WorldWideScience

Sample records for intermediate energy coulomb

  1. The Coulomb gap and low energy statistics for Coulomb glasses

    International Nuclear Information System (INIS)

    Glatz, Andreas; Vinokur, Valerii M; Bergli, Joakim; Kirkengen, Martin; Galperin, Yuri M

    2008-01-01

    We study the statistics of local energy minima in the configuration space of two-dimensional lattice Coulomb glasses with site disorder and the behavior of the Coulomb gap depending on the strength of random site energies. At intermediate disorder, i.e., when the typical strength of the disorder is of the same order as the nearest-neighbor Coulomb energy, the high energy tail of the distribution of the local minima is exponential. We furthermore analyze the structure of the local minima and show that most sites of the system have the same occupation numbers in all of these states. The density of states (DOS) shows a transition from the crystalline state at zero disorder (with a hard gap) to an intermediate, probably glassy state with a Coulomb gap. We analyze this Coulomb gap in some detail and show that the DOS deviates slightly from the traditional linear behavior in 2D. For finite systems these intermediate Coulomb gap states disappear for large disorder strengths and only a random localized state in which all electrons are in the minima of the random potential exists. Dedication: This paper is dedicated to Thomas Nattermann, our dearest friend, brilliant colleague, and outstanding teacher

  2. Isospin effect of coulomb interaction on momentum dissipation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong

    2004-01-01

    The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)

  3. Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2013-12-01

    We have recently measured the B(E2; 0+ → 2+ of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2 values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes.

  4. Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2014-03-01

    Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.

  5. Coulomb energy, vortices, and confinement

    International Nuclear Information System (INIS)

    Greensite, Jeff; Olejnik, Stefan

    2003-01-01

    We estimate the Coulomb energy of static quarks from a Monte Carlo calculation of the correlator of timelike link variables in the Coulomb gauge. We find, in agreement with Cucchieri and Zwanziger, that this energy grows linearly with distance at large quark separations. The corresponding string tension, however, is several times greater than the accepted asymptotic string tension, indicating that a state containing only static sources, with no constituent gluons, is not the lowest energy flux tube state. The Coulomb energy is also measured on thermalized lattices with center vortices removed by the de Forcrand-D'Elia procedure. We find that when vortices are removed, the Coulomb string tension vanishes

  6. JANUS - A setup for low-energy Coulomb excitation at ReA3

    Science.gov (United States)

    Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.

    2018-03-01

    A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.

  7. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  8. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  9. Coulomb energy of uniformly charged spheroidal shell systems.

    Science.gov (United States)

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  10. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    International Nuclear Information System (INIS)

    Tso, Kin.

    1996-05-01

    The 129 Xe-induced reactions on nat Cu, 89 Y, 165 Ho, and 197 Au at bombarding energies of E/A = 40 ampersand 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129 Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied

  11. Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.

    Science.gov (United States)

    Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui

    2013-11-07

    We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.

  12. Coulomb displacement energies in nuclei: a new approach

    International Nuclear Information System (INIS)

    Auerbach, N.; Tel Aviv Univ.; Bernard, V.; Nguyen, V.G.

    1978-04-01

    The neutron core polarization gives rise to an important correction to the direct Coulomb contribution when one calculates the Coulomb displacement energies. In the Hartree-Fock model it is shown that this correction is about 2% to 4.5% in medium and heavy nuclei. The core polarization as well as other higher order effects can be included by using a selfconsistent description of the analog state in a complete proton particle-neutron hole space. The Coulomb displacement energies in 48 Ca, 88 Sr and 208 Pb have been calculated using Skyrme interactions SIII and SIV. A good agreement with experiment is obtained

  13. Core polarization and Coulomb displacement energies

    International Nuclear Information System (INIS)

    Shlomo, S.; Love, W.G.

    1982-01-01

    The contributions of core polarization terms (other than the Auerbach-Kahana-Weneser (AKW) effect) to Coulomb displacement energies of mirror nuclei near A = 16 and A = 40 are examined within the particle-vibration coupling model. The parameters of the model are determined using updated data on the locations and strengths of multipole core excitations. In the absence of relevant data an energy-weighted sum rule (EWSR) is exploited. Taking into account multipole excitations up to L = 5 and subtracting the contributions which are due to short-range correlations, significant contributions (1-3%) to ΔEsub(c) are found. These corrections arise from particle coupling to low-lying collective states (long-range correlations). The implications of these results on the Coulomb energy problem are discussed. (Auth.)

  14. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  15. Coulomb correlations in electron and positron impact ionization of hydrogen at intermediate and higher energies

    International Nuclear Information System (INIS)

    Jetzke, S.; Faisal, F.H.M.

    1992-01-01

    Investigating the relation between the asymptotic condition and the dynamic Coulomb correlation for single and multiple ionization we discuss a complete set of spatially separable N-electrons final-state wavefunctions, satisfying multiple ionization boundary conditions. We apply these results to electron and positron impact ionization of atomic hydrogen in the energy range 54.4 and 250 eV on the basis of a parameter-free model formulated within the scope of the multiple scattering approach. A comparison between our results and available experimental data and alternative theoretical calculations are made and discussed. (Author)

  16. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  17. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  18. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  19. 11Li Breakup on 208 at energies around the Coulomb barrier.

    Science.gov (United States)

    Fernández-García, J P; Cubero, M; Rodríguez-Gallardo, M; Acosta, L; Alcorta, M; Alvarez, M A G; Borge, M J G; Buchmann, L; Diget, C A; Falou, H A; Fulton, B R; Fynbo, H O U; Galaviz, D; Gómez-Camacho, J; Kanungo, R; Lay, J A; Madurga, M; Martel, I; Moro, A M; Mukha, I; Nilsson, T; Sánchez-Benítez, A M; Shotter, A; Tengblad, O; Walden, P

    2013-04-05

    The inclusive breakup for the (11)Li + (208)Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of (9)Li following the (11)Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the (11)Li continuum at low excitation energy.

  20. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  1. Kinetic advantage of controlled intermediate nuclear fusion

    International Nuclear Information System (INIS)

    Guo Xiaoming

    2012-01-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  2. 11Li Breakup on 208Pb at Energies Around the Coulomb Barrier

    DEFF Research Database (Denmark)

    Fernández-García, J.P.; Cubero, M.; Rodríguez-Gallardo, M.

    2013-01-01

    The inclusive breakup for the 11Li+208Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of 9Li following the 11Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation...... theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear...... and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the 11Li continuum at low excitation energy....

  3. Coulomb effects in the deuteron-nucleus interaction

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.; Peresypkin, V.V.

    1990-01-01

    The authors develop a consistent theory for calculation of the potential of the deuteron interaction with the Coulomb field of a nucleus. They study the properties of this potential at large distances and give its explicit form at the deuteron-breakup threshold. In the limit of low energies they derive the potential, which includes intermediate off-energy-shell states, and explain the physical nature of its constants. The accuracy of the transition to the polarization interaction is estimated

  4. Calculation of the Coulomb nuclear energy for the 1fsub(7/2) shell

    International Nuclear Information System (INIS)

    Kaminski, V.A.; Shpikovski, S.

    1980-01-01

    Calculated was the Coulomb energy for nuclei with half-filled 1fsub(7/2) shell i.e. for configurations, where quasiparticle basis can serve as a total basis for precise calculations. Presented are calculation results of vector and tensor components of the Coulomb energy for Ca-Se-Ti-V isobaric pairs, as well as experimental and theoretical values for the Coulomb displacements. To estimate the Coulomb energies used were wave functions of a Hamiltonian taking account of pair and quadrupole interactions. There is good agreement with experimental data. Quasiparticle consideration is useful for calculating matrix elements of half-filled shells and for the cases of such an isospin value, where the technique of genealogical coefficients becomes extremely cumbersome

  5. Long-range Coulomb interactions in low energy (e,2e) data

    International Nuclear Information System (INIS)

    Waterhouse, D.

    2000-01-01

    Full text: Proper treatment of long-range Coulomb interactions has confounded atomic collision theory since Schrodinger first presented a quantum-mechanical model for atomic interactions. The long-range Coulomb interactions are difficult to include in models in a way that treats the interaction sufficiently well but at the same time ensures the calculation remains tractable. An innovative application of an existing multi-parameter (e,2e) data acquisition system will be described. To clarify the effects of long-range Coulomb interactions, we will report the correlations and interactions that occur at low energy, observed by studying the energy sharing between outgoing electrons in the electron-impact ionisation of krypton

  6. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  7. Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions

    International Nuclear Information System (INIS)

    Li Qingfeng; Li Zhuxia; Soff, Sven; Gupta, Raj K; Bleicher, Marcus; Stoecker, Horst

    2005-01-01

    Based on the ultrarelativistic quantum molecular dynamics model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Δ - /Δ ++ and π - /π + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the π - /π + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the π - /π + ratio significantly, though it alters only slightly the π - and π + total yields. The π - yields, especially at midrapidity or at low transverse momenta and the π - /π + ratios at low transverse momenta are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both K 0 and K + mesons is also investigated

  8. Extremes of 2d Coulomb gas: universal intermediate deviation regime

    Science.gov (United States)

    Lacroix-A-Chez-Toine, Bertrand; Grabsch, Aurélien; Majumdar, Satya N.; Schehr, Grégory

    2018-01-01

    In this paper, we study the extreme statistics in the complex Ginibre ensemble of N × N random matrices with complex Gaussian entries, but with no other symmetries. All the N eigenvalues are complex random variables and their joint distribution can be interpreted as a 2d Coulomb gas with a logarithmic repulsion between any pair of particles and in presence of a confining harmonic potential v(r) \\propto r2 . We study the statistics of the eigenvalue with the largest modulus r\\max in the complex plane. The typical and large fluctuations of r\\max around its mean had been studied before, and they match smoothly to the right of the mean. However, it remained a puzzle to understand why the large and typical fluctuations to the left of the mean did not match. In this paper, we show that there is indeed an intermediate fluctuation regime that interpolates smoothly between the large and the typical fluctuations to the left of the mean. Moreover, we compute explicitly this ‘intermediate deviation function’ (IDF) and show that it is universal, i.e. independent of the confining potential v(r) as long as it is spherically symmetric and increases faster than \\ln r2 for large r with an unbounded support. If the confining potential v(r) has a finite support, i.e. becomes infinite beyond a finite radius, we show via explicit computation that the corresponding IDF is different. Interestingly, in the borderline case where the confining potential grows very slowly as v(r) ∼ \\ln r2 for r \\gg 1 with an unbounded support, the intermediate regime disappears and there is a smooth matching between the central part and the left large deviation regime.

  9. Nuclear sizes and the Coulomb Displacement Energy

    International Nuclear Information System (INIS)

    Van der Werf, S.Y.

    1997-01-01

    Data on Coulomb Displacement Energies in the mass range A = 40 - 240 are analyzed in the deformed Liquid Drop model and in the independent particle model. Reduced half-widths of Woods-Saxon mean-field potential of the resulting neutron-excess distributions are deduced. It is argued that the Nolen-Schiffer anomaly may be lifted by allowing for a slight binding-energy dependence of the mean-field potential geometry. (author)

  10. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  11. Impact of density-dependent symmetry energy and Coulomb ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... The IMF production increases with the stiffness of symmetry energy. .... to clusterization using minimum spanning tree MST(M) method .... To understand the direct role of Coulomb interactions, we display in figure 4 the mean.

  12. Coulomb displacement energies of the T=1, J=0 states of A=42 nuclei

    International Nuclear Information System (INIS)

    Sato, H.

    1978-01-01

    Coulomb displacement energies of the T=1, J=0 + and 6 1 + states of A=42 nuclei are analyzed with previously known charge dependent forces and effects, and with the available Hartree-Fock single-particle wave functions. From the study of the Coulomb displacement energies of the 6 1 + states it is found that the present knowledge on the charge dependence, including a phenomenological charge symmetry breaking force previously introduced so as to help explain the Nolen-Schiffer anomaly, gives a sufficient and consistent explanation for both single-particle and two-particle systems. From the study of the 0 + states, it is found that the Coulomb displacement energies of the second 0 2 + states can be explained with a compensation between the smaller Coulomb energies of the second lowest two-particle state and larger ones of the deformed 4p-2h state. (Auth.)

  13. Exclusion of nuclear forces in heavy-ion Coulomb excitation and Coulomb fission experiments

    International Nuclear Information System (INIS)

    Neese, R.E.; Guidry, M.W.

    1982-01-01

    A simple prescription for estimating the energy at which nuclear forces begin to play a role in heavy-ion Coulomb excitation and Coulomb fission experiments is presented. The method differs from most commonly used recipes in accounting for projectile and target nucleus deformation effects. Using a single adjustable parameter the formula reproduces the energy for the onset of Coulomb-nuclear interference effects for a broad range of heavy-ion systems. It is suggested that most Coulomb fission experiments which have been done involve both Coulomb and nuclear excitation processes and should more properly be termed Coulomb-nuclear fission experiments

  14. Coulomb displacement energies in relativistic and non-relativistic self-consistent models

    International Nuclear Information System (INIS)

    Marcos, S.; Savushkin, L.N.; Giai, N. van.

    1992-03-01

    Coulomb displacement energies in mirror nuclei are comparatively analyzed in Dirac-Hartree and Skyrme-Hartree-Fock models. Using a non-linear effective Lagrangian fitted on ground state properties of finite nuclei, it is found that the predictions of relativistic models are lower than those of Hartree-Fock calculations with Skyrme force. The main sources of reduction are the kinetic energy and the Coulomb-nuclear interference potential. The discrepancy with the data is larger than in the Skyrme-Hartree-Fock case. (author) 24 refs., 3 tabs

  15. Nucleon-nucleon correlations and the Coulomb Displacement Energy

    International Nuclear Information System (INIS)

    Van Neck, D.; Waroquier, M.; Heyde, K.

    1997-01-01

    Coulomb Displacement Energies (CDE) are accurately known for a wide range of nuclear masses. Assuming isospin independence in the nuclear Hamiltonian, the CDE can in first instance be interpreted as the Coulomb interaction energy between the density of the excess neutrons and the proton charge density in the parent nucleus. However, when using reasonable mean-field models for the proton and neutron density one underestimates the CDE by about 8% on average. This discrepancy is known as the Nolen-Schiffer anomaly, and various explanations have been put forward in the past. In this work the role of nucleon-nucleon correlations are re-examined. Calculations for the pair density functions in various nuclei are presented. Preliminary results suggest that the modifications to the mean-field pair density functions cause an enhancement of the CDE in the order of 4%, which is rather A-independent. (author)

  16. An astrophysical engine that stores gravitational work as nuclear Coulomb energy

    Science.gov (United States)

    Clayton, Donald

    2014-03-01

    I describe supernovae gravity machines that store large internal nuclear Coulomb energy, 0.80Z2A- 1 / 3MeV per nucleus. Excess of it is returned later by electron capture and positron emission. Decay energy manifests as (1) observable gamma-ray lines (2) light curves of supernovae (3) chemical energy of free carbon dissociated from CO molecules (4) huge abundances of radiogenic daughters. I illustrate by rapid silicon burning, a natural epoch in SN II. Gravitational work produces the high temperatures that photoeject nucleons and alpha particles from heavy nuclei. These are retained by other nuclei to balance photoejection rates (quasiequilibrium). The abundance distribution adjusts slowly as remaining abundance of Z = N 28Si decomposes, so p, n, α recaptures hug the Z = N line. This occurs in milliseconds, too rapidly for weak decay to alter bulk Z/N ratio. The figure displays those quasiequilibrium abundances color-coded to their decays. Z = N = 2k nuclei having k 10 are radioactive owing to excess Coulomb energy. Weak decays radiate that excess energy weeks later to fuel the four macroscopic energetic phenomena cited. How startling to think of the Coulomb nuclear force as storing cosmic energy and its weak decay releasing macroscopic activation to SNII.

  17. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  18. Inclusive quasielastic neutrino reactions in 12C and 16O at intermediate energies

    International Nuclear Information System (INIS)

    Singh, S.K.; Oset, E.

    1993-01-01

    Inclusive quasielastic neutrino (antineutrino) reactions on 12 C and 16 O at intermediate energies (50< E<400 MeV) are studied to investigate the effects of the nuclear medium on the total cross section and the energy spectrum of the outgoing leptons. The calculations are done in the local density approximation and various nuclear effects like Pauli blocking, Fermi motion, and strong-interaction renormalizations due to the presence of nucleons are taken into account. The corrections due to Coulomb effects are included which have been hitherto neglected in inclusive reactions. The results presented here are applicable to the inclusive reactions with neutrino beams planned to look for neutrino oscillations in the Los Alamos experiments or the experiments with underground detectors looking for atmospheric or solar flare neutrinos

  19. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-28

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  20. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  1. SYMMETRY PROPERTIES OF THE COULOMB POTENTIAL WITH A LINEAR DEPENDENCE ON ENERGY

    Directory of Open Access Journals (Sweden)

    Radu Budaca

    2017-12-01

    Full Text Available The D-dimensional Schr ̈odinger equation for a Coulomb potential with a coupling constant depending linearly on energy is analytically solved. The energy spectrum in the asymptotic regime of the slope parameter is found to be fully determined up to a scale only by its quantum numbers. The raising and lowering operators for this limiting model are determined from the recurrence properties of the associated solutions. It is shown that they satisfy the commutation relations of an SU(1,1 algebra and act on wave-functions which are normalized differently from the case of the usual bound state problem for an energy independent Coulomb potential.

  2. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    CERN Document Server

    Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

  3. 8B + 208Pb Elastic Scattering at Coulomb Barrier Energies

    Science.gov (United States)

    La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2018-02-01

    The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (Sp = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.

  4. Activation measurements of α-induced reactions at sub-Coulomb energies

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Philipp; Dewald, Alfred; Heinze, Stefan; Mayer, Jan; Mueller-Gatermann, Claus; Netterdon, Lars; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Endres, Anne [Institute for Applied Physics, Goethe University Frankfurt am Main (Germany)

    2015-07-01

    Network calculations of the γ process rely almost completely on theoretically predicted reaction rates within the scope of the Hauser-Feshbach Statistical Model. Especially the prediction of cross sections for (γ,α)-reactions at energies within or close to the astrophysically relevant energy window remains a problem due to the uncertainties in the underlying α-optical-model potentials. Although experimental values far above the Coulomb-barrier are well reproduced, commonly used α-optical potentials often fail to describe the trend at energies comparable to those at astrophysical sites of the γ process. Improvements of the adopted optical-model potentials are hampered by the lack of experimental cross sections at sub-Coulomb energies. In order to enlarge the experimental data base, cross sections of the {sup 187}Re(α,n) and {sup 108}Cd(α,n) reactions were investigated using the activation technique with the Cologne Clover Counting Setup. Besides recent experimental results, future plans for more sensitive cross-section studies applying Accelerator Mass Spectrometry using CologneAMS are presented.

  5. The eikonal phase of supersymmetric Coulomb partners

    CERN Document Server

    Lassaut, M; Lombard, R J

    1998-01-01

    We investigate the eikonal phase and its systematic corrections for the two supersymmetric Coulomb partners V sub 1 and V sub 2 derived by Amado. Apart from a constant shift of -pi for V sub 1 and -2 pi for V sub 2 , the eikonal phase decay to the eikonal phase of the Coulomb potential as 1/kb. For the potential V sub 2 , which is phase equivalent to the Coulomb potential, this result is only valid at b approx =0 and asymptotically; in the intermediate range, it constitutes a lower limit. (author)

  6. COULN, a program for evaluating negative energy Coulomb functions

    International Nuclear Information System (INIS)

    Noble, C.J.; Thompson, I.J.

    1984-01-01

    Program COULN calculates exponentially decaying Whittaker functions, Wsub(K,μ)(z) corresponding to negative energy Coulomb functions. The method employed is most appropriate for parameter ranges which commonly occur in atomic and molecular asymptotic scattering problems using a close-coupling approximation in the presence of closed channels. (orig.)

  7. On the Coulomb displacement energy

    International Nuclear Information System (INIS)

    Sato, H.

    1976-01-01

    The Coulomb displacement energies of the T=1/2 mirror nuclei (A=15,17,27,29,31,33,39 and 41) are re-examined with the best available HF wave functions (the DME and the Skyrme II interaction), with the inclusion of all electromagnetic corrections. The results are compared with the experimental s.p. charge dependent energies extracted from the experimental data taking into account admixtures of core-excitation corrections with the help of present shell-model and co-existence model calculations. Although the so-called Nolen-Schiffer anomaly is not removed by these improvements, it is found that the remaining observed anomalies in the ground states of s.p. and s.h. systems can be resolved with the introduction of a simple, phenomenological charge symmetry breaking nucleon-nucleon force. This force can also account for the observed anomalies in the higher excited s.p. states, while those of the deeper s.h. states need further explanation. (Auth.)

  8. Studying multifragmentation dynamics at intermediate energies using two-fragment correlations

    International Nuclear Information System (INIS)

    Sangster, T.C.; Britt, H.C.; Namboodiri, M.N.

    1993-01-01

    One of the most challenging topics in Nuclear Physics is the multifragmentation at moderate excitation energies in large nuclear systems. Although the idea that multifragmentation is analogous to a liquid-gas like phase transition is not new, it has only been recently that highly exclusive experimental measurements have been coupled with sophisticated theoretical models like QMD and BUU/VUU to explore reaction dynamics and the process of fragment formation. Indeed, much of what is known about multifragmentation has resulted from the study of complex correlations present in both the experimental data and theoretical calculations. One of the most crucial questions in the ongoing debate concerning the liquid-gas analogy is the differentiation between simultaneous and sequential fragment emission. Clearly, the phase transition analogy breaks down if fragments are emitted sequentially as in an evaporative process. There have been a number of two-fragment correlation results published recently (including those presented in this paper) which attempt to put limits on the emission timescale using three-body Coulomb trajectory calculations with explicit emission times for sequential decays from a fixed source density. These results have been generally consistent and indicate that intermediate mass fragment (IMF) emission is nearly simultaneous in medium energy heavy ion collisions. Only very recently have calculations been performed which approach this question from the other extreme: simultaneous emission from a variable density source. When considered together, these results argue favorably for a simultaneous multifragmentation. In this paper the authors present comprehensive results on two-fragment correlations for heavy systems at intermediate energies

  9. Coulomb correction calculations of pp Bremsstrahlung

    International Nuclear Information System (INIS)

    Katsogiannis, A.; Amos, K.; Jetter, M.; von Geramb, H.V.

    1994-01-01

    The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs

  10. Laser-energy scaling law for neutrons generated from nano particles Coulomb-exploded by intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Sakabe, Shuji; Hashida, Masaki

    2015-01-01

    To discuss the feasibility of compact neutron sources the yield of laser produced neutrons is scaled by the laser energy. High-energy ions are generated by Coulomb explosion of clusters through intense femtosecond laser-cluster interactions. The laser energy scaling law of the neutron yield is estimated using the laser intensity scaling law for the energy of ions emitted from clusters Coulomb-exploded by an intense laser pulse. The neutron yield for D (D, n) He shows the potential of compact neutron sources with modern laser technology, and the yield for p (Li, n) Be shows much higher than that for Li (p, n) Be with the assumption of 500 nm-class cluster Coulomb explosion. (author)

  11. On the theory for Coulomb break-up of deuterons by atomic nuclei at low energy

    International Nuclear Information System (INIS)

    Grantsev, V.I.; Evlanov, M.V.

    1982-01-01

    The influence of a finite range of nuclear forces between nucleons in the deuteron on angular and energy distributions for products of deuteron disintegration by the Coulomb field of nucleus is investigated. This effect leads to the difference of differential cross sections of Coulomb deuteron disintegration from differential cross sections obtained in the framework of the approximation of the zero-radius interaction. Angular and energy dependences of differential cross sections of deuteron disintegration with the energy of 13.6 MeV on the 208 Pb nucleus are given [ru

  12. Coulomb displacement energies between analog levels for 44 < = A < = 239

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.; Pape, A.

    1985-08-01

    Experimental Coulomb displacement energie ΔEsub(C) between isobaric analog levels are tabulated for 44 <- A <- 239, extending recent work in which similar data were presented for 3 <- A <- 45. An overall parametrization in anti-Z/A sup(1/3) and uniform radius parameters rsub(o) are given

  13. Charge independence and charge symmetry breaking interactions and the Coulomb energy anomaly in isobaric analog states

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Sagawa, H.; Giai, N. van.

    1992-01-01

    Effects of CIB (charge independence breaking) and CSB (charge symmetry breaking) interactions on the Coulomb displacement energies of isobaric analog states are investigated for 48 Ca, 90 Zr and 208 Pb. Mass number dependence of the Coulomb energy anomalies is well explained when CIB and CSB interactions are used which reproduce the differences of the scattering lengths as well as those of the effective ranges of low energy nucleon-nucleon scattering. (author) 17 refs., 3 figs., 3 tabs

  14. Coulomb corrections in the low-energy scattering

    International Nuclear Information System (INIS)

    Mur, V.D.; Popov, V.S.

    1985-01-01

    Renormalization of the coefficients of the ''effective range expansion'' is considered for the short-range Coulomb problem. The exactly solvable model of the Coulomb plus short range potential is considered. Exact solutions are compared with approximations frequently used in the theory of hadronic atoms

  15. Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional

    OpenAIRE

    Joubert, Daniel P.

    2011-01-01

    The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.

  16. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling

    Science.gov (United States)

    Zhang, Zu-Quan; Lü, Jing-Tao; Wang, Jian-Sheng

    2018-05-01

    Recent experimental measurements for near-field radiative heat transfer between two bodies have been able to approach the gap distance within 2 nm , where the contributions of Coulomb fluctuation and electron tunneling are comparable. Using the nonequilibrium Green's function method in the G0W0 approximation, based on a tight-binding model, we obtain for the energy current a Caroli formula from the Meir-Wingreen formula in the local equilibrium approximation. Also, the Caroli formula is consistent with the evanescent part of the heat transfer from the theory of fluctuational electrodynamics. We go beyond the local equilibrium approximation to study the energy transfer in the crossover region from electron tunneling to Coulomb fluctuation based on a numerical calculation.

  17. Study of the nuclear-coulomb low-energy scattering parameters on the basis of the p-matrix approach

    International Nuclear Information System (INIS)

    Babenko, V.A.; Petrov, N.M.

    1993-01-01

    The P-matrix approach application to the description of two charged strongly interacting particles nuclear-Coulomb scattering parameters is considered. The nuclear-Coulomb scattering length and effective range explicit expressions in terms of the P-matrix parameters are found. The nuclear-Coulomb low-energy parameters expansions in powers of small parameter β ≡ R/a b , involving terms with big logarithms, are obtained. The nuclear-Coulomb scattering length and effective range for the square-well and the delta-shell short range potentials are found in an explicit form. (author). 21 refs

  18. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  19. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  20. Structure and Spectrum of Dust Coulomb Clusters

    International Nuclear Information System (INIS)

    Cheung, F.M.H.; Ford, C.; Barkby, S.; Samarian, A.A.; Vladimirov, S.V.

    2005-01-01

    In our study, the dynamics of Coulomb cluster systems were simulated for different number of particles. The spectra of energy states of dust Coulomb clusters corresponding to various packing sequences were obtained. The broadening of the spectrum due to inter-ring twist was discovered. It was found that the inter-ring twist will lead to a change in the energy spectrum of Coulomb cluster. This change was accompanied by a distortion of stable shells such that particles are able to compensate for any additional Coulomb energy (owing to the inter-ring twist) by further reducing their radial distance as much as possible. The overall effect is a change in the shape of the outer-shell from circular to elliptical

  1. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  2. D-wave resonances in three-body system Ps- with pure Coulomb and screened Coulomb (Yukawa) potentials

    International Nuclear Information System (INIS)

    Kar, S.; Ho, Y.K.

    2009-01-01

    We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)

  3. Gauge orbits and the Coulomb potential

    International Nuclear Information System (INIS)

    Greensite, J.

    2009-01-01

    If the color Coulomb potential is confining, then the Coulomb field energy of an isolated color charge is infinite on an infinite lattice, even if the usual UV divergence is lattice regulated. A simple criterion for Coulomb confinement is that the expectation value of timelike link variables vanishes in the Coulomb gauge, but it is unclear how this criterion is related to the spectrum of the corresponding Faddeev-Popov operator, which can be used to formulate a quite different criterion for Coulomb confinement. The purpose of this article is to connect the two seemingly different Coulomb confinement criteria, and explain the geometrical basis of the connection.

  4. Integral equation for Coulomb problem

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1986-01-01

    For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems

  5. Direct processes in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Rodriguez Chariarse, V.D.

    1990-01-01

    This thesis deals with direct processes induced by Zp charge ion impact on one or two electron atoms and ions at intermediate energies. At a first step, a one-dimensional collision model is used in order to prove the different theoretical methods available to study collisions at such energy range, such as: perturbative and related variational principles, and distorted wave methods. The best description of both, symmetric and asymmetric collision type, is achieved by the distorted wave methods, particularly the ones using the exact impulsive wave function. As a next step, the appropriate formulations of the wave functions employed in the one-dimensional model to describe the real 3-dimensional Coulomb interaction case are examined by using the Eikonal and impulse hypothesis. In this way, the VPS and Eikonal wave functions are reviewed, and furtherly, the Eikonal form of the extended impulse wave function is derived. The Eikonal impulse approximation (EIA) is introduced. This is a distorted wave method using the Eikonal and extended impulse wave functions. The choice of the EIA prior version, i.e., the one using extended impulse wave function in the final channel for excitation is widely discussed and justified. (Author) [es

  6. Lifetime measurements using radioactive ion beams at intermediate energies and the Doppler shift method

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A.; Melon, B.; Pissulla, T.; Rother, W.; Fransen, C.; Moeller, O.; Zell, K.O.; Jolie, J. [IKP, Univ. zu Koeln (Germany); Petkov, P. [Bulg. Acad. of Science, INRNE, Solfia (Bulgaria); Starosta, K.; Przemyslaw, A.; Miller, D.; Chester, A.; Vaman, C.; Voss, P.; Gade, A.; Glasmacher, T.; Stolz, A.; Bazin, D.; Weisshaar, D. [NSCL, MSU, East Lansing (United States)

    2007-07-01

    Absolute transition probabilities are crucial quantities in nuclear structure physics. Therefore, it is important to establish Doppler shift (plunger) techniques also for the measurement of level lifetimes in radioactive ion beam experiments. After a first successful test of the Doppler Shift technique at intermediate energy (52MeV/u) with a stable {sup 124}Xe beam, a plunger has been built and used in two experiments, performed at the NSCL/MSU with the SEGA Ge-array and the S800 spectrometer. The aim of the first experiment was to investigate the plunger technique after a knock-out reaction using a radioactive {sup 65}Ge beam at 100 MeV/u for populating excited states in {sup 64}Ge. The second experiment aimed to measure the lifetimes of the first 2{sup +} states in {sup 110,114}Pd with the plunger technique after Coulomb excitation at beam energies of 54 MeV/u. First results of both experiments will be presented and discussed. (orig.)

  7. Core polarization and the Coulomb energy difference of mirror nuclei

    International Nuclear Information System (INIS)

    Barroso, A.

    1977-01-01

    The effect of the core polarization on the Coulomb displacement energies of mirror nuclei with a LS doubly closed shell plus or minus one nucleon is studied. Using the Kallio-Kolltveit interaction it is found that the first-order configuration mixing including 2p-2h core excitations is too small and sometimes of the wrong sign to explain the Nolen-Schiffer anomaly. (Auth.)

  8. Future possibilities with intermediate-energy neutron beams

    International Nuclear Information System (INIS)

    Brady, F.P.

    1987-01-01

    Future possibilities for using neutrons of intermediate energies (50 - 200 MeV) as a probe of the nucleus are discussed. Some of the recent thinking concerning a systematic approach for studying elastic and inelastic scattering of electrons and hadrons and the important role of medium- and intermediate-energy neutrons in such a programme is reviewed. The advantages of neutrons in this energy range over neutrons with lower energies and over intermediate-energy pions for determining nuclear-transition and ground state densities, and for distinguishing proton from neutron density (isovector sensitivity), are noted. The important role of (n,p) charge exchange reactions in nuclear excitation studies is also reviewed. Experimental methods for utilizing neutrons as probes in elastic, inelastic, and charge exchange studies at these energies are discussed

  9. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  10. Monotonicity of energy eigenvalues for Coulomb systems

    International Nuclear Information System (INIS)

    Englisch, R.

    1983-01-01

    Generalising results by earlier workers for a large class of Hamiltonians (among others, Hamiltonians of Coulomb systems) which can be written in the form H(α) = H 0 + αH' the present works shows that their eigenvalues decrease with increasing α. This result is applied to Coulomb systems in which the distances between the infinitely heavy particles are varying and also is used to obtain a completion and simplification of proof for the stability of the biexciton. (author)

  11. Generalized second-order Coulomb phase shift functions

    International Nuclear Information System (INIS)

    Rosendorff, S.

    1982-01-01

    Some specific properties and the evaluation of the generalized second-order Coulomb phase shift functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The dependence on the three momenta k 1 ,k-bar,k 2 , corresponding to the final, intermediate, and initial states is illustrated

  12. Coulomb potentials between spherical heavy ions

    International Nuclear Information System (INIS)

    Iwe, H.

    1982-01-01

    The Coulomb interaction between spherical nuclei having arbitrary radial nuclear charge distributions is calculated. All these realistic Coulomb potentials are given in terms of analytical expressions and are available for immediate application. So in no case a numerical computation of the Coulomb integral is required. The parameters of the charge distributions are taken from electron scattering analysis. The Coulomb self-energies of the charge distributions used are also calculated analytically in a closed form. For a number of nucleus-nucleus pairs, the Coulomb potentials derived from realistic charge distributions are compared with those normally used in various nucleus-nucleus optical model calculations. In this connection a detailed discussion of the problem how to choose consistently Coulomb parameters for different approximations is given. (orig.)

  13. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  14. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  15. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    Abramov, D. I.

    2013-01-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  16. Self-energy operator for an electron in an external Coulomb potential. II

    International Nuclear Information System (INIS)

    Hostler, L.

    1988-01-01

    Relativistic Coulomb Sturmian matrix elements of the operator Oequivalentln(1-rho)/rho, rho = -[πx(1+iσ)xπ]/m 2 , in terms of which the self-energy operator for an electron in an external Coulomb potential has been expressed, are studied. The operator O is dealt with on a term by term basis in a Sturmian expansion. Each term of the Sturmian expansion is separated into a part whose matrix elements are analytic functions of Zα, plus a remainder evaluated in closed form by use of the Cauchy residue theorem. All ignorance about the matrix element of the general term in the Sturmian expansion of O is thereby placed entirely in the analytic part, for which an explicit integral representation is derived

  17. Proton-/sup 90/Zr interaction at sub-Coulomb proton energies

    International Nuclear Information System (INIS)

    Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.

    1987-01-01

    The proton-/sup 90/Zr interaction at sub-Coulomb energies has been investigated in the context of the Lane model, with isospin coupling included, and with alternate decay modes represented with the Hauser-Feshbach model. Scattering and reaction cross sections were accurately measured in order to obtain enough information to constrain the real and absorptive parts of the proton potential. Differential elastic scattering excitation functions were measured at back angles of 135 0 and 165 0 from 2 to 7 MeV, with cross section accuracies of 3%. The energy range was sufficient to go from a region where the backscattering was predominantly Coulomb, enabling additional checks on the cross section accuracies, to a region where the gross structure of the cross sections deviated significantly from Rutherford scattering. Radiative capture cross sections were measured from 1.9 to 5.7 MeV proton energies. The capture cross sections were obtained by summing the measured cross sections for the first two primary gamma rays in addition to some 34 other transitions which terminated on the ground and first excited state. The total inelastic scattering cross section to all /sup 90/Zr excited states (except the first excited state which has been previously measured) was measured at several energies between 3.9 and 5.7 MeV by observing the radiative decay of the residual, excited /sup 90/Zr nuclei. The analysis yielded several model parameters suggestive of large nuclear structure effects. The depth of the absorptive potential was found to vary as W/sub D/ = 2.73+0.70 E/sub p/ in the 2 to 7 MeV proton energy range studied. A real diffuseness of 0.54 fm, significantly smaller than that obtained in neighboring nuclei, was obtained

  18. Energy dependence of the Coulomb-nuclear interference at small momentum transfers

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    1997-01-01

    The analyzing power of the elastic proton-proton scattering at small momentum transfers and the effect of the Coulomb-nuclear interference are examined on the basis of the available experimental data at p L from 6 up to 200 GeV/c taking account of a phenomenological analysis at p L =6 GeV/c and of the dynamic high energy spin model. The structure of the spin-dependent elastic scattering amplitude at small momentum transfers is obtained. The predictions for the analyzing power at RHIC energies are made

  19. Deuteron breakup mechanism in the intermediate-energy region

    International Nuclear Information System (INIS)

    Divadeenam, M.; Ward, T.E.

    1991-01-01

    In an earlier investigation, we have explored the possibility of explaining the deuteron breakup mechanism in terms of the Udagawa and Tannura (UT) formalism of the breakup-fusion process. The experimental doubly differential data were very well reproduced for the test case studies. However, the application of UT formalism of the spirit of DWBA involves the use of optical-model parameters for different nuclei and at different energies. The optical model parameters are not always unique. In the present study we investigate the deuteron breakup mechanism in terms of the semiclassical models of Serber (for the nuclear interaction part) and Dancoff (for the electromagnetic dissociation). In the case of Serber model the modification due to the finite range of the deuteron and the Glauber correction for the diffractive disassociation are considered. The modified deuteron breakup cross section either for the (d,p) or the (d,n) process is proportional to the product of the target radius and the deuteron radius (R target · R deuteron ). The predicted proton/neutron spectrum is centered around 1/2 E d and forward peaked. The Coulomb dissociation of deuteron is attributed to the deuteron dipole excitation in the presence of the nuclear Coulomb field. The neutron/proton spectrum, resulting from the Coulomb breakup of the deuteron, is highly forward peaked and also centered around 1/2 E d . The systematics of the deuteron breakup neutron/proton spectra are investigated for medium to heavy target nuclei at 50--200 MeV deuteron energies. 10 refs., 4 figs

  20. Role amplification of the coulomb interaction in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok; Soni, S K; Pancholi, S K; Gupta, S L [AN SSSR, Moscow. Radiotekhnicheskij Inst.

    1976-10-01

    The genarally adopted estimate of coulomb interaction in nuclear reactions based on the comparison of relative energies of real particles participating in the reaction with the coulomb barrier has been shown to provide wrong presentation of the role of coulomb interaction in the reaction mechanism. The relative energy of particles participating in virtual processes forming the reaction mechanism and its relation to the coulomb barrier turn out to be tens of per cent less than for the particles in an inlet channel. This is the main reason of increasing the role of coulomb interaction in the reaction mechanism. This increase is particularly significant for nuclei with large charges, in particular, in heavy ion reaction.

  1. Coulomb Distortion in the Inelastic Regime

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  2. Radiative capture versus Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of 8 B have been used to infer the rate of the inverse radiative proton capture on 7 Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  3. Radiative Capture versus Coulomb Dissociation

    International Nuclear Information System (INIS)

    Esbensen, Henning

    2006-01-01

    Measurements of the Coulomb dissociation of 8B have been used to infer the rate of the inverse radiative proton capture on 7Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  4. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  5. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".

    Science.gov (United States)

    Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  6. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  7. Proton optical potential and scattering matrix for tin nuclei at sub-coulomb energies

    International Nuclear Information System (INIS)

    Guzhovskij, B.Ya.; Dzyuba, B.M.

    1981-01-01

    A unified set of parameters of the proton optical potential (OP) for the n nuclei is searched for in the below-Coulomb-barrier energy range. The set must describe well the experimental data on the pn-reaction total cross sections and on the angular distributions of elastically scattered protons at E [ru

  8. On Coulomb disintegration of relativistic nuclei and hypernuclei

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1989-01-01

    The dependence of the total cross-section of excitation and disintegration of a relativistic nucleus in the Coulomb field on the energy and parameters characterizing nuclear dimensions is investigated. The analogy with the problem of atomic ionization at the passage of charged particles through matter is used. The results are applied to the description of the Coulomb dissociation of nuclei with small binding energies. An explicit expression for the effective cross-section of the Coulomb disintegration of the hypernucleus-Λ 3 H into a deuteron and Λ-particle. 12 refs

  9. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  10. Proton-4He elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.P.; Gillespie, J.; Lombard, R.J.

    1975-12-01

    Differential elastic cross sections and polarizations are calculated in a multiple scattering formalism for proton- 4 He scattering for energies in the range 0.6-24GeV and for momentum transfers up to 4.0fmsup(-1). The calculations include Coulomb and spin effects. Corrections due to target-nucleon overlap and charge exchange are estimated. The results are compared with experimental data [fr

  11. Coulomb interaction in the supermultiplet basis

    International Nuclear Information System (INIS)

    Ruzha, Ya.Kh.; Guseva, T.V.; Tamberg, Yu.Ya.; Vanagas, V.V.

    1989-01-01

    An approximate expression for the matrix elements of the Coulomb interaction operator in the supermultiplet basis has been derived with the account for the orbitally-nonsymmetric terms. From the general expression a simplified formula for the Coulomb interaction energy has been proposed. On the basis of the expression obtained the contribution of the Coulomb interaction to the framework of a strongly restricted dynamic model in the light (4≤A≤40) and heavy (158≤A≤196) nuclei region has been studied. 19 refs.; 4 tabs

  12. Processing and validation of intermediate energy evaluated data files

    International Nuclear Information System (INIS)

    2000-01-01

    Current accelerator-driven and other intermediate energy technologies require accurate nuclear data to model the performance of the target/blanket assembly, neutron production, activation, heating and damage. In a previous WPEC subgroup, SG13 on intermediate energy nuclear data, various aspects of intermediate energy data, such as nuclear data needs, experiments, model calculations and file formatting issues were investigated and categorized to come to a joint evaluation effort. The successor of SG13, SG14 on the processing and validation of intermediate energy evaluated data files, goes one step further. The nuclear data files that have been created with the aforementioned information need to be processed and validated in order to be applicable in realistic intermediate energy simulations. We emphasize that the work of SG14 excludes the 0-20 MeV data part of the neutron evaluations, which is supposed to be covered elsewhere. This final report contains the following sections: section 2: a survey of the data files above 20 MeV that have been considered for validation in SG14; section 3: a summary of the review of the 150 MeV intermediate energy data files for ENDF/B-VI and, more briefly, the other libraries; section 4: validation of the data library against an integral experiment with MCNPX; section 5: conclusions. (author)

  13. Electron-positron pair production and bremsstrahlung at intermediate energies in the field of heavy atoms

    International Nuclear Information System (INIS)

    Lee, R.N.; Milstein, A.I.; Strakhovenko, V.M.; Schwartz, O.Ya.

    2006-01-01

    The Coulomb corrections (CC) to the processes of bremsstrahlung and pair production are investigated. The next-to-leading term in the high-energy asymptotics is found. This term becomes very essential in the region of intermediate energies. The influence of screening for CC is small for differential cross section, spectrum, and the total cross section of pair production. The same is true for the spectrum of bremsstrahlung, but not for the differential cross section, where the influence of screening can be very large. The corresponding screening corrections as well as the modification of the differential cross section of bremsstrahlung are found. A comparison of our results for the total cross section of pair production with the experimental data available is performed. This comparison has justified our analytical results and allowed to elaborate a simple ansatz for the next-to-leading correction. The influence of the electron beam shape on CC for bremsstrahlung is investigated. It turns out that the differential cross section is very sensitive to this shape

  14. Reduction of the energy of secondary beams down to the Coulomb barrier

    International Nuclear Information System (INIS)

    Yang Yong Feng; Mittig, W.; Roussel-Chomaz, P.; Lewitowicz, M.; Sida, J.L.; Alamanos, N.; Auger, F.; Gillibert, A.; Volant, C.; Cabot, C.; Borcea, C.

    1993-01-01

    With the doubly achromatic spectrometer LISE at GANIL, the energy of a secondary 11 Be beam produced by the reaction of 63 MeV/nucleon 18 O with a 9 Be target has been reduced to Coulomb barrier energies using various thick targets and a thinner target plus a thick degrader. The experimental results were compared with calculations performed with the program INTENSITY and with simple analytical expressions. It was found that in the present device, the thick target method is more convenient and efficient than the achromatic degrader

  15. Asymptotic freedom in the axial and Coulomb gauges

    International Nuclear Information System (INIS)

    Frenkel, J.; Taylor, J.C.

    1976-01-01

    The sources of the negative contribution to the charge renormalization factor gsup(B)/g-1 in Yang-Mills theories are investigated in the axial and Coulomb gauges. In the axial gauge, a Kaellen dispersion relation exists but the spectral function is not positive definite because of the prescription that is used to integrate the singular polarization vectors. In the Coulomb gauge, the negative contributions are (to the lowest order) isolated in the Coulomb self-energy corrections to the Coulomb field. (Auth.)

  16. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  17. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  18. pd Scattering Using a Rigorous Coulomb Treatment: Reliability of the Renormalization Method for Screened-Coulomb Potentials

    International Nuclear Information System (INIS)

    Hiratsuka, Y.; Oryu, S.; Gojuki, S.

    2011-01-01

    Reliability of the screened Coulomb renormalization method, which was proposed in an elegant way by Alt-Sandhas-Zankel-Ziegelmann (ASZZ), is discussed on the basis of 'two-potential theory' for the three-body AGS equations with the Coulomb potential. In order to obtain ASZZ's formula, we define the on-shell Moller function, and calculate it by using the Haeringen criterion, i. e. 'the half-shell Coulomb amplitude is zero'. By these two steps, we can finally obtain the ASZZ formula for a small Coulomb phase shift. Furthermore, the reliability of the Haeringen criterion is thoroughly checked by a numerically rigorous calculation for the Coulomb LS-type equation. We find that the Haeringen criterion can be satisfied only in the higher energy region. We conclude that the ASZZ method can be verified in the case that the on-shell approximation to the Moller function is reasonable, and the Haeringen criterion is reliable. (author)

  19. Intermediate energy data

    International Nuclear Information System (INIS)

    Koning, A.J.; Fukahori, T.; Hasegawa, A.

    1998-01-01

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  20. Study of the elastic scattering of {sup 6}He on {sup 208}Pb at energies around the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Benitez, A.M. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Centre de Recherches du Cyclotron, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Escrig, D. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Alvarez, M.A.G.; Andres, M.V. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain); Angulo, C. [Centre de Recherches du Cyclotron, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Cabrera, J. [Centre de Recherches du Cyclotron, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Cherubini, S. [INFN Laboratori Nazionali del Sud, I-95123 Catania (Italy); Demaret, P. [Centre de Recherches du Cyclotron, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Espino, J.M. [Dept. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain); Figuera, P. [INFN Laboratori Nazionali del Sud, I-95123 Catania (Italy); Freer, M. [School of Physics and Astronomy, University of Birmingham, B15 2TT Birmingham (United Kingdom); Garcia-Ramos, J.E. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Gomez-Camacho, J. [Dept. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain); Gulino, M. [INFN Laboratori Nazionali del Sud, I-95123 Catania (Italy); Kakuee, O.R. [Van der Graaff Laboratory, Nuclear Research Centre, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Martel, I. [Dept. de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain)], E-mail: imartel@uhu.es; Metelko, C. [School of Physics and Astronomy, University of Birmingham, B15 2TT Birmingham (United Kingdom); Moro, A.M. [Dept. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain)] (and others)

    2008-04-15

    The elastic scattering of {sup 6}He on {sup 208}Pb has been measured at laboratory energies of 14, 16, 18 and 22 MeV. These data were analyzed using phenomenological Woods-Saxon form factors and optical model calculations. A semiclassical polarization potential was used to study the effect of the Coulomb dipole polarizability. Evidence for long range absorption, partially arising from Coulomb dipole polarizability, is reported. The energy variation of the optical potential was found to be consistent with the dispersion relations which connect the real and imaginary parts of the potential.

  1. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  2. Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy

    Science.gov (United States)

    Mondal, Ashok; Adhikari, S.; Basu, C.

    2017-09-01

    The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.

  3. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  4. Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    CERN Document Server

    Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.

    2011-01-01

    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

  5. Alpha-production channels in 6Li+159Tb at energies around the Coulomb barrier

    International Nuclear Information System (INIS)

    Pradhan, M.K.; Mukherjee, A.; Roy, S.; Basu, P.; Goswami, A.; Saha Sarkar, M.; Kshetri, R.; Roy Chowdhury, R.; Ray, M.; Santra, S.; Kailas, S.; Parkar, V.V.; Palit, R.

    2010-01-01

    In order to investigate what are the dominant processes that might contribute to the inclusive α-particle channels, very recently measurements have been performed by the characteristic γ-ray method for the system 6 Li+ 159 Tb at energies below and above the Coulomb barrier (V B = 26.9 MeV)

  6. Bohr Hamiltonian with an energy-dependent γ-unstable Coulomb-like potential

    Energy Technology Data Exchange (ETDEWEB)

    Budaca, R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2016-10-15

    An exact analytical solution for the Bohr Hamiltonian with an energy-dependent Coulomb-like γ-unstable potential is presented. Due to the linear energy dependence of the potential's coupling constant, the corresponding spectrum in the asymptotic limit of the slope parameter resembles the spectral structure of the spherical vibrator, however with a different state degeneracy. The parameter free energy spectrum as well as the transition rates for this case are given in closed form and duly compared with those of the harmonic U(5) dynamical symmetry. The model wave functions are found to exhibit properties that can be associated to shape coexistence. A possible experimental realization of the model is found in few medium nuclei with a very low second 0{sup +} state known to exhibit competing prolate, oblate and spherical shapes. (orig.)

  7. Coulomb displacement energies and neutron density distributions

    International Nuclear Information System (INIS)

    Shlomo, S.

    1979-01-01

    We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)

  8. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  9. Negotiating comfort in low energy housing: The politics of intermediation

    International Nuclear Information System (INIS)

    Grandclément, Catherine; Karvonen, Andrew; Guy, Simon

    2015-01-01

    Optimising the energy performance of buildings is technically and economically challenging but it also has significant social implications. Maintaining comfortable indoor conditions while reducing energy consumption involves careful design, construction, and management of the built environment and its inhabitants. In this paper, we present findings from the study of a new low energy building for older people in Grenoble, France where conflicts emerged over the simultaneous pursuit of energy efficiency and comfort. The findings contribute to the contemporary literature on the sociotechnical study of buildings and energy use by focusing on intermediation, those activities that associate a technology to end users. Intermediation activities take many forms, and in some cases, can result in the harmonisation or alignment of energy efficiency goals and comfort goals. In other cases, intermediation is unsuccessful, leading to the conventional dichotomy between optimising technical performance and meeting occupant preferences. By highlighting the multiple ways that comfort and energy efficiency is negotiated, we conclude that buildings are provisional achievements that are constantly being intermediated. This suggests that building energy efficiency policies and programmes need to provide opportunities for intermediaries to negotiate the desires and preferences of the multiple stakeholders that are implicated in low energy buildings. -- Highlights: •Energy efficiency and comfort are two possibly contradictory aims of buildings. •We study the pursuit of these aims at the occupation stage of a new building. •Aligning these aims involve negotiating them with occupants. •Intermediation processes are key to such negotiations. •Intermediation processes involve both actors and technical devices

  10. Bound and resonant states in Coulomb-like potentials

    International Nuclear Information System (INIS)

    Papp, Z.

    1985-12-01

    The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)

  11. Assessment of Coulomb shifts in nucleon scattering resonances on light nuclei at low energies

    International Nuclear Information System (INIS)

    Takibaev, N.Zh.; Uzakova, Zh.; Abdanova, L.

    2003-01-01

    The assessments of the Coulomb forces contribution to position and width of the resonances at nucleons scattering on light nuclei within low energy field are given. In particular the shifts of resonances in amplitudes arising in the processes protons scattering on light nuclei relatively neutrons scattering resonance characteristics on these nuclei are considered

  12. Positron scattering by atomic hydrogen at intermediate energies

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.; Walters, H.R.J.

    1990-01-01

    Results of an accurate calculation based upon the intermediate energy R-matrix theory are reported for elastic scattering of positrons by atomic hydrogen. T-matrix elements for both low and intermediate energy scattering are evaluated for the S e , P o , D e and F o partial wave symmetries. The low-energy elastic phaseshifts are found to be in good agreement with previous accurate variational calculations. Using an optical potential approach to include the effect of the higher partial waves, elastic and total cross sections are presented for energies ranging from near threshold to 3.7 Rydbergs. (author)

  13. Phases and amplitudes for a modified repulsive Coulomb field

    International Nuclear Information System (INIS)

    Chidichimo, M.C.; Davison, T.S.

    1990-01-01

    The asymptotic form of the radial wave function for positive-energy states is calculated for the case of a repulsive Coulomb field. The cases of a pure Coulomb potential and a modified Coulomb potential are considered. Second-order analytic solutions for the amplitudes and phases are obtained when the modifications to the pure Coulombic potential take the form αr -2 +βr -3 +γr -4 , using the Jeffreys or WKB method. For the case of a pure Coulomb field, numerical results obtained from this method were compared with ''exact'' numerical results that were obtained using the analytic properties of the Coulomb wave functions. Tables are presented to show the conditions under which the method is accurate

  14. Mirror symmetry and Coulomb effects in light N ≅ Z nuclei

    International Nuclear Information System (INIS)

    Bentley, M.A.; Williams, S.J.; Joss, D.T.

    2002-01-01

    Some latest results from gamma-ray spectroscopic studies of high spin states of isobaric multiplets are presented. An experimental programme is underway to examine exited states of isobaric multiplets of total isospin T 1/2 and T = 1 and the comparison of energies of excited states can be interpreted in terms of Coulomb effects. Through a systematic study of these Coulomb effects, and through examination of the calculated Coulomb energies from full pf-shell model calculations, it is now becoming clear that measurement of Coulomb energies can yield very detailed information on the evolution of nuclear structure phenomena as a function of energy and angular momentum. In this contribution, latest results of studies of isobaric analogue states at high spin in the A = 50, 51 and 53 systems are presented. (author)

  15. Calculations of wavefunctions and energies of electron system in Coulomb potential by variational method without a basis set

    International Nuclear Information System (INIS)

    Bykov, V.P.; Gerasimov, A.V.

    1992-08-01

    A new variational method without a basis set for calculation of the eigenvalues and eigenfunctions of Hamiltonians is suggested. The expansion of this method for the Coulomb potentials is given. Calculation of the energy and charge distribution in the two-electron system for different values of the nuclear charge Z is made. It is shown that at small Z the Coulomb forces disintegrate the electron cloud into two clots. (author). 3 refs, 4 figs, 1 tab

  16. Interatomic Coulombic electron capture

    International Nuclear Information System (INIS)

    Gokhberg, K.; Cederbaum, L. S.

    2010-01-01

    In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.

  17. Coulomb states in atoms and solids

    International Nuclear Information System (INIS)

    Ortalano, D.M.

    1988-05-01

    In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs

  18. Ordering in classical Coulombic systems

    International Nuclear Information System (INIS)

    Schiffer, J. P.

    1998-01-01

    The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity Λ (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than approximately175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4

  19. Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation

    CERN Multimedia

    We propose to study the evolution of nuclear structure in neutron-­deficient $^{72}$Se by performing a low-­energy Coulomb excitation measurement. Matrix elements will be determined for low-­lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.

  20. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  1. Effects of screened Coulomb (Yukawa) and exponential-cosine-screened Coulomb potentials on photoionization of H and He+

    International Nuclear Information System (INIS)

    Lin, C.Y.; Ho, Y.K.

    2010-01-01

    The screening effects due to the exponential-cosine-screened Coulomb and screened Coulomb (Yukawa) potentials on photoionization processes are explored within the framework of complex coordinate rotation method. The energy levels of H and He + in both screened potentials shifted with various Debye screening lengths are presented. The photoionization cross sections illustrate the considerable screening effects on photoionization processes in low energy region. The shape resonances can be found near ionization thresholds for certain of Debye screening lengths. The relations between the appearance of resonances and the existence of quasi-bound states under shielding conditions are discussed. (authors)

  2. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  3. Comparative study of energy of particles ejected from coulomb explosion of rare gas and metallic clusters irradiated by intense femtosecond laser field

    Science.gov (United States)

    Boucerredj, N.; Beggas, K.

    2016-10-01

    We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.

  4. Fusion of light ion systems at energies near and below the Coulomb barrier

    International Nuclear Information System (INIS)

    Arnould, M.; Howard, W.M.; Cusson, R.Y.

    1978-01-01

    Experimental fusion cross sections for light ion systems at energies below the Coulomb barrier become available in greater and greater number, and provide a stringent test of the macroscopic and microscopic physics involved in models of heavy-ion reactions. Measurements and predictions of the fusion cross sections for 12 C + 12 C, 12 C + 16 O and 16 O + 16 O are also of major importance in astrophysics. (orig.) [de

  5. Microdosimetry of intermediate energy neutrons in fast neutron fields

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1988-01-01

    A coaxial double cylindrical proportional counter has been constructed for microdosimetry of intermediate energy neutrons in mixed fields. Details are given of the measured gas gain and resolution characteristics of the counter for a wide range of anode voltages. Event spectra due to intermediate neutrons in any desired energy band is achieved by an appropriate choice of thickness of the common dividing wall in the counter and by appropriate use of the coincidence, anticoincidence pulse counting arrangements. Calculated estimates indicate that the dose contribution by fast neutrons to the energy deposition events in the intermediate neutron range may be as large as 25%. Empirical procedures being investigated aim to determine the necessary corrections to be applied to the microdose distributions, with a precision of 10%. (author)

  6. Parity violation experiments at intermediate energies

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1996-06-01

    The status of the TRIUMF 221 MeV proton-proton violation experiment is reviewed. Several other proton-proton parity violation experiments in the in the intermediate energy range, currently in various stages of preparation, are discussed. A new experiment at an energy of 5.13 GeV (and if confirmed also at an energy of tens of GeV) is needed to follow on the earlier unexpected large result obtained at 5.13 GeV. (author)

  7. Fusion and particle transfer around the Coulomb-Barrier in intermediate systems

    International Nuclear Information System (INIS)

    Pascholati, P.R.

    1989-01-01

    The most important characteristics of fusion reactions below and around the Coulomb-barrier are summarized. Experimental fusion cross sections for typical systems are discussed and compared with current formulae obtained from semi-classical and quantum tunneling approaches. The influence of nucleons transfer in the enhancement of the fusion cross section below the Coulomb-barrier is also shown. Sub-barrier fusion cross sections for the systems 35,37 Cl + 58,64 Ni and 33 S + 90,91,92 Zr, and near-barrier cross sections of all important transfer channels have been measured using the XTU-TANDEM at Legnaro, Italy. In 35,37 Cl + 58,64 Ni systems, the motivation further investigated was the influence of the valence proton in the enhancement of the sub-barrier fusion cross section. The data are discussed in comparison with the similar data of 34,36 S + 58,64 Ni with the aim of revealing the influence of coupled proton transfer channels. Calculations were performed using the simplified coupled channel code CCFUS including ''pick-up'' of one and two neutrons and ''stripping'' of two neutrons channels. Signatures of positive Q-values transfer channels coupled to fusion were clearly identified. For the 33 S + 90,91,92 Zr systems taking into account the coupling effects between transfer and fusion and using the semi-classical approach, transfer form-factors were extracted and succesfully employed to described the isotopic effects in fusion enhancement. (Author) [es

  8. Investigations of direct and sequential Coulomb break-up of light ions

    International Nuclear Information System (INIS)

    Srivastava, D.K.; Basu, D.N.; Rebel, H.

    1988-07-01

    Coulomb dissociation of 6 Li in the field of 208 Pb at different energies via resonance and continuum levels is discussed in detail. Relations are given which can be used to directly relate the Coulomb break-up cross section to the astrophysical S-factor. Predictions for energy dependence and angular-distributions are given. The direct Coulomb break-up of 6 Li is found to be of the same order of magnitude as the sequential break-up at higher projectile energies. The effect to eleastic scattering can be accounted for by introducing a dynamic polarization potential. Predictions are given for the direct Coulomb dissociation of 26 MeV/nucleon 7 Li and 16 O incident on 208 Pb through dipole transitions to the continuum, and for 20 Ne via quadrupole transitions in similar experimental situations. (orig.) [de

  9. Coulomb effects in relativistic laser-assisted Mott scattering

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J.M.; Kwato Njock, M.G.; Tetchou Nganso, H.M.

    2004-09-01

    We reconsider the influence of the Coulomb interaction on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. Coulomb effects of the bare nucleus on the laser-dressed electron are treated more completely than in the previous work of Li et al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 653]. To this end we use Coulomb-Dirac-Volkov functions to describe the initial and the final states of the electron. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for circularly and linearly polarized laser light. Numerical calculations are carried out from both polarizations, for various nucleus charge values, three angular configurations and an incident energy in the MeV range. It is found that for parameters used in the present work, incorporating Coulomb effects of the target nucleus either in the initial state or in the final state yields cross sections which are quite similar whatever the scattering geometry and polarization considered. When Coulomb distortions are included in both states, the cross sections are strongly modified with the increase of Z, as compared to the outcome of the prior form of the T-matrix treatment. (author)

  10. Empirical Coulomb matrix elements and the mass of 22Al

    International Nuclear Information System (INIS)

    Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.

    1976-01-01

    An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)

  11. Coulomb corrections to nuclear scattering lengths and effective ranges for weakly bound systems

    International Nuclear Information System (INIS)

    Mur, V.D.; Popov, V.S.; Sergeev, A.V.

    1996-01-01

    A procedure is considered for extracting the purely nuclear scattering length as and effective range rs (which correspond to a strong-interaction potential Vs with disregarded Coulomb interaction) from the experimentally determined nuclear quantities acs and rcs, which are modified by Coulomb interaction. The Coulomb renormalization of as and rs is especially strong if the system under study involves a level with energy close to zero (on the nuclear scale). This applies to formulas that determine the Coulomb renormalization of the low-energy parameters of s scattering (l=0). Detailed numerical calculations are performed for coefficients appearing in the equations that determine Coulomb corrections for various models of the potential Vs(r). This makes it possible to draw qualitative conclusions that the dependence of Coulomb corrections on the form of the strong-interaction potential and, in particular, on its small-distance behavior. A considerable enhancement of Coulomb corrections to the effective range rs is found for potentials with a barrier

  12. Carbon emission, energy consumption and intermediate goods trade: A regional study of East Asia

    International Nuclear Information System (INIS)

    Zhang, Jingjing

    2015-01-01

    Using country level panel data from East Asia over the period 1998–2011, this paper examines the implications of international production fragmentation-induced intermediate goods trade on the link between energy consumption and carbon pollution. The paper focuses on the interaction effect between energy consumption and trade in intermediate goods on carbon emission. The empirical results presented suggest that international trade in intermediate goods decreases the positive impact on carbon emission of energy consumption. When compared with the trade in final goods, intermediate goods trade contributes to a greater decrease in carbon pollution resulting from energy consumption. These results confirm that the link between energy consumption and carbon pollution in East Asia is significantly affected by international production fragmentation-induced trade in intermediate goods. The results presented in this paper have some important policy implications. - Highlights: • This paper tests the role of intermediates trade in energy-development nexus. • Empirical study is based on data of East Asia. • International trade can reduce the carbon pollution caused by energy use. • Intermediates trade has higher moderating effect than non-intermediate trade.

  13. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  14. Observation of a Coulomb flux tube

    Science.gov (United States)

    Greensite, Jeff; Chung, Kristian

    2018-03-01

    In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.

  15. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  16. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  17. Isospin effects in intermediate energy heavy ion collision

    International Nuclear Information System (INIS)

    Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun

    2001-01-01

    Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u

  18. Scattering at low energies by potentials containing power-law corrections to the Coulomb interaction

    International Nuclear Information System (INIS)

    Kuitsinskii, A.A.

    1986-01-01

    The low-energy asymptotic behavior is found for the phase shifts and scattering amplitudes in the case of central potentials which decrease at infinity as n/r+ar /sup -a/,a 1. In problems of atomic and nuclear physics one is generally interested in collisions of clusters consisting of several charged particles. The effective interaction potential of such clusters contains long-range power law corrections to the Coulomb interaction that is presented

  19. Coulomb effect in the tri nucleon system in an optical potential model

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Delfino, A.; Maryland Univ., College Park, MD

    1993-02-01

    A Saxon-Woods type nucleon-deuteron optical potential in suggested and applied numerically to the study of the static Coulomb effect in the low-energy tri nucleon system. In particular, the observed correlations between the static Coulomb energy of 3 He and the triton binding energy, and that between the neutron-deuteron and the proton-deuteron scattering lengths are simulated with this optical potential. In view of this study and a previous one employing two other effective potentials its is unlikely that a a study of the usual static Coulomb effect in the tri nucleon system will reveal new and meaningful physics. (author). 12 refs, 2 figs

  20. The topology of the Coulomb potential density. A comparison with the electron density, the virial energy density, and the Ehrenfest force density.

    Science.gov (United States)

    Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan

    2017-12-15

    The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. On spallation and fragmentation of heavy ions at intermediate energies

    International Nuclear Information System (INIS)

    Musulmanbekov, G.; Al-Haidary, A.

    2002-01-01

    A new code for simulation of spallation and (multi)fragmentation of nuclei in proton and nucleus induced collisions at intermediate and high energies is developed. The code is a combination of modified intranuclear cascade model with traditional fission - evaporation part and multifragmentation part based on lattice representation of nuclear structure and percolation approach. The production of s-wave resonances and formation time concept included into standard intranuclear cascade code provides correct calculation of excitation energy of residues. This modified cascade code served as a bridge between low and high energy model descriptions of nucleus-nucleus collisions. A good agreement with experiments has been obtained for multiparticle production at intermediate and relatively high energies. Nuclear structure of colliding nuclei is represented as face centered cubic lattice. This representation, being isomorphic to the shell model of nuclear structure, allows to apply percolation approach for nuclear fragmentation. The offered percolation model includes both site and bond percolation. Broken sites represent holes left by nucleons knocked out at cascade state. Therefore, in the first cascade stage mutual rescattering of the colliding nuclei results in knocking some nucleons out of them. After this fast stage paltrily destruct and excited residues remain. On the second stage residual nuclei either evaporate nucleons and light nuclei up to alpha-particles or fragment into pieces with intermediate masses. The choice depends on residue's destruction degree. At low excitation energy and small destruction of the residue the evaporation and fission mechanisms are preferable. The more excitation energy and destruction the more probability of (multi)fragmentation process. Moreover, the more destruction degree of the residual the more the site percolation probability. It is concluded, that at low and intermediate excitation energies the fragmentation of nuclei is slow

  2. Calculation of fluctuations and photoemission properties in a tetrahedral-cluster model for an intermediate-valence system

    International Nuclear Information System (INIS)

    Reich, A.; Falicov, L.M.

    1986-01-01

    An exact solution of a four-site tetrahedral-crystal model, the smallest face-centered-cubic crystal, is presented in the case of an intermediate-valence system. The model consists of the following: (a) one extended orbital and one localized orbital per atom, (b) an interatomic transfer term between extended orbitals, (c) an interatomic hybridization between the localized and extended orbitals, (d) strong intra-atomic Coulomb repulsion between opposite-spin localized states, and (e) intermediate-strength intra-atomic Coulomb repulsion between the localized and extended states. These competing effects are examined as they manifest themselves in the intermediate-valence, photoemission, inverse-photoemission, and thermodynamic properties

  3. Coulomb displacement energy of the f sub(7/2) state of the 48Ca

    International Nuclear Information System (INIS)

    Sato, Hiroshi.

    1979-11-01

    The Coulomb displacement energy of the T = 4, J = 0 state of the 48 Ca is analyzed. Modifying a previous method of the calculation of the core polarization correction, it is found that the charge symmetry breaking force, which is introduced previously so as to help explain the Nolen-Schiffer anomaly of the T = 1/2 system, is also needed in this system, while there still exists an ambituity in the type of the force. (author)

  4. Higher-order dynamical effects in Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.

    1994-06-01

    We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)

  5. Grain dynamics and inter-grain coupling in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Rahman, H.U.; Mohideen, U.; Smith, M.A.; Rosenberg, M.; Mendis, D.A.

    2001-01-01

    We review our results on the lattice structure and the lattice dynamics of dusty plasma Coulomb crystals formed in rectangular conductive grooves. The basic structure appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. Inter-grain coupling as a function of plasma temperature and density were investigated by measurement of these parameters. A simple phenomenological model wherein the inter-grain spacing along the column results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. In addition, here we present some preliminary measurements of the vibration and rotation dynamics of the individual grains in the Coulomb crystal. The thermal energy of the dust grain thus calculated is much less than the inter-grain Coulomb potential energy as required for the formation of stable structures. Also the observed rotational frequency is consistent with the assumption of thermal equilibrium between the dust grains and the neutral gas. (orig.)

  6. Molecular resonances in sub-Coulomb energy region (12C-12C, 12C-24Mg, 12C-9Be systems)

    International Nuclear Information System (INIS)

    Takimoto, Kiyohiko; Shimomura, Susumu; Tanaka, Makoto; Murakami, Tetsuya; Fukada, Mamoru; Sakaguchi, Atsushi

    1982-01-01

    Molecular resonance in sub-Coulomb energy region was studied on 12 C- 12 C, 12 C- 24 Mg and 12 C- 9 Be systems. The excitation functions and the angular distributions were measured on the reactions 12 C( 12 C, 8 Besub(g,s,)) 16 Osub(g,s,), 24 Mg( 12 C, α) 32 S and 9 Be ( 12 C, 8 Besub(g,s,)) 13 Csub(g,s,). Sub-Coulomb resonances were observed in all systems and the contribution of the 12 Csub(2nd)*(0 + , 7.65 MeV) state is proposed. (author)

  7. Shape isomerism and shape coexistence effects on the Coulomb energy differences in the N=Z nucleus 66As and neighboring T=1 multiplets

    Science.gov (United States)

    de Angelis, G.; Wiedemann, K. T.; Martinez, T.; Orlandi, R.; Petrovici, A.; Sahin, E.; Valiente-Dobón, J. J.; Tonev, D.; Lunardi, S.; Nara Singh, B. S.; Wadsworth, R.; Gadea, A.; Kaneko, K.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Blank, B.; Bracco, A.; Carpenter, M. P.; Chiara, C. J.; Farnea, E.; Gottardo, A.; Greene, J. P.; Lenzi, S. M.; Leoni, S.; Lister, C. J.; Mengoni, D.; Napoli, D. R.; Pechenaya, O. L.; Recchia, F.; Reviol, W.; Sarantites, D. G.; Seweryniak, D.; Ur, C. A.; Zhu, S.

    2012-03-01

    Excited states of the N=Z=33 nucleus 66As have been populated in a fusion-evaporation reaction and studied using γ-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T=1 states. A new 3+ isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T=1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A=70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.

  8. Evaluation of the Coulomb logarithm using cutoff and screened Coulomb interaction potentials

    International Nuclear Information System (INIS)

    Ordonez, C.A.; Molina, M.I.

    1994-01-01

    The Coulomb logarithm is a fundamental plasma parameter which is commonly derived within the framework of the binary collision approximation. The conventional formula for the Coulomb logarithm, λ=ln Λ, takes into account a pure Coulomb interaction potential for binary collisions and is not accurate at small values (λ D in place of λ D (the Debye length) in the conventional formula for the Coulomb logarithm

  9. Intermediate Energy Activation File (IEAF-99)

    International Nuclear Information System (INIS)

    Korovin, Yu.; Konobeev, A.; Pereslavtsev, P.; Stankovskij, A.; Fischer, U.; Moellendorff, U. von

    1999-01-01

    Nuclear data library IEAF-99, elaborated to study processes of interactions of intermediate energy neutrons with materials in accelerator driven systems, is described. The library is intended for activation and transmutation studies for materials irradiated by neutrons. IEAF-99 contains evaluated neutron induced reaction cross sections at the energies 0-150 MeV for 665 stable and unstable nuclei from C to Po. Approximately 50,000 excitation functions are included in the library. The IEAF-99 data are written in the ENDF-6 format combining MF = 3,6 MT = 5 data recording. (author)

  10. Parameterization of α-nucleus total reaction cross section at intermediate energies

    International Nuclear Information System (INIS)

    Alvi, M A; Abdulmomen, M A

    2008-01-01

    Applying a Coulomb correction factor to the Glauber model we have derived a closed expression for α-nucleus total reaction cross section, σ R . Under the approximation of rigid projectile model, the elastic S-matrix element S el (b) is evaluated from the phenomenological N-α amplitude and a Gaussian fit to the Helm's model form factor. Excellent agreements with the experimental data have been achieved by performing two-parameter fits to the α-nucleus σ R data in the energy range about 75 to 193 MeV. One of the parameters was found to be energy independent while the other, as expected, shows the energy dependence similar to that of N-α total cross section.

  11. On the Emergence of the Coulomb Forces in Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Jan Naudts

    2017-01-01

    Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.

  12. A Coulomb collision algorithm for weighted particle simulations

    Science.gov (United States)

    Miller, Ronald H.; Combi, Michael R.

    1994-01-01

    A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.

  13. Three-body Coulomb systems using generalized angular-momentum S states

    Science.gov (United States)

    Whitten, R. C.; Sims, J. S.

    1974-01-01

    An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.

  14. The three-point function in split dimensional regularization in the Coulomb gauge

    International Nuclear Information System (INIS)

    Leibbrandt, G.

    1998-01-01

    We use a gauge-invariant regularization procedure, called split dimensional regularization, to evaluate the quark self-energy Σ(p) and quark-quark-gluon vertex function Λ μ (p',p) in the Coulomb gauge, ∇-vector.A - vectora=0. The technique of split dimensional regularization was designed to regulate Coulomb-gauge Feynman integrals in non-Abelian theories. The technique which is based on two complex regulating parameters, ω and σ, is shown to generate a well-defined set of Coulomb-gauge integrals. A major component of this project deals with the evaluation of four-propagator and five-propagator Coulomb integrals, some of which are non-local. It is further argued that the standard one-loop BRST identity relating Σ and Λ μ , should by rights be replaced by a more general BRST identity which contains two additional contributions from ghost vertex diagrams. Despite the appearance of non-local Coulomb integrals, both Σ and Λ μ are local functions which satisfy the appropriate BRST identity. Application of split dimensional regularization to two-loop energy integrals is briefly discussed. (orig.)

  15. Metal nanoparticle film-based room temperature Coulomb transistor.

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  16. Coulomb excitation of 206Hg at relativistic energies

    Science.gov (United States)

    Alexander, Tom

    The region of the nuclear chart surrounding the doubly-magic nucleus 208Pb provides a key area to constrain and develop contemporary nuclear structure models. One aspect of particular interest is the transition strength of the first excited 2+ state in even-even nuclei; this work describes the measurement of this value for the case of 206Hg, where the Z=80 line meets the N=126 shell closure. The nuclei of interest were synthesized using relativistic-energy projectile fragmentation at the GSI facility in Germany. They were produced in the fragmentation of a primary 208Pb beam at an energy of 1 GeV per nucleon, and separated and identifed using the Fragment Separator. The secondary beams with an energy of 140 MeV per nucleon were Coulomb excited on a secondary target of 400 mg/cm. 2 gold. Gamma-rays were detected with the Advanced GAmma Tracking Array (AGATA). The precise scattering angle for Doppler-correction was determined with position information from the Lund-York-Cologne-CAlorimeter(LYCCA). Using the sophisticated tracking algorithm native to AGATA in conjunction with pulse-shape analysis, a precise Doppler-correction is performed on the gamma spectra, and using a complex n-dimensional analysis, the B(E2) value for 206Hg is extracted relative to the known value also measured in 206Pb. A total of 409 million 206Hg particles were measured, and a cross-section of 50 mb was determined for the 2+ state at 1068 keV. The measurement of the B(E2) transition strength was found to be 1.109 W.u. This result is compared to a number of theoretical calculations, including two Gogny forces, and a modified shell model parametrization and is found to be smaller than all calculated estimations, implying that the first excited 2. + state in . {206}Hg is uncollective in nature.

  17. A realistic solvable model for the Coulomb dissociation of neutron halo nuclei

    International Nuclear Information System (INIS)

    Baur, G.; Hencken, K.; Trautmann, D.

    2003-01-01

    As a model of a neutron halo nucleus we consider a neutron bound to an inert core by a zero range force. We study the breakup of this simple nucleus in the Coulomb field of a target nucleus. In the post-form DWBA (or, in our simple model CWBA (''Coulomb wave born approximation'')) an analytic solution for the T-matrix is known. We study limiting cases of this T-matrix. As it should be, we recover the Born approximation for weak Coulomb fields (i.e., for the relevant Coulomb parameters much smaller than 1). For strong Coulomb fields, high beam energies, and scattering to the forward region we find a result which is very similar to the Born result. It is only modified by a relative phase (close to 0) between the two terms and a prefactor (close to 1). A similar situation exists for bremsstrahlung emission. This formula can be related to the first order semiclassical treatment of the electromagnetic dissociation. Since our CWBA model contains the electromagnetic interaction between the core and the target nucleus to all orders, this means that higher order effects (including postacceleration effects) are small in the case of high beam energies and forward scattering. Our model also predicts a scaling behavior of the differential cross section, that is, different systems (with different binding energies, beam energies and scattering angles) show the same dependence on two variables x and y. (orig.)

  18. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  19. On analytical solutions to the problem of the Coulomb and confining potentials

    International Nuclear Information System (INIS)

    Dineykhan, M.; Nazmitdinov, R.G.

    1997-01-01

    The oscillator representation method is presented and applied to calculate the energy spectrum of the superposition of the Coulomb and the power-law potentials, the Coulomb and the Yukawa potentials. The method provides an efficient way to obtain analytical results for arbitrary set of parameters of the considered potentials. The energies of ground and excited states of a quantum system are in good agreement with the exact results

  20. Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field

    Science.gov (United States)

    Khalilov, V. R.

    2017-12-01

    Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.

  1. Coulomb interaction in multiple scattering theory

    International Nuclear Information System (INIS)

    Ray, L.; Hoffmann, G.W.; Thaler, R.M.

    1980-01-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+ 208 Pb elastic scattering and compared with experimental data

  2. Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion

    Science.gov (United States)

    Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori

    2018-05-01

    We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.

  3. Computational assignment of redox states to Coulomb blockade diamonds.

    Science.gov (United States)

    Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V

    2014-09-07

    With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.

  4. Yang-Mills theory in Coulomb gauge; Yang-Mills-theorie in Coulombeichung

    Energy Technology Data Exchange (ETDEWEB)

    Feuchter, C.

    2006-07-01

    In this thesis we study the Yang-Mills vacuum structure by using the functional Schroedinger picture in Coulomb gauge. In particular we discuss the scenario of colour confinement, which was originally formulated by Gribov. After a short introduction, we recall some basic aspects of Yang-Mills theories, its canonical quantization in the Weyl gauge and the functional Schroedinger picture. We then consider the minimal Coulomb gauge and the Gribov problem of the gauge theory. The gauge fixing of the Coulomb gauge is done by using the Faddeev-Popov method, which enables the resolution of the Gauss law - the constraint on physical states. In the third chapter, we variationally solve the stationary Yang-Mills Schroedinger equation in Coulomb gauge for the vacuum state. Therefor we use a vacuum wave functional, which is strongly peaked at the Gribov horizon. The vacuum energy functional is calculated and minimized resulting in a set of coupled Schwinger-Dyson equations for the gluon energy, the ghost and Coulomb form factors and the curvature in gauge orbit space. Using the angular approximation these integral equations have been solved analytically in both the infrared and the ultraviolet regime. The asymptotic analytic solutions in the infrared and ultraviolet regime are reasonably well reproduced by the full numerical solutions of the coupled Schwinger-Dyson equations. In the fourth chapter, we investigate the dependence of the Yang-Mills wave functional in Coulomb gauge on the Faddeev-Popov determinant. (orig.)

  5. Metal nanoparticle film–based room temperature Coulomb transistor

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  6. q-Gamow states for intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Plastino, A. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Rocca, M.C., E-mail: mariocarlosrocca@gmail.com [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Ferri, G.L. [Fac. de C. Exactas, National University La Pampa, Peru y Uruguay, Santa Rosa, La Pampa (Argentina); Zamora, D.J. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina)

    2016-11-15

    In a recent paper Plastino and Rocca (2016) [18] we have demonstrated the possible existence of Tsallis' q-Gamow states. Now, accelerators' experimental evidence for Tsallis' distributions has been ascertained only at very high energies. Here, instead, we develop a different set of q-Gamow states for which the associated q-Breit–Wigner distribution could easily be found at intermediate energies, for which accelerators are available at many locations. In this context, it should be strongly emphasized Vignat and Plastino (2009) [2] that, empirically, one never exactly and unambiguously “detects” pure Gaussians, but rather q-Gaussians. A prediction is made via Eq. (3.4).

  7. Electromagnetic radiation from positive-energy bound electrons in the Coulomb field of a nucleus at rest in a strong uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, S. A.; Koryagin, S. A., E-mail: koryagin@appl.sci-nnov.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2012-06-15

    A classical analysis is presented of the electromagnetic radiation emitted by positive-energy electrons performing bound motion in the Coulomb field of a nucleus at rest in a strong uniform magnetic field. Bounded trajectories exist and span a wide range of velocity directions near the nucleus (compared to free trajectories with similar energies) when the electron Larmor radius is smaller than the distance at which the electron-nucleus Coulomb interaction energy is equal to the mechanical energy of an electron. The required conditions occur in magnetic white dwarf photospheres and have been achieved in experiments on production of antihydrogen. Under these conditions, the radiant power per unit volume emitted by positive-energy bound electrons is much higher than the analogous characteristic of bremsstrahlung (in particular, in thermal equilibrium) at frequencies that are below the electron cyclotron frequency but higher than the inverse transit time through the interaction region in a close collision in the absence of a magnetic field. The quantum energy discreteness of positive-energy bound states restricts the radiation from an ensemble of bound electrons (e.g., in thermal equilibrium) to nonoverlapping spectral lines, while continuum radiative transfer is dominated by linearly polarized bremsstrahlung.

  8. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  9. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    Science.gov (United States)

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  10. New type of cross section singularity in backward scattering: the Coulomb glory

    International Nuclear Information System (INIS)

    Demkov, Y.N.; Ostrovskii, V.N.; Tel'nov, D.A.

    1984-01-01

    For classical scattering by a central potential that exhibits Coulomb behavior (i.e., that is attractive) at small distances, the scattering angle theta tends to π as the orbital angular momentum L decreases. The differential cross section for scattering through angles close to π can be characterized by the power series expansion of the difference theta(L)--π in small L, only odd powers of L being present in this expansion. Expressions are found for the coefficients in the linear (c 1 ) and cubic (c 3 ): in L: terms. It is shown that, for a broad class of screened Coulomb potentials, the coefficient c 1 vanishes at some value of the collision energy E 0 . At the energy E = E 0 the classical cross section diverges in the case of backward scattering (the Coulomb glory); in wave mechanics the cross section possesses a maximum. The behavior of the cross section for energies close to E 0 is computed. The application of the theory to electron scattering by atoms, in which the Coulomb interaction at small distances is determined by the interaction with the nucleus (charge Z) and E 0 = 0.0103Z 4 /sup // 3 keV, is discussed

  11. Closure of orbits and dynamical symmetry of screened Coulomb potential and isotropic harmonic oscillator

    International Nuclear Information System (INIS)

    Zeng Bei; Zeng Jinyan

    2002-01-01

    It is shown that for any central potential V(r) there exist a series of conserved aphelion and perihelion vectors R-tilde=pxL-g(r)r, g(r)=rV ' (r). However, if and only if V(r) is a pure or screened Coulomb potential, R-tilde and L constitute an SO 4 algebra in the subspace spanned by the degenerate states with a given energy eigenvalue E ' . While dR/dt=0 always holds, dR ' /dt=0 holds only at the aphelia and perihelia. Moreover, the space spanning the SO 4 algebra for a screened Coulomb potential is smaller than that for a pure Coulomb potential. The relation of closed orbits for a screened Coulomb potential with that for a pure Coulomb potential is clarified. The ratio of the radial frequency ω r and angular frequency ω φ , ω r /ω φ =κ=1 for a pure Coulomb potential irrespective of the angular momentum L and energy E(<0). For a screened Coulomb potential κ is determined by the angular momentum L, and when κ is any rational number (κ<1), the orbit is closed. The situation for a pure or screened isotropic harmonic oscillator is similar

  12. Monotonicity and concavity in Coulomb systems

    International Nuclear Information System (INIS)

    Englisch, R.; Englisch, H.; Karl-Marx-Universitaet, Leipzig

    1986-01-01

    The eigenvalues of H(α) = H 0 + αH * , where H * is an arbitrary Coulomb potential, decrease with increasing α ≥ 0. Linear and parabolic bounds for the ground state energy are presented. These bounds are applied to the biexciton and the exciton at a neutral donor. (orig.)

  13. Role of compound nuclei in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-05-01

    Hot compound nuclei are frequently produced in intermediate-energy reactions through a variety of processes. Their decay is shown to be an important and at times dominant source of complex fragments, high energy-gamma rays, and even pions

  14. Multifragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.; Britt, H.C.; Claesson, G.

    1986-01-01

    There has been considerable recent interest in the production of intermediate mass fragments (A > 4) in intermediate and high energy nucleus-nucleus collisions. The mechanism for production of these fragments is not well understood and has been described by models employing a variety of assumptions. Some examples are: disassembly of a system in thermal equilibrium into nucleons and nuclear fragments, liquid-vapor phase transitions in nuclear matter, final state coalescence of nucleons and dynamical correlations between nucleons at breakup. Previous studies of fragment production, with one exception, have been single particle inclusive measurements; the observed fragment mass (or charge) distributions can be described by all of the models above. To gain insight into the fragment production mechanism, the authors used the GSI/LBL Plastic Ball detector system to get full azimuthal coverage for intermediate mass fragments in the forward hemisphere in the center of mass system while measuring all the light particles in each event. The authors studied the systems 200 MeV/nucleon Au + Au and Au + Fe

  15. Photonuclear reactions at intermediate energy

    International Nuclear Information System (INIS)

    Koch, J.H.

    1982-01-01

    The dominant feature of photonuclear reactions at intermediate energies is the excitation of the δ resonance and one can therefore use such reactions to study the dynamics of δ propagation in a nucleus. Following an introductory section the author comments on photoabsorption on a single nucleon in Section II. A review of the δ-n Greens function and of the photonuclear amplitude is given in Section III. Results for photoabsorption on 4 He are shown in Section IV and compared with the data. Coherent π 0 photoproduction is discussed in Section V and calculations for 12 C are compared to recent measurements. (Auth.)

  16. A uniform semi-classical approach to the Coulomb fission problem

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1978-01-01

    A semi-classical theory based on the path integral formalism is applied to the description of Coulomb fission. Complex classical trajectories are used to compute the classically forbidden transitions from the target's ground state to fission. In a simple model the energy spectrum and angular distributions of the fragments are calculated for the Coulomb fission in the Xe + U collision. Theoretical predictions are made which may be checked experimentally. (author)

  17. Deep-inelastic scattering in 124,136Xe+58,64Ni at energies near the Coulomb barrier

    International Nuclear Information System (INIS)

    Gehring, J.; Back, B.B.; Chan, K.C.; Freer, M.; Henderson, D.; Jiang, C.L.; Rehm, K.E.; Schiffer, J.P.; Wolanski, M.; Wuosmaa, A.H.; Gehring, J.; Wolanski, M.

    1997-01-01

    Cross sections, angular distributions, and mass distributions have been measured for deep-inelastic scattering in 124 Xe+ 58 Ni and 136 Xe+ 64 Ni at laboratory energies in the vicinity of the Coulomb barrier. The mass distributions show distinct components due to deep-inelastic and fissionlike processes. The strength of deep-inelastic scattering is similar in the two systems measured and comparable to previous measurements in 58 Ni+ 112,124 Sn. copyright 1997 The American Physical Society

  18. Neutrino-nucleus collision at intermediate energy

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Oset, E.

    1999-01-01

    Neutrino-nucleus reactions at low and intermediate energy up to E ν = 500 MeV are studied for the most interesting nuclei from an experimental point of view. We focus on neutrino-nucleus cross-sections of semi-inclusive processes, for which recent measurements from radiochemical experiments at LAMPF and KARMEN laboratories are available. The method employed uses the modified Lindhard function for the description of the particle-hole excitations of the final nucleus via a local density approximation. (authors)

  19. Elastic pp scattering in the Coulomb-nuclear interference region and low energy behaviour of p-barp scattering partial amplitudes

    International Nuclear Information System (INIS)

    Kudryavtsev, A.E.; Markushin, V.E.

    1985-01-01

    The experimental data on the low energy elastic p-barp scattering in the Coulomb-nuclear interference region and on the shift and width of the 1s level of p-barp-atom are analysed. The partial wave amplitudes for l=0.1 are extracted. The p-wave amplitude is in fair agreement with the atomic data for the 2p state and exhibits some energy structure. It is shown that the real-to-imaginary ratio of the p-barp forward elastic-scattering amplitude becomes negative in an energy interval just near p-barp-threshold

  20. Study of 40Ca-40Ca elastic scattering at intermediate energy

    International Nuclear Information System (INIS)

    Kumar, Ashok; Srivastava, B.B.

    1980-01-01

    The differential cross sections for 40 Ca- 40 Ca elastic scattering have been calculated at laboratory incident energy of 240 MeV using a sharp cut off of the partial waves below a critical angular momentum, 1sub(c)' to account for absorption. The effective 40 Ca- 40 Ca potential is taken to be the sum of a real nuclear potential and the Coulomb potential. The calculated differential cross sections which are in fair agreement with the experimental data are presented and discussed. (author)

  1. Scaling laws governing the multiple scattering of diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The trajectories of fast molecules during and after penetration through foils are governed by Coulomb explosion and distorted by multiple scattering and other penetration phenomena. A scattering event may cause the energy available for Coulomb explosion to increase or decrease, and angular momentum may be transferred to the molecule. Because of continuing Coulomb explosion inside and outside the target foil, the transmission pattern recorded at a detector far away from the target is not just a linear superposition of Coulomb explosion and multiple scattering. The velocity distribution of an initially monochromatic and well-collimated, but randomly oriented, beam of molecular ions is governed by a generalization of the standard Bothe-Landau integral that governs the multiple scattering of atomic ions. Emphasis has been laid on the distribution in relative velocity and, in particular, relative energy. The statistical distributions governing the longitudinal motion (i.e., the relative motion along the molecular axis) and the rotational motion can be scaled into standard multiple-scattering distributions of atomic ions. The two scaling laws are very different. For thin target foils, the significance of rotational energy transfer is enhanced by an order of magnitude compared to switched-off Coulomb explosion. A distribution for the total relative energy (i.e., longitudinal plus rotational motion) has also been found, but its scaling behavior is more complex. Explicit examples given for all three distributions refer to power-law scattering. As a first approximation, scattering events undergone by the two atoms in the molecule were assumed uncorrelated. A separate section has been devoted to an estimate of the effect of impact-parameter correlation on the multiple scattering of penetrating molecules

  2. Coulomb systems seen as critical systems: Finite-size effects in two dimensions

    International Nuclear Information System (INIS)

    Jancovici, B.; Manificat, G.; Pisani, C.

    1994-01-01

    It is known that the free energy at criticality of a finite two-dimensional system of characteristic size L has in general a term which behaves like log L as L → ∞; the coefficient of this term is universal. There are solvable models of two-dimensional classical Coulomb systems which exhibit the same finite-size correction (except for its sign) although the particle correlations are short-ranged, i.e., noncritical. Actually, the electrical potential and electrical field correlations are critical at all temperatures (as long as the Coulomb system is a conductor), as a consequence of the perfect screening property of Coulomb systems. This is why Coulomb systems have to exhibit critical finite-size effects

  3. Investigating Coulomb's Law.

    Science.gov (United States)

    Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg

    1998-01-01

    Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)

  4. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  5. Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou

    1997-01-01

    The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)

  6. Diffusion in Coulomb crystals.

    Science.gov (United States)

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  7. Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1976-01-01

    Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)

  8. Dynamics in few body Coulomb problems

    International Nuclear Information System (INIS)

    Ovchinnikov, S.Y.; Macek, J.H.; Tantawi, R.S.; Sabbah, A.S.

    1999-01-01

    We develop the 'positive energy Sturmian technique' for the solution of time-dependent Schroedinger equations which describe few Coulomb centers with scattering initial conditions. The 'positive energy Sturmian technique' is based on the following main steps: (i) time-dependent scaled transformation; (ii) Fourier transformation into the frequency domain; (iii) outgoing wave Sturmian expansions; and (iv) solution of coupled equations. The technique has been applied in electron-atom and ion-atom collisions for calculations of energy and angular distributions of emitted electrons and excitations of atoms. Refs. 2 (author)

  9. Measurements of the Coulomb dissociation cross section of 156 MeV 6Li projectiles at extremely low relative fragment energies of astrophysical interest

    International Nuclear Information System (INIS)

    Kiener, J.; Gils, H.J.; Rebel, H.; Zagromski, S.; Gsottschneider, G.; Heide, N.; Jelitto, H.; Wentz, J.; Baur, G.

    1991-04-01

    Coulomb dissociation of light nuclear projectiles in the electric field of heavy target nuclei has been experimentally investigated as an alternative access to radiative capture cross sections at low relative energies of the fragments, which are of astrophysical interest. As a pilot experiment the breakup of 156 MeV 6 Li-projectiles at 208 Pb with small emission angles of the a particle and deuteron fragments has been studied. Both fragments were coincidentally detected in the focal plane of a magnetic spectrograph at several reaction angles well below the grazing angle and with relative angles between the fragments of 0deg-2deg. The experimental cross sections have been analyzed on the basis of the Coulomb breakup theory. The results for the resonant breakup give evidence for the strong dominance of the Coulomb dissociation mechanism and the absence of nuclear distortions, while the cross section for the nonresonant breakup follow theoretical predictions of the astrophysical S-factor and extrapolations of corresponding radiative capture reaction cross section to very low c. m. energies of the a particle and deuterons. Various implications of the approach are discussed. (orig.) [de

  10. Coulomb corrections to scattering length and effective radius

    International Nuclear Information System (INIS)

    Mur, V.D.; Kudryavtsev, A.E.; Popov, V.S.

    1983-01-01

    The problem considered is extraction of the ''purely nuclear'' scattering length asub(s) (corresponding to the strong potential Vsub(s) at the Coulomb interaction switched off) from the Coulomb-nuclear scattering length asub(cs), which is an object of experimental measurement. The difference between asub(s) and asub(cs) is especially large if the potential Vsub(s) has a level (real or virtual) with an energy close to zero. For this case formulae are obtained relating the scattering lengths asub(s) and asub(cs), as well as the effective radii rsub(s) and rsub(cs). The results are extended to states with arbitrary angular momenta l. It is shown that the Coulomb correction is especially large for the coefficient with ksup(2l) in the expansion of the effective radius; in this case the correction contains a large logarithm ln(asub(B)/rsub(0)). The Coulomb renormalization of other terms in the effective radius espansion is of order (rsub(0)/asub(B)), where r 0 is the nuclear force radius, asub(B) is the Bohr radius. The obtained formulae are tried on a number of model potentials Vsub(s), used in nuclear physics

  11. Calculation of proton-deuteron phase parameters including the Coulomb force

    International Nuclear Information System (INIS)

    Alt, E.O.; Sandhas, W.; Ziegelmann, H.

    1985-04-01

    A previously proposed exact method for including the Coulomb force in three-body collisions is applied to proton-deuteron scattering. We present phase shifts for angular momenta up to L=9, from elastic threshold to 50 MeV proton laboratory energy. Separable rank-one potentials are taken for the nuclear interactions. A charge-independent and a charge-symmetric choise, while leading to different neutron-deuteron and proton-deuteron phase parameters, nevertheless yields practically the same Coulomb corrections. We, moreover, investigate the question of P-wave resonances.A critical comparison of our results with those obtained in a co-ordinate space formalism is performed. Furthermore, proposals for an approximate inclusion of the Coulomb potential are tested, and found unsatisfactory. (orig.)

  12. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    International Nuclear Information System (INIS)

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  13. Transport code and nuclear data in intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Akira; Odama, Naomitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-11-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  14. Transport code and nuclear data in intermediate energy region

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Odama, Naomitsu; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-01-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  15. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  16. Pion deuteron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Ferreira, E.M.

    1978-09-01

    A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt

  17. Soft electromagnetic bremsstrahlung in inelastic hadronic collisions at high and intermediate energies

    International Nuclear Information System (INIS)

    Rueckl, R.

    1978-01-01

    Electromagnetic bremsstrahlung in hadronic collisions was studied extensively at low and intermediate energies. It was found that the infrared divergent term of the cross section describes the data well up to surprisingly large photon energies. Using essentially the same soft photon approximation, production of low mass-low energy electron pairs via internal conversion of soft virtual bremsstrahlung accompanying the production of charged hadrons in hadron-hadron collisions at very high and intermediate energies. The resulting electron yields explain, at least in part, the direct electrons with small transverse momenta seen at the ISR, and are in no contradiction to the rates observed at LAMPF

  18. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  19. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VIII. Role of Coulomb exchange

    International Nuclear Information System (INIS)

    Goriely, S.; Pearson, J. M.

    2008-01-01

    Following suggestions that the energy associated with Coulomb correlations and a possible charge-symmetry breaking of nuclear forces might largely cancel the Coulomb-exchange term, we refit the HFB-14 mass model without the Coulomb-exchange term to essentially all the mass data. The resulting mass model, HFB-15, gives a better fit to the 2149 mass data, σ rms falling from 0.729 to 0.678 MeV. The improvement in the energy differences between mirror nuclei is particularly striking: the Nolen-Schiffer anomaly, which is strong for HFB-14, is essentially eliminated. As for the extrapolation to highly neutron-rich nuclei, the HFB-15 model differs significantly from HFB-14, with up to 15 MeV less binding being predicted. However, the differences in the predicted values of differential quantities such as the neutron-separation energies, β-decay energies and fission barriers are very much smaller

  20. Coulomb oscillations in three-layer graphene nanostructures

    International Nuclear Information System (INIS)

    Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K

    2008-01-01

    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of ∼0.6 meV is extracted.

  1. Laser-Driven Recollisions under the Coulomb Barrier.

    Science.gov (United States)

    Keil, Th; Popruzhenko, S V; Bauer, D

    2016-12-09

    Photoelectron spectra obtained from the ab initio solution of the time-dependent Schrödinger equation can be in striking disagreement with predictions by the strong-field approximation (SFA), not only at low energy but also around twice the ponderomotive energy where the transition from the direct to the rescattered electrons is expected. In fact, the relative enhancement of the ionization probability compared to the SFA in this regime can be several orders of magnitude. We show for which laser and target parameters such an enhancement occurs and for which the SFA prediction is qualitatively good. The enhancement is analyzed in terms of the Coulomb-corrected action along analytic quantum orbits in the complex-time plane, taking soft recollisions under the Coulomb barrier into account. These recollisions in complex time and space prevent a separation into sub-barrier motion up to the "tunnel exit" and subsequent classical dynamics. Instead, the entire quantum path up to the detector determines the ionization probability.

  2. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    Science.gov (United States)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-07

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  3. Different aspects of nuclear physics from low energies up to intermediate energies

    International Nuclear Information System (INIS)

    Lallouet, Y.

    2011-12-01

    This study focuses on different aspects of nuclear physics from low energies to intermediate ones. For the low energies, the nuclear matter is essentially constituted from interacting nucleons. Part I is on the fusion-fission of super-heavy elements, while Part II is on the Skyrme interactions associated sum rules. In the case of the intermediate energies, where the nuclear matter is considered as being an hadronic phase mainly constituted from pions, Part III is focused on nuclear matter relativistic hydrodynamics with spontaneous chiral symmetry breaking. In Part I, the formation and the deexcitation of super-heavy nuclei are being studied. The memory effect must be taken into consideration within the super-heavy nuclei formation dynamics. Therefore we analyzed the formation of compound nuclei including the memory effects. As for the intermediate memory effects some oscillations appear, which is very different from the Markovian dynamics. For super-heavy nuclei deexcitation, the existence of isomeric state within the potential barrier cannot explain the results of experiments performed at GANIL with the crystal blocking technique, and this despite of the fact that it modifies the deexcitation dynamics and increases the fission time. However, this latter study could be useful for the study of the actinides fission. In Part II, the phenomenological Skyrme effective interactions-associated M 1 and M 3 sum rules are being calculated based on their intrinsic definitions. We identify then M 1 up to the tensorial level and M 3 with central potential. In Part III, as for the hadronic matter hydrodynamics being applied to heavy ions collisions, and as a first approach only, we can neglect spontaneous chiral symmetry but certainly not the dissipative impact. (author)

  4. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  5. Coulomb dissociation of {sup 8}B at 254 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Suemmerer, K; Boue, F; Baumann, T; Geissel, H; Hellstroem, M; Koczon, P; Schwab, E; Schwab, W; Senger, P; Surowiecz, A [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Iwasa, N; Ozawa, A [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); [RIKEN Institute of Physical and Chemical Research, Saitama (Japan); Surowka, G [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); [Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Blank, B; Czajkowski, S; Marchand, C; Pravikoff, M S [Centre d` Etudes Nucleaires de Bordeaux-Gradignan, 33 (France); Foerster, A; Lauer, F; Oeschler, H; Speer, J; Sturm, C; Uhlig, F; Wagner, A [Technische Univ. Darmstadt (Germany); Gai, M [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Grosse, E [Inst. fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, Dresden (Germany); Kohlmeyer, B [Philipps Univ., Marburg (Germany). Fachbereich Physik; Kulessa, R; Walus, W [Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Motobayashi, T [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Teranishi, T [RIKEN Institute of Physical and Chemical Research, Saitama (Japan)

    1998-06-01

    As an alternative method for determining the astrophysical S-factor for the {sup 7}Be(p,{gamma}){sup 8}B reaction we have measured the Coulomb dissociation of {sup 8}B at 254 A MeV. From our preliminary results, we obtain good agreement with both the accepted direct-reaction measurements and the low-energy Coulomb dissociation study of Iwasa et al. performed at about 50 A MeV. (orig.)

  6. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun; Shabani, Javad; Shayegan, Mansour

    2011-01-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb

  7. On FEL integral equation and electron energy loss in intermediate gain regime

    International Nuclear Information System (INIS)

    Takao, Masaru

    1994-03-01

    The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)

  8. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models.

    Science.gov (United States)

    Mehta, Neil A; Levin, Deborah A

    2018-03-01

    Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.

  9. The three-point function in split dimensional regularization in the Coulomb gauge

    CERN Document Server

    Leibbrandt, G

    1998-01-01

    We use a gauge-invariant regularization procedure, called ``split dimensional regularization'', to evaluate the quark self-energy $\\Sigma (p)$ and quark-quark-gluon vertex function $\\Lambda_\\mu (p^\\prime,p)$ in the Coulomb gauge, $\\vec{\\bigtriangledown}\\cdot\\vec{A}^a = 0$. The technique of split dimensional regularization was designed to regulate Coulomb-gauge Feynman integrals in non-Abelian theories. The technique which is based on two complex regulating parameters, $\\omega$ and $\\sigma$, is shown to generate a well-defined set of Coulomb-gauge integrals. A major component of this project deals with the evaluation of four-propagator and five-propagator Coulomb integrals, some of which are nonlocal. It is further argued that the standard one-loop BRST identity relating $\\Sigma$ and $\\Lambda_\\mu$, should by rights be replaced by a more general BRST identity which contains two additional contributions from ghost vertex diagrams. Despite the appearance of nonlocal Coulomb integrals, both $\\Sigma$ and $\\Lambda_\\...

  10. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  11. A quantum theory of the self-energy of non-relativistic fermions and of the Coulomb-Yukawa force acting between them

    International Nuclear Information System (INIS)

    Ernst, V.

    1978-01-01

    The idea of the systematic Weisskopf-Wigner approximation as used sporadically in atomic physics and quantum optics, is extended here to the interaction of a field of non-relativistic fermions with a field of relativistic bosons. It is shown that the usual (non-existing) interaction Hamiltonian of this system can be written as a sum of a countable number of self-adjoint and bounded partial Hamiltonians. The system of these Hamiltonians defines the order hierarchy of the present approximation scheme. To demonstrate its physical utility it is shown that in a certain order it provides satisfactory quantum theory of the 'self-energy' of the fermions under discussion. This is defined as the binding energy of bosons bound to the fermions and building up the latter's 'individual Coulomb or Yukawa fields' in the sense of expectation values of the corresponding field operator. In states of more than one fermion the bound photons act as a mediating agent between the fermions; this mechanism closely resembles the Coulomb or Yukawa 'forces' used in conventional non-relativistic quantum mechanics. (author)

  12. Chaos near the Coulomb barrier. Nuclear molecules

    International Nuclear Information System (INIS)

    Strayer, M.R.

    1984-01-01

    The present work examines in detail the classical behavior of the α + 14 C and the 12 C + 12 C(O + ) collison at energies near the Coulomb barrier. The long-time motion of the compound nuclear system is identified in terms of its classical quasiperiodic and chaotic behavior. The consequences of this motion are discussed and interpreted in terms of the evolution of the system along a dynamical energy surface. 45 references

  13. Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory

    International Nuclear Information System (INIS)

    Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.

    2010-01-01

    We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.

  14. Negative differential resistance in nanoscale transport in the Coulomb blockade regime

    International Nuclear Information System (INIS)

    Parida, Prakash; Lakshmi, S; Pati, Swapan K

    2009-01-01

    Motivated by recent experiments, we have studied the transport behavior of coupled quantum dot systems in the Coulomb blockade regime using the master (rate) equation approach. We explore how electron-electron interactions in a donor-acceptor system, resembling weakly coupled quantum dots with varying charging energy, can modify the system's response to an external bias, taking it from normal Coulomb blockade behavior to negative differential resistance (NDR) in the current-voltage characteristics.

  15. Polarization phenomena in electromagnetic interactions at intermediate energies

    International Nuclear Information System (INIS)

    Burkert, V.

    1990-01-01

    Recent results of polarization measurements in electromagnetic interactions at intermediate energies are discussed. Prospects of polarization experiments at the new CW electron accelerators, as well as on upgraded older machines are outlined. It is concluded that polarization experiments will play a very important role in the study of the structure of the nucleon and of light nuclei. 72 refs

  16. Energy-momentum tensor of intermediate vector bosons in an external electromagnetic field

    International Nuclear Information System (INIS)

    Mostepanenko, V.M.; Sokolov, I.Yu.

    1988-01-01

    Expressions are obtained for the canonical and metric energy-momentum tensors of the vector field of intermediate bosons in an external electromagnetic field. It is shown that in the case of a gyromagnetic ratio not equal to unity the energy-momentum tensor cannot be symmetrized on its indices, and an additional term proportional to the anomalous magnetic moment appears in the conservation laws. A modification of the canonical formalism for scalar and vector fields in an external field is proposed in accordance with which the Hamiltonian density is equal to the 00 component of the energy-momentum tensor. An expression for the energy-momentum tensor of a closed system containing a gauge field of intermediate bosons and an electromagnetic field is obtained

  17. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  18. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    International Nuclear Information System (INIS)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-01-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancellation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude. (author)

  19. Shape coexistence in krypton and selenium light isotopes studied through Coulomb excitation of radioactive ions beams; Etude de la coexistence de formes dans les isotopes legers du krypton et du selenium par excitation Coulombienne de faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E

    2006-06-15

    The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. An inversion of the ground state deformation from prolate in Kr{sup 78} to oblate in Kr{sup 72} with strong mixing of the configurations in Kr{sup 74} and Kr{sup 76} was proposed based on the systematic of isotopic chain. Coulomb excitation experiments are sensitive to the quadrupole moment. Coulomb excitation experiments of radioactive Kr{sup 74} and Kr{sup 76} beam were performed at GANIL using the SPIRAL facility and the EXOGAM spectrometer. The analysis of these experiments resulted in a complete description of the transition strength and quadrupole moments of the low-lying states. They establish the prolate character of the ground state and an oblate excited state. A complementary lifetime measurement using a 'plunger' device was also performed. Transition strength in neighboring nuclei were measured using the technique of intermediate energy Coulomb excitation at GANIL. The results on the Se{sup 68} nucleus show a sharp change in structure with respects to heavier neighboring nuclei. (author)

  20. Coulomb excitation of radioactive 20, 21Na

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-12-01

    The low-energy structures of the radioactive nuclei 20, 21Na have been examined using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ˜ 5×106 ions/s were accelerated to 1.7MeV/A and Coulomb excited in a 0.5mg/cm^2 natTi target. Two TIGRESS HPGe clover detectors perpendicular to the beam axis were used for γ -ray detection, while scattered nuclei were observed by the Si detector BAMBINO. For 21Na , Coulomb excitation from the 3/2+ ground state to the first excited 5/2+ state was observed, while for 20Na , Coulomb excitation was observed from the 2+ ground state to the first excited 3+ and 4+ states. For both beams, B ( λ L) values were determined using the 2+ rightarrow 0+ de-excitation in 48Ti as a reference. The resulting B( E2) ↓ value for 21Na is 137±9 e^2fm^4, while the resulting B( λ L) ↓ values for 20Na are 55±6 e^2fm^4 for the 3+ rightarrow 2+ , 35.7±5.7 e^2 fm^4 for the 4+ rightarrow 2+ , and 0.154±0.030 μ_ N^2 for the 4+ rightarrow 3+ transitions. This analysis significantly improves the measurement of the 21Na B( E2) value, and provides the first experimental determination of B( λ L) values for the proton dripline nucleus 20Na .-1

  1. Simulations of Coulomb systems confined by polarizable surfaces using periodic Green functions.

    Science.gov (United States)

    Dos Santos, Alexandre P; Girotto, Matheus; Levin, Yan

    2017-11-14

    We present an efficient approach for simulating Coulomb systems confined by planar polarizable surfaces. The method is based on the solution of the Poisson equation using periodic Green functions. It is shown that the electrostatic energy arising from the surface polarization can be decoupled from the energy due to the direct Coulomb interaction between the ions. This allows us to combine an efficient Ewald summation method, or any other fast method for summing over the replicas, with the polarization contribution calculated using Green function techniques. We apply the method to calculate density profiles of ions confined between the charged dielectric and metal surfaces.

  2. Systematics of elastic scattering at high and intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Dias De Deus, J [Instituto de Fisica e Matematica, Lisboa (Portugal); Kroll, P [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.)

    1977-01-01

    A model for elastic scattering valid in the intermediate and high-energy region is proposed. The model includes three kinds of entities: the pomeron, a universal GS pomeron; the reggeons, also universal and of GS type; and the core, a low-energy central real piece required by dispersion relations. The number of free functions and parameters is rather small. The approach supports naive duality and, in general, agrees with the results of absorptive models.

  3. Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.

    Science.gov (United States)

    Kim, S C; Yang, S-R Eric

    2015-10-01

    We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.

  4. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.

    2010-06-01

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  5. MCNP6 fragmentation of light nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan G., E-mail: mashnik@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kerby, Leslie M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of Idaho, Moscow, ID 83844 (United States)

    2014-11-11

    Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to {sup 4}He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  6. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Modesto, Montoya

    2014-01-01

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235 U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C sph ) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. (author).

  7. Reactor-moderated intermediate-energy neutron beams for neutron-capture therapy

    International Nuclear Information System (INIS)

    Less, T.J.

    1987-01-01

    One approach to producing an intermediate energy beam is moderating fission neutrons escaping from a reactor core. The objective of this research is to evaluate materials that might produce an intermediate beam for NCT via moderation of fission neutrons. A second objective is to use the more promising moderator material in a preliminary design of an NCT facility at a research reactor. The evaluations showed that several materials or combinations of materials could produce a moderator source for an intermediate beam for NCT. The best neutron spectrum for use in NCT is produced by Al 2 O 3 , but mixtures of Al metal and D 2 O are also attractive. Using the best moderator materials, results were applied to the design of an NCT moderator at the Georgia Institute of Technology Research Reactor's bio-medical facility. The amount of photon shielding and thermal neutron absorber were optimized with respect to the desired photon dose rate and intermediate neutron flux at the patient position

  8. Elastic Coulomb breakup of 34Na

    Science.gov (United States)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  9. A few aspects of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Guet, C.

    1982-10-01

    Some aspects of reactions induced by intermediate energy heavy ions, with a special emphasis of 85 MeV/nucleon 12 C data, are discussed and compared to low energy and relativistic energy features. Transition from mean field to independant nucleon picture is advocated by an increase of nuclear transparency illuminated by reaction cross section estimations. Projectile-like fragment distributions, while demonstrating a typical high energy fragmentation behaviour, exhibit low energy regime distortions. Light fragments, associated to large parallel momentum transfer may result from total explosion. Proton emission is investigated and discussed in terms of opposite models such as thermal equilibrium and nucleon-nucleon scattering. First pion production data are well explained by single nucleon-nucleon inelastic scattering

  10. Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene.

    Science.gov (United States)

    König-Otto, J C; Mittendorff, M; Winzer, T; Kadi, F; Malic, E; Knorr, A; Berger, C; de Heer, W A; Pashkin, A; Schneider, H; Helm, M; Winnerl, S

    2016-08-19

    The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects.

  11. Ultrafast Coulomb explosion of a diiodomethane molecule induced by an X-ray free-electron laser pulse.

    Science.gov (United States)

    Takanashi, Tsukasa; Nakamura, Kosuke; Kukk, Edwin; Motomura, Koji; Fukuzawa, Hironobu; Nagaya, Kiyonobu; Wada, Shin-Ichi; Kumagai, Yoshiaki; Iablonskyi, Denys; Ito, Yuta; Sakakibara, Yuta; You, Daehyun; Nishiyama, Toshiyuki; Asa, Kazuki; Sato, Yuhiro; Umemoto, Takayuki; Kariyazono, Kango; Ochiai, Kohei; Kanno, Manabu; Yamazaki, Kaoru; Kooser, Kuno; Nicolas, Christophe; Miron, Catalin; Asavei, Theodor; Neagu, Liviu; Schöffler, Markus; Kastirke, Gregor; Liu, Xiao-Jing; Rudenko, Artem; Owada, Shigeki; Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Kono, Hirohiko; Ueda, Kiyoshi

    2017-08-02

    Coulomb explosion of diiodomethane CH 2 I 2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH 3 I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH 2 I 2 in comparison to CH 3 I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH 2 I 2 . The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10

  12. Unsafe Coulomb excitation of $^{240-244}Pu$

    CERN Document Server

    Wiedenhöver, I; Hackman, L; Ahmad, I; Greene, J P; Amro, H; Carpenter, M P; Nisius, D T; Reiter, P; Lauritsen, T; Lister, C J; Khoo, T L; Siem, S; Cizewski, J A; Seweryniak, D; Uusitalo, J; Macchiavelli, A O; Chowdhury, P; Seabury, E H; Cline, D; Wu, C Y

    1999-01-01

    The high spin states of /sup 240/Pu and /sup 244/Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a /sup 208/Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to /sup 242/Pu were obtained as well. In the case of /sup 244/Pu, the yrast band was extended to 34h(cross), revealing the completed pi i/sub 13/2/ alignment, a "first" for actinide nuclei. The yrast sequence of /sup 242/Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of /sup 240/Pu was measured up to the highest rotational frequencies ever reported in the actinide region (~300 keV), no sign of particle alignment was observed. (11 refs).

  13. Proceedings of the 6. National Meeting on Intermediate Energy Physics

    International Nuclear Information System (INIS)

    1986-01-01

    Several works on nuclear, hadron and quark physics are presented covering both aspects; theoretical and experimental, are presented. Emphasis is given in the intermediate energy region, several MeV centil few GeV. (L.C.) [pt

  14. On low energy scattering theory with Coulomb potentials

    International Nuclear Information System (INIS)

    Gibson, A.G.

    1985-09-01

    The scattering length is a very useful characteristic of the scattering phenomena. But in the presence of a combined potential (e.g. in nuclear physics, when Coulomb, the polarization and the strong potentials are to be added), the analytical definition of the scattering length in not unambigous and strictly defined. This problem is discussed in detail, the various alternatives are examined and compared. A practical suggestion is given for the proper choice of the definition and for the calculation of scattering length. Numerical solutions of the Schroedinger equation are compared with the results of different definitions. Some questions of application to nuclear physics are discussed. (D.Gy.)

  15. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  16. Treating Coulomb exchange contributions in relativistic mean field calculations: why and how

    International Nuclear Information System (INIS)

    Giai, Nguyen Van; Liang, Haozhao; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie

    2014-01-01

    The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow ‘mock up’ the effects of meson-induced exchange terms by adjusting the meson–nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this work, we show that the Coulomb exchange effects can be easily included with good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation

  17. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute for Theoretical Physics of National Acad. Sci., Kiev (Ukraine); Lednicky, R. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute of Physics, Prague (Czech Republic); Akkelin, S.V. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Teoreticheskoj Fiziki; Pluta, J. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Warsaw Univ. (Poland). Inst. of Physics; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees

    1998-10-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective volumes predicted in the realistic evolution scenarios taking into account the collective flows. A simple modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions this approximate analytical approach is compared with the exact numerical results and a good agreement is found for typical conditions at SPS, RHIC and even LHC energies. (author) 21 refs.

  18. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  19. Low-energy consequences of superstring-inspired models with intermediate-mass scales

    International Nuclear Information System (INIS)

    Gabbiani, F.

    1987-01-01

    The phenomenological consequences of implementing intermediate-mass scales in E 6 superstring-inspired models are discussed. Starting from a suitable Calabi-Yau compactification with b 1,1 >1, one gets, after Hosotani breaking, the rank r=5 gauge group SU(3) C x SU(2) L x U(1) Y x U(1) E , that is broken at an intermediate-mass scale down to the standard-model group. The analysis of both the intermediate and the electroweak breaking is performed in the two cases Λ c = M x and Λ c x , where Λ c is the scale at which the hidden sector gauginos condensate. It is performed quantitatively the minimization of the low-energy effective potential and the renormalization group analysis, yielding a viable set of mass spectra and confirming the reliability of the intermediate-breaking scheme

  20. Proceedings of the 5. National Meeting on Intermediate Energy Physics

    International Nuclear Information System (INIS)

    1984-05-01

    Several papers concerning the physics at intermediate energies (∼ 100-1000MeV) are presented in this proceedings. Almost all the works show overlapping between Nuclear and Particles Physics. There is a predominance in theoretical papers. (L.C.) [pt

  1. Theoretical research in intermediate energy nuclear physics: Final report

    International Nuclear Information System (INIS)

    Seki, R.

    1987-01-01

    This paper discusses the progress that has been made on the following problems: a numerical calculation of Skyrmiron scattering; (e,e'p) at high momentum transfer; spin-orbit nucleon-nucleon potential from Skyrme model; pionic atom anomaly; and field theory problems. The problems deal with various topics in intermediate-energy nuclear physics

  2. Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.

    Science.gov (United States)

    Gutstein, D; Lynall, D; Nair, S V; Savelyev, I; Blumin, M; Ercolani, D; Ruda, H E

    2018-01-10

    The conductance of semiconductor nanowires is strongly dependent on their electrostatic history because of the overwhelming influence of charged surface and interface states on electron confinement and scattering. We show that InAs nanowire field-effect transistor devices can be conditioned to suppress resonances that obscure quantized conduction thereby revealing as many as six sub-bands in the conductance spectra as the Fermi-level is swept across the sub-band energies. The energy level spectra extracted from conductance, coupled with detailed modeling shows the significance of the interface state charge distribution revealing the Coulomb landscape of the nanowire device. Inclusion of self-consistent Coulomb potentials, the measured geometrical shape of the nanowire, the gate geometry and nonparabolicity of the conduction band provide a quantitative and accurate description of the confinement potential and resulting energy level structure. Surfaces of the nanowire terminated by HfO 2 are shown to have their interface donor density reduced by a factor of 30 signifying the passivating role played by HfO 2 .

  3. Electron emission in collisions of intermediate energy ions with atoms

    International Nuclear Information System (INIS)

    Garibotti, C.R.

    1988-01-01

    The aim of this work, is the analysis of the processes of electronic emission produced in the collisions of small ions (H + , He ++ ) of intermediate energy (50 a 200 KeV/amu) with light gaseous targets. (A.C.A.G.) [pt

  4. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  5. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  6. Coulomb-Sturmian separable expansion approach: Three-body Faddeev calculations for Coulomb-like interactions

    International Nuclear Information System (INIS)

    Papp, Z.; Plessas, W.

    1996-01-01

    We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society

  7. High-energy intermediates in protein unfolding characterized by thiol labeling under nativelike conditions.

    Science.gov (United States)

    Malhotra, Pooja; Udgaonkar, Jayant B

    2014-06-10

    A protein unfolding reaction usually appears to be so dominated by a large free energy barrier that identifying and characterizing high-energy intermediates and, hence, dissecting the unfolding reaction into multiple structural transitions have proven to be a challenge. In particular, it has been difficult to identify any detected high-energy intermediate with the dry (DMG) and wet (WMG) molten globules that have been implicated in the unfolding reactions of at least some proteins. In this study, a native-state thiol labeling methodology was used to identify high-energy intermediates, as well as to delineate the barriers to the disruption of side chain packing interactions and to site-specific solvent exposure in different regions of the small protein, single-chain monellin (MNEI). Labeling studies of four single-cysteine-containing variants of MNEI have identified three high-energy intermediates, populated to very low extents under nativelike conditions. A significant dispersion in the opening rates of the cysteine side chains has allowed multiple steps, leading to the loss of side chain packing, to be resolved temporally. A detailed structural analysis of the positions of the four cysteine residue positions, which are buried to different depths within the protein, has suggested a direct correlation with the structure of a DMG, detected in previous studies. It is observed that side chain packing within the core of the protein is maintained, while that at the surface is disrupted, in the DMG. The core of the protein becomes solvent-exposed only in a WMG populated after the rate-limiting step of unfolding at high denaturant concentrations.

  8. The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials

    International Nuclear Information System (INIS)

    Li Qun; Chen Yiheng

    2008-01-01

    The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials is clarified. Based on the extended Stroh theory, the Coulombic traction, usually neglected in piezoelectric fracture, is imposed on the interface crack surfaces. It is found that the low-capacitance medium (air or vacuum) inside the crack gap yields some large Coulombic traction as compared to the applied mechanical loading whether the remanent polarization of piezoelectric material is considered or not. Thus, previous investigations based on the traction-free condition underestimate the role of the Coulombic traction and in turn may yield unexpected errors for the effective stress intensity factor (SIF) and energy release rate (ERR) at the crack tip. (technical note)

  9. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  10. Coulomb replica-exchange method: handling electrostatic attractive and repulsive forces for biomolecules.

    Science.gov (United States)

    Itoh, Satoru G; Okumura, Hisashi

    2013-03-30

    We propose a new type of the Hamiltonian replica-exchange method (REM) for molecular dynamics (MD) and Monte Carlo simulations, which we refer to as the Coulomb REM (CREM). In this method, electrostatic charge parameters in the Coulomb interactions are exchanged among replicas while temperatures are exchanged in the usual REM. By varying the atom charges, the CREM overcomes free-energy barriers and realizes more efficient sampling in the conformational space than the REM. Furthermore, this method requires only a smaller number of replicas because only the atom charges of solute molecules are used as exchanged parameters. We performed Coulomb replica-exchange MD simulations of an alanine dipeptide in explicit water solvent and compared the results with those of the conventional canonical, replica exchange, and van der Waals REMs. Two force fields of AMBER parm99 and AMBER parm99SB were used. As a result, the CREM sampled all local-minimum free-energy states more frequently than the other methods for both force fields. Moreover, the Coulomb, van der Waals, and usual REMs were applied to a fragment of an amyloid-β peptide (Aβ) in explicit water solvent to compare the sampling efficiency of these methods for a larger system. The CREM sampled structures of the Aβ fragment more efficiently than the other methods. We obtained β-helix, α-helix, 3(10)-helix, β-hairpin, and β-sheet structures as stable structures and deduced pathways of conformational transitions among these structures from a free-energy landscape. Copyright © 2012 Wiley Periodicals, Inc.

  11. Coulomb disintegration as an information source for relevant processes in nuclear astrophysics

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    1989-01-01

    The possibility of obtaining the photodisintegration cross section using the equivalent-photon number method first deduced and employed for the Coulomb disintegration processes has been suggested. This is very interesting because there exist radioactive capture processes, related to the photodisintegration through time reversal, that are relevant in astrophysics. In this paper, the recent results of the Karlsruhe and the Texas A and M groups on the Coulomb disintegration of 6 Li and 7 Li and the problems of the method are discussed. The ideas developed in a previous paper (Nucl. Phys. A458 (1986) 188) are confirmed qualitatively. To understand the process quantitatively it is necessary to use a quantum treatment that would imply the introduction of Coulomb excitation effects of higher orders. The Coulomb disintegration of exotic secondary beams is also studied. It is particularly interesting the question about what kind of nuclear structure information, as binding energies of momentum distributions, may be obtained. (Author) [es

  12. Electron-atom spin asymmetry and two-electron photodetachment - Addenda to the Coulomb-dipole threshold law

    Science.gov (United States)

    Temkin, A.

    1984-01-01

    Temkin (1982) has derived the ionization threshold law based on a Coulomb-dipole theory of the ionization process. The present investigation is concerned with a reexamination of several aspects of the Coulomb-dipole threshold law. Attention is given to the energy scale of the logarithmic denominator, the spin-asymmetry parameter, and an estimate of alpha and the energy range of validity of the threshold law, taking into account the result of the two-electron photodetachment experiment conducted by Donahue et al. (1984).

  13. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  14. Quantum effects on the coulomb logarithm for energetic ions during the initial thermalization phase

    CERN Document Server

    Deng Bai Quan; Deng Mei Gen; Peng Li Lin

    2002-01-01

    The authors have discussed the quantum mechanical effects for the energetic charged particles produced in D-He sup 3 fusion reactions. Authors' results show that it is better to use the proper Coulomb logarithm at the high-energy end in describing the thermalization process, because the quantum mechanical effects on the Coulomb logarithm are not negligible, based on an assumption of binary collision

  15. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation

    International Nuclear Information System (INIS)

    Wolf, D.; Keblinski, P.; Phillpot, S.R.; Eggebrecht, J.

    1999-01-01

    Based on a recent result showing that the net Coulomb potential in condensed ionic systems is rather short ranged, an exact and physically transparent method permitting the evaluation of the Coulomb potential by direct summation over the r -1 Coulomb pair potential is presented. The key observation is that the problems encountered in determining the Coulomb energy by pairwise, spherically truncated r -1 summation are a direct consequence of the fact that the system summed over is practically never neutral. A simple method is developed that achieves charge neutralization wherever the r -1 pair potential is truncated. This enables the extraction of the Coulomb energy, forces, and stresses from a spherically truncated, usually charged environment in a manner that is independent of the grouping of the pair terms. The close connection of our approach with the Ewald method is demonstrated and exploited, providing an efficient method for the simulation of even highly disordered ionic systems by direct, pairwise r -1 summation with spherical truncation at rather short range, i.e., a method which fully exploits the short-ranged nature of the interactions in ionic systems. The method is validated by simulations of crystals, liquids, and interfacial systems, such as free surfaces and grain boundaries. copyright 1999 American Institute of Physics

  16. Transfer and breakup reactions at intermediate energies

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1986-04-01

    The origin of the quasi-elastic peak in peripheral heavy-ion reactions is discussed in terms of inelastic scattering and transfer reactions to unbound states of the primary projectile-like fragment. The situation is analogous to the use of reverse kinematics in fusion reactions, a technique in which the object of study is moving with nearly the beam velocity. It appears that several important features of the quasi-elastic peak may be explained by this approach. Projectile-breakup reactions have attractive features for the study of nuclear structure. They may also be used to determine the partition of excitation energy in peripheral reactions. At intermediate energies, neutron-pickup reactions leading to four-body final states become important. Examples of experiments are presented that illustrate these points. 15 refs., 14 figs

  17. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium

    International Nuclear Information System (INIS)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed

  18. Theoretical research in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Seki, R.

    1991-01-01

    This report discusses progress that has been made on the following six problems: (1) final state interactions in (e,e'p) at high momentum transfer; (2) a numerical calculation of skyrmion-antiskyrmion annihilation; (3) pion-nucleus interactions above 0.5 GeV/c; (4) pionic atom anomaly; (5) baryon interactions in Skyrme model; and (6) large N c quantum hydrodynamics. The problems deal with various topics in intermediate-energy nuclear physics. Since we plan to continue the investigation of these problems in the third year, we describe the plan of the investigation together

  19. Coulomb focusing and ''path'' interference of autoionizing electrons produced in 10 keV He+ + He collisions

    International Nuclear Information System (INIS)

    Swenson, J.K.; Burgdoerfer, J.; Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N.

    1991-01-01

    Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is ''focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb ''path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s 2 1 S autoionizing state measured near 0 degree following low energy He + + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb ''path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0 degree. 14 refs., 7 figs

  20. Unsafe Coulomb excitation of 240-244Pu

    International Nuclear Information System (INIS)

    Ahmad, I.; Amro, H.; Carpenter, M. P.; Chowdhury, P.; Cizewski, J.; Cline, D.; Greene, J. P.; Hackman, G.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Macchiavelli, A. O.; Nisius, D. T.; Reiter, P.; Seabury, E. H.; Seweryniak, D.; Siem, S.; Uusitalo, J.; Wiedenhoever, I.; Wu, C. Y.

    1999-01-01

    The high spin states of 240 Pu and 244 Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a 208 Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to 242 Pu were obtained as well. In the case of 244 Pu, the yrast band was extended to 34h b ar revealing the completed πi 13/2 alignment, a ''first'' for actinide nuclei. The yrast sequence of 242 Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of 240 Pu was measured up to the highest rotational frequencies ever reported in the actinide region (approximately300 keV), no sign of particle alignment was observed. In this case, several observable such as the large B(E1)/B(E2) branching ratios in the negative parity band, and the vanishing energy staggering between the negative and positive parity bands suggest that the strength of octupole correlations increases with rotational frequency. These stronger correlations may well be responsible for delaying or suppressing the πi 13/2 particle alignment

  1. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  2. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    Science.gov (United States)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.

  3. Electromagnetic excitation with very heavy ions at and above the Coulomb barrier

    International Nuclear Information System (INIS)

    Wollersheim, H.J.

    1988-08-01

    The present report is part of a systematic study of the electromagnetic properties of strongly deformed and shape transitional nuclei carried out at GSI. The high efficiency particle-gamma detector system is described to perform multiple Coulomb excitation experiments with very heavy projectiles. Some results obtained for the shape transitional nucleus 196 Pt will be presented to exemplify the importance of having access to both the level energies and the E2-transition matrix elements when discussing the possible structure of these states. The second part of this paper is devoted to transfer reactions between very heavy nuclei. In contrast to light projectiles heavy ions offer the possibility to study new phenomena which originate in the much larger Coulomb contribution to the total interaction. In particular, heavy deformed nuclei will be Coulomb excited by the strong electromagnetic field to high spin states already at the time when they start interacting through the nuclear forces. The particle transfer therefore takes place mainly between excited collective states and thus should give information about the interplay between single-particle degrees of freedom, pair correlations and collective excitations. In this paper results of experiments will be reported in which nuclei from the rare earth and the actinide region have been bombarded by 206,208 Pb projectiles at incident energies near the Coulomb barrier. (orig./HSI)

  4. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  5. Detection method of elastic scattering in the Coulomb interference region: scintillation target

    International Nuclear Information System (INIS)

    Azaiez, Hamza.

    1981-01-01

    Measurement of polarization in (p-p) elastic scattering in the Coulomb interference region is considered as a valid method for calibrating high energy polarized proton beams. Possibility of using a scintillation target to detect low energy recoil protons in this /t/ region has been studied by using a 4 GeV/c π - beam from CERN PS. The results obtained with a steack of thin plastic scintillators, each 1 mm thick, showed the feasibility of detecting recoil protons in a /t/ range as low a 5.10 -3 (GeV/c) 2 . This method thus confirmed experimentally can be used also to measure, using a polarized beam, polarization in Coulomb interference region [fr

  6. Needs for experiment and theory in intermediate energy reactions

    International Nuclear Information System (INIS)

    Blann, M.

    1991-01-01

    We summarize several reasons intermediate energy data are needed in both basic and applied science. The status of the data base at energies up to 2 GeV is cursorily reviewed. Experimental excitation functions, single and double differential cross sections are compared with predictions of the nuclear model code ALICE. The strengths and weaknesses of the code to reproduce data are summarized. Opinions are given as to areas where data are too few or totally lacking, yet are needed for the verification of models and theories. (author). 25 refs, 22 figs

  7. Prospects for coherently driven nuclear radiation by Coulomb excitation

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2006-01-01

    Possible experiments are discussed in which the Coulomb excitation of nuclear isomers would be followed by sequential energy release. The possibility of the coherent Coulomb excitation of nuclei ensconced in a crystal by channeled relativistic heavy projectiles is considered. The phase shift between neighbor-nuclei excitations can be identical to the photon phase shift for emission in forward direction. Thus, the elementary string of atoms can radiate coherently with emission of characteristic nuclear γ rays and the intensity of the radiation could be increased due to the summation of amplitudes. The Moessbauer conditions should be important for this new type of collective radiation that could be promising in the context of the γ-lasing problem

  8. Multiple Coulomb excitation effects in heavy ion compound and fusion cross sections

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    1981-11-01

    A simple model for the average S-matrix that describes heavy ion direct processes in the presence of absorption due to compound nucleus formation is developed. The fluctuation cross section and the fusion cross section are then calculated for deformed heavy ion systems where multiple Coulomb excitation is important. A simple expression for the fusion cross section valid for above-barrier energies is then obtained. The formula clearly displays the modification, due to Coulomb excitation, in the usual geometrical expression. (Author) [pt

  9. No evidence of reduced collectivity in Coulomb-excited Sn isotopes

    Science.gov (United States)

    Kumar, R.; Saxena, M.; Doornenbal, P.; Jhingan, A.; Banerjee, A.; Bhowmik, R. K.; Dutt, S.; Garg, R.; Joshi, C.; Mishra, V.; Napiorkowski, P. J.; Prajapati, S.; Söderström, P.-A.; Kumar, N.; Wollersheim, H.-J.

    2017-11-01

    In a series of Coulomb excitation experiments the first excited 2+ states in semimagic Sn 112 ,116 ,118 ,120 ,122 ,124 isotopes were excited using a 58Ni beam at safe Coulomb energy. The B (E 2 ; 0+→2+) values were determined with high precision (˜3 %) relative to 58Ni projectile excitation. These results disagree with previously reported B (E 2 ↑) values [A. Jungclaus et al., Phys. Lett. B 695, 110 (2011)., 10.1016/j.physletb.2010.11.012] extracted from Doppler-shift attenuation lifetime measurements, whereas the reported mass dependence of B (E 2 ↑) values is very similar to a recent Coulomb excitation study [J. M. Allmond et al., Phys. Rev. C 92, 041303(R) (2015), 10.1103/PhysRevC.92.041303]. The stable Sn isotopes, key nuclei in nuclear structure, show no evidence of reduced collectivity and we, thus, reconfirm the nonsymmetric behavior of reduced transition probabilities with respect to the midshell A =116 .

  10. Effective Coulomb interaction in multiorbital system

    International Nuclear Information System (INIS)

    Hase, Izumi; Yanagisawa, Takashi

    2013-01-01

    Transition metal atom generally takes various valences, and sometimes there are some 'missing valences', for example Fe usually takes 2+, 3+ and 5+, but does not take other valences so often. We have calculated the atomic multiplet energies for the high-spin and lowspin configurations within the ligand-field theory and the Hartree-Fock approximation, and found that the Coulomb interaction energy (U eff ) becomes small when the valence is 'missing'. In case U eff B /Fe only when U eff increased in most cases, but in some special cases U eff decreases and falls below the value U − 3J, which is the least value of the undistorted system.

  11. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Idaho, Moscow, ID (United States)

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  12. Coulomb holes and correlation potentials in the helium atom

    International Nuclear Information System (INIS)

    Slamet, M.; Sahni, V.

    1995-01-01

    Thus, the asymptotic structure of the exchange-correlation potential W xc (r) of the work formalism is that of W x (r) which is (-1/r). We also detemine via the Kinoshita wave function the correlation potential μ c (r) of Kohn-Sham theory, which differs from W c (r) in that it also incorporates the effects of the correlation contribution to the kinetic energy. Consequently, it is less attractive than W c (r), but also has zero slope at the nucleus. However, as is known, the potential μ c (r) is nonmonotonic, since it goes positive within the atom, then becomes negative in the classically forbidden region, finally vanishing asymptotically as a negative function. Since the exchange potentials of the work formalism and Kohn-Sham theory are the same for this atom, and because W c (r) is strictly representative of Coulomb correlations, we attribute the nonmonotonicity and positiveness of the Kohn-Sham potential μ c (r) to the correlation kinetic energy. This conclusion is consistent with the result that the difference between the correlation energies determined within the work formalism from the dynamic Coulomb hole and Kohn-Sham theory is equal to the correlation contribution to the kinetic energy

  13. Adventures in Coulomb Gauge

    International Nuclear Information System (INIS)

    Greensite, J.; Olejnik, S.

    2003-01-01

    We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.

  14. Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings

    DEFF Research Database (Denmark)

    Walldorf, Nicklas; Jauho, Antti-Pekka; Kaasbjerg, Kristen

    2017-01-01

    We study thermoelectric effects in Coulomb-coupled quantum-dot (CCQD) systems beyond lowest-order tunneling processes and the often applied wide-band approximation. To this end, we present a master-equation (ME) approach based on a perturbative T -matrix calculation of the charge and heat tunneli...

  15. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    Science.gov (United States)

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  16. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    The data analysis for Coulomb breakup of. ½ .... C (605 MeV/u) breaking up into a neutron and a .... direct break up model delivers a cross section of 107 mb for a ... separation energy for the last neutron in the even isotopes = 20 to 24 is 7 to 8 ...

  17. Coulomb thermal properties and stability of the Io plasma torus

    Science.gov (United States)

    Barbosa, D. D.; Coroniti, F. V.; Eviatar, A.

    1983-01-01

    Coulomb collisional energy exchange rates are computed for a model of the Io plasma torus consisting of newly created pickup ions, a background of thermally degraded intermediary ions, and a population of cooler electrons. The electrons are collisionally heated by both the pickup ions and background ions and are cooled by electron impact excitation of plasma ions which radiate in the EUV. It is found that a relative concentration of S III pickup ions forbidden S III/electrons = 0.1 with a temperature of 340 eV can deliver energy to the electrons at a rate of 3 x 10 to the -13th erg/cu cm per sec, sufficient to power the EUV emissions in the Io torus. The model predicts a background ion temperature Ti of about 53 eV and an electron temperature Te of about 5.5 eV on the basis of steady-state energy balance relations at Coulomb rates. The model also predicts electron temperature fluctuations at the 30 percent level on a time scale of less than 11 hours, consistent with recent observations of this phenomenon.

  18. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    charge carriers were additionally studied at high excitation energies. An efficient multi-exciton emission of the CdSe/CdS tetrapods could be observed, which is to be lead back to the exciton phase-space filling and a reduced Auger effect. The larger volume of the longer tetrapods allows a dual emission from the CdSe and the CdS with comparable intensities. The occuring Coulomb effects between a spatially separated electron-hole pair were studied in CdSe/CdTe tetrapods, which exhibit a type-II transition. A correlation between the tetrapod leg length and the binding energy of the charge-transfer exciton could be established, which is also reproduced in the theoretical simulations.

  19. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  20. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  1. Improvement of the intranuclear cascade code of Bruyeres-le-Chatel (BRIC) at low intermediate energy

    International Nuclear Information System (INIS)

    Duarte, H.

    2003-01-01

    The IntraNuclear cascade code of Bruyeres-le-Chatel called BRIC has been extended to low intermediate energy by taking in account some medium effects that are included in other nuclear dynamics models such as BUU or QMD. The results of BRIC 1.4 with the medium effects are in better agreement with experimental data than those of the first version on a wide range of incident energy, especially at low intermediate energy. We may conclude that no preequilibrium model is necessary between our INC and the deexcitation step. (orig.)

  2. Exact analytical solutions of continuity equation for electron beams precipitating in Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk [Department of Mathematics and Information Sciences, University of Northumbria, Newcastle upon Tyne NE1 2XP (United Kingdom)

    2014-06-10

    The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained by using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.

  3. Double excitation of helium in collisions with proton and antiproton impact in the energy range 50-500 keV

    International Nuclear Information System (INIS)

    Purkait, M.

    2009-01-01

    Double-electron excitation processes of helium atoms by proton and antiproton impact have been theoretically investigated using the four-body formalism of boundary corrected continuum intermediate state (BCCIS-4B) approximation in the energy range of 50-500 keV. In this formalism, the presence of the projectile in the exit channels is described by distorting the final bound state wave functions with coulomb waves (associated with the projectile-electron interactions). The results are in good agreement with the other theoretical and experimental results. Reasonably better agreements have been found in the intermediate and high energy regions. Contributions to the cross section of the different magnetic sub-shells are also analysed.

  4. Simulation of the formation of two-dimensional Coulomb liquids and solids in dusty plasmas

    International Nuclear Information System (INIS)

    Hwang, H.H.; Kushner, M.J.

    1997-01-01

    Dust particle transport in low-temperature plasmas has recently received considerable attention due to the desire to minimize contamination of wafers during plasma processing of microelectronics devices. Laser light scattering observations of dust particles near wafers in reactive-ion-etching (RIE) radio frequency (rf) discharges have revealed clouds which display collective behavior. These observations have motivated experimental studies of the Coulomb liquid and solid properties of these systems. In this paper, we present results from a two-dimensional model for dust particle transport in RIE rf discharges in which we include particle-particle Coulomb interactions. We predict the formation of Coulomb liquids and solids. These predictions are based both on values of Γ>2 (liquid) and Γ>170 (solid), where Γ is the ratio of electrostatic potential energy to thermal energy, and on crystal-like structure in the pair correlation function. We find that Coulomb liquids and solids composed of trapped dust particles in RIE discharges are preferentially formed with increasing gas pressure, decreasing particle size, and decreasing rf power. We also observe the ejection of particles from dust crystals which completely fill trapping sites, as well as lattice disordering followed by annealing and refreezing. copyright 1997 American Institute of Physics

  5. Classical- and quantum mechanical Coulomb scattering

    International Nuclear Information System (INIS)

    Gratzl, W.

    1987-01-01

    Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)

  6. Coulomb Correlations Intertwined with Spin and Orbital Excitations in LaCoO_{3}.

    Science.gov (United States)

    Tomiyasu, K; Okamoto, J; Huang, H Y; Chen, Z Y; Sinaga, E P; Wu, W B; Chu, Y Y; Singh, A; Wang, R-P; de Groot, F M F; Chainani, A; Ishihara, S; Chen, C T; Huang, D J

    2017-11-10

    We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO_{3} to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO_{3}. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.

  7. Electronic structure of PrBa2Cu3O7: A local-spin-density approximation with on-site Coulomb interaction

    International Nuclear Information System (INIS)

    Biagini, M.; Calandra, C.; Ossicini, S.

    1995-01-01

    Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa 2 Cu 3 O 7 (PBCO). We have performed linear muffin-tin orbital--atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a Cu II oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between Cu I and Cu II . The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa 2 Cu 3 O 7

  8. Quasi-exactly solvable relativistic soft-core Coulomb models

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  9. submitter Scattering of halo nuclei on heavy targets at energies around the Coulomb barrier: The case of $^{11}$Be on $^{197}$Au

    CERN Document Server

    Pesudo, V; Moro, A M; Lay, J A; Nácher, E; Gómez-Camacho, J; Tengblad, O; Acosta, L; Alcorta, M; Alvarez, M A G; Andreoiu, C; Bender, P C; Braid, R; Cubero, M; Di Pietro, A; Fernández-García, J P; Figuera, P; Fisichella, M; Fulton, B R; Garnsworthy, A B; Hackman, G; Hager, U; Kirsebom, O S; Kuhn, K; Lattuada, M; Marquínez-Durán, G; Martel, I; Miller, D; Moukaddam, M; O'Malley, P D; Perea, A; Rajabali, M M; Sánchez-Benítez, A M; Sarazin, F; Scuderi, V; Svensson, C E; Unsworth, C; Wang, Z M

    2017-01-01

    This work reports on the scattering of $^{11}$Be on $^{197}$Au at energies around and below the Coulomb barrier. By experimentally identifying the elastic scattering, inelastic scattering and breakup channels, and comparing them with different calculations, valuable information on the $^{11}$Be structure and its $B(E1$) distribution to the continuum are obtained. On top of that, a deeper understanding of the scattering process at low energies is achieved for reactions of this kind, making these studies extendable to other loosely-bound systems like $^{17,19}$C.

  10. Sensitivity of Coulomb stress changes to slip models of source faults: A case study for the 2011 Mw 9.0 Tohoku-oki earthquake

    Science.gov (United States)

    Wang, J.; Xu, C.; Furlong, K.; Zhong, B.; Xiao, Z.; Yi, L.; Chen, T.

    2017-12-01

    Although Coulomb stress changes induced by earthquake events have been used to quantify stress transfers and to retrospectively explain stress triggering among earthquake sequences, realistic reliable prospective earthquake forecasting remains scarce. To generate a robust Coulomb stress map for earthquake forecasting, uncertainties in Coulomb stress changes associated with the source fault, receiver fault and friction coefficient and Skempton's coefficient need to be exhaustively considered. In this paper, we specifically explore the uncertainty in slip models of the source fault of the 2011 Mw 9.0 Tohoku-oki earthquake as a case study. This earthquake was chosen because of its wealth of finite-fault slip models. Based on the wealth of those slip models, we compute the coseismic Coulomb stress changes induced by this mainshock. Our results indicate that nearby Coulomb stress changes for each slip model can be quite different, both for the Coulomb stress map at a given depth and on the Pacific subducting slab. The triggering rates for three months of aftershocks of the mainshock, with and without considering the uncertainty in slip models, differ significantly, decreasing from 70% to 18%. Reliable Coulomb stress changes in the three seismogenic zones of Nanki, Tonankai and Tokai are insignificant, approximately only 0.04 bar. By contrast, the portions of the Pacific subducting slab at a depth of 80 km and beneath Tokyo received a positive Coulomb stress change of approximately 0.2 bar. The standard errors of the seismicity rate and earthquake probability based on the Coulomb rate-and-state model (CRS) decay much faster with elapsed time in stress triggering zones than in stress shadows, meaning that the uncertainties in Coulomb stress changes in stress triggering zones would not drastically affect assessments of the seismicity rate and earthquake probability based on the CRS in the intermediate to long term.

  11. Single-photon Coulomb explosion of methanol using broad bandwidth ultrafast EUV pulses.

    Science.gov (United States)

    Luzon, Itamar; Jagtap, Krishna; Livshits, Ester; Lioubashevski, Oleg; Baer, Roi; Strasser, Daniel

    2017-05-31

    Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H 2 O + , which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

  12. Intermediate energy heavy ion reactions. A program for CELSIUS

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1986-02-01

    The accelerator system under construction in Uppsala with the ECR-source + the K equals 200 synchrocyclotron + the CELSIUS synchrotron ring for storage, cooling and acceleration opens up possibilities for a very fruitful heavy ion physics program. Some recently obtained results and some recent ideas on intermediate energy reactions are discussed and speculations are made about some experiments where the unconventional qualities of CELSIUS beams could be utilized. (author)

  13. Compound nuclei, binary decay, and multifragmentation in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-07-01

    Hot compound nuclei, frequently produced in intermediate-energy reactions through a variety of processes, are shown to be an important and at times dominant source of complex fragments. 13 refs., 12 figs

  14. Coulomb interaction in atomic and nuclear physics: Inner-Shell excitation, Coulomb dissociation of nuclei, and nuclear polarizability in electronic atoms

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1984-07-01

    In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de

  15. (Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions)

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  16. Determination of S_1_7 from systematic analyses on "8B Coulomb breakup with the Eikonal-CDCC method

    International Nuclear Information System (INIS)

    Ogata, K.; Matsumoto, T.; Yamashita, N.; Kamimura, M.; Yahiro, M.; Iseri, Y.

    2003-01-01

    Systematic analysis of "8B Coulomb dissociation with the Asymptotic Normalization Coefficient (ANC) method is proposed to determine the astrophysical factor S_1_7(0) accurately. An important advantage of the analysis is that uncertainties of the extracted S_1_7(0) coming from the use of the ANC method can quantitatively be evaluated, in contrast to previous analyses using the Virtual Photon Theory (VPT). Calculation of measured spectra in dissociation experiments is done by means of the method of Continuum-Discretized Coupled-Channels (CDCC). From the analysis of "5"8Ni("8B,"7Be+p) "5"8Ni at 25.8 MeV, S_1_7(0) = 22.83 ± 0.51(theo) ± 2.28(expt) (eVb) is obtained; the ANC method turned out to work in this case within 1% of error. Preceding systematic analysis of experimental data at intermediate energies, we propose hybrid (HY) Coupled-Channels (CC) calculation of "8B Coulomb dissociation, which makes numerical calculation much simple, retaining its accuracy. The validity of the HY calculation is tested for "5"8Ni("8B,"7Be+p) "5"8Ni at 240 MeV. The ANC method combined with the HY CC calculation is shown to be a powerful technique to obtain a reliable S_1_7(0).

  17. Photofissility of heavy nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Arruda Neto, J.D.T.; Likhachev, V.P.; Goncalves, M.

    2002-10-01

    We use the recently developed MCMC/MCEF (Multi Collisional Monte Carlo plus Monte Carlo for Evaporation-Fission calculations) model to calculate the photo fissility and the photofission cross section at intermediate energies for the 243 Am and for 209 Bi, and compare them to results obtained for other actinides and to available experimental data. As expected, the results for 243 Am are close to those for 237 Np. The fissility for pre actinide nuclei is nearly one order of magnitude lower than that for the actinides. Both fissility and photofission cross section for 209 Bi are in good agreement with the experimental data. (author)

  18. Program TOTELA calculating basic cross sections in intermediate energy region by using systematics

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Niita, Koji

    2000-01-01

    Program TOTELA can calculate neutron- and proton-induced total, elastic scattering and reaction cross sections and angular distribution of elastic scattering in the intermediate energy region from 20 MeV to 3 GeV. The TOTELA adopts the systematics modified from that by Pearlstein to reproduce the experimental data and LA150 evaluation better. The calculated results compared with experimental data and LA150 evaluation are shown in figures. The TOTELA results can reproduce those data almost well. The TOTELA was developed to fill the lack of experimental data of above quantities in the intermediate energy region and to use for production of JENDL High Energy File. In the case that there is no experimental data of above quantities, the optical model parameters can be fitted by using TOTELA results. From this point of view, it is also useful to compare the optical model calculation by using RIPL with TOTELA results, in order to verify the parameter quality. Input data of TOTELA is only atomic and mass numbers of incident particle and target nuclide and input/output file names. The output of TOTELA calculation is in ENDF-6 format used in the intermediate energy nuclear data files. It is easy to modify the main routine by users. Details are written in each subroutine and main routine

  19. Macroscopic/microscopic simulation of nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-01-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation

  20. Review of recent experiments in intermediate energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P D [Carnegie-Mellon Univ., Pittsburgh, PA (USA)

    1978-01-01

    The data generated at intermediate-energy accelerator facilities has expanded rapidly over the past few years. A number of recent experiments chosen for their impact on nuclear structure questions are reviewed. Proton scattering together with pionic and muonic atom X-ray measurements are shown to be giving very precise determinations of gross nuclear properties. Pion scattering and reaction data although less precise, are starting to generate a new understanding of wave functions of specific nuclear states. Specific examples where new unpublished data are now available are emphasized. In addition, other medium-energy experiments that are starting to contribute to nuclear structure physics are summarized.

  1. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  2. Characteristics of intermediate-energy nucleons emitted from 50 GeV

    International Nuclear Information System (INIS)

    Goyal, D.P.; Singh, S.; Arya, N.S.

    1984-01-01

    The multiplicity and angular distributions of intermediate-energy (grey) nucleons are studied from 50 GeV π - -nucleus data and compared with those available from π - -nucleus and p-nucleus interactions at other energies. The value of is found to be dependent both on the energy as well as on the projectile. The former variation is attributable to kinematics and the latter explainable on the basis of the additive quark model. The angular distribution of grey particles is found to be independent of energy, projectile and target, which supports the view that grey particles are chiefly due to knock-on recoiling protons. The various versions of the cascade model, however, are unable to explain any of the observed features of grey-particle distributions

  3. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  4. Trinucleon asymptotic normalization constants including Coulomb effects

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.

    1982-01-01

    Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects

  5. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  6. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  7. Coulomb two-body problem with internal structure

    International Nuclear Information System (INIS)

    Kuperin, Yu.A.; Makarov, K.A.; Mel'nikov, Yu.B.

    1988-01-01

    The methods of the theory of extensions to an enlarged Hilbert space are used to construct a model of the interaction of the external (Coulomb) and internal (quark) channels in the two-body problem. The mutual influence of the spectra of the corresponding channel Hamiltonians is studied: it leads, in particular, to a rearrangement of the spectra of hadronic atoms. An explicit representation is obtained for the S matrix, and its singularities on the energy shell are studied

  8. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  9. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  10. Low rank factorization of the Coulomb integrals for periodic coupled cluster theory.

    Science.gov (United States)

    Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas

    2017-03-28

    We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N 4 ) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.

  11. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  12. Coulomb branches with complex singularities

    Science.gov (United States)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  13. Fragment mass distribution of proton-induced spallation reaction with intermediate energy

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    The test of part benchmark of SHIELD code is finished. The fragment cross section and mass distribution and excitation function of the residual nuclei from proton-induced spallation reaction on thin Pb target with intermediate energy have been calculated by SHIELD code. And the results are in good agreement with measured data. The fragment mass distribution of the residual nuclei from proton-induced spallation reaction on thick Pb target with incident energy 1.6 GeV have been simulated

  14. Intersite Coulomb interaction and Heisenberg exchange

    NARCIS (Netherlands)

    Eder, R; van den Brink, J.; Sawatzky, G.A

    1996-01-01

    Based on exact diagonalization results for small clusters we discuss the effect of intersite Coulomb repulsion in Mott-Hubbard or charge transfers insulators. Whereas the exchange constant J for direct exchange is enhanced by intersite Coulomb interaction, that for superexchange is suppressed. The

  15. Poisson equation in the Kohn-Sham Coulomb problem

    OpenAIRE

    Manby, F. R.; Knowles, Peter James

    2001-01-01

    We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.

  16. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  17. Coulomb effects in particle distributions inclusive

    International Nuclear Information System (INIS)

    Erazmus, B.; Martin, L.; Pluta, J.; Stavinky, A.

    1997-01-01

    Single pion distributions from central 158 A.GeV/c Pb + Pb collisions measured by the NA44 experiment show the effect of Coulomb interaction with the net charge produced during the reaction. Coulomb effects are analyzed with the help of the microscopic model RQMD and a model including the Coulomb interaction. Different sets of kinematical characteristics of the net charge have been used to reproduce the experimental data and a strong sensitivity to the charge value has been found. This study has evidenced the non-negligible influence of a Coulomb charge, present in the region of the central rapidity in heavy ion collisions on the inclusive distributions of the produced particles. A more thorough analysis of the data obtained from the experiment NA44 is now under way to take into account the hyperon decay that can modify the fraction of different particles, particularly at low transverse momenta

  18. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  19. Statistical and dynamical aspects of intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs

  20. Statistical and dynamical aspects of intermediate energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs.

  1. Comment on 'analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation'

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1994-01-01

    We demonstrate that the analytic solution for the set of energy eigenvalues of the semi-relativistic Coulomb problem reported by B. and L. Durand is in clear conflict with an upper bound on the ground-state energy level derived by some straightforward variational procedure. (authors)

  2. Nuclear data evaluation at intermediate energies: An introduction

    International Nuclear Information System (INIS)

    Koning, A.J.

    2001-01-01

    An outline is presented of the status of nuclear data evaluation for intermediate energies. Our specific contribution to the field concerns neutron and proton transport data libraries, for energies below about 150 MeV. The evaluated data are calculated and stored in ENDF6-format with the computer codes ECIS96, GNASH and MINGUS. New phenomenological optical model potentials up to 200 MeV are presented and we illustrate the library production with a short outline of the other employed physical methods. The calculated results are compared with the available experimental data. A 68 MeV neutron transmission experiment on iron has been analyzed with MCNPX using the Los Alamos LA150 neutron data library, the ECN/BRC 150 MeV neutron data library and with the intranuclear cascade code LAHET. The clear improvement by using the data libraries is confirmed. (author)

  3. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  4. Tur\\'an type inequalities for regular Coulomb wave functions

    OpenAIRE

    Baricz, Árpád

    2015-01-01

    Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.

  5. Coulomb collisions of ring current particles: Indirect source of heat for the ionosphere

    Science.gov (United States)

    Cole, K. D.

    1975-01-01

    The additional energy requirements of the topside ionosphere during a magnetic storm are less than one quarter of the ring current energy. This energy is supplied largely by Coulomb collisions of ring current protons of energy less than about 20 keV with background thermal electrons which conduct the heat to the ionosphere. Past criticisms are discussed of this mechanism for the supply of energy to the SAR-arc and neighboring regions of the ionosphere.

  6. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. (Oak Ridge National Lab., TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); Kamel, A.M. (Ain Shams Univ., Cairo (Egypt)); Santiago, H.T. (USDOE, Washington, DC (United States))

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  7. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. [Oak Ridge National Lab., TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); Kamel, A.M. [Ain Shams Univ., Cairo (Egypt); Santiago, H.T. [USDOE, Washington, DC (United States)

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  8. Isovector couplings for nucleon charge-exchange reactions at intermediate energies

    International Nuclear Information System (INIS)

    Love, W.G.; Nakayama, K.; Franey, M.A.

    1987-01-01

    The isovector parts of the effective nucleon-nucleon interaction are studied by examination of the reaction /sup 14/C(p,n) at intermediate energies near zero momentum transfer with use of recently developed G-matrix and free--t-matrix interactions. The spin-independent coupling (V/sub tau/) exhibits a strong energy and density dependence which, in the case of the G matrix based on the Bonn potential, significantly improves the agreement between calculated values of chemical bondV/sub σ//sub tau//V/sub tau/chemical bond 2 at q = 0 and those recently extracted from the reaction /sup 14/C

  9. Super-Coulombic atom-atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  10. Coulomb excitation of the proton-dripline nucleus Na20

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-10-01

    The low-energy structure of the proton dripline nucleus Na20 has been studied using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. A 1.7-MeV/nucleon Na20 beam of ~5×106 ions/s was Coulomb excited by a 0.5-mg/cm2natTi target. Scattered beam and target particles were detected by the BAMBINO segmented Si detector while γ rays were detected by two TIGRESS HPGe clover detectors set perpendicular to the beam axis. Coulomb excitation from the 2+ ground state to the first excited 3+ and 4+ states was observed, and B(λL) values were determined using the 2+→0+ de-excitation in Ti48 as a reference. The resulting B(λL)↓ values are B(E2;3+→2+)=55±6e2fm4 (17.0±1.9 W.u.), B(E2;4+→2+)=35.7±5.7e2fm4 (11.1±1.8 W.u.), and B(M1;4+→3+)=0.154±0.030μN2 (0.086±0.017 W.u.). These measurements provide the first experimental determination of B(λL) values for this proton dripline nucleus of astrophysical interest.

  11. Coulomb systems distorted at short distances in atomic and nuclear physics

    International Nuclear Information System (INIS)

    Popov, V.S.

    1987-01-01

    In systems bound by the Coulomb interaction distorted at short distances there may appear, under certain conditions, a rearrangment of atomic spectrum (or the Zel'dovich effect). Specific features of this effect are discussed for states with an arbitrary angular momentum l (both with and without the absorption). The equation is studied which connects nuclear level shifts with the low-energy scattering parameters a l , r l . The conditions have been found under which the rearrangement of spectrum is replaced by oscillations of atomic levels. The Coulomb renormalization of scattering lengths and that of effective ranges is discussed. Some manifestations of the Zel'dovich effect in the physics of hadronic atoms and mesomolecules are considered

  12. Coulomb excitations of low lying levels in 127I and 197Au

    International Nuclear Information System (INIS)

    Singh, K.P.; Tayal, D.C.; Hans, H.S.

    1988-01-01

    The low-lying levels of 127 I and 197 Au were Coulomb excited with 3.54 to 4.2 MeV protons. The reduced quadrupole transition probabilities of the 203, 374.9, 418, 618.4, 628.7, 651.1 and 745.5 keV states of 127 I, and the 268.8, 278.9, 502, and 547.5 keV states of 197 Au was measured from Coulomb excitation by observing the de-excitation gamma rays with a high resolution Ge(Li) detector. The low-energy protons were used for the first time to Coulomb-excite the two levels at 618.4 and 651.1 keV of 127 I and one level at 502 keV of 197 Au. The present experimental results are found in agreement with the existing experimental data except the B(E2) value of the level at 268.8 keV of 197 Au. (author). 4 figs., 4 tabs., 32 refs

  13. New calculations and measurements of the Coulomb cross-section for the production of direct electron pairs by high energy nuclei

    Science.gov (United States)

    Derrickson, J. H.; Dake, S.; Dong, B. L.; Eby, P. B.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Iyono, A.; King, D. T.

    1989-01-01

    Recently, new calculations were made of the direct Coulomb pair cross section that rely less in arbitrary parameters. More accurate calculations of the cross section down to low pair energies were made. New measurements of the total direct electron pair yield, and the energy and angular distribution of the electron pairs in emulsion were made for O-16 at 60 and 200 GeV/amu at S-32 at 200 GeV/amu which give satisfactory agreement with the new calculations. These calculations and measurements are presented along with previous accelerator measurements made of this effect during the last 40 years. The microscope scanning criteria used to identify the direct electron pairs is described. Prospects for application of the pair method to cosmic ray energy measurements in the region 10 (exp 13) to 10 (exp 15) eV/amu are discussed.

  14. Experiments on Coulomb ionization by charged particles

    International Nuclear Information System (INIS)

    Andersen, J.U.; Laegsgaard, E.; Lund, M.

    1978-01-01

    Inner-shell ionization by light projectiles, i.e., in very asymmetric collisions, is often denoted 'Coulomb ionization' because it is caused by the Coulomb interaction between the electron and the projectile. Although with little justification, the term is also used to distinquish such processes, in which the projectile Coulomb field is a small perturbation, from ionization in more violent, nearly symmetric ion-atom collisions. A discussion of Coulomb ionization of atomic K shells is given, with emphasis on experimental methods and results. The discussion is not intended as a review of the field but rather as a progress report on the anthor's work on the subject. A more detailed account was recently presented at the ICPEAC meeting in Paris. (Auth.)

  15. Use of the Coulomb excitation by light and heavy ions for quantitative analysis

    International Nuclear Information System (INIS)

    Craciun, L.; Racolta, P. M.; Tripadus, V.; Dragulescu, E.; Serbanut, C.

    2001-01-01

    It is well known that in many cases thin layers with specific properties fulfil the same demands as former bulk materials and, although they seem to be more expensive, the general tendency has proven them to be cheaper. Therefore it might be a permanent task for physicists to develop methods, so far only applied in scientific laboratories, to a standard that might be feasible and economically justified to use them to a much larger extent. The reason for the very slow introduction of new analytical techniques is certainly the fear that instruments and apparatus used in basic research do not fulfil the standards of reliability, permanent availability and easy handling, which are important requirements for industrial applications. The knowledge of the slowing down of ions in crossing matter is of fundamental importance in methods of materials analysis using beams of charged atomic particles, Depth determination is based directly on the energy lost by the probing particles. The energy loss affects both quantitative and qualitative analyses. The physics of energy loss phenomena is very complex, involving many kinds of interactions between the projectile ion, target nuclei, and target electrons. Because of their significance in many fields of physics, these phenomena have been subject to intense studies since the beginning of the century. The theoretical treatment has been reviewed, among others, by Bohr (1948), Whaling (1958), Fano (1963), Jackson (1962,1975), Bichel (1970), Sigmund (1975), Ahlen (1980), Littmark and Ziegler (1980), Ziegler (1977, 1980), Ziegler et al. (1985). The experimental methods have been reviewed and investigated by, e.g., Chu (1979), Brauer (1987), Mertens (1987), Powers (1989). - Two well known phenomena can be used for the production of gamma-rays in bombardments with charged projectiles: a) nuclear reactions involving incident energies near and above the Coulomb barrier; in this case gamma-rays arise from the de-excitation of the product

  16. Separable expansions for local potentials with Coulomb interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1976-01-01

    If two particles are interacting via a short range potential and a repulsive Coulomb potential the t matrix can be written as a sum of the Coulomb and the ''nuclear'' t matrices. In order to solve the three-nucleon problem with Coulomb interactions usually we need a separable representation of this ''nuclear'' t matrix. A recently proposed method for finding a separable expansion for local potentials is here extended to find a rapidly convergent separable expansion, with analytic form factors, for the ''nuclear'' part of the t matrix of a local potential, in the presence of Coulomb interactions. The method is illustrated for a two-term Malfliet-Tjon potential. In each rank the ''nuclear'' phase shift is close to the corresponding phase shift when the Coulomb interaction is switched off

  17. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.

    Science.gov (United States)

    Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian

    2013-12-11

    We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.

  18. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  19. Kaon production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Russkikh, V.N.; Ivanov, Yu.B.

    1992-01-01

    Production of positive kaons in nuclear collisions at intermediate energies (∝ 1-2 GeV/nucleon) is studied within the 3-dimensional fluid dynamics combined with the hadrochemical kinetics for strangeness production. Sensitivity of the kaon probe to a form of the nuclear equation of state is analyzed. The model reproduces total and differential cross sections of Ne+NaF→K + +X and Ne+Pb→K + +X reactions at E lab =2.1 GeV/nucleon, provided a soft equation of state is used. The pion-production data are also well described employing the same equation of state. Predictions are made for the current experiment on kaon production at the SIS accelerator. The obtained results are compared with the predictions of other models. (orig.)

  20. Angular distribution of elastic scattering induced by 17F on medium-mass target nuclei at energies near the Coulomb barrier

    Science.gov (United States)

    Zhang, G. L.; Zhang, G. X.; Lin, C. J.; Lubian, J.; Rangel, J.; Paes, B.; Ferreira, J. L.; Zhang, H. Q.; Qu, W. W.; Jia, H. M.; Yang, L.; Ma, N. R.; Sun, L. J.; Wang, D. X.; Zheng, L.; Liu, X. X.; Chu, X. T.; Yang, J. C.; Wang, J. S.; Xu, S. W.; Ma, P.; Ma, J. B.; Jin, S. L.; Bai, Z.; Huang, M. R.; Zang, H. L.; Yang, B.; Liu, Y.

    2018-04-01

    The elastic scattering angular distributions were measured for 50- and 59-MeV 17F radioactive ion beam on a 89Y target. The aim of this work is to study the effect of the breakup of the proton halo projectile on the elastic scattering angular distribution. The experimental data were analyzed by means of the optical model with the double-folding São Paulo potential for both real and imaginary parts. The theoretical calculations reproduced the experimental data reasonably well. It is shown that the method of the data analysis is correct. In order to clarify the difference observed at large angles for the 59-MeV incident energy data, Continuum-Discretized Coupled-Channels (CDCC) calculations were performed to consider the breakup coupling effect. It is found that the experimental data show the Coulomb rainbow peak and that the effect of the coupling to the continuum states is not very significant, producing only a small hindrance of the Coulomb rainbow peak and a very small enhancement of the elastic scattering angular distribution at backward angles, suggesting that the multipole response of the neutron halo projectiles is stronger than that of the proton halo systems.

  1. Monte Carlo calculations for intermediate-energy standard neutron field

    International Nuclear Information System (INIS)

    Joneja, O.P.; Subbukutty, K.; Iyengar, S.B.D.; Navalkar, M.P.

    Intermediate-Energy Standard Neutron Field (ISNF) which produces a well characterised spectrum in the energy range of interest for fast reactors including breeders, has been set up at NBS using thin enriched 235 U fission sources. A proposal has been made for setting up a similar facility at BARC using however, easily available natural U instead of enriched U sources, to start with. In order to simulate the neutronics of such a facility Monte Carlo method of calculations has been adopted and developed. The results of these calculations have been compared with those of NBS and it is found that there may be a maximum difference of 10% in spectrum characteristics for the two cases of using thick and thin fission sources. (K.B.)

  2. Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis

    International Nuclear Information System (INIS)

    Schulz, T. F.

    2007-01-01

    In this dissertation by Thorsten Frank Schulz the intermediate steps necessary to realise the 2000-Watt Society in Switzerland are examined. An analysis of an energy-economic scenario shows that the 2000-Watt Society should be seen as a long-term goal. According to the author, the major changes required to allow the implementation of this project concern energy-transformation and energy-demand technologies. Electricity will, according to the author, play an important role in a service-oriented society in the future. In such a transformation even intermediate steps are associated with considerable expense. The aims of the 2000-Watt Society project are listed. Energy and CO 2 balances for the domestic and transport sectors are presented and discussed. Complementary analyses are presented concerning fuel cells and wood-based fuel technologies. Finally, the implications of the 2000-Watt society and the effects of technological change are summarised and an outlook is presented

  3. Ionization of multielectronic atoms by proton impact at high and intermediate energies

    International Nuclear Information System (INIS)

    Fainstein, P.D.; Ponce, V.H.; Rivarola, R.D.

    1988-01-01

    In this work, it is studied Ne ionization by proton impact at high and intermediate energies using the CDW-EIS model. Calculations on simple and double differential cross sections are presented. The results are compared to available experimental data. (A.C.A.S.) [pt

  4. Tensor polarized deuteron targets for intermediate energy physics experiments

    International Nuclear Information System (INIS)

    Meyer, W.; Schilling, E.

    1985-03-01

    At intermediate energies measurements from a tensor polarized deuteron target are being prepared for the following reactions: the photodisintegration of the deuteron, the elastic pion-deuteron scattering and the elastic electron-deuteron scattering. The experimental situation of the polarization experiments for these reactions is briefly discussed in section 2. In section 3 the definitions of the deuteron polarization and the possibilities to determine the vector and tensor polarization are given. Present tensor polarization values and further improvements in this field are reported in section 4. (orig.)

  5. Alpha particles-and 3He inelastic scattering by 124Sn in the coulomb barrier region

    International Nuclear Information System (INIS)

    Appoloni, C.R.

    1976-01-01

    Angular distributions for inelastic scattering of α and 3 He particles in 124 Sn at the incident energies around Coulomb barrier were measured using the 8UD Pelletron Tandem Accelerator of The University of Sao Paulo. The results were analysed by DWBA with a collective form factor including the effects due to the interference between coulomb and nuclear excitations with the code PATIWEN (Ba75). The nuclear deformation parameters for the one phonon levels (2 + and 3 - ) have been obtained. (Author) [pt

  6. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  7. Dissipative NEGF methodology to treat short range Coulomb interaction: Current through a 1D nanostructure.

    Science.gov (United States)

    Martinez, Antonio; Barker, John R; Di Prieto, Riccardo

    2018-06-13

    A methodology describing Coulomb blockade in the Non-equilibrium Green Function formalism is presented. We carried out ballistic and dissipative simulations through a 1D quantum dot using an Einstein phonon model. Inelastic phonons with different energies have been considered. The methodology incorporates the short-range Coulomb interaction between two electrons through the use of a two-particle Green's function. Unlike previous work, the quantum dot has spatial resolution i.e. it is not just parameterized by the energy level and coupling constants of the dot. Our method intends to describe the effect of electron localization while maintaining an open boundary or extended wave function. The formalism conserves the current through the nanostructure. A simple 1D model is used to explain the increase of mobility in semi-crystalline polymers as a function of the electron concentration. The mechanism suggested is based on the lifting of energy levels into the transmission window as a result of the local electron-electron repulsion inside a crystalline domain. The results are aligned with recent experimental findings. Finally, as a proof of concept, we present a simulation of a low temperature resonant structure showing the stability diagram in the Coulomb blockade regime. . © 2018 IOP Publishing Ltd.

  8. Screening of Coulomb interaction and many-body perturbation theory in atoms

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.

    1988-01-01

    Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example

  9. Coulomb focusing and path'' interference of autoionizing electrons produced in 10 keV He sup + + He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, J.K. (Lawrence Livermore National Lab., CA (USA)); Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (USA)); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. (Oak Ridge National Lab., TN (USA))

    1991-03-13

    Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s{sup 2} {sup 1}S autoionizing state measured near 0{degree} following low energy He{sup +} + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0{degree}. 14 refs., 7 figs.

  10. Spin observables at intermediate energies: a tool in viewing the nucleus

    International Nuclear Information System (INIS)

    McClelland, J.B.

    1986-01-01

    This paper attempts to summarize some of the advances made in intermediate nuclear physics through measurements of spin observables, notably in the range of bombarding energies from 100 to 1000 MeV. Relative to measurements of cross section, spin observables offer a highly selective filter in viewing the nucleus. Their general utility is found in their sensitivity to particular nuclear transitions and is further augmented by their simple connections to the NN force. The advantage of higher energies is apparent from the dominance of single-step mechanisms even at large energy losses where general nuclear spin responses may be made. Experimentally, this is an energy range where efficient, high-analyzing-power polarimeters can be coupled with high resolution detection techniques. 29 refs., 5 figs

  11. Influence of long-range Coulomb interaction in velocity map imaging.

    Science.gov (United States)

    Barillot, T; Brédy, R; Celep, G; Cohen, S; Compagnon, I; Concina, B; Constant, E; Danakas, S; Kalaitzis, P; Karras, G; Lépine, F; Loriot, V; Marciniak, A; Predelus-Renois, G; Schindler, B; Bordas, C

    2017-07-07

    The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.

  12. Coulomb excitations for a short linear chain of metallic shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhemchuzhna, Liubov, E-mail: lzhemchuzhna@unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Gao, Bo [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  13. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    Science.gov (United States)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-01

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties. PMID:25592417

  14. Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution

    Science.gov (United States)

    Baradaran, M.; Panahi, H.

    2018-05-01

    Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.

  15. Incorporation of threshold phenomena in the three-body Coulomb continuum wavefunctions

    International Nuclear Information System (INIS)

    Berakdar, J.

    1996-01-01

    In this work a three-body Coulomb wavefunction for the description of two continuum electrons moving in the field of a nucleus is constructed such that the Wannier threshold law for double escape is reproduced and the asymptotic Coulomb boundary conditions as well as the Kato cusp conditions are satisfied. It is shown that the absolute value of the total cross section, as well as the spin asymmetry, are well described by the present approach. Further, the excess-energy sharing between the two escaping electrons is calculated and analysed in light of the Wannier theory predictions. This is the first time an analytical three-body wavefunction is presented which is asymptotically exact and capable of describing threshold phenomena. 37 refs., 3 figs

  16. Coulomb Effects in Few-Body Reactions

    Directory of Open Access Journals (Sweden)

    Deltuva A.

    2010-04-01

    Full Text Available The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the momentum-space description of three- and four-body nuclear reactions. The necessity for the renormalization of the scattering amplitudes and the reliability of the method is demonstrated. The Coulomb effect on observables is discussed.

  17. Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals

    Science.gov (United States)

    Wang, Yuxuan; Nandkishore, Rahul M.

    2017-09-01

    In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.

  18. Selfconsistent theory of Coulomb mixing in nuclei

    International Nuclear Information System (INIS)

    Pyatov, N.I.

    1978-01-01

    The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated

  19. Resonances in the two centers Coulomb system

    International Nuclear Information System (INIS)

    Seri, Marcello

    2012-01-01

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  20. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  1. Spin observables in proton-neutron scattering at intermediate energy

    International Nuclear Information System (INIS)

    Spinka, H.

    1986-05-01

    A summary of np elastic scattering spin measurements at intermediate energy is given. Preliminary results from a LAMPF experiment to measure free neutron-proton elastic scattering spin-spin correlation parameters are presented. A longitudinally polarized proton target was used. These measurements are part of a program to determine the neutron-proton amplitudes in a model independent fashion at 500, 650, and 800 MeV. Some new proton-proton total cross sections in pure helicity states (Δσ/sub L/(pp)) near 3 GeV/c are also given. 37 refs., 2 figs

  2. A novel approach in Eliashberg theory of superconductivity with ab-initio static and dynamic Coulomb interaction applicable for real materials

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, Arkadiy; Sanna, Antonio; Sharma, Sangeeta; Dewhurst, John Kay; Gross, E.K.U. [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)

    2016-07-01

    In standard Eliashberg methods the Coulomb interaction is usually restricted to the use of a single phenomenological parameter μ{sup *} adjusted to give the right superconducting critical temperature (T{sub c}). In this work we present a parameter-free Eliashberg approach, in which we treat the screened Coulomb interaction within the random phase approximation (RPA) in its static and full dynamic limit. The full energy range of the Coulomb interaction is taken into account, which becomes computationally affordable with the introduction of a suitable isotropic approximation. We have tested the method on a set of conventional superconductors. We will discuss the reliability of the predicted T{sub c} both by using a static and a dynamic Coulomb interaction.

  3. The Yang-Mills vacuum wave functional in Coulomb gauge

    International Nuclear Information System (INIS)

    Campagnari, Davide R.

    2011-01-01

    Yang-Mills theories are the building blocks of today's Standard Model of elementary particle physics. Besides methods based on a discretization of space-time (lattice gauge theory), also analytic methods are feasible, either in the Lagrangian or in the Hamiltonian formulation of the theory. This thesis focuses on the Hamiltonian approach to Yang-Mills theories in Coulomb gauge. The thesis is presented in cumulative form. After an introduction into the general formulation of Yang-Mills theories, the Hamilton operator in Coulomb gauge is derived. Chap. 1 deals with the heat-kernel expansion of the Faddeev-Popov determinant. In Chapters 2 and 3, the high-energy behaviour of the theory is investigated. To this purpose, perturbative methods are applied, and the results are compared with the ones stemming from functional methods in Coulomb and Landau gauge. Chap. 4 is devoted to the variational approach. Variational ansatzes going beyond the Gaussian form for the vacuum wave functional are considered and treated using Dyson-Schwinger techniques. Equations for the higher-order variational kernels are derived and their effects are estimated. Chap. 5 presents an application of the previously obtained propagators, namely the evaluation of the topological susceptibility, which is related to the mass of the η meson. Finally, a short overview of the perturbative treatment of dynamical fermion fields is presented.

  4. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  5. An experimental investigation on reduced radiological penumbra for intermediate energy x-rays: Implications for small field radiosurgery

    Science.gov (United States)

    Keller, Brian Michael

    Current day external beam radiation therapy typically uses x-ray energies in the megavoltage (6--18 MV) or in the superficial/orthovoltage (80--350 kVp) energy ranges. It has been found that intermediate energy x-rays (those greater than orthovoltage but sub-megavoltage) may offer an advantage in the field of high precision radiation therapy such as in radiosurgery. This advantage is a reduction in the radiological penumbra associated with small (less than about 3 cm) radiation dose fields. A consequence of reduced radiological penumbra is a more homogenous, conformal dose distribution in the patient with dose escalation and organ sparing made more feasible. The objectives of this thesis were as follows: to produce and to characterize an intermediate energy x-ray beam, to establish a method of accurate penumbra measurement at the micron level for millimeter size fields, to measure the radiological penumbra of single small intermediate energy x-ray fields, and to show the clinical consequences of a multiple beam irradiation in a stereotactic head phantom. A maximum photon energy of 1.2 +/- 0.1 MeV was determined for the intermediate energy x-ray spectrum at the expense of a low dose rate. A digital microscope with a computer controlled translation stage was investigated for its ability to resolve steep dose gradients in Gafchromic EBT film for field sizes as small as 1 mm and for photon energies as low as 100 kVp. The microscope-film system resolved gradients to within about 30 mum, limited by the inherent spatial resolution of the film, the noise of the system, and the uncertainties of measurement. Penumbra widths were compared for 1.2 MV versus 6 MV for identical irradiation conditions. In some instances, there was a five-fold reduction in the radiological penumbra of single 1.2 MV x-ray beams. A multiple beam arc irradiation demonstrated that the advantages seen with single beams carry over to multiple beams. The benefits of reduced radiological penumbra for

  6. Eikonal representation of N-body Coulomb scattering amplitudes

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, K.; McKellar, B.H.J.

    1983-01-01

    A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands

  7. Selected results on strong and coulomb-induced correlations from the STAR experiment

    International Nuclear Information System (INIS)

    Sumbera, M.

    2007-01-01

    Using recent high-statistics STAR data from Au + Au and Cu + Cu collisions at full RHIC energy I discuss strong and Coulomb-induced final state interaction effects on identical (pi-pi) and non-identical (pi-XI) particle correlations. Analysis of pi-XI correlations reveals the strong and Coulomb-induced FSI effects, allowing for the first time to estimate spatial extension of pi and XI sources and the average shift between them. Source imaging techniques provide clean separation of details of the source function and are applied to the one-dimensional relative momentum correlation function of identical pions. For low momentum pions, and/or non-central collisions, a large departure from a single-Gaussian shape is observed. (author)

  8. The Coulomb potential in quantum mechanics and related topics

    International Nuclear Information System (INIS)

    Haeringen, H. van.

    1978-01-01

    This dissertation consists of an analytic study of the Coulomb interaction in nonrelativistic quantum mechanics and some related topics. The author investigates in a number of self-contained articles various interesting and important properties of the Coulomb potential. Some of these properties are shared by other potentials which also play a role in quantum mechanics. For such related interactions a comparative study is made. The principal difficulties in the description of proton-deuteron scattering and break-up reactions, due to the Coulomb interaction, are studied by working out a simple model. The bound states are studied for the Coulomb plus Yamaguchi potential, for the symmetric shifted Coulomb potential, and for local potentials with an inverse-distance-squared asymptotic behaviour. (Auth.)

  9. On rate-state and Coulomb failure models

    Science.gov (United States)

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  10. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1991-01-01

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do

  11. Coulomb Excitation of Neutron Deficient Sn-Isotopes using REX-ISOLDE

    CERN Multimedia

    Di julio, D D; Kownacki, J M; Marechal, F; Andreoiu, C; Siem, S; Perrot, F; Van duppen, P L E; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    It is proposed to study the evolution of the reduced transition probabilities, B(E2; 0$^{+} \\rightarrow$ 2$^{+}$), for neutron deficient Sn isotopes by Coulomb excitation in inverse kinematics using REX-ISOLDE and the MINIBALL detector array. Measurements of the reduced transition matrix element for the transition between the ground state and the first excited 2$^{+}$ state in light even-even Sn isotopes provide a means to study e.g. core polarization effects in the $^{100}$Sn core. Previous attempts to measure this quantity have been carried out using the decay of isomeric states populated in fusion evaporation reactions. We thus propose to utilize the unique opportunity provided by REX-ISOLDE, after the energy upgrade to 3.1 MeV/u, to use the more model-independent approach of Coulomb excitation to measure this quantity in a number of isotopes in this region.

  12. Sine-Gordon mean field theory of a Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    1997-12-31

    Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)

  13. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.; Talley, B. (comps.)

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I.

  14. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    International Nuclear Information System (INIS)

    Allred, J.C.; Talley, B.

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I

  15. Triple-differential cross section of the 208Pb(6Li, αd)208 Pb Coulomb breakup and astrophysical S-factor of the d(α,γ)6 Li reaction at extremely low energies

    International Nuclear Information System (INIS)

    Igamov, S.B.; Yarmukhamedov, R.

    1999-10-01

    A method of calculation of the triple-differential cross section of the 208 Pb( 6 Li, αd) 208 Pb Coulomb breakup at astrophysically relevant energies E of the relative motion of the breakup fragments, taking into account the three-body (α - d - 208 Pb) Coulomb effects and the contributions from the E1- and E2- multipoles, including their interference, has been proposed. The new results for the astrophysical S-factor of the direct radiative capture d(α, γ) 6 Li reaction at E ≤ 250 keV have been obtained. It is shown that the experimental triple-differential cross section of the 208 Pb( 6 Li, αd) 208 Pb Coulomb breakup can also be used to give information about the value of the modulus squared of the nuclear vertex constant for the virtual 6 Li → α + d. (author)

  16. Skinning of argon clusters by Coulomb explosion induced with an intense femtosecond laser pulse

    International Nuclear Information System (INIS)

    Sakabe, S.; Shirai, K.; Hashida, M.; Shimizu, S.; Masuno, S.

    2006-01-01

    The energy distributions of ions emitted from argon clusters Coulomb exploded at an intensity of 17 W/cm 2 with an intense femtosecond laser have been experimentally studied. The power m of energy E of the ion energy distribution (dN/dE∼E m ) is expected to be 1/2 for spherical ion clusters, but it is in fact reduced smaller than 1/2 as the laser intensity is decreased. This reduction can be well interpreted as resulting from the instantaneous ionization of the surface of the cluster. The validity of this interpretation was confirmed by experiments with double pulse irradiation. A cluster irradiated by the first pulse survives as a skinned cluster, and the remaining core part is Coulomb exploded by the second pulse. It is shown that a cluster can be skinned by an intense short laser pulse, and the laser-intensity dependence of the skinned layer thickness can be reasonably explained by the laser-induced space charge field created in the cluster

  17. Scaling laws and higher-order effects in Coulomb excitation of neutron halo nuclei

    International Nuclear Information System (INIS)

    Typel, S.; Baur, G.

    2008-01-01

    Essential properties of halo nuclei can be described in terms of a few low-energy constants. For neutron halo nuclei, analytical results can be found for wave functions and electromagnetic transition matrix elements in simple but well-adapted models. These wave functions can be used to study nuclear reactions; an especially simple and instructive example is Coulomb excitation. A systematic expansion in terms of small parameters can be given. We present scaling laws for excitation amplitudes and cross-sections. The results can be used to analyze experiments like 11 Be Coulomb excitation. They also serve as benchmark tests for more involved reaction theories. (orig.)

  18. Some studies in scatering by Coulomb modified nuclear potentials

    International Nuclear Information System (INIS)

    Laha, U.

    1988-01-01

    Recently, there has been a surge of interest in theoretical questions concerning the Coulomb nuclear problems with the main emphasis on their off-shell behaviour. Earlier approaches to the problem made use of a version of the two-potential formula as used by Bajzer. A slightly different point of view is presented here. An expression for the interacting Green's function for motion in the Coulomb plus Graz potential is constructed and used to obtain the half-off-shell T matrix in the ''maximal reduced form''. Similar results were also derived for the off-shell Jost functions. It is explicitly demonstrated that Coulomb and Coulomb-like potentials the half-off-shell T matrix can be expressed in terms of on-and off-shell Jost functions in the same way as one does for a purely short range interaction. In presenting the results for T matrix and other related quantities, the Coulomb effect is included rigorously. Results clearly delineate the branch point singularities originating from the long range nature of the Coulomb interaction and thus provide a better understanding of the off-shell two-body Coulomb-like T matrices. It is hoped that these results will form an adequate starting point for rigorous calculations on few-body systems with charges. (author). 16 refs

  19. Intergrain Coupling in Dusty-Plasma Coulomb Crystals

    International Nuclear Information System (INIS)

    Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.

    1998-01-01

    We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society

  20. Hyperon excitation in nuclear coulomb field

    International Nuclear Information System (INIS)

    Vanyashin, A.V.; Nikitin, Yu.P.; Shan'gin, A.A.

    1981-01-01

    A possibility is studied to measure radiative decay partial widths from the 3/2 + decuplet hyperon resonances by means of the Coulomb excitation method of the octet hyperons. The expected contributions from the strong and electromagnetic interactions in the coherence range to the hyperon excitation cross sections on heavy nuclei and on the 4 He nucleus are estimated. The particle angular distributions in the reactions Σ-+A→Σ-(1385)+A and Λ+A→Σ 0 (1385)+A are analysed in order to determine the energy range where the background conditions are the most favorable to extract the electromagnetic mechanism of the hyperon excitation [ru

  1. A new method of taking into account the Coulomb interaction in the Logunov - Tavkhelidze quasipotential approach

    International Nuclear Information System (INIS)

    Tyukhtyaev, Yu.N.

    1982-01-01

    The problem of taking into account the Coulomb interaction of the ladder type in the analysis of bound states in quantum electrodynamics is discussed in the framework of the quasipotential approach. The main qiasipotential equation and the quasipotential are expressed in the terms of the two-time positive frequency Coulomb Green functions. The corresponding perturbation theory is developed which makes it possible to calculate the shifts of the energy levels in hydrogen-like atoms up to α 6 lnα terms

  2. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging.

    Science.gov (United States)

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; Savelyev, Evgeny; Obaid, Razib; Kaderiya, Balram; Augustin, Sven; Schnorr, Kirsten; Dumitriu, Ileana; Osipov, Timur; Bilodeau, René; Kilcoyne, David; Kumarappan, Vinod; Rudenko, Artem; Berrah, Nora; Rolles, Daniel

    2016-12-02

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C 2 H 2 Br 2 ). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  3. Stability of the three-body Coulomb systems with J=1 in the oscillator representation

    International Nuclear Information System (INIS)

    Dinejkhan, M.D.; Efimov, G.V.

    1995-01-01

    The oscillator representation is applied to calculate the energy spectrum of three-body Coulomb systems with J total angular momentum. For the three-body Coulomb systems with J=1 and arbitrary masses the region of stability is determined. For the systems (A + A - e - ), (pe - C + ), (pB - e - ) and (D + e - e + ), the values for the critical masses of A-, B-, C- and D-particles are obtained: m A =2.22m e , m B =1.49m e , m C =2.11m e and m D =4.15m e . 18 refs., 1 fig., 3 tabs

  4. Quadratic and coulomb terms for the spectrum of a three-electron quantum dot

    International Nuclear Information System (INIS)

    Hassanabadi, H.; Hamzavi, M.; Zarrinkamar, S.; Rajabi, A.A.

    2010-01-01

    We consider the Hamiltonian of a three-electron quantum dot composed of quadratic plus Coulomb terms and calculate the system's spectra. We next apply the hyperradius to reduce the three-body Schroedinger equation into a one-variable differential equation that is solvable. To avoid the complexity, the Taylor expansion of the effective potential is enters the problem and thereby a solution is found for the eigenvalues of the corresponding three-body Schroedinger equation in terms of the Wigner parameter. Using a quasi-analytical approach, we have calculated the energy eigenvalues of the Schroedinger equation corresponding to a three-electron quantum dot. In addition to the hyperspherical coordinates, much of mathematical complexity has been avoided using the idea of Taylor expansion for the potential. For the potential, we have considered quadratic plus Coulomb terms. The obtained energy eigenvalues in terms of the Wigner parameter are given in tabular form. (author)

  5. Interatomic Coulombic decay following the Auger decay: Experimental evidence in rare-gas dimers

    International Nuclear Information System (INIS)

    Ueda, K.; Fukuzawa, H.; Liu, X.-J.; Sakai, K.; Pruemper, G.; Morishita, Y.; Saito, N.; Suzuki, I.H.; Nagaya, K.; Iwayama, H.; Yao, M.; Kreidi, K.; Schoeffler, M.; Jahnke, T.; Schoessler, S.; Doerner, R.; Weber, Th.; Harries, J.; Tamenori, Y.

    2008-01-01

    Interatomic Coulombic decay (ICD) in Ar 2 , ArKr and Kr 2 following Ar 2p or Kr 3d Auger decay has been investigated by means of momentum-resolved electron-ion-ion coincidence spectroscopy. This sequential decay leads to Coulombic dissociation into dication and monocation. Simultaneously determining the kinetic energy of the ICD electron and the kinetic energy release between the two atomic ions, we have been able to unambiguously identify the ICD channels. We find that, in general, spin-conserved ICD, in which the singlet (triplet) dicationic state produced via the atomic Auger decay preferentially decays to the singlet (triplet) state, transferring the energy to the other atom, is faster than spin-flip ICD, in which the Auger final singlet (triplet) dicationic state decays to the triplet (singlet) state. However, spin-flip ICD may take place when spin-conserved ICD becomes energetically forbidden. Dipole-forbidden ICDs from Kr 2+ (4s -21 S)-B (B = Ar or Kr) to Kr 2+ (4p -21 D, 3 P)-B + are also observed

  6. Approximate Coulomb effects in the three-body scattering problem

    International Nuclear Information System (INIS)

    Haftel, M.I.; Zankel, H.

    1981-01-01

    From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles

  7. International codes and model intercomparison for intermediate energy activation yields

    International Nuclear Information System (INIS)

    Rolf, M.; Nagel, P.

    1997-01-01

    The motivation for this intercomparison came from data needs of accelerator-based waste transmutation, energy amplification and medical therapy. The aim of this exercise is to determine the degree of reliability of current nuclear reaction models and codes when calculating activation yields in the intermediate energy range up to 5000 MeV. Emphasis has been placed for a wide range of target elements ( O, Al, Fe, Co, Zr and Au). This work is mainly based on calculation of (P,xPyN) integral cross section for incident proton. A qualitative description of some of the nuclear models and code options employed is made. The systematics of graphical presentation of the results allows a quick quantitative measure of agreement or deviation. This code intercomparison highlights the fact that modeling calculations of energy activation yields may at best have uncertainties of a factor of two. The causes of such discrepancies are multi-factorial. Problems are encountered which are connected with the calculation of nuclear masses, binding energies, Q-values, shell effects, medium energy fission and Fermi break-up. (A.C.)

  8. Correlations of intermediate mass fragments from Fe+Ta, Au, and Th collisions

    International Nuclear Information System (INIS)

    Sangster, T.C.; Begemann-Blaich, M.; Blaich, T.; Britt, H.C.; Hansen, L.F.; Namboodiri, M.N.; Peilert, G.

    1995-01-01

    Charge, velocity, and angular correlations between intermediate mass fragments (IMF) are presented for 50 and 100 MeV/nucleon Fe bombardments of Ta, Au, and Th targets. Correlation functions generated as a function of the relative velocity and the opening angle between two IMF's are qualitatively independent of the projectile energy and target mass and show a suppression at small relative velocities and opening angles due to the Coulomb repulsion between the fragments. The correlations are consistent with IMF's emitted primarily from a highly excited target residue following a rapid preequilibrium cascade. The correlation data are compared to model calculations using the event generator MENEKA and the quantum molecular dynamics (QMD) code with a statistical deexcitation of residual fragments utilizing the multifragmentation code SMM. All data are consistent with a simultaneous multifragmentation at a freeze-out density of 0.1--0.3 times normal nuclear matter density or a more sequential emission with time constant τ≤500 fm/c

  9. Coulomb scattering in field and photofield emission

    International Nuclear Information System (INIS)

    Donders, P.J.; Lee, M.J.G.

    1987-01-01

    An anomalous high-energy tail has been observed in the measured total energy distribution (TED) in photofield emission from tungsten. The strength of this tail is proportional to the product of the photofield emission current and the total emission current. Similar high- and low-energy tails in the TED's in field emission, which have previously been reported by several workers, are also observed. In any given measurement, the fraction of the total photofield-emission current in the anomalous photofield-emission tail is approximately equal to the fraction of the total field-emission current in the anomalous field-emission tail. Measurements of both the absolute strengths and energy dependences of the anomalous tails are reported. The experimental observations are consistent with the predictions of a classical calculation of the energy transfer that results from the Coulomb interaction between electrons in the vacuum near the field emitter. The various internal mechanisms that have previously been invoked to account for the tails in field-emission TED's do not appear to contribute significantly to the anomalous distributions observed in the present work

  10. Deep inelastic scattering near the Coulomb barrier

    International Nuclear Information System (INIS)

    Gehring, J.; Back, B.; Chan, K.

    1995-01-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems 124,112 Sn + 58,64 Ni by Wolfs et al. We previously extended these measurements to the system 136 Xe + 64 Ni and currently measured the system 124 Xe + 58 Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring

  11. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analysed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering, and the effect of zero-point motion on the Coulomb image of a molecule. (orig.)

  12. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1991-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analyzed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering and the effect of zero-point motion on the Coulomb image of a molecule. 14 refs., 5 figs

  13. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    Science.gov (United States)

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  14. Coulomb gap triptych in a periodic array of metal nanocrystals.

    Science.gov (United States)

    Chen, Tianran; Skinner, Brian; Shklovskii, B I

    2012-09-21

    The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.

  15. Coulomb excitation of 189Os

    International Nuclear Information System (INIS)

    Brandao, S.B.

    1987-01-01

    The level structure of 189 Os has been studied by Coulomb excitation using 35 Cl, 28 Si, 16 O beams. GOSIA, a code written to analyze multiple Coulomb excitation, was used to obtain the reduced probabilities of transition B(E2). The results for interband and intraband turned out possible the classification of the states following Nilsson levels. Gamma-rays originating from deexcitation of 216.7 and 219.4 keV have been separated and the reduced probability of transition has been measured. (A.C.A.S.) [pt

  16. Intermediate energy semileptonic probes of the hadronic neutral current

    International Nuclear Information System (INIS)

    Musolf, M.J.; Donnelly, T.W.; Dubach, J.; Beise, E.J.; Maryland Univ., College Park, MD

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed

  17. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  18. Quark-exchange effects in a deuteron breakup at intermediate energy

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.; Glozman, L.Ya.

    1995-01-01

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the '' internal momentum '' in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs

  19. Quark-exchange effects in a deuteron breakup at intermediate energy.

    Energy Technology Data Exchange (ETDEWEB)

    Kobushkin, A P; Syamtomov, A I; Glozman, L Ya

    1996-12-31

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the `` internal momentum `` in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs.

  20. An analytic distorted wave approximation for intermediate energy proton scattering

    International Nuclear Information System (INIS)

    Di Marzio, F.; Amos, K.

    1982-01-01

    An analytic Distorted Wave approximation has been developed for use in analyses of intermediate energy proton inelastic scattering from nuclei. Applications are made to analyse 402 and 800 MeV data from the isoscalar and isovector 1 + and 2 + states in 12 C and to the 800 MeV data from the excitation of the 2 - (8.88MeV) state in 16 O. Comparisons of predictions made using different model two-nucleon t-matrices and different models of nuclear structure are given

  1. An Application of the Direct Coulomb Electron Pair Production Process to the Energy Measurement of the "VH-Group" in the "Knee" Region of the "All-Particle" Energy Spectrum

    Science.gov (United States)

    Derrickson, J. H.; Wu, J.; Christl, M. J.; Fountain, W. F.; Parnell, T. A.

    1999-01-01

    The "all-particle" cosmic ray energy spectrum appears to be exhibiting a significant change in the spectral index just above approximately 3000 TeV. This could indicate (1) a change in the propagation of the cosmic rays in the galactic medium, and/or (2) the upper limit of the supernova shock wave acceleration mechanism, and/or (3) a new source of high-energy cosmic rays. Air shower and JACEE data indicate the spectral change is associated with a composition change to a heavier element mixture whereas DICE does not indicate this. A detector concept will be presented that utilizes the energy dependence of the production of direct Coulomb electron-positron pairs by energetic heavy ions. Monte Carlo simulations of a direct electron pair detector consisting of Pb target foils interleaved with planes of 1-mm square scintillating optical fibers will be discussed. The goal is to design a large area, non-saturating instrument to measure the energy spectrum of the individual cosmic ray elements in the "VH-group" for energies greater than 10 TeV/nucleon.

  2. Detection system with a large angular acceptance and an energy high dynamics, for heavy ion physics at intermediate energies: M.E.ω. detector

    International Nuclear Information System (INIS)

    Monnet, F.

    1985-01-01

    Built for intermediate energy heavy ions nuclear physics, the M.E.ω. detector uses various and complementary detection methods: ionization chamber, parallel plate avalanche counter, plastic scintillators. With these techniques, velocity, energy, mass and charge of nuclei were measured over wide range. From the detailed theoretical study of each method, limitations and perturbation causes are deduced. The solutions used for optimizing the detector, and the main results are exposed. The internal sectorisation of the detector, which permits a modulation in counting rate and electronical adjustments, has been revealed to be very suitable for heavy ions intermediate energy physics. Results of the first experiment realised with M.E.ω. (Ar + Ag at 35 MeV/u) are commented [fr

  3. SU(1,1) coherent states for Dirac–Kepler–Coulomb problem in D+1 dimensions with scalar and vector potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dogphysics@gmail.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738, México D.F. (Mexico); Mota, R.D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D.F. (Mexico); Granados, V.D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738, México D.F. (Mexico)

    2014-08-14

    We decouple the Dirac's radial equations in D+1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1,1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1,1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states. - Highlights: • We solve the most general Dirac–Kepler–Coulomb problem. • The eigenfunctions and energy spectrum are obtained in a purely algebraic way. • We construct the radial SU(1,1) coherent states for the Kepler–Coulomb problem.

  4. SU(1,1) coherent states for Dirac–Kepler–Coulomb problem in D+1 dimensions with scalar and vector potentials

    International Nuclear Information System (INIS)

    Ojeda-Guillén, D.; Mota, R.D.; Granados, V.D.

    2014-01-01

    We decouple the Dirac's radial equations in D+1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1,1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1,1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states. - Highlights: • We solve the most general Dirac–Kepler–Coulomb problem. • The eigenfunctions and energy spectrum are obtained in a purely algebraic way. • We construct the radial SU(1,1) coherent states for the Kepler–Coulomb problem

  5. Finsler-type modification of the Coulomb law

    Science.gov (United States)

    Itin, Yakov; Lämmerzahl, Claus; Perlick, Volker

    2014-12-01

    Finsler geometry is a natural generalization of pseudo-Riemannian geometry. It can be motivated e.g. by a modified version of the Ehlers-Pirani-Schild axiomatic approach to space-time theory. Also, some scenarios of quantum gravity suggest a modified dispersion relation which could be phrased in terms of Finsler geometry. On a Finslerian space-time, the universality of free fall is still satisfied but local Lorentz invariance is violated in a way not covered by standard Lorentz invariance violation schemes. In this paper we consider a Finslerian modification of Maxwell's equations. The corrections to the Coulomb potential and to the hydrogen energy levels are computed. We find that the Finsler metric corrections yield a splitting of the energy levels. Experimental data provide bounds for the Finsler parameters.

  6. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  7. Intermediate energy heavy ions: An emerging multi-disciplinary research tool

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1988-10-01

    In the ten years that beams of intermediate energy (∼50 MeV/amu≤E≤∼2 GeV/amu) heavy ions (Z≤92) have been available, an increasing number of new research areas have been opened up. Pioneering work at the Bevalac at the Lawrence Berkeley Laboratory, still the world's only source of the heaviest beams in this energy range, has led to the establishment of active programs in nuclear physics, atomic physics, cosmic ray physics, as well as biology and medicine, and industrial applications. The great promise for growth of these research areas has led to serious planning for new facilities capable of delivering such beams; several such facilities are now in construction around the world. 20 refs., 5 figs., 1 tab

  8. Dynamical and statistical aspects of intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Knoll, J.

    1987-01-01

    The lectures presented deal with three different topics relevant for the discussion of nuclear collisions at medium to high energies. The first lecture concerns a subject of general interest, the description of statistical systems and their dynamics by the concept of missing information. If presents an excellent scope to formulate statistical theories in such a way that they carefully keep track of the known (relevant) information while maximizing the ignorance about the irrelevant, unknown information. The last two lectures deal with quite actual questions of intermediate energy heavy-ion collisions. These are the multi-fragmentation dynamics of highly excited nuclear systems, and the so called subthreshold particle production. All three subjects are self-contained, and can be read without the knowledge about the other ones. (orig.)

  9. Coulomb dissociation of N-20,N-21

    NARCIS (Netherlands)

    Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Kalantar-Nayestanaki, Nasser; Najafi, Mohammad Ali; Rigollet, Catherine; Stoica, V.; Streicher, Branislav; Van de Walle, J.

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a

  10. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  11. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  12. Focusing effects by one and two Coulomb centers in the autoionization of He

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, S; Otranto, S [CONICET and Dto. de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca (Argentina); Suarez, S; Garibotti, C R, E-mail: smartine@criba.edu.a, E-mail: sotranto@uns.edu.a [CONICET and Centro Atomico Bariloche, 8400 S. C. de Bariloche (Argentina)

    2009-11-01

    In this work we consider the autoionization of He following double electron capture in He{sup 2+} + H{sub 2} collisions at an impact energy of 14 keV/amu. The post-collisional interaction with the two Coulomb centers is treated within the Barrachina-Macek model by employing the {Phi}{sub 2} correlated wave function introduced by Gasaneo et al to represent the continuum of the emitted electron in the field of two Coulomb centers. We compare the angular profiles in the electron spectrum with those obtained following double electron capture for the collision system He{sup 2+}+ He. Clear differences are observed in the spectra obtained for the atomic and molecular targets.

  13. The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation

    CERN Document Server

    Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-02

    The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...

  14. Two-center Coulomb problem with Calogero interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hakobyan, T., E-mail: tigran.hakobyan@ysu.am; Nersessian, A., E-mail: arnerses@ysu.am [Armenia Tomsk Polytechnic University, Yerevan State University (Russian Federation)

    2017-03-15

    We show that the Calogero-type perturbation preserves the integrability and partial separation of variables for the Stark–Coulomb and two-center Coulomb problems, and present the explicit expressions of their constants of motion. We reveal that this perturbation preserves the spectra of initial systems, but leads to the change of degree of degeneracy.

  15. Superheavy Elements and Beyond: - Supercritical Coulomb Field and Giant Quasiatoms

    International Nuclear Information System (INIS)

    Greiner, Walter

    2007-01-01

    The status of theory of Superheavy Nuclei is reviewed. Based with the Two-Center Shell Model Potential Energy Surfaces are calculated. Fusion, fission, quasifission and other processes are discussed. I particular time-delay during the formation of giant quasi atoms/molecules will be crucial for observing the change of the Dirac vacuum in supercritical Coulomb fields by spontaneous positron emission. It will be shown how the various phenomena are interrelated

  16. Tests of a Coulomb-nuclear polarimeter

    International Nuclear Information System (INIS)

    Pauletta, G.; University of Texas, Austin, TX, 78712)

    1989-01-01

    We report on the development and testing of a polarimeter for the high energy polarized proton and antiproton beam at Fermi National Accelerator Laboratory (FNAL). The polarimeter was designed to make use of a small but well-known analyzing power in the region of Coulomb-nuclear interference (CNI) in order to obtain an absolute measurement of the polarization. Feasibility was established in the course of a brief running period at the end of the last fixed-target period at FNAL and potential for considerable improvement was revealed. Beam-time was insufficient to measure polarization accurately but the data obtained bears out design expectations for the beam-line and confirms polarization-tagging techniques to within uncertainties

  17. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  18. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  19. Effects of Coulomb repulsion on conductivity of heterojunction carbon nanotube quantum dots with spin-orbital coupling and interacting leads

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblya, O.V., E-mail: olexandr.ogloblya@gmail.com [Taras Shevchenko National University, 64/13 Volodymyrska St., Kyiv 01601 (Ukraine); Kuznietsova, H.M. [Taras Shevchenko National University, 64/13 Volodymyrska St., Kyiv 01601 (Ukraine); Strzhemechny, Y.M. [Dept. of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

    2017-01-01

    We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.

  20. Hartree-Fock study of the Anderson metal-insulator transition in the presence of Coulomb interaction: Two types of mobility edges and their multifractal scaling exponents

    Science.gov (United States)

    Lee, Hyun-Jung; Kim, Ki-Seok

    2018-04-01

    We investigate the role of Coulomb interaction in the multifractality of Anderson metal-insulator transition, where the Coulomb interaction is treated within the Hartree-Fock approximation, but disorder effects are taken into account exactly. An innovative technical aspect in our simulation is to utilize the Ewald-sum technique, which allows us to introduce the long-range nature of the Coulomb interaction into Hartree-Fock self-consistent equations of order parameters more accurately. This numerical simulation reproduces the Altshuler-Aronov correction in a metallic state and the Efros-Shklovskii pseudogap in an insulating phase, where the density of states ρ (ω ) is evaluated in three dimensions. Approaching the quantum critical point of a metal-insulator transition from either the metallic or insulting phase, we find that the density of states is given by ρ (ω ) ˜|ω| 1 /2 , which determines one critical exponent of the McMillan-Shklovskii scaling theory. Our main result is to evaluate the eigenfunction multifractal scaling exponent αq, given by the Legendre transformation of the fractal dimension τq, which characterizes the scaling behavior of the inverse participation ratio with respect to the system size L . Our multifractal analysis leads us to identify two kinds of mobility edges, one of which occurs near the Fermi energy and the other of which appears at a high energy, where the density of states at the Fermi energy shows the Coulomb-gap feature. We observe that the multifractal exponent at the high-energy mobility edge remains to be almost identical to that of the Anderson localization transition in the absence of Coulomb interactions. On the other hand, we find that the multifractal exponent near the Fermi energy is more enhanced than that at the high-energy mobility edge, suspected to result from interaction effects. However, both the multifractal exponents do not change even if the strength of the Coulomb interaction varies. We also show that the

  1. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  2. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy ( 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ''best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon 129 Xe with 197 Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon 12 C with 197 Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated

  3. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  4. Nuclear structure at intermediate energies: Progress report, January 1-December 31, 1988

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1988-01-01

    This report discusses the progress in the following experiments: Λ Spin Transfer Experiment; Σ 0 Spin Transfer Experiment; Strangeness Production in Heavy Ion Collisions; Measurement of the Imaginary Part of the I=1 /bar N/N S-Wave Scattering Length; Single Pion Production in np Scattering; Measurements of the π + d→Δ ++ n at Intermediate Energy; and PhotoJets from Nuclei

  5. Experiments in intermediate energy physics

    International Nuclear Information System (INIS)

    Dehnhard, D.

    2003-01-01

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers

  6. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  7. Coulomb fission in dielectric dication clusters: experiment and theory on steps that may underpin the electrospray mechanism.

    Science.gov (United States)

    Chen, Xiaojing; Bichoutskaia, Elena; Stace, Anthony J

    2013-05-16

    A series of five molecular dication clusters, (H2O)n(2+), (NH3)n(2+), (CH3CN)n(2+), (C5H5N)n(2+), and (C6H6)n(2+), have been studied for the purpose of identifying patterns of behavior close to the Rayleigh instability limit where the clusters might be expected to exhibit Coulomb fission. Experiments show that the instability limit for each dication covers a range of sizes and that on a time scale of 10(-4) s ions close to the limit can undergo either Coulomb fission or neutral evaporation. The observed fission pathways exhibit considerable asymmetry in the sizes of the charged fragments, and are associated with kinetic (ejection) energies of ~0.9 eV. Coulomb fission has been modeled using a theory recently formulated to describe how charged particles of dielectric materials interact with one another (Bichoutskaia et al. J. Chem. Phys. 2010, 133, 024105). The calculated electrostatic interaction energy between separating fragments accounts for the observed asymmetric fragmentation and for the magnitudes of the measured ejection energies. The close match between theory and experiment suggests that a significant fraction of excess charge resides on the surfaces of the fragment ions. The experiments provided support for a fundamental step in the electrospray ionization (ESI) mechanism, namely the ejection from droplets of small solvated charge carriers. At the same time, the theory shows how water and acetonitrile may behave slightly differently as ESI solvents. However, the theory also reveals deficiencies in the point-charge image-charge model that has previously been used to quantify Coulomb fission in the electrospray process.

  8. Coulomb-nuclear interference measurements of 168Yb, 176Hf, 178Hf, and 180Hf and lifetime measurements in 186Hg

    International Nuclear Information System (INIS)

    Nettles, W.G.

    1979-01-01

    Alpha scattering measurements were performed at center-of-mass energies near the Coulomb barrier. These energies allow for nuclear as well as pure Coulomb forces to play a significant role in the excitation process. The interference of these two forces is very sensitive to the sign of the E4 ground-state moment, whereas pure Coulomb excitation is not. Systematics of the E4 moments of the rare earth mass region indicate a transition in the magnitude and sign of the reduced matrix element of the M(E4) operator between 0 + and 4 + states from small and positive to large and negative between Yb and W. Previous Coulomb-nuclear interference measurements show that this reduced matrix element for 180 Hf is large and negative. The present results agree with that conclusion. It is also shown that the above reduced matrix element for 178 Hf, like that of 180 Hf, is large and negative. The small and positive moment (matrix element) for 168 Yb is seen to be consistent with the experimental data. No conclusions are drawn for the E4 moment in 176 Hf. The measurement of nuclear lifetimes shorter than 500 ps requires the use of plastic scintilltor detectors. These detectors, however have very poor energy resolution. A system is described that uses plastic scintillators with a magnetic lens spectrometer for energy selection. The system was used to measure the lifetime of the 522-keV 0 + sate in 186 Hf. A data analysis method using higher-order distribution moments is also presented

  9. Coulomb Dissociation as a Tool of Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Utsunomiya, H.

    2000-01-01

    My talk will begin with an introduction of the Coulomb dissociation method, proceed to discussions on Coulomb breakup of 7 Li with respect to the big-bang nucleosynthesis and end with the revision of astrophysical S-factors. The methodology based on the virtual photon source will be introduced in view of experimental techniques. The discussion will include the quantum tunnelling effect in non-resonant breakup, the lifetime of continuum states, and Coulomb distortion of relevant cross sections. Roles of multi-step processes and different multipolarities will also be discussed on the basis of solving a time-dependent Schroedinger equation. My talk will present quantitative results. The theoretical framework of the Coulomb dissociation method and a broad scope of its applications are given by G. Baur. Applications to radioactive nuclei which have quickly become vogue are discussed in the related lecture of J. Kiener. (author)

  10. Scaling of anisotropy flows in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.

    2007-01-01

    Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments

  11. Electron capture by alpha particles from helium atoms in a Coulomb-Born distorted-wave approximation

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, E; Ghavaminia, H

    2012-01-01

    A three-body Coulomb-Born continuum distorted-wave approximation is applied to calculate the differential and total cross sections for single-electron exchange in the collision of fast alpha particles with helium atoms in their ground states. The applied first-order distorted wave theory satisfies correct Coulomb boundary conditions. Both post and prior forms of the transition amplitude are calculated. The nuclear-screening effect of the passive electron on the differential and total cross sections is investigated. The results are compared with those of other theories and with the available experimental data. For differential cross sections, the comparisons show a reasonable agreement with empirical measurements at higher impact energies. The agreement between experimental data and the present calculations for total cross sections with the average of the post and prior forms of the transition amplitude is reasonable at all the specified energies.

  12. Coulomb sum rules in the relativistic Fermi gas model

    International Nuclear Information System (INIS)

    Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.

    1986-11-01

    Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer

  13. An su(1, 1) algebraic approach for the relativistic Kepler-Coulomb problem

    International Nuclear Information System (INIS)

    Salazar-Ramirez, M; Granados, V D; MartInez, D; Mota, R D

    2010-01-01

    We apply the Schroedinger factorization method to the radial second-order equation for the relativistic Kepler-Coulomb problem. From these operators we construct two sets of one-variable radial operators which are realizations for the su(1, 1) Lie algebra. We use this algebraic structure to obtain the energy spectrum and the supersymmetric ground state for this system.

  14. Mechanism of equalization of proton and neutron radii and the Coulomb anomaly

    International Nuclear Information System (INIS)

    Caurier, E.; Poves, A.; Zuker, A.

    1980-01-01

    It is shown that a one parameter modification of the effective forces allows to resolve the Coulomb energy anomalies in the Ca region within the framework of Hartree Fock (HF) and isospin projected Hartree Fock (IPHF) theories. A simple microscopic mechanism of equalization of neutron and proton radii is invoked to produce results consistent with available data

  15. Coulomb-interacting billiards in circular cavities

    International Nuclear Information System (INIS)

    Solanpää, J; Räsänen, E; Nokelainen, J; Luukko, P J J

    2013-01-01

    We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales. (paper)

  16. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  17. Nucleon charge-exchange reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Alford, W.P. [Western Ontario Univ., London, ON (Canada). Dept. of Physics]|[TRIUMF, Vancouver, BC (Canada); Spicer, B.M. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the {sup 14}C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given. 226 refs., 19 figs.

  18. Nucleon charge-exchange reactions at intermediate energy

    International Nuclear Information System (INIS)

    Alford, W.P.; Spicer, B.M.

    1997-01-01

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the 14 C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given

  19. Selected problems in experimental intermediate energy physics

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1990-09-01

    The objectives of this research program are to: investigate forefront problems in experimental intermediate energy physics; educate students in this field of research; and, develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. This includes the use of nuclear targets where the nucleus provides a many body environment of strongly perturbation of a known interaction by this environment. Unfortunately, such effects may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments must be carefully chosen and analyzed for deviations from the more conventional models. There were three major thrusts of the program; strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin dependent structure function of the neutron

  20. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    International Nuclear Information System (INIS)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S.; Frigo, S.P.; Stampfl, A.P.J.; Wang, Y.

    2002-01-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10 9 photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  1. Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis[Dissertation 17314

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F

    2007-07-01

    In this dissertation by Thorsten Frank Schulz the intermediate steps necessary to realise the 2000-Watt Society in Switzerland are examined. An analysis of an energy-economic scenario shows that the 2000-Watt Society should be seen as a long-term goal. According to the author, the major changes required to allow the implementation of this project concern energy-transformation and energy-demand technologies. Electricity will, according to the author, play an important role in a service-oriented society in the future. In such a transformation even intermediate steps are associated with considerable expense. The aims of the 2000-Watt Society project are listed. Energy and CO{sub 2} balances for the domestic and transport sectors are presented and discussed. Complementary analyses are presented concerning fuel cells and wood-based fuel technologies. Finally, the implications of the 2000-Watt society and the effects of technological change are summarised and an outlook is presented.

  2. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  3. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  4. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  5. Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.

    Science.gov (United States)

    Patsahan, O

    2013-08-01

    The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.

  6. Differential cross sections for electron-impact vibrational-excitation of tetrahydrofuran at intermediate impact energies

    Energy Technology Data Exchange (ETDEWEB)

    Do, T. P. T. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); School of Education, Can Tho University, Campus II, 3/2 Street, Xuan Khanh, Ninh Kieu, Can Tho City (Viet Nam); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Konovalov, D. A.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville (Australia); Brunger, M. J., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jones, D. B., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)

    2015-03-28

    We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.

  7. Coulomb Friction Damper

    Science.gov (United States)

    Appleberry, W. T.

    1983-01-01

    Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.

  8. A possible method to produce a polarized antiproton beam at intermediate energies

    International Nuclear Information System (INIS)

    Spinka, H.; Vaandering, E.W.; Hofmann, J.S.

    1994-01-01

    A feasible and conservative design for a medium energy polarized antiproton beam has been presented. The design requires an intense beam of unpolarized antiprotons (≥ 10 7 /sec) from a typical secondary beam line in order to achieve reasonable anti pp elastic scattering count rates. All three beam spin directions can be achieved. Methods were discussed to reverse the spin directions in modest times, and to change to a polarized proton beam if desired. It is expected that experiments with such a beam would have a profound effect on the understanding of the anti NN interaction at intermediate energies

  9. Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit

    CERN Document Server

    Baulieu, L

    1999-01-01

    To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...

  10. Review of stopping power and Coulomb explosion for molecular ion in plasmas

    Directory of Open Access Journals (Sweden)

    Guiqiu Wang

    2018-03-01

    Full Text Available We summarize our theoretical studies for stopping power of energetic heavy ion, diatomic molecular ions and small clusters penetrating through plasmas. As a relevant research field for the heavy ion inertial confinement fusion (HICF, we lay the emphasis on the dynamic polarization and correlation effects of the constituent ion within the molecular ion and cluster for stopping power in order to disclose the role of the vicinage effect on the Coulomb explosion and energy deposition of molecules and clusters in plasma. On the other hand, as a promising scheme for ICF, both a strong laser field and an intense ion beam are used to irradiate a plasma target. So the influence of a strong laser field on stopping power is significant. We discussed a large range of laser and plasma parameters on the coulomb explosion and stopping power for correlated-ion cluster and C60 cluster. Furthermore, in order to indicate the effects of different cluster types and sizes on the stopping power, a comparison is made for hydrogen and carbon clusters. In addition, the deflection of molecular axis for diatomic molecules during the Coulomb explosion is also given for the cases both in the presence of a laser field and laser free. Finally, a future experimental scheme is put forward to measure molecular ion stopping power in plasmas in Xi'an Jiaotong University of China. Keywords: Molecules, Stopping power, Coulomb explosion, Vicinage effect, Laser, PACS Codes: 34.50.Bw, 52.40.Mj, 61.85.+p, 34.50.Dy

  11. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  12. Coulomb excitation of $^{182-184}$ Hg: Shape coexistence in the neutron-deficient lead region

    CERN Multimedia

    We put forward a study of the interplay between individual nucleon behavior and collective degrees of freedom in the nucleus, as manifested in shape coexistence in the neutron-deficient lead region. As a first step of this experimental campaign, we propose to perform Coulomb excitation on light mercury isotopes to probe their excited states and determine transitional and diagonal E2 matrix elements, especially reducing the current uncertainties. The results from previous Coulomb excitation measurements in this mass region performed with 2.85 MeV/u beams from REX-ISOLDE have shown the feasibility of these experiments. Based on our past experience and the results obtained, we propose a detailed study of the $^{182-184}$Hg nuclei, that exhibit a pronounced mixing between 2 low-lying excited states of apparently different deformation character, using the higher energy beams from HIE-ISOLDE which are crucial to reach our goal. The higher beam energy should result in an increased sensitivity with respect to the qua...

  13. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. By the explicit example of a scalar field theory in 2D we have solved the long-standing problem of how to treat the dynamics of the vacuum in light-front quantization. We now propose to solve the same problem for simple Fermion field theories in 2D such as the Gross-Neveu model. We propose in subsequent years to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We have completed our analysis of the SLAC E101 and E133 experiments on Deuterium to elucidate the degree to which a six-quark cluster contribution is admissable in the Bjorken x > 1 data. We have completed our development of a parameterized thermal liquid drop model for light nuclei. In addition we have completed a set of predictions for the formation of a ''nuclear stratosphere'' in nuclei created by intermediate energy heavy ion interactions. These results motivate a new investigation of the temperature dependence of the ion-ion potential with particular emphasis on the thermal dependence of the barrier height and radius. We have also shown that a consistent treatment of relativistic effects is important for a theoretical description of the elastic magnetic form factor of 17 O. 85 refs

  14. Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics

    International Nuclear Information System (INIS)

    Heckathorn, D.

    1979-01-01

    Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)

  15. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M.; Lednicky, R.; Pluta, J.; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Akkelin, S.V. [ITP, Kiev (Ukraine)

    1997-09-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective system volumes. The modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For the {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions the analytical calculations of the Coulomb correction are compared with the exact numerical results. (author). 20 refs.

  16. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    International Nuclear Information System (INIS)

    Nathan, A.M.; Sandorfi, A.M.

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of σ(700)-meson exchange in γγ→ππ processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the γΝ-Δ transition; pion photoproduction and the γΝ-Δ amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p(rvec γ, π o ) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and Ν → Νγ and Δ → γΝ transition form factors; electroproduction studies of the Ν → Δ transition at bates and CEBAF

  17. Simulation of neutron rich nuclei production through 239U fission at intermediates energies

    International Nuclear Information System (INIS)

    Mirea, M.; Clapier, F.; Pauwels, N.; Proust, J.

    1997-01-01

    The theoretical part and some results obtained from a model realised for fission processes in wide range of mass-asymmetries are presented. The fission barriers are computed in a tridimensional configuration space using the Yukawa - plus - exponential macroscopic energies corrected within the Strutinsky procedure. It is assumed that channel probabilities are proportional with Gamow penetrabilities. The model is applied for the disintegration of the 239 U in order to determine the relative yields for the production of neutron rich nuclei at diverse intermediate energies. (author)

  18. Elastic Scattering Of 6,7Li+80Se At Near And Above Barrier Energies

    International Nuclear Information System (INIS)

    Fimiani, L.; Marti, G. V.; Capurro, O. A.; Barbara, E. de; Testoni, J. E.; Zalazar, L.; Arazi, A.; Cardona, M. A.; Carnelli, P.; Figueira, J. M.; Hojman, D.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.; Fernandez Niello, J. O.

    2010-01-01

    In this work we propose to study the elastic scattering of the weakly bound projectiles 6,7 Li on an intermediate mass target 80 Se. From the experimental results presented here, precise angular distributions at energies below, around and above the nominal Coulomb barriers of the systems were obtained. The final goal of our work is to determine the characteristic parameters of the optical potential and use them to address the question of whether the usual threshold anomaly or the breakup threshold anomaly are present or not in these systems.

  19. The hydrogen atom in a magnetic field. Spectrum from the Coulomb dynamical group approach

    International Nuclear Information System (INIS)

    Delande, D.; Gay, J.C.

    1986-01-01

    Some sample results are presented for the problems of the hydrogen atom in a magnetic field. The energies have been computed for a typical Rydberg situation of atomic physics interest using limited computer facilities. The use of the Coulomb dynamical group allows a complete description of the symmetries and a rational choice of a Sturmian type basis set. Moreover, comparison with Rayleigh-Schrodinger perturbative expansions of the energies is performed. (author)

  20. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.

    Science.gov (United States)

    Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J

    2016-02-19

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  1. KLEIN: Coulomb functions for real lambda and positive energy to high accuracy

    International Nuclear Information System (INIS)

    Barnett, A.R.

    1981-01-01

    KLEIN computes relativistic Schroedinger (Klein-Gordon) equation solutions, i.e. Coulomb functions for real lambda > - 1, Fsub(lambda)(eta,x), Gsub(lambda)(eta,x), F'sub(lambda)(eta,x) and G'sub(lambda)(eta,x) for real kappa > 0 and real eta, - 10 4 4 . Hence it is also suitable for Bessel and spherical Bessel functions. Accuracies are in the range 10 -14 -10 -16 in oscillating region, and approx. equal to 10 -30 on an extended precision compiler. The program is suitable for generating Klein-Gordon wavefunctions for matching in pion and kaon physics. (orig.)

  2. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  3. Planar density of vacuum charge induced by a supercritical Coulomb potential

    Directory of Open Access Journals (Sweden)

    V.R. Khalilov

    2017-06-01

    Full Text Available Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.

  4. Planar density of vacuum charge induced by a supercritical Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V.R., E-mail: khalilov@phys.msu.ru; Mamsurov, I.V.

    2017-06-10

    Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.

  5. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab

  6. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  7. Semiclassical asymptotic behavior and the rearrangement mechanisms for Coulomb particles

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.; Dubrovskii, G.V.

    1986-01-01

    The semiclassical asymptotic behavior of the eikonal amplitude of the resonance rearrangement in a system of three Coulomb particles is studied. It is shown that the general formula for the amplitude correctly describes two classical mechanisms (pickup and knockout) and one nonclassical mechanism (stripping). The classical mechanisms predominate at high energies, while the stripping mechanism predominates at lower energies. In the region of medium energies the dominant mechanism is the pickup (or Thomas) mechanism, which is realized by nonclassical means. For such transitions the classical cross section diverges, and the amplitude must be computed on a complex trajectory. The physical reasons for introducing the approximate complex trajectories are discussed. The contributions of all the mechanisms to the rearrangement cross section are found in their analytic forms

  8. Perturbative ambiguities in Coulomb gauge QCD

    International Nuclear Information System (INIS)

    Doust, P.

    1987-01-01

    The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc

  9. Coulomb dissociation of N 20,21

    OpenAIRE

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is...

  10. Coulomb singularity effects in tunnelling spectroscopy of individual impurities

    OpenAIRE

    Arseyev, P. I.; Maslova, N. S.; Panov, V. I.; Savinov, S. V.

    2002-01-01

    Non-equilibrium Coulomb effects in resonant tunnelling processes through deep impurity states are analyzed. It is shown that Coulomb vertex corrections to the tunnelling transfer amplitude lead to a power-law singularity in current- voltage characteristics

  11. Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Rahaman A.

    2014-03-01

    Full Text Available Coulomb breakup of unstable neutron rich nuclei 29,30Na around the ‘island of inversion’ has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s⊗νs1/2 and 29Na(g.s⊗νs1/2,respectively.

  12. Reconstruction of the electron energy distribution function from probe characteristics at intermediate and high pressures

    International Nuclear Information System (INIS)

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Gorbunov et al. have developed a kinetic theory of the electron current drawn by a probe, which substantially extends the region of applicability of the probe method for determining the electron energy distribution function, enabling probes to be used for intermediate and high pressures (up to p ≤ 0.5 atm for monatomic gases). They showed that for λ var-epsilon >> a + d (where a is the probe radius, d is the sheath thickness, and λ var-epsilon is the electron energy relaxation length) the current density j e (V) drawn by the probe is related to the unperturbed distribution function by an integral equation involving the distribution function. The kernal of the integral equation can be written as a function of the diffusion parameter. In the present paper the method of quadrature sums is employed in order to obtain the electron energy distribution function from probe characteristics at intermediate and high pressures. This technique enables them to recover the distribution function from the integral equation when the diffusion parameter has an arbitrary energy dependence ψ 0 (var-epsilon) in any given energy range. The effectiveness of the method is demonstrated by application to both model problems and experimental data

  13. Asymptotic three-particle approach to the Coulomb breakup process {sup 6}Li + {sup 208}Pb → {sup 208}Pb + α + d

    Energy Technology Data Exchange (ETDEWEB)

    Igamov, S. B., E-mail: igamov@inp.uz [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2017-03-15

    On the basis of the distorted-wave method, experimental data on the triple-differential cross section for the Coulomb breakup reaction {sup 208}Pb({sup 6}Li, αd){sup 208}Pb are analyzed by employing a correct expression for the final-state {sup 208}Pb–α–d three-particle Coulomb wave function. It is shown that the effect of final-state three-particle Coulomb dynamics can be used to assess the kinematical condition of clean Coulomb breakup processes. New values of the astrophysical S factor for the direct-radiative-capture reaction d(α, γ){sup 6}Li at ultralow energies in the range of 70 ≤ E{sub dα} ≤ 600 keV were extracted from experimental data. The value of S(0) = 1.60 ± 0.17 MeV nb was obtained.

  14. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  15. Influence of the Coulomb interaction in the final state on the cross section of single-electron capture by fast ions

    International Nuclear Information System (INIS)

    Novikov, N.V.; Teplova, Ya.A.

    2011-01-01

    It is shown that the Coulomb interaction of ions in the final state must be taken into account in the estimation of the cross section of electron capture by fast ions. The cross section of electron capture decreases considerably, and the dependence of the cross section on the collision energy becomes close to the experimental one if the interaction of charged particles after collision is taken into account. -- Highlights: → Coulomb interaction of ions in the final state must be taken into account. → This interaction leads to a considerable decrease in the cross section. → The dependence on energy close to the experimental one.

  16. The Coulomb Branch of 3d N= 4 Theories

    Science.gov (United States)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide

    2017-09-01

    We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.

  17. Critical opalescence in the pure Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, V.B., E-mail: vic5907@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Trigger, S.A., E-mail: satron@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)

    2011-04-18

    Highlights: The review of the critical opalescence problem is presented. Light scattering in a two-component electron-nuclear system is studied. The exact relations between the structure factors and compressibility are found. The obtained relations are valid for strong interaction for the Coulomb systems. The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  18. Dipole and Coulomb forces in electron capture dissociation and electron transfer dissociation mass spectroscopy.

    Science.gov (United States)

    Świerszcz, Iwona; Skurski, Piotr; Simons, Jack

    2012-02-23

    Ab initio electronic structure calculations were performed on a doubly charged polypeptide model H(+)-Lys(Ala)(19)-CO-CH(NH(2))-CH(2)-SS-CH(2)-(NH(2))CH-CO-(Ala)(19)-Lys-H(+) consisting of a C-terminal protonated Lys followed by a 19-Ala α-helix with a 20th Ala-like unit whose side chain is linked by a disulfide bond to a corresponding Ala-like unit connected to a second 19-Ala α-helix terminated by a second C-terminal-protonated Lys. The Coulomb potentials arising from the two charged Lys residues and dipole potentials arising from the two oppositely directed 72 D dipoles of the α-helices act to stabilize the SS bond's σ* orbital. The Coulomb potentials provide stabilization of 1 eV, while the two large dipoles generate an additional 4 eV. Such stabilization allows the SS σ* orbital to attach an electron and thereby generate disulfide bond cleavage products. Although calculations are performed only on SS bond cleavage, discussion of N-C(α) bond cleavage caused by electron attachment to amide π* orbitals is also presented. The magnitudes of the stabilization energies as well as the fact that they arise from Coulomb and dipole potentials are supported by results on a small model system consisting of a H(3)C-SS-CH(3) molecule with positive and negative fractional point charges to its left and right designed to represent (i) two positive charges ca. 32 Å distant (i.e., the two charged Lys sites of the peptide model) and (ii) two 72 D dipoles (i.e., the two α-helices). Earlier workers suggested that internal dipole forces in polypeptides could act to guide incoming free electrons (i.e., in electron capture dissociation (ECD)) toward the positive end of the dipole and thus affect the branching ratios for cleaving various bonds. Those workers argued that, because of the huge mass difference between an anion donor and a free electron, internal dipole forces would have a far smaller influence over the trajectory of a donor (i.e., in electron transfer dissociation

  19. Coulomb effects on the transport properties of quantum dots in strong magnetic field

    International Nuclear Information System (INIS)

    Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.

    2000-08-01

    We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)

  20. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  1. Fermi-edge singularity in one-dimensional electron systems with long-range Coulomb interactions

    International Nuclear Information System (INIS)

    Otani, H.; Ogawa, T.

    1996-01-01

    Effects of long-range Coulomb interactions on the Fermi-edge singularity in optical spectra are investigated theoretically for one-dimensional spin-1/2 fermion systems with the use of the Tomonaga-Luttinger bosonization technique. Low-energy excitation spectrum near the Fermi level shows that dispersion of the charge-density fluctuation remains gapless but is nonlinear when the electron-electron (e-e) Coulomb interaction is of the x -1 type (i.e., an infinite force range). Temporal behavior of the current-current correlation function is calculated analytically for arbitrary force ranges, λ e and λ h , of the e-e and the electron-hole (e-h) Coulomb interactions. (i) When both the e-e and the e-h interactions have large but finite force ranges (λ e h max[λ e ,λ h ]/v F . Corresponding optical spectrum near the Fermi edge (within an energy range of ℎv F /max[λ e ,λ h ]) exhibits the power-law divergence or the power-law convergence, which is an ordinary Fermi-edge singularity. (ii) When either the e-e or the e-h interaction is of the x -1 type (i.e., λ e →∞ and/or λ h →∞), an exponent of the correlation function is dependent on time to lead the faster decay than that of any power laws. Then the optical spectra show no power law dependence and always converge (become zero) at the Fermi edge, which is in striking contrast to the ordinary power-law singularity

  2. Calculation for fission decay from heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C.; Fraenkel, Z.

    1992-01-01

    A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms

  3. Characterization of ion Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Okada, K.; Takayanagi, T.; Wada, M.; Ohtani, S.; Schuessler, H. A.

    2010-01-01

    We describe a simple and fast method for simulating observed images of ion Coulomb crystals. In doing so, cold elastic collisions between Coulomb crystals and virtual very light atoms are implemented in a molecular dynamics (MD) simulation code. Such an approach reproduces the observed images of Coulomb crystals by obtaining density plots of the statistics of existence of each ion. The simple method has the advantage of short computing time in comparison with previous calculation methods. As a demonstration of the simulation, the formation of a planar Coulomb crystal with a small number of ions has been investigated in detail in a linear ion trap both experimentally and by simulation. However, also large Coulomb crystals including up to 1400 ions have been photographed and simulated to extract the secular temperature and the number of ions. For medium-sized crystals, a comparison between experiments and calculations has been performed. Moreover, an MD simulation of the sympathetic cooling of small molecular ions was performed in order to test the possibility of extracting the temperature and the number of refrigerated molecular ions from crystal images of laser-cooled ions. Such information is basic to studying ultracold ion-molecule reactions using ion Coulomb crystals including sympathetically cooled molecular ions.

  4. Coulomb effects in deuteron stripping reactions as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    Deuteron stripping nuclear reactions are reconsidered as a three-body problem. The Coulomb effects between the proton and the target nucleus are investigated. The mathematical formalism introduces three-body integral equations which can be exactly calculated for such simple models. These coupled integral equations suitably include the Coulomb effects due to replusive or attractive Coulomb potential. Numerical calculations of the differential cross-sections of the reactions 28 Si(d,p) 29 Si and 40 Ca(d,p) 41 Ca are carried out showing the importance of the Coulomb effects. The angular distributions of these reactions are theoretically calculated and fitted to the experimental data. From this fitting, reasonable spectroscopic factors are obtained. Inclusion of Coulomb force in the three-body model are found to improve the results by a percentage of about 6.826%. (author)

  5. 3D Oscillator and Coulomb Systems reduced from Kahler spaces

    OpenAIRE

    Nersessian, Armen; Yeranyan, Armen

    2003-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and ...

  6. Coulomb interactions in charged fluids.

    Science.gov (United States)

    Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera

    2011-07-01

    The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.

  7. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. [eds.

    1992-10-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of {sigma}(700)-meson exchange in {gamma}{gamma}{yields}{pi}{pi} processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the {gamma}{Nu}-{Delta} transition; pion photoproduction and the {gamma}{Nu}-{Delta} amplitudes; effective- lagrangians, Watson`s theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p({rvec {gamma}}, {pi}{sup o}) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and {Nu} {yields} {Nu}{gamma} and {Delta} {yields} {gamma}{Nu} transition form factors; electroproduction studies of the {Nu} {yields} {Delta} transition at bates and CEBAF.

  8. Critical opalescence in the pure Coulomb system

    International Nuclear Information System (INIS)

    Bobrov, V.B.; Trigger, S.A.

    2011-01-01

    Highlights: → The review of the critical opalescence problem is presented. → Light scattering in a two-component electron-nuclear system is studied. → The exact relations between the structure factors and compressibility are found. → The obtained relations are valid for strong interaction for the Coulomb systems. → The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  9. Nuclear reactions of the system 6 Li on 58 Ni near the Coulomb barrier

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Garcia M, H.; Martinez Q, E.

    2004-01-01

    Protons, alpha particles and deuterons coming from the reactions 6 Li + 58 Ni are detected to three different energy around the Coulomb barrier. The possible effects of the weakly bound character of the projectile are studied and the results are compared with previous data for the system 6 Li + 59 Co. (Author)

  10. Coulomb effects in three-nucleon scattering versus charge-symmetry breaking in the 3P nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Walter, R.L.; Slaus, I.

    1992-01-01

    Comparison of data for neutron-deuteron and proton-deuteron analyzing power A y for elastic scattering has become crucial for investigating charge-symmetry breaking in the 3 P nucleon-nucleon interactions. We extended this comparison down to 5 MeV and find that the relative difference between n-d and p-d scattering at the A y maximum near 120 degree increases with decreasing energy. By applying a straightforward Coulomb ''correction'' to the p-d data, we account for most of the difference, suggesting that the Coulomb force, rather than charge-symmetry breaking, is responsible for most of the observed difference

  11. Accuracy estimation for intermediate and low energy neutron transport calculation with Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Sasamoto, Nobuo; Tanaka, Shun-ichi

    1987-02-01

    Both ''measured radioactive inventory due to neutron activation in the shield concrete of JPDR'' and ''measured intermediate and low energy neutron spectra penetrating through a graphite sphere'' are analyzed using a continuous energy model Monte Carlo code MCNP so as to estimate calculational accuracy of the code for neutron transport in thermal and epithermal energy regions. Analyses reveal that MCNP calculates thermal neutron spectra fairly accurately, while it apparently over-estimates epithermal neutron spectra (of approximate 1/E distribution) as compared with the measurements. (author)

  12. 4-center STO interelectron repulsion integrals with Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2018-01-01

    Abstract We present a method for evaluating 4-center electron repulsion integrals (ERI) for Slater-type orbitals by way of expansions in terms of Coulomb Sturmians. The ERIs can then be evaluated using our previously published methods for rapid evaluation of Coulomb Sturmians through hyperspherical...

  13. [Intermediate energy studies of polarization transfer, polarized deuteron scattering, and (p,π+-) reactions: Rapporteur's report

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    An overview of intermediate energy (80 to 1000 MeV) study contributions to the International Polarization Symposium in Osaka, Japan, August 1985 is presented in this report. Contributions fall into three categories: polarization transfer, polarized deuteron scattering and polarized (p,π +- ) reactions

  14. Photon and proton induced fission on heavy nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  15. Intercomparison of codes for intermediate energy nuclear data: The first step

    International Nuclear Information System (INIS)

    Blann, M.; Gruppelaar, H.; Nagel, P.; Rodens, J.

    1994-01-01

    Several weak points of the intermediate energy nuclear data calculated in this exercise are described as introduction to some of the areas needing discussion at this meeting. These include nuclear structure effects on precompound spectra, large variations between codes in predicted total reaction cross sections, and in total neutron and proton multiplicities. INC codes don't reflect correct experimental Q values, and may have difficulties at very low angles due to overestimation of the quasi-elastic peak. We raise questions as to additional reaction properties (beyond n and p spectra) which may need benchmarking

  16. A liquid He-3 target system for use at intermediate energies

    International Nuclear Information System (INIS)

    Hassell, D.K.; Abegg, R.; Murdoch, B.T.; van Oers, W.J.H.; Soukup, J.

    1981-04-01

    A liquid 3 He target system with remote instrumentation and handling capabilities has been developed for experiments using the 180-525 MeV TRIUMF cyclotron. Helium-3 gas is liquefied by means of a 4 He cryostat into a cylindrical target cell (4.4 cm diameter, 1.6 cm thick) and maintained during operation at approximately 1.6 K. This provides an areal target density of approximately 2.7 x 10 22 He-3 nuclei/cm 2 (128 mg/cm 2 ), suitable for intermediate energy proton scattering. (author)

  17. MCNP6 Fission Cross Section Calculations at Intermediate and High Energies

    OpenAIRE

    Mashnik, Stepan G.; Sierk, Arnold J.; Prael, Richard E.

    2013-01-01

    MCNP6 has been Validated and Verified (V&V) against intermediate- and high-energy fission cross-section experimental data. An error in the calculation of fission cross sections of 181Ta and a few nearby target nuclei by the CEM03.03 event generator in MCNP6 and a "bug: in the calculation of fission cross sections with the GENXS option of MCNP6 while using the LAQGSM03.03 event generator were detected during our V&V work. After fixing both problems, we find that MCNP6 using CEM03.03 and LAQGSM...

  18. ENERGY DRINKS CONSUMPTION AND ITS RELATIONSHIP WITH HYPERACTIVITY/INATTENTION BEHAVIOUR AMONG THE INTERMEDIATE AND HIGH SCHOOL MALE AND FEMALE STUDENTS

    Directory of Open Access Journals (Sweden)

    Awad S. Alsamghan

    2016-09-01

    Full Text Available BACKGROUND New studies has revealed the consumption of energy drinks as a common, linked with potential risky hyperactivity/inattention behaviour among the adolescent and especially college students. To assess the prevalence of the energy drinks consumption and to evaluate hyperactivity/inattention behaviour symptoms among the adolescent intermediate and high school male and female students in Abha city. MATERIALS AND METHODS A cross-sectional study. The self-administered questionnaires were distributed among students who were studying in the intermediate and high school. Schools were randomly selected and all students (N=602 participated with consent. Total sample size included 602 students, 50% students from intermediate school and 50% students from high school. The tools used in the present study to collect the information from the students were a structured standardised questionnaire includes the basics characteristic, demographic and consumption of energy drinks related information. RESULTS Prevalence of the energy drinks consumption among students studying in intermediate and high school level was 303 (50.3%. Male 162 (53.3% are more consuming energy drinks than female 141 (46.7%. Students who are studying in high school (56.1% drinking more energy drinks than students (43.9% in higher level. Mean score of SDQ was 21.53±5.414 falling in abnormal category. Mean±SD score of the hyperactivity subscale of the SDQ was 3.76±1.980. Female students 66 (21.9%, p=0.162 are more likely to score hyperactivity subscale compared to male students 52 (17.3% (Table 1. Bivariate logistic regression analysis (Table 2 revealed that there was a significance association found with risk of hyperactivity/inattention (OR=2.47, 95% Cl=1.61, 3.78 who consumed energy drinks. Most of the types of energy drinks types were associated with hyperactivity as regression analysis results shown. No association observed with study levels. CONCLUSION Energy drinks

  19. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M. [Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima (Peru)

    2016-07-07

    Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  20. Computational uncertainties in silicon dioxide/plutonium intermediate neutron spectrum systems

    International Nuclear Information System (INIS)

    Jaegers, P.J.

    1997-01-01

    In the past several years, several proposals have been made for the long-term stabilization and storage of surplus fissile materials. Many of these proposed scenarios involve systems that have an intermediate neutron energy spectrum. Such intermediate-energy systems are dominated by scattering and fission events induced by neutrons ranging in energy from 1 eV to 100keV. To ensure adequate safety margins and cost effectiveness, it is necessary to have benchmark data for these intermediate-energy spectrum systems; however, a review of the nuclear criticality benchmarks indicates that no formal benchmarks are available. Nuclear data uncertainties have been reported for some types of intermediate-energy spectrum systems. Using a variety of Monte Carlo computer codes and cross-section sets, reported significant variations in the calculated k ∞ of intermediate-energy spectrum metal/ 235 U systems. We discuss the characteristics of intermediate neutron spectrum systems and some of the computational differences that can occur in calculating the k eff of these systems