nucleon domain

  6. Investigating the multiparticle decay in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Del Zoppo, A.; Alba, R.; Coniglione, R.; Agodi, C.; Bellia, G.; Finocchiaro, P.; Loukachine, K.; Maiolino, C.; Migneco, E.; Peghaire, A.; Piattelli, P.; Santonocito, D.; Sapienza, P. (INFN Laboratorio Nazionale del Sud, Via S. Sofia 44, 95123 Catania (Italy) Dipartimento di Fisica dell' Universita di Catania (Italy) GANIL, Caen (France))

    1994-06-01

    Exclusive measurements of light charged products (LCP) in the [sup 132]Xe+[sup 197]Au collisions at 44 MeV/nucleon have been performed using MEDEA 4[pi] detection system. The admixture of each partricle type into the LCP multiplicity is found to be almost independent of the impact parameter. The data are analyzed with a formalism where the fluctuations of the multiparticle decay are described by uncorrelated Poissonian statistical distributions. The impact parameter filtering is performed using the LCP multiplicity. Self-correlation and impact parameter averagining effects are identified. The dominance of the statistical contribution in the fluctuations of the LCP multiplicity is deduced.

  7. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy ( 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ''best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon 129 Xe with 197 Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon 12 C with 197 Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated

  8. Spin observables in proton-neutron scattering at intermediate energy

    International Nuclear Information System (INIS)

    Spinka, H.

    1986-05-01

    A summary of np elastic scattering spin measurements at intermediate energy is given. Preliminary results from a LAMPF experiment to measure free neutron-proton elastic scattering spin-spin correlation parameters are presented. A longitudinally polarized proton target was used. These measurements are part of a program to determine the neutron-proton amplitudes in a model independent fashion at 500, 650, and 800 MeV. Some new proton-proton total cross sections in pure helicity states (Δσ/sub L/(pp)) near 3 GeV/c are also given. 37 refs., 2 figs

  9. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  10. Intermediate energy semileptonic probes of the hadronic neutral current

    Energy Technology Data Exchange (ETDEWEB)

    Musolf, M.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States)]|[Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics]|[CEBAF Theory Group, Newport News, VA (United States); Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Dubach, J. [Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astronomy; Pollock, S.J. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie K; Kowalski, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Beise, E.J. [California Inst. of Tech., Pasadena, CA (United States). W.K. Kellogg Radiation Lab.]|[Maryland Univ., College Park, MD (United States). Dept. of Physics

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed.

  11. Intermediate energy semileptonic probes of the hadronic neutral current

    International Nuclear Information System (INIS)

    Musolf, M.J.; Donnelly, T.W.; Dubach, J.; Beise, E.J.; Maryland Univ., College Park, MD

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed

  12. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  13. Monte Carlo calculations for intermediate-energy standard neutron field

    International Nuclear Information System (INIS)

    Joneja, O.P.; Subbukutty, K.; Iyengar, S.B.D.; Navalkar, M.P.

    Intermediate-Energy Standard Neutron Field (ISNF) which produces a well characterised spectrum in the energy range of interest for fast reactors including breeders, has been set up at NBS using thin enriched 235 U fission sources. A proposal has been made for setting up a similar facility at BARC using however, easily available natural U instead of enriched U sources, to start with. In order to simulate the neutronics of such a facility Monte Carlo method of calculations has been adopted and developed. The results of these calculations have been compared with those of NBS and it is found that there may be a maximum difference of 10% in spectrum characteristics for the two cases of using thick and thin fission sources. (K.B.)

  14. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. (Oak Ridge National Lab., TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); Kamel, A.M. (Ain Shams Univ., Cairo (Egypt)); Santiago, H.T. (USDOE, Washington, DC (United States))

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  15. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. [Oak Ridge National Lab., TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); Kamel, A.M. [Ain Shams Univ., Cairo (Egypt); Santiago, H.T. [USDOE, Washington, DC (United States)

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  16. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  17. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  18. Intermediate-mass Higgs boson and isosinglet neutral heavy lepton signals at hadron supercolliders

    International Nuclear Information System (INIS)

    Bhattacharya, G.

    1992-01-01

    The signals for the Standard Model intermediate-mass Higgs boson and isosinglet neutral heavy leptons at the forthcoming hadron supercolliders-the Superconducting Super Collider (SSC) and the CERN Large Hadron Collider (LHC), are studied. The author studies inclusive production of the Standard Model Higgs boson in the intermediate-mass region (M W approx-lt m H approx-lt 2M Z ) and its subsequent decay into two on- or off-shell W bosons that decay leptonically. Backgrounds from continuum W pair production and top quark pair production with semileptonic decays are investigated. The author concludes the Higgs boson signal may be observed via the decay H → W*W* → (ell bar v ell ) (bar ell' v' ell ) at the SSC for 145 GeV H approx-lt 2M Z and at the LHC for 150 GeV H approx-lt 2M Z if m t > 150 GeV. The author analyzes the search and discovery potential of isosinglet neutral heavy leptons (NHLs) produced via real or virtual W decay at pp supercolliders. The author considers the signal resulting from the leptonic decay of the NHL, and the two major backgrounds-continuum WZ, Wγ production and t bar tj production, where j is a hadronic jet. The decay patterns of NHL depend on its mass M N , and different search strategies are needed for the two mass regions M N W and M N > M Z . The author finds for m t ≥ 150 (200) GeV the signal is observable for M N ≤ 60 (70) GeV in the mass-region M N W , and up to M N ≅ 110 GeV for M N > M W , at both SSC and LHC. It is shown the non-observance of the signal (with a 4σ statistical significance) in the region M N W could put upper limits on the NHL coupling constants that would be an improvement over the limits obtainable from the CERN Large Electron Positron Collider (LEP I)

  19. Proceedings of the LAMPF workshop on photon and neutral meson physics at intermediate energies

    International Nuclear Information System (INIS)

    Baer, H.W.; Crannell, H.; Peterson, R.J.

    1987-12-01

    This volume contains the Proceedings of the Workshop on ''Photon and Neutral-Meson, Physics at Intermediate Energies,'' held at Los Alamos, New Mexico, January 7 to 9, 1987. The purpose of this workshop was to bring together scientists working in the areas of electromagnetic, heavy-ion, and light hadron physics to discuss both the physics that could be addressed and potential capabilities of new, large intermediate-energy photon detectors. Based on the papers contained in these proceedings, it appears clear that there are a number of important areas that could be addressed with a much higher resolution neutral meson detector. It is also clear that the technical capability for building a neutral meson detector for energies up to 4 GeV with solid angle of approximately 10 mrs and resolution of a few hundred keV now exists. It also appears entirely reasonable to construct such a detector to be easily transportable so that it would become a national facility, available for use at a number of different laboratories. From the many interesting papers presented and from the broad representation of physicists from laboratories in Asia, Canada, Europe, Japan, and the United States, there appears to be a strong case for proceeding with the construction of such a detector

  20. An analytic solution for energy loss and time-of-flight calculations for intermediate-energy light ions

    CERN Document Server

    Snellings, R; Prendergast, E P; Brink, A V D; Haas, A P D; Habets, J J L; Kamermans, R; Koopmans, M; Kuijer, P G; Laat, C T A; Ostendorf, R W; Peghaire, A; Rossewij, M

    1999-01-01

    Particle identification in intermediate heavy-ion collisions, using a modern 4 pi detector which contains several active layers, relies on a parametrisation or numerical integration of the energy loss in thick layers of detector material for different ions. Here an analytical solution applicable over an energy range of a few MeV up to a 100A MeV and for ions up to at least Z=8 is presented. Also, the consequences for time-of-flight measurements (TOF) in detectors behind several thick layers of detector material are discussed. The solution is applied to the data of the Huygens detector, which uses a TPC (dE/dx) and plastic scintillators for particle identification (E and TOF or dE/dx and TOF).

  1. Study of (p-π) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Couvert, Pierre.

    1983-02-01

    This thesis presents all the A(p,π +- )A+1 experimental data measured at Saturne since 1974. A theoretical analysis of a few of them is made in the frame of a microscopic two-nucleon model, involving an intermediate δ(1232) resonance excitation. The spectrometer SPES I and the focal plane detection system are rapidly described. The data analysis method is presented in details. Calculations of the 10 B(p,π + ) 11 B (G.S.) excitation functions at constant transfer momentum lead to a good qualitative agreement in a wide range of incident energy and momentum transfer. This model also reproduces the 12 C(p,π - ) 13 O(G.S.) experimental cross sections at 613 MeV, pointing out the importance of the N(1520) resonance contribution to the (p,π - ) reaction mechanism above the (3,3) resonance [fr

  2. On selection rules and inelastic electron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Nuroh, K.

    1986-12-01

    Correlation effects are included in the Bethe-Born theory for the generalized oscillator strength of inelastic scattering of electrons on atoms. The formulation is such as to allow for the calculation of relative line strengths of multiplets. It is used to analyze line strengths of the 4d → 4f transition in La 3+ and Ce 4+ within LS-coupling. The analysis indicates that only singlet states of the intermediate 4d 9 4f configuration are allowed. Calculated line strengths are compared with a recent core electron energy loss spectra of metallic La and tetravalent CeO 2 and there is an overall qualitative agreement between theory and experiment. (author). 11 refs, 4 figs, 2 tabs

  3. Recoil studies of photonuclear reactions at intermediate energies

    CERN Document Server

    Haba, H

    2002-01-01

    A review is given on the recoil studies of photonuclear reactions on complex nuclei at intermediate energies. Recoils of 167 radionuclides formed in the photonuclear reactions of sup 2 sup 7 Al, sup n sup a sup t V, sup n sup a sup t Cu, sup 9 sup 3 Nb, sup n sup a sup t Ag, sup n sup a sup t Ta, and sup 1 sup 9 sup 7 Au, induced by bremsstrahlung of end-point energies (E sub 0) from 600 to 1100 MeV, have been investigated by the thick-target thick-catcher method. The recoil velocity from the first step and the mean kinetic energy of the residual nuclei in the second step were deduced based on the two-step vector velocity model and discussed by comparing with the reported results on proton-induced reactions. Recoils of sup 2 sup 4 Na produced from sup 2 sup 7 Al, sup n sup a sup t V, sup n sup a sup t Cu, sup n sup a sup t Ag, and sup 1 sup 9 sup 7 Au are of special interest from a viewpoint of a change in the production mechanism with respect to target mass. Reaction yields of 58 and 63 radionuclides produce...

  4. Investigation of the intermediate LK molecular orbital radiation in heavy ion-atom collisions

    International Nuclear Information System (INIS)

    Frank, W.; Kaun, K.-H.; Manfrass, P.

    1981-01-01

    The continuum consisting of an intensive low-energy and a high-energy components in heavy-ion atom collision systems with atomic numbers Z 1 , Z 2 > 28 is studied. The aim of the study is to prove that the C1 continuum cannot be caused by ridiative electron capture (REC) being molecular orbital (MO) radiation to the 2ptau level. It is shown that the comparison of the C1 yields obtained in Kr+Nb asymmetric collisions in gas and solid targets is associated with the formation of vacancies in the lower-Z collision partner and can be interpreted as quasimolecular radiation to the 2ptau orbital level. The strong suppression of the C2 component in the gas target experimets indicates that the MO radiation to the 1stau orbit is emitted preferentially in the two-collision process in symmetric and near-symmetric systems with Z 1 , Z 2 [ru

  5. Ionization of neon by intermediate energy carbon ions

    International Nuclear Information System (INIS)

    McLawhorn, S.L.; Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.; Dingfelder, M.; Toekesi, K.; Sulik, B.; Sigmund, P.; Schinner, A.; Reinhold, C.; Schultz, D.

    2007-01-01

    Complete text of publication follows. During the past few years there has been increasing interest in ionization of atomic and molecular targets by intermediate-energy dressed and partially dressed ions. These systems are particularly challenging to describe theoretically owing to screening of the projectile nuclear charge by bound electrons, interactions of projectile electrons with target electrons, and the large number of possible exit channels. At ECU we have initiated measurements of the doubly-differential ionization cross sections, differential in ejected electron energy and emission energy, for carbon ions of different initial charge states with atomic and molecular targets. In this presentation we compare those results with calculations being conducted at several institutions. For this presentation we will focus on electron emission from neon following interactions with carbon ions with energies from 0.067 MeV/u to 0.35 MeV/u and incident charge states from C + to C 3+ . Electron energies from 10 to 1500 eV are observed at emission angles from 20 to 120 degrees. The calculations separate the process into ionization of the target by the screened incident nucleus and the ionization of the target by the screened target nucleus. By summing these components in the rest frame of the target we can compare to the measured electron spectra. Figure 1 shows the single differential cross sections for ejection of electrons in C + -Ne collisions. Note the small contribution from ionization of the projectile. As the energy increases the contribution from projectile ionization increases; likewise as the ion energy decreases that contribution decreases. The excellent agreement shown in Figure 1 provides confidence to our use of Bohr theory for this energy range for this target. Doubly-differential cross sections based on the Classical Trajectory Monte Carlo (CTMC) techniques are compared with measurements in Fig. 2 for electron emission at 30 degrees. Again, excellent

  6. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting π 0 mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized 3 He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure

  7. 7th high energy heavy ion study

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Stock, R.

    1985-03-01

    These proceedings contain the articles presented at the named conference. They deal with relativistic heavy ion reactions, the expansion and freeze-out of nuclear matter, anomalon experiments, and multifragmentation and particle correlations in heavy ion reactions. See hints under the relevant topics. (HSI)

  8. High energy heavy ion tracks in bubble detectors

    CERN Document Server

    Guo, S L; Guo, H Y; Tu, C Q; Wang, Y L; Doke, T; Kato, T; Ozaki, K; Kyan, A; Piao, Y; Murakami, T

    1999-01-01

    Bubble detectors which are commonly used as neutron detectors have been demonstrated through this study to be good detectors for registration of high energy heavy ion tracks. Large size bubble detectors made in China Institute of Atomic Energy were irradiated to heavy ions Ar and C up to 650 MeV/u and 400 MeV/u, respectively. Very clear features of stringy tracks of high energy heavy ions and their fragmentations are manifested and distinguishable. A single track created by a specific high energy heavy ion is composed of a line of bubbles, which is visible by naked eyes and retained for months without reduction in size. The creation of heavy ion tracks in bubble detectors is governed by a threshold whose essence is approximately a critical value of energy loss rate (dE/dX) sub c similar to that of etch track detectors. Ranges of heavy ions in bubble detectors are apparent and predictable by existing formulas. Identification of high energy heavy ions and the applications to heavy ion physics, cosmic rays, exot...

  9. Formation of large target residues in intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.; Aleklett, K.; Sihver, L.; Xu, Z.; Seaborg, G.T.

    1987-04-01

    We have used radiochemical techniques to measure the yields, angular distributions and velocity spectra of the large (A/sub frag/ ≥ 2/3 A/sub tgt/) target residues from the fragmentation of 197 Au by intermediate energy 12 C, 20 Ne, 32 S, 40 Ar, 84 Kr, and 139 La projectiles. The fragment moving frame angular distributions are asymmetric for the lighter projectiles (C-Ar). The fragment velocity spectra are Maxwellian for the Kr induced reactions and non-Maxwellian for the reactions induced by the lighter ions. We interpret these results in terms of a change in the dominant fragment production mechanism(s) from one(s) involving a fast non-equilibrium process for the lighter ions to a slow, equilibrium process for Kr. Comparison of the measured yields and angular distributions with calculations made using a Boltzmann transport equation with appropriate modifications for Pauli blocking, etc., show excellent agreement between data and theory. 12 refs., 12 figs

  10. Protons scattering on Li isotopes at intermediate energies

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.

    2003-01-01

    The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form

  11. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  12. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  13. Dileptons in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    relativistic heavy- ion collisions is discussed with special emphasis on signals from the (approach towards) chirally restored and deconfined phases. In particular, recent results of the CERN-SPS low-energy runs are compared to model ...

  14. Electronic emission produced by light projectiles at intermediate energies

    International Nuclear Information System (INIS)

    Bernardi, G.C.

    1989-01-01

    Two aspects of the electronic emission produced by light projectiles of intermediate energies have been studied experimentally. In the first place, measurements of angular distributions in the range from θ = 0 deg -50 deg induced by collisions of 50-200 keV H + incident on He have been realized. It was found that the double differential cross section of electron emission presents a structure focussed in the forward direction and which extends up to relatively large angles. Secondly, the dependence of the double differential cross section on the projectile charge was studied using H + and He 3 2+ projectiles of 50 and 100 keV/amu incident on He. Strong deviations from a constant scaling factor were found for increasing projectile charge. The double differential cross sections and the single differential cross sections as a function of the emission angle, and the ratios of the emissions induced by He 3 2+ and H + at equal incident projectile velocities are compared with the 'Continuum Distorted Wave-Eikonal Initial State' (CDW-EIS) approximation and the 'Classical Trajectory Monte Carlo' (CTMC) method. Both approximations, in which the potential of the projectile exercises a relevant role, reproduce the general aspects of the experimental results. An electron analyzer and the corresponding projectile beam line has been designed and installed; it is characterized by a series of properties which are particularly appropriate for the study of double differential electronic emission in gaseous as well as solid targets. The design permits to assure the conditions to obtain a well localized gaseous target and avoid instrumental distortions of the measured distributions. (Author) [es

  15. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  16. Constraints on the symmetry energy from heavy ion collisions

    International Nuclear Information System (INIS)

    Lynch, W.G.; Tsang, M.B.; Chajecki, Z.; Coupland, D.; Danielewicz, P.; Famiano, M.; Hodges, R.K.; Kilburn, M.; Winkelbauer, J.; Youngs, M.; Lu, F.; Zhang, Y.Z.

    2010-01-01

    Constraints on the Equation of State for symmetric matter (equal neutron and proton numbers) have been extracted from energetic collisions of heavy ions over a range of energies. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the Equation of State of neutron-rich matter at sub-saturation densities from isospin diffusions and neutron proton ratios. This talk reviews the experimental constraints from heavy ion reactions on the density dependence of symmetry energy at sub-saturation density. These constraints are compared to other available constraints from nuclear structures, masses and neutron skins. (author)

  17. Labelling and determination of the energy in reactive intermediates in solution enabled by energy-dependent reaction selectivity

    Science.gov (United States)

    Kurouchi, Hiroaki; Singleton, Daniel A.

    2018-02-01

    Any long-lived chemical structure in solution is subject to statistical energy equilibration, so the history of any specific structure does not affect its subsequent reactions. This is not true for very short-lived intermediates because energy equilibration takes time. Here, this idea is applied to achieve the 'energy labelling' of a reactive intermediate. The selectivity of the ring-opening α-cleavage reaction of the 1-methylcyclobutoxy radical is found here to vary broadly depending on how the radical was formed. Reactions that provide little excess energy to the intermediate lead to a high selectivity in the subsequent cleavage (measured as a kinetic isotope effect), whereas reactions that provide more excess energy to the intermediate exhibit a lower selectivity. Accounting for the expected excess energy allows the prediction of the observed product ratios and, in turn, the product ratios can be used to determine the energy present in an intermediate.

  18. Proton-carbon elastic scattering in the intermediate energy range based on the. alpha. -particle model

    Energy Technology Data Exchange (ETDEWEB)

    Li Qingrun (CCAST (World Lab.), Beijing (China) Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics); Zhou Jinli (Guangxi Normal Univ., Guilin (China). Dept. of Physics)

    1991-05-01

    The {alpha}-particle model of {sup 12}C is examined by means of proton-{sup 12}C elastic scattering in the intermediate energy range. The results show that the model gives a satisfactory account of the experimental data. The parametrized proton-{sup 4}He amplitudes in the intermediate energy region are presented. (author).

  19. Estimation on Local Energy Density in Relativistic Heavy Ion Collisions

    Science.gov (United States)

    Ma, Zhong-Biao; Miao, Hong; Gao, Chong-Shou

    2003-02-01

    Energy density for the central region in relativistic heavy ion collisions can be estimated via the pseudorapidity distribution of transverse energy. The way to estimate the local energy density for the central region in relativistic heavy ion collisions is proposed, in which only final state particles emitted from the same source are included. The arrived energy density in NA49 experiments is about 1.03 GeV/fm3. The project supported in part by National Natural Science Foundation of China under Grant No. 90103019, and the Doctoral Program Foundation of Institution of Higher Education, the National Education Commission of China under Grant No. 2000000147

  20. Carbon emission, energy consumption and intermediate goods trade: A regional study of East Asia

    International Nuclear Information System (INIS)

    Zhang, Jingjing

    2015-01-01

    Using country level panel data from East Asia over the period 1998–2011, this paper examines the implications of international production fragmentation-induced intermediate goods trade on the link between energy consumption and carbon pollution. The paper focuses on the interaction effect between energy consumption and trade in intermediate goods on carbon emission. The empirical results presented suggest that international trade in intermediate goods decreases the positive impact on carbon emission of energy consumption. When compared with the trade in final goods, intermediate goods trade contributes to a greater decrease in carbon pollution resulting from energy consumption. These results confirm that the link between energy consumption and carbon pollution in East Asia is significantly affected by international production fragmentation-induced trade in intermediate goods. The results presented in this paper have some important policy implications. - Highlights: • This paper tests the role of intermediates trade in energy-development nexus. • Empirical study is based on data of East Asia. • International trade can reduce the carbon pollution caused by energy use. • Intermediates trade has higher moderating effect than non-intermediate trade.

  1. Heavy quark free energies, potentials and the renormalized Polyakov loop

    International Nuclear Information System (INIS)

    Kaczmarek, O.; Karsch, F.; Petreczky, P.; Zantow, F.

    2004-01-01

    We discuss the renormalized free energy of a heavy quark anti-quark pair in the color singlet channel for quenched and full QCD at finite temperature. The temperature and mass dependence, as well as its short distance behavior is analyzed. Using the free energies we calculate the heavy quark potential and entropy in quenched QCD The asymptotic large distance behavior of the free energy is used to define the non-perturbatively renormalized Polyakov loop which is well behaved in the continuum limit. String breaking is studied in the color singlet channel in 2-flavor QCD

  2. Radial dose for low energy heavy ion beam

    International Nuclear Information System (INIS)

    Moribayashi, Kengo

    2016-01-01

    This paper presents the effect of incident heavy ion charge on radial dose. The mean charge of a heavy ion moving in a medium decreases with decreasing energies of this ion. As a result, this ion impact ionization cross sections, which affect radial dose, also decrease. For 1 MeV/u and 2 MeV/u, the relationship between radial dose and the mean charge of an incident ion is shown. (author)

  3. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium

    International Nuclear Information System (INIS)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed

  4. Ultrafast intermolecular energy transfer in heavy water

    NARCIS (Netherlands)

    Piatkowski, L.; Eisenthal, K.B.; Bakker, H.J.

    2009-01-01

    We report on a study of the vibrational energy relaxation and resonant vibrational (Forster) energy transfer of the OD vibrations of D2O and mixtures of D2O and H2O using femtosecond mid-infrared spectroscopy. We observe the lifetime of the OD vibrations of bulk D2O to be 400 +/- 30 fs. The rate of

  5. Energy conservation and management strategies in Heavy Water Plants

    International Nuclear Information System (INIS)

    Kamath, H.S.

    2002-01-01

    In the competitive industrial environment it is essential that cost of the product is kept at the minimum possible. Energy conservation is an important aspect in achieving this as energy is one of the key recourses for growth and survival of industry. The process of heavy water production being very complex and energy intensive, Heavy Water board has given a focussed attention for initiating various measures for reducing the specific energy consumption in all the plants. The initiative resulted in substantial reduction in specific energy consumption and brought in savings in cost. The cumulative reduction of specific energy consumption has been over 30% over the last seven years and the total savings for the last three years on account of the same has been about Rs. 190 crore. The paper describes the strategies adopted in the heavy water plants for effecting the above achievements. The paper covers the details of some of the energy saving schemes carried out at different heavy water plants through case studies. The case studies of schemes implemented at HWPs are general in nature and is applicable for any other industry. The case studies cover the modifications with re-optimisation of the process parameters, improvements effected in utility units like refrigeration and cooling water systems, improvements in captive power plant cycle and improved recycle scheme for water leading to reduced consumptions. The paper also mentions the innovative ammonia absorption refrigeration with improved coefficient of performance and HWB's efforts in development of the system as an integrated unit of the ammonia water deuterium exchange process for heavy water production. HWB also has taken up R and D on various other schemes for improvements in energy consumption for future activities covering utilisation of low grade energy for generation of refrigeration. (author)

  6. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  7. Cumulative protons in 12C fragmentation at intermediate energy

    International Nuclear Information System (INIS)

    Abramov, B.M.; Alekseev, P.N.; Borodin, Y.A.; Bulychjov, S.A.; Dukhovskoi, I.A.; Khanov, A.I.; Krutenkova, A.P.; Kulikov, V.V.; Martemianov, M.A.; Matsuk, M.A.; Turdakina, E.N.

    2014-01-01

    In the FRAGM experiment at heavy ion accelerator complex TWAC-ITEP, the proton yields at an angle 3.5 degrees have been measured in fragmentation of carbon ions at T 0 equals 0.3, 0.6, 0.95 and 2.0 GeV/nucleon on beryllium target. The data are presented as invariant proton yields on cumulative variable x in the range 0.9 < x < 2.4. Proton spectra cover six orders of invariant cross section magnitude. They have been analyzed in the framework of quark cluster fragmentation model. Fragmentation functions of quark- gluon string model are used. The probabilities of the existence of multi-quark clusters in carbon nuclei are estimated to be 8 - 12% for six-quark clusters and 0.2 - 0.6% for nine- quark clusters. (authors)

  8. Proton induced fission of {sup 232}Th at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Burtebaev, N. T.; Edomskiy, A. V. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kovalchuk, K. V.; Kvochkina, T. N. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Piasecki, E. [Heavy Ion Laboratory of Warsaw University (Poland); Rubchenya, V. A. [University of Jyväskylä, Department of Physics (Finland); Sahiev, S. K. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Trzaska, W. H. [University of Jyväskylä, Department of Physics (Finland); Vardaci, E. [INFN Napoli, Dipartimento di Scienze Fisiche dell’Università di Napoli (Italy)

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  9. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  10. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  11. Interactions of quarks and gluons with nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.H. [Columbia Univ., New York, NY (United States)

    1994-04-01

    Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.

  12. Alpha-nucleus elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Bonin, B.; Alamanos, N.; Berthier, B.; Bruge, G.; Faraggi, H.; Lugol, J.C.; Mittig, W.; Papineau, L.; Yavin, A.I.; Buenerd, M.; Bauhoff, W.

    1985-01-01

    Elastic scattering of 288, 340, 480 and 699 MeV Alpha-particles was measured on 208 Pb, 116 Sn and 58 Ni. The data were analysed in terms of a phenomenological optical model. The optical potentials obtained were found to vary consistently with the target nucleus and the incident energy. The radial zone where the potentials are well determined was studied in detail. The data for 208 Pb were also analysed with a folding model. The energy dependence of the strong-absorption radius and of the reaction cross section shows that the nuclear surface becomes slightly transparent for incident energies above 150 MeV per nucleon. (orig.)

  13. Application of flywheel energy storage for heavy haul locomotives

    International Nuclear Information System (INIS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Sun, Yan Quan; Cole, Colin; Nielsen, Dwayne

    2015-01-01

    Highlights: • A novel design for heavy haul locomotive equipped with a flywheel energy storage system is proposed. • The integrated intelligent traction control system was developed. • A flywheel energy storage system has been tested through a simulation process. • The developed hybrid system was verified using an existing heavy haul railway route. • Fuel efficiency analysis confirms advantages of the hybrid design. - Abstract: At the present time, trains in heavy haul operations are typically hauled by several diesel-electric locomotives coupled in a multiple unit. This paper studies the case of a typical consist of three Co–Co diesel-electric locomotives, and considers replacing one unit with an alternative version, with the same design parameters, except that the diesel-electric plant is replaced with flywheel energy storage equipment. The intelligent traction and energy control system installed in this unit is integrated into the multiple-unit control to allow redistribution of the power between all units. In order to verify the proposed design, a three-stage investigation has been performed as described in this paper. The initial stage studies a possible configuration of the flywheel energy storage system by detailed modelling of the proposed intelligent traction and energy control system. The second stage includes the investigation and estimation of possible energy flows using a longitudinal train dynamics simulation. The final stage compares the conventional and the proposed locomotive configurations considering two parameters: fuel efficiency and emissions reduction.

  14. Heavy ion collisions at collider energies – Insights from PHENIX

    Indian Academy of Sciences (India)

    15Korea University, Seoul 136-701, Korea. 16Russian Research ... 23Myongji University, Yongin, Kyonggido 449-728, Korea. 24Nagasaki Institute of ..... High pT phenomena. Hard scattering provides a novel tomographic tool to study nuclear matter created in heavy- ion collisions at collider energies. In pp collisions at ...

  15. Heavy ion collisions at collider energies – Insights from PHENIX

    Indian Academy of Sciences (India)

    April 2003 physics pp. 639–650. Heavy ion collisions at collider energies – Insights from PHENIX. A DREES28, for the PHENIX Collaboration. K Adcox40, S S Adler3, N N Ajitanand27, Y Akiba14, J Alexander27, .... With a reasonable choice of the formation time τ0 .... interpreted in terms of initial state multiple scattering.

  16. Hadroproduction of heavy flavors at collider energies

    International Nuclear Information System (INIS)

    Scott, D.M.

    1979-11-01

    The possibility of detecting the top quark in hadron interactions at collider energies is investigated. The production of bound and naked t-quarks for m/sub t/ = 15 - 100 GeV, and the experimental signatures from their leptonic and semileptonic decay modes are studied. The background to any leptonic signature is expected to be severe, suggesting the requirement of simultaneous detection of hadrons

  17. dd →3 Hen Reaction at Intermediate Energies

    International Nuclear Information System (INIS)

    Ladygina, N. B.

    2012-01-01

    The dd → 3 Hen reaction is considered at the energies between 200 and 520 MeV. The Alt-Grassberger-Sandhas equations are iterated up to the lowest order terms over the nucleon-nucleon t-matrix. The parameterized 3He wave function including five components is used. The angular dependence of the differential cross section and energy dependence of tensor analyzing power T 20 at the zero scattering angle are presented in comparison with the experimental data. (author)

  18. Role of near threshold resonances in intermediate energy nuclear ...

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Mayer. Plane wave. Total. On-shell Scattering. Figure 3. The squared amplitude generated using few-body equations for η-3He FSI with the input of ηN t-matrix corresponding to aηN = (0.88+i0.41) fm. Q is the excitation energy given as Q = E − MHe − Mη with E, MHe, Mη being the total energy of the η-3He ...

  19. Collective flow of open heavy flavour in heavy ion collisions at the LHC energies with CMS

    CERN Document Server

    Lee, Yen-Jie

    2017-01-01

    Heavy flavour mesons are used as powerful tools for the study of the strongly interacting medium in heavy ion collisions as heavy quarks are sensitive to the transport properties of the medium. In these proceedings, $D^0$ nuclear modification factors, comparing the yields in PbPb and pp collisions, and azimuthal anisotropies in PbPb collisions are reported. Prompt $D^0$ mesons and their antiparticles have been measured with the CMS detector via the hadronic decay channels $D^0 \\to K^- \\pi^+$ and $\\bar{D}^0 \\to K^+ \\pi^-$ in PbPb and pp collisions at a centre-of-mass energy of 5.02 TeV. Nonprompt $D^0$ from b decays are subtracted. The $D^0$ results are compared to inclusive charged particles, nonprompt $J/\\psi$~ mesons from b decays and $B^+$ mesons in order to reveal possible meson mass dependence of the observables.

  20. High-energy resummation in heavy-quark pair photoproduction

    Science.gov (United States)

    Celiberto, F. G.; Ivanov, D. Yu.; Murdaca, B.; Papa, A.

    2018-02-01

    We present our predictions for the inclusive production of two heavy quark-antiquark pairs, separated by a large rapidity interval, in the collision of (quasi-)real photons at the energies of LEP2 and of some future electron-positron colliders. We include in our calculation the full resummation of leading logarithms in the center-of-mass energy and a partial resummation of the next-to-leading logarithms, within the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach.

  1. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  2. Heavy ion collisions at relativistic energies

    International Nuclear Information System (INIS)

    Huefner, J.

    These lectures cover only a few aspects of the field. The emphasis is pedagogical. 1) Elastic and total inelastic cross sections: their geometric properties and the energy dependence. 2) Physics of the spectator nuclei: their momentum distribution and the relation to Fermi motion. The production cross sections for a particular nucleus are discussed in the frame work of the excitation-evaporation model. 3) Physics of the participant particles. The number of the participants and their degree of thermalization are discussed. As well as, how can one derive a classical theory, like intra-nuclear cascade, from a quantum theory. The properties of the composite particles and the pions are presented [fr

  3. Study of projectile break-up process at intermediate energies

    International Nuclear Information System (INIS)

    Kumar, Harish; Parashari, Siddharth; Tali, Suhail A.

    2016-01-01

    The projectile break-up reactions are explained in terms of incomplete fusion or massive transfer reactions leading to the formation of composite system with less mass, charge and excitation energy, as compared to the complete fusion (CF) process. Since, the existing theoretical models are not applicable to reproduce the experimentally measured ICF, data satisfactory below 10 MeV/nucleon energies; thereby the study of the role of the entrance channel parameters in the fusion reactions is still a relevant problem in establishing the explicit inference regarding the influence of ICF on CF at 4-7 MeV/nucleon energies. Recently reported some studies have also shown that alpha Q-value is also an important parameter which affects the onset of ICF and conflict with the suggestion of Morgenstern et al. Keeping in view the recent aspects, to provide more strength to the aspect of projectile-target mass-asymmetry effect, role of non α-cluster projectile over α-cluster projectile, the present work has been carried out which will be useful to understand a clearer picture about the conflict between mass-asymmetry and projectile structure effect on break-up fusion process. As such, excitation function measurement of residues produced in 13 C + 175 Lu system has been carried out in a series of experiments of comparative study using α-cluster as well as non α-cluster projectiles with deformed heavier target nuclei at lower projectile energies ≈ 4-7 MeV/nucleon

  4. Proceedings of the 8th high energy heavy ion study

    International Nuclear Information System (INIS)

    Harris, J.W.; Wozniak, G.J.

    1988-01-01

    This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4π detector, a time projection chamber which would be placed at the HISS facility, was presented

  5. Proceedings of the 8th high energy heavy ion study

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.W. (ed.); Wozniak, G.J. (ed.)

    1988-01-01

    This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4..pi.. detector, a time projection chamber which would be placed at the HISS facility, was presented.

  6. Heavy quarkonium production at collider energies: Factorization and evolution

    Science.gov (United States)

    Kang, Zhong-Bo; Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George

    2014-08-01

    We present a perturbative QCD factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, pT at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in pT. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal nonperturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.

  7. The efficiency of counter telescopes for intermediate energy protons

    International Nuclear Information System (INIS)

    Bracco, A.; Gubler, H.P.; Hasell, D.K.; Van Oers, W.T.H.; Abegg, R.; Miller, C.A.; Stetz, A.W.

    1984-01-01

    The efficiency of counter telescopes containing a 15.2 cm thick NaI(Tl) crystal for detecting protons with energies in the range 50-350 MeV has been measured. An investigation was made of the dependence of the efficiency on the position of the proton in the counter. The results of the measurements are in close agreement with the calculations of efficiencies using available reaction cross section data. (orig.)

  8. Coherent pion photoproduction from deuterium at intermediate energies

    International Nuclear Information System (INIS)

    Osland, P.; Rej, A.K.

    1975-12-01

    The coherent photoproduction of neutral pions on deuterons is studied at energies around the (3,3) resonance and discuss the effects of the Fermi motion, rescattering and kinematical approximations. The results are very dependent upon what kinematical approximations one adopts for the impulse approximation term, which dominates up to very large angles. Allowing for this uncertainty in the kinematics, our results are in good agreement with the most recent experimental data

  9. Heavy-Section Steel Technology Program intermediate-scale pressure vessel tests

    International Nuclear Information System (INIS)

    Bryan, R.H.; Merkle, J.G.; Smith, G.C.; Whitman, G.D.

    1977-01-01

    The tests of intermediate-size vessels with sharp flaws permitted the comparison of experimentally observed behavior with analytical predictions of the behavior of flawed pressure vessels. Fracture strains estimated by linear elastic fracture mechanics (LEFM) were accurate in the cases in which the flaws resided in regions of high transverse restraint and the fracture toughness was sufficiently low for unstable fracture to occur prior to yielding through the vessel wall. When both of these conditions were not present, unstable fracture did occur, always preceded by stable crack growth; and the cylinders with flaws initially less than halfway through the wall attained gross yield prior to burst. Predictions of failure pressure of the vessels with flawed nozzles, based upon LEFM estimates of failure strain, were very conservative. LEFM calculations of critical load were based upon small-specimen fracture toughness test data. Whenever gross yielding preceded failure, the actual strains achieved were considerably greater than the estimated strains at failure based on LEFM. In such cases the strength of the vessel may be no longer dependent upon plane-strain fracture toughness but upon the capacity of the cracked section to carry the imposed load stably in the plastic range. Stable crack growth, which has not been predictable quantitatively, is an important factor in elastic-plastic analysis of strength. The ability of the flawed vessels to attain gross yield in unflawed sections has important qualitative implications on pressure vessel safety margins. The gross yield condition occurs in light-water-reactor pressure vessels at about 2 x design pressure. The intermediate vessel tests that demonstrated a capacity for exceeding this load confirm that the presumed margin of safety is not diminished by the presence of flaws of substantial size, provided that material properties are adequate

  10. Present status of intermediate energy data evaluation for accelerator-based transmutation of radioactive waste

    International Nuclear Information System (INIS)

    Koning, A.J.

    1994-05-01

    The recent developments in the field of nuclear data evaluation for energies above 20 MeV are outlined. As a particularly interesting application we consider accelerator-based transmutation of radioactive waste. The most urgent data needs for accelerator-based transmutation have been prioritized and translated in terms of intermediate-energy data libraries. Priorities are assigned to the materials relevant to an incineration system and to the most important associated nuclear reactions (notably reactions involving nucleons). In this contribution, the proposed actions as indicated in previous work are further discussed and a sample intermediate-energy ''starter'' data file is presented. (orig.)

  11. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  12. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  13. Proceedings of the fifth course of the international school of intermediate energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Bergere, R.; Costa, S.; Schaerf, C.

    1985-01-01

    This book presents the papers given at a conference on high energy physics. Topics considered at the conference included total photon absorption, scattering of photons by nuclei, pion photoproduction, nuclear structure investigations, photonuclear reactions and dispersion relations, photon spectra, quark effects, future accelerators for intermediate energy nuclear physics, bag models, polarized photons, and inelastic electron scattering.

  14. Nuclear interactions of high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.

    1992-01-01

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, ''limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays

  15. Light heavy - ion dissipative collisions at low energy

    International Nuclear Information System (INIS)

    Pop, A.; Andronic, A.; Berceanu, I.; Duma, M.; Moisa, D.; Petrovici, M.; Simion, V.; Imme, G.; Lanzano, G.; Pagano, A.; Raciti, G.; Coniglione, R.; Zoppo, A. Del; Piatelli, P.; Sapienza, P.; Colonna, N.; Pantaleo, A.; D'Erasmo, G.

    2003-01-01

    The collisions of light heavy ions were less studied as compared to the large amount of information on dissipative processes collected for heavy systems. For moderate energy damping both experimental data and theoretical models were concentrated on optimum Q value systematics. The energy domain of complete damping was studied from the challenging point of view of the competition between the deep inelastic orbiting mechanism and the fusion-fission one. Dissipative processes have been investigated experimentally in several light heavy-ion systems, using a complex detector which has as main components two position sensitive ionization chamber. The investigated systems were: 19 F(111.4, 125, 136.9 MeV) + 27 Al, 19 F(111.4, 136.9 MeV) + 12 C and 27 Al(140.14 MeV) + 12 C, 27 Al. Experimental evidence and comparison with theoretical calculations suggesting a mechanism similar to deep inelastic processes in heavy and medium systems, even in the case of completely damped events, will be presented in this work. (authors)

  16. Photoproduction of mesons on the nucleon at intermediate energies

    International Nuclear Information System (INIS)

    Guidal, M.

    1997-01-01

    In this work a model is proposed to simulate the photoproduction of pseudoscalar mesons ('PI' and K) on the nucleon at high energy. This model is based on the exchange of mesonic or baryonic Regge trajectories, it is gauge invariant and it uses a Feynman diagram formalism inspired from isobaric models. The measurements concerning the following reactions γp → nπ + , γn → pπ - , γp → pπ 0 and γn → nπ 0 are reviewed and the new model is confronted to the experimental results. The model gives a reasonable and coherent description of these 4 reactions. The model has also been applied to the photoproduction of strange mesons and of Λ and Σ baryons and has been extrapolated at low energy to the threshold of the reaction, the model matches the results even up to E γ = 2 GeV for differential cross-sections and recoil polarization. An attempt has been made to associate a Regge based description, which is valid with low transfers, with perturbative quantum chromodynamics which is valid with high transfers. The model relies on the saturation of trajectories in the high transfer region and on the counting laws that give the right variation of the cross-section. It seems that a model based on linear trajectories can be reliable up to 4 GeV. The domain of high transfer has been too little investigated to provide enough experimental data to validate the model. An experiment whose purpose is to study the photoproduction of φ at high transfer, is proposed. This experiment requires an accelerator with high useful cycle because of the smallness of the expected cross-section. The CEBAF (continuous electron beam accelerator facility) as well as the CLAS 4π detector is presented. The study of γp → pφ and γp → KΛ * (1520) requires the discrimination of kaons from pions so the measurement of 180 ps as time resolution allows the feasibility of the experiment. (A.C.)

  17. Spectrometry of doubly charged particles, applied to intermediate energy physics

    International Nuclear Information System (INIS)

    Oostens, Jean.

    1977-01-01

    The detection of 3 He and 4 He at GeV energies is obtained using both magnetic analysis and time-of-flight a methods, and several independent measurements of the specific ionization. This technique was applied to the extrapolation of the neutral resonance spectrum in the p + d → 3 He + X reaction and to the p- 4 He elastic scattering using incident α particles on a hydrogen target. In the first reaction, the data show the production of π 0 , eta 0 , ω 0 and eta'(957). An explanation implying a proton exchange diagram reveals the importance of the 3 He form factor. In the 4 He-p reaction, the 4 He scattered are detected in a magnetic spectrometer. It is possible to extract the elastic peaks from the continuum background corresponding to the empty target up to about 180 0 in the center of mass. The data corresponding to the backward angle reveal an increase of the cross section around 180 0 (cm). This phenomenon is qualitatively reproduced by triton exchange models. The results obtained are compared to theoretical model based on the multiple scattering phenomenon. But the interpreting of the experiments presented imply the knowledge of the wave function of both helium isotopes at momenta that have not been reached through electron scattering measurements up to now [fr

  18. Comparison of models of high energy heavy ion collision

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1977-01-01

    Some of the main theoretical developments on heavy ion collisions at energies (0.1 to 2.0) GeV/nuc are reviewed. The fireball, firestreak, hydrodynamic (1-fluid, 2-fluids), ''row on row'', hard sphere and intranuclear cascades, and classical equations of motion models are discussed in detail. Results are compared to each other and to measured Ne + U → p + X reactions

  19. Final Technical Report - Nuclear Studies with Intermediate Energy Probes

    Energy Technology Data Exchange (ETDEWEB)

    Norum, Blaine [Univ. of Virginia, Charlottesville, VA (United States)

    2017-12-14

    During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at both the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.

  20. Theoretical research in intermediate-energy nuclear physics. [Technical progress report, April 1, 1993--March 31, 1994

    International Nuclear Information System (INIS)

    Seki, R.

    1994-01-01

    This paper discusses progress that has been made on the following seven problems: (1) (e, e'p) at high momentum transfer; (2) post,acceleration effects in two-nucleon interferometry of heavy-ion collisions; (3) pion-nucleus interactions above 0.5 GeV; (4) chiral symmetry breaking in nuclei and picnic atom anomaly; (5) atomic screening on nuclear astronomical reactions; (6) QCD related work (coherent pion production from skyrmion-antiskyrmion annihilation, QCD in 1 + 1 dimensions, and correlation functions in the QCD vacuum), and (7) kaonic hydrogen atom experiment. The problems deal with various topics mostly in intermediate-energy nuclear physics. We place priority on (1) and (2), and describe them somewhat in detail below. Other problems are our on-going projects, but we are placing lower priority on them in the second and third year

  1. Reconstruction of electron energy distribution function from probe characteristics at intermediate and high pressures

    International Nuclear Information System (INIS)

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Kinetic theory of electron current on a probe, enabling essentially broaden the area of application of a probe method for determination of electron energy distribution function (EEDF) onto the areas of intermediate and high pressures. Method of quadrature summs makes it possible to reconstruct EEDF from integral equation for arbitrary energy dependences of diffusion parameter at any given energy interval. High efficiency of the method is demonstrated by solution of model as well as experimental tasks

  2. The measurement of intermediate mass fragments in the fermi energy domain

    International Nuclear Information System (INIS)

    Rudolf, G.

    1987-01-01

    Intermediate mass fragments in the Fermi energy domain were studied at GANIL via the Kr84 + Au reaction at 44 MeV/u. The Erel* quantity is used to study correlations between fragments. Fast-fast coincidences; fast-slow coincidences; slow-slow coincidences; and light particles are considered. Reaction mechanisms are discussed. Only qualitative analysis results are available, but they suggest that the quantitative results will be very instructive: light particle spectra will deliver source parameters (velocity, total charge, excitation energy and temperature); the multiplicity of intermediate mass fragments will be deduced from the triple coincidences between modules of XYZt detector

  3. Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    International Nuclear Information System (INIS)

    Chen Liewen; Ko Che Ming; Xu Jun; Li Baoan

    2010-01-01

    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Δr np of Sn isotopes give an important constraint on the symmetry energy E sym (ρ 0 ) and its density slope L at saturation density ρ 0 . Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E sym (ρ 0 ). The implication of these new constraints on the Δr np of 208 Pb as well as the core-crust transition density and pressure in neutron stars is discussed.

  4. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  5. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  6. Angular dependences of the tensor analyzing powers in the dd→3Hen reaction at intermediate energies

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    2002-01-01

    The tensor analyzing powers A yy , A xx , and A xz in the dd→ 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown

  7. Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis

    International Nuclear Information System (INIS)

    Schulz, T. F.

    2007-01-01

    In this dissertation by Thorsten Frank Schulz the intermediate steps necessary to realise the 2000-Watt Society in Switzerland are examined. An analysis of an energy-economic scenario shows that the 2000-Watt Society should be seen as a long-term goal. According to the author, the major changes required to allow the implementation of this project concern energy-transformation and energy-demand technologies. Electricity will, according to the author, play an important role in a service-oriented society in the future. In such a transformation even intermediate steps are associated with considerable expense. The aims of the 2000-Watt Society project are listed. Energy and CO 2 balances for the domestic and transport sectors are presented and discussed. Complementary analyses are presented concerning fuel cells and wood-based fuel technologies. Finally, the implications of the 2000-Watt society and the effects of technological change are summarised and an outlook is presented

  8. Pair production by photons. Screening corrections for intermediate and high energies

    International Nuclear Information System (INIS)

    Oeverboe, I.

    1978-01-01

    The screening correction to the total cross-section for coherent electron pair production by photons is evaluated for intermediate and high energies, by employing the Born-approximation recoil momentum distribution and accurate relativistic form factors. Results are given for all 3<=Z<=92. For each element the results are presented in terms of a seven-parameter formula which is based on a high-energy expansion of the screened cross-section. (author)

  9. Violent heavy ion collisions around the Fermi energy

    International Nuclear Information System (INIS)

    Borderie, B.

    1985-01-01

    Experimental results on central collisions will be presented and it will be shown that a fusion process still occurs; deexcitation of the hot fused systems formed will be discussed. Then, from the qualitative evolution of central collision products from different reactions studied in the E/A range 20-84 MeV, the vanishing of fusion processes will be inferred; it will be discussed in terms of critical energy deposit and maximum excitation energy per nucleon that nuclei can carry. Finally results concerning the large production of light fragments (3 < approximately Z < approximately 12) experimentally observed in the Fermi energy domain will be presented and discussed in terms of a multifragmentation of the whole nuclear system or of part of it for intermediate impact parameter collisions (109 refs, 49 fig)

  10. Measurement of energy deposition near heavy ion tracks

    International Nuclear Information System (INIS)

    Metting, N.F.; Brady, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Wong, M.; Schimmerling, W.; Rapkin, M.

    1985-01-01

    In November of 1982 work was begun in collaboration with Columbia University and Lawrence Berkeley Laboratory to use microdosimetric methods to measure energy deposition of heavy ions produced at LBL's Bevalac Biomedical Facility. Last year the authors reported preliminary results indicating that secondary charged particle equilibrium was probably obtained using this experimental setup, but that there seemed to be poor spatial resolution in the solid state position-sensitive detector. Further analysis of the measurements taken in August 1983 shows that because of this electronic noise in the position-sensitive detector, only the 56 Fe data yielded useful microdosimetric spectra

  11. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Idaho, Moscow, ID (United States)

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  12. Fluctuations of the initial color fields in high-energy heavy-ion collisions

    Science.gov (United States)

    Epelbaum, Thomas; Gelis, François

    2013-10-01

    In the color glass condensate approach to the description of high-energy heavy-ion collisions, one needs to superimpose small random Gaussian distributed fluctuations to the classical background field in order to resum the leading secular terms that result from the Weibel instability, which would otherwise lead to pathological results beyond leading order. In practical numerical simulations, one needs to know this spectrum of fluctuations at a proper time τ≪Qs-1 shortly after the collision, in the Fock-Schwinger gauge Aτ=0. In this paper, we derive these fluctuations from first principles by solving the Yang-Mills equations linearized around the classical background, with plane wave initial conditions in the remote past. We perform the intermediate steps in light-cone gauge, and we convert the results to the Fock-Schwinger gauge at the end. We obtain simple and explicit formulas for the fluctuation modes.

  13. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions]. Nuclear chemistry progress report, August 1, 1990--August 1, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ``best`` semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  14. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  15. Search for nuclei in heavy ion collisions at ultrarelativistic energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle $(>10^{\\circ}-15^{\\circ})$ they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm$^{2}$ Au target bombarded by an $^{16}$O or $^{32}$S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from $^{16}$O incident on Au have been taken last year. The experiment is presently taking data with $^{...

  16. Probing the nuclear symmetry energy with heavy ion collisions

    Science.gov (United States)

    Coupland, Daniel David Schechtman

    There are two distinct components involved in using heavy ion collisions to constrain the density dependence of the symmetry energy. On one hand, observables sensitive to the symmetry energy must be identified and measured with enough precision to provide meaningful constraints. On the other hand, nuclear reaction simulations are used to predict those observables for different possible forms of the symmetry energy. Examination of both components and the interface between them is important to improve the constraints. This thesis contributes to both the experimental and theoretical parts of this endeavor. First, we examine the uncertainties in the simulation of the isospin diffusion observable by varying the input physics within the pBUU transport code. In addition to the symmetry energy, several other uncertain parts of the calculation affect isospin diffusion, most notably the in-medium nucleon-nucleon cross sections and light cluster production. There is also a difference in the calculated isospin transport ratios depending on whether they are computed using the isospin asymmetry of the heavy residue or of all forward-moving fragments. We suggest that measurements comparing these two quantities would help place constraints on the input physics, including the density dependence of the symmetry energy. Second, we present a measurement of the neutron and proton kinetic energy spectra emitted from central collisions of 124Sn + 124Sn and 112Sn + 112Sn at beam energies of 50 MeV per nucleon and 120 MeV per nucleon. Previous transport simulations indicate that ratios of these spectra are sensitive to the density dependence of the symmetry energy and to the isovector momentum dependence of the mean field. Protons were detected in the Large Area Silicon Strip Array (LASSA) and neutrons were detected in the MSU Neutron Walls. The multiplicity of charged particles detected in the MSU Miniball was used to determine the impact parameter of the collisions. Several thin

  17. Nonlinear energy loss of highly charged heavy ions

    International Nuclear Information System (INIS)

    Zwicknagel, G.Guenter.

    2000-01-01

    For slow, highly charged heavy ions strong coupling effects in the energy transfer from the projectile-ion to an electron target plasma become important. A theoretical description of this nonlinear ion stopping has to go beyond the standard approaches like the dielectric linear response or the binary collision model which are strictly valid only at weak ion-target coupling. Here we outline an improved treatment which is based on a suitable combination of binary collision and linear response contributions. As has been verified for isotropic, nonmagnetized electron plasmas by comparison with simulations, this approach well reproduces the essential features of nonlinear stopping up to moderate coupling strength. Its extension to anisotropic, magnetized electron plasmas basically involves the fully numerical determination of the momentum and energy transfer in binary ion-electron collisions in the presence of a magnetic field. First results of such calculations are presented and discussed

  18. Implosion of advanced fuels using high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1977-01-01

    The use of high energy heavy ions for igniting the fusion reaction in DT pellets appears most promising. It is relatively simple to extend this concept to the implosion of pellets of advanced fuels. An accelerator configuration designed for DT fusion would clearly test advanced fuel pellets in a meaningful way. To obtain useful output power from the catalyzed D reaction, and likely from D-He/sup 3/, appears to require a high accelerator efficiency. This requirement limits the choices of accelerator configurations to that of a full energy linac filling several storage rings. The feasibility of meeting the requirements appears quite high. The trend raises the question, yet unanswered, concerning the potential for obtaining useful output powers from more exotic fuels such as P-B/sup 11/.

  19. Selected problems in experimental intermediate energy physics. Final technical report, February 1, 1991--January 31, 1994

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1997-01-01

    A complete description of the research program of the intermediate energy group at the University of Houston may be found in previous progress reports, renewal proposals, and proposals to various accelerator advisory committees. The summaries of activities are presented in the next section. The objectives of the research program are to: (1) investigate selected, forefront problems in experimental intermediate energy physics; (2) educate students in this field of research; and (3) develop the instrumentation necessary to undertake this experimental program. There were three major thrusts of the program: (1) strange particle physics, where a strange quark is embedded in the nuclear medium; (2) muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and (3) measurement of the spin dependent structure function of the neutron and proton

  20. Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates

    DEFF Research Database (Denmark)

    Stegelmann, Carsten; Andreasen, Anders; Campbell, Charles T.

    2009-01-01

    recently introduced, via the “degree of rate control” of elementary steps. By extending that idea, we argue that even more useful than identifying the rate-determining step is identifying the rate-controlling transition states and the rate-controlling intermediates. These identify a few distinct chemical...... electronic or steric control on the relative energies of the key species. Since these key species are the ones whose relative energies most strongly influence the net reaction rate, they also identify the species whose energetics must be most accurately measured or calculated to achieve an accurate kinetic...... model for any reaction mechanism. Thus, it is very important to identify these rate-controlling transition states and rate-controlling intermediates for both applied and basic research. Here, we present a method for doing that....

  1. Supplement to the report of the Expert Committee 'Intermediate-Energy Physics' 1986-1988/89

    International Nuclear Information System (INIS)

    1990-02-01

    In the supplement to the scientitic report of the sponsoring project of the Federal Ministery for Research and Technology 'Intermediate-Energy Physics' the publications are collected, which have come out in the three years of the sponsoring in the single projects. Essentially only journal articles were taken up, in order to keep the extent of this list surveyable. On the taking up of the manifold of dissertations, diploma theses, and talks generally was abandoned. (orig.) [de

  2. Elastic scattering of intermediate energy kaons from nuclei and its Coulomb effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhenqiu; Kong Lingjiang; Liu Xianhui

    1986-04-01

    In the frame of the eikonal multiple scattering theory, using the basic parameters which are given by the different authors, the elastic scattering of the intermediate energy kaon mesons on /sup 12/C and /sup 40/Ca is studied. The Coulomb effect is calculated too. The results are in agreement with the experimental data. The Coulomb effect not only enhances the small angle differential cross section, but also fills up the dip of the differential cross section.

  3. Asymmetry ratio in pair production and the degree of linearly polarized photons at intermediate energies

    CERN Document Server

    Asai, J

    1999-01-01

    In order to initiate the experiments using linearly polarized tagged photons at intermediate energies, it is imperative to know and to monitor the degree of polarization. The relationship is re-examined between the linear polarization of photons and the asymmetry ratio in pair production by such photons. An improved method is proposed in which pairs are prohibited from entering the cone region around the incident photon beam. By restricting the directions of pairs, the asymmetry ratio is much improved. (author)

  4. Review of heavy ion reaction mechanisms

    International Nuclear Information System (INIS)

    Ngo, C.

    1986-04-01

    We review some of the many aspects of heavy-ion reaction mechanisms observed at bombarding energies smaller than approximately 50 MeV/u that is to say in what is called the low bombarding energy domain and the intermediate bombarding energy domain. We emphasize the results concerning the use of very heavy projectiles which has led to the observation of new mechanisms

  5. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    International Nuclear Information System (INIS)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S.; Frigo, S.P.; Stampfl, A.P.J.; Wang, Y.

    2002-01-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10 9 photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  6. Unified description of neutron-, proton- and photon-induced fission cross sections in intermediate energy region

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi

    2003-01-01

    For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)

  7. Intermediate energy proton stopping power for hydrogen molecules and monoatomic helium gas

    Science.gov (United States)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, J. W.

    1984-01-01

    Stopping power in the intermediate energy region (100 keV to 1 MeV) was investigated, based on the work of Lindhard and Winther, and on the local plasma model. The theory is applied to calculate stopping power of hydrogen molecules and helium gas for protons of energy ranging from 100 keV to 2.5 MeV. Agreement with the experimental data is found to be within 10 percent. Previously announced in STAR as N84-16955

  8. Reconstruction of the electron energy distribution function from probe characteristics at intermediate and high pressures

    International Nuclear Information System (INIS)

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Gorbunov et al. have developed a kinetic theory of the electron current drawn by a probe, which substantially extends the region of applicability of the probe method for determining the electron energy distribution function, enabling probes to be used for intermediate and high pressures (up to p ≤ 0.5 atm for monatomic gases). They showed that for λ var-epsilon >> a + d (where a is the probe radius, d is the sheath thickness, and λ var-epsilon is the electron energy relaxation length) the current density j e (V) drawn by the probe is related to the unperturbed distribution function by an integral equation involving the distribution function. The kernal of the integral equation can be written as a function of the diffusion parameter. In the present paper the method of quadrature sums is employed in order to obtain the electron energy distribution function from probe characteristics at intermediate and high pressures. This technique enables them to recover the distribution function from the integral equation when the diffusion parameter has an arbitrary energy dependence ψ 0 (var-epsilon) in any given energy range. The effectiveness of the method is demonstrated by application to both model problems and experimental data

  9. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  10. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  11. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  12. Fifth high-energy heavy-ion study

    International Nuclear Information System (INIS)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base

  13. Fifth high-energy heavy-ion study

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base. (GHT)

  14. Radiation therapy using high-energy heavy-ion

    International Nuclear Information System (INIS)

    Kanai, Tatsuaki

    1995-01-01

    The clinical trial of the heavy-ion radiotherapy was started at June 1994 after pre-clinical experiments using 290 MeV/u carbon beam. In this paper, an irradiation system for the heavy-ion radiotherapy installed at HIMAC (Heavy Ion Medical Accelerator in Chiba) and the physical characteristics of the therapeutic beam were discussed. (author)

  15. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  16. Far-from-equilibrium heavy quark energy loss at strong coupling

    CERN Document Server

    Chesler, Paul; Rajagopal, Krishna

    2013-01-01

    We study the energy loss of a heavy quark propagating through the matter produced in the collision of two sheets of energy [1]. Even though this matter is initially far-from-equilibrium we find that, when written in terms of the energy density, the equilibrium expression for heavy quark energy loss describes most qualitative features of our results well. At later times, once a plasma described by viscous hydrodynamics has formed, the equilibrium expression describes the heavy quark energy loss quantitatively. In addition to the drag force that makes it lose energy, a quark moving through the out-of-equilibrium matter feels a force perpendicular to its velocity.

  17. Coherent and noncoherent double diffractive production of QQ-bar pairs in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1999-01-01

    The coherent and noncoherent double diffractive production of heavy quark-antiquark pairs in ion scattering at the LHC energies has been considered. The total and differential cross sections for such processes featuring the production of cc-bar and bb-bar quark pairs in pp, CaCa, and PbPb collisions have been estimated. It has been shown that the fraction of heavy quark-antiquark pairs produced in double diffractive scattering amounts to a few percent of the number of QQ-bar pairs produced in hard QCD scattering; therefore, it is necessary to take into account such processes in detecting heavy quarks, in seeking Higgs bosons of intermediate mass, in investigating the suppression of heavy quarkonia in quark-gluon plasma, and so on. It has been demonstrated that the cross section for coherent scattering is so large that this process can be used to study collective effects in nuclei at high energies. Large values of the quark-antiquark invariant mass, M QQ-bar > or approx. 100 GeV, in association with a large rapidity gap between diffractive jets, Δη>5, exemplify manifestations of such nuclear interactions

  18. Structure of High Energy, Heavy Ions in Venus' Upper Ionosphere

    Science.gov (United States)

    Persson, Moa; Futaana, Yoshifumi; Nilsson, Hans; Stenberg Wieser, Gabriella; Hamrin, Maria; Fedorov, Andrei; Barabash, Stas

    2017-04-01

    The solar wind interacts with the atmosphere of Venus, and can reach directly down to the ionosphere. The interaction has previously been studied using the Pioneer Venus mission (PVO) and is now known to cause variations in the density in the ionosphere [Taylor et al., 1980], a transport of ions towards the night side [Knudsen et al., 1980], and an outflow of ions from the atmosphere [Barabash et al., 2007]. Measurements made by PVO showed that the main constituents of Venus ionosphere in the altitude range 150-400 km is the O+ and O2+ ions, where the former dominates from 180 km and higher, and the latter dominates from 180 km down to 150 km [Taylor et al., 1980]. New measurements, made by the Ion Mass Analyzer (IMA) onboard the Venus Express spacecraft, reveal the high-energy (10 eV to 15 keV) plasma characteristics in the ionosphere of Venus. Using the data collected during the low altitude (down to 130 km) pericentre passages during the aerobraking time period, we are able to extract the height profile of the total heavy ion content (O+ and O2+ ions) of Venus ionosphere. The results show two scale heights separated at 200 km; 10 km for 200 km. We interpret the results as two heavy ion components, namely, the O+ ions are dominant for >200 km, while the O2+ is dominant for methods of mass separation, to extract the two ion components of the scale height profiles, (O+ and O2+). First method is to use the moderate mass separation capabilities of the IMA instrument. The individual mass spectra are fitted by two Gaussian curves, representing O+ and O2+, derived from ground calibration information. The second method uses the energy spectrum, which sometimes has two discrete peaks. By assuming the same velocity for different components in the spacecraft reference frame (resulting in different energy for different masses), we can separate the composition. We will discuss the results of the obtained mass separated height profiles.

  19. Energy utilization of light and heavy weaned piglets subjected to different dietary energy levels

    Directory of Open Access Journals (Sweden)

    Andréa Machado Leal Ribeiro

    Full Text Available ABSTRACT This study was conducted to evaluate the effects of dietary metabolisable energy (ME: 3.25, 3.40, 3.55, or 3.70 Mcal kg−1 and weaning weight (WW: light 4.0±0.7 kg, and heavy: 6.3±0.6 kg on productive response and energy utilization of weaned piglets. Sixty-four male piglets were housed in 32 metabolic cages (two animals per cage during the first 14 d postweaning. At day 15, only one animal per cage was kept until day 28. Body composition, energy, and nutrient deposition rates and energy utilization efficiency were measured through a comparative slaughter procedure. Piglets with light WW had a poorer feed conversion ratio and lower weight gain and feed intake when expressed per live weight. Increased ME led to greater daily fat deposition in the empty bodies (defined as weighted mean of the carcass + organs + blood, no intestinal content, while light WW piglets had a reduced protein deposition. Light WW piglets increased heat production with increased ME, but no effect was seen for the heavy WW piglets. By contrast, heavy WW piglets increased empty body gross energy as ME increased, while no influence was observed on light WW piglets. Increasing dietary energy levels did not contribute to the subsequent growth performance of piglets that were lighter at weaning. The lack of interaction between weaning weight and dietary ME content on growth performance does not support the hypothesis that light piglets at weaning do not exhibit compensatory growth because of limitations in energy intake.

  20. A liquid 3He target system for use at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Abegg, R.; Murdoch, B.T.; Van Oers, W.T.H.; Postma, H.; Soukup, J.

    1981-01-01

    A liquid 3 He target system, with remote instrumentation and handling capabilities, has been developed for experiments using the 180-525 MeV TRIUMF cyclotron. 3 He gas is liquified, by means of a 4 He cryostat, into a cylindrical target cell (4.4 cm diameter, 1.6 cm thick) and maintained during operation at approx. equal to1.6 K. This provides an areal target density of approx. equal to2.7 x 10 22 3 He nuclei/cm 2 (128 mg/cm 2 ), suitable for intermediate energy proton scattering. (orig.)

  1. γ-rays as a probe to study nuclear dynamics and nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Schutz, Y.

    1987-01-01

    The usefulness of gamma rays in nuclear physics is reviewed, and it is shown how they offer insight into the structure and damping of giant resonances, and how they can be used as an isospin filter. Results from inclusive and exclusive experiments at GANIL are discussed. It is stressed that although the production of high energy gamma rays in heavy ion reactions between 30 MeV/A and 86 MeV/A is understood qualitatively, most models fail in being more quantitative

  2. Multifragmentation and dynamics in heavy ion collisions

    Indian Academy of Sciences (India)

    The investigation of heavy-ion collision mechanisms at intermediate energies, around the nucleon Fermi energy, have set major understanding objectives to reach. For several years, such studies have been focusing on intermediate-mass fragment (IMF) production. More specifically, the probing of nuclear liquid-gas phase ...

  3. LIMES: A computer program for analyses of light and intermediate-mass fragment emission in heavy ion reactions by an extended sum-rule model

    International Nuclear Information System (INIS)

    Brancus, I.M.; Wentz, J.; Hohn, H.U.

    1989-10-01

    The computer program LIMES is based on an improved version of the extended sum-rule model for light and intermediate-mass fragment emission in heavy ion reactions. It includes a code for dynamical calculations of the critical angular momentum for fusion following the suggestions. The report briefly describes the use of this program, the necessary input for the calculations of the element distribution and partial cross sections and gives a Fortran listing. Using the fitting routine FITEX the program provides an option for fast parameter adjustments. The use is demonstrated by an application to a specific example. (orig.) [de

  4. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    International Nuclear Information System (INIS)

    Nathan, A.M.; Sandorfi, A.M.

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of σ(700)-meson exchange in γγ→ππ processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the γΝ-Δ transition; pion photoproduction and the γΝ-Δ amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p(rvec γ, π o ) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and Ν → Νγ and Δ → γΝ transition form factors; electroproduction studies of the Ν → Δ transition at bates and CEBAF

  5. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. [eds.

    1992-10-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of {sigma}(700)-meson exchange in {gamma}{gamma}{yields}{pi}{pi} processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the {gamma}{Nu}-{Delta} transition; pion photoproduction and the {gamma}{Nu}-{Delta} amplitudes; effective- lagrangians, Watson`s theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p({rvec {gamma}}, {pi}{sup o}) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and {Nu} {yields} {Nu}{gamma} and {Delta} {yields} {gamma}{Nu} transition form factors; electroproduction studies of the {Nu} {yields} {Delta} transition at bates and CEBAF.

  6. Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2014-03-01

    Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.

  7. Intermediate milling energy optimization to enhance the characteristics of barium hexaferrite magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hodaei, A.; Ataie, A., E-mail: aataie@ut.ac.ir; Mostafavi, E.

    2015-08-15

    Highlights: • Nano-sized BaFe{sub 12}O{sub 19} was successfully synthesized via a solid-state reaction. • Intermediate milling energy was optimized to improve BaFe{sub 12}O{sub 19} properties. • Minimum total energy of 93.7 kJ/g was necessary for formation of BaFe{sub 12}O{sub 19}. • Deviation from the optimum milling energy deteriorates the magnetic properties. - Abstract: Nano-sized barium hexaferrite particles were synthesized by mechanical activation of BaCO{sub 3} and Fe{sub 2}O{sub 3} powders mixture as starting materials. The effects of mechanical milling energy on the phase composition, morphology, thermal behavior and magnetic properties of the samples were systematically investigated by employing X-ray diffractometer, field emission scanning electron microscopy, differential thermal/thermo gravimetry analysis and vibrating sample magnetometer, respectively. The milling energy was calculated at five different levels using collision model. It was found that there is an optimum milling energy value for obtaining barium hexaferrite phase. The results revealed that applying a minimum total milling energy of 93.7 kJ/g was necessary for formation of almost single barium hexaferrite at a relatively low calcination temperature of 800 °C. FESEM micrograph of the above sample exhibited nano-size particles with a mean particle size of 80 nm. Further increase in milling energy leads to dramatic decrease in phase purity as well as magnetic characteristics of the samples. By increasing the milling energy from 93.7 to 671.9 kJ/g, saturation magnetization (M{sub s}) decreased from 22.5 to 0.39 emu/g, and also coercivity (H{sub c}) decreased from 4.28 to 1.46 kOe.

  8. High-energy manifestations of heavy quarks in axial-vector neutral currents

    International Nuclear Information System (INIS)

    Kizukuri, Y.; Ohba, I.; Okano, K.; Yamanaka, Y.

    1981-01-01

    A recent work by Collins, Wilczek, and Zee has attempted to manifest the incompleteness of the decoupling theorem in the axial-vector neutral currents at low energies. In the spirit of their work, we calculate corrections of the axial-vector neutral currents by virtual-heavy-quark exchange in the high-energy e + e - processes and estimate some observable quantities sensitive to virtual-heavy-quark masses which may be compared with experimental data at LEP energies

  9. Heavy and light flavor jet quenching at RHIC and LHC energies

    Science.gov (United States)

    Cao, Shanshan; Luo, Tan; Qin, Guang-You; Wang, Xin-Nian

    2018-02-01

    The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. The dependence of the jet quenching parameter q ˆ on medium temperature and jet flavor is quantitatively extracted.

  10. Light Heavy-Ion Dissipative Collisions at Low Energy

    Science.gov (United States)

    Pop, A.; Andronic, A.; Berceanu, I.; Duma, M.; Moisa, D.; Petrovici, M.; Simion, V.; Immé, G.; Lanzanó, G.; Pagano, A.; Raciti, G.; Coniglione, R.; Del Zoppo, A.; Piatelli, P.; Sapienza, P.; Colonna, N.; D'Erasmo, G.; Pantaleo, A.

    2004-09-01

    Dissipative processes have been investigated experimentally in several light heavy-ion systems, using a complex detector which has as main components two position sensitive ionization chambers. Experimental evidence and comparison with theoretical calculations suggest a mechanism similar to deep inelastic processes in heavy and medium systems, even in the case of completely damped events. Note from Publisher: This article contains the abstract and references only.

  11. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  12. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580 São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others

    2015-12-14

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  13. Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2013-12-01

    We have recently measured the B(E2; 0+ → 2+ of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2 values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes.

  14. Study of the neutron rich sulfure isotope 43S through intermediate energy Coulomb excitation

    Science.gov (United States)

    Calinescu, S.; Cáceres, L.; Grévy, S.; Sohler, D.; Stanoiu, M.; Negoita, F.; Borcea, C.; Borcea, R.; Bowry, M.; Catford, W.; Dombradi, Z.; Franchoo, S.; Gillibert, R.; Thomas, J. C.; Kuti, I.; Lukyanov, S.; Lepailleur, A.; Mrazek, J.; Niikura, M.; Podolyak, Z.; Petrone, C.; Penionzhkevich, Y.; Roger, T.; Rotaru, F.; Sorlin, O.; Stefan, I.; Vajta, Z.; Wilson, E.

    2013-02-01

    The reduced transition probability B(E2: 3/2- 7/2-2) has been measured in 43S using Coulomb excitation at intermediate energy. The nucleus of interest was produced by fragmentation of a 48Ca beam at GANIL. The reaction products were separated in the LISE spectrometer. After Coulomb-excitation of 43S in a 208Pb target, the γ rays emitted inflight were detected by 64 BaF2 detectors of the Chǎteau de Cristal array. The preliminary value deduced for the reduced transition probability B(E2: 3/2-7/2-2) is in agreement with the predictions of the shell model calculations and supports a prolate-spherical shape coexistence in the 43S nucleus.

  15. Inclusive photoproduction and electroproduction of intermediate vector bosons (W+-,Z0) at very high energies

    International Nuclear Information System (INIS)

    Hayashi, Masaki; Katsuura, Kazuo

    1979-01-01

    Adopting the quark-parton model based on QCD we estimate the cross-sections dσ/dt and σsup(tot) for the inclusive photoproduction of the intermediate vector bosons W + and Z 0 (γ + p → W + , Z 0 + anything) and σsup(tot) for the inclusive electroproduction (e - + p → W + , Z 0 + anything) at very high energies. The typical values of the estimated total cross-sections at √s >= 200 GeV are σsub(rp→W + ) -- 10 -36 cm 2 , σsub(ep→W + ) -- 10 -37 cm 2 , σsub(rp→Z 0 ) -- 10 -37 cm 2 and σsub(ep→Z 0 ) -- 10 -38 cm 2 with the Weinberg angle sin 2 theta sub( w) = 0.22. (author)

  16. Study of halo nuclei breakup on light targets at intermediate and high energies

    CERN Document Server

    Parfenova, Ioulia

    2002-01-01

    The study of exotic nuclei is one of the most important topics in modern nuclear physics. It allows general understanding of the structure and nature of light nuclear systems in the vicinity of the driplines. Most of the leading facilities in the world, CERN, GANIL, GSI in Europe, RIKEN in Japan, and NSCL(MSU) in USA, are involved in these investigations. Recently, new experimental data on the properties of light halo nuclei such as extremely large interaction cross sections, huge electromagnetic dissociation cross sections, narrow momentum distribution of fragments from breakup reactions, unusual modes of the beta-decay of these nuclei on the borders of the stability, were obtained. This Thesis is based on a series of articles devoted to theoretical investigations of nuclear breakup reactions with light halo nuclei at intermediate energies impinging on light target nuclei. Special attention is paid to the question of sensitivity of the calculated breakup cross sections and longitudinal momentum distributions...

  17. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  18. Strong Enhancement of Extremely Energetic Proton Production in Central Heavy Ion Collisions at Intermediate Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Migneco, E.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Greco, V. (and others)

    2001-08-13

    The energetic proton emission has been investigated as a function of the reaction centrality for the system {sup 58}Ni+{sup 58}Ni at 30AMeV. Extremely energetic protons (E{sup NN}{sub p}{>=}130 MeV ) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons, thus indicating the onset of a mechanism beyond one- and two-body dynamics.

  19. Strong Enhancement of Extremely Energetic Proton Production in Central Heavy Ion Collisions at Intermediate Energy

    International Nuclear Information System (INIS)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Migneco, E.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Greco, V.

    2001-01-01

    The energetic proton emission has been investigated as a function of the reaction centrality for the system 58 Ni+ 58 Ni at 30AMeV. Extremely energetic protons (E NN p ≥130 MeV ) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons, thus indicating the onset of a mechanism beyond one- and two-body dynamics

  20. Strong Enhancement of Extremely Energetic Proton Production in Central Heavy Ion Collisions at Intermediate Energy

    Science.gov (United States)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Migneco, E.; Agodi, C.; Alba, R.; Bellia, G.; del Zoppo, A.; Finocchiaro, P.; Greco, V.; Loukachine, K.; Maiolino, C.; Piattelli, P.; Santonocito, D.; Ventura, P. G.; Blumenfeld, Y.; Bruno, M.; Colonna, N.; D'Agostino, M.; Fabbietti, L.; Fiandri, M. L.; Gramegna, F.; Iori, I.; Margagliotti, G. V.; Mastinu, P. F.; Milazzo, P. M.; Moroni, A.; Rui, R.; Scarpaci, J. A.; Vannini, G.

    2001-08-01

    The energetic proton emission has been investigated as a function of the reaction centrality for the system 58Ni+58Ni at 30A MeV. Extremely energetic protons (ENNp>=130 MeV) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons, thus indicating the onset of a mechanism beyond one- and two-body dynamics.

  1. Reaction mechanisms with intermediate-energy heavy ions: the surprises of semi-exclusive studies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-01-01

    Several semi-exclusive experiments have recently been made: a large solid angle light particle multidetector at forward angles has been used in coincidence with other reaction products. The conclusions are somewhat different from expectations based on inclusive results. Two examples are given. For Ar projectiles at 35 MeV/u, transfer reactions remain the most important part of quasi-elastic projectile-like fragments; when projectile fragmentation occurs, it is most often asymetric multi-fragmentation. At 60MeV/u, in two particles correlations at small relative momenta, the correlation peak is strongly enhanced in low multiplicity events in the multidetector, and reduced for high multiplicity events; this is related to the lifetime of the source, as well as to its spatial extension

  2. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  4. Exploring heavy-quark energy loss via b-tagging in heavy-ion collisions at the LHC

    International Nuclear Information System (INIS)

    Klay, Jennifer L

    2005-01-01

    A strategy to study flavour-dependent parton energy loss by tagging heavy quark jets in p+p, p+Pb and Pb+Pb collisions at the LHC is discussed. Estimates for production cross-sections and experimental techniques employed at collider detectors to search QQ-bar jets are presented and a brief evaluation of the capabilities of CMS, ALICE and ATLAS detectors are given

  5. Processes of energy deposition by heavy-particle and electron impact. Final progress report

    International Nuclear Information System (INIS)

    Salop, A.; Smith, F.T.

    1978-01-01

    Progress is reported in three areas of reasearch during the present period: K-shell ionization in high energy collisions of heavy ions with light target atoms using the sudden (Magnus) approximation, K-L level matching phenomena associated with K-shell vacancy production in heavy-ion collisions, and studies of low energy collisions of electrons with molecules using semi-classical perturbation theory. A brief discussion of each of these activities is given

  6. Constraints on the density dependence of the symmetry energy from heavy-ion collisions

    Science.gov (United States)

    Tsang, M. B.; Chajecki, Z.; Coupland, D.; Danielewicz, P.; Famiano, F.; Hodges, R.; Kilburn, M.; Lu, F.; Lynch, W. G.; Winkelbauer, J.; Youngs, M.; Zhang, Y. X.

    2011-04-01

    Constraints on the equation of state (EoS) for symmetric matter (equal neutron and proton numbers) have been extracted from energetic collisions of heavy ions over a range of energies. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at subsaturation densities from isospin diffusions and neutron proton ratios. This article reviews the experimental constraints on the density dependence of symmetry energy at subsaturation density.

  7. Pauli correlations in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1977-01-01

    The effects of short-range correlations on the Glauber expansion for nucleus-nucleus collisions are calculated using the Fermi gas model for nuclei. When the Pauli principle is neglected for collisions between heavy nuclei, calculation of the optical phase-shift function leads to non-unitary results and cross sections cannot be obtained. When Pauli correlations are included important cancellations in the optical phase-shift function are found which make possible the calculation of total and differential cross sections for heavy nuclei. (Auth.)

  8. Theoretical aspects of heavy-flavour production at ultra-high cosmic ray energies

    Directory of Open Access Journals (Sweden)

    Gonçalves V. P.

    2015-01-01

    Full Text Available The main theoretical aspects of heavy-flavour production at ultra-high cosmic ray energies are reviewed, with particular emphasis in the new dynamical effects which are expected to be present in the kinematical range probed by the IceCube and Pierre Auger Observatories. The gluon saturation effects for heavy quark production and the contribution of double parton scattering processes are analysed. Finally, the intrinsic heavy quark hypothesis is presented and some of its phenomenological implications at high energies are discussed.

  9. Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals

    International Nuclear Information System (INIS)

    Han Wenbiao; Cao Zhoujian

    2011-01-01

    A new scheme for computing dynamical evolutions and gravitational radiations for intermediate-mass-ratio inspirals (IMRIs) based on an effective one-body (EOB) dynamics plus Teukolsky perturbation theory is built in this paper. In the EOB framework, the dynamic essentially affects the resulted gravitational waveform for a binary compact star system. This dynamic includes two parts. One is the conservative part, which comes from effective one-body reduction. The other part is the gravitational backreaction, which contributes to the shrinking process of the inspiral of a binary compact star system. Previous works used an analytical waveform to construct this backreaction term. Since the analytical form is based on post-Newtonian expansion, the consistency of this term is always checked by numerical energy flux. Here, we directly use numerical energy flux by solving the Teukolsky equation via the frequency-domain method to construct this backreaction term. The conservative correction to the leading order terms in mass-ratio is included in the deformed-Kerr metric and the EOB Hamiltonian. We try to use this method to simulate not only quasicircular adiabatic inspiral, but also the nonadiabatic plunge phase. For several different spinning black holes, we demonstrate and compare the resulted dynamical evolutions and gravitational waveforms.

  10. Direct processes in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Rodriguez Chariarse, V.D.

    1990-01-01

    This thesis deals with direct processes induced by Zp charge ion impact on one or two electron atoms and ions at intermediate energies. At a first step, a one-dimensional collision model is used in order to prove the different theoretical methods available to study collisions at such energy range, such as: perturbative and related variational principles, and distorted wave methods. The best description of both, symmetric and asymmetric collision type, is achieved by the distorted wave methods, particularly the ones using the exact impulsive wave function. As a next step, the appropriate formulations of the wave functions employed in the one-dimensional model to describe the real 3-dimensional Coulomb interaction case are examined by using the Eikonal and impulse hypothesis. In this way, the VPS and Eikonal wave functions are reviewed, and furtherly, the Eikonal form of the extended impulse wave function is derived. The Eikonal impulse approximation (EIA) is introduced. This is a distorted wave method using the Eikonal and extended impulse wave functions. The choice of the EIA prior version, i.e., the one using extended impulse wave function in the final channel for excitation is widely discussed and justified. (Author) [es

  11. Long-term residual radioactivity in an intermediate-energy proton linac

    Science.gov (United States)

    Blaha, J.; La Torre, F. P.; Silari, M.; Vollaire, J.

    2014-07-01

    A new 160 MeV H- linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities.

  12. Long-term residual radioactivity in an intermediate-energy proton linac

    International Nuclear Information System (INIS)

    Blaha, J.; La Torre, F.P.; Silari, M.; Vollaire, J.

    2014-01-01

    A new 160 MeV H − linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities

  13. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Yoshida, Tadashi; Takeuchi, Suehiro

    2003-10-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  14. Willow Trees from Heavy Metals Phytoextraction as Energy Crops

    Czech Academy of Sciences Publication Activity Database

    Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Habart, J.; Svoboda, Karel; Punčochář, Miroslav

    2012-01-01

    Roč. 37, - (2012), s. 106-113 ISSN 0961-9534 R&D Projects: GA ČR(CZ) GA104/07/0977; GA MŠk 2B08048 Institutional research plan: CEZ:AV0Z40720504 Keywords : phytoextraction * heavy metal * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.975, year: 2012

  15. Pion production in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Wolf, K.L.; Bock, R.; Brockmann, R.

    1984-01-01

    Experimental data for heavy ion pion production reactions are compared with the predictions of a number of versions of cascade models. Pion suppression effects observed in the experimental data are fit by introducing refinements into cascade theory. Impact parameter adjustment, off-shell effects on the potential and perturbations due to nuclear matter are considered

  16. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei.

  17. Numerical comparison between deep water and intermediate water depth expressions applied to a wave energy converter

    Directory of Open Access Journals (Sweden)

    Pedro Beirão

    2015-09-01

    Full Text Available The energy that can be captured from the sea waves and converted into electricity should be seen as a contribution to decrease the excessive dependency and growing demand of fossil fuels. Devices suitable to harness this kind of renewable energy source and convert it into electricity—wave energy converters (WECs—are not yet commercially competitive. There are several types of WECs, with different designs and working principles. One possible classification is their distance to the shoreline and thus their depth. Near-shore devices are one of them since they are typically deployed at intermediate water depth (IWD. The selection of the WEC deployment site should be a balance between several parameters; water depth is one of them. Another way of classifying WECs is grouping them by their geometry, size and orientation. Considering a near-shore WEC belonging to the floating point category, this paper is focused on the numerical study about the differences arising in the power captured from the sea waves when the typical deep water (DW assumption is compared with the more realistic IWD consideration. Actually, the production of electricity will depend, among other issues, on the depth of the deployment site. The development of a dynamic model including specific equations for the usual DW assumption as well as for IWD is also described. Derived equations were used to build a time domain simulator (TDS. Numerical results were obtained by means of simulations performed using the TDS. The objective is to simulate the dynamic behavior of the WEC due to the action of sea waves and to characterize the wave power variations according with the depth of the deployment site.

  18. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Final report

    International Nuclear Information System (INIS)

    Burleson, G.R.

    1987-01-01

    We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs

  19. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1990-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei

  20. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.; Talley, B. (comps.)

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I.

  1. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    International Nuclear Information System (INIS)

    Allred, J.C.; Talley, B.

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I

  2. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  3. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami [Eaton Corporation, Menomonee Falls, WI (United States)

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  4. Heavy flavours in high energy e+e-annihilation

    International Nuclear Information System (INIS)

    Marshall, R.

    1989-06-01

    This paper reviews the quantum flavour dynamic and fragmentation properties of the heavy leptons and quarks and for the purpose of this report, the heavy flavours are taken to be the τ lepton and the c and b quarks. The production of τ + τ - and the electroweak properties of the τ are first discussed and then the τ charged current decay properties are considered and compared with those of the μ. The role of τ decays in the understanding of Quantum Chromo Dynamics is also considered. The production of heavy quark pairs is considered in the framework of the standard model and the weak neutral current charges of the quarks are presented from a global analysis of all existing data. The weak decays of c and b are discussed and the measurements of lifetimes and leptonic widths considered as input parameters to the eventual determination of the quark weak mixing matrix elements. Finally the fragmentation of c and b quarks is discussed and the various measurements presented. (author)

  5. H2@Scale: Technical and Economic Potential of Hydrogen as an Energy Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jadun, Paige [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pivovar, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-09

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energy production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  6. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. (eds.)

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of [sigma](700)-meson exchange in [gamma][gamma][yields][pi][pi] processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the [gamma][Nu]-[Delta] transition; pion photoproduction and the [gamma][Nu]-[Delta] amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p([rvec [gamma

  7. Modeling interactions of intermediate-energy neutrons in a plastic scintillator array with GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Kohley, Z., E-mail: zkohley@gmail.com [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Lunderberg, E.; DeYoung, P.A. [Department of Physics, Hope College, Holland, MI 49423 (United States); Roeder, B.T. [LPC-Caen, ENSICAEN, IN2P3/CNRS et Universite de Caen, 14050 Caen cedex (France); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Christian, G.; Mosby, S.; Smith, J.K.; Snyder, J.; Spyrou, A.; Thoennessen, M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-08-01

    A Monte Carlo simulation of a large-area neutron time-of-flight detector, built on the GEANT4 framework, has been compared with an experimental measurement of the {sup 16}B{yields}{sup 15}B+n decay produced from a 55 MeV/u{sup 17}C beam. The ability of the Monte Carlo simulation to reproduce the intermediate-energy neutron interactions within the detector has been explored using both the stock GEANT4 physics processes and a custom neutron interaction model, MENATE{sub R}. The stock GEANT4 physics processes were unable to reproduce the experimental observables, while excellent agreement was obtained through the inclusion of the MENATE{sub R} model within GEANT4. The differences between the two approaches are shown to be related to the modeling of the neutron-carbon inelastic reactions. Additionally, the use of MENATE{sub R} provided accurate reproduction of experimental signals associated with neutron scattering within the detector. These results provide validation of the Monte Carlo simulation for modeling measurements of multiple neutrons where the identification and removal of false neutron signals, due to multiple neutron scattering, are required.

  8. Spectral energy distributions of the brightest Palomar-Green quasars at intermediate redshifts

    Science.gov (United States)

    Tripp, Todd M.; Bechtold, Jill; Green, Richard F.

    1994-01-01

    We have combined low-dispersion International Ultraviolet Explorer (IUE) spectra with the optical/near-IR spectrophotometry of Neugebauer et al. (1987) in order to study the spectral energy distributions of seven of the brightest Palomar-Green (PG) quasars at intermediate redshifts (Z(sub em) greater than or equal to 0.9 and less than or equal to 1.5). Some of these PG quasars are barely detectable in long IUE exposures, so we have used the Gaussian Extraction (GEX) technique to maximize the signal-to-noise of the IUE data, and we have co-added all spectra available from the IUE archive for each QSO unless the ultraviolet spectra varied significantly from one exposure to the next. We have corrected the spectral energy distributions for Milky Way reddening using the observed neutral hydrogen column densities on each sight line and the gas-to-dust relation recently derived by Diplas & Savage. Six of the seven quasars are detected down to lambda much less than 700 A in the rest frame, and consequently continuum reddening due to dust in the immediate vicinity of the quasar can have a dramatic effect on the spectral energy distributions. In order to explore the possible importance of intrinsic continuum reddening, we have assembled a heuristic extinction curve which extends to lambda much less than 912 A. Using this heuristic extinction curve, we derive reasonable upper limits on the intrinsic E(B-V) for each quasar. We briefly discuss some of the implications of the derived intrinsic continuum reddening limits. We use geometrically thin accretion disk models to derive the black hole masses and accretion rates implied by the spectral energy distributions. Even if we neglect intrinsic reddening, we find that a large fraction of the quasars require super-Eddington accretion rates (which is not consistent with the thin disk assumption). Comparison of the data in this paper to a large body of data from the literature on the accretion disk M(sub BH) - M dot grid calculated

  9. Angular dependences of the tensor analyzing powers in the dd -> sup 3 Hen reaction at intermediate energies

    CERN Document Server

    Ladygin, V P

    2002-01-01

    The tensor analyzing powers A sub y sub y , A sub x sub x , and A sub x sub z in the dd -> sup 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the sup 3 He and deuteron spin structure at short distances is shown

  10. Angular dependences of the tensor analyzing powers in the dd → 3Hen reaction at intermediate energies

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.; )

    2002-01-01

    The tensor analyzing powers A yy , A xx , and A xz in the dd → 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown [ru

  11. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    Science.gov (United States)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  12. Energy loss effects on heavy quark production in heavy-ion collisions at sq root s = 5.5 A TeV

    CERN Document Server

    Lin Zi Wei

    1999-01-01

    We study the effect of energy loss on charm and bottom quarks in high-energy heavy-ion collisions including hadronization, longitudinal expansion and partial thermalization. We consider in detail the detector geometry and single lepton energy cuts of the ALICE and CMS detectors at the Large Hadron Collider (LHC) to show the large suppression of high P sub T heavy quarks and the consequences on their semileptonic decays.

  13. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    International Nuclear Information System (INIS)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few μm. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials

  14. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few {mu}m. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials. 86 refs., 5 tabs., 15 figs.

  15. Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis[Dissertation 17314

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F

    2007-07-01

    In this dissertation by Thorsten Frank Schulz the intermediate steps necessary to realise the 2000-Watt Society in Switzerland are examined. An analysis of an energy-economic scenario shows that the 2000-Watt Society should be seen as a long-term goal. According to the author, the major changes required to allow the implementation of this project concern energy-transformation and energy-demand technologies. Electricity will, according to the author, play an important role in a service-oriented society in the future. In such a transformation even intermediate steps are associated with considerable expense. The aims of the 2000-Watt Society project are listed. Energy and CO{sub 2} balances for the domestic and transport sectors are presented and discussed. Complementary analyses are presented concerning fuel cells and wood-based fuel technologies. Finally, the implications of the 2000-Watt society and the effects of technological change are summarised and an outlook is presented.

  16. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Epelbaum, Thomas

    2014-01-01

    This thesis deals with the theory of the early stages of a heavy ion collision. Just after such a collision, the matter produced - called the Quark-Gluon-Plasma (QGP) - has been shown to be far out of thermal equilibrium. One would like to know whether the QGP thermalizes, and what is the typical time scale for this. Proving that the QGP thermalizes would also justify from first principles the hydrodynamical treatment of the subsequent evolution of a heavy ion collision. After having recalled some essential theoretical concepts, the manuscript addresses these questions in two different theories. In a first part, we study a scalar field theory. Starting from an out of equilibrium initial condition, one studies the approach to equilibrium in a fixed volume or in a one-dimensional expanding system. In both cases, clear signs of thermalization are obtained: an equation of state is formed, the pressure tensor becomes isotropic and the occupation number approaches a classical thermal distribution. These results are obtained thanks to the classical statistical approximation (CSA), that includes contributions beyond the Leading Order perturbative calculation. In a second part, the Color Glass Condensate - a quantum chromodynamics (QCD) effective theory well suited to describe the early life of the QGP - is used to treat more realistically the approach to thermalization in heavy ion collisions. After having derived some analytical prerequisites for the application of the CSA, the numerical simulations performed with the Yang-Mills equations show evidences of an early onset of hydrodynamical behavior of the QGP: the system becomes isotropic on short time scales, while the shear viscosity over entropy ratio is very small, which is characteristic of a quasi perfect fluid. (author) [fr

  17. Defect production and subsequent effects induced by electronic energy loss of swift heavy ion

    International Nuclear Information System (INIS)

    Hou Mingdong; Liu Jie; Sun Youmei; Yin Jingmin; Yao Huijun; Duan Jinglai; Mo Dan; Zhang Ling; Chen Yanfeng; Chinese Academy of Sciences, Beijing

    2008-01-01

    Swift heavy ion in matter is one of forfront fields of nuclear physics in the world. A series of new phenomena were discovered in recent years. The history and sta- tus on the development of this field were reviewed. Electronic energy loss effects induced by swift heavy ion irradiation, such as defect production and evolution, ion latent track formation, phase transformation and anisotropy plastic deformation were introduced emphatically. A trend of future investigation was explored. (authors)

  18. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    International Nuclear Information System (INIS)

    Beck, F.A.

    1993-01-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.)

  19. Jet and Leading Hadron Production in High-energy Heavy-ionCollisions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian

    2005-11-01

    Jet tomography has become a powerful tool for the study ofproperties of dense matter in high-energy heavy-ion collisions. I willdiscuss recent progresses in the phenomenological study of jet quenching,including momentum, colliding energy and nuclear size dependence ofsingle hadron suppression, modification of dihadron correlations and thesoft hadron distribution associatedwith a quenched jet.

  20. Theoretical study of cylindrical energy analyzers for MeV range heavy ion beam probes

    International Nuclear Information System (INIS)

    Fujisawa, A.; Hamada, Y.

    1993-07-01

    A cylindrical energy analyzer with drift spaces is shown to have a second order focusing for beam incident angle when the deflection angle is properly chosen. The analyzer has a possibility to be applied to MeV range heavy ion beam probes, and will be also available for accurate particle energy measurements in many other fields. (author)

  1. Collective flows in high-energy heavy-ion collisions at AGS and SPS ...

    Indian Academy of Sciences (India)

    Collective flows in high-energy heavy-ion collisions at AGS and SPS energies∗. A OHNISHI1, M ISSE1, N OTUKA2, P K SAHU3 and Y NARA4. 1Division of Physics, Graduate School of Science, Hokkaido University, Sapporo,. Hokkaido 060-0810, Japan. 2Nuclear Data Center, Department of Nuclear Energy System, Japan ...

  2. Short range correlations in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1978-01-01

    We present a technique for including the effects of nucleon-nucleon correlations in the optical phase shift (chi) expansion of the nucleus-nucleus scattering amplitude and present the results for chi to second order. The total and inelastic cross sections are consistently higher than those obtained ignoring correlations, and are in better agreement with the data. Furthermore, the inclusion of correlations leads to second order phase shift functions which do not violate unitarity, in constrast to the case when correlations are ignored in very heavy nuclei (A 1 , A 2 > or approx. = 200). In elastic scattering differential cross sections, the effects of correlations can be quite large

  3. A comparative analysis of mechanisms of fast light particles production in nucleus-nucleus collisions at low and intermediate energies

    CERN Document Server

    Denikin, A S

    2002-01-01

    The dynamics and the mechanisms of formation of pre-equilibrium light particles in nucleus-nucleus collisions at low and intermediate energies are discussed in terms of a classical four-body model. The energy and angular distributions of light particles have been calculated. It has been found that at energies lower than 50A MeV the formation of the most high-energy part of the nuclear spectrum occurs at the expense of the acceleration of light target particles with the mean field of the projectile. The obtained data are in good agreement with available experimental data

  4. Feasibility of using intermediate x-ray energies for highly conformal extracranial radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng; Yu, Victoria; Nguyen, Dan; Demarco, John; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edy [Department of Radiation Oncology, University of California Los Angeles, California 90095 (United States); Woods, Kaley; Boucher, Salime [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

    2014-04-15

    Purpose: To investigate the feasibility of using intermediate energy 2 MV x-rays for extracranial robotic intensity modulated radiation therapy. Methods: Two megavolts flattening filter free x-rays were simulated using the Monte Carlo code MCNP (v4c). A convolution/superposition dose calculation program was tuned to match the Monte Carlo calculation. The modeled 2 MV x-rays and actual 6 MV flattened x-rays from existing Varian Linacs were used in integrated beam orientation and fluence optimization for a head and neck, a liver, a lung, and a partial breast treatment. A column generation algorithm was used for the intensity modulation and beam orientation optimization. Identical optimization parameters were applied in three different planning modes for each site: 2, 6 MV, and dual energy 2/6 MV. Results: Excellent agreement was observed between the convolution/superposition and the Monte Carlo calculated percent depth dose profiles. For the patient plans, overall, the 2/6 MV x-ray plans had the best dosimetry followed by 2 MV only and 6 MV only plans. Between the two single energy plans, the PTV coverage was equivalent but 2 MV x-rays improved organs-at-risk sparing. For the head and neck case, the 2MV plan reduced lips, mandible, tongue, oral cavity, brain, larynx, left and right parotid gland mean doses by 14%, 8%, 4%, 14%, 24%, 6%, 30% and 16%, respectively. For the liver case, the 2 MV plan reduced the liver and body mean doses by 17% and 18%, respectively. For the lung case, lung V20, V10, and V5 were reduced by 13%, 25%, and 30%, respectively. V10 of heart with 2 MV plan was reduced by 59%. For the partial breast treatment, the 2 MV plan reduced the mean dose to the ipsilateral and contralateral lungs by 27% and 47%, respectively. The mean body dose was reduced by 16%. Conclusions: The authors showed the feasibility of using flattening filter free 2 MV x-rays for extracranial treatments as evidenced by equivalent or superior dosimetry compared to 6 MV plans

  5. The role of non-elastic nuclear processes for intermediate-energy protons in silicon targets

    International Nuclear Information System (INIS)

    Hormaza, Joel Mesa; Garcia, Cesar E.; Arruda Neto, Joao D.T.; Rodrigues, Tulio E.; Paschuck, Sergei A.; Evseev, Ivan

    2013-01-01

    The transportation of energetic ions in bulk matter is of direct interest in several areas including shielding against ions originating from either space radiations or terrestrial accelerators, cosmic ray propagation studies in galactic medium, or radiobiological effects resulting from the work place or clinical exposures. For carcinogenesis, terrestrial radiation therapy, and radiobiological research, knowledge of beam composition and interactions is necessary to properly evaluate the effects on human and animal tissues. For the proper assessment of radiation exposures both reliable transport codes and accurate input parameters are needed. In the last years efforts have been increasing in order to develop more effective models to describe and predict the damages induced by radiation in electronic devices. In this sense, the interaction of protons with those devices, particularly which operate in space, is a topic of paramount importance, mainly because although the majority of them are made with silicon, experimental data on p+Si nuclear processes is very sparse. In this work we have used a new quite sophisticated Monte Carlo multicollisional intranuclear cascade (MCMC) code for pre-equilibrium emission, plus de-excitation of residual nucleus by two ways: evaporation of particles (mainly nucleons, but also composites) and possibly fragmentation/fission in the case of heavy residues, in order to study some observable of nuclear interaction of protons between 100-200 MeV in a 28 Si target. The code has been developed with very recent improvements that take into account Pauli blocking effects in a novel and more precise way, as well as a more rigorous energy balance, an energy stopping time criterion for pre-equilibrium emission and the inclusion of deuteron, triton and 3He emissions in the evaporation step, which eventually concurs with fragmentation/break-up stage. The fragment mass distributions, as well as the multiplicities and the spectra of secondary particles

  6. The impact of energy conservation in transport models on the π−/π+ multiplicity ratio in heavy-ion collisions and the symmetry energy

    Directory of Open Access Journals (Sweden)

    M.D. Cozma

    2016-02-01

    Full Text Available The charged pion multiplicity ratio in intermediate energy central heavy-ion collisions has been proposed as a suitable observable to constrain the high density dependence of the isovector part of the equation of state. A comparison of various transport model predictions with existing experimental data has led, however, to contradictory results. Using an upgraded version of the Tübingen QMD transport model, which allows the conservation of energy at a local or global level by accounting for the potential energy of hadrons in two-body collisions and leading thus to particle production threshold shifts, we demonstrate that compatible constraints for the symmetry energy stiffness can be extracted from pion multiplicity and elliptic flow observables. However, pion multiplicities and ratios are proven to be highly sensitive to the yet unknown isovector part of the in-medium Δ(1232 potential which hinders, at present, the extraction of meaningful information on the high density dependence of the symmetry energy. A solution to this problem together with the inclusion of contributions presently neglected, such as in-medium pion potentials and retardation effects, are needed for a final verdict on this topic.

  7. Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy

    International Nuclear Information System (INIS)

    Huang, M.; Chen, Z.; Kowalski, S.; Ma, Y. G.; Wada, R.; Hagel, K.; Barbui, M.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Keutgen, T.; Bonasera, A.; Wang, J.

    2010-01-01

    The relative isobaric yields of fragments produced in a series of heavy-ion-induced multifragmentation reactions have been analyzed in the framework of a modified Fisher model, primarily to determine the ratio of the symmetry energy coefficient to the temperature, a sym /T, as a function of fragment mass A. The extracted values increase from 5 to ∼16 as A increases from 9 to 37. These values have been compared to the results of calculations using the antisymmetrized molecular dynamics (AMD) model together with the statistical decay code gemini. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the values extracted from the ratios of the primary isobars from the AMD model calculation are ∼4 to 5 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.

  8. Lectures on the Near-Side Ridge, Landau Hydrodynamics, and Heavy Quarkonia in High Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Wong C.-Y.

    2010-10-01

    Full Text Available We give an introduction to three different topics that are of current interest in heavy-ion collisions. Particles associated with the near-side jet are found to exhibit a Δφ-Δη correlation in the form of a ridge in the Δη direction but a peak at Δφ ~ 0. The experimental data support the description that the ridge particles are medium partons kicked by the jet. The measurement of the characteristics of the ridge provides a unique tool to probe the nature of the (jet parton-(medium parton collision and the momentum distribution of dense matter formed in the early stage of the heavy-ion collision. We find that the magnitude of the longitudinal momentum kick along the jet direction acquired by a medium parton in collision with the jet is about 1 GeV, and the early parton momentum distribution is in the form of a rapidity plateau with a thermal-type transverse momentum distribution. In the second lecture, we re-examine the validity of Landau hydrodynamics which provides a reasonable description of the space-time dynamics of the hot matter produced in high-energy heavy-ion collisions. We find that the rapidity distribution of produced particles should be more appropriately modified from Landau’s result. Past successes of the Gaussian distribution in explaining experimental rapidity data can be understood, not because it is an approximation of the original Landau distribution, but because it is in fact a close representation of the modified distribution. In the final lecture, we give an introduction to the development of the potential model for quarkonia, using thermodynamical quantities obtained in lattice gauge calculations. We find that the potential model is consistent with the lattice gauge spectral function analysis, if the color-singlet heavy quark-antiquark potential is a linear combination of the color-singlet free energy F1 and internal energy U1 , with coefficients that depend on the equation of state. We find that the e

  9. Heavy quark energy loss far from equilibrium in a strongly coupled collision

    CERN Document Server

    Chesler, Paul M; Rajagopal, Krishna

    2013-01-01

    We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodyna...

  10. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    Science.gov (United States)

    Belkić, Dževad

    1999-06-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/ dΩ for the basic charge exchange process H ++H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pad

  11. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    International Nuclear Information System (INIS)

    Belkic, Dzevad

    1999-01-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/dΩ for the basic charge exchange process H + +H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pade

  12. An experimental investigation on reduced radiological penumbra for intermediate energy x-rays: Implications for small field radiosurgery

    Science.gov (United States)

    Keller, Brian Michael

    Current day external beam radiation therapy typically uses x-ray energies in the megavoltage (6--18 MV) or in the superficial/orthovoltage (80--350 kVp) energy ranges. It has been found that intermediate energy x-rays (those greater than orthovoltage but sub-megavoltage) may offer an advantage in the field of high precision radiation therapy such as in radiosurgery. This advantage is a reduction in the radiological penumbra associated with small (less than about 3 cm) radiation dose fields. A consequence of reduced radiological penumbra is a more homogenous, conformal dose distribution in the patient with dose escalation and organ sparing made more feasible. The objectives of this thesis were as follows: to produce and to characterize an intermediate energy x-ray beam, to establish a method of accurate penumbra measurement at the micron level for millimeter size fields, to measure the radiological penumbra of single small intermediate energy x-ray fields, and to show the clinical consequences of a multiple beam irradiation in a stereotactic head phantom. A maximum photon energy of 1.2 +/- 0.1 MeV was determined for the intermediate energy x-ray spectrum at the expense of a low dose rate. A digital microscope with a computer controlled translation stage was investigated for its ability to resolve steep dose gradients in Gafchromic EBT film for field sizes as small as 1 mm and for photon energies as low as 100 kVp. The microscope-film system resolved gradients to within about 30 mum, limited by the inherent spatial resolution of the film, the noise of the system, and the uncertainties of measurement. Penumbra widths were compared for 1.2 MV versus 6 MV for identical irradiation conditions. In some instances, there was a five-fold reduction in the radiological penumbra of single 1.2 MV x-ray beams. A multiple beam arc irradiation demonstrated that the advantages seen with single beams carry over to multiple beams. The benefits of reduced radiological penumbra for

  13. Search for and selection of novel heavy scintillator crystals for calorimeter design for future high-energy colliders

    International Nuclear Information System (INIS)

    Ferrere, D.

    1993-01-01

    The discovery of some particles (Higgs, top,..) foreseen by theoretical models should be achieved at future colliders allowing to reach an energy scale of about 1 TeV. Efficient detectors must be designed to handle the very high luminosity of the LHC collider at CERN. In the intermediate mass region, M Z -2M Z , the diphoton decay mode of a Higgs boson produced inclusively or in association with W boson or a toponium gives good chance of observation. A very high resolution calorimeter with photon angle reconstruction and pion identification capability should detect a Higgs signal with high probability. So a homogeneous crystal calorimeter seems to be suitable. Because of the high luminosity and the high radiation level, a search for a new heavy scintillator has been undertaken. It must have a good radiation hardness (>0.5 MRad in a year) and a fast luminescence decay time (<30 ns). Among 50 crystals or glasses of specific chemical composition tested in transmission, luminescence, decay time, γ/neutrons radiation and light yield, cerium fluoride seems best suited for LHC. The necessity to have a good photon resolution in the intermediate Higgs mass region led us to optimise by Monte Carlo simulations the geometry of the calorimeter, the uniformisation of the light collection and crystal intercalibration parameters. (orig.)

  14. Study of heavy quarkonium with energy dependent potential

    International Nuclear Information System (INIS)

    Gupta, Pramila; Mehrotra, I

    2009-01-01

    It is well known that charmonium and bottonium states can be calculated by using a nonrelativistic Schrodinger equation. The basic reasons are: 1) the mass of charm and bottom quarks is much larger than QCD scale, which makes this system free of strong normalization effects and 2) the binding energy is small compared to the mass energy ψ and γ states in terms of nonrelativistic qq system governed by more or less phenomenological potentials. In the present work we have studied mass spectra of charmonium and bottonium using the following energy dependent model in the framework of nonrelativistic Schrodinger equation

  15. A systematic study of the low energy effects of heavy particles in the standard model

    International Nuclear Information System (INIS)

    Flores, E.V.

    1989-01-01

    In this approach, at any loop order, the low energy effects of a heavy Higgs boson and a heavy fermion can be summarized by an effective lagrangian. To the one-loop order, an effective lagrangian for the bosonic sector of the theory is constructed. One fermion mass is light (m) and the other is heavy (M). At the one-loop level heavy fermion mass effects proportional to M 2 and ln(M/m) have been found. It is shown here that in the presence of gauge fields, the infinities 1/ε of the nonlinear σ-model do not fully reproduce the ln(M H ) of the linear σ-model. (orig.)

  16. Some general scaling rules in high energy heavy ion reactions

    International Nuclear Information System (INIS)

    Andersson, B.; Idh, J.; Otterlund, I.; Stenlund, E.

    1988-09-01

    We show, using the Fritiof model scenario that the wide variation in the number of participating nucleons tend to drown other dynamical variations in the measurables of high energy ion collisions. We propose a set if general scaling laws for inclusive distributions in which it is the mean multiplicity and the mean transverse energy from each source which are the measurables in the interactions. (authors)

  17. Effects of high-energy heavy ions on amorphous materials

    International Nuclear Information System (INIS)

    Klaumuenzer, S.; Gutzmann, A.

    1994-01-01

    In matter fast ions deposit their kinetic energy mainly via the nuclear energy loss and via the electronic energy loss. The former denotes the process of transfer of kinetic energy to the material atoms as a whole whereas the latter leads to excited and/or ionized target atoms. With the advent of the mega volt implanters in science and technology the component of the electronic energy loss grows in its importance. Reviewing recent experiments in the ion energy range of 100 to 1000 MeV it is shown that in all amorphous materials (polymer glasses, dielectric, metallic glasses) atomic rearrangements are released by electronic excitations. In the low-fluence region particle track formation is the most important process whereas in the high-fluence region ion-beam-induced plastic deformation causes macroscopically visible specimen deformations. Finally, it is shown that the latter effects are also of importance in the field of implantation of ions of several MeV. (author). 60 refs, 3 figs, 2 tabs

  18. Heavy flavour in high-energy nuclear collisions: a theoretical overview

    Science.gov (United States)

    Beraudo, Andrea

    2018-03-01

    The peculiar role of heavy-flavour observables in relativistic heavy-ion collisions is discussed. Produced in the early stage, c and b quarks cross the hot deconfined plasma arising from the collision, interacting strongly with the latter, until they hadronize. Transport calculations are the tools to follow their propagation in the medium: their formulation as well as their conceptual basis are briefly reviewed. Depending on the strength of the interaction heavy quarks may or not approach kinetic equilibrium with the plasma, tending in the first case to follow the collective flow of the expanding fireball. The presence of a hot deconfined medium may also affect heavy-quark hadronization, being possible for them to recombine with the surrounding light thermal partons, so that the final heavy-flavour hadrons inherit part of the flow of the medium. Here we show how it is possible to develop a complete transport setup allowing one to describe heavy-flavour production in high-energy nuclear collisions. The ultimate goal will be to extract from the experimental data the heavy-flavour transport coefficients in the Quark-Gluon Plasma: we will comment on how far we are from this achievement. Information coming from recent lattice-QCD simulations concerning both the heavy-flavour transport coefficients in the hot QCD plasma and the nature of the charmed degrees around the deconfinement transition is also presented. Finally, the possibility that the formation of a hot deconfined medium even in small systems (high-multiplicity p-Au and d-Au collisions, so far) may affect also heavy-flavour observables is investigated.

  19. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  20. Coherent and non-coherent double diffractive production of QQ-bar-pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Galoyan, A.S.; Enkovskij, L.L.; Zarubin, P.I.; Malakhov, A.I.; Melkumov, G.L.; Chatrchyan, S.A.

    1999-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pairs (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc-bar and bb-bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effect in Quark-Gluon Plasma, in the search got intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherently scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ-bar pair, M QQ-bar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη >5 [ru

  1. Coherent and non-coherent double diffractive production of QQ-bar - pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1998-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pair (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc bar and bb bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effects in quark-gluon plasma, in the search for intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherent scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ- bar pair, M QQb ar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη>5

  2. Strangeness and charm production in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Xu, Nu

    2001-01-01

    We discuss the dynamical effects of strangeness and charm production in high energy nuclear collisions. In order to understand the early stage dynamical evolution, it is necessary to study the transverse momentum distributions of multi-strange hadrons like Ξ and Ω and charm mesons like J/Ψ as a function of collision centrality

  3. Proceedings of the Ninth High Energy Heavy Ion Study

    International Nuclear Information System (INIS)

    Chacon, A.D.; Justice, M.; Ritter, H.G.

    1993-01-01

    This report contains papers on the following topics: di-lepton production; multifragmentation; collective effects and flow; beam and radioactive beam studies; and scattering and particle production. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  4. Very backward π0- and eta0-production by proton projectiles on deuterium target at intermediate energies

    International Nuclear Information System (INIS)

    Berthet, P.; Frascaria, R.; Didelez, J.P.

    1984-01-01

    The production of π 0 and eta 0 mesons in the reactions pd→π 0 tau and pd→eta 0 tau has been studied at very backward angles for kinetic proton energies Tsub(p) ranging from 0.92 to 2.6 GeV. The excitation functions at phisub(π) = phisub(eta) = 180 0 display large structures which might be related to baryonic (Δ and N*) excitations in the intermediate state

  5. Elastic scattering of the intermediate energy kaon mesons on the nuclei and coulomb's effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhenqiu; Kong Lingjiang; Liu Xianhui

    1985-05-01

    In the frame of the eikonal scattering theory, using the basic parameters which are given by the different authors, the elastic scattering of the intermediate energy kaon mesons /sup 12/C and /sup 40/Ca are studied. The Coulomb effect is calculated too. The results are agreement with the experimental data. The Coulombv effect does not only enhance the small angle differential cross section, but also fill up the dip of the differential cross section.

  6. The projects for heavy water production of the Argentine National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Garcia Bourg, J.M.; Garcia, E.E.

    1982-01-01

    The bases and scope of the projects for heavy water production that are being currently developed by the Argentine National Atomic Energy Commission (CNEA) are described. As an introduction, the following points are presented: a) the fundamentals of heavy water utilization in a nuclear reactor, with a mention of its properties and uses, b) a review of the physicochemical bases of the principal methods for heavy water production: chemical exchange (monothermal and bithermal processes), distillation and electrolysis, with tables summarizing the fundamental characteristics of the first two ones, and an evaluation of the different production methods from the viewpoint of their application in an industrial scale; and c) a synthetic information, in the form of tables, about the world's heavy water production. The subject of heavy water production in Argentina is treated in the principal section, describing the scope, location, main characteristics and chemical processes corresponding to the projects being developed by CNEA, which currently are the installation of an Industrial Plant in Arroyito (Province of Neuquen), purchased on a turnkey basis and using the NH 3 /H 2 isotopic exchange method; the installation of an Experimental Plant in Atucha (Province of Buenos Aires), for the development of the domestic technology of heavy-water production by the SH 2 /H 2 O isotopic exchange method, and the development of the engineering of an industrial plant (''Module 80''), based on the Experimental Plant's technology. (M.E.L.) [es

  7. Energy of vanishing flow in heavy-ion collisions: Role of mass ...

    Indian Academy of Sciences (India)

    Energy of vanishing flow in heavy-ion collisions: Role of mass asymmetry of a reaction. VARINDERJIT KAUR and SUNEEL KUMAR. ∗. School of Physics and Material Science, Thapar University, Patiala 147 004, India. ∗. Corresponding author. E-mail: suneel.kumar@thapar.edu. MS received 28 April 2011; revised 4 July ...

  8. Effect of high-energy heavy ion irradiation on the crystallization ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Differential scanning calorimeter (DSC) is employed to study the crystallization kinetics of irradi- ated (at three different fluences with high-energy heavy ion; Ni11+ of 150 MeV) specimens of two Co-based metallic glasses. It is found that the crystallization process in both the glasses is completed in two phases. The.

  9. Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    NARCIS (Netherlands)

    Aarts, G.; Aichelin, J.; Allton, C.; Arnaldi, R.; Bass, S. A.; Bedda, C.; Brambilla, N.; Bratkovskaya, E.; Braun-Munzinger, P.; Bruno, G. E.; Dahms, T.; Das, S. K.; Dembinski, H.; Djordjevic, M.; Ferreiro, E. G.; Frawley, A.; Gossiaux, P. B.; Granier de Cassagnac, R.; Grelli, A.; He, Ming; Horowitz, W. A.; Innocenti, G. M.; Jo, M.; Kaczmarek, O.; Kuijer, P; Laine, M.; Lombardo, M. P.; Mischke, A.; Munhoz, M. G.; Nahrgang, M.; Nguyen, Mai; Oliveira da Silva, A. C.; Petreczky, P.; Rothkopf, A.; Schmelling, M.; Scomparin, E.; Song, Ting; Stachel, J.; Suaide, A. A P; Tolos, L.; Trzeciak, B.; Uras, A.; van Doremalen, L.; Vermunt, L.; Vigolo, S.; Xu, N.; Ye, Z.; Zanoli, H.J.C.; Zhuang, P.

    2017-01-01

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results

  10. Collective flows in high-energy heavy-ion collisions at AGS and SPS ...

    Indian Academy of Sciences (India)

    Abstract. Proton collective flows in heavy-ion collisions from AGS ((2–11) A GeV) to. SPS ((40, 158) A GeV) energies are investigated in a nonequilibrium transport model with nuclear mean-field (MF). Sideward 〈px〉, directed v1, and elliptic v2 flows are systematically studied with different assumptions on the nuclear ...

  11. Effect of high-energy heavy ion irradiation on the crystallization ...

    Indian Academy of Sciences (India)

    Unknown

    ‡Nuclear Science Centre, Aruna Asaf Ali Marg, New Delhi 110 067, India. MS received 5 September 2000; revised 18 October 2000. Abstract. Differential scanning calorimeter (DSC) is employed to study the crystallization kinetics of irradi- ated (at three different fluences with high-energy heavy ion; Ni11+ of 150 MeV) ...

  12. Precise calculation of the energies of heavy hydrogenlike ions

    International Nuclear Information System (INIS)

    Driker, M.N.; Ivanova, E.P.; Ivanov, L.N.

    1983-01-01

    Energies of the 1s, 2s, and 2p states are calculated for hydrogenlike ions with z = 30--170. The calculation is based on Dirac's equation taking into account radiation effects and the finiteness of the nucleus. The hyperfine splitting constants are calculated taking the finiteness of the nucleus into account, and derivatives are taken with respect to the volume of the nucleus for all S-state characteristics

  13. Self consistent approach to low energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1984-01-01

    Calculations based on a unified reaction model with an optical potential plus a short range absorption potential are presented for the systems 32 S + 26 Mg and 32 S + 24 Mg. Fusion-fission, elastic and inelastic processes are considered. Barrier penetration is studied and cross sections are calculated in the energy range of 20 to 30 MeV and compared with experimental results. The model has also been applied to 16 O + 208 Pb

  14. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Science.gov (United States)

    Rani, Bindu; Neetu; Sharma, Kalpana; Diwan, P. K.; Kumar, Shyam

    2016-11-01

    The energy loss straggling measurements for heavy ions with Z = 3-22 (∼0.2-2.5 MeV/u) in PEN (C7H5O2) and PET (C10H8O4) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  15. The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review

    Directory of Open Access Journals (Sweden)

    Melissa PRELAC

    2016-09-01

    Full Text Available Phytoremediation is a method that use plants which can remove or stabilize pollutants in the environment. The aim of the polluted area remediation is to return ecosystems into original condition. Phytoremediation is a green technology used for a wide range of pollutants as well as on various lands, low costs and reduced environment impacts. Energy crops are relatively new in this field of researches and insufficiently explored. However, the results so far show their potential in heavy metal removal. The aim of this research was to examine the available literature and determine the phytoremediation potential of cadmium, chromium, copper, lead, mercury, nickel and zinc from the soil using Arundo donax, Miscanthus x giganteus, Panicum virgatum, Pennisetum purpureum, Sida hermaphrodita and Sorghum x drummondii. According to the researches conditions, studied energy crops are reccomended in heavy metals phytoextraction, rhizofiltration, stabilization and accumulation. Still, those plants accumulate higher concentrations of heavy metals in the rhizosphere which makes them heavy metals excluders since heavy metals are not translocated into the plants' shoot system and favorable in the implementation of rhizofiltration as well.

  16. The stopping powers and energy straggling of heavy ions in polymer foils

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Malinský, Petr; Hnatowicz, Vladimír; Slepička, P.

    2014-01-01

    Roč. 331, JUL (2014), s. 42-47 ISSN 0168-583X R&D Projects: GA ČR GA106/09/0125; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : energy loss * energy straggling * heavy ions * polymers * AFM method Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  17. Angular distribution of fragments from neutron-induced fission of 238U in the intermediate energy region

    International Nuclear Information System (INIS)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of 238 U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of 238 U

  18. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  19. Energy usage optimisation of heavy haul freight trains

    CSIR Research Space (South Africa)

    Bogaers, Alfred

    2016-10-01

    Full Text Available on the track) with the track elevation versus distance in the second subplot. The third and fourth subplot shows the traction and braking force respectively, versus distance. An important distinction is that real locomotives do not have constant tractive... analytically be shown that the optimal energy control for a train on a flat track starts with a period of maximum power (maximum acceleration) followed by a period of partial power (cruising), a period of no power or braking (coasting) and finally a period...

  20. A systematic experimental study of thick-target neutron yield for high-energy heavy ions

    International Nuclear Information System (INIS)

    Nakamura, T.; Kurosawa, T.; Shibata, T.; Uwamino, Y.; Fukumura, A.

    1999-01-01

    Angular and energy distributions of neutrons produced by 100 and 180 MeV/nucleon He, 100, 180 and 400 MeV/nucleon C, 100, 180 and 400 MeV/nucleon Ne ions stopping in thick carbon, aluminium, copper and lead targets have been measured using the heavy ion medical accelerator of the National Institute of Radiological Sciences. The neutron spectra in the forward direction have broad peaks located at about 60-70% of the incident particle energy per nucleon due to break-up process and spreading up to almost twice as much as the projectile energy per nucleon. The neutron spectra at all angles consists of two components of cascade neutrons and evaporation neutrons. The experimental results are also compared with the calculations using the HIC and LCS codes, and the calculated results generally agree with the measured ones within a factor of 2 margin of accuracy, except around the high energy end in the forward direction. This systematic study on neutron production from thick targets by high-energy heavy ions is a first experimental work and will be useful in the shielding design of high-energy heavy ion accelerator facilities. (author)

  1. Studies in High Energy Heavy Ion Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Gerald W. [Univ. of Texas, Austin, TX (United States); Markert, Christina [Univ. of Texas, Austin, TX (United States)

    2016-09-01

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STAR at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or "decay" into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally controlled

  2. Studies in High Energy Heavy Ion Nuclear Physics

    International Nuclear Information System (INIS)

    Hoffmann, Gerald W.; Markert, Christina

    2016-01-01

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STAR at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or 'decay' into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally

  3. Energy losses at collisions of relativistic structural heavy ions with atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.

    2001-01-01

    One elaborated nonperturbation theory of energy losses at collisions of structural highly-charged heavy ions moving with relativistic speed. Ions containing partially populated electron shells are taken to be structural ions. The elaborated theory considers ion as an extended structural particle which size is equal to that of electronic shells. Paper contains the results of calculations of the efficient breaking at collision of a relativistic highly-charged ions with hydrogen atom derived for three domains of collision parameter values corresponding to low, average and high parameters of collision. The derived results are generalized for the case of collisions of relativistic structural heavy ions with compound atoms [ru

  4. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  5. Heavy neutrino threshold effects in low energy phenomenology

    CERN Document Server

    Leontaris, George K; Ross, Graham G

    1995-01-01

    Right handed neutrinos with mass of {\\cal O} \\; (10^{12}-10^{13}) GeV are required to implement the see-saw mechanism and generate neutrino masses capable of playing a role in structure formation. Moreover models of fermion masses often relate the Yukawa couplings involving these neutrinos to the up-quark Yukawa couplings. Here we study the effects of such couplings on the radiative corrections to quark masses. We find that b-\\tau equality at M_{GUT} may still give the correct m_b/m_{\\tau}-- ratio at low energies, but only if there is large \\mu-\\tau mixing in the charged leptonic sector. We propose specific mass matrix ``textures'' dictated by a U(1) family symmetry whose structure preserves m_b=m_{\\tau} at M_{GUT}. In these schemes, due to the large \

  6. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  7. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Annual progress report, 1988--1989

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988 under a grant from the US Department of Energy. The nucleon-nucleon research has involved studies of interactions between polarized neutrons and polarized protons. Its purpose is to help complete the determination of the nucleon-nucleon amplitudes at energies up to 800 MeV, as part of a program currently in progress at LAMPF, as well as to investigate the possibility of the existence of dibaryon resonances. The pion-nucleus research involves studies of this interaction in regions where it has not been adequately explored. These include experiments on elastic and double charge exchange scattering at energies above the /Delta/(1232) resonance, interactions with polarized nuclear targets, and investigations of pion absorption using a detector covering nearly the full solid angle region. 21 refs., 4 figs

  8. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium. [Wave functions, preliminary experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.

  9. Thermal mass impact on energy performance of a low, medium and heavy mass building in Belgrade

    Directory of Open Access Journals (Sweden)

    Anđelković Bojan V.

    2012-01-01

    Full Text Available Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia.

  10. Heavy-residue isoscaling as a probe of the symmetry energy of hot fragments

    International Nuclear Information System (INIS)

    Souliotis, G.A.; Shetty, D.V.; Keksis, A.; Bell, E.; Jandel, M.; Veselsky, M.; Yennello, S.J.

    2006-01-01

    The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86 Kr (25 MeV/nucleon) 64 Ni (25 MeV/nucleon), and 136 Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coefficient of the nuclear binding energy. The present study focuses on heavy projectile fragments produced in peripheral and semiperipheral collisions near the onset of multifragment emission (E * /A=2-3 MeV). For these fragments, the measured average velocities are used to extract excitation energies. The excitation energies, in turn, are used to estimate the temperatures of the fragmenting quasiprojectiles in the framework the Fermi gas model. The isoscaling analysis of the fragment yields provided the isoscaling parameters α that, in combination with temperatures and isospin asymmetries provided the symmetry energy coefficient of the nuclear binding energy of the hot fragmenting quasiprojectiles. The extracted values of the symmetry energy coefficient at this excitation energy range (2-3 MeV/nucleon) are lower than the typical liquid-drop model value ∼25 MeV corresponding to ground-state nuclei and show a monotonic decrease with increasing excitation energy. This result is of importance in the formation of hot nuclei in heavy-ion reactions and in hot stellar environments such as supernova

  11. Heavy-flavor production and medium properties in high-energy nuclear collisions. What next?

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Swansea University, Swansea (United Kingdom); Aichelin, J.; Gossiaux, P.B.; Nahrgang, M. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, Nantes (France); Arnaldi, R.; Scomparin, E. [INFN, Sezione di Torino, Torino (Italy); Bass, S.A. [Duke University, Durham, NC (United States); Bedda, C.; Grelli, A.; Trzeciak, B.; Doremalen, L. van; Vermunt, L.; Vigolo, S. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); Brambilla, N. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Technische Universitaet Muenchen, Institute for Advanced Study, Munich (Germany); Bratkovskaya, E. [GSI Helmholtzzentrum fuer Schwerionenforschung, Research Division and ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Braun-Munzinger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Research Division and ExtreMe Matter Institute EMMI, Darmstadt (Germany); Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Bruno, G.E. [Dipartimento di Fisica and INFN, Bari (Italy); European Organization for Nuclear Research, Geneva (Switzerland); Dahms, T. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Das, S.K. [University of Catania, Catania (Italy); Dembinski, H.; Schmelling, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Djordjevic, M. [University of Belgrade, Institute of Physics, Belgrade (Serbia); Ferreiro, E. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Frawley, A. [Florida State University, Tallahassee, FL (United States); Granier de Cassagnac, R.; Jo, M.; Nguyen, M. [Ecole Polytechnique, Laboratoire Leprince-Ringuet, Palaiseau (France); He, M. [Nanjing University of Science and Technology, Department of Applied Physics, Nanjing (China); Horowitz, W.A. [University of Cape Town, Department of Physics, Rondebosch (South Africa); Innocenti, G.M. [Massachusetts Institute of Technology, Cambridge, MA (United States); Kaczmarek, O. [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan (China); University of Bielefeld, Bielefeld (Germany); Kuijer, P.G. [National Institute for Subatomic Physics, Amsterdam (Netherlands); Laine, M. [University of Bern, AEC, Institute for Theoretical Physics, Bern (Switzerland); Lombardo, M.P. [INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Mischke, A. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); National Institute for Subatomic Physics, Amsterdam (Netherlands); Munhoz, M.G.; Suaide, A.A.P. [Universidade de Sao Paulo (USP), Sao Paulo (Brazil); Oliveira da Silva, A.C.; Zanoli, H.J.C. [Utrecht University, Institute for Subatomic Physics, Utrecht (Netherlands); Universidade de Sao Paulo (USP), Sao Paulo (Brazil); Petreczky, P. [Brookhaven National Laboratory, Upton, NY (United States); Rothkopf, A. [Ruprecht-Karls-Universitaet Heidelberg, Institute for Theoretical Physics, Heidelberg (Germany); Song, T. [Frankfurt University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Stachel, J. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Tolos, L. [Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Institut de Ciencies de l' Espai (IEEC-CSIC), Bellaterra (Spain); Uras, A. [Domaine Scientifique de la Doua, Institute of Nuclear Physics, Villeurbanne Cedex (France); Xu, N. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ye, Z. [University of Illinois, Chicago, IL (United States); Zhuang, P. [Tsinghua University, Beijng Shi (China)

    2017-05-15

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma. (orig.)

  12. Effect of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian Ran

    : transport of water (electroosmosis) and ions (electromigration), with electromigration being the most important transport process when treating heavy metal contaminated soils. Electrodialytic remediation (EDR), one of the enhanced electrochemical remediation techniques, is developed at the Technical...... University of Denmark in the early 1990s and aims at removal of heavy metals from contaminated soils. The electrodialytic remediation method differs from the electrokinetic remediation methods in the use of ion exchange membranes for separation of the soil and the processing solutions in the electrode...... the applicability for remediation beyond bench and pilot scale. The overall aim of the present PhD study is to clarify and understand the underlying mechanisms of the effect of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. Series of experiments...

  13. Measurement of residual radioactivity in cooper exposed to high energy heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunjoo; Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Uwamino, Yoshitomo; Ito, Sachiko; Fukumura, Akifumi

    1999-03-01

    The residual radioactivities produced by high energy heavy ions have been measured using the heavy ion beams of the Heavy Ion Medical Accelerator (HIMAC) at National Institute of Radiological Sciences. The spatial distribution of residual radioactivities in 3.5 cm, 5.5 cm and 10 cm thick copper targets of 10 cm x 10 cm size bombarded by 290 MeV/u, 400 MeV/u-{sup 12}C ion beams and 400 MeV/u-{sup 20}Ne ion beam, respectively, were obtained by measuring the gamma-ray activities of 0.5 mm thick copper foil inserted in the target with a high purity Ge detector after about 1 hour to 6 hours irradiation. (author)

  14. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    Science.gov (United States)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  15. Measurement of Fragment Mass Distributions in Neutron-induced Fission of 238U and 232Th at Intermediate Energies

    International Nuclear Information System (INIS)

    Simutkin, V.D.

    2008-01-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the 238 U(n,f) and 232 Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both 238 U and 232 Th. Up to now, the intermediate energy measurements have been performed for 238 U only, and there are no data for the 232 Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the 232 Th(n,f) and 238 U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  16. Hydrodynamic radial and elliptic flow in heavy-ion collisions from AGS to LHC energies

    CERN Document Server

    Kestin, Gregory

    2009-01-01

    Using ideal relativistic hydrodynamics in 2+1 dimensions, we study the collision energy dependence of radial and elliptic flow, of the emitted hadron spectra, and of the transverse momentum dependence of several hadronic particle ratios, covering the range from Alternating Gradient Synchrotron (AGS) to Large Hadron Collider (LHC) energies. These calculations establish an ideal fluid dynamic baseline that can be used to assess non-equilibrium features manifest in future LHC heavy-ion experiments. Contrary to earlier suggestions we find that a saturation and even decrease of the differential elliptic flow v_2(p_T) with increasing collision energy cannot be unambiguously associated with the QCD phase transition.

  17. Hot nuclei production and deexcitation in heavy ions induced reactions on medium mass targets in the 10-84 MeV/nucleon energy domain

    International Nuclear Information System (INIS)

    Lleres, A.

    1988-01-01

    Velocity, angular distributions and total cross sections for heavy residues produced in the reactions 12 C, 14 N, 20 Ne, 40 Ar + 124 Sn have been measured in the 10-84 MeV/nucleon incident energy range using catchers technique in association with off-line gamma-activity spectroscopy. The observed reaction products are interpreted as evaporation residues from equilibrated systems formed by complete or incomplete fusion of the projectile and target nuclei. From the velocities and residual masses measured at forward angles, the linear momentum transfers and excitation energies associated with the intermediate systems are estimated using simple fusion-evaporation models and are next compared to the predictions of the preequilibrium and Fermi jets models. Energy, angular, charge and charge correlation distributions for intermediate mass fragments emitted in the reaction 32 S + nat Ag at 30 MeV/nucleon were also measured using gaseous and silicon detectors. The energy and angular distributions indicate that both equilibrated and non-equilibrated emitting sources are present. The equilibrium emission is attributed to the deexcitation of systems produced by incomplete fusion of the projectile and target nuclei. The charge correlation distributions are consistent with an asymmetric fission decay process. The linear momentum transfer and excitation energy associated with the equilibrated source are estimated using a simple fusion-fission model [fr

  18. Study of the effect of heavy ion energy on the sensitivity of electronic devices

    International Nuclear Information System (INIS)

    Raine, M.

    2011-01-01

    This thesis studies the sensitivity of advanced electronic devices in radiative environments. The work deals with the detailed modeling of the deposited energy induced by heavy-ion in matter, and the influence of taking it into account in the tools simulating the response of irradiated devices. To do so, a simulation chain was developed, combining different calculation codes at various scales. In a first step, the particle-matter interaction code Geant4 is used to model the heavy ion track. These tracks are then implemented in a TCAD simulator, in order to study the response of elementary transistors to these detailed energy deposits. This step is completed with experimental measurements. Finally, the study is extended to the circuit level, by interfacing the heavy ion tracks with a SEE prediction tool. These different steps evidence the need for taking into account the radial extension of the ion track to all simulation levels, to adequately model the response of advanced devices under heavy ion irradiations. (author) [fr

  19. Pre-compound emission in low-energy heavy-ion interactions

    Directory of Open Access Journals (Sweden)

    Kumar Sharma Manoj

    2017-01-01

    Full Text Available Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  20. Flavors in the Soup: An Overview of Heavy-Flavored Jet Energy Loss at CMS

    CERN Document Server

    Jung, Kurt

    2016-01-01

    Kurt E. Jung PhD, Purdue University, May 2016. Flavors in the Soup: An Overviewof Heavy-Flavored Jet Energy Loss at CMS. Major Professor: Wei Xie.The energy loss of jets in heavy-ion collisions is expected to depend on the flavorof the fragmenting parton. Thus, measurements of jet quenching as a function offlavor place powerful constraints on the thermodynamical and transport propertiesof the hot and dense medium. Measurements of the nuclear modification factorsof the heavy flavor tagged jets from charm and bottom quarks in both PbPb andpPb collisions can quantify such energy loss e↵ects. Specifically, pPb measurementsprovide crucial insights into the behavior of the cold nuclear matter e↵ect, whichis required to fully understand the hot and dense medium e↵ects on jets in PbPbcollisions. This dissertation presents the energy modification of b-jets in PbPb atppsN N = 2.76 TeV and pPb collisions at sN N = 5.02 TeV, along with the first everpmeasurements of charm jets in pPb collisions at sN N = 5.0...

  1. Heavy-ion peripheral collisions in the Fermi energy domain: fragmentation processes or dissipative collisions

    International Nuclear Information System (INIS)

    Borderie, B.; Rivet, M.F.; Tassan-Got, L.

    1990-01-01

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. This new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon

  2. Relative biological efficiency of intermediate energy neutrons and 60Co rays for induction of chromosomal aberrations in Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Sturelid, S.; Bergman, R.

    1976-01-01

    Intermediate energy neutrons are unique in that a considerable fraction of critical interactions and of dose absorbed is not associated with ionization but with atomic collision. It is still unknown to what extent the qualitative difference in primary damage after atomic collision compared to that of ionization and excitation becomes expressed at biological levels. Chromosomal aberrations were studied in Chinese hamster fibroblasts exposed for 5-8 hours at 22 degree C to intermediate energy neutrons, mean energy 8.5 keV, or to 60 Co-gamma rays. RBE at the 10 per cent aberration frequency level in S-phase were 2.2+-0.6 for total aberrations, 2.1+-0.6 for chromatid breaks and 1.8+-0.5 for exchanges. For each chromatid aberration observed after recovery, about 200 bondbreaking atomic collisions besides 3000 primary iniozations should have occured in DNA. However, the extent to which the aberration response is due to atomic collisions is not clear. (author)

  3. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    Science.gov (United States)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  4. Electron capture in low- and intermediate-energy collisions between completely stripped light ions and metastable H(2s) targets

    International Nuclear Information System (INIS)

    Blanco, S.A.; Falcon, C.A.; Reinhold, C.O.; Casaubon, J.I.; Piacentini, R.D.

    1987-01-01

    Total cross sections for electron capture from H(2s) targets by He 2+ ions have been computed in the impact velocity range 0.05-0.5 au. Calculations were performed using a molecular close-coupling approach with inclusion of electron translation factors. A ten-state molecular basis set was considered. A comparison is made with Landau-Zener results for the same system. Intermediate projectile energy classical Monte Carlo capture cross sections are also presented for H + , He 2+ , Li 3+ and C 6+ projectiles. (author)

  5. Comparative study between hadron and heavy ion dissociation at high energies

    International Nuclear Information System (INIS)

    El-Bakry, Y.M.N.; Abd-Elhalim, S.M.

    2002-01-01

    The present work deals with the dissociation of hadrons and heavy ions at high energies. In investigating hadron nucleus and nucleus-nucleus collisions, it is important to classify the experimental data, into two main classes; the coherent. and incoherent reactions. The coherent production is the main of our study. This process called electromagnetic dissociation (ED) and can be differentiate into coulomb dissociation (CD) and diffraction dissociation (DD). This work explains the experimental data of collisions of hadrons K± (70 GeV/c) and π(340 Gc V/c) and heavy ions 6 L i, 7 L i, 1 2C and1 6O at Dubna energies (3-4.5 A GeV/c)with emulsion target, in the frame of some models and theories which describe the mechanism of ED dissociation

  6. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  7. Reaction-mechanism evolution for the system 20Ne + 60Ni at intermediate energies: from massive transfer to fragmentation

    International Nuclear Information System (INIS)

    Andreozzi, F.; Brondi, A.; D'Onofrio, A.; LaRana, G.; Moro, R.; Perillo, E.; Romano, M.; Terrasi, F.; Dayras, R.; Dumont, H.; Gadi, F.; Gomez del Campo, J.

    1993-01-01

    Mass and charge distributions for heavy residues in the reaction 20 Ne + 60 Ni at 50 MeV/nucleon were measured by in-beam and off-line γ-ray spectrometry. The stacked foil method was used to obtain information about the distribution of the velocity component parallel to the beam direction for target-like residues. The comparison of the data to the predictions of a participant-spectator model indicates that an 8% width for the dissipated energy distribution accounts for the observed projected ranges. (orig.)

  8. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A Wien filter velocity analyzer for intermediate energy electron impact spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boechat-Roberty, H.M. [Observatorio Nacional do Brasil, Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1995-09-01

    A new electron velocity analyzer based on the Wien Filter principle, has been developed. In this analyzer an electrical and magnetic field perpendicular to each other, disperse electrons of different energies. Immersion electrostatic lenses are employed, in order to decelerate and accelerate the electrons respectively before and after energy dispersion. This analyzer has demonstrated an excellent capability in the determination of energy-loss spectra in an extended impact energy range (0.2 to 1.5 KeV). The high inherent signal/noise ratio has lead to the acquisition of well-defined and reliable inner-shell excitation spectra. (author). 18 refs.

  10. Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.

    2012-01-01

    The aims of this paper were to investigate the possibility for energy saving when using a pulsed electric field during electrodialytic soil remediation (EDR) and the effect of the pulsed current on removal of heavy metals. Eight experiments with constant and pulse current in the different...... industrially polluted soils were performed. At a current density of 0.1mA/cm2 in soil 1 and 0.2mA/cm2 in soil 2, there was no difference on energy consumption and removal of heavy metals between pulse current and constant current experiments, but at higher current experiments (i.e., 0.2mA/cm2 in soil 1 and 0.......8mA/cm2 in soil 2) the energy was saved 67% and 60% and the removal of heavy metals was increased 17–76% and 31–51% by pulse current in soil 1 and soil 2, respectively. When comparing the voltage drop at different parts of EDR cells, it was found that the voltage drop of the area across cation...

  11. Nuclear structure at intermediate energies: Progress report, November 1986-August 1987

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.; Phillips, G.C.

    1987-01-01

    The report includes information on prior, current, and future experiments; nuclear theory; and instrumentation. Current experiments include single pion production in np scattering, spin transfer in hyperon production, photoproduction of high p/sub T/jets, and meson studies. Future experiments will continue current research and also include the production of lambda particles with heavy ions and the production of polarized antiproton beams at LEAR. Theoretical research programs are investigating the Gaussian effective potential (GEP), hadron-nucleus scattering as a function of nuclear size, nucleon structure, and exotic contributions to lambda production in pion-deuteron interactions. Instrumentation developments include proportional wire counters, other electronics, and computer systems. 13 refs., 1 tab

  12. Energy conservation measures adopted in heavy water plants (Paper No. 1.8)

    International Nuclear Information System (INIS)

    Sundaresan, S.; Lakshmanan, S.

    1992-01-01

    Energy use can be significantly reduced in the process plants by systematically reviewing the original design and operating practices. While designing a chemical process plant, sometimes the designers go for high margin in certain areas anticipating to suit process conditions which finally result in wastage of energy if those conditions are not realised in the actual operation of the plant. Similarly some of the operating practices evolved since commissioning, might be resulting in uneconomical use of energy when they are not checked by the regular review of the operating practices. This paper deals with the various efforts made by Heavy Water Plant, Tuticorin, in identifying the potential energy losses and steps taken to minimise them, which not only resulted in substantial energy savings but also helped in debottle-necking of the plant. (author)

  13. Theory of inelastic ion-atom scattering at low and intermediate energies

    Science.gov (United States)

    Schmid, G. B.; Garcia, J. D.

    1977-01-01

    Ab initio calculations are presented of inelastic energy loss and ionization phenomena associated with Ar(+)-Ar collisions at small distances of closest approach and for laboratory collision energies ranging from several keV to several hundred keV. Outer-shell excitations are handled statistically; inner-shell excitations are calculated from the viewpoint of quasidiabatic molecular orbital promotion. Auger electron yield, average state of ionization, and average inelastic energy loss are calculated per collision as a function of distance of closest approach of the collision partners for several laboratory collision energies. Average charge-state probabilities per collision partner are calculated as a function of the average inelastic energy loss per atom. It is shown that the structure in the data is due to the underlying structure in the inner-shell independent-electron quasimolecular promotion probabilities.

  14. Improved four-stage accel-decel production of low-energy stripped heavy ions

    International Nuclear Information System (INIS)

    Thieberger, P.; Barrette, J.; Johnson, B.M.; Jones, K.W.; Meron, M.; Wegner, H.E.

    1982-01-01

    The two model MP Tandem Van de Graaff accelerators at Brookhaven have been used in a four-stage accel-decel configuration to produce highly stripped low energy heavy ions. The performance in this mode of operation has now been substantially improved by modifications of the second accelerator. The inclined field acceleration tube electrodes at the exit of this accelerator were replaced by straight electrodes, the vacuum was improved and the maximum negative terminal potential was increased. Higher intensity beams of heavier highly stripped ions can now be produced at lower energies than before

  15. Energy distribution of projectile fragment particles in heavy ion therapeutic beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsufuji, Naruhiro; Tomura, Hiromi; Futami, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)] [and others

    1998-03-01

    Production of fragment particles in a patient`s body is one of important problems for heavy charged particle therapy. It is required to know the yield and the energy spectrum for each fragment element - so called `beam quality` to understand the effect of therapeutic beam precisely. In this study, fragment particles produced by practical therapeutic beam of HIMAC were investigated with using tissue-equivalent material and a detector complex. From the results, fragment particles were well identified by difference of their atomic numbers and the beam quality was derived. Responses of the detectors in this energy region were also researched. (author)

  16. Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Elliman, R.G.; Palmer, G.R.; Ophel, T.R.; Timmers, H.

    1998-01-01

    The depth resolution of heavy-ion elastic recoil detection analysis was examined for Al and Co thin films ranging in thickness from 100 to 400 nm. Measurements were performed with 154 MeV Au ions as the incident beam, and recoils were detected using a gas ionisation detector. Energy spectra were extracted for the Al and Co recoils and the depth resolution determined as a function of film thickness from the width of the high- and low- energy edges. These results were compared with theoretical estimates calculated using the computer program DEPTH. (authors)

  17. Analysis of α-12C elastic scattering at intermediate energies by the S-matrix model

    Science.gov (United States)

    Berezhnoy, Yu. A.; Onyshchenko, G. M.; Pilipenko, V. V.

    The results of calculations of differential cross-sections for α-12C elastic scattering by the S-matrix model are presented for 10 energy values in the energy range 65MeV ≤ Eα ≤ 386MeV in a wide range of scattering angles. The behavior of various scattering characteristics as functions of the projectile energy is analyzed. It is shown that the chosen parametrization of S-matrix allows describing correctly the Fraunhofer oscillations of the cross-sections in the region of small scattering angles and the rainbow scattering pattern in the region of sufficiently large angles.

  18. Angular distribution of fragments from neutron-induced fission of {sup 238}U in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.

  19. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  20. An investigation into electron scattering from pyrazine at intermediate and high energies

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A. G.; Fuss, M. C. [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid (Spain); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Almeida, D.; Ferreira da Silva, F.; Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); García, G., E-mail: g.garcia@iff.csic.es [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid (Spain); Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia)

    2013-11-14

    Total electron scattering cross sections for pyrazine in the energy range 10–500 eV have been measured with a new magnetically confined electron transmission-beam apparatus. Theoretical differential and integral elastic, as well as integral inelastic, cross sections have been calculated by means of a screening-corrected form of the independent-atom representation (IAM-SCAR) from 10 to 1000 eV incident electron energies. The present experimental and theoretical total cross sections show a good level of agreement, to within 10%, in the overlapping energy range. Consistency of these results with previous calculations (i.e., the R-matrix and Schwinger Multichannel methods) and elastic scattering measurements at lower energies, below 10 eV, is also discussed.

  1. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  2. Intermediate-energy nuclear theory. Final report, July 1, 1976-August 31, 1984

    International Nuclear Information System (INIS)

    Bryan, R.A.

    1985-02-01

    We summarize the research accomplishments of the Texas A and M Medium-Energy Theory Group which was funded by the Department of Energy from July 1976 through August 1984. Our research was mainly in the area of nucleon-nucleon and NNπ theory and data analysis, although some effort was also devoted to the elementary-particle aspects of these hadrons in order to better understand the NN force. Publications and reports are listed

  3. Total electron scattering cross section of Fluorocarbons at intermediate electron energies

    Science.gov (United States)

    Palihawadana, Prasanga; Villela, Gilberto; Ariyasinghe, Wickramasinghe

    2008-10-01

    Total electron scattering cross sections (TCS) of Tetrafluoromethane (CF4), Trifluoromethane (CHF3), Hexafluoroethane (C2F6) and Octafluorocyclobutane (C4F8) have been measured using the linear transmission technique for impact energies 0.10 -- 4.00 keV. These TCS are compared to existing experimental and theoretical TCS in the literature. Based on the present measurements, an empirical formula is developed to predict the TCS of fluorocarbons as a function of incident electron energy.

  4. The energy consumption and cost savings of truck electrification for heavy duty vocational applications

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Lin, Zhenhong [ORNL; Franzese, Oscar [ORNL

    2017-01-01

    This paper evaluates the application of battery electric vehicles (BEVs) and genset plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and genset PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks. A simulation tool based on vehicle tractive energy methodology and component efficiency for addressing component and system performance was developed to evaluate the energy consumption and performance of the trucks. As part of this analysis, various battery sizes combined with different charging powers on the E-Trucks for local delivery and utility bucket applications were investigated. The results show that the E-Truck applications not only reduce energy consumption but also achieve significant energy cost savings. For delivery E-Trucks, the results show that periodic stops at delivery sites provide sufficient time for battery charging, and for this reason, a high-power charger is not necessary. For utility bucket PHEV trucks, energy consumption per mile of bucket truck operation is typically higher because of longer idling times and extra high idling load associated with heavy utility work. The availability of on-route charging is typically lacking at the work sites of bucket trucks; hence, the battery size of these trucks is somewhat larger than that of the delivery trucks studied.

  5. Energy intensity in road freight transport of heavy goods vehicles in Spain

    International Nuclear Information System (INIS)

    Andrés, Lidia; Padilla, Emilio

    2015-01-01

    This paper examines the factors that have influenced the energy intensity trend of the Spanish road freight transport of heavy goods vehicles over the period 1996–2012. This article aims to contribute to a better understanding of these factors and to inform the design of measures to improve energy efficiency in road freight transport. The paper uses both annual single-period and chained multi-period multiplicative LMDI-II decomposition analysis. The results suggest that the decrease in the energy intensity of Spanish road freight in the period is explained by the change in the real energy intensity index (lower energy consumption per tonne-kilometre transported), which is partially offset by the behaviour of the structural index (greater share in freight transport of those commodities the transportation of which is more energy intensive). The change in energy intensity is analysed in more depth by quantifying the contribution of each commodity through the attribution of changes in Divisia indices. -- Highlights: •We examine energy intensity of Spanish road freight transport over 1996–2012. •We employ single-period and chained multi-period multiplicative LMDI-II decomposition. •Energy intensity reduction is explained by the change in real energy intensity index. •This is partially offset by the behaviour of the structural index. •The attribution of Divisia indices changes gives the contribution of each commodity

  6. High-energy X-ray diffraction studies of short- and intermediate-range structure in oxide glasses

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2002-01-01

    The feature of high-energy X-ray diffraction method is explained. The oxide glasses studies by using BL04B2, high-energy X-ray diffraction beam line of SPring-8, and the random system materials by high-energy monochromatic X-ray diffraction are introduced. An advantage of third generation synchrotron radiation is summarized. On SPring-8, the high-energy X-ray diffraction experiments of random system are carried out by BL04B2 and BL14B1 beam line. BL04B2 can select Si (111)(E=37.8 keV, λ=0.033 nm) and Si(220)(E=61.7 keV, λ=0.020 nm) as Si monochromator. The intermediate-range structure of (MgO) x (P 2 O 5 ) 1-x glass ,MgP 2 O 6 glass, B 2 O 3 glass, SiO 2 and GeO 2 are explained in detail. The future and application of high-energy X-ray diffraction are stated. (S.Y.)

  7. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    Science.gov (United States)

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector

  8. High energy heavy ion collisions from the view point of the 'strong field physics'

    International Nuclear Information System (INIS)

    Itakura, Kazunori

    2012-01-01

    In the high energy heavy ion collisions at the facilities like RHIC and LHC, two strongest fields in the present universe are generated. First of all, a very strong electromagnetic field is generated, though its duration is very short due to the very high speed collisions of nuclei and the large electric charges. On the other hand, the nuclei are described as the high density saturation gluon state just before the moment of the collision and the high density gluon is released by the collision. A very strong color electromagnetic field is generated. The color glass condensate (CGC) is a reasonable picture. In this text, dynamics of the GLASMA (Glass + plasma), the new physics brought about by those 'strong fields', are introduced and are explained how the yet unsolved problems of the heavy ion collisions are going to be investigated on the new view point. The mechanism of the apparitions of the strong electromagnetic field and the strong color electromagnetic field are explained at first. The heavy ion collisions can be described as the process CGC to develop into QGP. As the phenomena under the strong electromagnetic field and the heavy ion collisions, their synchrotron radiations, the photon birefringence, the photon decay, the splitting of photons and the chiral phase transitions under high field are picked up. Concerning the strong color electromagnetic field dynamics and the heavy ion collisions, the plasma flux tube dynamics, the color magnetic flux tube, the color electric flux tube and the coexisting case of the color electric field and magnetic field are presented. (S. Funahashi)

  9. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  10. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  11. Nuclear structure at intermediate energies. Progress report, April 1, 1980-March 31, 1981

    International Nuclear Information System (INIS)

    Phillips, G.C.; Mutchler, G.S.

    1981-01-01

    During the contract year several results of prior LAMPF experiments were completed and prepared for publication. Progress was made in the data analysis of other experiments. Three LAMPF variable energy experiments were carried out with the polarized target PPT-VI: sigma/sub total, transverse/ (p(polarized)p(polarized)) and A/sub YY/ for p(polarized)p(polarized) elastic scattering at 14 energies between 300 and 800 MeV, and A/sub YY/ for p(polarized)p(polarized) → dπ + at a few energies. Proposals were made for future experiments: two for continued nucleon-nucleon studies and one for a search for neutrino oscillations

  12. Analysis for mass distribution of proton-induced reactions in intermediate energy range

    CERN Document Server

    Xiao Yu Heng

    2002-01-01

    The mass and charge distribution of residual products produced in the spallation reactions needs to be studied, because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. In present work, the Many State Dynamical Model (MSDM) is based on the Cascade-Exciton Model (CEM). The authors use it to investigate the mass distribution of Nb, Au and Pb proton-induced reactions in energy range from 100 MeV to 3 GeV. The agreement between the MSDM simulations and the measured data is good in this energy range, and deviations mainly show up in the mass range of 90 - 150 for the high energy proton incident upon Au and Pb

  13. A multistep evaporation model for intermediate mass fragment emission

    International Nuclear Information System (INIS)

    Cole, A.J.; Grotowski, K.; Kozik, T.; Rebel, H.

    1988-11-01

    A multistep evaporation model for intermediate mass fragment emission in heavy ion reactions is described. It applies the canonical transition-state method for the determination of the probability for disintegration of a fused system. The energy and angular momentum relations at the saddle and scission points are calculated on the basis of the finite range liquid drop model. The derivation of the total kinetic energy release uses the concept of amplifying modes which is equivalent to that of shape fluctuations at the ridge point. The model reproduces fairly well the mass and angular distributions and the energy spectra of intermediate mass fragments yields from inclusive and coincidence experiments. (orig.) [de

  14. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  15. Elastic scattering of polarized protons from 3He at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Bracco, A.; Gubler, H.P.

    1982-09-01

    Using the polarized proton beam facility of the TRIUMF cyclotron, differential cross sections and analyzing powers have been measured in the angular range 20 0 - 150 0 c.m. for proton elastic scattering from 3 He at incident proton energies of 200, 300, 415 and 515 MeV. The differential cross sections exhibit a minimum at t = -0.33 (GeV/c) 2 which becomes more pronounced with increasing energy. There is evidence for the onset of a second minimum corresponding to the interference between double and triple scattering amplitudes. Large analyzing powers are observed at the lower energies. The data from the present analysis, together with data obtained from the literature in the energy range 100-1000 MeV, have been analyzed within the framework of the Glauber multiple scattering formalism. Nucleon-nucleon scattering parameters were taken from a global phase shift analysis of nucleon-nucleon elastic scattering data. Reasonable agreement with the data is obtained

  16. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  17. Elastic and inelastic scattering of 12C ions at intermediate energies

    International Nuclear Information System (INIS)

    Hostachy, J.Y.; Buenerd, M.; Chauvin, J.; Lebrun, D.; Martin, P.

    1988-01-01

    Elastic and inelastic scattering of 12 C ions on 12 C and 208 Pb targets have been measured at the incident energies per nucleon E/A=120 MeV/u and E/A=200 MeV/u. Optical-model analysis is reported and nuclear surface transparency effects are discussed, together with the nuclear potential-energy dependence. The transparency region extends down to a radial internuclear distance of about 3 fm for the 12 C- 12 C system and 8 fm for the 12 C- 208 Pb system. A decrease of the imaginary potential with increasing incident energy is deduced for the two systems. Anomalous collapse of the real potential in the surface region is observed for 12 C- 208 Pb system at 200 MeV/u. DWBA analysis of data on the 2 + , 4.4 MeV state of 12 C is reported and trends for the energy dependence of mean-field excitations are deduced. (orig.)

  18. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  19. Superconducting, energy variable heavy ion linac with constant β, multicell cavities of CH-type

    Directory of Open Access Journals (Sweden)

    S. Minaev

    2009-12-01

    Full Text Available An energy variable ion linac consisting of multigap, constant-β cavities was developed. The effect of phase sliding, unavoidable in any constant-β section, is leading to a coherent rf phase motion, which fits well to the H-type structures with their long π-mode sections and separated lenses. The exact periodicity of the cell lengths within each cavity results in technical advantages, such as higher calculation accuracy when only one single period can be simulated, simpler manufacturing, and tuning. This is most important in the case of superconducting cavities. By using this concept, an improved design for a 217 MHz cw superconducting heavy ion linac with energy variation has been worked out. The small output energy spread of ±3  AkeV is provided over the whole range of energy variation from 3.5 to 7.3 AMeV. These capabilities would allow for a competitive research in the field of radiochemistry and for a production of super heavy elements (SHE, especially. A first 19-cell cavity of that type was designed, built, and rf tested successfully at the Institute for Applied Physics (IAP Frankfurt. A 325.224 MHz, seven-cell cavity with constant β=0.16 is under development and will be operated in a frequency controlled mode. It will be equipped with a power coupler and beam tests with Unilac beams at GSI are foreseen.

  20. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Bindu [Department of Physics, Kurukshetra University, Kurukshetra 136 119 (India); Neetu [Department of Physics, S.D College, Panipat 132103 (India); Sharma, Kalpana [Department of Physics, CMR Institute of Technology, Bangalore 560037 (India); Diwan, P.K. [Department of Applied Sciences, UIET, Kurukshetra University, Kurukshetra 136 119 (India); Kumar, Shyam, E-mail: profshyam@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra 136 119 (India)

    2016-11-15

    The energy loss straggling measurements for heavy ions with Z = 3–22 (∼0.2–2.5 MeV/u) in PEN (C{sub 7}H{sub 5}O{sub 2}) and PET (C{sub 10}H{sub 8}O{sub 4}) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  1. Verification of MENDL2 and IEAF-2001 Data bases at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Titarenko, Y. E. (Yury E.); Batyaev, V. F. (Vyacheslav F.); Karpikhin, E. I. (Evgeny I.); Zhivun, V. M. (Valery M.); Koldobsky, A. B. (Aleksander B.); Mulambetov, R. D. (Ruslan D.); Mulambetova, S. V.; Trebukhovsky, Y. V. (Yury V.); Zaitsev, S. L.; Lipatov, K. A.; Mashnik, S. G. (Stepan G.); Prael, R. E. (Richard E.)

    2004-01-01

    The work presents results on computer simulations of two experiments whose aim was measuring the threshold activation reaction rates in {sup 12}C, {sup 19}F, {sup 27}Al, {sup 59}Co, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 93}Nb, {sup 115}In, {sup 169}Tm, {sup 181}Ta, {sup 197}Au, and {sup 209}Bi thin samples placed inside and outside a 0.8-GeV proton-irradiated 4-cm thick W target and a 92-cm thick W-Na composite target of 15-cm diameter both. In total, more than 1000 values of activation reaction rates were determined in both experiments. The measured data were compared with results by the LAHET code using several nuclear data bases for the respective excitation functions, namely, ENDF/B6 for cross section of neutrons at energies below 20 MeV and MENDL2 together with MENDL2P for cross sections of protons and neutrons of 20 to 100 MeV energies. The recently developed IEAF-2001 data base that provides neutron cross sections up to 150 MeV was used as well. Simulation-to-experiment results obtained using MENDL2 and IEAF-2001 are presented. The agreement between simulation and experiment was found satisfactory for both data bases. Nevertheless; further studies should be conducted to improve simulations of the production of secondary protons and high-energy neutrons, as well as the high-energy neutron elastic scattering. Our results allow drawing some conclusions concerning the reliability of the transport codes and data bases used to simulate Accelerator Driven Systems (ADS), particularly with Na-cooled W targets. The high-energy threshold excitation functions to be used in activation-based unfolding of neutron spectra inside the ADS can be also inferred from our results.

  2. Spin dependent fragmentation functions for heavy flavor baryons and single heavy hyperon polarization

    CERN Document Server

    Goldstein, G R

    2001-01-01

    Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. $\\Lambda_b$ , $\\Lambda_c$ and $\\Xi_c$ production rate and polarization at LEP energies are calculated and, where possible, compared with experiment. A different approach, also relying on a heavy quark-diquark model, is proposed for the small momentum transfer inclusive production of polarized heavy flavor hyperons. The predicted $\\Lambda_c$ polarization is roughly in agreement with experiment.

  3. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes

    International Nuclear Information System (INIS)

    Keller, Brian M.; Beachey, David J.; Pignol, Jean-Philippe

    2007-01-01

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume is dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator (2) to characterize the energy of this beam (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3x0.3 to 4.0x4.0 cm 2 , varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal

  4. Myocardial perfusion assessment by dual-energy computed tomography in patients with intermediate to high likelihood of coronary artery disease

    International Nuclear Information System (INIS)

    De Zam, M.C.; Capunay, C.; Rodriguez Granillo, G.A.; Deviggiano, A.; Campisi, R.; Munain, M. López de; Vallejos, J.; Carrascosa, P.M.

    2015-01-01

    Objectives. We sought to explore the feasibility and diagnostic performance of dual-energy computed tomography (DECT) for the evaluation of myocardial perfusion in patients with intermediate to high likelihood of coronary artery disease (CAD), and to assess the impact of beam hardening artifacts (HAE). Methods. The present prospective study involved patients with known or suspected CAD referred for myocardial perfusion imaging by single-photon emission computed tomography (SPECT). Twenty patients were included in the study protocol, and scanned using DECT imaging (n = 20). The same pharmacological stress was used for DECT and SPECT scans. Results. A total of 680 left ventricular segments were evaluated by DECT and SPECT. The contrast to noise ratio was 8.8±2.9. The diagnostic performance of DECT was very good in identifying perfusion defects [area under ROC curve (AUC) of DECT 0.90 (0.86-0.94)] compared with SPECT, and remained unaffected when including only segments affected by beam hardening artifacts (BHA) [AUC= DECT 0.90 (0.84-0.96)]. Conclusions. In this pilot investigation, myocardial perfusion assessment by DECT imaging in patients with intermediate to high likelihood of CAD was feasible and remained unaffected by the presence of BHA. (authors) [es

  5. Impact of thermal and intermediate energy neutrons on the semiconductor memories for the CERN accelerators

    CERN Document Server

    Cecchetto, Matteo; Gerardin, Simone

    A wide quantity of SRAM memories are employed along the Large Hadron Collider (LHC), the main CERN accelerator, and they are subjected to high levels of ionizing radiations which compromise the reliability of these devices. The Single Event Effect (SEE) qualification for components to be used in the complex high-energy accelerator at CERN relies on the characterization of two cross sections: 200-MeV protons and thermal neutrons. However, due to cost and time constraints, it is not always possible to characterize the SEE response of components to thermal neutrons, which is often regarded as negligible for components without borophosphosilicate glass (BPSG). Nevertheless, as recent studies show, the sensitivity of deep sub-micron technologies to thermal neutrons has increased owing to the presence of Boron 10 as a dopant and contact contaminant. The very large thermal neutron fluxes relative to high-energy hadron fluxes in some of the heavily shielded accelerator areas imply that even comparatively small therm...

  6. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium

    Science.gov (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng

    2018-01-01

    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  7. Experimental apparatus for the study of small angle neutron-proton elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Vorobyov, A.A.; Korolev, G.A.; Dobrovolsky, A.V.; Khanzadeev, A.V.; Petrov, G.E.; Spiridenkov, E.M.; Terrien, Y.; Lugol, J.C.; Saudinos, J.; Silverman, B.H.; Wellers, F.

    1988-01-01

    An experimental setup for measurements of absolute differential cross sections and analyzing powers in small angle elastic np scattering is described. The main part of the apparatus consists of a multielectrode ionization chamber IKAR filled with methane, serving as both a gas target and a recoil detector. The apparatus was used in measurements with a polarized neutron beam from the Saturne synchrotron (Saclay, France) in the energy range from 378 to 1135 MeV. (orig.)

  8. Systematic studies of heavy ion collisions in the low SIS energy region

    International Nuclear Information System (INIS)

    Li Qingfeng; Wang Yongjia; Guo Chenchen; Li Zhuxia

    2014-01-01

    After inserting the Skyrme potential energy density functions for potential update, more detailed medium modifications for nucleon-nucleon elastic cross sections, and the isospin effect for cluster recognition into the Ultra-relativistic Quantum Molecular Dynamics (UrQMD), the dynamic process of heavy ion collisions (HICs) at low SIS energies (about 40∼400 MeV/u) is primarily studied. And, after systematically studying the emission and collective flows of light clusters from HICs in such beam energy region, the sensitive observables especially to the density dependent symmetry energy at supra-normal densities are focused. It is found that: (1)the initial neutron/proton ratio dependence of the balance energy of neutrons from mass-symmetric Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy; (2) the transverse velocity/momentum dependence of the elliptic flow ratio of neutrons and protons or hydrogen isotopes (v 2 n /v 2 p,H ) is also sensitive to symmetry energy. The χ 2 analysis from the difference bet e the theoretical (taking Skyrme potential parametrizations with incompressibility K 0 being almost same but the slope parameter L of symmetry energy being largely different) and experimental (taking FOPI/LAND data) v 2 n /v 2 H values determines the value of L to be (89 ± 45) MeV within in a 2σ uncertainty. (authors)

  9. Systematic studies on transport process of heavy-ion collisions at INDRA energies and detection of symmetry energy

    International Nuclear Information System (INIS)

    Li Qingfeng; Guo Chenchen; Li Yongjia

    2013-01-01

    The terms of initialization, equation of state (EoS), and two-body collision in the updated ultrarelativistic quantum molecular dynamics (UrQMD) model are examined in details so as to systematically study the collective flows and the nuclear stopping of free nucleons and light clusters from heavy-ion collisions at INDRA energies. It is seen that at INDRA energies the dynamic transport with a soft EoS with momentum dependence and with the momentum-modified density-dependent nucleon-nucleon elastic cross sections describes the directed flow exhibited by hydrogen isotopes (Z = 1) emitted at midrapidity fairly well. The sensitivity of the balance energy (E bal ) of the directed flow to the strength parameter of the density dependence of symmetry potential energy is further studied with the same parameter set. It is found that the E bal of neutrons from HICs is particularly sensitive to the density dependence of the symmetry potential energy, while that of protons is not. And, the initial neutron/proton ratio dependence of the balance energy of neutrons from Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy. (authors)

  10. Fission of intermediate mass nuclei by bremsstrahlung photons in the energy range 0.8-1.8 GeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-01-01

    The fission of intermediate mass nuclei in the Al-Ta internal induced by bremsstrahlung photons of maximum energies between 0,8 to 1,8 GeV is studied. Thin targets of Nd and Sm and dense targets of Al,Ti,Co,Zr,Nb,Ag,In and Ta are utilized, and all the aspects related with the fission fragment absorption by the targets themselves are considered. The samples are exposed in th 2,5 GeV Electron Synchrotron at Bonn University. Muscovite mica, CR-39 and makrofol are used as fission fragments detectors. Fission cross sections and nuclear fissionabilities of the studied elements are estimated. (L.C.) [pt

  11. Experimental determination of the effective nucleon-nucleon interaction for p-nucleus reactions at intermediate energies

    International Nuclear Information System (INIS)

    McClelland, J.B.; Aas, B.; Azizi, A.

    1982-01-01

    A complete measurement of the polarization transfer observables has been made for the first time in the (p,p') reaction at intermediate energies. Measurements are reported for the 12 C(p,p') 12 C reaction to the 1 + , T = 0(12.71 MeV) and 1 + , T = 1(15.11 MeV) states at 500 MeV at laboratory scattering angles of 3.5 0 , 5.5 0 , 7.5 0 , and 12.0 0 . Linear combinations of these observables are shown to exhibit a very selective dependence on the isoscalar and isovector spin-dependent components of the nucleon-nucleon interaction. To the extent of the validity of the single collision approximation, these amplitudes are compared directly to the free nucleon-nucleon amplitudes at small momentum transfers

  12. The decay of hot nuclei formed in La-induced reactions at intermediate energies

    International Nuclear Information System (INIS)

    Libby, B.; Mignerey, A.C.; Madani, H.; Marchetti, A.A.; Colonna, M.; DiToro, M.

    1992-01-01

    The decay of hot nuclei formed in lanthanum-induced reactions utilizing inverse kinematics has been studied from E/A = 35 to 55 MeV. At each bombarding energy studied, the probability for the multiple emission of complex fragments has been found to be independent of target. Global features (total charge, source velocity) of the reaction La + Al at E/A = 45 MeV have been reproduced by coupling a dynamical model to study the collision stage of the reaction to a statistical model of nuclear decay

  13. High energy x-radiographic assessment of conditioned intermediate level waste blocks

    International Nuclear Information System (INIS)

    Lewcock, A.I.; Burch, S.F.; Reynolds, W.N.; Pullen, D.A.W.; Smith, D.

    1985-07-01

    This report describes an effective technique for examining the quality of the solidification matrix material in a 500 litre waste drum, testing for homogeneity and major cracks and the confirmation of set. A high energy x-ray source, (an 8 MeV Linac) and a special x-ray TV system, were used to examine several different types of solidified waste form, with and without background radiation, simulated by the use of an uncollimated radiographic isotope. The system as tested showed no discernable image degradation when the isotope was positioned to give a representative background dose as experienced with active ILW monoliths. (author)

  14. The (3He,t) and (d,2He)reactions at intermediate energies

    International Nuclear Information System (INIS)

    Brockstedt, A.

    1987-09-01

    The ( 3 He,t) reaction has been studied at 0.6-2.3 GeV at small scattering angles, 0-7 degrees, on various nuclei ( 12 C, 13 C, 26 Mg, 40 Ca, 48 Ca, 54 Fe, 90 Zr, 159 Tb, 208 Pb) including a proton target. The reaction is a single-step reaction and selects the spin-isospin channel. Angular distributions for low-lying states in 12 N are well described by DWIA calculations. From 13 C to 13 N transitions the ratio J στ /J τ , at momentum transfer, q, close to zero, is derived. The ratio remains roughly constant in the region 300 - 700 MeV/nucleon. The position of the quasi-free peak is shifted compared with free nucleon-nucleon scattering. The shift is towards higher excitation energies at q approx 1.4 fm -1 , and towards lower excitation energies at q approx 2.5 fm -1 . The p( 3 He,t)Δ ++ reaction is analysed as one-pion exchange and the ( 3 He,t) form factor is extracted. The shape and position of the Δ resonance seem to be independent of target mass for the targets studied. Compared with the p to Δ ++ transition the position is shifted towards lower excitation energy in nuclei. The (d,2p[ 1 S 0 ]) reaction, with the two protons in an 1 S 0 state labelled 2 He, is studied at 0.65 and 2.0 GeV at small angles, 0-4 degrees, on some of the targets used in the ( 3 He,t) experiment (p, 12 C, 40 Ca, 54 Fe). This reaction is also a one-step reaction that can be used for studies of spin-isospin excitations. Cross sections and tensor analysing powers are determined for the p(d, 2 He)n reaction. These results are compared with PWIA calculations. The Δ resonance in carbon is also here shifted down in excitation energy compared with the proton target. (author)

  15. Conceptual study of a heavy-ion-ERDA spectrometer for energies below 6 MeV

    Science.gov (United States)

    Julin, Jaakko; Sajavaara, Timo

    2017-09-01

    Elastic recoil detection analysis (ERDA) is a well established technique and it offers unique capabilities in thin film analysis. Simultaneous detection and depth profiling of all elements, including hydrogen, is possible only with time-of-flight ERDA. Bragg ionization chambers or ΔE - E detectors can also be used to identify the recoiling element if sufficiently high energies are used. The chief limitations of time-of-flight ERDA are the beam induced sample damage and the requirement of a relatively large accelerator. In this paper we propose a detector setup, which could be used with 3 MeV to 6 MeV medium heavy beams from either a single ended accelerator (40Ar) or from a tandem accelerator (39K). The detector setup consists of two timing detectors and a gas ionization chamber energy detector. Compared to use of very heavy low energy ions the hydrogen recoils with this beam have sufficient energy to be detected with current gas ionization chamber energy detector. To reduce the beam induced damage the proposed detector setup covers a solid angle larger than 1 msr, roughly an order of magnitude improvement over most time-of-flight ERDA setups. The setup could be used together with a small accelerator to be used for light element analysis of approximately 50 nm films. The concept is tested with 39K beam from a 1.7 MV Pelletron tandem accelerator with the Jyväskylä ToF-ERDA setup. In addition to the measurements effects related to low energies and increase in the solid angle are simulated with Monte Carlo methods.

  16. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis

    International Nuclear Information System (INIS)

    Smith Stegen, Karen

    2015-01-01

    This article sounds the alarm that a significant build-out of efficient lighting and renewable energy technologies may be endangered by shortages of rare earths and rare earth permanent magnets. At the moment, China is the predominant supplier of both and its recent rare earth industrial policies combined with its own growing demand for rare earths have caused widespread concern. To diversify supplies, new mining—outside of China—is needed. But what many observers of the “rare earth problem” overlook is that China also dominates in (1) the processing of rare earths, particularly the less abundant heavy rare earths, and (2) the supply chains for permanent magnets. Heavy rare earths and permanent magnets are critical for many renewable energy technologies, and it will require decades to develop new non-Chinese deposits, processing capacity, and supply chains. This article clarifies several misconceptions, evaluates frequently proposed solutions, and urges policy makers outside of China to undertake measures to avert a crisis, such as greater support for research and development and for the cultivation of intellectual capital. - Highlights: • Rare earths are needed for many efficient lighting and renewable energy technologies. • The industries for rare earths and permanent magnets are dominated by China. • China's reliability is compromised, necessitating non-Chinese mining and processing. • Recycling, substitution and reducing rare earth content are long-term solutions only. • Policy makers should support development of supply chains and intellectual capital

  17. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro [eds.

    2000-01-01

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  18. Increasing the reliability of electric energy supply to consumers in ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Barta, Ioan; Hanes, Marian . E-mail electrica@romag.ro

    2004-01-01

    Full text: This work aims at achieving an analysis of time evolution of the status of electrical installations, their performances and reliability, at describing the refurbishment measures adopted, at assessing the efficiency of these measures and also to suggest solutions for improving the reliability in the electric energy supply of ROMAG-PROD Heavy Water Plant. The analysis started from the original design, the manner the electrical installations were mounted, the technological level of this equipment and gives an evaluation of the deficiencies and the evolution of incidents occurred during the operation period. On the basis of the experience gathered one advances new items for equipment renewing and refurbishment of electric installations which together with the existing ones would ensure an electric energy supply more secure and efficient, leading directly to a more safe and efficient operation of the ROMAG-PROD Heavy Water Plant. In this work the incidents of electric energy nature which occurred are analyzed, the equipment which generated events identified and measures to solve these problems proposed

  19. Microscopic theory for nucleon-nucleus optical potential in intermediate energies

    International Nuclear Information System (INIS)

    He Guozhu; Cai Chonghai

    1984-01-01

    Based on the scattering theory of KMT and FGH we calculate the nucleon-nucleus optical potentials of 4 He, 16 O and 40 Ca from the Paris N-N potential given by M. Lacombe et al. The real part Vsub(R)(r) of our optential has the form of Woods-Saxon when the kinetic energy E of the incident nucleon is low. The depth of Vsub(R)(r) will decrease as E increases, and it turns into positive in the interior of nucleus when E approx.= 300 MeV. The repulsive effect in the interior of nucleus increases rapidly as E increases even more, butthere always exists some attractive effect at the surface of nucleus. Therefore, Vsub(R)(r) has generally the wine-bottle bottom shape. We also calculate the quatity Jv/N = (4π/N)∫sub(0)sub(infinity)Vsub(R)(r)r 2 dr. Our results are basically in acordance with those of M.Jaminon et al's relativistic Hatree calculation as well as the experimental results. In this work we also calculate the imaginary part of optical potential and its variation with the kinetic energy of the incident nucleon

  20. Intermediate steps towards the 2000 W society in Switzerland: An energy-economic scenario analysis

    International Nuclear Information System (INIS)

    Schulz, Thorsten F.; Kypreos, Socrates; Barreto, Leonardo; Wokaun, Alexander

    2008-01-01

    In the future, sustainable development under the umbrella of the 2000 W society could be of major interest. Could the target of the 2000 W society, i.e. a primary energy per capita (PEC) consumption of 2000 W, be realized until 2050? Various combinations of PEC and CO 2 targets are tested, and the additional costs to be paid by the society are estimated. The assessment is carried out with the Swiss MARKAL model, a bottom-up energy-system model projecting future technology investments for Switzerland. The analysis reveals that the 2000 W society should be seen as a long-term goal. For all contemplated scenarios, a PEC consumption of 3500 W per capita (w/cap) is feasible in the year 2050. However, strong PEC consumption targets can reduce CO 2 emissions to an equivalent of 5% per decade at maximum. For stronger CO 2 emission reduction goals, corresponding targets must be formulated explicitly. At an oil price of 75 US$ 2000 /bbl in 2050, the additional (cumulative, discounted) costs to reach a 10% CO 2 reduction per decade combined with a 3500 W per capita target amount to about 40 billion US$ 2000 . On the contrary, to reach pure CO 2 reduction targets is drastically cheaper, challenging the vision of the 2000 W society

  1. INTERFACIAL ENERGY DURING THE EMULSIFICATION OF WATER-IN-HEAVY CRUDE OIL EMULSIONS

    Directory of Open Access Journals (Sweden)

    V. Karcher

    2015-03-01

    Full Text Available Abstract The aim of this study was to investigate the interfacial energy involved in the production of water-in-oil (W/O emulsions composed of water and a Brazilian heavy crude oil. For such purpose an experimental set-up was developed to measure the different energy terms involved in the emulsification process. W/O emulsions containing different water volume fractions (0.1, 0.25 and 0.4 were prepared in a batch calorimeter by using a high-shear rotating homogenizer at two distinct rotation speeds (14000 and 22000 rpm. The results showed that the energy dissipated as heat represented around 80% of the energy transferred to the emulsion, while around 20% contributed to the internal energy. Only a very small fraction of the energy (0.02 - 0.06% was stored in the water-oil interface. The results demonstrated that the high energy dissipation contributes to the kinetic stability of the W/O emulsions.

  2. Status of the Argonne superconducting-linac heavy-ion energy booster

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979

  3. Status of the low-energy super-heavy element facility at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Schury, P., E-mail: schury@riken.jp [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M.; Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Kaji, D. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Kimura, S. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Morimoto, K.; Haba, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Jeong, S. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Koura, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Miyatake, H. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Morita, K.; Reponen, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Sonoda, T.; Takamine, A. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Dept. Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States)

    2016-06-01

    In order to investigate nuclei produced via fusion–evaporation reactions, especially super-heavy elements (SHE), we have begun construction of a facility for conversion of fusion–evaporation residues (EVR) to low-energy beams. At the base of this facility is a small cryogenic gas cell utilizing a traveling wave RF-carpet, located directly following the gas-filled recoil ion separator GARIS-II, which will thermalize EVRs to convert them into ion beams amenable to ion trapping. We present here the results of initial studies of this small gas cell.

  4. Puzzling features of heavy-ion fission at sub-barrier energies

    Science.gov (United States)

    Samant, A. M.; Kailas, S.

    1996-12-01

    The heavy-ion induced fission fragment angular distributions measured for systems with Th, U and Np as targets have revealed “anomalous” values of anisotropies at energies E≤ V B (fusion barrier) and this feature is observed to be independent of the entrance channel mass-asymmetry. While this puzzling feature is exhibited by the deformed targets like Th, U and Np, most of the fission data measured for the spherical targets like Pb and Bi can be satisfactorily explained using the standard saddle point statistical model with moderate correction for pre-fission neutron emission. Plausible reasons for this anomalous behaviour are explored.

  5. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    Science.gov (United States)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  6. Status of the Argonne superconducting-linac heavy-ion energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979.

  7. 4He(p,2p)3H reaction at intermediate energies

    International Nuclear Information System (INIS)

    van Oers, W.T.H.; Murdoch, B.T.; Koene, B.K.S.; Hasell, D.K.; Abegg, R.; Margaziotis, D.J.; Epstein, M.B.; Moss, G.A.; Greeniaus, L.G.; Greben, J.M.; Cameron, J.M.; Rogers, J.G.; Stetz, A.W.

    1982-01-01

    The 4 He(p,2p) 3 He reaction has been studied at 250, 350, and 500 MeV using coplanar symmetric and asymmetric geometries. The data are presented as energy-sharing spectra, coplanar symmetric angular distributions, and quasifree angular distributions. A comparison with distorted-wave impulse approximation calculations indicates reasonable agreement for small recoil momenta (q< or approx. =150 MeV/c). For larger recoil momenta, the distorted-wave impulse approximation calculations increasingly underestimate the data. The discrepancies are substantially reduced by inclusion of a spin-orbit term in the optical potential used to generate the distorted waves. Improvements of the single particle wave function for the struck nucleon influence the calculations to a lesser degree. The remaining discrepancies at large recoil momenta may, in part be ascribed to multiple scattering effects and exchange processes not included in the standard distorted-wave impulse approximation

  8. Theoretical and experimental studies of the neutron rich fission product yields at intermediate energies

    Directory of Open Access Journals (Sweden)

    Äystö J.

    2012-02-01

    Full Text Available A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compound nucleon emission is described with the two-component exciton model using Monte Carlo method. Decay of excited compound nuclei is treated within time-dependent statistical model with inclusion of the nuclear friction effect. The charge distribution of the primary fragment isobaric chain was considered as a result of frozen quantal fluctuations of the isovector nuclear density. The theoretical predictions of the independent fission product cross sections are used for normalization of the measured fission product isotopic distributions.

  9. MENDL2 and IEAF-2001 nuclide production yields data bases verification at intermediate energies.

    Energy Technology Data Exchange (ETDEWEB)

    Titarenko, Y. E. (Yury E.); Batyaev, V. F. (Vyacheslav F.); Zhivun, V. M. (Valery M.); Mulambetov, R. D. (Ruslan D.); Mulambetova, S. V.; Zaitsev, S. L.; Lipatov, K. A.; Mashnik, S. G. (Stepan G.); Prael, R. E. (Richard E.)

    2004-01-01

    The work presents the results of computer simulation of two experiments which aim was measuring the threshold activation reaction rates in {sup 12}C, {sup 19}F, {sup 27}Al, {sup 59}Co, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 93}Nb, {sup 115}In, {sup 169}Tm, {sup 181}Ta, {sup 197}Au, and {sup 209}Bi thin samples placed inside and outside the 0.8-GeV proton-irradiated 4-cm thick W target and 92-cm thick W-Na composite target of 15-cm diameter both. In total, more than 1000 values of activation reaction were determined in the both experiments. The measured reaction rates were compared with the rates simulated by the LAHET code with the use of several nuclear databases for the respective excitation functions, namely, MENDL2/2P for neutron/proton cross sections up to 100 MeV, and recently developed IEAF-2001 that provides neutron cross sections up to 150 MeV. The comparison between the simulation-to-experiment agreements obtained via the MENDL2 and IEAF-2001 is presented. The agreement between simulation and experiment has been found generally satisfactory for both of the databases. The high-energy threshold excitation functions to be used in the activation-based unfolding of neutron spectra inside the Accelerator Driven Systems (ADS), particularly with Na-cooled W targets, can be inferred from the results.

  10. Intermediate energy electron cooling for antiproton sources using a Pelletron accelerator

    International Nuclear Information System (INIS)

    Cline, D.B.; Adney, J.; Ferry, J.; Kells, W.; Larson, D.J.; Mills, F.E.; Sundquist, M.

    1983-01-01

    It has been shown at FNAL that the electron cooling of protons is a very efficient method for reaching high luminosity in a proton beam. The emittance of the 120 KeV electron beam used at Fermilab corresponds to a cathode temperature of 0.1 eV. In order to apply cooling techniques to GeV proton beams the electron energies required are in the MeV range. In the experiment reported in this paper the emittance of a 3-MeV Pelletron electron accelerator was measured to determine that its emittance scaled to a value appropriate for electron cooling. The machine tested was jointly owned and operated by the University of California at Santa Barbara and National Electrostatics Corporation for research into free-electron lasers which also require low emittance beams for operation. This paper describes the thermal emittance of the beam to be the area in phase space in which 90% of the beam trajectories lie and goes on to describe the emittance-measurement method both in theory and application

  11. Study of interactions between hadrons and light nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Levy, Dominique.

    1977-01-01

    A theoretical study of the following reactions: πN→πN, πd→πd and Nd→Nπd, at incident energies of a few hundreds MeV is presented. The amplitudes of the πN→πN reaction are studied when at least one of the external particles is off-mass-shell. This study leads to the selection of a model used subsequently. For the πd→πd reaction, the simple scattering model is analyzed in detail then the Glauber and Brueckner double scattering models are compared. In the simple scattering model, the effect of the Fermi motion is examined in detail: a calculation of this effect, taking into account both the deuteron D wave and the nucleon spins is completed. Several approximations to the Fermi integral are also presented and the deficiencies of the models are discussed. In the inelastic Nd→Nπd reaction, the peak observed around 1150 MeV in the invariant mass spectrum of the Nπ final system is studied. This Nπ(1150) effect is explained using a Deck-type model. Other mechanisms that might contribute to the Nd→Nπd reaction, in particular at high transfers, are analyzed [fr

  12. Long-term residual radioactivity in an intermediate-energy proton linac

    CERN Document Server

    Blaha, J; Silari, M; Vollaire, J

    2014-01-01

    A new 160 MeV H−H− linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling w...

  13. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  14. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems; FINAL

    International Nuclear Information System (INIS)

    Peter J. Blau

    2000-01-01

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35% fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials

  15. Energy spectra of protons in diffraction break-up of deuterons on 12C and 40Ca at intermediate energies

    Directory of Open Access Journals (Sweden)

    V. V. Davydovskyy

    2016-08-01

    Full Text Available In the diffraction approximation generalized to the case of inelastic processes with longitudinal momentum transfer, the reaction of the deuteron break-up on nuclei at medium energies is studied, taking into account the Coulomb and nuclear interactions. The formulas for the calculation of the energy spectra of the emerging protons are obtained up to the second order with respect to the ratio of the deuteron radius to the nucleus radius. Three types of model wave functions of the deuteron were used in the calculations: Yukawa, exponential and Gaussian. The wave function of np-pair in continuum is built orthogonal to the wave function of deuteron. This allows one to take into account qualitatively the interaction in the final state and avoid false contributions to the cross section at near zero momentum transfer. A comparison with experimental data on the break-up of deuterons with energy of 56 MeV on carbon and calcium with the registration of the emitted neutrons and protons at zero angles is carried out. It is shown that the contribution of the Coulomb mechanism dominates in the cross section. The best description of the spectra of protons is achieved by using the Yukawa form of the wave function of the deuteron. It is also shown that taking into account the transfer of longitudinal momentum to the deuteron nucleons improves the experimental data description. In the case of non-zero nucleon escape angles, the effect of taking into account longitudinal momentum can reach several hundred percent.

  16. V&V of MCNP 6.1.1 Beta Against Intermediate and High-Energy Experimental Data

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan G [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-08

    This report presents a set of validation and verification (V&V) MCNP 6.1.1 beta results calculated in parallel, with MPI, obtained using its event generators at intermediate and high-energies compared against various experimental data. It also contains several examples of results using the models at energies below 150 MeV, down to 10 MeV, where data libraries are normally used. This report can be considered as the forth part of a set of MCNP6 Testing Primers, after its first, LA-UR-11-05129, and second, LA-UR-11-05627, and third, LA-UR-26944, publications, but is devoted to V&V with the latest, 1.1 beta version of MCNP6. The MCNP6 test-problems discussed here are presented in the /VALIDATION_CEM/and/VALIDATION_LAQGSM/subdirectories in the MCNP6/Testing/directory. README files that contain short descriptions of every input file, the experiment, the quantity of interest that the experiment measures and its description in the MCNP6 output files, and the publication reference of that experiment are presented for every test problem. Templates for plotting the corresponding results with xmgrace as well as pdf files with figures representing the final results of our V&V efforts are presented. Several technical “bugs” in MCNP 6.1.1 beta were discovered during our current V&V of MCNP6 while running it in parallel with MPI using its event generators. These “bugs” are to be fixed in the following version of MCNP6. Our results show that MCNP 6.1.1 beta using its CEM03.03, LAQGSM03.03, Bertini, and INCL+ABLA, event generators describes, as a rule, reasonably well different intermediate- and high-energy measured data. This primer isn’t meant to be read from cover to cover. Readers may skip some sections and go directly to any test problem in which they are interested.

  17. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  18. Collective Longitudinal Polarization in Relativistic Heavy-Ion Collisions at Very High Energy

    Science.gov (United States)

    Becattini, F.; Karpenko, Iu.

    2018-01-01

    We study the polarization of particles in relativistic heavy-ion collisions at very high energy along the beam direction within a relativistic hydrodynamic framework. We show that this component of the polarization decreases much slower with center-of-mass energy compared to the transverse component, even in the ideal longitudinal boost-invariant scenario with nonfluctuating initial state, and that it can be measured by taking advantage of its quadrupole structure in the transverse momentum plane. In the ideal longitudinal boost-invariant scenario, the polarization is proportional to the gradient of temperature at the hadronization and its measurement can provide important information about the cooling rate of the quark-gluon plasma around the critical temperature.

  19. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  20. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  1. High energy heavy ion irradiation effect on defect structure of metals

    International Nuclear Information System (INIS)

    Khavanchak, K.; Senesh, D.; Shchegolev, V.A.

    1990-01-01

    The change of yield stress has been measured on copper samples of 99.998wt.% purity after B,N and Ar ion irradiations with energy of 115, 227 and 433 MeV, respectively. The yield stress vs. dose curves went to saturation, according to the experimental data. A simple model is given which described the main features of the yield stress behaviour after 14 MeV neutron and high energy heavy ion irradiations. The model is based upon the hypothesis, that the mobile interstitial atoms annihilate on the vacancy clusters, and this process can lead to a dynamic equilibrium in the vacancy cluster concentration. 36 refs.; 4 figs.; 1 tab

  2. Jet quenching and γ-jet correlation in high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    Medium modification of γ-tagged jets in high-energy heavy-ion collisions is investigated within a linearized Boltzmann transport model which includes both elastic parton scattering and induced gluon emission. In Pb + Pb collisions at √(s)=2.76 TeV, a γ-tagged jet is seen to lose 15% of its energy at 0–10% central collisions. Simulations also point to a sizable azimuthal angle broadening of γ-tagged jets at the tail of a distribution which should be measurable when experimental errors are significantly reduced. An enhancement at large z{sub jet}=p{sub L}/E{sub jet} in jet fragmentation function at the Large Hadron Collider (LHC) can be attributed to the dominance of leading particles in the reconstructed jet. A γ-tagged jet fragmentation function is shown to be more sensitive to jet quenching, therefore a better probe of the jet transport parameter.

  3. Simulations of intermediate-energy heavy-ion collisions within relativistic mean-field two-fluid model

    International Nuclear Information System (INIS)

    Ivanov, Y.B.; Russkikh, V.N.; Pokrovsky, Y.E. Kurchatov; Ivanov, Y.B.; Russkikh, V.N.; Polrovsky, Y.E.; Henning, P.A.; Henning, P.A.

    1995-01-01

    A three-dimensional realization of the relativistic mean-field 2-fluid model is described. The first results of analyzing the inclusive data on the yield of nuclear fragments and pions, as well as the Plastic-Ball rapidity distributions of nuclear fragments are presented. For comparison, the calculations within the conventional relativistic hydrodynamical model with the same mean fields are also performed. It is found that all the analysed observables, except the pion spectra, appeared to be fairly insensitive to the nuclear EOS. The sensitivity to the nuclear stopping power is slightly higher. The original sensitivity of the rapidity distributions to the stopping power is smeared out by the Plastic-Ball filter and selection criterion. Nevertheless, one can conclude that the stopping power induced by the Cugnon cross-sections is not quite sufficient for a more adequate reproduction of the experimental data. (authors)

  4. The steering and manipulation of ion beams for low-energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-01-01

    Both electrostatic and magnetic fields are used in low-energy accelerators. Electrostatic fields are essential in the acceleration stages and they are commonly used for ion beam scanning and focussing. Magnetic fields are only infrequently used as lenses, but they are essential for mass analysis and are sometimes employed for beam steering. The electrostatic mirror is a versatile and compact lens which has hitherto received little attention for the controlled manipulation of heavy ions. In addition to energy analysis it can be used to steer, focus and scan such beams and its flexibility and usefulness can be further increased by shaping the electrostatic field in the mirror space. The use of a computer programme to model the focussing behaviour of a variety of lens shapes is described and it is shown that the focal properties of the mirror can be controlled to produce a parallel, convergent or divergent output beam. The use of mirrors for two-dimensional beam focusing is also outlined. To permit the use of the mirror system with heavy ions an apertured front plate, without field-defining gauzes, was utilized. In consequence an additional electrode was incorporated in the lens structure to prevent penetration of the positive electric field along the beam axes outside the mirror space. This factor and the compact design of the mirror, contributed to the minimisation of space-charge defocussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The results of experiments confirming the computer predictions are briefly described and, in conclusion some possible applications of electrostatic mirrors in electromagnetic isotope separators and low energy accelerators are outlined. (Auth.)

  5. Do the noncaffeine ingredients of energy drinks affect metabolic responses to heavy exercise?

    Science.gov (United States)

    Pettitt, Robert W; Niemeyer, JoLynne D; Sexton, Patrick J; Lipetzky, Amanda; Murray, Steven R

    2013-07-01

    Energy drinks (EDs) such as Red Bull (RB) are marketed to enhance metabolism. Secondary ingredients of EDs (e.g., taurine) have been purported to improve time trial performance; however, little research exists on how such secondary ingredients affect aerobic metabolism during heavy exercise. The purpose of this study was to investigate the effect of the secondary ingredients of RB on aerobic metabolism during and subsequent to heavy exercise. In double-blind, counterbalanced, and crossover fashion, 8 recreationally trained individuals completed a graded exercise test to determine the gas exchange threshold (GET). Subjects returned on 2 separate occasions and ingested either a 245 ml serving of RB or a control (CTRL) drink with the equivalent caffeine before engaging in two 10-minute constant-load cycling bouts, at an intensity equivalent to GET, with 3 minutes of rest between bouts. Accumulated liters of O2 (10 minutes) were higher for the first bout (17.1 ± 3.5 L) vs. the second bout (16.7 ± 3.5 L) but did not differ between drinks. Similarly, excess postexercise oxygen consumption was higher after the initial bout (RB mean, 2.6 ± 0.85 L; CTRL mean, 2.9 ± 0.90 L) vs. the second bout (RB mean, 1.5 ± 0.85 L; CTRL mean, 1.9 ± 0.87 L) but did not differ between drinks. No differences occurred between drinks for measures of heart rate or rating of perceived exertion. These results indicate that the secondary ingredients contained in a single serving of RB do not augment aerobic metabolism during or subsequent to heavy exercise.

  6. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    Science.gov (United States)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  7. A forward magnetic spectrometer system for high-energy heavy-ion experiments

    CERN Document Server

    Shigaki, K; Chasman, C; Chen, Z; Hamagaki, H; Kumagai, A; Kurita, K; Miake, Y; Sako, H; Sasaki, O; Ueno-Hayashi, S; Wegner, H E; Zhu, F

    1999-01-01

    A small aperture magnetic spectrometer has been built to study hadron production in sup 1 sup 9 sup 7 Au+ sup 1 sup 9 sup 7 Au collisions at the AGS energy of 11.6A GeV/c. It operates in the forward angular range from 6 to 30 deg. with respect to the incident beam axis and covers the mid-rapidity region for heavy particles such as protons. The detector components of the spectrometer system include two time projection chambers, four drift chamber modules and a time-of-flight scintillation counter wall. A few new technologies are implemented in the design of the system to achieve the performance goals. The spectrometer has proved to function properly under the high particle-density environment encountered in experiments with the heavy-ion colliding system. The achieved momentum resolution is 1.3% in r.m.s. for pions at 1 GeV/c and 1.6% for protons at the same momentum. With the time-of-flight resolution of 76 ps in r.m.s., the particle identification momentum limit extends to 4 GeV/c for pions, 3 GeV/c for kaon...

  8. Worldwide cheap and heavy oil productions: A long-term energy model

    International Nuclear Information System (INIS)

    Guseo, Renato

    2011-01-01

    Crude oil, natural gas liquids, heavy oils, deepwater oils, and polar oils are non-renewable energy resources with increasing extraction costs. Two major definitions emerge: regular or 'cheap' oil and non-conventional or 'heavy' oil. Peaking time in conventional oil production has been a recent focus of debate. For two decades, non-conventional oils have been mixed with regular crude oil. Peaking time estimation and the rate at which production may be expected to decline, following the peak, are more difficult to determine. We propose a two-wave model for world oil production pattern and forecasting, based on the diffusion of innovation theories: a sequential multi-Bass model. Historical well-known shocks are confirmed, and new peaking times for crude oil and mixed oil are determined with corresponding depletion rates. In the final section, possible ties between the dynamics of oil extraction and refining capacities are discussed as a predictive symptom of an imminent mixed oil peak in 2016. - Highlights: → Production of conventional and non-conventional oils in aggregate time series. → Decomposition modelling and forecasting with a multi-regime model. → Diffusion of innovation theories and appropriateness of applying Bass concepts to the extraction of oil resources. → Partially overlapping oil extraction processes. → Refining capacities and dynamics of oil extraction.

  9. Color screening and regeneration of bottomonia in high-energy heavy-ion collisions

    Science.gov (United States)

    Du, X.; He, M.; Rapp, R.

    2017-11-01

    The production of ground-state and excited bottomonia in ultrarelativistic heavy-ion collisions is investigated within a kinetic-rate equation approach including regeneration. We augment our previous calculations by an improved treatment of medium effects, with temperature-dependent binding energies and pertinent reaction rates, B -meson resonance states in the equilibrium limit near the hadronization temperature, and a lattice-QCD based equation of state for the bulk medium. In addition to the centrality dependence of the bottomonium yields, we compute their transverse-momentum (pT) spectra and elliptic flow with momentum-dependent reaction rates and a regeneration component based on b -quark spectra from a nonperturbative transport model of heavy-quark diffusion. The latter has noticeable consequences for the shape of the bottomonium pT spectra. We quantify how uncertainties in the various modeling components affect the predictions for observables. Based on this we argue that the Υ (1 S ) suppression is a promising observable for mapping out the in-medium properties of the QCD force, while Υ (2 S ) production can help to quantify the role of regeneration from partially thermalized b quarks.

  10. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  11. Distorted wave models applied to electron emission study in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Fainstein, P.D.

    1989-01-01

    The electron emission from different atoms induced by impact of multicharged bare ions at intermediate and high energies is studied. To perform these studies, the continuum distorted wave-eikonal initial state model is used. With this distorted wave model, analytical expressions are obtained for the transition amplitudes as a function of the transverse momentum transfer for hydrogen targets in an arbitrary initial state and for every any orbital of a multielectronic target represented as a linear combination of Slater type orbitals. With these expressions, the different cross sections which are compared with the experimental data available are numerically calculated. The results obtained for different targets and projectiles and the comparison with other theoretical models and experimental data allows to explain the electron emission spectra and to predict new effects which have not been measured so far. The results of the present work permit to view the ionization process as the evolution of the active electron in the combined field of the target and projectile nuclei. (Author) [es

  12. Heavy inertial particles in turbulent flows gain energy slowly but lose it rapidly

    Science.gov (United States)

    Bhatnagar, Akshay; Gupta, Anupam; Mitra, Dhrubaditya; Pandit, Rahul

    2018-03-01

    We present an extensive numerical study of the time irreversibility of the dynamics of heavy inertial particles in three-dimensional, statistically homogeneous, and isotropic turbulent flows. We show that the probability density function (PDF) of the increment, W (τ ) , of a particle's energy over a time scale τ is non-Gaussian, and skewed toward negative values. This implies that, on average, particles gain energy over a period of time that is longer than the duration over which they lose energy. We call this slow gain and fast loss. We find that the third moment of W (τ ) scales as τ3 for small values of τ . We show that the PDF of power-input p is negatively skewed too; we use this skewness Ir as a measure of the time irreversibility and we demonstrate that it increases sharply with the Stokes number St for small St; this increase slows down at St≃1 . Furthermore, we obtain the PDFs of t+ and t-, the times over which p has, respectively, positive or negative signs, i.e., the particle gains or loses energy. We obtain from these PDFs a direct and natural quantification of the slow gain and fast loss of the energy of the particles, because these PDFs possess exponential tails from which we infer the characteristic loss and gain times tloss and tgain, respectively, and we obtain tlossprobability in the strain-dominated region than in the vortical one; in contrast, the slow gain in the energy of the particles is equally likely in vortical or strain-dominated regions of the flow.

  13. Studies of reaction mechanism in 12C + 12C system at intermediate energy of 28.7 MeV/N

    International Nuclear Information System (INIS)

    Magiera, A.

    1996-01-01

    The reaction mechanism in 12 C + 12 C system at intermediate energy of about 30 MeV/nucleon was studied. The contribution of various reaction mechanisms (inelastic scattering, transfer reactions, compound nucleus reactions, sequential decay following inelastic excitation and transfer) to the total reaction cross section were found. The analysis of inclusive and coincidence spectra shows that sequential fragmentation processes dominate

  14. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  15. Prediction of the transition energies of atomic No and Lr by the intermediate Hamiltonian coupled cluster method

    International Nuclear Information System (INIS)

    Borschevsky, A.; Eliav, E.; Kaldor, U.; Vilkas, M.J.; Ishikawa, Y.

    2007-01-01

    Complete text of publication follows: Measurements of the spectroscopic properties of the superheavy elements present a serious challenge to the experimentalist. Their short lifetimes and the low quantities of their production necessitate reliable prediction of transition energies to avoid the need for broad wavelength scans and to assist in identifying the lines. Thus, reliable high-accuracy calculations are necessary prior and parallel to experimental research. Nobelium and Lawrencium are at present the two most likely candidates for spectroscopic measurements, with the first experiments planned at GSI, Darmstadt. The intermediate Hamiltonian (IH) coupled cluster method is applied to the ionization potentials, electron affinities, and excitation energies of atomic nobelium and lawrencium. Large basis sets are used (37s31p26d21f16g11h6i). All levels of a particular atom are obtained simultaneously by diagonalizing the IH matrix. The matrix elements correspond to all excitations from correlated occupied orbitals to virtual orbitals in a large P space, and are 'dressed' by folding in excitations to higher virtual orbitals (Q space) at the coupled cluster singles-and-doubles level. Lamb-shift corrections are included. The same approach was applied to the lighter homologues of Lr and No, lutetium and ytterbium, for which many transition energies are experimentally known, in order to assess the accuracy of the calculation. The average absolute error of 20 excitation energies of Lu is 423 cm -1 , and the error limits for Lr are therefore put at 700 cm -1 . Predicted Lr excitations with large transition moments in the prime range for the planned experiment, 20,000-30,000 cm -1 , are 7p → 8s at 20,100 cm -1 and 7p →p 7d at 28,100 cm -1 . In case of Yb, the calculated ionization potential was within 20 cm -1 of the experiment, and the average error of the 20 lowest calculated excitations was about 300 cm -1 . Hence, the error limits of nobelium are set to 800 cm -1

  16. Recombination of electrons with highly charged heavy ions at very low energies

    International Nuclear Information System (INIS)

    Uwira, O.; Kenntner, J.; Heidelberg Univ.; Wolf, A.; Heidelberg Univ.; Schramm, U.; Heidelberg Univ.; Schuessler, T.; Heidelberg Univ.; Schwalm, D.; Heidelberg Univ.; Habs, D.; Heidelberg Univ.

    1996-01-01

    Recombination of highly charged ions with free electrons is studied in merged-beams experiments at the UNILAC accelerator in Darmstadt and at the heavy-ion storage ring TSR in Heidelberg. Unexpected high recombination rates are observed for a number of ions at very low energies E cm in the electron-ion center-of-mass frame. In particular, theoretical estimates for radiative recombination are dramatically exceeded by the experimental recombination rates of U 28+ ions near E cm =0 eV. The observations point to a general phenomenon in electron ion recombination depending on E cm , on the ion charge state, and possibly also on electron density, electron beam temperature, and strength of external magnetic fields. (orig.)

  17. Measurement of water decomposition products after the irradiation with high-energy heavy-ion beams

    International Nuclear Information System (INIS)

    Katsumura, Y.; Yamashita, S.; Muroya, Y.; Lin, M.; Miyazaki, T.; Kudo, H.; Murakami, T.

    2005-01-01

    We measured the G-values of water decomposition products produced by high-energy heavy-ion beams. It was found that the evaluated yields are consistent with reported ones. In other words, with the increase of LET, the radical yields decrease, and the molecular yields increase and tend to level off. But the evaluated yields are slightly higher than reported values. So we have started two trials. One is to check the values with experiment again, and the other is to explain the difference between the yields by using the spur diffusion model. In order to explain the values quantitatively, the spur diffusion model has been applied and track structure has been investigated. (author)

  18. The geometry of etched heavy ion tracks in phlogopite mica; a clear dependence on energy deposited

    International Nuclear Information System (INIS)

    Hashemi-Nezhad, S.R.

    2005-01-01

    It is shown that the etched track contour geometry in phlogopite mica depends on the extent of the radiation damage present in the track core. At low stopping power values (i.e. low radiation damage), the tracks have triangular (T) geometries while at high damage densities, track contours become polygons which are hexagonal (H) for normally incident fission fragments. For these tracks, the track contour geometry along the track can change from H to T or vice versa due to variations in the extent of radiation damage. Such geometry changes are abrupt and sudden. For fragments with dip angles less than 90 deg. , the track contour geometry can be hexagonal, irregular polygon and triangular. The observed etch figures can be explained on the basis of energy deposited by the heavy ions and thermodynamic quantities of the track-crystal system

  19. Energy losses of fast heavy-ion projectiles in dense hydrogen plasmas

    International Nuclear Information System (INIS)

    Ballester, D; Tkachenko, I M

    2009-01-01

    It has recently been shown that the Bethe-Larkin formula for the energy losses of fast heavy-ion projectiles in dense hydrogen plasmas is corrected by the electron-ion correlations (Ballester and Tkachenko 2008 Phys. Rev. Lett. 101 075002). We report numerical estimates of this correction based on the values of g ei (0) obtained by numerical simulations (Militzer and Pollock 2000 Phys. Rev. E 61 3470). We also extend this result to the case of projectiles with dicluster charge distribution. We show that the experimental visibility of the electron-ion correlation correction is enhanced in the case of dicluster projectiles with randomly orientated charge centers. Although we consider here the hydrogen plasmas to make the effect physically more clear, the generalization to multispecies plasmas is straightforward

  20. Energy losses of fast heavy-ion projectiles in dense hydrogen plasmas

    Science.gov (United States)

    Ballester, D.; Tkachenko, I. M.

    2009-05-01

    It has recently been shown that the Bethe-Larkin formula for the energy losses of fast heavy-ion projectiles in dense hydrogen plasmas is corrected by the electron-ion correlations (Ballester and Tkachenko 2008 Phys. Rev. Lett. 101 075002). We report numerical estimates of this correction based on the values of gei(0) obtained by numerical simulations (Militzer and Pollock 2000 Phys. Rev. E 61 3470). We also extend this result to the case of projectiles with dicluster charge distribution. We show that the experimental visibility of the electron-ion correlation correction is enhanced in the case of dicluster projectiles with randomly orientated charge centers. Although we consider here the hydrogen plasmas to make the effect physically more clear, the generalization to multispecies plasmas is straightforward.

  1. A π0 spectrometer for low-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Young, G.R.

    1987-01-01

    A spectrometer composes of SF5 and F2 lead-glass blocks has been constructed for detection of neutral pi mesons emitted in low energy heavy-ion reactions. A geometric acceptance of nearly 10% of 4π is possible; the π 0 detection efficiency varies between this value at T/sub π/ ≅ O MeV and 2% for T/sub π/ ∼100 MeV. Integrated cross sections as low as 300 pb have been measured. A few comments on the spectra observed are presented. In particular, evidence is seen for pion reabsorption. The total yields are apparently too large to interpret in single nucleon collision or statistical models. 18 refs., 7 figs

  2. Bottomonium production with statistical hadronization in heavy-ion collisions at collider energies

    CERN Document Server

    Byungsik, Hong

    2004-01-01

    We present the bottomonium production estimated by using the hybrid model that combines direct bb pair creation in hard scattering and a statistical hadronization of the deconfined quark-gluon plasma. Complete color screening and full equilibration of the deconfined quark matter is assumed in the quark-gluon plasma phase. An enhanced production of the Upsilon (1S) state is predicted at collider energies. However, a significant, difference between the RHIC (Relativistic Heavy Ion Collider) and the LHC (Large Hadron Collider) is expected in the centrality dependence of the Upsilon (1S) production. Normalizing the Upsilon (1S) production by the average number of binary collisions, we expect about a factor of five decrease from half-overlap to central collisions at the RHIC, but almost no change at the LHC. Plans for measuring the bottomonium production cross-sections in future collider experiments are summarized. (28 refs).

  3. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    International Nuclear Information System (INIS)

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S.; Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H.

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ''drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology

  4. The role of various parameters used in proximity potential in heavy ...

    Indian Academy of Sciences (India)

    Nuclear reaction models and methods; fusion and fusion–fission reactions; fusion reactions; low and intermediate energy heavy-ion reactions. PACS Nos 24.10.-i; 25.70.Jj; 25.60.Pj; 25.70.-z. 1. Introduction. A large number of theoretical and experimental efforts are under way to study the fusion of heavy nuclei leading to ...

  5. Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries

    International Nuclear Information System (INIS)

    Hayashi, Daisuke; Krey, Matthias

    2007-01-01

    This paper assesses clean development mechanism (CDM) potential of large-scale energy efficiency measures in selected heavy industries (iron and steel, cement, aluminium, pulp and paper, and ammonia) taking India and Brazil as examples of CDM project host countries. We have chosen two criteria for identification of the CDM potential of each energy efficiency measure: (i) emission reductions volume (in CO 2 e) that can be expected from the measure and (ii) likelihood of the measure passing the additionality test of the CDM Executive Board (EB) when submitted as a proposed CDM project activity. The paper shows that the CDM potential of large-scale energy efficiency measures strongly depends on the project-specific and country-specific context. In particular, technologies for the iron and steel industry (coke dry quenching (CDQ), top pressure recovery turbine (TRT), and basic oxygen furnace (BOF) gas recovery), the aluminium industry (point feeder prebake (PFPB) smelter), and the pulp and paper industry (continuous digester technology) offer promising CDM potential

  6. Measurement of the energy loss of heavy ions in laser-produced plasmas

    International Nuclear Information System (INIS)

    Knobloch-Maas, Renate

    2009-01-01

    The interaction of ions with plasma is not yet fully understood today, although it is important for inertial fusion technology. During recent years, the energy loss of heavy ions in plasma has therefore been a subject of research in the Laser and Plasma Physics group of Darmstadt University of Technology. Several experiments were carried out at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt using laser-created plasma, thereby taking advantage of the unique combination of GSI's accelerator facility and the laser system nhelix, which is also described in this work. The experiments focus on the measurement of the energy loss of medium heavy ions in a plasma created by directly heating a thin carbon foil with the nhelix laser, at an energy of about 50 J. In order to measure the energy loss using a time-of-flight method, a stop detector is used to register the arrival of the ion pulses after passing the plasma and a 12 m drift space. At the beginning of the work on this thesis, the ion detector types formerly used were found to be inadequately suited to the difficult task; this was changed during this thesis. The ion detector has to be able to temporarily resolve ion pulses with a frequency of 108 MHz and a width (FWHM) of 3 ns at a very low current. It also has to withstand the X-ray burst from the plasma with a dead time shorter than the difference between the X-ray and the ion time of flight between the plasma and the detector. In order to satisfy these and other demands, a new diamond detector was designed and has now been used for several measurements. In addition to the new detector, other improvements were made concerning the diagnostics and the laser. The laser-created plasma now reaches a maximum temperature exceeding 200 eV and a free electron density of up to 10 22 cm -3 . With this greatly improved setup, energy loss data could be obtained with a temporal resolution several times better than before, using an ion beam with a diameter of only

  7. Measurement of the energy loss of heavy ions in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch-Maas, Renate

    2009-11-25

    The interaction of ions with plasma is not yet fully understood today, although it is important for inertial fusion technology. During recent years, the energy loss of heavy ions in plasma has therefore been a subject of research in the Laser and Plasma Physics group of Darmstadt University of Technology. Several experiments were carried out at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt using laser-created plasma, thereby taking advantage of the unique combination of GSI's accelerator facility and the laser system nhelix, which is also described in this work. The experiments focus on the measurement of the energy loss of medium heavy ions in a plasma created by directly heating a thin carbon foil with the nhelix laser, at an energy of about 50 J. In order to measure the energy loss using a time-of-flight method, a stop detector is used to register the arrival of the ion pulses after passing the plasma and a 12 m drift space. At the beginning of the work on this thesis, the ion detector types formerly used were found to be inadequately suited to the difficult task; this was changed during this thesis. The ion detector has to be able to temporarily resolve ion pulses with a frequency of 108 MHz and a width (FWHM) of 3 ns at a very low current. It also has to withstand the X-ray burst from the plasma with a dead time shorter than the difference between the X-ray and the ion time of flight between the plasma and the detector. In order to satisfy these and other demands, a new diamond detector was designed and has now been used for several measurements. In addition to the new detector, other improvements were made concerning the diagnostics and the laser. The laser-created plasma now reaches a maximum temperature exceeding 200 eV and a free electron density of up to 10{sup 22} cm{sup -3}. With this greatly improved setup, energy loss data could be obtained with a temporal resolution several times better than before, using an ion beam with a

  8. ENERGY DRINKS CONSUMPTION AND ITS RELATIONSHIP WITH HYPERACTIVITY/INATTENTION BEHAVIOUR AMONG THE INTERMEDIATE AND HIGH SCHOOL MALE AND FEMALE STUDENTS

    Directory of Open Access Journals (Sweden)

    Awad S. Alsamghan

    2016-09-01

    Full Text Available BACKGROUND New studies has revealed the consumption of energy drinks as a common, linked with potential risky hyperactivity/inattention behaviour among the adolescent and especially college students. To assess the prevalence of the energy drinks consumption and to evaluate hyperactivity/inattention behaviour symptoms among the adolescent intermediate and high school male and female students in Abha city. MATERIALS AND METHODS A cross-sectional study. The self-administered questionnaires were distributed among students who were studying in the intermediate and high school. Schools were randomly selected and all students (N=602 participated with consent. Total sample size included 602 students, 50% students from intermediate school and 50% students from high school. The tools used in the present study to collect the information from the students were a structured standardised questionnaire includes the basics characteristic, demographic and consumption of energy drinks related information. RESULTS Prevalence of the energy drinks consumption among students studying in intermediate and high school level was 303 (50.3%. Male 162 (53.3% are more consuming energy drinks than female 141 (46.7%. Students who are studying in high school (56.1% drinking more energy drinks than students (43.9% in higher level. Mean score of SDQ was 21.53±5.414 falling in abnormal category. Mean±SD score of the hyperactivity subscale of the SDQ was 3.76±1.980. Female students 66 (21.9%, p=0.162 are more likely to score hyperactivity subscale compared to male students 52 (17.3% (Table 1. Bivariate logistic regression analysis (Table 2 revealed that there was a significance association found with risk of hyperactivity/inattention (OR=2.47, 95% Cl=1.61, 3.78 who consumed energy drinks. Most of the types of energy drinks types were associated with hyperactivity as regression analysis results shown. No association observed with study levels. CONCLUSION Energy drinks

  9. A Comparison of Energy Expenditure During "Wii Boxing" Versus Heavy Bag Boxing in Young Adults.

    Science.gov (United States)

    Perusek, Kristen; Sparks, Kenneth; Little, Kathleen; Motley, Mary; Patterson, Sheila; Wieand, Jennifer

    2014-02-01

    Traditional computer videogames are sedentary, whereas new computer videogames, such as the Nintendo(®) (Redmond, WA) "Wii™ Sports" games, allow users to physically interact while playing the sport. Energy expenditure (EE), heart rate (HR), and rating of perceived exertion (RPE) during heavy bag boxing versus the Nintendo "Wii Boxing" game were compared. Fifteen males and 14 females (mean age, 25.6 years; height, 171.3 cm; weight, 71.8 kg) randomly selected (by a coin toss) heavy bag boxing or "Wii Boxing" for their first test session and completed the other protocol at their second session at least 2 days later. Each session lasted for a total duration of 30 minutes and consisted of 10 3-minute exercise bouts with measurements of HR, RPE, and EE obtained from indirect calorimetry. A paired-samples t test was used to analyze the results. Significant differences were found for HR (bag, 156 beats per minute; Wii, 138 beats per minute; P=0.001) and RPE (bag, 13.8; Wii, 11.4; P=0.0001) but not for EE (bag, 8.0 kcal/minute; Wii, 7.1 kcal/minute; bag, 241 total kcal; Wii, 213 total kcal; P=0.078). The results suggest that computer active videogames, such as the Nintendo Wii, have the potential to provide similar EE as their traditional forms of exercise and may be a sufficient replacement for traditional target HR zone activities, especially in less fit individuals. Further research is needed to compare EE for different "Wii Sports" games with those for their traditional forms of exercise.

  10. Fully stripped heavy ion yield vs energy for Xe and Au ions

    International Nuclear Information System (INIS)

    Thieberger, P.; Wegner, H.E.; Alonzo, J.; Gould, H.; Anholt, R.E.; Meyerhof, W.E.

    1985-01-01

    The Bevalac is now capable of accelerating U-238 ions to approximately 1 GeV/amu and measurements have shown that fully stripped U-238 ions are produced with good yield at these energies. However, knowing the stripping yields at different energies for U-238 does not allow an accurate prediction for other, lower Z projectiles. Consequently, extensive stripping yield measurements were made for Au-197 and Xe-139 ions. In addition to the stripping measurements from the direct Bevalac beam, pickup measurements were also made with specially prepared bare, one electron, and two electron ions. Since many research groups are considering heavy ion storage rings and/or synchrotrons, the pickup cross section for bare ions is important to estimate beam lifetime in terms of the average machine vacuum. Since the Mylar target provides a pickup probability similar to air, a preliminary analysis of the Xe 54+ and U 92+ data are presented along with predictions for other ions ranging down to Fe 26+ . 11 refs., 3 figs., 1 tab

  11. Bevalac, a high-energy heavy-ion facility: status and outlook

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1974-01-01

    The high-energy heavy-ion facility, which has commonly been referred to as the Bevalac, is a synchrotron with B rho of 9000 [kG-in or 2.3 x 10 2 kG-m] having special injectors. The synchrotron has three injectors. The 50 MeV proton injector, originally from BNL, is a tool left over from the high-energy high-intensity days of this productive synchrotron. The 20 MeV linac is a proton linac, designed so conservatively that it was possible to accelerate modest but useful beams of 12 C, 14 N, and 16 O as well as deuterons and alpha particles in the 2 β lambda mode. This was accomplished in 1971. After our first trials, a suggestion made earlier by A. Ghiorso to inject from the SuperHILAC into the synchrotron was actively pursued. Reasons as to why the SuperHILAC is being used as injector to the Bevatron are given

  12. Fully stripped heavy ion yield vs energy for Xe and Au ions

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger, P.; Wegner, H.E.; Alonzo, J.; Gould, H.; Anholt, R.E.; Meyerhof, W.E.

    1985-01-01

    The Bevalac is now capable of accelerating U-238 ions to approximately 1 GeV/amu and measurements have shown that fully stripped U-238 ions are produced with good yield at these energies. However, knowing the stripping yields at different energies for U-238 does not allow an accurate prediction for other, lower Z projectiles. Consequently, extensive stripping yield measurements were made for Au-197 and Xe-139 ions. In addition to the stripping measurements from the direct Bevalac beam, pickup measurements were also made with specially prepared bare, one electron, and two electron ions. Since many research groups are considering heavy ion storage rings and/or synchrotrons, the pickup cross section for bare ions is important to estimate beam lifetime in terms of the average machine vacuum. Since the Mylar target provides a pickup probability similar to air, a preliminary analysis of the Xe/sup 54 +/ and U/sup 92 +/ data are presented along with predictions for other ions ranging down to Fe/sup 26 +/. 11 refs., 3 figs., 1 tab.

  13. Response of radiochromic dye films to low energy heavy charged particles

    CERN Document Server

    Buenfil, A E; Gamboa-Debuen, I; Aviles, P; Avila, O; Olvera, C; Robledo, R; Rodriguez-Ponce, M; Mercado-Uribe, H; Rodriguez-Villafuerte, M; Brandan, M E

    2002-01-01

    We have studied the possible use of radiochromic dye films (RCF) as heavy charged particle dosemeters. We present the results of irradiating two commercial RCF (GafChromic HD-810 and MD-55-1) with 1.5, 2.9 and 4.4 MeV protons, 1.4, 2.8, 4.7, 5.9, 6.8 MeV sup 4 He ions and 8.5 and 12.4 MeV sup 1 sup 2 C ions, at proton doses from about 1 Gy up to 3 kGy, helium ions doses from 3 Gy to 5 kGy and carbon ion doses from 30 Gy to 20 kGy. The films were scanned and digitized using commercial equipment. For a given particle, the response per unit dose at different energies indicates an energy dependence of the sensitivity, which is discussed. Comparison was made for the use of a standard spectrophotometer to obtain optical density readings versus a white light scanner.

  14. Evolution of the surface structures of solids under irradiation with high energy heavy ions

    CERN Document Server

    Didyk, A Y; Cheblukov, Y N; Dmitriev, S N; Hofmann, A; Semina, V K; Suvorov, A L

    2002-01-01

    The results on the study of surface structure of solids, like metals, metal alloys, amorphous metal alloys and highly oriented pyrolytic graphite (HOPG) under irradiation with heavy sup 8 sup 6 Kr ions (ion energy is 245 MeV, irradiation fluences are 10 sup 1 sup 3 , 10 sup 1 sup 4 , 10 sup 1 sup 5 cm sup - sup 2) and sup 2 sup 0 sup 9 Bi (ion energy is 705 MeV, irradiation fluences are 10 sup 1 sup 2 , 10 sup 1 sup 3 cm sup - sup 2) are presented. The sputtering coefficients for metals (Ni, W, Au), stainless steel Cr18Ni10, amorphous alloy Ni sub 5 sub 8 Nb sub 4 sub 2 and HOPG are measured. It is shown that the sputtering coefficients of annealed polycrystals (Ni, Au) and single crystals (W, HOPG) are not large at low defect concentration in materials. At this stage, the sputtering of grain boundaries predominantly takes place. The sputtering yields become to increase significantly with the growth of damage concentration at ion fluences of the order of 10 sup 1 sup 5 cm sup - sup 2. Analogous results were o...

  15. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  16. Low-energy heavy-atom impact as a tool for production and classification of doubly excited states

    International Nuclear Information System (INIS)

    Andersen, N.

    1985-01-01

    Low-energy heavy-atom impact may be an efficient way of preferentially populating doubly excited levels. Using neon as an example, this paper discusses why this is so. The similarity of the structure of the energy level diagrams for doubly excited neon and the level scheme for neutral magnesium is pointed out, suggesting that collective quantum numbers may describe the electron pair. (orig.)

  17. High-energy $e^+e^-$ photoproduction in the field of a heavy atom accompanied by bremsstrahlung

    OpenAIRE

    Krachkov, P. A.; Lee, R. N.; Milstein, A. I.

    2014-01-01

    Helicity amplitudes and differential cross section of high-energy $e^+e^-$ photoproduction accompanied by bremsstrahlung in the electric field of a heavy atom are derived. The results are exact in the nuclear charge number and obtained in the leading quasiclassical approximation. They correspond to the leading high-energy small-angle asymptotics of the amplitude. It is shown that, in general, the Coulomb corrections essentially modify the differential cross section as compared to the Born res...

  18. Impact parameter dependence of pion ratio in probing the nuclear symmetry energy using heavy-ion collisions

    OpenAIRE

    Wei, Gao-Feng; He, Guo-Qiang; Cao, Xin-Wei; Lu, Yi-Xin

    2016-01-01

    The impact parameter dependence of \\rpi ratio is examined in heavy-ion collisions at 400MeV/nucleon within a transport model. It is shown that the sensitivity of \\rpi ratio on symmetry energy shows a transition from central to peripheral collisions, i.e., the stiffer symmetry energy leads to a larger \\rpi ratio in peripheral collisions while the softer symmetry energy always leads this ratio to be larger in central collisions. After checking the kinematic energy distribution of \\rpi ratio, we...

  19. Examination of the conditions of a broadening of the general tax for polluting activities to the intermediate energy consumptions, examination of the conditions of exoneration and attenuation for the energy uses in the industry

    International Nuclear Information System (INIS)

    Beaulinet, M.

    2000-05-01

    This document examines the conditions for a broadening of the general tax on polluting activities to the intermediate energy consumptions in order to reinforce the fight against greenhouse effect and to better master the energy consumption. It analyses the characteristics of each energy source with respect to the principle of a taxation of the consumptions. Finally, several scenarios are analyzed to show the advantage and drawbacks of such a system. A first evaluation and a preliminary tariffing are given. (J.S.)

  20. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  1. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Progress report, January 1, 1985-December 31, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1985-87. These studies have involved investigations of nucleon-nucleon and pion-nucleus interactions. They have been carried out at the LAMPF accelerator at the Los Alamos National Laboratory, at the SIN laboratory near Zurich, Switzerland, and at the TRIUMF accelerator in Vancouver, Canada. 86 refs., 5 figs

  2. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Special aspects on nuclear targets for high-energy heavy-ion accelerator experiments

    International Nuclear Information System (INIS)

    Folger, H.; Hartmann, W.; Klemm, J.; Thalheimer, W.

    1984-07-01

    Important facts about the GSI UNILAC accelerator are reviewed under the special aspects of target and stripper foil applications including general range considerations as seen after the upgrading of the machine to an energy of 20 MeV/u for all ions up to uranium. It is also reported about current works and recent developments in target preparations at GSI divided into four main groups of preparation procedures with sufficient overlap: cold rollings, carbon sublimation-condensations, focussed heavy-ion sputter deposition, and the wide field of high-vacuum evaporation-condensations. Among others, a Ca reduction-distillation procedure is described, a new assembly is shown for sublimation-condensations of uniform C layers of 0.1 to 0.76 mg/cm 2 area densities. A selection of only a few applications of targets at the UNILAC can be given. Improved actinide targets are discussed, in-beam measurements of properties of targets on rotating wheels are explained, and a large-area target wheel with a circumference of nearly one meter is shown. SEM micrographs of damaged targets are given and explained. (orig.)

  4. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  5. Fragmentation in heavy-ion collisions using quantum molecular ...

    Indian Academy of Sciences (India)

    approach for intermediate energy heavy-ion collisions [2,4,6]. On the other hand, semiclassical dynamical models [5] are very useful for studying the reaction from the start to final state where matter is fragmented and cold. In addition, these models also give a possibility to extract the information about the nuclear equation of ...

  6. Jet quenching and azimuthal anisotropy of large $p_{T}$ spectra in noncentral high-energy heavy-ion collisions

    CERN Document Server

    Wang Xin Nian

    2001-01-01

    Parton energy loss inside a dense medium leads to the suppression of large p/sub T/ hadrons and can also cause azimuthal anisotropy of hadron spectra at large transverse momentum in noncentral high-energy heavy-ion collisions. Such azimuthal anisotropy is studied qualitatively in a parton model for heavy-ion collisions at RHIC energies. The coefficient v/sub 2/(p/sub T/) of the elliptic anisotropy at large p/sub T/ is found to be very sensitive to parton energy loss. It decreases slowly with p/sub T/ contrary to its low p /sub T/ behavior where v/sub 2/ increases very rapidly with p/sub T/. The turning point signals the onset of contributions of hard processes and the magnitude of parton energy loss. The centrality dependence of v/sub 2/(p/sub T/) is shown to be sensitive to both size and density dependence of the parton energy loss and the latter can also be studied via variation of the colliding energy. The anisotropy coefficient v/sub 2// epsilon normalized by the spatial ellipticity epsilon is found to de...

  7. Formation of Amino Acid Precursors by Bombardment of Interstellar Ice Analogs with High Energy Heavy Ions

    Science.gov (United States)

    Kobayashi, Kensei; Mita, Hajime; Yoshida, Satoshi; Shibata, Hiromi; Enomoto, Shingo; Matsuda, Tomoyuki; Fukuda, Hitoshi; Kondo, Kotaro; Oguri, Yoshiyuki; Kebukawa, Yoko

    2016-07-01

    A wide variety of organic compounds have been detected in extraterrestrial bodies. It has been recognized that carbonaceous chondrites contain pristine amino acids [1]. There are several scenarios of the formation of such extraterrestrial amino acids or their precursors. Greenberg proposed a scenario that complex organic compounds were formed in interstellar ices in dense clouds, which were brought into solar system small bodies when the solar system was formed [2]. The ice mantles of interstellar dust particles (ISDs) in dense clouds are composed of H2O, CO, CH3OH, CH4, CO2, NH3, etc. In order to verify the scenario, a number of laboratory experiments have been conducted where interstellar ice analogs were irradiated with high-energy particles [3,4] or UV [5,6], and formation of complex organic compounds including amino acid precursors were detected in the products. Though ion-molecular reactions in gaseous phase and surface reactions on the ice mantles have been studied intensively, much less works on cosmic rays-induced reaction have been reported. In order to study possible formation of complex molecules in interstellar ices, frozen mixtures of water, methanol and ammonia with various mixing ratios were irradiated with high-energy heavy ions such as carbon ions (290 MeV/u) and neon ions (400 MeV/u) from HIMAC, NIRS, Japan. For comparison, gaseous mixtures of water, ammonia, carbon monoxide, carbon dioxide, and/or methane were irradiated with protons (2.5 MeV) from a Tandem accelerator, Tokyo Tech, Japan. Amino acids in the products were determined by cation exchange HPLC after acid hydrolysis. Products, both before and after acid hydrolysis, were also characterized by FT-IR and other techniques. Amino acids were detected in the hydrolyzed products after mixture of CH3OH, NH3 and H2O with various mixing ratios were irradiated with heavy ions, including when their mixing ratio was set close to the reported value of the interstellar ices (10:1:37). In the HIMAC

  8. Measurement of photonuclear cross sections from 30 to 140 MeV for intermediate and heavy mass nuclei (Sn, Ce, Ta, Pb and U)

    International Nuclear Information System (INIS)

    Lepretre, A.

    1982-06-01

    The total photonuclear absorption cross section for Sn, Ce, Ta, Pb and U has been studied from 25 to 140 MeV using a continuously variable monochromatic photon beam obtained from the annihilation in flight of monoenergetic positrons. The basic experimental results are a set of data giving sums of inclusive multiple photoneutron production cross sections of the form σsup(j) (Esub(γ) = Σsub(i=j)σ(γ,in) for neutron multiplicities ranging from j=1 to 12. From these data the total photonuclear absorption cross section σ(tot : Esub(γ)) has been deduced. It is concluded that Levinger's modified quasi-deuteron model describes the total cross sections reasonably well. When these data are combined with lower energy data and integrated to 140 MeV they indicate the need for an enhancement factor K for the Thomas-Reiche-Kuhn sum rule of 0.76+-0.10. No evidence was found that would indicate an A-dependence for the enhancement factor. From event-by-event records of observed photoneutron multiplicities it was also possible to determine the mean number of photoneutrons, antiν, for each photon energy and the widths W of the multiplicities distributions. From these measurements one also obtains the cross section for the formation of a compound nucleus state excited with the full energy of the absorbed photon [fr

  9. Mechanism-based labeling defines the free energy change for formation of the covalent glycosyl-enzyme intermediate in a xyloglucan endo-transglycosylase.

    Science.gov (United States)

    Piens, Kathleen; Fauré, Régis; Sundqvist, Gustav; Baumann, Martin J; Saura-Valls, Marc; Teeri, Tuula T; Cottaz, Sylvain; Planas, Antoni; Driguez, Hugues; Brumer, Harry

    2008-08-08

    Xyloglucan endo-transglycosylases (XETs) are key enzymes involved in the restructuring of plant cell walls during morphogenesis. As members of glycoside hydrolase family 16 (GH16), XETs are predicted to employ the canonical retaining mechanism of glycosyl transfer involving a covalent glycosyl-enzyme intermediate. Here, we report the accumulation and direct observation of such intermediates of PttXET16-34 from hybrid aspen by electrospray mass spectrometry in combination with synthetic "blocked" substrates, which function as glycosyl donors but are incapable of acting as glycosyl acceptors. Thus, GalGXXXGGG and GalGXXXGXXXG react with the wild-type enzyme to yield relatively stable, kinetically competent, covalent GalG-enzyme and GalGXXXG-enzyme complexes, respectively (Gal=Galbeta(1-->4), G=Glcbeta(1-->4), and X=Xylalpha(1-->6)Glcbeta(1-->4)). Quantitation of ratios of protein and saccharide species at pseudo-equilibrium allowed us to estimate the free energy change (DeltaG(0)) for the formation of the covalent GalGXXXG-enzyme as 6.3-8.5 kJ/mol (1.5-2.0 kcal/mol). The data indicate that the free energy of the beta(1-->4) glucosidic bond in xyloglucans is preserved in the glycosyl-enzyme intermediate and harnessed for religation of the polysaccharide in vivo.

  10. Three dimensional simulations of space charge dominated heavy ion beams with applications to inertial fusion energy

    International Nuclear Information System (INIS)

    Grote, D.P.

    1994-01-01

    Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator's lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement

  11. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    -ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall ...

  12. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  13. Measurement of Fragment Mass Distributions in Neutron-induced Fission of {sup 238}U and {sup 232}Th at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Simutkin, V.D. [Uppsala University, P.O Box 525, SE-751 20 Uppsala (Sweden)

    2008-07-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the {sup 238}U(n,f) and {sup 232}Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both {sup 238}U and {sup 232}Th. Up to now, the intermediate energy measurements have been performed for {sup 238}U only, and there are no data for the {sup 232}Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the {sup 232}Th(n,f) and {sup 238}U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  14. Vicinage effects in energy loss and electron emission during grazing scattering of heavy molecular ions from a solid surface

    International Nuclear Information System (INIS)

    Song Yuanhong; Wang Younian; Miskovic, Z.L.

    2005-01-01

    Vicinage effects in the energy loss and the electron emission spectra are studied in the presence of Coulomb explosion of swift, heavy molecular ions, during their grazing scattering from a solid surface. The dynamic response of the surface is treated by means of the dielectric theory within the specular reflection model using the plasmon pole approximation for the bulk dielectric function, whereas the angle-resolved energy spectra of the electrons emitted from the surface are obtained on the basis of the first-order, time-dependent perturbation theory. The evolution of the charge states of the constituent ions in the molecule during scattering is described by a nonequilibrium extension of the Brandt-Kitagawa model. The molecule scattering trajectories and the corresponding Coulomb explosion dynamics are evaluated for the cases of the internuclear axis being either aligned in the beam direction or randomly oriented in the directions parallel to the surface. Our calculations show that the vicinage effect in the energy loss is generally weaker for heavy molecules than for light molecules. In addition, there is clear evidence of the negative vicinage effect in both the energy loss and the energy spectra of the emitted electrons for molecular ions at lower speeds and with the axis aligned in the direction of motion

  15. Dominance of high-energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere

    Science.gov (United States)

    Cohen, Ian J.; Mitchell, Donald G.; Kistler, Lynn M.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Ohtani, Shinichi; Hamilton, Douglas C.; Turner, Drew L.; Blake, J. Bernard; Fennell, Joseph F.; Jaynes, Allison N.; Leonard, Trevor W.; Gerrard, Andrew J.; Lanzerotti, Louis J.; Allen, Robert C.; Burch, James L.

    2017-09-01

    Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies ≳150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observations and those from the SSD-based Fly's Eye Energetic Particle Spectrometer (FEEPS) sensors provides critical support to the veracity of the measurement. Similar observations from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments aboard the Van Allen Probes spacecraft extend the ion composition measurements into the middle magnetosphere and reveal a strongly proton-dominated environment at L≲6 but decreasing proton intensities at L≳6. It is concluded that the intensity dominance of the heavy ions at higher energies (>150 keV) arises from the existence of significant populations of multiply-charged heavy ions, presumably of solar wind origin.

  16. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    Light charged particles; heavy-ion induced reactions; particle spectra and angular distri- butions; reaction mechanisms. ... ions. At very high energies, the nucleon–nucleon aspects dominate. In the intermediate energies, both the mean field and the nucleon–nucleon aspects play their roles (figure 1). These features in turn ...

  17. The heavy-ion total reaction cross-section and nuclear transparency

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-01-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparency is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determining σ(sub R) at lower energies. (Author) [pt

  18. Intermediate energy nuclear physics (Task C) and charge exchange reactions (Task W). Technical progress report, October 1, 1985-October 1, 1986

    International Nuclear Information System (INIS)

    Kraushaar, J.J.

    1986-10-01

    This report describes the experimental work in intermediate energy research carried out over the past year at the University of Colorado. The experimental program is very broad in nature, ranging from investigations in pion-nucleus interactions, nucleon charge exchange, inelastic electron scattering, and nucleon transfer reactions. The experiments were largely carried out at the Los Alamos Meson Physics Facility, but important programs were conducted at the Tri-University Meson Facility at the University of British Columbia, the Indiana University Cyclotron Facility and Netherlands Institute for Nuclear Physics Research (NIKHEF-K)

  19. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  20. Heavy Flavor in heavy ion collisions

    International Nuclear Information System (INIS)

    Ruan, L.J.

    2010-01-01

    The recent results on heavy flavor at the Relativistic Heavy Ion Collider will be reviewed. The results on charm cross section, heavy flavor collectivity and energy loss, color screening effect and quarkonia production mechanism will be highlighted. Precise measurements with future detector upgrades will be discussed.

  1. Heavy Ion Track Temperature with the High Level of Specific Inelastic Energy Loss in Materials at the Thermal Spike Model

    CERN Document Server

    Didyk, A Yu; Semina, V K

    2003-01-01

    The thermal spike model in materials under the irradiation by swift heavy ions with high specific energy loss is considered taking into account the temperature dependence along the ion trajectrory. The numerical solutions of the temperature system equations for the temperatures of lattice and electrons are obtained, takinig into account the possible heating of lattice up to the melting and evaporation points, i.e., with the two phase transitions are obtained. The pressure in the volume of heavy ion track and their influence on the changes of thermodynamical parameters are introduced. The influence of defects on the "hot" electron free path is discussed. The numerical analysis of the lattice temperature at low and high temperatures of the thermal conductivity and heat capacity parameter values was carried out.

  2. Heavy ion track temperature with the high level of specific inelastic energy loss in materials at the thermal spike model

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Robuk, V.N.; Semina, V.K.

    2003-01-01

    The thermal spike model in materials under the irradiation by swift heavy ions with high specific energy loss is considered taking into account the temperature dependence along the ion trajectory. The numerical solutions of the temperature system equations for the temperatures of lattice up to the melting and evaporation points, i.e., with the two phase transitions are obtained. The pressure in the volume of heavy ion track and its influence on the changes of thermodynamical parameters are introduced. The influence of defects on the 'hot' electron free path is discussed. The numerical analysis of the lattice temperature at low and high temperatures of the thermal conductivity and heat capacity parameter values was carried out. (author)

  3. Response functions of 58Ni, 116Sn and 208Pb to the excitation of intermediate-energy α-particles

    International Nuclear Information System (INIS)

    Bonin, B.; Alamanos, N.; Berthier, B.; Bruge, G.; Faraggi, H.; Legrand, D.; Lugol, J.C.; Mittig, W.; Papineau, L.; Yavin, A.I.; Scott, D.K.; Levine, M.; Arvieux, J.; Farvacque, L.; Buenerd, M.

    1984-01-01

    Inelastic scattering of 340 MeV and 480 MeV α-particles has been measured on 58 Ni, 116 Sn and 208 Pb up to 60 MeV excitation energy. Consistent background subtraction and multipole analysis has provided the repartition of multipole strength for all three nuclei. The so-obtained response functions show the already known low-energy giant resonances in a detailed way, as well as new giant resonances at high energy. (orig.)

  4. A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP.

    Science.gov (United States)

    Serrano, Arnaldo L; Lomont, Justin P; Tu, Ling-Hsien; Raleigh, Daniel P; Zanni, Martin T

    2017-11-22

    Transiently populated oligomers formed en route to amyloid fibrils may constitute the most toxic aggregates associated with many amyloid-associated diseases. Most nucleation theories used to describe amyloid aggregation predict low oligomer concentrations and do not take into account free energy costs that may be associated with structural rearrangements between the oligomer and fiber states. We have used isotope labeling and two-dimensional infrared spectroscopy to spectrally resolve an oligomeric intermediate during the aggregation of the human islet amyloid protein (hIAPP or amylin), the protein associated with type II diabetes. A structural rearrangement includes the F 23 G 24 A 25 I 26 L 27 region of hIAPP, which starts from a random coil structure, evolves into ordered β-sheet oligomers containing at least 5 strands, and then partially disorders in the fibril structure. The supercritical concentration is measured to be between 150 and 250 μM, which is the thermodynamic parameter that sets the free energy of the oligomers. A 3-state kinetic model fits the experimental data, but only if it includes a concentration independent free energy barrier >3 kcal/mol that represents the free energy cost of refolding the oligomeric intermediate into the structure of the amyloid fibril; i.e., "oligomer activation" is required. The barrier creates a transition state in the free energy landscape that slows fibril formation and creates a stable population of oligomers during the lag phase, even at concentrations below the supercritical concentration. Largely missing in current kinetic models is a link between structure and kinetics. Our experiments and modeling provide evidence that protein structural rearrangements during aggregation impact the populations and kinetics of toxic oligomeric species.

  5. Heavy ion reaction measurements with the EOS TPC (looking for central collisions with missing energy)

    International Nuclear Information System (INIS)

    Wieman, H.H.

    1994-05-01

    The EOS TPC was constructed for complete event measurement of heavy ion collisions at the Bevalac. We report here on the TPC design and some preliminary measurements of conserved event quantities such as total invariant mass, total momentum, total A and Z

  6. Energy scan in heavy-ion collisions and search for a critical point

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2012-01-01

    Roč. 75, č. 6 (2012), s. 700-706 ISSN 1063-7788 R&D Projects: GA MŠk LA08002; GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : heavy-ion collisions * specific heat Subject RIV: BE - Theoretical Physics Impact factor: 0.539, year: 2012

  7. The stopping power and energy straggling of heavy ions in silicon nitride and polypropylene

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Hnatowicz, Vladimír; Macková, Anna; Malinský, Petr; Slepička, P.

    2015-01-01

    Roč. 354, JUL (2015), s. 205-209 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : stopping power * heavy ions * polypropylene * silicon nitride Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  8. Heavy flavours production in quark-gluon plasma formed in high energy nuclear reactions

    Science.gov (United States)

    Kloskinski, J.

    1985-01-01

    Results on compression and temperatures of nuclear fireballs and on relative yield of strange and charmed hadrons are given . The results show that temperatures above 300 MeV and large compressions are unlikely achieved in average heavy ion collision. In consequence, thermal production of charm is low. Strange particle production is, however, substantial and indicates clear temperature - threshold behavior.

  9. Unusual features of proton and α-spectra from low-energy heavy-ion ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 75; Issue 1. Unusual features ... Keywords. Proton and α-spectra; heavy-ion reaction; broad structures; nuclear level density. ... The broad structures in the -spectra cannot be fully explained within the statistical model even with the enhanced level density. In this case ...

  10. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  11. Detailed EXOSAT and optical observations of the intermediate polar 3A0729+103: discovery of two medium energy X-ray emission regions

    International Nuclear Information System (INIS)

    McHardy, I.M.; Pye, J.P.; Fairall, A.P.; Menzies, J.W.

    1987-01-01

    EXOSAT observations of the intermediate polar cataclysmic variable 3A0729+103 reveal a strong orbital modulation, with the 2-4KeV X-rays being significantly more modulated than the 4-6keV X-rays, indicative of photoelectric absorption. The 913 second modulation which is very prominent in the optical light curve, is weakly detected in the medium-energy X-ray light curve, confirming that it represents the white dwarf spin period. These observations are well explained by a combination of two sources of medium-energy X-ray emission. The presence of two emission regions is also clearly seen in the optical spectroscopy, particularly in the intensity of the He II4686 line which has two peaks during the orbit. The authors identify the two optical emission regions with the two X-ray emission regions. (author)

  12. Experimental studies of pion-nucleus and nucleon-nucleus interactions at intermediate energies. Progress report, April 1, 1991--March 31, 1994

    International Nuclear Information System (INIS)

    1993-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991-94 under a grant from the U.S. Department of Energy. Most of these studies involved investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, at Indiana University (IUCF), and at TRIUMF in Vancouver, Canada, as collaborative efforts among several laboratories and universities. We have also worked on plans and preparations for new experiments involving studies of the quark structure of nucleons and nuclei, which would be carried out at Fermilab (FNAL), near Chicago, and at the HERA facility at the DESY laboratory in Hamburg, Germany. The NMSU personnel included two faculty members, five postdoctoral research associates, nine graduate students, and one undergraduate student

  13. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    International Nuclear Information System (INIS)

    Ahmad, S.; Bhaduri, P.P.; Jahan, H.; Senger, A.; Adak, R.; Samanta, S.; Prakash, A.; Dey, K.; Lebedev, A.; Kryshen, E.; Chattopadhyay, S.; Senger, P.; Bhattacharjee, B.; Ghosh, S.K.; Raha, S.; Irfan, M.; Ahmad, N.; Farooq, M.; Singh, B.

    2015-01-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  14. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S. [University of Kashmir, Srinagar (India); Bhaduri, P.P. [Variable Energy Cyclotron Centre, Kolkata (India); Jahan, H. [Aligarh Muslim University, Aligarh (India); Senger, A. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Adak, R.; Samanta, S. [Bose Institute, Kolkata (India); Prakash, A. [Banaras Hindu University, Varanasi (India); Dey, K. [Gauhati University, Guwahati (India); Lebedev, A. [Institute für Kernphysik, Goethe Universität Frankfurt, Frankfurt (Germany); Kryshen, E. [Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Gatchina (Russian Federation); Chattopadhyay, S., E-mail: sub@vecc.gov.in [Variable Energy Cyclotron Centre, Kolkata (India); Senger, P. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Bhattacharjee, B. [Gauhati University, Guwahati (India); Ghosh, S.K.; Raha, S. [Bose Institute, Kolkata (India); Irfan, M.; Ahmad, N. [Aligarh Muslim University, Aligarh (India); Farooq, M. [University of Kashmir, Srinagar (India); Singh, B. [Banaras Hindu University, Varanasi (India)

    2015-03-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  15. Electron scattering by Ne, Ar and Kr at intermediate and high energies, 0.5-10 keV

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G.; Roteta, M.; Manero, F. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Departamento de Fusion y Particulas Elementales, Madrid (Spain); Blanco, F. [Universidad Complutense de Madrid, Facultad de Fisica, Departamento de Fisica Atomica Molecular y Nuclear, Madrid (Spain); Williart, A. [Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Departamento de Fisica de los Materiales, Madrid (Spain)

    1999-04-28

    Semi-empirical total cross sections for electron scattering of noble gases (Ne, Ar and Kr) in the energy range 0.5-10 keV have been obtained by combining transmission-beam measurements for impact energies up to 6 keV with an asymptotic behaviour at higher energies according to the Born-Bethe approximation. The influence of the forward electron scattering on the experimental system has been evaluated by means of a Monte Carlo electron transport simulation. Theoretical values have also been obtained by applying the Born approximation in the case of inelastic processes and by means of an atomic scattering potential for the elastic part. The results of these calculations show an excellent agreement with the semi-empirical values in the above-mentioned energy range. (author)

  16. Medium energy heavy ion accelerator (14 UD pelletron) facility (BARC-TIFR): report for the period July 1989 - December 1992

    International Nuclear Information System (INIS)

    Eswaran, M.A.; Tandon, P.N.

    1993-01-01

    A medium energy heavy ion accelerator facility has been set up jointly by Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR) at Bombay. It is based on a 14 MV tandem accelerator (14 UD Pelletron) supplied by Electrostatic International Incorporated, USA. The facility was commissioned in 1988, however the accelerator began to be utilized regularly for experimental programmes from June 1989. Since then a number of research programmes have been undertaken. Some of these are: nuclear structure at high excitations through heavy ion resonances, nuclear structure studies at high angular momentum, elastic and inelastic scattering and transfer reactions, heavy-ion fusion and fusion-fission reactions, hyperfine interaction studies, channeling and blocking studies, and atomic physics studies of highly charged ions. This is the first comprehensive progress report on research and development activities based on the pelletron accelerator facility. It covers the period from June 1989 to December 1992. The report is presented in the form of 82 research papers. (M.G.B.)

  17. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  18. Full formula for heavy quarkonium energy levels at next-to-next-to-next-to-leading order

    Directory of Open Access Journals (Sweden)

    Y. Kiyo

    2014-12-01

    Full Text Available We derive a full formula for the energy level of a heavy quarkonium state identified by the quantum numbers n, ℓ, s and j, up to O(αs5m and O(αs5mlog⁡αs in perturbative QCD. The QCD Bethe logarithm is given in a one-parameter integral form. The rest of the formula is given as a combination of rational numbers, transcendental numbers (π, ζ(3, ζ(5 and finite sums (besides the 3-loop constant a¯3 of the static potential whose full analytic form is still unknown. A derivation of the formula is given.

  19. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  20. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Science.gov (United States)

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.