WorldWideScience

Sample records for intermediate energy alpha-particles

  1. Proton-carbon elastic scattering in the intermediate energy range based on the. alpha. -particle model

    Energy Technology Data Exchange (ETDEWEB)

    Li Qingrun (CCAST (World Lab.), Beijing (China) Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics); Zhou Jinli (Guangxi Normal Univ., Guilin (China). Dept. of Physics)

    1991-05-01

    The {alpha}-particle model of {sup 12}C is examined by means of proton-{sup 12}C elastic scattering in the intermediate energy range. The results show that the model gives a satisfactory account of the experimental data. The parametrized proton-{sup 4}He amplitudes in the intermediate energy region are presented. (author).

  2. Low energy alpha particle spectroscopy using CR-39 detector

    CERN Document Server

    Izerrouken, M; Ilic, R

    1999-01-01

    The possibility of using CR-39 to measure the depth profile of sup 1 sup 0 B in Si is analysed. The measuring technique exploits the sup 1 sup 0 B(n, alpha) sup 7 Li nuclear reaction. For this reason the track parameters (size, optical properties) of low energy alpha-particles (<1.47 MeV) were studied. The results showed that an energy resolution of about 100 keV could be obtained by an appropriate selection of etching conditions. The profile of sup 1 sup 0 B in Si at a depth as small as 1 mu m can be measured.

  3. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  4. Energy loss straggling of 5.486 MeV alpha particles in Melinex, Al, Ni and Cu

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.I. [Physics Department, Faculty of Science, Baghdad University, Baghdad (Iraq); Al-Bedri, M.B., E-mail: malbedri@hu.edu.jo [Radiography Department, Faculty of Allied Health Sciences, Hashemite University, P.O. Box 330127, Zerqa 13115 (Jordan)

    2012-04-15

    Energy loss straggling of 5.486 MeV alpha particles passing through Melinex, Al, Ni and Cu has been studied as a function of energy loss. The reduction in straggling towards the end of the particle range is predicted by considering the reduction of the stopping power and of the effective charge in the capture and loss of electrons at lower energies. These measurements are compared with theoretical predictions of and . The measured values agreed with Titeica results at high and intermediate energy region, and large discrepancies at low energy region are found. Titeica results are greater than Bohr results by a factor of about 1.5-2.

  5. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  6. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiang; Mulligan, Padhraic [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Wang, Jinghui [Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94305 (United States); Chuirazzi, William [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2017-03-21

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current–voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a {sup 241}Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 µm at −550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field. - Highlights: • An alpha-particle detector based on a Schottky-structured GaN wafer was tested. • The detector's large depletion depth enables fuller energy spectra to be obtained. • The best resolution yet attained in GaN alpha-particle spectrometry was achieved. • The detector's short carrier transit time resulted in improved charge collection. • This detector is usable in extreme conditions, including intense radiation fields.

  7. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  8. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    Science.gov (United States)

    Xu, Qiang; Mulligan, Padhraic; Wang, Jinghui; Chuirazzi, William; Cao, Lei

    2017-03-01

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current-voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a 241Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 μm at -550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field.

  9. Factors affecting the energy resolution in alpha particle spectrometry with silicon diodes

    International Nuclear Information System (INIS)

    Camargo, Fabio de.

    2005-01-01

    In this work are presented the studies about the response of a multi-structure guard rings silicon diode for detection and spectrometry of alpha particles. This ion-implanted diode (Al/p + /n/n + /Al) was processed out of 300 μm thick, n type substrate with a resistivity of 3 kΩ·cm and an active area of 4 mm 2 . In order to use this diode as a detector, the bias voltage was applied on the n + side, the first guard ring was grounded and the electrical signals were readout from the p + side. These signals were directly sent to a tailor made preamplifier, based on the hybrid circuit A250 (Amptek), followed by a conventional nuclear electronic. The results obtained with this system for the direct detection of alpha particles from 241 Am showed an excellent response stability with a high detection efficiency (≅ 100 %). The performance of this diode for alpha particle spectrometry was studied and it was prioritized the influence of the polarization voltage, the electronic noise, the temperature and the source-diode distance on the energy resolution. The results showed that the major contribution for the deterioration of this parameter is due to the diode dead layer thickness (1 μm). However, even at room temperature, the energy resolution (FWHM = 18.8 keV) measured for the 5485.6 MeV alpha particles ( 241 Am) is comparable to those obtained with ordinary silicon barrier detectors frequently used for these particles spectrometry. (author)

  10. An Experiment to Measure Range, Range Straggling, Stopping Power, and Energy Straggling of Alpha Particles in Air

    Science.gov (United States)

    Ouseph, P. J.; Mostovych, Andrew

    1978-01-01

    Experiments to measure range, range straggling, stopping power, and energy straggling of alpha particles are discussed in this article. Commercially available equipment with simple modifications is used for these measurements. (Author/GA)

  11. Summary of Alpha Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  12. The effect of sawtooth oscillations on the alpha particle distribution and energy balance in the ITER plasma

    Science.gov (United States)

    Zaitsev, F. S.; Gorelenkov, N. N.; Petrov, M. P.; Afanasyev, V. I.; Mironov, M. I.

    2017-11-01

    The mixing of toroidal plasma under the conditions of sawtooth oscillations is considered using the Kadomtsev model. A new mixing formula for the averaged distribution function of fast transit and trapped particles is proposed in the methodology of a kinetic equation averaged over drift trajectories. The proposed formula generalizes the known results for the case of non-circular magnetic surfaces, an arbitrary aspect ratio, and charged particle drift trajectories significantly deviating from the magnetic surfaces. The formula is applicable for a sufficiently wide class of instabilities. The 3D kinetic equation is numerically solved using the FPP- 3D computation code for parameters close to the ITER inductive scenario. The alpha particle distribution function and the power introduced by alpha particles in plasma when sawtooth oscillations occur are calculated. It is shown that such oscillations may change the energy input of a thermonuclear reaction in certain areas by several times.

  13. Angular distributions of the alpha particle production in the 7Li+144Sm system at near-barrier energies

    International Nuclear Information System (INIS)

    Carnelli, P F F; Arazi, A; Capurro, O A; Niello, J O Fernández; Heimann, D Martinez; Pacheco, A J; Cardona, M A; De Barbará, E; Figueira, J M; Hojman, D L; Martí, G V; Negri, A E

    2015-01-01

    We have studied the production of alpha particles in reactions induced by 7 Li projectiles on a 144 Sm target at bombarding energies of 18, 24 and 30 MeV over the 15°-140° angular range. The purpose of the investigation has been to determine the contribution of different mechanisms in reactions that involve weakly bound projectiles. We have included in our analysis several processes that can either directly or sequentially lead to the emission of alpha particles: complete fusion, direct transfer of 3 H, capture breakup (incomplete fusion, sequential complete fusion) and non-capture breakup. In order to distinguish alpha particles stemming from these processes it is necessary to determine the mass and charge of the reaction products and to obtain precise measurements of their energies and scattering angles over relatively wide ranges of these variables. We have done this using a detection system consisting of an ionization chamber plus three position sensitive detectors. We present results of these measurements and a preliminary interpretation based on kinematical considerations and comparisons with predictions from a statistical model. (paper)

  14. Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+

    Science.gov (United States)

    Mesick, K. E.; Coupland, D. D. S.; Stonehill, L. C.

    2017-01-01

    Cs2LiLaBr6:Ce3+(CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas. A linear quenching relationship Lα =Eα × q +L0 was found at alpha particle energies above 5 MeV, with a quenching factor q = 0.71 MeVee / MeV and an offset L0 = - 1.19 MeVee .

  15. Some characteristics of the CR-39 solid state nuclear - Track Detector for register of protons and low energy alpha particles

    International Nuclear Information System (INIS)

    Fonseca, E.S. da.

    1983-01-01

    Experimental results related to registration properties of the CR-39 Solid State Nuclear Track Detector for charged particles are presented and discussed. The existence of an inverse proportion between the induction time and the temperature as well as normal concentration of solutions, is showed by the study of CR-39 chemical etching characteristics in NaOH and KOH solutions, comprising varied concentration and temperature. The bulk-etch rate and activation energy of the process were obtained. The critical energy and critical energy-loss rate of CR-39 track-detectors for registration of protons were experimentally determined. Samples were exposed to 24 Mev proton beams in the IEN/CNEN Cyclotron (CV-28), using scattering chamber with a tantalum thin target and aluminium absorbers in contact with the samples, in order to provide the required fluctuation in the scattered beam energy. From the mean track-diameter plotted against incident proton energy the critical energy was obtained. From the calculated energy-loss rate vs. energy curve, the critical energy loss rate were evaluated. The CR-39 response for low energy alpha particles (E = 7h) under the conditions of 6.25 N NaOH at 70 0 C. It is shown that successive chemical etchings do not produce the same track geometry as obtained by means of a continous revelation with the same total etching time. (Author) [pt

  16. {alpha}-particle production in the scattering of {sup 6}He by {sup 208}Pb at energies around the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Escrig, D. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Sanchez-Benitez, A.M. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Institut de Physique Nucleaire and Centre de Recherches du Cyclotron, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Moro, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla (Spain)]. E-mail: moro@us.es (and others)

    2007-08-01

    New experimental data from the scattering of {sup 6}He + {sup 208}Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of {alpha} particles. The energy and angular distribution of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the {alpha} particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.

  17. Generalized Dependence of Semi-Microscopic Folding-Model Parameters for Alpha-Particles in the Field of Low and Medium Energy

    CERN Document Server

    Kuterbekov, K A; Penionzhkevich, Yu E; Zholdybaev, T K

    2003-01-01

    Energy and mass dependences of the semi-microscopic alpha-particle potential parameters have been investigated for the first time. In general, a good description of elastic and inelastic differential and total reaction cross sections for different nuclei using the revealed global parameters has been obtained within the framework of semi-microscopic approaches.

  18. High-energy gamma-quanta escape in the reaction of radiation capture of alpha-particles by sup 7 Li nucleus

    CERN Document Server

    Zhusupov, M A

    2002-01-01

    The reactions of radiation capture of alpha-particles by sup 7 Li nucleus which leads to excitation of the resonance levels of sup 1 sup 1 B nucleus were studied. The total cross sections of outlet high-energy gamma quanta were calculated. (author)

  19. Some characteristics of the CR-39 solid state nuclear-track detector for protons and low energy alpha particles

    International Nuclear Information System (INIS)

    Fonseca, E.S. da.

    1983-01-01

    Experimental results related to certain registration properties of the CR-39 solid state nuclear-track detector for charged particles are presented and discussed. The determination of the CR-39 chemical etching in NaOH and KOH solutions, comprising concentration (2-10N) and temperature effects (50-90 0 C), showed the existence of an inverse proportion between the induction time and the temperature as well as the normal concentration of the solutions. The critical energy and the critical energy-loss rate of CR-39 track detectors for registration of protons were experimentally determined. A number of samples was exposed to 24MeV proton beams in the IEN-CNEN Cyclotron (CV-28), using a scattering chamber with a tantalum thin target and aluminium absorbers in contact with the samples in order to provide the required fluctuation in the scattered beam energy. From the mean track-diameter plotted against incident proton energy for 16h and 24h chemical etching (6.25 NaOH, 70 0 C), and considering 1.5 μm as the minimum observable track-diameter, the values (21.0 + - 1.5) MeV and (22.5 + - 1.5) MeV were deduced, respectively, for the critical energy. From the calculated energy-loss rate versus energy curve, the critical energy-loss rate was evaluated as 24 + - 2 MeV.cm 2 /g. Finally, the CR-39 response for low energy alpha particles (E [pt

  20. Alpha particle studies during JET DT experiments

    International Nuclear Information System (INIS)

    1999-01-01

    The 1997 DT experiment (DTE1) at the Joint European Torus included studies of the behaviour of alpha particles in high temperature plasmas. Clear alpha particle heating was observed in a series of otherwise similar 10MW hot-ion H-modes by scanning the DT mixture from 0%T to 93%T. Maxima in central temperature and energy content were obtained which corresponded with the maximum in fusion yield. Alfven Eigenmodes (AEs) have been detected in JET, driven by NBI or ICRH fast ions. However, in agreement with theory, no AE activity was observed in DT plasmas which could be attributed to alpha particle drive, except in the afterglow of some Optimised Shear pulses. Ion Cyclotron Emission (ICE) was detected at harmonics of the alpha particle cyclotron frequency at the outer edge of the plasma. The ICE is interpreted as being close to magnetoacoustic cyclotron instability, driven by inverted alpha distributions at the plasma edge. The high-energy neutral particle spectra showed features, which are ascribed to a mixture of alphas, neutralised by helium-like impurities, and deuterons, born from elastic collisions with alpha particles and neutralised by hydrogen-like impurities. The results of all these studies are consistent with classical alpha particle trapping and slowing-down. Future DT experiments will aim to increase alpha particle pressure, so interactions with plasma instabilities can be studied. The measurement of knock-on neutral triton spectra offers a clean way to determine confined alpha densities in these future experiments. (author)

  1. Alpha particle studies during JET DT experiments

    International Nuclear Information System (INIS)

    2001-01-01

    The 1997 DT experiment (DTE1) at the Joint European Torus included studies of the behaviour of alpha particles in high temperature plasmas. Clear alpha particle heating was observed in a series of otherwise similar 10MW hot-ion H-modes by scanning the DT mixture from 0%T to 93%T. Maxima in central temperature and energy content were obtained which corresponded with the maximum in fusion yield. Alfven Eigenmodes (AEs) have been detected in JET, driven by NBI or ICRH fast ions. However, in agreement with theory, no AE activity was observed in DT plasmas which could be attributed to alpha particle drive, except in the afterglow of some Optimised Shear pulses. Ion Cyclotron Emission (ICE) was detected at harmonics of the alpha particle cyclotron frequency at the outer edge of the plasma. The ICE is interpreted as being close to magnetoacoustic cyclotron instability, driven by inverted alpha distributions at the plasma edge. The high-energy neutral particle spectra showed features, which are ascribed to a mixture of alphas, neutralised by helium-like impurities, and deuterons, born from elastic collisions with alpha particles and neutralised by hydrogen-like impurities. The results of all these studies are consistent with classical alpha particle trapping and slowing-down. Future DT experiments will aim to increase alpha particle pressure, so interactions with plasma instabilities can be studied. The measurement of knock-on neutral triton spectra offers a clean way to determine confined alpha densities in these future experiments. (author)

  2. Alpha-particle elastic scattering on [sup 16]O in the four [alpha]-particle model

    Energy Technology Data Exchange (ETDEWEB)

    Li Qingrun (CCAST (World Lab.), Beijing (China) Inst. of High Energy Physics, Academia Sinica, Beijing (China)); Yang Yongxu (Dept. of Physics, Guangxi Normal Univ., Guilin (China))

    1993-08-23

    A folding potential describing the alpha-particle scattering on [sup 16]O is constructed based on the four [alpha]-particle model of the nucleus [sup 16]O. This folding potential provides a good description of the experimental data covering a broad energy range. (orig.)

  3. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  4. Alpha-particle fluence in radiobiological experiments.

    Science.gov (United States)

    Nikezic, Dragoslav; Yu, Kwan Ngok

    2017-03-01

    Two methods were proposed for determining alpha-particle fluence for radiobiological experiments. The first involved calculating the probabilities of hitting the target for alpha particles emitted from a source through Monte Carlo simulations, which when multiplied by the activity of the source gave the fluence at the target. The second relied on the number of chemically etched alpha-particle tracks developed on a solid-state nuclear track detector (SSNTD) that was irradiated by an alpha-particle source. The etching efficiencies (defined as percentages of latent tracks created by alpha particles from the source that could develop to become visible tracks upon chemical etching) were computed through Monte Carlo simulations, which when multiplied by the experimentally counted number of visible tracks would also give the fluence at the target. We studied alpha particles with an energy of 5.486 MeV emitted from an 241Am source, and considered the alpha-particle tracks developed on polyallyldiglycol carbonate film, which is a common SSNTD. Our results showed that the etching efficiencies were equal to one for source-film distances of from 0.6 to 3.5 cm for a circular film of radius of 1 cm, and for source-film distances of from 1 to 3 cm for circular film of radius of 2 cm. For circular film with a radius of 3 cm, the etching efficiencies never reached 1. On the other hand, the hit probability decreased monotonically with increase in the source-target distance, and fell to zero when the source-target distance was larger than the particle range in air. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Intermediate energy data

    International Nuclear Information System (INIS)

    Koning, A.J.; Fukahori, T.; Hasegawa, A.

    1998-01-01

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  6. Neutron and alpha particle energy spectrum and angular distribution effects from beam--plasma D-T fusion

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1975-04-01

    The following five topics are discussed: (1) origin of energy spread in fusion neutrons, (2) magnitude of neutron energy spread from beam--plasma fusions, (3) techniques for calculation of fusion product particle spectra, (4) neutron spectra from fusion in isotropic plasmas, and (5) calculation of fusion neutron energy and angle distributions. (U.S.)

  7. Global dependence of optical potential parameters for alpha particles with energies up to 80 MeV

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybaev, T.K.; Sadykov, B.M.; Mukhambetzhan, A.; Kukhtina, I.N.; Penionzhkevich, Yu.Eh.

    2002-01-01

    Global (energy and mass) dependences of optical potential for α-particles with energies up to 80 MeV have been received. A Woods-Saxon form factor for macroscopic potential has been used. Energy and mass dependences of the semi-microscopic α-particle potential parameters have been investigated for the first time. In general, a good description of elastic and inelastic differential and total reactions cross sections for different nuclei using the revealed global parameters has been received within the framework of macroscopic and semi-microscopic approaches

  8. Manual for target thickness measurement by alpha particle irradiation

    International Nuclear Information System (INIS)

    Dias, J.F.; Martins, M.N.

    1990-04-01

    A system is described for thin-target thickness measurement through the alpha particle energy loss when them traverse the target. It is also described the program used in the analysis of the target thickness. (L.C.) [pt

  9. Pulse-Shape Discrimination of Alpha Particles of Different Specific Energy-Loss With Parallel-Plate Avalanche Counters

    Science.gov (United States)

    Nakhostin, M.; Baba, M.

    2014-06-01

    Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.

  10. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  11. Control of alpha-particle transport by ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-01-01

    In this paper control of radial alpha-particle transport by using ion cyclotron range of frequency (ICRF) waves is investigated in a large-aspect-ratio tokamak geometry. Spatially inhomogeneous ICRF wave energy with properly selected frequencies and wave numbers can induce fast convective transports of alpha particles at the speed of order v α ∼ (P RF /n α ε 0 )ρ p , where R RF is the ICRF wave power density, n α is the alpha-particle density, ε 0 is the alpha-particle birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to International Thermonuclear Experimental Reactor (ITER) plasma is studied and possible antenna designs to control alpha-particle flux are discussed

  12. Concentration dependence of the light yield and energy resolution of NaI:Tl and CsI:Tl crystals excited by gamma, soft X-rays and alpha particles

    CERN Document Server

    Trefilova, L N; Kovaleva, L V; Zaslavsky, B G; Zosim, D I; Bondarenko, S K

    2002-01-01

    Based on the analysis of light yield dependence on activator concentration for NaI:Tl and CsI:Tl excited by gamma-rays, soft X-rays and alpha-particles, an explanation of the effect of energy resolution enhancement with the rise of Tl content has been proposed. Based on the concept regarding the electron track structure, we proposed an alternative explanation of the intrinsic resolution value. The concept does not take into account the non-proportional response to electrons of different energies and is based on the statistic fluctuation of scintillation photon number formed outside and inside the regions of higher ionization density.

  13. Response of alpha particles in hexagonal boron nitride neutron detectors

    Science.gov (United States)

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2017-05-01

    Thermal neutron detectors were fabricated from 10B enriched h-BN epilayers of different thicknesses. The charge carrier generation and energy loss mechanisms as well as the range of alpha daughter particles generated by the nuclear reaction between thermal neutrons and 10B atoms in hexagonal boron nitride (h-BN) thermal neutron detectors have been investigated via their responses to alpha particles from a 210Po source. The ranges of alpha particles in h-BN were found to be anisotropic, which increase with the angle (θ) between the trajectory of the alpha particles and c-axis of the h-BN epilayer following (cos θ)-1 and are 4.6 and 5.6 μm, respectively, for the alpha particles with energies of 1.47 MeV and 1.78 MeV at θ = 0. However, the energy loss of an alpha particle inside h-BN is determined by the number of layers it passes through with a constant energy loss rate of 107 eV per layer due to the layered structure of h-BN. Roughly 5 electron-hole pairs are generated when an alpha particle passes through each layer. It was also shown that the durability of h-BN thermal neutron detectors is excellent based on the calculation of boron vacancies generated (or 10B atoms consumed) by neutron absorption. The results obtained here provide useful insights into the mechanisms of energy loss and charge carrier generation inside h-BN detectors and possible approaches to further improve the overall performance of h-BN thermal neutron detectors, as well as the ultimate spatial resolution of future neutron imaging devices or cameras based on h-BN epilayers.

  14. Luminescence imaging of water during alpha particle irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-01-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241 Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  15. Determination of 239Pu/240Pu isotopic ratio by high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Amoudry, F.; Burger, P.

    1983-05-01

    The development of passivated ion-implanted silicon detectors and of very thin alpha-particle sources improves the resolution of alpha-particle spectra and allows to separate energy pics up to now unseparate. The 239 Pu/ 240 Pu isotopic ratio of a mixture has been measured using the alpha spectrometry deconvolution code DEMO [fr

  16. Bond scission cross sections for alpha-particles in cellulose nitrate (LR115)

    CERN Document Server

    Barillon, R; Chambaudet, A; Katz, R; Stoquert, J P; Pape, A

    1999-01-01

    Chemical damage created by alpha-particles in cellulose nitrate (LR115) have been studied by infrared spectroscopy. This technique enables identifying the sensitive bonds and giving an order of magnitude of their scission cross sections for given alpha-particle energies. The high cross sections observed suggest a new description of the track etch velocity in this material.

  17. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  18. Experimental determination of alpha particle threshold detection in cellulose nitrate

    International Nuclear Information System (INIS)

    Knoefell, T.M.J.

    1978-01-01

    LR 115, type II, Kodak-Pathe cellulose nitrate pellicles were irradiated perpendicularly with monoenergetic alpha bemas in the energy range 2,5-5,5 Mev. The alpha particle beams were produced by an intense Am 241 source using Argon as energy attenuating. After irradiations, samples were etched with NaOH solutions without agitation at 60 0 C, by different time periods varying from 15 minutes to 3,5 hours. Measurements of density and track diameter were done using optical microscopy. The sample compositions were done by CHN method of combustion gas analysis showing good agreement with the composition of cellulose trinitrate. From detection threshold and from obtained results, the development of latent tracks only occur for alpha particles with stopping power superior to 0,87 +- 0,06 MeV.cm -2 .mg -1 , was verified. (M.C.K.) [pt

  19. Nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1991-01-01

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do

  20. Nuclear structure at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  1. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    ], this candidate detector offers better prospects for signal to background S/B ratio, energy resolution and particle selectivity due to a unique alpha particle signature. Applicability to ITER is discussed. Finally, research needs for further development of this diagnostic technique are outlined.

  2. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-02-01

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υ alpha ∼ (P RF /n α ε 0 ) ρ p , where P RF is the ICRF-wave power density, n α is the alpha density, ε 0 is the alpha birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  3. Laboratory system for alpha particle spectroscopy

    International Nuclear Information System (INIS)

    Dean, J.R.; Chiu, N.W.

    1987-03-01

    An automated alpha particle spectroscopy system has beeen designed and fabricated. It consists of two major components, the automatic sample changer and the controller/data acquisition unit. It is capable of unattended analysis of ten samples for up to 65,000 seconds per sample

  4. Biomarkers of Alpha Particle Radiation Exposure

    Science.gov (United States)

    2014-04-01

    work towards the identification of gene-based biomarkers of alpha-particle radiation exposure. Peripheral blood mononuclear cells (PBMN) isolated from...manipulation et l’exposition au rayonnement ionisant chez les humains . CSSP-2012-CD-1117 and CSSP-2012-CD-1114 iii Table of contents...19 Acknowledgements This work was supported by the Centre for

  5. Analysis of radiation risk from alpha particle component of solar particle events

    Science.gov (United States)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  6. Study of threshold energy registration of alpha particles on lexan nuclear track detector (passive) by Kr F laser pre-radiation

    International Nuclear Information System (INIS)

    Parvin, P.; Jaleh, B.; Hashemi, M. M.; Katoozi, M.; Amiri Rad, N.; Zamanipour, Z.; Zarea, A.

    2002-01-01

    The effect of Kr F laser pre-radiation has been investigated on both alpha track density and threshold energy of track registration. While no significant difference was observed on track density an nevertheless ∼100 keV shift of threshold energy occurred due to UV superficial hardening of Lexan detector

  7. A study on alpha particles range in Cr-39

    International Nuclear Information System (INIS)

    Ibrahim, Z.A.; Talaat, T.M.; Abdel-Aziz, Kh.M.A.; El-Asser, M.R.

    2000-01-01

    Cr-39 plastic nuclear track detector has been used in range determination of alpha particles. A set of experiments was carried out for studying alpha energy and track diameter relationships. This work was done under the optimum conditions of Cr-39 etching in 6.25 N NaOH at 70 degree C for various etching times. Determination of alpha range in Cr-39 recorders was studied at different energy values using the over etched track profile technique. Data are discussed within the framework of track formation theory in plastic foils, comparison between experimental and theoretical values of alpha range is included

  8. Slowing down of alpha particles in ICF DT plasmas

    Science.gov (United States)

    He, Bin; Wang, Zhi-Gang; Wang, Jian-Guo

    2018-01-01

    With the effects of the projectile recoil and plasma polarization considered, the slowing down of 3.54 MeV alpha particles is studied in inertial confinement fusion DT plasmas within the plasma density range from 1024 to 1026 cm-3 and the temperature range from 100 eV to 200 keV. It includes the rate of the energy change and range of the projectile, and the partition fraction of its energy deposition to the deuteron and triton. The comparison with other models is made and the reason for their difference is explored. It is found that the plasmas will not be heated by the alpha particle in its slowing down the process once the projectile energy becomes close to or less than the temperature of the electron or the deuteron and triton in the plasmas. This leads to less energy deposition to the deuteron and triton than that if the recoil of the projectile is neglected when the temperature is close to or higher than 100 keV. Our model is found to be able to provide relevant, reliable data in the large range of the density and temperature mentioned above, even if the density is around 1026 cm-3 while the deuteron and triton temperature is below 500 eV. Meanwhile, the two important models [Phys. Rev. 126, 1 (1962) and Phys. Rev. E 86, 016406 (2012)] are found not to work in this case. Some unreliable data are found in the last model, which include the range of alpha particles and the electron-ion energy partition fraction when the electron is much hotter than the deuteron and triton in the plasmas.

  9. Liquid scintillation alpha particle spectrometry. Progress report

    International Nuclear Information System (INIS)

    Bell, L.L.; Hakooz, S.A.; Johnson, L.O.; Nieschmidt, E.B.; Meikrantz, D.H.

    1979-12-01

    Objective to develop a technique whereby Pu may be put into solution, extracted by solvent extraction into a suitable extractive scintillant and subsequently counted. Presented here are results of attempts to separate beta and alpha activities through pulse shape discrimination. A qualitative discussion is given which yields alpha particle peak widths, resolution and response. The detection efficiency for alpha particles in a liquid scintillant is 100%. Present detection sensitivities of the equipment being used are: 4.5 x 10 -6 μCi (100 s), 1.2 x 10 -6 μCi (1000 s), and 4.0 x 10 -7 μCi (10,000 s) at the 3 sigma level. The detectability of a particular alpha-emitting species is strongly dependent upon the population of other species. The ability to discriminate depends upon the system resolution. 14 figures, 2 tables

  10. Ripple loss of alpha particles in ITER

    International Nuclear Information System (INIS)

    Tani, Keiji; Takizuka, Tomonori; Azumi, Masafumi

    1989-07-01

    Part I: A benchmark test for the ripple loss of alpha particles in ITER has been executed by using an orbit-following Monte-Carlo (OFMC) code. In ITER with a plasma current of the order of 10 MA and an edge ripple of the order of 3%, the total power-loss fraction derived by JAERI's OFMC code is 6.6%. Part II: Two dimensional heat load on the first wall due to ripple loss of alpha particles in ITER has been estimated by using an OFMC code. The peak heat load due to ripple-trapped loss is of the order of 0.1 MW/m 2 . The peak heat load by ripple-untrapped loss averaged over the toroidal angle is about 0.07 MW/m 2 . (author)

  11. Alpha-particle Gas Pressure Gauge

    Science.gov (United States)

    Buehler, M. G.; Bell, L. D.; Hecht, M. H.

    1995-01-01

    Described are preliminary results obtained on a novel gas pressure gauge that operates between 0.1 and 1000 mb. This gauge uses a 1- micron Ci alpha particle source to ionize the gas in a small chamber with an electric field imposed between anode and cathode electrodes that drives positive ions to the cathode where they are collected electronically. This gauge could make Martian pressure measurements.

  12. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4–50.2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Ahmed Rufai [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, Umaru Musa Yar' adua University, Katsina (Nigeria); Khandaker, Mayeen Uddin, E-mail: mu_khandaker@um.edu.my [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haba, Hiromitsu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Otuka, Naohiko [Nuclear Data Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna (Austria); Murakami, Masashi [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2017-05-15

    Highlights: • Detailed presentation of new results on experimental cross-sections of {sup nat}Ti(α,x) processes. • Calculations of thick target yields for scandium and other radionuclides via the {sup nat}Ti(α,x) production route. • Comparison with TENDL-2015 library. • Detailed review of previous experimental data. - Abstract: We studied the excitation functions of residual radionuclide productions from α particles bombardment on natural titanium in the energy range of 10.4–50.2 MeV. A well-established stacked-foil activation technique combined with HPGe γ-ray spectrometry was used to measure the excitation functions for the {sup 51,49,48}Cr, {sup 48}V, {sup 43}K, and {sup 43,44m,44g,46g+m,47,48}Sc radionuclides. The thick target yields for all assessed radionuclides were also calculated. The obtained experimental data were compared with the earlier experimental ones and also with the evaluated data in the TENDL-2015 library. A reasonable agreement was found between this work and some of the previous ones, while a partial agreement was found with the evaluated data. The present results would further enrich the experimental database and facilitate the understanding of existing discrepancies among the previous measurements. The results would also help to enhance the prediction capability of the nuclear reaction model codes.

  13. Alpha-nucleus elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Bonin, B.; Alamanos, N.; Berthier, B.; Bruge, G.; Faraggi, H.; Lugol, J.C.; Mittig, W.; Papineau, L.; Yavin, A.I.; Buenerd, M.; Bauhoff, W.

    1985-01-01

    Elastic scattering of 288, 340, 480 and 699 MeV Alpha-particles was measured on 208 Pb, 116 Sn and 58 Ni. The data were analysed in terms of a phenomenological optical model. The optical potentials obtained were found to vary consistently with the target nucleus and the incident energy. The radial zone where the potentials are well determined was studied in detail. The data for 208 Pb were also analysed with a folding model. The energy dependence of the strong-absorption radius and of the reaction cross section shows that the nuclear surface becomes slightly transparent for incident energies above 150 MeV per nucleon. (orig.)

  14. GaN-based PIN alpha particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guo [Peking University, Shenzhen Graduate School, Guangdong Shenzhen 518055 (China); Peking University, Beijing, 100871 (China); Fu Kai; Yao Changsheng [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Science, Jiangsu Suzhou 215123 (China); Su Dan; Zhang Guoguang [China Institute of Atomic Energy, Beijing 102413 (China); Wang Jinyan [Peking University, Beijing, 100871 (China); Lu Min, E-mail: mlu2006@sinano.ac.cn [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Science, Jiangsu Suzhou 215123 (China)

    2012-01-21

    GaN-based PIN alpha particle detectors are studied in this article. The electrical properties of detectors have been investigated, such as current-voltage (I-V) and capacitance-voltage (C-V). The reverse current of all detectors is in nA range applied at 30 V, which is suitable for detector operation. The charge collection efficiency (CCE) is measured to be approximately 80% but the energy resolution is calculated to be about 40% mostly because the intrinsic layer is not sufficiently thick enough.

  15. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  16. Nuclear photoreactions at intermediate energies

    International Nuclear Information System (INIS)

    Christillin, P.

    1989-02-01

    We review the interaction of real photons with nuclei up to the GeV region. The common microscopic description of exchange effects below threshold and of the corresponding real photoproduction above, is emphasized. The theoretical problems connected with π photoproduction in Δ region and vector meson photoproduction are spelled out and solved. The gross features of the reaction mechanism are shown to explain both the low energy region, the bulk properties around the Δ resonance as well as the appearance of shadowing only above ρ threshold

  17. Intermediate-energy light sources

    CERN Document Server

    Corbett, W

    2003-01-01

    Increasingly, atomic scale information underlies scientific and technological progress in disciplines ranging from pharmaceutical development to materials synthesis to environmental remediation. While a variety of research tools are used to provide atomic scale information, synchrotron radiation has proved invaluable in this quest. The rapid growth of soft- and hard X-ray synchrotron light sources stands as stark testimony to the importance and utility of synchrotron radiation. Starting from just a handful of synchrotron light sources in the early 1970s, this burgeoning field now includes over 70 proposed, in-construction, or operating facilities in 23 countries on five continents. Along the way, synchrotron light facilities have evolved from small laboratories extracting light parasitically from storage rings designed for high-energy physics research to large, dedicated sources using the latest technology to produce extraordinarily bright photon beams. The basic layout of a multi-GeV storage ring light sourc...

  18. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  19. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  20. Quasi-linear absorption of lower hybrid waves by fusion generated alpha particles

    International Nuclear Information System (INIS)

    Barbato, E.; Santini, F.

    1991-01-01

    Lower hybrid waves are expected to be used in a steady state reactor to produce current and to control the current profile and the stability of internal modes. In the ignition phase, however, the presence of energetic alpha particles may prevent wave-electron interaction, thus reducing the current drive efficiency. This is due to the very high birth energy of the alpha particles that may absorb much of the lower hybrid wave power. This unfavourable effect is absent at high frequencies (∼ 8 GHz for typical reactor parameters). Nevertheless, because of the technical difficulties involved in using such high frequencies, it is very important to investigate whether power absorption by alpha particles would be negligible also at relatively low frequencies. Such a study has been carried out on the basis of the quasi-linear theory of wave-alpha particle interaction, since the distortion of the alpha distribution function may enhance the radiofrequency absorption above the linear level. New effects have been found, such as local alpha concentration and acceleration. The model for alpha particles is coupled with a 1-D deposition code for lower hybrid waves to calculate the competition in the power absorption between alphas and electrons as the waves propagate into the plasma core for typical reactor (ITER) parameters. It is shown that at a frequency as low as 5 GHz, power absorption by alpha particles is negligible for conventional plasma conditions and realistic alpha particle concentrations. In more ''pessimistic'' and severe conditions, negligible absorption occurs at 6 GHz. (author). 19 refs, 11 figs, 2 tabs

  1. Effect of alpha particles on bacteriophage T4Br(+)

    International Nuclear Information System (INIS)

    Leonteva, G.A.; Akoev, I.G.; Grigorev, A.E.

    1983-01-01

    The effects of heavy particle radiation, which is believed to be responsible for the high relative biological effectiveness (RBE) of space hadrons, on bacteriophages are investigated. Dry film cultures of bacteriophage T4 were irradiated with 5.3 MeV Po-210 alpha particles to doses from 5 to 60 Gray, and compared with cultures irradiated by Co-60 gamma radiation. Examination of the exponential dose-response curves for bacteriophage survival indicates an RBE of 4.68 for the alpha particles. The r-mutation frequency per 10,000 surviving phages is found to peak at 7.1 at doses between 65 and 85 Gray for gamma radiation, however it declines steadily from a level of 10.2 per 10,000 survivors with increasing dose of alpha radiation. Comparison of the mutation frequencies at the same levels of lethality and the spectra of mutations produced by the two types of radiation indicates alpha and gamma radiation to differ as well in the mechanisms of mutation production. It is concluded that the observed high RBE of space hadrons cannot be explained by the presence of high-energy particles in the secondary radiation. 13 references

  2. Alpha particle loss in the TFTR DT experiments

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.

    1995-01-01

    Alpha particle loss was measured during the TFTR DT experiments using a scintillator detector located at the vessel bottom in the ion grad-B drift direction. The DT alpha particle loss to this detector was consistent with the calculated first-orbit loss over the whole range of plasma current I=0.6-2.7 MA. In particular, the alpha particle loss rate per DT neutron did not increase significantly with fusion power up to 10.7 MW, indicating the absence of any new ''collective'' alpha particle loss processes in these experiments

  3. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2005-01-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  4. Ripple enhanced transport of suprathermal alpha particles

    International Nuclear Information System (INIS)

    Tani, K.; Takizuka, T.; Azumi, M.

    1986-01-01

    The ripple enhanced transport of suprathermal alpha particles has been studied by the newly developed Monte-Carlo code in which the motion of banana orbit in a toroidal field ripple is described by a mapping method. The existence of ripple-resonance diffusion has been confirmed numerically. We have developed another new code in which the radial displacement of banana orbit is given by the diffusion coefficients from the mapping code or the orbit following Monte-Carlo code. The ripple loss of α particles during slowing down has been estimated by the mapping model code as well as the diffusion model code. From the comparison of the results with those from the orbit-following Monte-Carlo code, it has been found that all of them agree very well. (author)

  5. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  6. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    Science.gov (United States)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  7. Intermediate Energy Activation File (IEAF-99)

    International Nuclear Information System (INIS)

    Korovin, Yu.; Konobeev, A.; Pereslavtsev, P.; Stankovskij, A.; Fischer, U.; Moellendorff, U. von

    1999-01-01

    Nuclear data library IEAF-99, elaborated to study processes of interactions of intermediate energy neutrons with materials in accelerator driven systems, is described. The library is intended for activation and transmutation studies for materials irradiated by neutrons. IEAF-99 contains evaluated neutron induced reaction cross sections at the energies 0-150 MeV for 665 stable and unstable nuclei from C to Po. Approximately 50,000 excitation functions are included in the library. The IEAF-99 data are written in the ENDF-6 format combining MF = 3,6 MT = 5 data recording. (author)

  8. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles

    Science.gov (United States)

    2012-01-01

    Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles. PMID:23121736

  9. Cellular dosimetry for radon progeny alpha particles in bronchial tissue

    International Nuclear Information System (INIS)

    Mohamed, A.; Hofmann, W.; Balashazy, I.

    1996-01-01

    Inhaled radon progeny are deposited in different regions of the human bronchial tree as functions of particle size and flow rate. Following deposition and mucociliary clearance, the sensitive bronchial basal and secretory cells are irradiated by two different alpha particle sources: (i) radon progeny in the sol and/or gel phase of the mucous layer, and (ii) radon progeny within the bronchial epithelium. In the case of internally deposited radionuclides, direct measurement of the energy absorbed from the ionizing radiation emitted by the decaying radionuclides is rarely, if ever, possible. Therefore, one must rely on dosimetric models to obtain estimates of the spatial and temporal patterns of energy deposition in tissues and organs of the body. When the radionuclide is uniformly distributed throughout the volume of a tissue of homogeneous composition and when the size of the tissue is large compared to the range of the particulate emissions of the radionuclide, then the dose rate within the tissue is also uniform and the calculation of absorbed dose can proceed without complication. However, if non-uniformities in the spatial and temporal distributions of the radionuclide are coupled with heterogeneous tissue composition, then the calculation of absorbed dose becomes complex and uncertain. Such is the case with the dosimetry of inhaled radon and radon progeny in the respiratory tract. There are increasing demands to obtain a definitive explanation of the role of alpha particles emitted from radon daughters in the induction of lung cancer. Various authors have attempted to evaluate the dose to the bronchial region of the respiratory tract due to the inhalation of radon daughters

  10. Study on 16O in the alpha particle model using three-body forces

    International Nuclear Information System (INIS)

    Agrello, D.A.

    1979-01-01

    A study of the ground state of 16 O is made using an alpha particle model, all without internal structure, interacting through two-and three-body forces. Some nuclear properties of 16 O, such as binding energy and gaps, are also studied. (L.C.) [pt

  11. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  12. Determination of the radial gradient in the region 0.81-1.0 AU using both high- and low-energy /more than 10-GeV and more than 52-MeV/ detectors for the 1-AU monitor. [solar quiet measurements of alpha particles and protons

    Science.gov (United States)

    Sheldon, W. R.; Bukata, R. P.; Rao, U. R.

    1974-01-01

    A determination of the radial gradient for alpha particles (31-46 MeV/nuc) and protons with energies above 7.5 MeV and 44-77 MeV in the region 1.0-0.81 AU is presented for the solar-quiet year 1966. The determinations are based on data from the Pioneer 6 space probe. Two different detectors are used: the Deep River neutron monitor and measurements of low energy protons made on the IMP-C satellite. The average energy response of the Deep River monitor is 16 GeV, whereas the IMP-C data is for protons with energies above 50 MeV. The resulting radial gradient is found to be nearly zero for the alpha particles and slightly negative for the protons. The same qualitative results were found using the IMP-C data and the Deep River neutron monitor to measure the temporal variation in the cosmic ray intensity. The present analysis indicates that detectors over a wide range of energies are suitable for measuring the radial gradient, providing sufficient statistical precision is obtained to evaluate short-term modulation and the azimuthal separation of the detectors is not great.

  13. q-Gamow states for intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Plastino, A. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Rocca, M.C., E-mail: mariocarlosrocca@gmail.com [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina); Ferri, G.L. [Fac. de C. Exactas, National University La Pampa, Peru y Uruguay, Santa Rosa, La Pampa (Argentina); Zamora, D.J. [La Plata National University and Argentina' s National Research Council, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata (Argentina)

    2016-11-15

    In a recent paper Plastino and Rocca (2016) [18] we have demonstrated the possible existence of Tsallis' q-Gamow states. Now, accelerators' experimental evidence for Tsallis' distributions has been ascertained only at very high energies. Here, instead, we develop a different set of q-Gamow states for which the associated q-Breit–Wigner distribution could easily be found at intermediate energies, for which accelerators are available at many locations. In this context, it should be strongly emphasized Vignat and Plastino (2009) [2] that, empirically, one never exactly and unambiguously “detects” pure Gaussians, but rather q-Gaussians. A prediction is made via Eq. (3.4).

  14. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  15. Development of diagnostic beams for alpha particle measurement on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M.; Taniike, A.; Nomura, I.; Wada, M.; Yamaoka, H.; Sato, M.

    1995-08-01

    The feasibility of alpha particle measurement using a high energy diagnostic beam in combination with a neutral particle analyzer is examined for a burning plasma on ITER. In order to measure them in the energy range of 0.5 - 3.5 MeV, the required beam energy is around 1 MeV for a {sup 3}He{sup 0} beam and 3 MeV for a {sup 6}Li{sup 0} beam with the beam current density of around 1 mA/cm{sup 2} for both cases. Among the various methods to produce such a high energy neutral beam, the acceleration of negative ions is most favorable. Recent results of relatively small-scale experiments on these negative ion sources show that the required current density is now realistic. Some technical problems how to scale-up the ion sources to be used on an ITER-size experiment are also studied on these experiments. (author).

  16. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Candy Yuen Ping Ng

    2017-02-01

    Full Text Available Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf revealed through acridine orange (AO staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy and alpha-particle (4.4 mGy exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  17. Proof-of-principle test of a Thomson scattering alpha particle diagnostic (abstract)

    Science.gov (United States)

    Hutchinson, D. P.; Richards, R. K.; Hunter, H. T.; Bennett, C. A.

    1990-10-01

    A CO2 laser Thomson scattering diagnostic is being developed for the measurement of high-energy alpha particles in a burning plasma. To evaluate the system, a proof-of-principle test is presently in progress. The goal of the experiment is to perform small-angle scattering measurements on a nonburning plasma in the Advanced Toroidal Facility (ATF). In the absence of fusion-product alpha particles, measurements are being made on the smaller scattered signal from the background electrons in the plasma. Preliminary results, indicating receiver calibration and stray light measurements, and calculations of expected scattered power based on measured density and temperature profiles in ATF will be presented. This research was sponsored by Office of Fusion Energy, U. S. DOE, under contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

  18. New measurements of W-values for protons and alpha particles

    International Nuclear Information System (INIS)

    Giesen, U.; Beck, J.

    2014-01-01

    The increasing importance of ion beams in cancer therapy and the lack of experimental data for W-values for protons and heavy ions in air require new measurements. A new experimental set-up was developed at PTB and consistent measurements of W-values in argon, nitrogen and air for protons and alpha particles with energies from 0.7 to 3.5 MeV u -1 at PTB, and for carbon ions between 3.6 and 7.0 MeV u -1 at GSI were carried out. This publication concentrates on the measurements with protons and alpha particles at PTB. The experimental methods and the determination of corrections for recombination effects, beam-induced background radiation and additional effects are presented. W-values in argon, nitrogen and air were measured for protons with energies of 1-3 MeV and for alpha particles with energies of 2.7-14 MeV. The energies of the primary particle beam were corrected for energy losses in the gold and Mylar foils, as well as for the kinematic energy loss due to scattering by 45 deg.. Beam-induced radiation backgrounds as well as recombination effects were determined and corrected for. The present results are summarised in Figure 2 for all three gases. The solid lines through the data points for each gas indicate an average W-value for that gas. The higher values for 2.7-MeV alpha particles agree with the trend in previous data towards lower energies. They are excluded from the averages. The relative standard uncertainties of the individual data points range from 1.3 to 3 %. The weighted averages over all energies are W(Ar) = 25.7 eV, W(N 2 ) = 35.6 eV and W(Air) = 34.2 eV. The averages serve as a first comparison and the lines on the plot are to guide the eye and are not meant to imply constant W-values for all energies and particles. The W-values for protons and alpha particles in argon and nitrogen have smaller uncertainties and are lower than the suggested values, but they are still in agreement within the uncertainties. For alpha particles with energies of 12

  19. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. By the explicit example of a scalar field theory in 2D we have solved the long-standing problem of how to treat the dynamics of the vacuum in light-front quantization. We now propose to solve the same problem for simple Fermion field theories in 2D such as the Gross-Neveu model. We propose in subsequent years to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We have completed our analysis of the SLAC E101 and E133 experiments on Deuterium to elucidate the degree to which a six-quark cluster contribution is admissable in the Bjorken x > 1 data. We have completed our development of a parameterized thermal liquid drop model for light nuclei. In addition we have completed a set of predictions for the formation of a ''nuclear stratosphere'' in nuclei created by intermediate energy heavy ion interactions. These results motivate a new investigation of the temperature dependence of the ion-ion potential with particular emphasis on the thermal dependence of the barrier height and radius. We have also shown that a consistent treatment of relativistic effects is important for a theoretical description of the elastic magnetic form factor of 17 O. 85 refs

  20. An experimental study of symmetric and asymmetric peak-fitting parameters for alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Martin Sanchez, A.; Vera Tome, F.; Caceres Marzal, D.; Bland, C.J.

    1994-01-01

    A pulse-height spectrum of alpha-particle emissions at discrete energies can be fitted by the peak-shape functions generated by combining asymmetric truncated exponential functions with a symmetric Gaussian distribution. These functions have been applied successfully by several workers. A correlation was previously found between the variance of the symmetric Gaussian portion of the fitting function, and the parameter characterising the principal exponential tailing function. The results of a more detailed experimental study are reported, which involve varying the angle and the distance between the source and the detector. This analysis shows that the parameters of the symmetric and asymmetric parts of the fitted functions seem to depend on either the detector or the source. These parameters are influenced by the energy loss suffered by the alpha-particles as well as by the efficiency of charge collection in the solid-state detector. (orig.)

  1. Elastic and inelastic scattering of 1.37GeV alpha particles on 12C

    International Nuclear Information System (INIS)

    Bauer, T.; Bertini, R.; Boudard, A.; Bruge, G.; Catz, H.; Chaumeaux, A.; Couvert, P.; Duhm, H.H.; Fontaine, J.M.; Garreta, D.; Layly, V.; Lugol, J.C.; Schaeffer, R.

    Elastic and inelastic scattering of 1.37GeV alpha-particles have been measured by means of the SPES I magnetic spectrometer facility. The alpha-particles were accelerated by the synchrotron Saturne. Angular distributions have been measured in a 3-15 deg angular range for the ground and the first three excited states in 12 C. The energy resolution was 400-700keV. Calculations have been performed in the framework of the Kerman, McManus and Thaler formalism. The nucleon-alpha amplitudes have been calculated from the nucleon-nucleon data at 350MeV by means of the Glauber model and checked on the experimental p- 4 He data at the same energy [fr

  2. The use of silicon devices (diodes, RAMs, etc.) for alpha particle detection

    International Nuclear Information System (INIS)

    Agosteo, S.; Foglio Para, A.

    1993-01-01

    Silicon electronic devices (diodes, random access memories (RAMs), etc.) can be employed in alpha particle detection and spectroscopy with a good energy resolution. The detection mechanisms are first discussed; the performances of these devices operating in the pulse and in the current mode are then described starting from the pioneering works of the last decade. Some peculiar applications of RAMs are finally reported. (author). 7 refs, 5 figs, 1 tab

  3. Elastic and inelastic interaction of alpha-particles and structure of 48,50Ti nuclei

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Kukhtina, I.N.; Dujsebaev, A.; Zholdybaev, T.K.; Mukhambedzhan, A.

    2002-01-01

    The analysis of experimental data on differential and total cross sections of alpha-particles with energy 50.5 MeV on 48,50 Ti isotopes within the framework of phenomenological optical and semimicroscopic folding models has been carried out. The optimal optical-potential parameters, values of the deformation length for low-lying 2 i + -state of 48,50 Ti nuclei, their neutron and proton matrix elements relations are obtained. (author)

  4. Advantages of using gyrotron scattering for alpha particle diagnostics

    International Nuclear Information System (INIS)

    Woskoboinikow, P.P.; Cohn, D.R.; Machuzak, J.S.; Myer, R.C.; Rhee, R.Y.

    1987-07-01

    Millimeter-wave gyrotron collective Thomson scattering can be an effective diagnostic technique for the study of alpha particle behavior in ignited plasmas. The measurement of alpha particle density, velocity distribution, and alpha particle induced plasma instabilities can be accomplished with both spatial and temporal resolution. Advantages include long pulse operation which can make possible very high signal to noise ratios and use of millimeter waves which maximizes the Doppler shifted scattered signal in WHz -1 and makes possible scattering angles up to 180 0 . Extraordinary mode scattering at approximately 60 and 200 GHz would be used in TFTR and CIT respectively, and 140 GHz ordinary mode scattering in JET. 8 refs., 1 fig

  5. Nuclear structure at intermediate energies. Progress report

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1992-01-01

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS bar p experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance

  6. ALPHACAL: A new user-friendly tool for the calibration of alpha-particle sources.

    Science.gov (United States)

    Timón, A Fernández; Vargas, M Jurado; Gallardo, P Álvarez; Sánchez-Oro, J; Peralta, L

    2018-05-01

    In this work, we present and describe the program ALPHACAL, specifically developed for the calibration of alpha-particle sources. It is therefore more user-friendly and less time-consuming than multipurpose codes developed for a wide range of applications. The program is based on the recently developed code AlfaMC, which simulates specifically the transport of alpha particles. Both cylindrical and point sources mounted on the surface of polished backings can be simulated, as is the convention in experimental measurements of alpha-particle sources. In addition to the efficiency calculation and determination of the backscattering coefficient, some additional tools are available to the user, like the visualization of energy spectrum, use of energy cut-off or low-energy tail corrections. ALPHACAL has been implemented in C++ language using QT library, so it is available for Windows, MacOs and Linux platforms. It is free and can be provided under request to the authors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy.

    Science.gov (United States)

    Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E

    2016-11-01

    In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h

  8. Acceleration and stacking of /alpha/ particles in the cern linac, ps and isr

    International Nuclear Information System (INIS)

    Boutheon, M.; Cappi, R.; Haseroth, H.; Hill, C.E.; Koutchouk, J.P.

    1981-01-01

    The CERN Intersecting Storage Rings (ISR) have been successfully operated with sufficient /alpha/ particles for experiments at total center of mass energies up to 120 GeV. Initially, the small beam currents obtainable from the (old) Linac hampered machine studies with the PS so that conclusive experiments similar to those done with deuterons were not possible. Recent attempts to increase the intensity by stripping a He/sup +/ beam at 520 keV succeeded and gave 10 mA of /alpha/ particles from the Linac. Multiturn injection and acceleration in the PS produced 2*10/sup 11/ particles/pulse and stacking in the ISR resulted in a maximum stored beam intensity of 4.2 A at 52 GeV. 5 refs

  9. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  10. Measurement of the Internal Magnetic Field of Plasmas using an Alpha Particle Source

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben; D.S. Darrow; P.W. Ross; J.L. Lowrance; G. Renda

    2004-05-13

    The internal magnetic fields of plasmas can be measured under certain conditions from the integrated v x B deflection of MeV alpha particles emitted by a small radioactive source. This alpha source and large-area alpha particle detector would be located inside the vacuum vessel but outside the plasma. Alphas with a typical energy of 5.5 MeV (241Am) can reach the center of almost all laboratory plasmas and magnetic fusion devices, so this method can potentially determine the q(r) profile of tokamaks or STs. Orbit calculations, background evaluations, and conceptual designs for such a vxB (or ''AVB'') detector are described.

  11. Characterization of actinide targets by low solid-angle alpha particle counting

    CERN Document Server

    Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S

    1999-01-01

    Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...

  12. Helium burning: a further measurement of the beta-delayed alpha-particle emission of 16 Na

    International Nuclear Information System (INIS)

    Gai, Moshe

    1997-01-01

    The 12 C (α,γ) 16 O is a key (but still unknown) reaction in helium burning. Several attempts to constrain the p-wave S-factor at Helium burning temperatures (200 M K) using the beta-delayed alpha-particle emission of 16 N have been made. However, some discrepancy exists between the spectra measured at Settle and that of TRIUMF. We have improved our previous study of the beta-delayed alpha-particle emission of 16 N by improving our statistical sample (by more than a factor of 5), improving the energy resolution of the experiment (by 20%), and in understanding our line shape, deduced from measured quantities. Our newly measured spectrum of the beta-delayed alpha-particle emission of 16 N is consistent with the Seattle ('95) data, as well as an earlier experiment performed at Mains ('71) and is not consistent with the TRIUMF ('94) data. (author)

  13. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  14. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Aguado, J.L.; Bolivar, J.P.; Garcia-Tenorio, R.

    1999-01-01

    A radiochemical method for 226 Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to 226 Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks). (author)

  15. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    Science.gov (United States)

    Aguado, J. L.; Bolívar, J. P.; García-Tenorio, R.

    1999-01-01

    A radiochemical method for226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks).

  16. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  17. SU-E-T-334: Track Structure Simulations of Charged Particles at Low and Intermediate Energies: Cross Sections Needs for Light and Heavy Ions

    Energy Technology Data Exchange (ETDEWEB)

    Dingfelder, M [East Carolina University, Greenville, NC (United States)

    2014-06-01

    Purpose/Methods: Monte Carlo (MC) track structure simulations follow the primary as well as all produced secondary particles in an event-by-event manner, from starting or ejection energy down to total stopping. They provide useful information on physics and chemistry of the biological response to radiation. They depend on reliable interaction cross sections and transport models of the considered radiation quality with biologically relevant materials. Most transport models focus on sufficiently fast and bare (i.e., fully ionized) ions and cross sections calculated within the (relativistic) first Born or Bethe approximations. These theories consider the projectile as a point particle and rely on proton cross sections and simple charge-scaling methods; they neglect the atomic nature of the ion and break down at low and intermediate ion energies. Heavier ions are used in particle therapy and slow to intermediate and low energies in the biologically interesting Bragg peak. Lighter and slower fragment ions, including alpha particles, protons, and neutrons are also produced in nuclear and break up reactions of charged particles. Secondary neutrons also produce recoil protons and ions, mainly in the intermediate energy range. Results/Conclusion: This work reviews existing models for track structure simulations and cross section calculations for light and heavy ions focusing on the low and intermediate energy range. It also presents new and updated aspects on cross section calculations and simulation techniques for ions and discusses the need for new models, calculations, and experimental data.

  18. The Use Of Optical Properties Of Cr-39 In Alpha Particle Equivalent Dose Measurements

    International Nuclear Information System (INIS)

    Shnishin, K.A.

    2007-01-01

    In this work, optical properties of alpha irradiated Cr-39 were measured as a function of optical photon wavelength from 200-1100 nm. Optical energy gap and optical absorption at finite wavelength was also calculated and correlated to alpha fluence and dose equivalent. Alpha doses were calculated from the corresponding irradiation fluence and specific energy loss using TRIM computer program. It was found that, the optical absorption of unattached Cr-39 was varied with alpha fluence and corresponding equivalent doses. Also the optical energy gab was varied with fluence and dose equivalent of alpha particles. This work introduces a reasonably simple method for the Rn dose equivalent calculation by Cr-39 track

  19. Alpha particle destabilization of the TAE modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-01-01

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed v α ≥ v A /(2|m-nq|), where v A is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta β α , α-particle pressure gradient parameter (ω * /ω A ) (ω * is the α-particle diamagnetic drift frequency), and (v α /v A ) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10 -4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10 -2 ω A , where ω A = v A /qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  20. Mechanism of intermediate mass fragment emission at low energy

    International Nuclear Information System (INIS)

    Dhara, A.K.; Bhattacharya, C.; Bhattacharya, S.; Krishan, K.

    1993-01-01

    The study of the dynamics of intermediate mass fragment emission in fusion-fission processes has been carried out. The average kinetic energies and relative yield ratio of different fragments are calculated and compared with experimental values

  1. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  2. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  3. Efficient alpha particle detection by CR-39 applying 50 Hz-HV electrochemical etching method

    International Nuclear Information System (INIS)

    Sohrabi, M.; Soltani, Z.

    2016-01-01

    Alpha particles can be detected by CR-39 by applying either chemical etching (CE), electrochemical etching (ECE), or combined pre-etching and ECE usually through a multi-step HF-HV ECE process at temperatures much higher than room temperature. By applying pre-etching, characteristics responses of fast-neutron-induced recoil tracks in CR-39 by HF-HV ECE versus KOH normality (N) have shown two high-sensitivity peaks around 5–6 and 15–16 N and a large-diameter peak with a minimum sensitivity around 10–11 N at 25°C. On the other hand, 50 Hz-HV ECE method recently advanced in our laboratory detects alpha particles with high efficiency and broad registration energy range with small ECE tracks in polycarbonate (PC) detectors. By taking advantage of the CR-39 sensitivity to alpha particles, efficacy of 50 Hz-HV ECE method and CR-39 exotic responses under different KOH normalities, detection characteristics of 0.8 MeV alpha particle tracks were studied in 500 μm CR-39 for different fluences, ECE duration and KOH normality. Alpha registration efficiency increased as ECE duration increased to 90 ± 2% after 6–8 h beyond which plateaus are reached. Alpha track density versus fluence is linear up to 10 6  tracks cm −2 . The efficiency and mean track diameter versus alpha fluence up to 10 6  alphas cm −2 decrease as the fluence increases. Background track density and minimum detection limit are linear functions of ECE duration and increase as normality increases. The CR-39 processed for the first time in this study by 50 Hz-HV ECE method proved to provide a simple, efficient and practical alpha detection method at room temperature. - Highlights: • Alpha particles of 0.8 MeV were detected in CR-39 by 50 Hz-HV ECE method. • Efficiency/track diameter was studied vs fluence and time for 3 KOH normality. • Background track density and minimum detection limit vs duration were studied. • A new simple, efficient and low-cost alpha detection method

  4. Alpha particle track coloration in CR-39: Improved observability

    CERN Document Server

    Oezguemues, A

    1999-01-01

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger fi...

  5. Collective Thomson Scattering diagnostic for fusion product alpha particle measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kondoh, Takashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2000-03-01

    In JT-60U, a pulsed CO{sub 2} laser (10.6 {mu}m 10 MW) have been developed to measure ion temperature and velocity distribution of fast ions to demonstrate feasibility of measurements of confined alpha particles in ITER. High power pulsed CO{sub 2} laser and heterodyne receiver system (a quantum-well infrared photodetector, QWIP) has been developed and installed in the diagnostic room (in collaboration with the Oak Ridge National Laboratory team). We describe the present states of the JT-60U CTS (Collective Thomson Scattering) system and also present a calculation of the scattered spectrum associated with the density and velocity distribution of energetic fusion produced alpha particles. Scattering of CO{sub 2} radiation is evaluated for the plasma condition for both ITER and JT-60U. (author)

  6. Alpha particle induced soft errors in NMOS RAMs: a review

    International Nuclear Information System (INIS)

    Carter, P.M.; Wilkins, B.R.

    1987-01-01

    The paper aims to explain the alpha particle induced soft error phenomenon using the NMOS dynamic random access memory (RAM) as a model. It discusses some of the many techniques experimented with by manufacturers to overcome the problem, and gives a review of the literature covering most aspects of soft errors in dynamic RAMs. Finally, the soft error performance of current dynamic RAM and static RAM products from several manufacturers are compared. (author)

  7. Determination of Ra in environmental samples by. alpha. -particle spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, G.J.; Martin, P. (Alligator Rivers Region Research Inst., Jabiru, N.T. (Australia))

    1991-01-01

    A method of determining Ra isotopes by {alpha}-particle spectrometry using {sup 225}Ra as a yield tracer has been developed. Radium is coprecipitated with lead sulphate, purified using ion exchange techniques, and electrodeposited from an aqueous/ethanol solution. The procedure can be easily completed in 1 day. Tracer recoveries are typically 80%, and the resolution obtained is typically 40 keV FWHM. (author).

  8. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Schwartz, S. J. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, P. [Astronomical Institute, CAS, Prague (Czech Republic); Landi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze (Italy)

    2015-10-10

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.

  9. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies

  10. (p,n) reaction at intermediate energy

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1979-01-01

    The use of the (p,n) reaction in exploring effective interactions is reviewed. Some recent data on self-conjugate nuclei taken at the Indiana University Cyclotron Facility (IUCF) are presented, and the differences between low- and high-energy data are emphasized. Experimental problems and techniques used are briefly described. It is concluded that forward-angle (p,n) spectra at energies greater than 100 MeV are dominated by Gamow-Teller (GT) transitions, while Fermi transitions (IAS transitions) dominate near 45 MeV. Prominent GT transitions are expected from a pion-exchange interaction, and it is expected that OPEP is the dominant component of the interaction in the energy range of 100 to 200 MeV. 27 figures, 2 tables

  11. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  12. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  13. Innovative spin precessor for intermediate energy protons

    International Nuclear Information System (INIS)

    Hoffman, E.W.

    1979-01-01

    A spin precessor has been designed to provide arbitrary orientation of the polarization in the external proton beam at LAMPF. The device utilizes two superconducting solenoids, three conventional dipoles, and conversion of polarized H - to H + to provide an achromatic, undeflected beam with tunable spin orientation over a range of energies from 400 MeV to 800 MeV. A portion of this device is being installed to provide compatibility between two facilities which simultaneously use two branches of the external proton beam at LAMPF

  14. Role of near threshold resonances in intermediate energy nuclear ...

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Abstract. The presence of a resonance close to the threshold strongly effects the dynamics of the interacting particles at low energies. Production of 12C, the element for life, in 4He burning in. Sun is a classic example of such a situation. In intermediate energy nuclear physics, this situation arises in the ...

  15. Hard photon as probes of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Siemssen, R.H.

    1996-01-01

    Some recent results on the production of hard photons in intermediate energy heavy-ion reactions are reported. The topics covered are the use of hard photons as a means to study the energy dissipation mechanism in peripheral heavy ion reactions and the observation of second chance or thermal hard photons

  16. Detection of fission fragments and alpha particles using the solid trace detector CR-39

    International Nuclear Information System (INIS)

    Santos, R.C.

    1988-01-01

    The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt

  17. An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities

    International Nuclear Information System (INIS)

    Kaneko, Junichi H.; Izaki, Kenji; Toui, Kouhei; Shimaoka, Takehiro; Morishita, Yuki; Tsubota, Youichi; Higuchi, Mikio

    2016-01-01

    An alpha particle detector was developed for continuous air monitoring of radioactive contamination in working chambers at plutonium handling facilities. A 5-cm-square Gd 2 Si 2 O 7 :Ce (cerium-doped gadolinium pyro-silicate, GPS:Ce) mosaic scintillator plate for alpha particle measurements was fabricated from GPS single-crystal grains of around 550 μm diameter; the GPS grains were made of a GPS polycrystalline body grown using a top seeded solution method. The scintillator layer thickness was approximately 100 μm. The surface filling rate of the GPS grains was ca. 62%. To suppress the influence of non-uniformity of pulse heights of a photomultiplier tube, a central part of ∅ 40 mm of a 76-mm-diameter photomultiplier tube was used. In addition, 3 mm thick high-transmission glass was used as a substrate of the scintillator plate. The detector achieved energy resolution of 13% for 5.5 MeV alpha particles, detection efficiency of 61% and a radon progeny nuclide reduction ratio of 64.5%. A new alpha particle detector was developed to achieve a high radon progeny nuclide reduction ratio approaching that of a silicon semiconductor detector, with high resistance to electromagnetic noise and corrosion. - Highlights: • An alpha particle detector was developed for continuous air monitoring. • The detector comprises a mosaic scintillator plate and a photomultiplier tube. • A 5-cm-square GPS mosaic scintillator plate was fabricated. • Its respective energy resolution and detection efficiency were 13 and 61%. • The radon progeny nuclide reduction ratio of the developed detector was 64.5%.

  18. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    Park, Seunghoon; Kwak, Sungwoo; Kang, Hanbyeol; Shin, Jungki; Park, Iljin

    2014-01-01

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235 U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232 U, 238 U, and 232 Th

  19. Light fragment formation at intermediate energies

    International Nuclear Information System (INIS)

    Boal, D.H.

    1982-03-01

    This paper concerns itself mainly with the production of energetic protons and light fragments at wide angles. The experiments point to nucleon emission in proton-induced reactions as involving a mechanism in which the observed nucleon is directly knocked out of the nucleus. A similar feature seems to be required to explain (p,F) and (e,F) reactions: an energetic nucleon is produced in one scattering of the projectile, and the struck nucleon subsequently loses some of its energy as it traverses the remaining part of the nucleus, gathering up other nucleons as it goes, to become a fragment. This is what one might call the extreme snowball model, and a more accurate description probably involves multiple scattering of the projectile in addition to the extreme snowball contribution. This will be particularly true for fragments in the mass 6 to 9 region. This scenario also appears to apply to deuteron-induced fragment production. However, for alpha-induced reactions it would appear that the nucleons forming a fragment can originate from collisions involving different incident nucleons in the projectile. For heavy ions, this effect is even stronger, and the snowball contribution is greatly reduced compared to that of the traditional coalescence model

  20. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1987-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. We have solved a non-trivial model field theory in the strong coupling regime using a discretized light front quantization (DLFQ) scheme. The method we developed expands upon the method of Pauli and Brodsky by incorporating a dynamical treatment of the vacuum. This is a major result since we have shown directly that the light-cone vacuum is not structureless as has been traditionally claimed by some particle theorists. We have thus succeeded in elucidating the consequences of spontaneous symmetry breaking in light-cone quantization. We now propose to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We will complete our analysis of the SLAC NE3 data to explicate the degree to which they confirm the QCM prediction of ''steps'' in the ratio of nuclear structure functions when Bjorken x exceeds unity. In another effort, we will perform a search for narrow resonances in electron-positron interactions high in the continuum using the Bethe-Salpeter equation. We have completed our development of microscopic effective Hamiltonians for nuclear structure which include the explicit treatment of delta resonances. These effective Hamiltonians were successfully used in constrained mean field calculations evaluating conditions for nuclei to undergo a transition from nucleon matter to delta matter. 73 refs

  1. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  2. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  3. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  4. AlfaMC: A fast alpha particle transport Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, Luis, E-mail: luis@lip.pt [Faculdade de Ciências da Universidade de Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (Portugal); Louro, Alina [Laboratório de Instrumentação e Física Experimental de Partículas (Portugal)

    2014-02-11

    AlfaMC is a Monte Carlo simulation code for the transport of alpha particles. This code is based on the Continuous Slowing Down Approximation and uses the NIST/ASTAR stopping-power database. The code uses a powerful geometrical package, which allows coding of complex geometries. A flexible histogramming package is used as well, which greatly eases the scoring of results. The code is tailored for microdosimetric applications in which speed is a key factor. Comparison with the SRIM code is made for deposited energy in thin layers and range for air, mylar, aluminum and gold. The general agreement between the two codes is good for beam energies between 1 and 12 MeV. -- Highlights: • AlfaMC is a Monte Carlo program for fast alpha particle transport in matter. • The model is accurate within a few percent in the energy range of 1–12 MeV. • AlfaMC uses a combinatorial geometry package allowing the modeling of complex bodies.

  5. Protons and alpha particles in the solar wind

    Science.gov (United States)

    Hellinger, Petr; Travnicek, Pavel M.; Passot, Thierry; Sulem, Pierre-Louis; Matteini, Lorenzo; Landi, Simone

    2014-05-01

    We investigate energetic consequences of ion kinetic instabilitities in the solar wind connected with beam and core protons and alpha particles drifting with respect to each other. We compare theoretical predictions, simulations and observation results. For theoretical prediction we assume drifting bi-Maxwellian ion populations and we calculate theoretical quasilinear heating rates (Hellinger et al., 2013b). The nonlinear evolution of beam-core protons, and alpha particles in the expanding solar wind we investigate using hybrid expanding box system (Hellinger and Travnicek, 2013). The expansion leads to many different kinetic instabilities. In the simulation the beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one in agreement with theoretical expectations. On the macroscopic level the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to a perpendicular heating and parallel cooling rates. The simulated heating rates are comparable to the heating rates estimated from the Helios observations (Hellinger et al., 2013a); furthermore, the differential velocity between core and beam protons observed by Ulysses exhibits apparent bounds which are compatible with the theoretical constaints imposed by the linear theory for the magnetosonic instability driven by beam-core differential velocity (Matteini et al., 2013). References Hellinger, P., P. M. Travnicek, S. Stverak, L. Matteini, and M. Velli (2013a), Proton thermal energetics in the solar wind: Helios reloaded, J. Geophys. Res., 118, 1351-1365, doi:10.1002/jgra.50107. Hellinger, P., T. Passot, P.-L. Sulem, and P. M. Travnicek (2013b), Quasi-linear heating and acceleration in bi-Maxwellian plasmas, Phys. Plasmas, 20, 122306. Hellinger, P., and P. M. Travnicek (2013), Protons and alpha particles in the expanding solar wind: Hybrid

  6. Spot: a new Monte Carlo solver for fast alpha particles

    International Nuclear Information System (INIS)

    Schneider, M.; Eriksson, L.G.; Basiuk, V.; Imbeaux, F.

    2004-01-01

    The predictive transport code CRONOS has been augmented by an orbit following Monte Carlo code, SPOT (Simulation of Particle Orbits in a Tokamak). The SPOT code simulates the dynamics of nonthermal particles, and takes into account effects of finite orbit width and collisional transport of fast ions. Recent developments indicate that it might be difficult to avoid, at least transiently, current holes in a reactor. They occur already on existing tokamaks during advanced tokamak scenarios. The SPOT code has been used to study the alpha particle behaviour in the presence of current holes for both JET and ITER relevant parameters. (authors)

  7. Evaluation of charge coupled devices as alpha particle detectors

    International Nuclear Information System (INIS)

    Pace, R.; Haskard, M.; Watts, S.; Holmes-Siedle, A.; Solanky, M.

    1996-01-01

    The ability of the Charge Coupled Device (CCD) to provide spectroscopic and flux information for highly ionising radiation has been investigated. CCDs and related imaging chips are becoming increasingly affordable. In addition advances in technology are producing smaller and better devices. Since imaging chips are based on some variation of the pn-diode structure it is expected and known that they are sensitive to ionising radiation as well as light. Indeed specially designed CCDs are able to be used to image X-rays. This paper reports on the response of CCDs to alpha particles. (author)

  8. Energetic resolution study on pure and CsBr doped CsI under gamma excitations and alpha particles

    International Nuclear Information System (INIS)

    Pereira, Maria da Conceicao Costa; Madi Filho, Tufic; Hamada, Margarida Mizue

    2009-01-01

    Pure and doped CsI crystals were grown using the Bridgman technique. Bromine was the doping element which was studied in the range of 1.5x10 -1 M to 10 -2 M. The distribution of the doping element at crystalline volume was determined by neutron activation. Concerning gamma radiation response it was carried out measurements to evaluate the developed scintillators in the energy range of 350 keV to 1330 keV. For alpha particles measurements an 241 Am source was used with 5.54 MeV energy. The resolution of 3.7% was obtained for the CsI:Br 10 -2 M crystal, when excited with alpha particles from an 241 Am source. For CsI:Br 10 -1 M crystal 9.1% resolution was obtained when excited with gamma radiation from 22 Na source, with 1275 keV energy. (author)

  9. Theoretical research in intermediate energy nuclear physics: Final report

    International Nuclear Information System (INIS)

    Seki, R.

    1987-01-01

    This paper discusses the progress that has been made on the following problems: a numerical calculation of Skyrmiron scattering; (e,e'p) at high momentum transfer; spin-orbit nucleon-nucleon potential from Skyrme model; pionic atom anomaly; and field theory problems. The problems deal with various topics in intermediate-energy nuclear physics

  10. Proceedings of the 5. National Meeting on Intermediate Energy Physics

    International Nuclear Information System (INIS)

    1984-05-01

    Several papers concerning the physics at intermediate energies (∼ 100-1000MeV) are presented in this proceedings. Almost all the works show overlapping between Nuclear and Particles Physics. There is a predominance in theoretical papers. (L.C.) [pt

  11. Electron emission in collisions of intermediate energy ions with atoms

    International Nuclear Information System (INIS)

    Garibotti, C.R.

    1988-01-01

    The aim of this work, is the analysis of the processes of electronic emission produced in the collisions of small ions (H + , He ++ ) of intermediate energy (50 a 200 KeV/amu) with light gaseous targets. (A.C.A.G.) [pt

  12. Flexible silicon-based alpha-particle detector

    Science.gov (United States)

    Schuster, C. S.; Smith, B. R.; Sanderson, B. J.; Mullins, J. T.; Atkins, J.; Joshi, P.; McNamara, L.; Krauss, T. F.; Jenkins, D. G.

    2017-08-01

    The detection of alpha particles in the field can be challenging due to their short range in air of often only a few centimeters or less. This short range is a particular issue for measuring radiation inside contaminated pipework in the nuclear industry, for which there is currently no simple method available without cutting the pipes open. Here, we propose an approach for low cost, rapid, and safe identification of internally contaminated pipework based on a flexible 30 × 10 mm2 sheet of 50 μm thin crystalline silicon. Following established fabrication steps of pn-junction diodes, we have constructed a device with a signal-to-noise ratio of >20 in response to 5.5 MeV alpha-particles using a bespoke amplifier circuit. As flexible detectors may readily conform to a curved surface and are able to adapt to the curvature of a given pipeline, our prototype device stands out as a viable solution for nuclear decommissioning and related applications.

  13. Alpha particle cluster states in (fp)-shell nuclei

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1987-07-01

    Alpha particle cluster structure is known experimentally to persist throughout the mass range 16 ≤ A ≤ 20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the (fp) - shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40 ≤ A ≤ 44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for sup(40)Ca, sup(42)Ca, sup(42)Sc, sup(43)Sc, sup(43)Ti and sup(44)Ti using the above mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the (sd)-shell) and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei. (author)

  14. Alpha-particle and electron capture decay of 209Po

    International Nuclear Information System (INIS)

    Schima, F.J.; Colle, R.

    1996-01-01

    Gamma-ray and Kα X-ray emissions have been measured from a very pure 209 Po source containing less than 0.13% 208 Po activity and no detectable 210 Po (≤2 x 10 -4 %). The alpha-particle emission rate for this source has previously been determined. Data are presented that confirm alpha decay to the 205 Pb excited level at 262.8 keV, with an alpha-particle emission probability (±standard uncertainty) of 0.00559±0.00008. The ratio of K-shell electron capture to total electron capture for the second forbidden unique electron capture decay to the 896.6 keV level in 209 Bi was determined to be 0.594±0.018. The electron capture decay fraction was found to be 0.00454±0.00007, while the probabilities per decay for the 896.6, 262.8, and 260.5 keV gamma rays and the Bi Kα and Pb Kα X-rays were measured as 0.00445±0.00007, 0.00085±0.00002, 0.00254±0.00003, 0.00202±0.00005, and 0.00136±0.00005, respectively. (orig.)

  15. Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat

    Science.gov (United States)

    Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb

    1962-01-01

    The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.

  16. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    OpenAIRE

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. Th...

  17. Inelastic α-particle scattering at intermediate energy

    International Nuclear Information System (INIS)

    Bauer, T.S.; Beurtey, R.; Boudard, A.; Bruge, G.; Catz, H.; Couvert, P.; Escudie, J.L.; Fontaine, J.M.; Garcon, M.; Lugol, J.C.; Matoba, M.; Platchkov, S.; Rouger, M.; Terrien, Y.

    1979-01-01

    The rigid body approximation is used to extend the Glauber formalism to the analysis of inelastic scattering of 1.37 GeV α particles by 24 Mg and 58 Ni. Angular distributions for low-lying states in 24 Mg and 58 Ni are analyzed in this framework together with previously published data for Ca isotopes. Intermediate energy α particle scattering is tested as a tool to observe the isoscalar giant quadrupole resonance. Energy weighted sum rules are drawn from the analysis of L = 2 angular distributions measured in the proper energy range. Comparison is made with existing data

  18. Influence of Magnolol on the bystander effect induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W.; Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, the influence of Magnolol on the bystander effect in alpha-particle irradiated Chinese hamster ovary (CHO) cells was examined. The bystander effect was studied through medium transfer experiments. Cytokinesis-block micronucleus (CBMN) assay was performed to quantify the chromosome damage induced by alpha-particle irradiation. Our results showed that the alpha-particle induced micronuclei (MN) frequencies were suppressed with the presence of Magnolol.

  19. Study on cytotoxicities induced by alpha particle irradiation combined with NNK treatment

    International Nuclear Information System (INIS)

    Li Ping; Yang Zhihua; Pan Xiujie; Cao Zhenshan; Mi Na; Chen Zhongmin; Liu Gang; Wei Han; Li Huiyin; Zhu Maoxiang

    2006-01-01

    Objective: To investigate cytotoxicities of alpha-particle irradiation combined with NNK treatment. Methods: Exponentially growing immortalized human bronchial epithelial cells were divided into normal control group (NC), alpha particle irradiation group (α), NNK administration group (NNK), NNK administration (100 μg/ml) followed by alpha particle irradiation group (NNK + α), and alphaparticle irradiation followed by NNK administration (100 μg/ml) group (α + NNK). Cell survival fractions were measured by cloning rate of low-density plating cell. Ethidium bromide and 2', 7'-dichlorofluorescein, fluorescent products of the membrane-permeable dyes hydroethine and 2', 7'-dichloroflurescindiacetate were used to monitor the inarticulate reactive oxygen species (ROS) . Damage to membrane permeability was evaluated through testing LDH activity in medium. Results: In the groups exposed to both alpha particles and NNK, the survival rates were significantly lower than that of the groups administrated with the same dose of alpha particles or NNK alone. The levels of intracellular ROS and the activity of LDH in medium were significantly higher than that of the groups administrated with the same dose of alpha particles or NNK alone. Subtracted the NNK effect, the survival rates of the groups received both alpha particle irradiation and NNK treatment were significantly lower than that of alpha particle irradiated only group. However, the intracellular ROS level and the activity of LDH in medium were significantly higher than that of alpha-particle irradiated only group. In addition, the survival rates of the cells in groups exposed to alpha particle irradiation followed by NNK administration were significantly lower than that of cells treated with NNK administration followed by alpha particle irradiation. Conclusions: Alpha particle irradiation and NNK administration had synergisticity in cytotoxicity, and furthermore different schedules of the administration resulted in

  20. Proof-of-principle of a diagnostic for D-T fusion-product alpha particles (abstract)

    Science.gov (United States)

    Hutchinson, D. P.; Richards, R. K.; Bennett, C. A.; Ma, C. H.

    1992-10-01

    Results are presented for an alpha-particle diagnostic proof-of-principle test based on CO2 laser small-angle Thomson scattering. Because the test was performed on a nonburning plasma (Advanced Toroidal Facility), which had no energetic alpha particles, scattering measurements were made on the plasma electrons. The diagnostic was configured to duplicate the requirements for an alpha-particle measurement, i.e., the measurement of a small scattered signal (≲10-9 W) in the presence of a high-power source laser (≳106 W) at small scattering angles (≲1°). The goals of this test were to eliminate stray laser light which would produce a background signal at the receiver and to maintain alignment between the pulsed laser and the receiver beams, which was set at 0.86°, while performing scattering measurements on a plasma. The proof of the diagnostic method is the measurement of the electron plasma frequency resonance feature in the scattering. Research sponsored by the Office of Fusion Energy, U.S. Department of Energy under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

  1. {alpha}-particle induced reactions on yttrium and terbium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S.; Kumar, B.B. [School of Studies in Physics, Vikram University, Ujjain-456010 (India); Rashid, M.H. [Variable Energy Cyclotron Center, 1/AF, Bidhan Nagar, Calcutta (India); Chintalapudi, S.N. [Inter-University Consortium for DAE Facilities, 3/LB, Bidhan Nagar, Calcutta (India)

    1997-05-01

    The stacked foil activation technique has been employed for the investigation of {alpha}-particle induced reactions on the target elements yttrium and terbium up to 50 MeV. Six excitation functions for the ({alpha},xn) type of reactions were studied using high-resolution HPGe {gamma}-ray spectroscopy. A comparison with Blann{close_quote}s geometric dependent hybrid model has been made using the initial exciton number n{sub 0}=4(4p0h) and n{sub 0}=5(5p0h). A broad general agreement is observed between the experimental results and theoretical predictions with an initial exciton number n{sub 0}=4(4p0h). {copyright} {ital 1997} {ital The American Physical Society}

  2. Detection of lost alpha particle by concealed lost ion probe.

    Science.gov (United States)

    Okamoto, A; Isobe, M; Kitajima, S; Sasao, M

    2010-10-01

    Full orbit-following calculation is performed for the final orbit of the lost alpha particles, showing some orbits escaping from the last closed flux surface could be detected by a concealed lost ion probe (CLIP) installed under the shadow of the original first wall surface. While both passing and trapped orbits hit the same wall panel, detecting a trapped orbit by the CLIP is easier than detecting passing orbits. Whether the final orbit is detected or not is determined by the position of the reflection point. The CLIP successfully detects the trapped orbits, which are reflected before they hit to a first wall. Then the pitch angles of the orbits at the CLIP are close to and smaller than 90°. Optimization of the position of the CLIP in terms of broader detection window is investigated.

  3. Applications of alpha particles detectors made of nitrocellulose film

    International Nuclear Information System (INIS)

    Segovia, N.; Salinas, B.; Pineda, H.

    1978-01-01

    We describe the experiments realized in order to probe the response of the alpha particles detectors manufactured in our laboratory and their suitability to some important applications. The detection system is a nitrocellulose film which register the transit of the charged particles. The traces left by the particles during their transit are manifested through a controlled chemical attack and counted after that with a microscope. This monitor system was utilized in the following applications: 1) uranium prospection 2) alpha autoradiography 4) determination of air pollution by alpha emitters. The results which were obtained are satisfactory and in spite that in these first applications only qualitative measurements were made the method could be used for quantitative determinations when we will have a better knowledge of the effect of factors which are not under our control. (author)

  4. Alpha particles induce expression of immunogenic markers on tumour cells

    International Nuclear Information System (INIS)

    Gorin, J.B.; Gouard, S.; Cherel, M.; Davodeau, F.; Gaschet, J.; Morgenstern, A.; Bruchertseifer, F.

    2013-01-01

    The full text of the publication follows. Radioimmunotherapy (RIT) is an approach aiming at targeting the radioelements to tumours, usually through the use of antibodies specific for tumour antigens. The radiations emitted by the radioelements then induce direct killing of the targeted cells as well as indirect killing through bystander effect. Interestingly, it has been shown that ionizing radiations, in some settings of external radiotherapy, can foster an immune response directed against tumour cells. Our research team is dedicated to the development of alpha RIT, i.e RIT using alpha particle emitters, we therefore decided to study the effects of such particles on tumour cells in regards to their immunogenicity. First, we studied the effects of bismuth 213, an alpha emitter, on cellular death and autophagy in six different tumour cell lines. Then, we measured the expression of 'danger' signals and MHC molecules at the cell surface to determine whether irradiation with 213 Bi could cause the tumour cells to be recognized by the immune system. Finally a co-culture of dendritic cells with irradiated tumour cells was performed to test whether it would induce dendritic cells to mature. No apoptosis was detected within 48 hours after irradiation in any cell line, however half of them exhibited signs of autophagy. No increase in membrane expression of 'danger' signals was observed after treatment with 213 Bi, but we showed an increase in expression of MHC class I and II for some cell lines. Moreover, the co-culture experiment indicated that the immunogenicity of a human adenocarcinoma cell line (LS 174T) was enhanced in vitro after irradiation with alpha rays. These preliminary data suggest that alpha particles could be of interest in raising an immune response associated to RIT. (authors)

  5. Transport code and nuclear data in intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Akira; Odama, Naomitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-11-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  6. Study of influence of catechins on bystander responses in alpha-particle radiobiological experiments using thin PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    In this study, Chinese hamster ovary (CHO) cells were cultured in custom-made petri dishes with thin PADC films as substrates. Alpha particles with energies of 5 MeV were then irradiated from the bottom of PADC films. The DNA strand breaks in the bystander cells induced by irradiation were quantified with the use of terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay. To study the influence of catechins on the bystander responses, catechins were added into the medium before alpha-particle irradiation of the cells. Fewer DNA strand breaks in the bystander cells were observed. As catechins are ROS (reactive oxygen species)-scavengers, the studied bystander cells might have been protected from radiation through scavenging of ROS by catechins.

  7. Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles

    Science.gov (United States)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2014-01-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  8. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  9. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Rabin, Michael W.; Hoover, Andrew S.; Bacrania, Minesh K.; Croce, Mark P.; Hoteling, N.J.; Lamont, S.P.; Plionis, A.A.; Dry, D.E.; Ullom, J.N.; Bennett, D.A.; Horansky, R.; Kotsubo, V.; Cantor, R.

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ∼15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  10. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  11. Study on cellular genotoxicities induced by alpha particles irradiation in combination with NNK treatment

    International Nuclear Information System (INIS)

    Li Ping; Yang Zhihua; Pan Xiujie; Cao Zhenshan; Mi Na; Chen Zhongmin; Liu Gang; Wei Han; Li Huiying; Zhu Maoxiang

    2006-01-01

    Objective: To investigate cellular genotoxicities of aplha particles irradiation in combination with NNK treatment. Methods: Exponentially growing immortalized human bronchial epithelial cells were divided into the normal control group (NC), alpha particles irradiation (α), NNK administration group (NNK), NNK administration (100 μg/ml) followed by alpha particles irradiation group (NNK + α), and alpha particles irradiation followed by NNK administration (100 μg/ml) group (μ + NNK). DNA damage were detected by single cell gel electrophoresis (SCGE); multinuclear cell assay was used to detect the frequency of the HPRT gene mutation; cell micronucleus frequency were detected by cytogenetic methods. Results: In the group exposed to both alpha particles irradiation and NNK, DNA damage, HPRT gene mutation frequency, and cell micronucleus frequency were significantly higher than those in the same dose groups irradiated with alpha particles or NNK administration alone. Subtracted the NNK effect, DNA damage, HPRT gene mutation frequency and cell micronucleus frequency in the group irradiated by alpha particles in combination with NNK administration were significantly higher than those of alpha particles irradiation alone. Conclusion: The genotoxicity of alpha particles irradiation in combination with NNK administration had synergistic effect. (authors)

  12. Spin observables in proton-neutron scattering at intermediate energy

    International Nuclear Information System (INIS)

    Spinka, H.

    1986-05-01

    A summary of np elastic scattering spin measurements at intermediate energy is given. Preliminary results from a LAMPF experiment to measure free neutron-proton elastic scattering spin-spin correlation parameters are presented. A longitudinally polarized proton target was used. These measurements are part of a program to determine the neutron-proton amplitudes in a model independent fashion at 500, 650, and 800 MeV. Some new proton-proton total cross sections in pure helicity states (Δσ/sub L/(pp)) near 3 GeV/c are also given. 37 refs., 2 figs

  13. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  14. Intermediate energy semileptonic probes of the hadronic neutral current

    Energy Technology Data Exchange (ETDEWEB)

    Musolf, M.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States)]|[Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics]|[CEBAF Theory Group, Newport News, VA (United States); Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Dubach, J. [Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astronomy; Pollock, S.J. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie K; Kowalski, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Beise, E.J. [California Inst. of Tech., Pasadena, CA (United States). W.K. Kellogg Radiation Lab.]|[Maryland Univ., College Park, MD (United States). Dept. of Physics

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed.

  15. Intermediate energy semileptonic probes of the hadronic neutral current

    International Nuclear Information System (INIS)

    Musolf, M.J.; Donnelly, T.W.; Dubach, J.; Beise, E.J.; Maryland Univ., College Park, MD

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed

  16. Scaling of anisotropy flows in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.

    2007-01-01

    Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments

  17. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  18. Compound and precompound emission in reactions of Zn isotopes with protons and alpha particles

    International Nuclear Information System (INIS)

    Lux, C.R.

    1975-01-01

    Targets of 64 Zn, 66 Zn, 68 Zn, and 70 Zn were bombarded by 12.5 MeV protons and 18.0 MeV alpha particles. Energy spectra and angular distributions of protons and alpha particles emitted in these reactions were measured. Integrated cross sections were determined from the experimental spectra. The assumption was made that emission in the backward direction was due to compound emission and that any ''excess'' cross section in the forward direction was due to precompound emission. Then an experimental percent precompound emission was calculated. It ranged from 2 to 95 percent. A constant temperature analysis was performed on all 150 0 and 30 0 spectra. The nuclear temperature of the 30 0 spectra was from 0.1 to 2.0 MeV higher, indicating more precompound emission in the 30 0 than in the 150 0 spectra. The ratios of (GAMMA/sub p//GAMMA/sub n/) and (GAMMA/sub α//GAMMA/sub n/) for 150 0 were adequately fit by evaporation theory indicating that a compound mechanism can account for the data. The spin-dependent statistical model was then used to fit the 150 0 spectra. Good fits were obtained using parameters that are in agreement with those calculated by Gilbert and Cameron. The spin-dependent statistical model was then combined with the precompound Quasi-Free Scattering Model and fits were made to the experimental data. Good fits were obtained and a calculated percent precompound emission wasobtained. This ranged from 1 to 95 percent and compared favorably with the percentages obtained experimentally

  19. Monte Carlo calculations for intermediate-energy standard neutron field

    International Nuclear Information System (INIS)

    Joneja, O.P.; Subbukutty, K.; Iyengar, S.B.D.; Navalkar, M.P.

    Intermediate-Energy Standard Neutron Field (ISNF) which produces a well characterised spectrum in the energy range of interest for fast reactors including breeders, has been set up at NBS using thin enriched 235 U fission sources. A proposal has been made for setting up a similar facility at BARC using however, easily available natural U instead of enriched U sources, to start with. In order to simulate the neutronics of such a facility Monte Carlo method of calculations has been adopted and developed. The results of these calculations have been compared with those of NBS and it is found that there may be a maximum difference of 10% in spectrum characteristics for the two cases of using thick and thin fission sources. (K.B.)

  20. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. (Oak Ridge National Lab., TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); Kamel, A.M. (Ain Shams Univ., Cairo (Egypt)); Santiago, H.T. (USDOE, Washington, DC (United States))

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  1. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. [Oak Ridge National Lab., TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); Kamel, A.M. [Ain Shams Univ., Cairo (Egypt); Santiago, H.T. [USDOE, Washington, DC (United States)

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  2. Lung cancer risk at low doses of alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Katz, R.; Zhang, C.X.

    1986-01-01

    A survey of inhabitant exposures arising from the inhalation of 222 Rn and 220 Rn progeny, and lung cancer mortality has been carried out in two adjacent areas in Guangdong Province, People's Republic of China, designated as the high background and the control area. Annual exposure rates are 0.38 working level months (WLM) per year in the high background, and 0.16 WLM/yr in the control area. In 14 yr of continuous study, from 1970 to 1983, age-adjusted mortality rates were found to be 2.7 per 10(5) living persons of all ages in the high background area, and 2.9 per 10(5) living persons in the control area. From this data, we conclude that we are unable to determine excess lung cancers over the normal fluctuations below a cumulative exposure of 15 WLM. This conclusion is supported by lung cancer mortality data from Austrian and Finnish high-background areas. A theoretical analysis of epidemiological data on human lung cancer incidence from inhaled 2 ]2'' 2 Rn and 220 Rn progeny, which takes into account cell killing as competitive with malignant transformation, leads to the evaluation of a risk factor which is either a linear-exponential or a quadratic-exponential function of the alpha-particle dose. Animal lung cancer data and theoretical considerations can be supplied to support either hypothesis. Thus we conclude that at our current stage of knowledge both the linear-exponential and the quadratic-exponential extrapolation to low doses seem to be equally acceptable for Rn-induced lung cancer risk, possibly suggesting a linear-quadratic transformation function with an exponential cell-killing term, or the influence of risk-modifying factors such as repair or proliferation stimuli

  3. Calculation of absorbed fractions to human skeletal tissues due to alpha particles using the Monte Carlo and 3-d chord-based transport techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.G. [Institute of Radiation Protection and Dosimetry, Av. Salvador Allende s/n, Recreio, Rio de Janeiro, CEP 22780-160 (Brazil); Watchman, C.J. [Department of Radiation Oncology, University of Arizona, Tucson, AZ, 85721 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, 32611 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2007-07-01

    Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D micro-CT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo-VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques. (authors)

  4. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  5. Statistical and dynamical aspects of intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs

  6. Statistical and dynamical aspects of intermediate energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs.

  7. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  8. Study of (p-π) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Couvert, Pierre.

    1983-02-01

    This thesis presents all the A(p,π +- )A+1 experimental data measured at Saturne since 1974. A theoretical analysis of a few of them is made in the frame of a microscopic two-nucleon model, involving an intermediate δ(1232) resonance excitation. The spectrometer SPES I and the focal plane detection system are rapidly described. The data analysis method is presented in details. Calculations of the 10 B(p,π + ) 11 B (G.S.) excitation functions at constant transfer momentum lead to a good qualitative agreement in a wide range of incident energy and momentum transfer. This model also reproduces the 12 C(p,π - ) 13 O(G.S.) experimental cross sections at 613 MeV, pointing out the importance of the N(1520) resonance contribution to the (p,π - ) reaction mechanism above the (3,3) resonance [fr

  9. Hipse: an event generator for nuclear collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Van Lauwe, A.; Durand, D

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  10. On selection rules and inelastic electron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Nuroh, K.

    1986-12-01

    Correlation effects are included in the Bethe-Born theory for the generalized oscillator strength of inelastic scattering of electrons on atoms. The formulation is such as to allow for the calculation of relative line strengths of multiplets. It is used to analyze line strengths of the 4d → 4f transition in La 3+ and Ce 4+ within LS-coupling. The analysis indicates that only singlet states of the intermediate 4d 9 4f configuration are allowed. Calculated line strengths are compared with a recent core electron energy loss spectra of metallic La and tetravalent CeO 2 and there is an overall qualitative agreement between theory and experiment. (author). 11 refs, 4 figs, 2 tabs

  11. Recoil studies of photonuclear reactions at intermediate energies

    CERN Document Server

    Haba, H

    2002-01-01

    A review is given on the recoil studies of photonuclear reactions on complex nuclei at intermediate energies. Recoils of 167 radionuclides formed in the photonuclear reactions of sup 2 sup 7 Al, sup n sup a sup t V, sup n sup a sup t Cu, sup 9 sup 3 Nb, sup n sup a sup t Ag, sup n sup a sup t Ta, and sup 1 sup 9 sup 7 Au, induced by bremsstrahlung of end-point energies (E sub 0) from 600 to 1100 MeV, have been investigated by the thick-target thick-catcher method. The recoil velocity from the first step and the mean kinetic energy of the residual nuclei in the second step were deduced based on the two-step vector velocity model and discussed by comparing with the reported results on proton-induced reactions. Recoils of sup 2 sup 4 Na produced from sup 2 sup 7 Al, sup n sup a sup t V, sup n sup a sup t Cu, sup n sup a sup t Ag, and sup 1 sup 9 sup 7 Au are of special interest from a viewpoint of a change in the production mechanism with respect to target mass. Reaction yields of 58 and 63 radionuclides produce...

  12. Effects of spins and resonance parities of 12C on the mechanism of emission of three alpha particles in the 11B (p, 3 α) reaction

    International Nuclear Information System (INIS)

    Quebert, Jean

    1968-01-01

    This research thesis reports the study of the mechanism of emission of alpha particles in the 11 B (p, 3 α) reaction with respect to the effects of spins and parities of the various resonances met between 150 keV and 4 MeV. From an experimental point of view, the reaction has been studied by two methods: the detection of alpha particles by a semiconductor-based counter located at a given angle with respect to the beam direction and study of continuous spectra of alpha particles with respect to projectile energies, and recording, for a given resonance, of alpha-alpha coincidences by using the multi-parametric technique with two semiconductor-based sensors with a varying relative angular position. After a discussion of the main characteristics of resonance and of the mechanism of emission of alpha particles, the author first reports the theoretical study of a reaction producing three particles in the final state, and then reports the theoretical calculation of direct alpha spectrum shapes in the case of the 11 B (p, 3 α) reaction (statistic hypothesis, hypothesis of interaction with two particles in the final state). The next part reports the experimental study of the 11 B (p, 3 α) reaction

  13. Evidence of DNA double strand breaks formation in Escherichia coli bacteria exposed to alpha particles of different LET assessed by the SOS response

    International Nuclear Information System (INIS)

    Serment-Guerrero, Jorge; Breña-Valle, Matilde; Aguilar-Moreno, Magdalena; Balcázar, Miguel

    2012-01-01

    Ionizing radiation produces a plethora of lesion upon DNA which sometimes is generated among a relatively small region due to clustered energy deposition events, the so called locally multiply damaged sites that could change to DSB. Such clustered damages are more likely to occur in high LET radiation exposures. The effect of alpha particles of different LET was evaluated on the bacterium Escherichia coli either by survival properties or the SOS response activity. Alpha radiation and LET distribution was controlled by means of Nuclear Track Detectors. The results suggest that alpha particles produce two types of lesion: lethal lesions and SOS inducing-mutagenic, a proportion that varies depending on the LET values. The SOS response as a sensitive parameter to assess RBE is mentioned. - Highlights: ► High LET radiation produce locally multiple damaged sites upon DNA. ► Bacteria were exposed to alpha particles of different LET. ► Results suggest that alpha particles produce lethal and SOS inducing/mutagenic. ► The proportion of such lesions varies depending on the LET values.

  14. Ionization of neon by intermediate energy carbon ions

    International Nuclear Information System (INIS)

    McLawhorn, S.L.; Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.; Dingfelder, M.; Toekesi, K.; Sulik, B.; Sigmund, P.; Schinner, A.; Reinhold, C.; Schultz, D.

    2007-01-01

    Complete text of publication follows. During the past few years there has been increasing interest in ionization of atomic and molecular targets by intermediate-energy dressed and partially dressed ions. These systems are particularly challenging to describe theoretically owing to screening of the projectile nuclear charge by bound electrons, interactions of projectile electrons with target electrons, and the large number of possible exit channels. At ECU we have initiated measurements of the doubly-differential ionization cross sections, differential in ejected electron energy and emission energy, for carbon ions of different initial charge states with atomic and molecular targets. In this presentation we compare those results with calculations being conducted at several institutions. For this presentation we will focus on electron emission from neon following interactions with carbon ions with energies from 0.067 MeV/u to 0.35 MeV/u and incident charge states from C + to C 3+ . Electron energies from 10 to 1500 eV are observed at emission angles from 20 to 120 degrees. The calculations separate the process into ionization of the target by the screened incident nucleus and the ionization of the target by the screened target nucleus. By summing these components in the rest frame of the target we can compare to the measured electron spectra. Figure 1 shows the single differential cross sections for ejection of electrons in C + -Ne collisions. Note the small contribution from ionization of the projectile. As the energy increases the contribution from projectile ionization increases; likewise as the ion energy decreases that contribution decreases. The excellent agreement shown in Figure 1 provides confidence to our use of Bohr theory for this energy range for this target. Doubly-differential cross sections based on the Classical Trajectory Monte Carlo (CTMC) techniques are compared with measurements in Fig. 2 for electron emission at 30 degrees. Again, excellent

  15. An alpha particle diagnostic based on measurements of lower hybrid wave fluctuations

    International Nuclear Information System (INIS)

    Wong, K.L.

    1989-07-01

    It is shown that the one-dimensional alpha particle velocity distribution function can be determined from the fluctuation- dissipation theorem based on measurements of lower hybrid wave fluctuations in an equilibrium plasma. This method uses collective Thomson scattering data with large signal-to-noise ratio, but it is applicable only when the alpha particles have an isotropic velocity distribution. 16 refs., 1 fig

  16. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting π 0 mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized 3 He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure

  17. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    Science.gov (United States)

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  18. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  19. Formation of large target residues in intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.; Aleklett, K.; Sihver, L.; Xu, Z.; Seaborg, G.T.

    1987-04-01

    We have used radiochemical techniques to measure the yields, angular distributions and velocity spectra of the large (A/sub frag/ ≥ 2/3 A/sub tgt/) target residues from the fragmentation of 197 Au by intermediate energy 12 C, 20 Ne, 32 S, 40 Ar, 84 Kr, and 139 La projectiles. The fragment moving frame angular distributions are asymmetric for the lighter projectiles (C-Ar). The fragment velocity spectra are Maxwellian for the Kr induced reactions and non-Maxwellian for the reactions induced by the lighter ions. We interpret these results in terms of a change in the dominant fragment production mechanism(s) from one(s) involving a fast non-equilibrium process for the lighter ions to a slow, equilibrium process for Kr. Comparison of the measured yields and angular distributions with calculations made using a Boltzmann transport equation with appropriate modifications for Pauli blocking, etc., show excellent agreement between data and theory. 12 refs., 12 figs

  20. Protons scattering on Li isotopes at intermediate energies

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.

    2003-01-01

    The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form

  1. Dynamical aspects of intermediate-energy heavy-ion collisons

    Science.gov (United States)

    Dempsey, James Francis

    1997-10-01

    The production of neutrons, light charged particles (LCPs), and intermediate-mass fragments (IMFs), from the four reactions 55 MeV/A [124,136Xe] + [112,124Sn], is studied with an experimental apparatus which is highly efficient for the detection of both charged particles and neutrons. The IMFs are found more localized in the mid-velocity region (parallel velocity close to center of mass) than are the LPCs, and the detected multiplicity of IMFs depends linearly on the charge lost from the projectile. IMF multiplicity is found to be largely independent of the neutron excess of the system, aside from a slight increase with increasing neutron excess that is expected from statistical-model simulations. Remnants of the projectile, with very little velocity reduction, are found for most of the reaction cross section. Isotopic and isobaric fragment yields in the projectile-velocity region indicate that charge-to- mass ratio neutralization is generally not achieved but is approached when little remains of the projectile. For all systems, the fragments found in the mid-velocity region are substantially more neutron rich than those found in the velocity region dominated by the emission from the projectile. This observation can be qualitatively accounted for if the mid-velocity source (or sources) is either more neutron rich or smaller, with the same neutron-to-proton ratio, than the source with the velocity of the projectile. The observations of this work suggest that the intermediate mass fragments are, to a large extent, formed dynamically by a multiple neck rupture or a proximity-fission type mechanism. Though it remains unexplained, this process enhances the neutron- to-proton ratio of the emitted fragments. This scenario is reminiscent of low-energy ternary fission and one predicted by Boltzmann-Uehling-Uhlenbeck (BUU) calculations. However, these calculations predict too much velocity damping of the projectile remnant and do not produce a mid-velocity neutron

  2. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production

    Energy Technology Data Exchange (ETDEWEB)

    Qaim, Syed M.; Spahn, Ingo; Scholten, Bernhard; Neumaier, Bernd [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin (INM), Nuklearchemie (INM-5)

    2016-11-01

    Alpha particles exhibit three important characteristics: scattering, ionisation and activation. This article briefly discusses those properties and outlines their major applications. Among others, α-particles are used in elemental analysis, investigation and improvement of materials properties, nuclear reaction studies and medical radionuclide production. The latter two topics, dealing with activation of target materials, are treated in some detail in this paper. Measurements of excitation functions of α-particle induced reactions shed some light on their reaction mechanisms, and studies of isomeric cross sections reveal the probability of population of high-spin nuclear levels. Regarding medical radionuclides, an overview is presented of the isotopes commonly produced using α-particle beams. Consideration is also given to some routes which could be potentially useful for production of a few other radionuclides. The significance of α-particle induced reactions to produce a few high-spin isomeric states, decaying by emission of low-energy conversion or Auger electrons, which are of interest in localized internal radiotherapy, is outlined. The α-particle beam, thus broadens the scope of nuclear chemistry research related to development of non-standard positron emitters and therapeutic radionuclides.

  3. Metallothionein bioconjugates as delivery vehicles for bismuth-212 alpha particle therapy

    International Nuclear Information System (INIS)

    Macklis, R.M.; Morris, C.; Humm, J.; Hines, J.; Atcher, R.

    1991-01-01

    Metallothioneins (MTHs) are small cysteine-rich polypeptides that binds cationic metals at physiologic pH ranges through noncovalent -SH ligand interactions. Some leucine-rich renal MTHs have a particular avidity for bismuth. The authors have examined the ability of MTHs to selectively incorporate Bi-212, a short-lived high-energy alpha particle emitter currently under exploration as a potential therapeutic radiolabel for use in molecularly targeted cancer therapy. They find that under physiologic conditions, MTH will selectively incorporate Bi-212 after incubation with an equilibrium mixture of its upstream and downstream parents. The MTH moieties may be linked to tumor-binding macromolecules such as antibodies via thiolation reactions using SPDP, and the resultant Bismuth-avid molecules may be used either as primary delivery vehicles for the Bi-212 or as part of a 2-step release-and-catch isotope localization system in which the MTH-antibody conjugate is pre-localized at the tumor site and the radiometal is then administered and chelated in situ. They present the chemistry, dosimetry and potential clinical applications of this system

  4. Electronic emission produced by light projectiles at intermediate energies

    International Nuclear Information System (INIS)

    Bernardi, G.C.

    1989-01-01

    Two aspects of the electronic emission produced by light projectiles of intermediate energies have been studied experimentally. In the first place, measurements of angular distributions in the range from θ = 0 deg -50 deg induced by collisions of 50-200 keV H + incident on He have been realized. It was found that the double differential cross section of electron emission presents a structure focussed in the forward direction and which extends up to relatively large angles. Secondly, the dependence of the double differential cross section on the projectile charge was studied using H + and He 3 2+ projectiles of 50 and 100 keV/amu incident on He. Strong deviations from a constant scaling factor were found for increasing projectile charge. The double differential cross sections and the single differential cross sections as a function of the emission angle, and the ratios of the emissions induced by He 3 2+ and H + at equal incident projectile velocities are compared with the 'Continuum Distorted Wave-Eikonal Initial State' (CDW-EIS) approximation and the 'Classical Trajectory Monte Carlo' (CTMC) method. Both approximations, in which the potential of the projectile exercises a relevant role, reproduce the general aspects of the experimental results. An electron analyzer and the corresponding projectile beam line has been designed and installed; it is characterized by a series of properties which are particularly appropriate for the study of double differential electronic emission in gaseous as well as solid targets. The design permits to assure the conditions to obtain a well localized gaseous target and avoid instrumental distortions of the measured distributions. (Author) [es

  5. Funneling effect of alpha particles on the charge collection efficiency in N type silicon surface barrier detector

    International Nuclear Information System (INIS)

    Boorboor, S.; Feghhi, S.A.H.; Jafari, H.

    2014-01-01

    Highlights: • Field funneling due to SEE in microelectronic device affects the charge collection efficiency. • Charge collection efficiency from alpha particles in a N type SSB device was calculated. • GEANT4, a Monte Carlo code and ATLAS, a numerical code have been used. • The simulation results have been validated through comparison with the experimental results. - Abstract: There are three different mechanisms of charge collection in a semiconductor charge particle detector, such as the drift of carriers in depletion zone, the drift of carriers in an extended electrical field along the ion track or funneling effect and the diffusion of carriers. In this work, the funneling effect on charge collection efficiency due to alpha particle track in a N type silicon surface barrier detector has been investigated. GEANT4, as Monte Carlo code, has been used for estimation of the deposit energy distribution in the component. In addition, the semiconductor device simulator, ATLAS, has been used in calculation of charge collection efficiency. The simulation results have been validated through comparison with the available experimental results. The calculated charge collection efficiency has good agreement with experiment. Without considering the funneling effect and diffusion, the calculation results underestimate the charge collection efficiency within 60%. Our overall results were indicative of the fact that considering funneling effect, considerably improves the accuracy of the charge collection efficiency estimation

  6. Labelling and determination of the energy in reactive intermediates in solution enabled by energy-dependent reaction selectivity

    Science.gov (United States)

    Kurouchi, Hiroaki; Singleton, Daniel A.

    2018-02-01

    Any long-lived chemical structure in solution is subject to statistical energy equilibration, so the history of any specific structure does not affect its subsequent reactions. This is not true for very short-lived intermediates because energy equilibration takes time. Here, this idea is applied to achieve the 'energy labelling' of a reactive intermediate. The selectivity of the ring-opening α-cleavage reaction of the 1-methylcyclobutoxy radical is found here to vary broadly depending on how the radical was formed. Reactions that provide little excess energy to the intermediate lead to a high selectivity in the subsequent cleavage (measured as a kinetic isotope effect), whereas reactions that provide more excess energy to the intermediate exhibit a lower selectivity. Accounting for the expected excess energy allows the prediction of the observed product ratios and, in turn, the product ratios can be used to determine the energy present in an intermediate.

  7. An application of 222Rn alpha particle's tracks to uranium exploration

    International Nuclear Information System (INIS)

    Aguilar H, F.

    1981-01-01

    The uranium exploration method is based on the register of 222 Rn alpha particles; 222 Rn gas is generated in the chain 238 U desintegration. The detection of alpha particles was performed with cellulose nitrate films (NTC), located in a grid at the region in study. The alpha particles produce latent tracks in the NTC films; these tracks may be enlarged by chemical etching and are observed with an ordinary optic microscope, ninety seven NTC films were used, these were distributed in an area of approximately seventeen square kilometers, located in the municipalities of Granados and Huasabas in Sonora Mexico, the detectors remain in the ground for a thirty days mean period. The results obtained show an area with high 222 Rn concentration, this can be related with an underground uranium ore deposit. The more important conclusion is that the results obtained in this work can be used as preliminary results for other prospection methods in this particular area. (author)

  8. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bilski, P., E-mail: pawel.bilski@ifj.edu.pl; Marczewska, B.

    2017-02-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F{sub 2} and F{sub 3}{sup +} color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  9. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.; Henning, C.B.; Gemmell, D.S.; Zabransky, B.J.

    1976-01-01

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D 0 ) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  10. Application of atomic and nuclear techniques to the study of inhomogeneities in electrodeposited {alpha}-particle sources

    Energy Technology Data Exchange (ETDEWEB)

    Martin Sanchez, A. E-mail: ams@unex.es; Nuevo, M.J.; Jurado Vargas, M.; Diaz Bejarano, J.; Silva, M.F. da; Roldan Garcia, C.; Paul, A.; Ferrero Calabuig, J.L.; Mendez Vilas, A.; Juanes Barber, D

    2002-05-01

    Three {alpha}-particle sources made by different methods of electrodeposition were analysed using {alpha}-particle spectrometry, Rutherford backscattering (RBS), and atomic force microscopy (AFM) on several surface zones. The thickness and homogeneity of these sources was studied using RBS, and the results were analysed jointly with those obtained with {alpha}-particle spectrometry and AFM techniques. The comparison of the electrodeposition methods showed that the most homogeneous electrodeposited zones corresponded to the source made with a stirring cathode.

  11. Role of compound nuclei in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-05-01

    Hot compound nuclei are frequently produced in intermediate-energy reactions through a variety of processes. Their decay is shown to be an important and at times dominant source of complex fragments, high energy-gamma rays, and even pions

  12. MIRD Pamphlet No. 22 (Unabridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, George; Roeske, John C.; McDevitt, Michael S.; Palm, Stig; Allen, Barry J.; Fisher, Darrell R.; Brill, Bertrand A.; Song, Hong; Howell, R. W.; Akabani, Gamal

    2010-02-28

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides, in radionuclide conjugation chemistry, and in the increased availability of alpha-emitters appropriate for clinical use have recently led to patient trials of alpha-particle-emitter labeled radiopharmaceuticals. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle-emitter therapy and to provide guidance and recommendations for human alpha-particle-emitter dosimetry.

  13. Carbon emission, energy consumption and intermediate goods trade: A regional study of East Asia

    International Nuclear Information System (INIS)

    Zhang, Jingjing

    2015-01-01

    Using country level panel data from East Asia over the period 1998–2011, this paper examines the implications of international production fragmentation-induced intermediate goods trade on the link between energy consumption and carbon pollution. The paper focuses on the interaction effect between energy consumption and trade in intermediate goods on carbon emission. The empirical results presented suggest that international trade in intermediate goods decreases the positive impact on carbon emission of energy consumption. When compared with the trade in final goods, intermediate goods trade contributes to a greater decrease in carbon pollution resulting from energy consumption. These results confirm that the link between energy consumption and carbon pollution in East Asia is significantly affected by international production fragmentation-induced trade in intermediate goods. The results presented in this paper have some important policy implications. - Highlights: • This paper tests the role of intermediates trade in energy-development nexus. • Empirical study is based on data of East Asia. • International trade can reduce the carbon pollution caused by energy use. • Intermediates trade has higher moderating effect than non-intermediate trade.

  14. Preparation and preclinical evaluation of {sup 211}At-labelled compounds for {alpha}-particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.

    1994-12-31

    The interest for {alpha}-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on {sup 211}At and {sup 212}Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active {sup 211}At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h {alpha}-particle. It is further shown that {sup 211}At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs.

  15. The semiconductor doping with radiation defects via proton and alpha-particle irradiation. Review

    CERN Document Server

    Kozlov, V A

    2001-01-01

    Paper presents an analytical review devoted to semiconductor doping with radiation defects resulted from irradiation by light ions, in particular, by protons and alpha-particles. One studies formation of radiation defects in silicon, gallium arsenide and indium phosphide under light ion irradiation. One analyzes effect of proton and alpha-particle irradiation on electric conductivity of the above-listed semiconducting materials. Semiconductor doping with radiation defects under light ion irradiation enables to control their electrophysical properties and to design high-speed opto-, micro- and nanoelectronic devices on their basis

  16. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    International Nuclear Information System (INIS)

    1992-01-01

    The objective of our research work is to provide -- with the aid of biophysical models of radiation action -- information on human risks following exposure to radon alpha particles. The approach proposed consists of (1) developing appropriate models (parametric and non-parametric) for alpha radiation induction of relevant end points (survival, cellular transformation), (2) providing an accurate physical characterization of the particle tracks in terms of nanodosimetric distributions, (3) supporting the models by detailed, molecular studies of the direct and indirect effects of alpha particles on DNA. Activities in the second year of this project are described

  17. Measurements of DT alpha particle loss near the outer midplane of TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.; Redi, M.H.; Schivell, J.; White, R.B.

    1995-07-01

    Measurements of DT alpha particle loss to the outer midplane region of TFTR have been made using a radially movable scintillator detector. The conclusion from this data is that mechanisms determining the DT alpha loss to the outer midplane are not substantially different from those for DD fusion products. Some of these results are compared with a simplified theoretical model for TF ripple-induced alpha loss, which is expected to be the dominant classical alpha loss mechanism near the outer midplane. An example of plasma-driven MHD-induced alpha particle loss is shown, but no signs of any ''collective'' alpha instability-induced alpha loss have yet been observed

  18. Plasma features and alpha particle transport in low-aspect ratio tokamak reactor

    International Nuclear Information System (INIS)

    Xu Qiang; Wang Shaojie

    1997-06-01

    The results of the experiment and theory from low-aspect ratio tokamak devices have proved that the MHD stability will be improved. Based on present plasma physics and extrapolation to reduced aspect ratio, the feature of physics of low-aspect ratio tokamak reactor is discussed primarily. Alpha particle confinement and loss in the self-justified low-aspect ratio tokamak reactor parameters and the effect of alpha particle confinement and loss for different aspect ratio are calculated. The results provide a reference for the feasible research of compact tokamak reactor. (9 refs., 2 figs., 3 tabs.)

  19. Modeling of alpha-particle-induced soft error rate in DRAM

    International Nuclear Information System (INIS)

    Shin, H.

    1999-01-01

    Alpha-particle-induced soft error in 256M DRAM was numerically investigated. A unified model for alpha-particle-induced charge collection and a soft-error-rate simulator (SERS) was developed. The author investigated the soft error rate of 256M DRAM and identified the bit-bar mode as one of dominant modes for soft error. In addition, for the first time, it was found that trench-oxide depth has a significant influence on soft error rate, and it should be determined by the tradeoff between soft error rate and cell-to-cell isolation characteristics

  20. The effect of hexapole and vertical fields on {alpha}-particle confinement in heliotron configurations

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, M.Yu. [RRC ' Kurchatov Institute' , Nuclear Fusion Institute, Moscow (Russian Federation); Watanabe, K.Y.; Yokoyama, M.; Yamazaki, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-03-01

    Collisionless mono-energetic {alpha}-particle confinement in three-dimensional magnetic fields obtained from the magnetic coils of the Large Helical Device (LHD) is calculated. It is found that the inward shift of magnetic axis due to the vertical field improves the {alpha}-particle confinement. In contrast to the vertical field, both large positive and negative hexapole fields do not improve the confinement. The study of the {beta} effect and Mercier criterion calculations for different hexapole fields are also presented. (author)

  1. Electron capture by alpha particles from helium atoms in a Coulomb-Born distorted-wave approximation

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, E; Ghavaminia, H

    2012-01-01

    A three-body Coulomb-Born continuum distorted-wave approximation is applied to calculate the differential and total cross sections for single-electron exchange in the collision of fast alpha particles with helium atoms in their ground states. The applied first-order distorted wave theory satisfies correct Coulomb boundary conditions. Both post and prior forms of the transition amplitude are calculated. The nuclear-screening effect of the passive electron on the differential and total cross sections is investigated. The results are compared with those of other theories and with the available experimental data. For differential cross sections, the comparisons show a reasonable agreement with empirical measurements at higher impact energies. The agreement between experimental data and the present calculations for total cross sections with the average of the post and prior forms of the transition amplitude is reasonable at all the specified energies.

  2. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2007-05-01

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the 131 iodine or the 90 yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  3. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium

    International Nuclear Information System (INIS)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed

  4. Instability of the ion hybrid wave in the presence of superthermal alpha-particles

    Science.gov (United States)

    Lashmore-Davies, C. N.; Russell, D. A.

    1997-02-01

    The stability of the ion hybrid wave in a plasma containing two thermal ion species present in comparable proportions and a low density population of superthermal alpha-particles is analyzed. A simple, model distribution function consisting of a ring distribution in the perpendicular velocity and a Maxwellian in the parallel velocity is used for the superthermal alpha-particles. This distribution function is relevant to the core plasma of a tokamak in the immediate post-birth phase before the alpha-particles have had time to relax collisionally and is therefore of interest to the alpha-channelling question. It has also been used to interpret ion cyclotron emission from fusion products in the edge plasma of large tokamaks. An approximate dispersion relation is derived which allows the conditions for instability to be explored and an analytic expression for the growth rate to be obtained. It is found that the ion hybrid wave can be unstable for v⊥0/cA≪1 where v⊥0 is the alpha-particle ring speed and cA is Alfvén speed for a plasma with two ion species. The instability conditions obtained from the analytic approximation are used to guide the solution of the exact dispersion relation. Numerical solutions for the specific cases of deuterium-tritium core and edge plasmas in the Tokamak Fusion Test Reactor (TFTR) [K. M. Young et al., Plasma Phys. Controlled Fusion 26, 11 (1984)] are given.

  5. alpha-particle radioactivity from LR 115 by two methods of analysis

    CERN Document Server

    Azkour, K; Adloff, J C; Pape, A

    1999-01-01

    LR115 track detectors were exposed to samples of Moroccan phosphate and phosphogypsum to measure their alpha-particle radioactivity. Then two formalisms were used for the dosimetry: simulation by a Monte Carlo method and determination of concentrations from a numerically integrated track registration equation. The results were compared with those deduced gamma-ray spectrometry.

  6. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  7. CO2 laser Thomson scattering diagnostic for fusion product alpha particle measurement

    Science.gov (United States)

    Richards, R. K.; Bennett, C. A.; Fletcher, L. K.; Hunter, H. T.; Hutchinson, D. P.

    1988-08-01

    A description of a CO2 laser Thomson scattering diagnostic for fusion product alpha particles is presented. Scattering calculations based on CIT plasma parameters are presented and compared to previous work based on TFTR parameters. System components are described and a proof-of-principle test in a nonburning plasma is discussed.

  8. A CO2 laser Thomson scattering diagnostic for fusion product alpha particle measurement

    Science.gov (United States)

    Richards, R. K.; Bennett, C. A.; Fletcher, L. K.; Hunter, H. T.; Hutchinson, D. P.

    A description of a CO2 laser Thomson scattering diagnostic for fusion alpha particles is presented. Scattering calculations based on CIT plasma parameters are presented and compared to previous work based on TFTR parameters. Systems components are described and a proof-of-principle test in a nonburning plasma is discussed.

  9. A CO2 Laser Thomson Scattering Diagnostic For The Measurement Of Fusion Product Alpha Particles

    Science.gov (United States)

    Richards, R. K.; Bennett, C. A.; Fletcher, L. K.; Hunter, H. T.; Hutchinson, D. P.

    1988-11-01

    A Thomson scattering diagnostic for measuring the alpha particle velocity distribution is described. Calculations of scattering are made for a CIT type plasma using available CO2 laser and heterodyne technology. Tests of a long pulse CO2 laser, multichannel heterodyne detector, and an absorption cell for stray laser radiation are presented.

  10. Alpha Particle Effects as a Test Domain for PAP, a Plasma Apprentice Program

    Science.gov (United States)

    Mynick, Harry E.

    1987-01-01

    A new type of computational tool under development, employing techniques of symbolic computation and artificial intelligence to automate as far as possible the research activities of a human plasma theorist, is described. Its present and potential uses are illustrated using the area of the theory of alpha particle effects in fusion plasmas as a sample domain.

  11. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    International Nuclear Information System (INIS)

    Rovati, L; Bonaiuti, M; Bettarini, S; Bosisio, L; Dalla Betta, G-F; Tyzhnevyi, V; Verzellesi, G; Zorzi, N

    2009-01-01

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  12. Electrical characterization of deep levels created by bombarding nitrogen-doped 4H-SiC with alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, Ezekiel, E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, Walter E., E-mail: wmeyer@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F. Danie; Paradzah, Alexander T.; Legodi, Matshisa J. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-03-15

    Deep-level transient spectroscopy (DLTS) and Laplace-DLTS were used to investigate the effect of alpha-particle irradiation on the electrical properties of nitrogen-doped 4H-SiC. The samples were bombarded with alpha-particles at room temperature (300 K) using an americium-241 ({sup 241}Am) radionuclide source. DLTS revealed the presence of four deep levels in the as-grown samples, E{sub 0.09}, E{sub 0.11}, E{sub 0.16} and E{sub 0.65}. After irradiation with a fluence of 4.1 × 10{sup 10} alpha-particles-cm{sup −2}, DLTS measurements indicated the presence of two new deep levels, E{sub 0.39} and E{sub 0.62} with energy levels, E{sub C} – 0.39 eV and E{sub C} – 0.62 eV, with an apparent capture cross sections of 2 × 10{sup −16} and 2 × 10{sup −14} cm{sup 2}, respectively. Furthermore, irradiation with fluence of 8.9 × 10{sup 10} alpha-particles-cm{sup −2} resulted in the disappearance of shallow defects due to a lowering of the Fermi level. These defects re-appeared after annealing at 300 °C for 20 min. Defects, E{sub 0.39} and E{sub 0.42} with close emission rates were attributed to silicon or carbon vacancy and could only be separated by using high resolution Laplace-DLTS. The DLTS peaks at E{sub C} – (0.55–0.70) eV (known as Z{sub 1}/Z{sub 2}) were attributed to an isolated carbon vacancy (V{sub C}).

  13. Nucleon-alpha particle interactions from inversion of scattering phase shifts

    International Nuclear Information System (INIS)

    Alexander, N.; Amos, K.; Apagyi, B.; Lun, D.R.

    1996-01-01

    Scattering amplitudes have been extracted from (elastic scattering) neutron-alpha (n-α) differential cross sections below threshold using the constraint that the scattering function is unitary. Real phase shifts have been obtained therefrom. A modification to the Newton iteration method has been used to solve the nonlinear equation that specifies the phase of the scattering amplitude in terms of the complete (0 to 180 deg) cross section since the condition for a unique and convergent solution by an exact iterated fixed point method, the 'Martin' condition, is not satisfied. The results compare well with those found using standard optical model search procedures. Those optical model phase shifts, from both n - α and p - α (proton-alpha) calculations in which spin-orbit effects were included, were used in the second phase of this study, namely to determine the scattering potentials by inversion of that phase shift data. A modified Newton-Sabatier scheme to solve the inverse scattering problem has been used to obtain inversion potentials (both central and spin-orbit) for nucleon energies in the range 1 to 24 MeV. The inversion interactions differ noticeably from the Woods-Saxon forms used to give the input phase shifts. Not only do those inversion potentials when used in Schroedinger equations reproduce the starting phase shifts but they are also very smooth, decay rapidly, and are as feasible as the optical model potentials of others to be the local form for interactions deduced by folding realistic two-nucleon g matrices with the density matrix elements of the alpha particle. 23 refs., 8 tabs., 9 figs

  14. Characterization of saturation of CR-39 detector at high alpha-particle fluence

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    2018-04-01

    Full Text Available The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from 0.06 × 108 to 7.36 × 108 alphas/cm2 from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of 70°C for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV–Visible (UV–Vis absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of 4.05 × 108, 5.30 × 108, and 7.36 × 108 alphas/cm2. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs in measurement of high fluence of heavy ions as well as in radiation dosimetry. Keywords: Alpha Particle, Bulk Etch Rate, CR-39 Detector, Saturated Regime, UV–Vis Spectroscopy

  15. The alpha-particle and shell models of the nucleus

    International Nuclear Information System (INIS)

    Perring, J.K.; Skyrme, T.H.R.

    1994-01-01

    It is shown that it is possible to write down α-particle wave functions for the ground states of 8 Be, 12 C and 16 O, which become, when antisymmetrized, identical with shell-model wave functions. The α-particle functions are used to obtain potentials which can then be used to derive wave functions and energies of excited states. Most of the low-lying states of 16 O are obtained in this way, qualitative agreement with experiment being found. The shell structure of the 0 + level at 6·06 MeV is analyzed, and is found to consist largely of single-particle excitations. The lifetime for pair-production is calculated, and found to be comparable with the experimental value. The validity of the method is discussed, and comparison made with shell-model calculations. (author). 5 refs, 1 tab

  16. Compound nuclei, binary decay, and multifragmentation in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-07-01

    Hot compound nuclei, frequently produced in intermediate-energy reactions through a variety of processes, are shown to be an important and at times dominant source of complex fragments. 13 refs., 12 figs

  17. Actinium-225 and Bismuth-213 Alpha Particle Immunotherapy of Cancer

    International Nuclear Information System (INIS)

    Scheinberg, D.

    2013-01-01

    Nuclides with appropriate half-lives and emission characteristics that would be potent enough to kill neoplastic cells in the small quantities that reach targets in vivo, include the high linear energy transfer (LET) alpha emitters such as Actinium-225 and Bi-213. We developed methods for the attachment of radiometals via bifunctional chelates to monoclonal antibodies (mAb) without loss of immunoreactivity. We developed alphaemitting Bi-213 lintuzumab constructs, characterized and qualified them in preclinical models, and took them into human clinical trials in patients with AML. Safety, anti-leukemic activity, and complete responses (CR’s) have been demonstrated through phase 2 trilas. Bi-213 is produced in a portable small generator device based on Ac- 225 in the hospital nuclear medicine lab. The isotope is then purified, attached to the antibody, and the product is qualified and processed. Despite this success, the major obstacle to the widespread use of these drugs remains the short 213 Bi half-life (46 minutes), which poses a large logistical hurdle before injection and limits its delivery to only the most accessible cancer cells after injection

  18. Proton induced fission of {sup 232}Th at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Burtebaev, N. T.; Edomskiy, A. V. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kovalchuk, K. V.; Kvochkina, T. N. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Piasecki, E. [Heavy Ion Laboratory of Warsaw University (Poland); Rubchenya, V. A. [University of Jyväskylä, Department of Physics (Finland); Sahiev, S. K. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Trzaska, W. H. [University of Jyväskylä, Department of Physics (Finland); Vardaci, E. [INFN Napoli, Dipartimento di Scienze Fisiche dell’Università di Napoli (Italy)

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  19. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  20. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén, E-mail: madeleine.lyckesvard@oncology.gu.se [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Delle, Ulla; Kahu, Helena [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Lindegren, Sture [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Jensen, Holger [The PET and Cyclotron Unit Copenhagen University Hospital, Rigshospitalet (Denmark); Bäck, Tom [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Swanpalmer, John [Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Elmroth, Kecke [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden)

    2014-07-15

    Highlights: • We study DNA damage response to low-LET photons and high-LET alpha particles. • Cycling primary thyrocytes are more sensitive to radiation than stationary cells. • Influence of radiation quality varies due to cell cycle status of normal cells. • High-LET radiation gives rise to a sustained DNA damage response. - Abstract: Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ({sup 211}At), concentrated in the thyroid by the same mechanism as {sup 131}I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ({sup 60}Co) and alpha particles from {sup 211}At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24 h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to {sup 211}At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1 Gy {sup 211}At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative

  1. Interactions of quarks and gluons with nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.H. [Columbia Univ., New York, NY (United States)

    1994-04-01

    Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.

  2. dd →3 Hen Reaction at Intermediate Energies

    International Nuclear Information System (INIS)

    Ladygina, N. B.

    2012-01-01

    The dd → 3 Hen reaction is considered at the energies between 200 and 520 MeV. The Alt-Grassberger-Sandhas equations are iterated up to the lowest order terms over the nucleon-nucleon t-matrix. The parameterized 3He wave function including five components is used. The angular dependence of the differential cross section and energy dependence of tensor analyzing power T 20 at the zero scattering angle are presented in comparison with the experimental data. (author)

  3. Role of near threshold resonances in intermediate energy nuclear ...

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Mayer. Plane wave. Total. On-shell Scattering. Figure 3. The squared amplitude generated using few-body equations for η-3He FSI with the input of ηN t-matrix corresponding to aηN = (0.88+i0.41) fm. Q is the excitation energy given as Q = E − MHe − Mη with E, MHe, Mη being the total energy of the η-3He ...

  4. Measurement of airborne concentrations of radon-220 daughter products by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Kerr, G.D.; Ryan, M.T.; Perdue, P.T.

    1978-01-01

    The decay of naturally occurring uranium-238 and thorium-232 produces radon-222 and radon-220 isotopes which can escape into the atmosphere. If these radon gases become concentrated in air, their daughter products may present an inhalation hazard to man. The airborne concentrations of radon-222 can usually be measured very accurately in the presence of normal airborne concentrations of radon-220 and its daughters. In contrast, the measurements of the airborne concentrations of radon-220 daughters are usually complicated by the presence of radon-222 and its daughters even at normally occurring airborne concentrations. The complications involved in these measurements can be overcome in most situations by using an alpha particle spectrometer to distinguish the activity of radon-222 daughters from that due to radon-220 daughters collected on a filter. A practical spectrometer for field measurements of alpha particle activity on a filter is discussed

  5. Effects of q(r) on the Alpha Particle Ripple Loss in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow; M. Diesso; R.V. Budny; S. Batha; S.J. Zweben; et al.

    1997-09-01

    An experiment was done with TFTR DT plasmas to determine the effect of the q(r) profile on the alpha particle ripple loss to the outer midplane. The alpha particle loss measurements were made using a radially movable scintillator detector 20 degrees below the outer midplane. The experimental results were compared with TF ripple loss calculations done using a Monte Carlo guiding center orbit following code, ORBIT. Although some of the experimental results are consistent with the ORBIT code modeling, the variation of the alpha loss with the q(r) profiles is not well explained by this code. Quantitative interpretation of these measurements requires a careful analysis of the limiter shadowing effect, which strongly determines the diffusion of alphas into the detector aperture.

  6. Technique for measuring the losses of alpha particles to the wall in TFTR

    International Nuclear Information System (INIS)

    England, A.C.

    1984-03-01

    It is proposed to measure the losses of alpha particles to the wall in the Tokamak Fusion Test Reactor (TFTR) or any large deuterium-tritium (D-T) burning tokamak by a nuclear technique. For this purpose, a chamber containing a suitable fluid would be mounted near the wall of the tokamak. Alpha particles would enter the chamber through a thin window and cause nuclear reactions in the fluid. The material would then be transported through a tube to a remote, low-background location for measurement of the activity. The most favorable reaction suggested here is 10 B(α,n) 13 N, although 14 N(α,γ) 18 F and others may be possible. The system, the sensitivity, the probe design, and the sources of error are described

  7. Determination of alpha particle detection efficiency of an imaging plate (IP) detector

    International Nuclear Information System (INIS)

    Rahman, N.M; Iida, Takao; Yamazawa, Hiromi; Moriizumi, Jun

    2006-01-01

    In order to determine the detection efficiency of the imaging plate (IP) detector, the true radioactivity of the alpha particles, which sampled in the collection media, should be known. The true radioactivity could be accurately predicted with the help of the reference alpha spectrometer measurement. The detection efficiency calculated for the IP was estimated with the theoretical curve and the experimental data. It is assumed that the air sample contained the decay products of both 222 Rn and 220 Rn series, the most significant sources of alpha particles. The present study estimated the detection efficiency of the IP as 39.3% with an uncertainty of 2.9 that is well enough to confirm the future use of the IP as a radiation detector. Experimental materials and methods are described. (S.Y.)

  8. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  9. On intermediate energy heavy ion optical model potential

    International Nuclear Information System (INIS)

    Rihan, T.H.; Awin, A.M.

    1992-08-01

    We derive in this paper an approximate analytical expression for the heavy ion optical potential by solving the inversion problem based on the McIntyre parametrization of the S-matrix. The quasi-classical limit of high energy approximation is modified in our approach so as to account for the Coulomb distortion of the trajectory. (author). 5 refs, 2 figs

  10. Study of projectile break-up process at intermediate energies

    International Nuclear Information System (INIS)

    Kumar, Harish; Parashari, Siddharth; Tali, Suhail A.

    2016-01-01

    The projectile break-up reactions are explained in terms of incomplete fusion or massive transfer reactions leading to the formation of composite system with less mass, charge and excitation energy, as compared to the complete fusion (CF) process. Since, the existing theoretical models are not applicable to reproduce the experimentally measured ICF, data satisfactory below 10 MeV/nucleon energies; thereby the study of the role of the entrance channel parameters in the fusion reactions is still a relevant problem in establishing the explicit inference regarding the influence of ICF on CF at 4-7 MeV/nucleon energies. Recently reported some studies have also shown that alpha Q-value is also an important parameter which affects the onset of ICF and conflict with the suggestion of Morgenstern et al. Keeping in view the recent aspects, to provide more strength to the aspect of projectile-target mass-asymmetry effect, role of non α-cluster projectile over α-cluster projectile, the present work has been carried out which will be useful to understand a clearer picture about the conflict between mass-asymmetry and projectile structure effect on break-up fusion process. As such, excitation function measurement of residues produced in 13 C + 175 Lu system has been carried out in a series of experiments of comparative study using α-cluster as well as non α-cluster projectiles with deformed heavier target nuclei at lower projectile energies ≈ 4-7 MeV/nucleon

  11. Fusion alpha-particle losses in a high-beta rippled tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bunno, M.; Nakamura, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Suzuki, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Shinohara, K.; Matsunaga, G. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tani, K. [Nippon Advanced Technology, Naka, Ibaraki 311-0102 (Japan)

    2013-08-15

    In tokamak plasmas, the confinement of energetic ions depends on the magnetic field structure. If the plasma pressure is finite, the equilibrium current (i.e., the Pfirsch-Schlüter current and diamagnetic current) flows in the plasma to maintain the magnetohydrodynamic (MHD) equilibrium. These plasma currents generate poloidal and toroidal magnetic field and alter the field structure. Moreover, if we consider the non-axisymmetry of magnetic field structures such as toroidal field (TF) ripples, the non-axisymmetric component of the equilibrium current can alter TF ripples themselves. When the plasma beta becomes high, the changes in the field structure due to the equilibrium current might affect the confinement of energetic ions significantly. We intend to clarify how these currents alter the field structure and affect the confinement of alpha particles in high-beta plasma. The MHD equilibrium is calculated using VMEC and the orbits of fusion alpha particles are followed by using the fully three-dimensional magnetic field orbit-following Monte Carlo code. In relatively low-beta plasma (e.g., the volume-averaged beta value <β>≤2%), the changes in the magnetic field component due to the plasma current negligibly affect the confinement of alpha particles except for the Shafranov shift effect. However, for <β>≥3%, the diamagnetic effect reduces the magnetic field strength and significantly increases alpha-particle losses. In these high-beta cases, the non-axisymmetric field component generated by the equilibrium current also increases these losses, but not as effectively as compared to the diamagnetic effect.

  12. BJT detector with FPGA-based read-out for alpha particle monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V; Dalla Betta, G-F [Universita di Trento, via Sommarive, 14, 38123 Trento (Italy); Rovati, L [Universita di Modena e Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Verzellesi, G [Universita di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, 42100 Reggio Emilia (Italy); Zorzi, N, E-mail: tyzhnevyi@disi.unitn.it [Fondazione Bruno Kessler, via Sommarive, 18, 38123 Trento (Italy)

    2011-01-15

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an {alpha}-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  13. Human cytogenetic dosimetry: a dose-response relationship for alpha particle radiation from 241Am

    International Nuclear Information System (INIS)

    DuFrain, R.J.; Littlefield, L.G.; Joiner, E.E.; Frome, E.L.

    1979-01-01

    Cytogenetic dosimetry estimates to guide treatment of persons internally contaminated with transuranic elements have not previously been possible because appropriate in vitro dose-response curves specifically for alpha particle irradiation of human lymphocytes do not exist. Using well-controlled cytogenetic methods for human lymphocyte culture, an experimentally derived dose-response curve for 241 Am alpha particle (5.49 and 5.44 MeV) radiation of G 0 lymphocytes was generated. Cells were exposed to 43.8, 87.7, 175.3 or 350.6 nCi/ml 241 Am for 1.7 hr giving doses of 0.85, 1.71, 3.42 or 6.84 rad. Based on dicentric chromosome yield, the linear dose-response equation is Y = 4.90(+-0.42) x 10 -2 X, with Y given as dicentrics per cell and X as dose in rads. The study also shows that the two-break asymmetrical exchanges in cells damaged by alpha particle radiation are overdispersed when compared to a Poisson distribution. An example is presented to show how the derived dose-response equation can be used to estimate the radiation dose for a person internally contaminated with an actinide. An experimentally derived RBE value of 118 at 0.85 rad is calculated for the efficiency of 241 Am alpha particle induction of dicentric chromosomes in human G 0 lymphocytes as compared with the efficiency of 60 Co gamma radiation. The maximum theoretical value for the RBE for cytogenetic damage from alpha irradiation was determined to be 278 at 0.1 rad or less which is in marked contrast to previously reported RBE values of approx. 20. (author)

  14. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    International Nuclear Information System (INIS)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S.A.; Al-Hajry, A.

    2016-01-01

    The photoluminescence (PL) and UV–vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241 Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R 2 =0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16–40.82×10 7 particles/cm 2 . Additionally, a correlation coefficient R 2 =0.9734 was achieved for the UV–vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV–vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  15. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  16. Rapid appearance of transient secondary adrenocortical insufficiency after alpha-particle radiation therapy for Cushing's disease

    International Nuclear Information System (INIS)

    Cook, D.M.; Jordan, R.M.; Kendall, J.W.; Linfoot, J.A.

    1976-01-01

    A 17-year-old woman received 12,000 rads of alpha-particle radiation for the treatment of Cushing's disease. One day after the completion of therapy, the patient developed nausea, vomiting, headache, and postural hypotension. Laboratory evaluation demonstrated a marked fall of the previously elevated urinary 17-hydroxycorticosteroids (17-OHCS) and undetectable plasma cortisols. The urinary 17-OHCS transiently returned to supranormal levels but over a 2 1 / 2 -week period decreased and then remained low. The patient also demonstrated a subnormal urinary aldosterone excretion in relation to plasma renin activity (PRA) during 10 mEq/24 h sodium restriction. The remainder of the endocrine evaluation was normal, suggesting that pituitary function otherwise remained intact. One and one-half years after alpha-particle therapy, the patient's urinary 17-OHCS were normal and responded normally to metyrapone. The relationship between urinary aldosterone excretion and PRA also was normal. It is postulated that there was an infarction of an ACTH secreting pituitary tumor leaving the remainder of the pituitary intact. A chronically elevated circulating level of ACTH with sudden loss of ACTH secretion appeared to have been responsible for the initial low urinary aldosterone as well as the low urinary 17-OHCS. This is the first reported case of a presumed pituitary tumor infarction in association with alpha-particle pituitary radiation

  17. The local skin dose conversion coefficients of electrons, protons and alpha particles calculated using the Geant4 code.

    Science.gov (United States)

    Zhang, Bintuan; Dang, Bingrong; Wang, Zhuanzi; Wei, Wei; Li, Wenjian

    2013-10-01

    The skin tissue-equivalent slab reported in the International Commission on Radiological Protection (ICRP) Publication 116 to calculate the localised skin dose conversion coefficients (LSDCCs) was adopted into the Monte Carlo transport code Geant4. The Geant4 code was then utilised for computation of LSDCCs due to a circular parallel beam of monoenergetic electrons, protons and alpha particles electrons and alpha particles are found to be in good agreement with the results using the MCNPX code of ICRP 116 data. The present work thus validates the LSDCC values for both electrons and alpha particles using the Geant4 code.

  18. The efficiency of counter telescopes for intermediate energy protons

    International Nuclear Information System (INIS)

    Bracco, A.; Gubler, H.P.; Hasell, D.K.; Van Oers, W.T.H.; Abegg, R.; Miller, C.A.; Stetz, A.W.

    1984-01-01

    The efficiency of counter telescopes containing a 15.2 cm thick NaI(Tl) crystal for detecting protons with energies in the range 50-350 MeV has been measured. An investigation was made of the dependence of the efficiency on the position of the proton in the counter. The results of the measurements are in close agreement with the calculations of efficiencies using available reaction cross section data. (orig.)

  19. Coherent pion photoproduction from deuterium at intermediate energies

    International Nuclear Information System (INIS)

    Osland, P.; Rej, A.K.

    1975-12-01

    The coherent photoproduction of neutral pions on deuterons is studied at energies around the (3,3) resonance and discuss the effects of the Fermi motion, rescattering and kinematical approximations. The results are very dependent upon what kinematical approximations one adopts for the impulse approximation term, which dominates up to very large angles. Allowing for this uncertainty in the kinematics, our results are in good agreement with the most recent experimental data

  20. Magnetic effects in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Ou Li; Li Baoan

    2011-01-01

    The time evolution and space distribution of internal electromagnetic fields in heavy-ion reactions at beam energies between 200 and 2000 MeV/nucleon are studied within an isospin-dependent Boltzmann-Uhling-Uhlenbeck transport model (ibuu11). While the magnetic field can reach about 7x10 16 G, which is significantly higher than the estimated surface magnetic field (∼1x10 15 G) of magnetars, it has almost no effect on nucleon observables because the Lorentz force is normally much weaker than the nuclear force. Very interestingly, however, the magnetic field generated by the projectilelike (targetlike) spectator has a strong focusing and defocusing effect on positive and negative pions at forward (backward) rapidities. Consequently, the differential π - /π + ratio as a function of rapidity is significantly altered by the magnetic field, whereas the total multiplicities of both positive and negative pions remain about the same. At beam energies above about 1 GeV/nucleon, while the integrated ratio of total π - to π + multiplicities is not, the differential π - /π + ratio is sensitive to the density dependence of nuclear symmetry energy E sym (ρ). Our findings suggest that magnetic effects should be carefully considered in future studies of using the differential π - /π + ratio as a probe of the E sym (ρ) at suprasaturation densities.

  1. Present status of intermediate energy data evaluation for accelerator-based transmutation of radioactive waste

    International Nuclear Information System (INIS)

    Koning, A.J.

    1994-05-01

    The recent developments in the field of nuclear data evaluation for energies above 20 MeV are outlined. As a particularly interesting application we consider accelerator-based transmutation of radioactive waste. The most urgent data needs for accelerator-based transmutation have been prioritized and translated in terms of intermediate-energy data libraries. Priorities are assigned to the materials relevant to an incineration system and to the most important associated nuclear reactions (notably reactions involving nucleons). In this contribution, the proposed actions as indicated in previous work are further discussed and a sample intermediate-energy ''starter'' data file is presented. (orig.)

  2. Heavy residue properties in intermediate energy nuclear collisions with gold

    International Nuclear Information System (INIS)

    Aleklett, K.; Sihver, L.; Liljenzin, J.O.; Seaborg, G.T.

    1990-10-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 32, 44 and 93 MeV/nucleon argon, 35 and 43 MeV/nucleon krypton with gold. The fragment isobaric yield distributions, moving frame angular distributions and velocities have been deduced from these data. This fission cross section decreases with increasing projectile energy and the heavy residue cross section increases. The ratio v parallel /v cn increases approximately linearly with mass removed from the target. 21 refs., 8 figs

  3. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  4. Microdosimetry of alpha particles for simple and 3D voxelised geometries using MCNPX and Geant4 Monte Carlo codes

    International Nuclear Information System (INIS)

    Elbast, M.; Saudo, A.; Franck, D.; Petitot, F.; Desbree, A.

    2008-01-01

    Microdosimetry using Monte Carlo simulation is a suitable technique to describe the stochastic nature of energy deposition by alpha particle at cellular level. Because of its short range, the energy imparted by this particle to the targets is highly non-uniform. Thus, to achieve accurate dosimetric results, the modelling of the geometry should be as realistic as possible. The objectives of the present study were to validate the use of the MCNPX and Geant4 Monte Carlo codes for microdosimetric studies using simple and three-dimensional voxelised geometry and to study their limit of validity in this last case. To that aim, the specific energy (z) deposited in the cell nucleus, the single-hit density of specific energy f 1 (z) and the mean-specific energy 1 > were calculated. Results show a good agreement when compared with the literature using simple geometry. The maximum percentage difference found 1 (z) obtained with MCNPX for <1 μm voxel size presents a significant difference with the shape of non-voxelised geometry. When using Geant4, little differences are observed whatever the voxel size is. Below 1 μm, the use of Geant4 is required. However, the calculation time is 10 times higher with Geant4 than MCNPX code in the same conditions. (authors)

  5. Proceedings of the fifth course of the international school of intermediate energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Bergere, R.; Costa, S.; Schaerf, C.

    1985-01-01

    This book presents the papers given at a conference on high energy physics. Topics considered at the conference included total photon absorption, scattering of photons by nuclei, pion photoproduction, nuclear structure investigations, photonuclear reactions and dispersion relations, photon spectra, quark effects, future accelerators for intermediate energy nuclear physics, bag models, polarized photons, and inelastic electron scattering.

  6. Photoproduction of mesons on the nucleon at intermediate energies

    International Nuclear Information System (INIS)

    Guidal, M.

    1997-01-01

    In this work a model is proposed to simulate the photoproduction of pseudoscalar mesons ('PI' and K) on the nucleon at high energy. This model is based on the exchange of mesonic or baryonic Regge trajectories, it is gauge invariant and it uses a Feynman diagram formalism inspired from isobaric models. The measurements concerning the following reactions γp → nπ + , γn → pπ - , γp → pπ 0 and γn → nπ 0 are reviewed and the new model is confronted to the experimental results. The model gives a reasonable and coherent description of these 4 reactions. The model has also been applied to the photoproduction of strange mesons and of Λ and Σ baryons and has been extrapolated at low energy to the threshold of the reaction, the model matches the results even up to E γ = 2 GeV for differential cross-sections and recoil polarization. An attempt has been made to associate a Regge based description, which is valid with low transfers, with perturbative quantum chromodynamics which is valid with high transfers. The model relies on the saturation of trajectories in the high transfer region and on the counting laws that give the right variation of the cross-section. It seems that a model based on linear trajectories can be reliable up to 4 GeV. The domain of high transfer has been too little investigated to provide enough experimental data to validate the model. An experiment whose purpose is to study the photoproduction of φ at high transfer, is proposed. This experiment requires an accelerator with high useful cycle because of the smallness of the expected cross-section. The CEBAF (continuous electron beam accelerator facility) as well as the CLAS 4π detector is presented. The study of γp → pφ and γp → KΛ * (1520) requires the discrimination of kaons from pions so the measurement of 180 ps as time resolution allows the feasibility of the experiment. (A.C.)

  7. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plates for energetic protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, Charles; Canfield, Michael; Graeper, Gavin; Lombardo, Andrew; Stillman, Collin; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

    2010-11-01

    A Thomson parabola ion spectrometer (TPIS) has been designed and built to study energetic ions accelerated from the rear surface of targets irradiated by ultra-intense laser light from the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The device uses a permanent magnet and a pair of electrostatic deflector plates to produce parallel magnetic and electric fields, which cause ions of a given charge-to-mass ratio to be deflected onto parabolic curves on the detector plane. The position of the ion along the parabola can be used to determine its energy. Fujifilm imaging plates (IP) are placed in the rear of the device and are used to detect the incident ions. The energy dispersion of the spectrometer has been calibrated using monoenergetic ion beams from the SUNY Geneseo 1.7 MV pelletron accelerator. The IP sensitivity has been measured for protons and deuterons with energies between 0.6 MeV and 3.4 MeV, and for alpha particles with energies between 1.5 MeV and 5.1 MeV.

  8. Spectrometry of doubly charged particles, applied to intermediate energy physics

    International Nuclear Information System (INIS)

    Oostens, Jean.

    1977-01-01

    The detection of 3 He and 4 He at GeV energies is obtained using both magnetic analysis and time-of-flight a methods, and several independent measurements of the specific ionization. This technique was applied to the extrapolation of the neutral resonance spectrum in the p + d → 3 He + X reaction and to the p- 4 He elastic scattering using incident α particles on a hydrogen target. In the first reaction, the data show the production of π 0 , eta 0 , ω 0 and eta'(957). An explanation implying a proton exchange diagram reveals the importance of the 3 He form factor. In the 4 He-p reaction, the 4 He scattered are detected in a magnetic spectrometer. It is possible to extract the elastic peaks from the continuum background corresponding to the empty target up to about 180 0 in the center of mass. The data corresponding to the backward angle reveal an increase of the cross section around 180 0 (cm). This phenomenon is qualitatively reproduced by triton exchange models. The results obtained are compared to theoretical model based on the multiple scattering phenomenon. But the interpreting of the experiments presented imply the knowledge of the wave function of both helium isotopes at momenta that have not been reached through electron scattering measurements up to now [fr

  9. A systematics of optical model compound nucleus formation cross sections for neutrons, proton, deuteron, 3He and alpha particle incidents

    International Nuclear Information System (INIS)

    Murata, Toru

    2000-01-01

    Simple formulae to reproduce the optical model compound nucleus formation cross sections for neutron, proton, deuteron, triton, 3 He and alpha particles are presented for target nuclei of light to medium weight mass region. (author)

  10. Final Technical Report - Nuclear Studies with Intermediate Energy Probes

    Energy Technology Data Exchange (ETDEWEB)

    Norum, Blaine [Univ. of Virginia, Charlottesville, VA (United States)

    2017-12-14

    During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at both the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.

  11. Reconstruction of electron energy distribution function from probe characteristics at intermediate and high pressures

    International Nuclear Information System (INIS)

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Kinetic theory of electron current on a probe, enabling essentially broaden the area of application of a probe method for determination of electron energy distribution function (EEDF) onto the areas of intermediate and high pressures. Method of quadrature summs makes it possible to reconstruct EEDF from integral equation for arbitrary energy dependences of diffusion parameter at any given energy interval. High efficiency of the method is demonstrated by solution of model as well as experimental tasks

  12. The measurement of intermediate mass fragments in the fermi energy domain

    International Nuclear Information System (INIS)

    Rudolf, G.

    1987-01-01

    Intermediate mass fragments in the Fermi energy domain were studied at GANIL via the Kr84 + Au reaction at 44 MeV/u. The Erel* quantity is used to study correlations between fragments. Fast-fast coincidences; fast-slow coincidences; slow-slow coincidences; and light particles are considered. Reaction mechanisms are discussed. Only qualitative analysis results are available, but they suggest that the quantitative results will be very instructive: light particle spectra will deliver source parameters (velocity, total charge, excitation energy and temperature); the multiplicity of intermediate mass fragments will be deduced from the triple coincidences between modules of XYZt detector

  13. Non-linearity issues and multiple ionization satellites in the PIXE portion of spectra from the Mars alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John L., E-mail: icampbel@uoguelph.ca; Heirwegh, Christopher M.; Ganly, Brianna

    2016-09-15

    Spectra from the laboratory and flight versions of the Curiosity rover’s alpha particle X-ray spectrometer were fitted with an in-house version of GUPIX, revealing departures from linear behavior of the energy-channel relationships in the low X-ray energy region where alpha particle PIXE is the dominant excitation mechanism. The apparent energy shifts for the lightest elements present were attributed in part to multiple ionization satellites and in part to issues within the detector and/or the pulse processing chain. No specific issue was identified, but the second of these options was considered to be the more probable. Approximate corrections were derived and then applied within the GUAPX code which is designed specifically for quantitative evaluation of APXS spectra. The quality of fit was significantly improved. The peak areas of the light elements Na, Mg, Al and Si were changed by only a few percent in most spectra. The changes for elements with higher atomic number were generally smaller, with a few exceptions. Overall, the percentage peak area changes are much smaller than the overall uncertainties in derived concentrations, which are largely attributable to the effects of rock heterogeneity. The magnitude of the satellite contributions suggests the need to incorporate these routinely in accelerator-based PIXE using helium beams.

  14. Induction of a bystander mutagenic effect of alpha particles in mammalian cells

    Science.gov (United States)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Vannais, D.; Hall, E. J.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Ever since the discovery of X-rays was made by Rontgen more than a hundred years ago, it has always been accepted that the deleterious effects of ionizing radiation such as mutation and carcinogenesis are attributable mainly to direct damage to DNA. Although evidence based on microdosimetric estimation in support of a bystander effect appears to be consistent, direct proof of such extranuclear/extracellular effects are limited. Using a precision charged particle microbeam, we show here that irradiation of 20% of randomly selected A(L) cells with 20 alpha particles each results in a mutant fraction that is 3-fold higher than expected, assuming no bystander modulation effect. Furthermore, analysis by multiplex PCR shows that the types of mutants induced are significantly different from those of spontaneous origin. Pretreatment of cells with the radical scavenger DMSO had no effect on the mutagenic incidence. In contrast, cells pretreated with a 40 microM dose of lindane, which inhibits cell-cell communication, significantly decreased the mutant yield. The doses of DMSO and lindane used in these experiments are nontoxic and nonmutagenic. We further examined the mutagenic yield when 5-10% of randomly selected cells were irradiated with 20 alpha particles each. Results showed, likewise, a higher mutant yield than expected assuming no bystander effects. Our studies provide clear evidence that irradiated cells can induce a bystander mutagenic response in neighboring cells not directly traversed by alpha particles and that cell-cell communication process play a critical role in mediating the bystander phenomenon.

  15. Production of alpha-particles in 16Op-interactions at 3.25 A GeV/c

    International Nuclear Information System (INIS)

    Bazarov, E.; Gulamov, K.G.; Lutpullaev, S.L.; Olimov, K.; Yuldashev, A.A.; Glagolev, V.V.; Ismatov, E.I.; Karshiev, D.A.; Khamidov, Kh.Sh.; Yuldashev, B.S.; Fazylov, M.I.

    2004-01-01

    Full text: Given report presents the results of studies of mechanisms of alpha-particles production in 16 Op-interactions at 3.25 A GeV/C. The experimental results were compared with predictions of cascade-fragmentation evaporation model (CFEM). For 16 O light nucleus a contribution of evaporative processes in cross section of fragments production is negligibly small and Fermi break-up is considered to be main fragments production mechanism. The experimental material obtained from HEL JINR 1-meter hydrogen bubble chamber, irradiated by relativistic oxygen-16 nuclei at Dubna synchrophasotron, consisting of more than 11000 16 Op-events. Questions related to processing stereo images from 1-meter hydrogen bubble chamber as well as to the procedure of secondary particles and fragments identification are discussed in details in [2-4]. In work [2] in 12 CEm-interactions at 4.5 A GeV/C the azimuthal asymmetries and colinearities were observed in two and three alpha-particle production channels. This experimental fact as well as disagreement between experimental transverse momentum spectra of alpha-particles and predictions of fragmentation statistical model [3] was qualitatively interpreted within phenomenological model of cylinder phase space with transverse momentum and possible angular moment acquired by 'remnant nucleus' at interaction with target. Therefore, to check an alternative physical picture allowing one to have quantitative explanation we have conducted similar experimental studies, which were compared with the results of corresponding original Monte Carlo calculation of work [1]. The main differences are the following: consideration of energy-momentum conservation laws in every event with relative accuracy of 10 -6 , generation of events in accordance with experimental probabilities of every exclusive (excluding pions) initial nucleus break-up channel, generation of components of momenta transferred to fragmenting nucleus by proton-nucleus in form of Gauss

  16. Sporadic error probability due to alpha particles in dynamic memories of various technologies

    International Nuclear Information System (INIS)

    Edwards, D.G.

    1980-01-01

    The sensitivity of MOS memory components to errors induced by alpha particles is expected to increase with integration level. The soft error rate of a 65-kbit VMOS memory has been compared experimentally with that of three field-proven 16-kbit designs. The technological and design advantages of the VMOS RAM ensure an error rate which is lower than those of the 16-kbit memories. Calculation of the error probability for the 65-kbit RAM and comparison with the measurements show that for large duty cycles single particle hits lead to sensing errors and for small duty cycles cell errors caused by multiple hits predominate. (Auth.)

  17. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.

    2017-04-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  18. Pre-equilibrium decay process in alpha particle induced reactions on thulium and tantalum

    International Nuclear Information System (INIS)

    Mohan, Rao, A.V.; Chintalapudi, S.N.

    1994-01-01

    Alpha particle induced reactions on the target elements Thulium and Tantalum were investigated upto 60 MeV using stacked foil activation technique and Ge(Li) gamma ray spectroscopy method. Excitation functions for six reactions of 169 Tm(α,xn); x=1-4 and 181 Ta(α,xn); x=2,4 were studied. The experimental results were compared with the updated version of Hybrid model (ALICE/90) using initial exciton configuration n 0 =4(4pOh). A general agreement was found for all the reactions with this option. (author)

  19. Pre-equilibrium decay process in alpha particle induced reactions on thulium and tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Rao, A.V.; Chintalapudi, S.N. (Inter Univ. Consortium for Dept. of atomic Energy Facilities, Calcutta (India))

    1994-01-01

    Alpha particle induced reactions on the target elements Thulium and Tantalum were investigated upto 60 MeV using stacked foil activation technique and Ge(Li) gamma ray spectroscopy method. Excitation functions for six reactions of [sup 169]Tm([alpha],xn); x=1-4 and [sup 181]Ta([alpha],xn); x=2,4 were studied. The experimental results were compared with the updated version of Hybrid model (ALICE/90) using initial exciton configuration n[sub 0]=4(4pOh). A general agreement was found for all the reactions with this option. (author).

  20. Influence of catechins on bystander responses in CHO cells induced by alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Law, Y.L.; Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: peter.yu@cityu.edu.hk

    2010-04-15

    In this work, we studied alpha-particle induced and medium-mediated bystander effects in Chinese hamster ovary (CHO) cells through micronucleus (MN) assay. We showed that signal transduction from irradiated cells to bystander cells occur within a short time after irradiation. We then studied the effects of ROS (reactive oxygen species)-scavenging catechins in the medium before irradiation. We observed decreases in the percentage of bystander cells with MN formation and thus proved the protection effect of catechins on bystander cells from radiation.

  1. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  2. Constraints on uncertainties and their application to the emission probabilities of alpha-particles

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, A.M. (Dept. de Fisica, Univ. de Extremadura, Badajoz (Spain)); Tome, F.V. (Dept. de Fisica, Univ. de Extremadura, Badajoz (Spain)); Diaz Bejarano, J. (Dept. de Fisica, Univ. de Extremadura, Badajoz (Spain))

    1994-03-08

    It often happens that the mean values of certain quantities are subject to constraints as, for example, when a sum is known exactly although the individual contributions have been measured independently and their corresponding uncertainties assigned. In this paper, the influence of a constraint on the final expression of the results is studied in detail, and is illustrated in the alpha-particle emission probabilities for several nuclides from nuclear data tables. A simple rule emerges: If the mean values must add to 100% and if one of the variances is greater than half the sum of all the variances, then the precision in the expression of the results can be improved. (orig.)

  3. Laser and alpha particle characterization of floating-base BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V., E-mail: tyzhnevyi@disi.unitn.i [Universita di Trento and INFN Trento, Trento (Italy); Batignani, G. [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G.-F. [Universita di Trento and INFN Trento, Trento (Italy); Verzellesi, G. [Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    In this work, we investigate the detection properties of existing prototypes of BJT detectors operated with floating base. We report about results of two functional tests. The charge-collection properties of BJT detectors were evaluated by means of a pulsed laser setup. The response to {alpha}-particles emitted from radioactive {sup 241}Am source are also presented. Experimental results show that current gains of about 450 with response times in the order of 50 {mu}s are preserved even in this non-standard operation mode, in spite of a non-optimized structure.

  4. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    DEFF Research Database (Denmark)

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena

    2014-01-01

    and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ((60)Co) and alpha particles from (211)At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity...... mechanism as (131)I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation...

  5. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  6. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    International Nuclear Information System (INIS)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs

  7. Model of alpha particle diffusion in the outer limiter shadow of TFTR

    International Nuclear Information System (INIS)

    Wang, S.; Academia Sinica, Hefei, Anhui; Zweben, S.J.

    1996-05-01

    A new code, Monte Carlo Collisional Stochastic Orbit Retracing (MCCSOR), has been developed to model the alpha particle loss signal as measured by the outer midplane scintillator detector in TFTR. The shadowing effects due to the outer limiters and the detector itself have been included, along with a pitch angle scattering and stochastic ripple diffusion. Shadowing by the outer limiters has a strong effect on both the magnitude and pitch angle distribution of the calculated loss. There is at least qualitative agreement between the calculated results and the experimental data

  8. Matrix Characterization of Plutonium Residues by Alpha-Particle Self-Interrogation

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Foster, L.A.; Staples, P.

    1998-01-01

    Legacy plutonium residues often have inadequate item descriptions. Nondestructive characterization can help segregate these items for reprocessing or provide information needed for disposal or storage. Alpha particle-induced gamma-ray spectra contain a wealth of information that can be used for matrix characterization. We demonstrate how this information can be used for item identification. Gamma-ray spectra were recorded at the Los Alamos Plutonium Facility from a variety of legacy, plutonium-processing residues and product materials. The comparison and analysis of these spectra are presented

  9. Anomalous effect of trench-oxide depth on alpha-particle-induced charge collection

    International Nuclear Information System (INIS)

    Shin, H.; Kim, N.M.

    1999-01-01

    The effect of trench-oxide depth on the alpha-particle-induced charge collection is analyzed for the first time. From the simulation results, it was found that the depth of trench oxide has a considerable influence on the amount of collected charge. The confining of generated charge by the trench oxide was identified as a cause of this anomalous effect. Therefore, the tradeoff between soft error rate and cell to cell isolation characteristics should be considered in optimizing the depth of trench oxide

  10. Angular dependences of the tensor analyzing powers in the dd→3Hen reaction at intermediate energies

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    2002-01-01

    The tensor analyzing powers A yy , A xx , and A xz in the dd→ 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown

  11. Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis

    International Nuclear Information System (INIS)

    Schulz, T. F.

    2007-01-01

    In this dissertation by Thorsten Frank Schulz the intermediate steps necessary to realise the 2000-Watt Society in Switzerland are examined. An analysis of an energy-economic scenario shows that the 2000-Watt Society should be seen as a long-term goal. According to the author, the major changes required to allow the implementation of this project concern energy-transformation and energy-demand technologies. Electricity will, according to the author, play an important role in a service-oriented society in the future. In such a transformation even intermediate steps are associated with considerable expense. The aims of the 2000-Watt Society project are listed. Energy and CO 2 balances for the domestic and transport sectors are presented and discussed. Complementary analyses are presented concerning fuel cells and wood-based fuel technologies. Finally, the implications of the 2000-Watt society and the effects of technological change are summarised and an outlook is presented

  12. Pair production by photons. Screening corrections for intermediate and high energies

    International Nuclear Information System (INIS)

    Oeverboe, I.

    1978-01-01

    The screening correction to the total cross-section for coherent electron pair production by photons is evaluated for intermediate and high energies, by employing the Born-approximation recoil momentum distribution and accurate relativistic form factors. Results are given for all 3<=Z<=92. For each element the results are presented in terms of a seven-parameter formula which is based on a high-energy expansion of the screened cross-section. (author)

  13. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-01-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He + ions and 7 MeV Au 5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11 B and 27 Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO 4 to BO 3 units but also a formation of AlO 5 and AlO 6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked to the changes occured in the

  14. Effects of magnetized alpha particles on lower hybrid heating and current drive in a reactor grade plasma

    International Nuclear Information System (INIS)

    Pavlo, P.; Krlin, L.; Tluchor, Z.

    1991-01-01

    The results of computer simulations of lower hybrid current drive (LHCD) for ITER parameters are presented. The damping of LH waves by alpha particles due to the interaction at high cyclotron resonances is obtained by solving the 2-D Fokker-Planck equation with the corresponding quasi-linear term (FPA code). This code is incorporated into a spatially 1-D LHCD code so as to obtain radial profiles of the radiofrequency (RF) power absorbed by electrons (1-D Fokker-Planck code) and alpha particles as well as the radial profile of the driven current. One-pass absorption is assumed and verified by a detailed analysis of LH rays for an ITER-like magnetic configuration. Noticeable absorption by alpha particles is observed only below ∼ 5 GHz of the generator frequency and is still acceptable down to ∼ 3 Ghz (19% of the input power P in, with a 16% reduction of the total driven current for P in = 50 MW). Two competing quasi-linear effects influence the damping rates: the RF field reduces the slopes of the alpha particle distribution function but, since the absorption is accompanied by acceleration of groups of alpha particles above their initial velocity, the RF field also increases the number of resonant particles. Both the global results and the damping rates are compared with those obtained for unmagnetized alpha particles and with the linear approximation. For frequencies above ∼ 3 GHz, the latter approach was found to significantly overestimate the absorption by alpha particles. Some further mechanisms not included in the code but having possible effects on the interaction are also discussed. (author). 21 refs, 11 figs, 1 tab

  15. Use of alpha-particle excited x-rays to measure the thickness of thin films containing low-Z elements

    International Nuclear Information System (INIS)

    Hanser, F.A.; Sellers, B.; Ziegler, C.A.

    1976-01-01

    The thickness of thin surface films containing low Z elements can be determined by measuring the K X-ray yields from alpha particle excitation. The samples are irradiated in a helium atmosphere by a 5 mCi polonium-210 source, and the low energy X-rays detected by a flow counter with a thin-stretched polypropylene window. The flow counter output is pulse height sorted by a single channel analyzer (SCA) and counted to give the X-ray yield. Best results have been obtained with Z = 6 to 9 (C, N, O, and F), but usable yields are obtained even for Z = 13 or 14 (Al and Si). The low energy of the X-rays (0.28 to 1.74 keV) limits the method to films of several hundred nm thickness or less and to situations where the substrate does not produce interfering X-rays. It is possible to determine the film thickness with 50 percent accuracy by direct calculation using the measured alpha-particle spectrum and known or calculated K X-ray excitation cross sections. By calibration with known standards the accuracy can be increased substantially. The system has thus far been applied to SiO 2 on Si, Al 2 O 3 on Al, and CH 2 on Al

  16. Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Evans, R.W.

    1999-01-01

    The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population

  17. Surface effect of ultraviolet radiation on electrochemically etched alpha-particle tracks in PADC

    International Nuclear Information System (INIS)

    Ng, F.M.F.; Tse, K.C.C.; Nikezic, D.; Dai, Junfeng; Zhao, Ziqiang; Yu, K.N.

    2008-01-01

    The size of alpha-particle tracks on electrochemically etched ultraviolet-irradiated polyallyldiglycol carbonate (PADC) films were studied. PADC films were first irradiated with 3 MeV alpha particles and then pre-etched chemically using aqueous 6.25 N NaOH solution for 2 h. The films were then exposed to incoherent broad-band ultraviolet (UV) radiation provided by a mercury lamp for different durations up to 2 h. The films were then electrochemically etched in a 6.25 N NaOH solution, with an a.c. voltage of about 1200 V eff and a frequency of 5 kHz, for 2 h at room temperature. The mean sizes of the tracks (or trees) were measured and were found to increase for short UV exposures and decrease for prolonged UV exposures. The results can be explained by the dominance of chain scission at the beginning of UV exposure and the dominance of cross linking for prolonged UV exposure. This explanation is further supported by results from X-ray photo-electron spectroscopy (XPS). Here, the C-O-C bonds decrease for short UV exposures, which is explained by scission of the polymer chains, and increase again for prolonged UV exposure, which indicates cross linking. From nano-indentation measurements, the hardness and the reduced modulus increase monotonically with the UV irradiation. Apparently, these quantities only characterize the amount of cross linking, and do not give information on the initial scission process

  18. Crosschecking of alpha particle monitor reactions up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Takács, S., E-mail: stakacs@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Ditrói, F.; Szűcs, Z. [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Haba, H.; Komori, Y. [Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Saito, M. [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan)

    2017-04-15

    Selected reactions with well-defined excitation functions can be used to monitor the parameters of charged particle beams. The frequently used reactions for monitoring alpha particle beams are the {sup 27}Al(α,x){sup 22,24}Na, {sup nat}Ti(α,x){sup 51}Cr, {sup nat}Cu(α,x){sup 66,67}Ga and {sup nat}Cu(α,x){sup 65}Zn reactions. The excitation functions for these reactions were studied using the activation method and stacked target irradiation technique to crosscheck and to compare the above six reactions. Thin metallic foils with natural isotopic composition and well defined thickness were stacked together in sandwich targets and were irradiated at the AVF cyclotron of RIKEN with an alpha particle beam of 51.2 MeV. The activity of the target foils were assessed by using high-resolution gamma spectrometers of high purity Ge detectors. The data sets of the six processes were crosschecked with each other to provide consistent, cross-linked numerical cross section data.

  19. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takács, S., E-mail: stakacs@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, Atomki, 4026 Debrecen (Hungary); Takács, M.P.; Ditrói, F. [Institute for Nuclear Research, Hungarian Academy of Sciences, Atomki, 4026 Debrecen (Hungary); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Haba, H.; Komori, Y. [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-09-15

    The cross sections of alpha particles induced nuclear reactions on natural germanium were investigated by using the standard stacked foil target technique, the activation method and high resolution gamma spectrometry. Targets with thickness of about 1 μm were prepared from natural Ge by vacuum evaporation onto 25 μm thick polyimide (Kapton) backing foils. Stacks were composed of Kapton-Ge-Ge-Kapton sandwich target foils and additional titanium monitor foils with nominal thickness of 11 μm to monitor the beam parameters using the {sup nat}Ti(α,x){sup 51}Cr reaction. The irradiations were done with E{sub α} = 20.7 and E{sub α} = 51.25 MeV, I{sub α} = 50 nA alpha particle beams for about 1 h. Direct or cumulative activation cross sections were determined for production of the {sup 72,73,75}Se, {sup 71,72,74,76,78}As, and {sup 69}Ge radionuclides. The obtained experimental cross sections were compared to the results of theoretical calculations taken from the TENDL data library based on the TALYS computer code. A comparison was made with available experimental data measured earlier. Thick target yields were deduced from the experimental cross sections and compared with the data published before.

  20. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    2007-03-01

    Full Text Available Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature.Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy.The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  1. An analytic solution for energy loss and time-of-flight calculations for intermediate-energy light ions

    NARCIS (Netherlands)

    Snellings, RJM; Hulsbergen, W; Prendergast, EP; van den Brink, A; de Haas, AP; Habets, JJLM; Kamermans, R; Koopmans, M; Kuijer, PG; de Laat, CTAM; Ostendorf, RW; Peghaire, A; Rossewij, M

    1999-01-01

    Particle identification in intermediate heavy-ion collisions, using a modern 4 pi detector which contains several active layers, relies on a parametrisation or numerical integration of the energy loss in thick layers of detector material for different ions. Here an analytical solution applicable

  2. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan Georgievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Idaho, Moscow, ID (United States)

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  3. Inner heliosphere spatial gradients of GCR protons and alpha particles in the low GeV range

    Science.gov (United States)

    Gieseler, J.; Boezio, M.; Casolino, M.; De Simone, N.; Di Felice, V.; Heber, B.; Martucci, M.; Picozza, P.

    2013-12-01

    The spacecraft Ulysses was launched in October 1990 in the maximum phase of solar cycle 22, reached its final, highly inclined (80.2°) Keplerian orbit around the Sun in February 1992, and was finally switched off in June 2009. The Kiel Electron Telescope (KET) aboard Ulysses measures electrons from 3 MeV to a few GeV and protons and helium in the energy range from 6 MeV/nucleon to above 2 GeV/nucleon. In order to investigate the radial and latitudinal gradients of galactic cosmic rays (GCR), it is essential to know their intensity variations for a stationary observer in the heliosphere because the Ulysses measurements reflect not only the spatial but also the temporal variation of the energetic particle intensities. This was accomplished in the past with the Interplanetary Monitoring Platform-J (IMP 8) until it was lost in 2006. Fortunately, the satellite-borne experiment PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) was launched in June 2006 and can be used as a reliable 1 AU baseline for measurements of the KET aboard Ulysses. With these tools at hand, we have the opportunity to determine the spatial gradients of GCR protons and alpha particles at about 0.1 to 1 GeV/n in the inner heliosphere during the extended minimum of solar cycle 23. We then compare these A0 cycle.

  4. Studying effects of Magnolol on alpha-particle induced bystander effects using PADC-film based dishes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.P.W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Tse, A.K.W.; Fong, W.F. [Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    Radiation-induced bystander effect refers to the biological response found in cells (called bystander cells) which are not irradiated directly by ionizing radiation but are next to cells irradiated directly by ionizing radiation. In the present paper, the effects of Magnolol, an extract from the bark of Magnolia officinalis which is used as a traditional Chinese medicine, were studied on alpha-particle induced bystander effects. In our experiments, Chinese hamster ovary (CHO) cells were cultured in PADC-film based dishes and were irradiated with low fluences of alpha particles passing through the PADC films. The precise number of cells traversed or missed by alpha particles could be determined by studying the alpha-particle tracks developed on the PADC films upon subsequent chemical etching. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was employed to analyze the biological response of bystander cells in terms of DNA strand breaks. With the pretreatment of Magnolol, the DNA strand breaks in bystander cells were reduced, which showed that the alpha-particle induced bystander effects were suppressed with the presence of Magnolol. Since Magnolol is an antioxidant which can scavenge reactive oxygen species (ROS), our results give support to that ROS play a role in the bystander signal transmission in our experiments.

  5. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  6. Selected problems in experimental intermediate energy physics. Final technical report, February 1, 1991--January 31, 1994

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1997-01-01

    A complete description of the research program of the intermediate energy group at the University of Houston may be found in previous progress reports, renewal proposals, and proposals to various accelerator advisory committees. The summaries of activities are presented in the next section. The objectives of the research program are to: (1) investigate selected, forefront problems in experimental intermediate energy physics; (2) educate students in this field of research; and (3) develop the instrumentation necessary to undertake this experimental program. There were three major thrusts of the program: (1) strange particle physics, where a strange quark is embedded in the nuclear medium; (2) muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and (3) measurement of the spin dependent structure function of the neutron and proton

  7. Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates

    DEFF Research Database (Denmark)

    Stegelmann, Carsten; Andreasen, Anders; Campbell, Charles T.

    2009-01-01

    recently introduced, via the “degree of rate control” of elementary steps. By extending that idea, we argue that even more useful than identifying the rate-determining step is identifying the rate-controlling transition states and the rate-controlling intermediates. These identify a few distinct chemical...... electronic or steric control on the relative energies of the key species. Since these key species are the ones whose relative energies most strongly influence the net reaction rate, they also identify the species whose energetics must be most accurately measured or calculated to achieve an accurate kinetic...... model for any reaction mechanism. Thus, it is very important to identify these rate-controlling transition states and rate-controlling intermediates for both applied and basic research. Here, we present a method for doing that....

  8. (Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions)

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  9. Supplement to the report of the Expert Committee 'Intermediate-Energy Physics' 1986-1988/89

    International Nuclear Information System (INIS)

    1990-02-01

    In the supplement to the scientitic report of the sponsoring project of the Federal Ministery for Research and Technology 'Intermediate-Energy Physics' the publications are collected, which have come out in the three years of the sponsoring in the single projects. Essentially only journal articles were taken up, in order to keep the extent of this list surveyable. On the taking up of the manifold of dissertations, diploma theses, and talks generally was abandoned. (orig.) [de

  10. Nuclear structure at intermediate energies: Progress report, January 1-December 31, 1988

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1988-01-01

    This report discusses the progress in the following experiments: Λ Spin Transfer Experiment; Σ 0 Spin Transfer Experiment; Strangeness Production in Heavy Ion Collisions; Measurement of the Imaginary Part of the I=1 /bar N/N S-Wave Scattering Length; Single Pion Production in np Scattering; Measurements of the π + d→Δ ++ n at Intermediate Energy; and PhotoJets from Nuclei

  11. Elastic scattering of intermediate energy kaons from nuclei and its Coulomb effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhenqiu; Kong Lingjiang; Liu Xianhui

    1986-04-01

    In the frame of the eikonal multiple scattering theory, using the basic parameters which are given by the different authors, the elastic scattering of the intermediate energy kaon mesons on /sup 12/C and /sup 40/Ca is studied. The Coulomb effect is calculated too. The results are in agreement with the experimental data. The Coulomb effect not only enhances the small angle differential cross section, but also fills up the dip of the differential cross section.

  12. Asymmetry ratio in pair production and the degree of linearly polarized photons at intermediate energies

    CERN Document Server

    Asai, J

    1999-01-01

    In order to initiate the experiments using linearly polarized tagged photons at intermediate energies, it is imperative to know and to monitor the degree of polarization. The relationship is re-examined between the linear polarization of photons and the asymmetry ratio in pair production by such photons. An improved method is proposed in which pairs are prohibited from entering the cone region around the incident photon beam. By restricting the directions of pairs, the asymmetry ratio is much improved. (author)

  13. Measurement of radon progeny concentrations in air by alpha-particle spectrometey

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1975-07-01

    A technique is presented for measuring air concentrations of the short-lived progeny of radon-222 by the use of alpha spectrometry. In this technique, the concentration of RaA, RaB, and RaC are calculated from one integral count of the RaA and two integral counts of the RaC' alpha-particle activity collected on a filter with an air sampling device. The influence of air sampling and counting intervals of time on the accuracy of the calculated concentrations is discussed in the report. A computer program is presented for use with this technique. It is written in the BASIC language. The program will calculate the air concentrations of RaA, RaB, and RaC, and will estimate the accuracy in these calculated concentrations. (U.S.)

  14. Chromosomal aberrations induced by alpha particles; Aberraciones cromosomicas inducidas por particulas {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2005-07-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  15. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition

  16. Specific features of reactor or cyclotron {alpha}-particles irradiated beryllium microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M. [A.A.Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Gromov, B.F.; Karabanov, V.N. [and others

    1998-01-01

    Studies were carried out into microstructure changes accompanying helium swelling of Be reactor neutron irradiated at 450degC or {alpha}-particles implanted in cyclotron to reach the same volume accumulation of He (6-8 ncm{sup 3} He/cm{sup 3} Be). The microstructures of reactor irradiated and implanted samples were compared after vacuum anneal at 600-800degC up to 50h. The irradiated samples revealed the etchability along the grain boundaries in zones formed by adequately large equilibrium helium pores. The width of the zones increased with the annealing time and after 50h reached 30{mu}. Depleted areas 2-3{mu} dia were observed in some regions of near grain boundary zones. The roles of grain boundaries and manufacturing pores as vacancies` sources and helium sinks are considered. (author)

  17. Detection of alpha particles by means of zinc sulphide screens. Study of their characteristics

    International Nuclear Information System (INIS)

    Gaeta, R.; Manero, F.

    1959-01-01

    A method of SZn(Ag) screens preparation in order to detect alpha particles is described. The behaviour of the luminophore in a scintillometer is primarily studied and followed by experimental methods in the preparation of screens with the specific qualities required. A sedimentation technic of SZn(Ag) deposition has been employed, and followed by pressing in hot. The variation of impulse size with the massif thickness of luminophore has been studied, and found a maximum value for 6,5 mg/cm 2 in unpressed screens and 6 mg/cm 2 in the pressed ones. The plateau curves present flat areas till 450 volts. The background in source absence is below 0.5 impulse/minute. (Author) 19 refs

  18. Simulations of alpha particle ripple loss from the International Thermonuclear Experimental Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; Budny, R.V.; McCune, D.C.; Miller, C.O.; White, R.B.

    1996-05-01

    Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR), a simple Goldston, White, Boozer stochastic loss criterion ripple loss model is found to require an increased renormalization of the stochastic threshold {delta}{sub s}/{delta}{sub GWB} {ge} 1. Effects of collisions, sawtooth broadening and reversal of the grad B drift direction are included in the particle following simulations.

  19. Experimental study of the cross-sections of alpha-particle induced reactions on $^{209}$Bi

    CERN Document Server

    Hermanne, A; Shubin, Yu N; Szucs, Z; Takács, S; Tarkanyi, F; 10.1016/j.apradiso.2005.01.015

    2005-01-01

    alpha -particle-induced nuclear reactions for generation of /sup 211 /At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to E/sub alpha /=39 MeV. Excitation functions are reported for the reactions /sup 209/Bi( alpha ,2n)/sup 211/At, /sup 209/Bi( alpha ,3n)/sup 210/At and /sup 209/Bi( alpha , x)/sup 210/Po. Results obtained from direct alpha -emission measurements and gamma -spectra from decay products are compared and correspond well with earlier literature values. Thick target yields have been deduced from the experimental cross-sections and optimised production pathways for minimal contamination are presented. A comparison with the results of the theoretical model code ALICE-IPPE is discussed.

  20. A new method for alpha-particle detection in a classroom experiment

    International Nuclear Information System (INIS)

    Simon, A.; Pintye, Z.; Molnar, J.

    2005-01-01

    Complete text of publication follows. The World Year of Physics (WYP 2005) was a worldwide celebration of Physics and its importance in our everyday lives. In harmony with its aims, that is to raise the worldwide awareness of Physics and Physical Science, we introduced a novel lab work involving a new imaging and data evaluation method for alpha-particle detection, which can be easily implemented in a classroom environment. The target group of the experiments is mainly secondary school students (age between 16-18 years). Our aim is to motivate students to develop a better understanding of Physics, allowing them to experience for themselves something of its fascination. In order to increase their attractiveness, the experiments include using a CMOS video image sensor with a video output. The covering glass window of the sensor must be carefully removed in order to make it sensitive for alpha rays. The sensor is connected to a computer where the images are recorded as a short video clip. The recorded video is played back by frames. The resulted frames are then merged together into one image. On this image the student can count the number of spots, where each spot corresponds to a hit of an alpha particle. The experiment can also be visible on a TV screen even by a whole class, however the authors suggest implementing the following experiments as a practical work individually or in small groups. As students are familiar with modern information technology, we think that they will be highly motivated to make these experiments on their own. Acknowledgements. The development of the above experimental setup was funded by ATOMKI and it was presented to the interactive science centre 'Magic corner', Debrecen, Hungary at Christmas, 2005. (author)

  1. Alpha Particles and X Rays Interact in Inducing DNA Damage in U2OS Cells.

    Science.gov (United States)

    Sollazzo, Alice; Brzozowska, Beata; Cheng, Lei; Lundholm, Lovisa; Haghdoost, Siamak; Scherthan, Harry; Wojcik, Andrzej

    2017-10-01

    Survivors of the atomic bombings of Hiroshima and Nagasaki are monitored for health effects within the Life Span Study (LSS). The LSS results represent the most important source of data about cancer effects from ionizing radiation exposure, which forms the foundation for the radiation protection system. One uncertainty connected to deriving universal risk factors from these results is related to the problem of mixed radiation qualities. The A-bomb explosions generated a mixed beam of the sparsely ionizing gamma radiation and densely ionizing neutrons. However, until now the possible interaction of the two radiation types of inducing biological effects has not been taken into consideration. The existence of such interaction would suggest that the application of risk factors derived from the LSS to predict cancer effects after pure gamma-ray irradiation (such as in the Fukushima prefecture) leads to an overestimation of risk. To analyze the possible interaction of radiation types, a mixed-beam exposure facility was constructed where cells can be exposed to sparsely ionizing X rays and densely ionizing alpha particles. U2OS cells were used, which are stably transfected with a plasmid coding for the DNA repair gene 53BP1 coupled to a gene coding for the green fluorescent protein (GFP). The induction and repair of DNA damage, which are known to be related to cancer induction, were analyzed. The results suggest that alpha particles and X rays interact, leading to cellular and possibly cancer effects, which cannot be accurately predicted based on assuming simple additivity of the individual mixed-beam components.

  2. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    International Nuclear Information System (INIS)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S.; Frigo, S.P.; Stampfl, A.P.J.; Wang, Y.

    2002-01-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10 9 photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  3. Unified description of neutron-, proton- and photon-induced fission cross sections in intermediate energy region

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi

    2003-01-01

    For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)

  4. Intermediate energy proton stopping power for hydrogen molecules and monoatomic helium gas

    Science.gov (United States)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, J. W.

    1984-01-01

    Stopping power in the intermediate energy region (100 keV to 1 MeV) was investigated, based on the work of Lindhard and Winther, and on the local plasma model. The theory is applied to calculate stopping power of hydrogen molecules and helium gas for protons of energy ranging from 100 keV to 2.5 MeV. Agreement with the experimental data is found to be within 10 percent. Previously announced in STAR as N84-16955

  5. Reconstruction of the electron energy distribution function from probe characteristics at intermediate and high pressures

    International Nuclear Information System (INIS)

    Arslanbekov, R.R.; Kolokolov, N.B.; Kudryavtsev, A.A.; Khromov, N.A.

    1991-01-01

    Gorbunov et al. have developed a kinetic theory of the electron current drawn by a probe, which substantially extends the region of applicability of the probe method for determining the electron energy distribution function, enabling probes to be used for intermediate and high pressures (up to p ≤ 0.5 atm for monatomic gases). They showed that for λ var-epsilon >> a + d (where a is the probe radius, d is the sheath thickness, and λ var-epsilon is the electron energy relaxation length) the current density j e (V) drawn by the probe is related to the unperturbed distribution function by an integral equation involving the distribution function. The kernal of the integral equation can be written as a function of the diffusion parameter. In the present paper the method of quadrature sums is employed in order to obtain the electron energy distribution function from probe characteristics at intermediate and high pressures. This technique enables them to recover the distribution function from the integral equation when the diffusion parameter has an arbitrary energy dependence ψ 0 (var-epsilon) in any given energy range. The effectiveness of the method is demonstrated by application to both model problems and experimental data

  6. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  7. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J. [Medical Physics Research Group, Physics Department, Education College, Salahaddin University-Erbil, Iraqi Kurdistan (Iraq)

    2015-07-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  8. AVERAGE REACTION CROSS-SECTIONS FOR 74-MEV TO 112-MEV ALPHA-PARTICLES ON I-127 AND CS-133

    NARCIS (Netherlands)

    WARNER, RE; WILSCHUT, HW; RULLA, WF; FELDER, GN

    The average reaction cross section for 74- to 112-MeV alpha particles on I-127 and Cs-133 was measured by a new method using a magnetic spectrograph and a CsI scintillation detector. The result, sigma-R = 2220+/-50 mb, is in good agreement with optical model calculations and finite-range microscopic

  9. Micronuclei in human peripheral blood lymphocytes exposed to mixed beams of X-rays and alpha particles

    Czech Academy of Sciences Publication Activity Database

    Staaf, E.; Brehwens, K.; Haghdoost, S.; Nievaart, S.; Pachnerová Brabcová, Kateřina; Czub, J.; Braziewicz, J.; Wojcik, A.

    2012-01-01

    Roč. 51, č. 3 (2012), s. 283-293 ISSN 0301-634X Institutional research plan: CEZ:AV0Z10480505 Keywords : Micronuclei * LET * Combined exposure * Mixed beams * Alpha particles * X-rays Subject RIV: BO - Biophysics Impact factor: 1.754, year: 2012

  10. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52MeV.

    Science.gov (United States)

    Ditrói, F; Takács, S; Haba, H; Komori, Y; Aikawa, M

    2016-12-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope 117m Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets 117m Sn, 113 Sn, 110 Sn, 117m,g In, 116m In, 115m In, 114m In, 113m In, 111 In, 110m,g In, 109m In, 108m,g In, 115g Cd and 111m Cd were identified and their excitation functions were derived. The results were compared with the data of the previous measurements from the literature and with the results of the theoretical nuclear reaction model code calculations TALYS 1.8 (TENDL-2015) and EMPIRE 3.2 (Malta). From the cross section curves thick target yields were calculated and compared with the available literature data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  12. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy ( 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ''best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon 129 Xe with 197 Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon 12 C with 197 Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated

  13. Proceedings of the LAMPF workshop on photon and neutral meson physics at intermediate energies

    International Nuclear Information System (INIS)

    Baer, H.W.; Crannell, H.; Peterson, R.J.

    1987-12-01

    This volume contains the Proceedings of the Workshop on ''Photon and Neutral-Meson, Physics at Intermediate Energies,'' held at Los Alamos, New Mexico, January 7 to 9, 1987. The purpose of this workshop was to bring together scientists working in the areas of electromagnetic, heavy-ion, and light hadron physics to discuss both the physics that could be addressed and potential capabilities of new, large intermediate-energy photon detectors. Based on the papers contained in these proceedings, it appears clear that there are a number of important areas that could be addressed with a much higher resolution neutral meson detector. It is also clear that the technical capability for building a neutral meson detector for energies up to 4 GeV with solid angle of approximately 10 mrs and resolution of a few hundred keV now exists. It also appears entirely reasonable to construct such a detector to be easily transportable so that it would become a national facility, available for use at a number of different laboratories. From the many interesting papers presented and from the broad representation of physicists from laboratories in Asia, Canada, Europe, Japan, and the United States, there appears to be a strong case for proceeding with the construction of such a detector

  14. A liquid 3He target system for use at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Abegg, R.; Murdoch, B.T.; Van Oers, W.T.H.; Postma, H.; Soukup, J.

    1981-01-01

    A liquid 3 He target system, with remote instrumentation and handling capabilities, has been developed for experiments using the 180-525 MeV TRIUMF cyclotron. 3 He gas is liquified, by means of a 4 He cryostat, into a cylindrical target cell (4.4 cm diameter, 1.6 cm thick) and maintained during operation at approx. equal to1.6 K. This provides an areal target density of approx. equal to2.7 x 10 22 3 He nuclei/cm 2 (128 mg/cm 2 ), suitable for intermediate energy proton scattering. (orig.)

  15. Probing in-medium spin–orbit interaction with intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu, Jun; Li, Bao-An

    2013-01-01

    Incorporating for the first time both the spin and isospin degrees of freedom explicitly in transport model simulations of intermediate-energy heavy-ion collisions, we observe that a local spin polarization appears during collision process. Most interestingly, it is found that the nucleon spin up–down differential transverse flow is a sensitive probe of the spin–orbit interaction, providing a novel approach to probe both the density and isospin dependence of the in-medium spin–orbit coupling that is important for understanding the structure of rare isotopes and synthesis of superheavy elements

  16. Production of nuclei far from the beta stability line using intermediate-energy heavy ions

    International Nuclear Information System (INIS)

    Guerreau, D.

    1986-05-01

    The production of far unstable nuclei using heavy ion accelerators in the intermediate energy domain is reviewed. The various mechanisms responsible for the production of exotic species, mainly the projectile fragmentation and transfer reactions, are discussed, and the first experimental results presented. Results can be summarized as follows: existence of 4 new isotopes 22 C, 23 N, 29 Ne, 30 Ne; indication of bound character of 71 Ni, 72 Ni; clear evidence for bound character of 23 Si, 27 S, 31 Ar, 35 Ca; indications of bound character of 43 V, 46 Mn, 47 Mn, 48 Fe, 50 Co, 52 Co, 52 Ni, 55 Cu, 56 Cu

  17. A function using cubic splines for the analysis of alpha-particle spectra from silicon detectors

    CERN Document Server

    Lozano, J C; Fernández, F

    2000-01-01

    A function based on the characteristics of the alpha-particle lines obtained with silicon semiconductor detectors and modified by using cubic splines is proposed to parametrize the shape of the peaks. A reduction in the number of parameters initially considered in other proposals was carried out in order to improve the stability of the optimization process. It was imposed by the boundary conditions for the cubic splines term. This function was then able to describe peaks with highly anomalous shapes with respect to those expected from this type of detector. Some criteria were implemented to correctly determine the area of the peaks and their errors. Comparisons with other well-established functions revealed excellent agreement in the final values obtained from both fits. Detailed studies on reliability of the fitting results were carried out and the application of the function is proposed. Although the aim was to correct anomalies in peak shapes, the peaks showing the expected shapes were also well fitted. Ac...

  18. Characterization of compositional modifications in metal-organic frameworks using carbon and alpha particle microbeams

    Science.gov (United States)

    Paneta, V.; Fluch, U.; Petersson, P.; Ott, S.; Primetzhofer, D.

    2017-08-01

    Zirconium-oxide based metal-organic frameworks (MOFs) were grown on p-type Si wafers. A modified linker molecule containing iodine was introduced by post synthetic exchange (PSE). Samples have been studied using Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) techniques, employing the 5 MV 15SDH-2 Pelletron Tandem accelerator at the Ångström laboratory. The degree of post synthetic uptake of the iodine-containing linker has been investigated with both a broad beam and a focused beam of carbon and alpha particles targeting different kind of MOF crystals which were of ∼1-10 μm in size, depending on the linker used. Iodine concentrations in MOF crystallites were also measured by Nuclear Magnetic Resonance Spectroscopy (NMR) and are compared to the RBS results. In parallel to the ion beam studies, samples were investigated by Scanning Electron Microscopy (SEM) to quantify possible crystallite clustering, develop optimum sample preparation routines and to characterize the potential ion beam induced sample damage and its dependence on different parameters. Based on these results the reliability and accuracy of ion beam data is assessed.

  19. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    International Nuclear Information System (INIS)

    Nathan, A.M.; Sandorfi, A.M.

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of σ(700)-meson exchange in γγ→ππ processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the γΝ-Δ transition; pion photoproduction and the γΝ-Δ amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p(rvec γ, π o ) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and Ν → Νγ and Δ → γΝ transition form factors; electroproduction studies of the Ν → Δ transition at bates and CEBAF

  20. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. [eds.

    1992-10-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of {sigma}(700)-meson exchange in {gamma}{gamma}{yields}{pi}{pi} processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the {gamma}{Nu}-{Delta} transition; pion photoproduction and the {gamma}{Nu}-{Delta} amplitudes; effective- lagrangians, Watson`s theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p({rvec {gamma}}, {pi}{sup o}) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and {Nu} {yields} {Nu}{gamma} and {Delta} {yields} {gamma}{Nu} transition form factors; electroproduction studies of the {Nu} {yields} {Delta} transition at bates and CEBAF.

  1. Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2014-03-01

    Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.

  2. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  3. Intermediate milling energy optimization to enhance the characteristics of barium hexaferrite magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hodaei, A.; Ataie, A., E-mail: aataie@ut.ac.ir; Mostafavi, E.

    2015-08-15

    Highlights: • Nano-sized BaFe{sub 12}O{sub 19} was successfully synthesized via a solid-state reaction. • Intermediate milling energy was optimized to improve BaFe{sub 12}O{sub 19} properties. • Minimum total energy of 93.7 kJ/g was necessary for formation of BaFe{sub 12}O{sub 19}. • Deviation from the optimum milling energy deteriorates the magnetic properties. - Abstract: Nano-sized barium hexaferrite particles were synthesized by mechanical activation of BaCO{sub 3} and Fe{sub 2}O{sub 3} powders mixture as starting materials. The effects of mechanical milling energy on the phase composition, morphology, thermal behavior and magnetic properties of the samples were systematically investigated by employing X-ray diffractometer, field emission scanning electron microscopy, differential thermal/thermo gravimetry analysis and vibrating sample magnetometer, respectively. The milling energy was calculated at five different levels using collision model. It was found that there is an optimum milling energy value for obtaining barium hexaferrite phase. The results revealed that applying a minimum total milling energy of 93.7 kJ/g was necessary for formation of almost single barium hexaferrite at a relatively low calcination temperature of 800 °C. FESEM micrograph of the above sample exhibited nano-size particles with a mean particle size of 80 nm. Further increase in milling energy leads to dramatic decrease in phase purity as well as magnetic characteristics of the samples. By increasing the milling energy from 93.7 to 671.9 kJ/g, saturation magnetization (M{sub s}) decreased from 22.5 to 0.39 emu/g, and also coercivity (H{sub c}) decreased from 4.28 to 1.46 kOe.

  4. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  5. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.

    Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  6. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    2003-06-01

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  7. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  8. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Final performance technical report

    International Nuclear Information System (INIS)

    Zaider, M.

    1997-01-01

    The goal of this project was to develop theoretical/computational tools for evaluating the risks incurred by populations exposed to radon alpha particles. Topics of concern include the following: compound dual radiation action (general aspects); a mathematical formalism describing the yield of radiation induced single-and double-strand DNA breaks, and its dependence on radiation quality; a study of the excited states in cytosine and guanine stacks in the Hartree-Fock and exciton approximations; nanodosimetry of radon alpha particles; application of the HSEF to assessing radiation risks in the practice of radiation protection; carcinogenic risk coefficients at environmental levels of radon exposures: a microdosimetric approach; and hit-size effectiveness approach in radiation protection

  9. AlphaRad, a new integrated CMOS System-on-Chip for high efficiency alpha particles counting

    Energy Technology Data Exchange (ETDEWEB)

    Husson, D. [Universite Louis Pasteur and IPHC (UMR7178), 23 Rue du Loess, BP 28, F-67037, Strasbourg, Cedex 2 (France)]. E-mail: husson@lepsi.in2p3.fr; Bozier, A. [InESS (UMR7163), F-67037 Strasbourg, Cedex 2 (France); Higueret, S. [IPHC - UMR7178, 23 Rue du Loess, BP 28, F-67037 Strasbourg, Cedex 2 (France); Le, T.D. [IPHC - UMR7178, 23 Rue du Loess, BP 28, F-67037 Strasbourg, Cedex 2 (France); Nourreddine, A. [Universite Louis Pasteur and IPHC (UMR7178), 23 Rue du Loess, BP 28, F-67037, Strasbourg, Cedex 2 (France)

    2006-12-21

    An integrated System-on-Chip (SoC) has been designed in 0.6{mu}m CMOS mixed analog/digital technology, and tested for high rate alpha particle counting. The sensor is the most innovative part of the chip, with a total active area of 2x2.5mmx5mm. The two-stage charge-to-voltage amplification scheme includes a numerical block for offset compensation. Designed with a gain of 700, the chip has been tested in alpha sources: a very high signal over noise ratio was obtained, leading to a detection efficiency of 5MeV alpha particles close to 100%. The chip is working at room temperature and has been tested up to 300kHz reset frequency. Future applications of this SoC will focus on detection of fast and thermal neutrons free of gamma contamination.

  10. Differential gene expression in human fibroblasts after alpha-particle emitter (211)At compared with (60)Co irradiation

    DEFF Research Database (Denmark)

    Danielsson, Anna; Claesson, Kristina; Parris, Toshima Z

    2013-01-01

    Purpose: The aim of this study was to identify gene expression profiles distinguishing alpha-particle (211)At and (60)Co irradiation. Materials and methods: Gene expression microarray profiling was performed using total RNA from confluent human fibroblasts 5 hours after exposure to (211)At labeled...... between (211)At and (60)Co irradiation. A greater number of transcripts were modulated by (211)At than (60)Co irradiation. In addition, down-regulation was more prevalent than up-regulation following (211)At irradiation. Several biological processes were enriched for both irradiation qualities...... irradiation exposure. These findings suggest that in comparison with (60)Co, (211)At has the clearest influence on both tumor protein p53-activated and repressed genes, which impose a greater overall burden to the cell following alpha particle irradiation....

  11. Design of a preamplifier for an alpha particles spectrometer; Diseno de un preamplificador para un espectrometro de particulas alfa

    Energy Technology Data Exchange (ETDEWEB)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  12. An analytic solution for energy loss and time-of-flight calculations for intermediate-energy light ions

    CERN Document Server

    Snellings, R; Prendergast, E P; Brink, A V D; Haas, A P D; Habets, J J L; Kamermans, R; Koopmans, M; Kuijer, P G; Laat, C T A; Ostendorf, R W; Peghaire, A; Rossewij, M

    1999-01-01

    Particle identification in intermediate heavy-ion collisions, using a modern 4 pi detector which contains several active layers, relies on a parametrisation or numerical integration of the energy loss in thick layers of detector material for different ions. Here an analytical solution applicable over an energy range of a few MeV up to a 100A MeV and for ions up to at least Z=8 is presented. Also, the consequences for time-of-flight measurements (TOF) in detectors behind several thick layers of detector material are discussed. The solution is applied to the data of the Huygens detector, which uses a TPC (dE/dx) and plastic scintillators for particle identification (E and TOF or dE/dx and TOF).

  13. Automated Grouping of Opportunity Rover Alpha Particle X-Ray Spectrometer Compositional Data

    Science.gov (United States)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Schroder, C.; Yen, A. S.

    2016-01-01

    The Alpha Particle X-ray Spectrometer (APXS) conducts high-precision in situ measurements of rocks and soils on both active NASA Mars rovers. Since 2004 the rover Opportunity has acquired around 440 unique APXS measurements, including a wide variety of compositions, during its 42+ kilometers traverse across several geological formations. Here we discuss an analytical comparison algorithm providing a means to cluster samples due to compositional similarity and the resulting automated classification scheme. Due to the inherent variance of elements in the APXS data set, each element has an associated weight that is inversely proportional to the variance. Thus, the more consistent the abundance of an element in the data set, the more it contributes to the classification. All 16 elements standard to the APXS data set are considered. Careful attention is also given to the errors associated with the composition measured by the APXS - larger uncertainties reduce the weighting of the element accordingly. The comparison of two targets, i and j, generates a similarity score, S(sub ij). This score is immediately comparable to an average ratio across all elements if one assumes standard weighted uncertainty. The algorithm facilitates the classification of APXS targets by chemistry alone - independent of target appearance and geological context which can be added later as a consistency check. For the N targets considered, a N by N hollow matrix, S, is generated where S = S(sup T). The average relation score, S(sub av), for target N(sub i) is simply the average of column i of S. A large S(sub av) is indicative of a unique sample. In such an instance any targets with a low comparison score can be classified alike. The threshold between classes requires careful consideration. Applying the algorithm to recent Marathon Valley targets indicates similarities with Burns formation and average-Mars-like rocks encountered earlier at Endeavour Crater as well as a new class of felsic rocks.

  14. Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system

    International Nuclear Information System (INIS)

    Sardini, Paul; Angileri, Axel; Descostes, Michael; Duval, Samuel; Oger, Tugdual; Patrier, Patricia; Rividi, Nicolas; Siitari-Kauppi, Marja; Toubon, Hervé; Donnard, Jérôme

    2016-01-01

    In rocks or artificial geo-materials, radioactive isotopes emitting alpha particles are dispersed according to the mineralogy. At hand specimen scale, the achievement of quantitative chemical mapping of these isotopes takes on a specific importance. Knowledge of the distribution of the uranium and thorium series radionuclides is of prime interest to several disciplines, from the geochemistry of uranium deposits, to the dispersion of uranium mill tailings in the biosphere. The disequilibrium of these disintegration chains is also commonly used for dating. However, some prime importance isotopes, such as 226 Ra, are complicated to localize in geo-materials. Because of its high specific activity, 226 Ra is found in very low concentrations (~ppq), preventing its accurate localization in rock forming minerals. This paper formulates a quantitative answer to the following question: at hand specimen scale, how can alpha emitters in geo-materials be mapped quantitatively? In this study, we tested a new digital autoradiographic method (called the Beaver™) based on a Micro Patterned Gaseous Detector (MPGD) in order to quantitatively map alpha emission at the centimeter scale rock section. Firstly, for two thin sections containing U-bearing minerals at secular equilibrium, we compared the experimental and theoretical alpha count rates, measured by the Beaver™ and calculated from the uranium content, respectively. We found that they are very similar. Secondly, for a set of eight homemade standards made up of a mixture of inactive sand and low-radioactivity mud, we compared the count rates obtained by the Beaver™ and by an alpha spectrometer. The results indicate (i) a linearity between both count rates, and (ii) that the count obtained by the Beaver™ can be estimated from the count obtained by the alpha spectrometry using a factor of 0.82.

  15. Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system

    Energy Technology Data Exchange (ETDEWEB)

    Sardini, Paul; Angileri, Axel [IC2MP Equipe HydrASA, 6 Rue Michel Brunet, B35, TSA 51106 Poitiers Cedex 9 (France); Descostes, Michael [AREVA Mines, R& D Department, Paris (France); Duval, Samuel; Oger, Tugdual [AI4R SAS, Nantes (France); Patrier, Patricia [IC2MP Equipe HydrASA, 6 Rue Michel Brunet, B35, TSA 51106 Poitiers Cedex 9 (France); Rividi, Nicolas [Service Camparis, Université Pierre et Marie Curie, Paris (France); Siitari-Kauppi, Marja [Radiochemistry Laboratory, University of Helsinki, Helsinki (Finland); Toubon, Hervé [AREVA Mines, R& D Department, Paris (France); Donnard, Jérôme [AI4R SAS, Nantes (France)

    2016-10-11

    In rocks or artificial geo-materials, radioactive isotopes emitting alpha particles are dispersed according to the mineralogy. At hand specimen scale, the achievement of quantitative chemical mapping of these isotopes takes on a specific importance. Knowledge of the distribution of the uranium and thorium series radionuclides is of prime interest to several disciplines, from the geochemistry of uranium deposits, to the dispersion of uranium mill tailings in the biosphere. The disequilibrium of these disintegration chains is also commonly used for dating. However, some prime importance isotopes, such as {sup 226}Ra, are complicated to localize in geo-materials. Because of its high specific activity, {sup 226}Ra is found in very low concentrations (~ppq), preventing its accurate localization in rock forming minerals. This paper formulates a quantitative answer to the following question: at hand specimen scale, how can alpha emitters in geo-materials be mapped quantitatively? In this study, we tested a new digital autoradiographic method (called the Beaver™) based on a Micro Patterned Gaseous Detector (MPGD) in order to quantitatively map alpha emission at the centimeter scale rock section. Firstly, for two thin sections containing U-bearing minerals at secular equilibrium, we compared the experimental and theoretical alpha count rates, measured by the Beaver™ and calculated from the uranium content, respectively. We found that they are very similar. Secondly, for a set of eight homemade standards made up of a mixture of inactive sand and low-radioactivity mud, we compared the count rates obtained by the Beaver™ and by an alpha spectrometer. The results indicate (i) a linearity between both count rates, and (ii) that the count obtained by the Beaver™ can be estimated from the count obtained by the alpha spectrometry using a factor of 0.82.

  16. Neutron-proton bremsstrahlung from intermediate energy heavy-ion reactions as a probe of the nuclear symmetry energy?

    International Nuclear Information System (INIS)

    Yong, G.-C.; Li Baoan; Chen Liewen

    2008-01-01

    Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn→pnγ. Very interestingly, nevertheless, the ratio of hard photon spectra R 1/2 (γ) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of 132 Sn + 124 Sn and 112 Sn + 112 Sn at E beam /A=50 MeV, for example, the R 1/2 (γ) displays a rise up to 15% when the symmetry energy is reduced by about 20% at ρ=1.3ρ 0 which is the maximum density reached in these reactions

  17. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  18. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P.; Jarvis, O.N.; Sadler, G.J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F.E. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  19. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580 São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others

    2015-12-14

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  20. Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2013-12-01

    We have recently measured the B(E2; 0+ → 2+ of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2 values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes.

  1. Study of the neutron rich sulfure isotope 43S through intermediate energy Coulomb excitation

    Science.gov (United States)

    Calinescu, S.; Cáceres, L.; Grévy, S.; Sohler, D.; Stanoiu, M.; Negoita, F.; Borcea, C.; Borcea, R.; Bowry, M.; Catford, W.; Dombradi, Z.; Franchoo, S.; Gillibert, R.; Thomas, J. C.; Kuti, I.; Lukyanov, S.; Lepailleur, A.; Mrazek, J.; Niikura, M.; Podolyak, Z.; Petrone, C.; Penionzhkevich, Y.; Roger, T.; Rotaru, F.; Sorlin, O.; Stefan, I.; Vajta, Z.; Wilson, E.

    2013-02-01

    The reduced transition probability B(E2: 3/2- 7/2-2) has been measured in 43S using Coulomb excitation at intermediate energy. The nucleus of interest was produced by fragmentation of a 48Ca beam at GANIL. The reaction products were separated in the LISE spectrometer. After Coulomb-excitation of 43S in a 208Pb target, the γ rays emitted inflight were detected by 64 BaF2 detectors of the Chǎteau de Cristal array. The preliminary value deduced for the reduced transition probability B(E2: 3/2-7/2-2) is in agreement with the predictions of the shell model calculations and supports a prolate-spherical shape coexistence in the 43S nucleus.

  2. Inclusive photoproduction and electroproduction of intermediate vector bosons (W+-,Z0) at very high energies

    International Nuclear Information System (INIS)

    Hayashi, Masaki; Katsuura, Kazuo

    1979-01-01

    Adopting the quark-parton model based on QCD we estimate the cross-sections dσ/dt and σsup(tot) for the inclusive photoproduction of the intermediate vector bosons W + and Z 0 (γ + p → W + , Z 0 + anything) and σsup(tot) for the inclusive electroproduction (e - + p → W + , Z 0 + anything) at very high energies. The typical values of the estimated total cross-sections at √s >= 200 GeV are σsub(rp→W + ) -- 10 -36 cm 2 , σsub(ep→W + ) -- 10 -37 cm 2 , σsub(rp→Z 0 ) -- 10 -37 cm 2 and σsub(ep→Z 0 ) -- 10 -38 cm 2 with the Weinberg angle sin 2 theta sub( w) = 0.22. (author)

  3. Study of halo nuclei breakup on light targets at intermediate and high energies

    CERN Document Server

    Parfenova, Ioulia

    2002-01-01

    The study of exotic nuclei is one of the most important topics in modern nuclear physics. It allows general understanding of the structure and nature of light nuclear systems in the vicinity of the driplines. Most of the leading facilities in the world, CERN, GANIL, GSI in Europe, RIKEN in Japan, and NSCL(MSU) in USA, are involved in these investigations. Recently, new experimental data on the properties of light halo nuclei such as extremely large interaction cross sections, huge electromagnetic dissociation cross sections, narrow momentum distribution of fragments from breakup reactions, unusual modes of the beta-decay of these nuclei on the borders of the stability, were obtained. This Thesis is based on a series of articles devoted to theoretical investigations of nuclear breakup reactions with light halo nuclei at intermediate energies impinging on light target nuclei. Special attention is paid to the question of sensitivity of the calculated breakup cross sections and longitudinal momentum distributions...

  4. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  5. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W. [Princeton Univ., NJ (United States)

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of α-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on α-particle loss has led to a better understanding of α-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing α-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90° lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an α-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized α-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  7. Stability and {alpha}-particle confinement in the Sphellamak reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W. Anthony; Fischer, Olivier [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2000-10-01

    The Sphellamak is a coreless hybrid system with Tokamak, Stellarator and Spheromak features.The absence of a central conductor permits the realisation of a compact toroidal system, as internal shielding becomes un- necessary. With a peaked toroidal current profile, a sequence of reactor-sized Sphellamak equilibria is computed numerically in which the current in the helical coils I{sub hc} is varied while the toroidal plasma current I{sub p} = -30 MA and the volume average {beta} = 7.3% remain fixed. Ideal global external kink modes are weakly unstable but indicate stability for I{sub hc} > 138 MA. The local ideal magnetohydrodynamic stability criteria are satisfied in the range 42 MA < I{sub hc} < 122 MA. The peaked toroidal current generates local maximal of the modulus of the magnetic field strength in the central region of the plasma, which has very favourable implications for energetic and thermal particle confinement. This is confirmed through the computation of a very small {alpha}-particle guiding centre orbit loss fraction. (author) [French] Le Sphellamak est un systeme hybride sans noyau central compose par des elements de Tokamak, de Stellerateur et de Spheromak. L'absence de colonne centrale permet la realisation d 'un systeme toroidal compact puisque le manteau de protection interne ne devient plus necessaire. Avec un profil de courant pique, une sequence d 'equilibres Sphellamak de dimension reacteur est calculee numeriquement en variant le courant des bobines helicoidales I{sub hc} tout en fixant le courant toroidal du plasma I{sub p} = -30 MA ainsi que la moyenne volumique {beta} = 7.3%. Les modes globaux externes du type kink sont faiblement instables mais suffisent a garantir la stabilite pour I{sub hc} > 138 MA. Les criteres de stabilite magnetohydrodynamique ideale locale sont realises pour des courants de 42 MA < I{sub hc} < 122 MA. Le courant toroidal pique pro- duit localement des valeurs maximales pour le module du champs

  8. Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals

    International Nuclear Information System (INIS)

    Han Wenbiao; Cao Zhoujian

    2011-01-01

    A new scheme for computing dynamical evolutions and gravitational radiations for intermediate-mass-ratio inspirals (IMRIs) based on an effective one-body (EOB) dynamics plus Teukolsky perturbation theory is built in this paper. In the EOB framework, the dynamic essentially affects the resulted gravitational waveform for a binary compact star system. This dynamic includes two parts. One is the conservative part, which comes from effective one-body reduction. The other part is the gravitational backreaction, which contributes to the shrinking process of the inspiral of a binary compact star system. Previous works used an analytical waveform to construct this backreaction term. Since the analytical form is based on post-Newtonian expansion, the consistency of this term is always checked by numerical energy flux. Here, we directly use numerical energy flux by solving the Teukolsky equation via the frequency-domain method to construct this backreaction term. The conservative correction to the leading order terms in mass-ratio is included in the deformed-Kerr metric and the EOB Hamiltonian. We try to use this method to simulate not only quasicircular adiabatic inspiral, but also the nonadiabatic plunge phase. For several different spinning black holes, we demonstrate and compare the resulted dynamical evolutions and gravitational waveforms.

  9. Direct processes in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Rodriguez Chariarse, V.D.

    1990-01-01

    This thesis deals with direct processes induced by Zp charge ion impact on one or two electron atoms and ions at intermediate energies. At a first step, a one-dimensional collision model is used in order to prove the different theoretical methods available to study collisions at such energy range, such as: perturbative and related variational principles, and distorted wave methods. The best description of both, symmetric and asymmetric collision type, is achieved by the distorted wave methods, particularly the ones using the exact impulsive wave function. As a next step, the appropriate formulations of the wave functions employed in the one-dimensional model to describe the real 3-dimensional Coulomb interaction case are examined by using the Eikonal and impulse hypothesis. In this way, the VPS and Eikonal wave functions are reviewed, and furtherly, the Eikonal form of the extended impulse wave function is derived. The Eikonal impulse approximation (EIA) is introduced. This is a distorted wave method using the Eikonal and extended impulse wave functions. The choice of the EIA prior version, i.e., the one using extended impulse wave function in the final channel for excitation is widely discussed and justified. (Author) [es

  10. Long-term residual radioactivity in an intermediate-energy proton linac

    Science.gov (United States)

    Blaha, J.; La Torre, F. P.; Silari, M.; Vollaire, J.

    2014-07-01

    A new 160 MeV H- linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities.

  11. Long-term residual radioactivity in an intermediate-energy proton linac

    International Nuclear Information System (INIS)

    Blaha, J.; La Torre, F.P.; Silari, M.; Vollaire, J.

    2014-01-01

    A new 160 MeV H − linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling water circuit were also quantified. The aim of this paper is to provide data of sufficiently general interest to be used for similar studies at other intermediate-energy proton accelerator facilities

  12. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei.

  13. Numerical comparison between deep water and intermediate water depth expressions applied to a wave energy converter

    Directory of Open Access Journals (Sweden)

    Pedro Beirão

    2015-09-01

    Full Text Available The energy that can be captured from the sea waves and converted into electricity should be seen as a contribution to decrease the excessive dependency and growing demand of fossil fuels. Devices suitable to harness this kind of renewable energy source and convert it into electricity—wave energy converters (WECs—are not yet commercially competitive. There are several types of WECs, with different designs and working principles. One possible classification is their distance to the shoreline and thus their depth. Near-shore devices are one of them since they are typically deployed at intermediate water depth (IWD. The selection of the WEC deployment site should be a balance between several parameters; water depth is one of them. Another way of classifying WECs is grouping them by their geometry, size and orientation. Considering a near-shore WEC belonging to the floating point category, this paper is focused on the numerical study about the differences arising in the power captured from the sea waves when the typical deep water (DW assumption is compared with the more realistic IWD consideration. Actually, the production of electricity will depend, among other issues, on the depth of the deployment site. The development of a dynamic model including specific equations for the usual DW assumption as well as for IWD is also described. Derived equations were used to build a time domain simulator (TDS. Numerical results were obtained by means of simulations performed using the TDS. The objective is to simulate the dynamic behavior of the WEC due to the action of sea waves and to characterize the wave power variations according with the depth of the deployment site.

  14. Inner-shell excitation in heavy ion collisions up to intermediate incident energies

    International Nuclear Information System (INIS)

    Reus, T. de.

    1987-04-01

    Electronic excitations in collisions of very heavy ions with a total nuclear charge Z greater than 1/α ≅ 137 at bombarding energies reaching from 3.6 MeV/n up to 100 MeV/n are the subject of this thesis. The dynamical behaviour of the electron-positron-field is described within a semiclassical model, which is reviewed and extended to include electronic interactions via a mean field. A detailed comparison with experimental data of K-vacancy formation, δ-electron and positron emission shows an improved agreement compared with former calculations. Structures in spectra of positrons emitted in sub- and supercritical collision are discussed in two respects: Firstly as a signal of the vacuum decay in supercritical electromagnetic fields which evolve in the vicinity of long living giant nuclear molecules. Secondly as an atomic effect, which might be related to an instaneous formation of molecular 1sσ- and 2p 1/2 σ- levels. However, beyond this speculation the emission spectra of electrons and positrons in deep inelastic reactions have proven to be a powerful tool for measuring nuclear reaction or delay times in the order of 10 -21 s. This property was transfered to the domain of intermediate energy collisions. In first order perturbation theory we derived a scaling law, exhibiting how nuclear stopping times could be extracted from the emission spectra of high energetic δ-electrons. Quantitative calculations within a coupled channel code have been carried out for the system Pb+Pb, yielding cross sections of up to 20 nb for the emission of electrons with a kinetic energy of 50 MeV in 60 MeV/n-collisions. (orig./HSI)

  15. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Final report

    International Nuclear Information System (INIS)

    Burleson, G.R.

    1987-01-01

    We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs

  16. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1990-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei

  17. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.; Talley, B. (comps.)

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I.

  18. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    International Nuclear Information System (INIS)

    Allred, J.C.; Talley, B.

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I

  19. Intermediate energies heavy ion collisions : study of the charged particles emission dynamics and emitters characterization

    International Nuclear Information System (INIS)

    Bauge, E.

    1994-07-01

    In heavy ion collisions at intermediate energies, reaction processes are ranging from slow processes where equilibrium is achieved between every emission, up to direct processes where nucleon nucleon scattering and phase space availability are the deciding factors. In order to investigate this transition, both the emission dynamics and the characteristics of the emitter have been studied, both theoretically and experimentally in the AMPHORA detector, for the systems 7, 17, 27 and 34 AMeV, 40 Ar+Al, 40 Ar+Cu and 40 Ar+Ag. First, the linear momentum transfer of the most central collisions has been evaluated for these systems, by measuring the velocity of heavy residues. Then, by measuring azimuthal angle correlations functions, and by comparing them with statistical model predictions, the average angular momentum of the emitter has been evaluated. To study the charged particles emission dynamics, experimental azimuthal angle and relative momentum correlation functions have been compared with simulations based on a classical trajectory model. Finally, predictions of an advanced BUU model have been studied for the system 34 AMeV 40 Ar+Al. (authors). 69 refs., 52 figs., 5 tabs

  20. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. (eds.)

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of [sigma](700)-meson exchange in [gamma][gamma][yields][pi][pi] processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the [gamma][Nu]-[Delta] transition; pion photoproduction and the [gamma][Nu]-[Delta] amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p([rvec [gamma

  1. Modeling interactions of intermediate-energy neutrons in a plastic scintillator array with GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Kohley, Z., E-mail: zkohley@gmail.com [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Lunderberg, E.; DeYoung, P.A. [Department of Physics, Hope College, Holland, MI 49423 (United States); Roeder, B.T. [LPC-Caen, ENSICAEN, IN2P3/CNRS et Universite de Caen, 14050 Caen cedex (France); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Christian, G.; Mosby, S.; Smith, J.K.; Snyder, J.; Spyrou, A.; Thoennessen, M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-08-01

    A Monte Carlo simulation of a large-area neutron time-of-flight detector, built on the GEANT4 framework, has been compared with an experimental measurement of the {sup 16}B{yields}{sup 15}B+n decay produced from a 55 MeV/u{sup 17}C beam. The ability of the Monte Carlo simulation to reproduce the intermediate-energy neutron interactions within the detector has been explored using both the stock GEANT4 physics processes and a custom neutron interaction model, MENATE{sub R}. The stock GEANT4 physics processes were unable to reproduce the experimental observables, while excellent agreement was obtained through the inclusion of the MENATE{sub R} model within GEANT4. The differences between the two approaches are shown to be related to the modeling of the neutron-carbon inelastic reactions. Additionally, the use of MENATE{sub R} provided accurate reproduction of experimental signals associated with neutron scattering within the detector. These results provide validation of the Monte Carlo simulation for modeling measurements of multiple neutrons where the identification and removal of false neutron signals, due to multiple neutron scattering, are required.

  2. Spectral energy distributions of the brightest Palomar-Green quasars at intermediate redshifts

    Science.gov (United States)

    Tripp, Todd M.; Bechtold, Jill; Green, Richard F.

    1994-01-01

    We have combined low-dispersion International Ultraviolet Explorer (IUE) spectra with the optical/near-IR spectrophotometry of Neugebauer et al. (1987) in order to study the spectral energy distributions of seven of the brightest Palomar-Green (PG) quasars at intermediate redshifts (Z(sub em) greater than or equal to 0.9 and less than or equal to 1.5). Some of these PG quasars are barely detectable in long IUE exposures, so we have used the Gaussian Extraction (GEX) technique to maximize the signal-to-noise of the IUE data, and we have co-added all spectra available from the IUE archive for each QSO unless the ultraviolet spectra varied significantly from one exposure to the next. We have corrected the spectral energy distributions for Milky Way reddening using the observed neutral hydrogen column densities on each sight line and the gas-to-dust relation recently derived by Diplas & Savage. Six of the seven quasars are detected down to lambda much less than 700 A in the rest frame, and consequently continuum reddening due to dust in the immediate vicinity of the quasar can have a dramatic effect on the spectral energy distributions. In order to explore the possible importance of intrinsic continuum reddening, we have assembled a heuristic extinction curve which extends to lambda much less than 912 A. Using this heuristic extinction curve, we derive reasonable upper limits on the intrinsic E(B-V) for each quasar. We briefly discuss some of the implications of the derived intrinsic continuum reddening limits. We use geometrically thin accretion disk models to derive the black hole masses and accretion rates implied by the spectral energy distributions. Even if we neglect intrinsic reddening, we find that a large fraction of the quasars require super-Eddington accretion rates (which is not consistent with the thin disk assumption). Comparison of the data in this paper to a large body of data from the literature on the accretion disk M(sub BH) - M dot grid calculated

  3. Angular dependences of the tensor analyzing powers in the dd -> sup 3 Hen reaction at intermediate energies

    CERN Document Server

    Ladygin, V P

    2002-01-01

    The tensor analyzing powers A sub y sub y , A sub x sub x , and A sub x sub z in the dd -> sup 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the sup 3 He and deuteron spin structure at short distances is shown

  4. Angular dependences of the tensor analyzing powers in the dd → 3Hen reaction at intermediate energies

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.; )

    2002-01-01

    The tensor analyzing powers A yy , A xx , and A xz in the dd → 3 Hen reaction at intermediate energies are considered in the framework of the one-nucleon-exchange approximation. Their strong sensitivity to the 3 He and deuteron spin structure at short distances is shown [ru

  5. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    Science.gov (United States)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  6. Development of sequence and regular band lasers for use as local oscillators in Thomson scattering alpha particle diagnostics (abstract)

    Science.gov (United States)

    Bennett, C. A.; Hutchinson, D. P.; Vander Sluis, K. L.; Staats, P. A.

    1985-05-01

    Heterodyne detection will be used to measure the scattered signal from a 100-MW pulsed CO2 laser Thomson scattered from energetic alpha particles. This measurement requires local oscillators displaced from the pump line by 6 to 21 GHz. We are developing cw sequence and regular band N2O and CO2 lasers which provide many lines in the required frequency range. The sequence lines are obtained by using a small in-cavity hot cell. Operating characteristics will be discussed for a variety of experimental arrangements.

  7. Radiation and biophysical studies on cells and viruses. Progress report, April 1, 1976--June 30, 1977. [Gamma radiation, alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Cole, A.

    1977-01-01

    Progress is reported on the following research projects: genetic structure of DNA, chromosomes, and nucleoproteins; particle beam studies of radiosensitive sites; division delay in CHO cells induced by partly penetrating alpha particles; location of cellular sites for mutation induction; sites for radioinduced cell transformation using partly penetrating particle beams; gamma-ray and particle irradiation of nucleoproteins and other model systems; quantitation of surface antigens on normal and neoplastic cells by x-ray fluorescence; hyperthermic effects on cell survival and DNA repair mechanisms; and studies on radioinduced cell transformation. (HLW)

  8. Intermediate steps towards the 2000-Watt society in Switzerland: an energy-economic scenario analysis[Dissertation 17314

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F

    2007-07-01

    In this dissertation by Thorsten Frank Schulz the intermediate steps necessary to realise the 2000-Watt Society in Switzerland are examined. An analysis of an energy-economic scenario shows that the 2000-Watt Society should be seen as a long-term goal. According to the author, the major changes required to allow the implementation of this project concern energy-transformation and energy-demand technologies. Electricity will, according to the author, play an important role in a service-oriented society in the future. In such a transformation even intermediate steps are associated with considerable expense. The aims of the 2000-Watt Society project are listed. Energy and CO{sub 2} balances for the domestic and transport sectors are presented and discussed. Complementary analyses are presented concerning fuel cells and wood-based fuel technologies. Finally, the implications of the 2000-Watt society and the effects of technological change are summarised and an outlook is presented.

  9. A comparative analysis of mechanisms of fast light particles production in nucleus-nucleus collisions at low and intermediate energies

    CERN Document Server

    Denikin, A S

    2002-01-01

    The dynamics and the mechanisms of formation of pre-equilibrium light particles in nucleus-nucleus collisions at low and intermediate energies are discussed in terms of a classical four-body model. The energy and angular distributions of light particles have been calculated. It has been found that at energies lower than 50A MeV the formation of the most high-energy part of the nuclear spectrum occurs at the expense of the acceleration of light target particles with the mean field of the projectile. The obtained data are in good agreement with available experimental data

  10. Feasibility of using intermediate x-ray energies for highly conformal extracranial radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng; Yu, Victoria; Nguyen, Dan; Demarco, John; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edy [Department of Radiation Oncology, University of California Los Angeles, California 90095 (United States); Woods, Kaley; Boucher, Salime [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

    2014-04-15

    Purpose: To investigate the feasibility of using intermediate energy 2 MV x-rays for extracranial robotic intensity modulated radiation therapy. Methods: Two megavolts flattening filter free x-rays were simulated using the Monte Carlo code MCNP (v4c). A convolution/superposition dose calculation program was tuned to match the Monte Carlo calculation. The modeled 2 MV x-rays and actual 6 MV flattened x-rays from existing Varian Linacs were used in integrated beam orientation and fluence optimization for a head and neck, a liver, a lung, and a partial breast treatment. A column generation algorithm was used for the intensity modulation and beam orientation optimization. Identical optimization parameters were applied in three different planning modes for each site: 2, 6 MV, and dual energy 2/6 MV. Results: Excellent agreement was observed between the convolution/superposition and the Monte Carlo calculated percent depth dose profiles. For the patient plans, overall, the 2/6 MV x-ray plans had the best dosimetry followed by 2 MV only and 6 MV only plans. Between the two single energy plans, the PTV coverage was equivalent but 2 MV x-rays improved organs-at-risk sparing. For the head and neck case, the 2MV plan reduced lips, mandible, tongue, oral cavity, brain, larynx, left and right parotid gland mean doses by 14%, 8%, 4%, 14%, 24%, 6%, 30% and 16%, respectively. For the liver case, the 2 MV plan reduced the liver and body mean doses by 17% and 18%, respectively. For the lung case, lung V20, V10, and V5 were reduced by 13%, 25%, and 30%, respectively. V10 of heart with 2 MV plan was reduced by 59%. For the partial breast treatment, the 2 MV plan reduced the mean dose to the ipsilateral and contralateral lungs by 27% and 47%, respectively. The mean body dose was reduced by 16%. Conclusions: The authors showed the feasibility of using flattening filter free 2 MV x-rays for extracranial treatments as evidenced by equivalent or superior dosimetry compared to 6 MV plans

  11. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after {alpha}-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Shaopeng [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-02-03

    Low-dose {alpha}-particle exposures comprise 55% of the environmental dose to the human population and have been shown to induce bystander responses. Previous studies showed that bystander effect could induce stimulated cell growth or genotoxicity, such as excessive DNA double strand breaks (DSBs), micronuclei (MN), mutation and decreased cell viability, in the bystander cell population. In the present study, the stimulated cell growth, detected with flow cytometry (FCM), and the increased MN and DSB, detected with p53 binding protein 1 (53BP1) immunofluorescence, were observed simultaneously in the bystander cell population, which were co-cultured with cells irradiated by low-dose {alpha}-particles (1-10 cGy) in a mixed system. Further studies indicated that nitric oxide (NO) and transforming growth factor {beta}1 (TGF-{beta}1) played very important roles in mediating cell proliferation and inducing MN and DSB in the bystander population through treatments with NO scavenger and TGF-{beta}1 antibody. Low-concentrations of NO, generated by spermidine, were proved to induce cell proliferation, DSB and MN simultaneously. The proliferation or shortened cell cycle in bystander cells gave them insufficient time to repair DSBs. The increased cell division might increase the probability of carcinogenesis in bystander cells since cell proliferation increased the probability of mutation from the mis-repaired or un-repaired DSBs.

  12. Fabrication of substrates with curvature for cell cultivation by alpha-particle irradiation and chemical etching of PADC films

    Science.gov (United States)

    Ng, C. K. M.; Tjhin, V. T.; Lin, A. C. C.; Cheng, J. P.; Cheng, S. H.; Yu, K. N.

    2012-05-01

    In the present paper, we developed a microfabrication technology to generate cell-culture substrates with identical chemistry and well-defined curvature. Micrometer-sized pits with curved surfaces were created on a two-dimensional surface of a polymer known as polyallyldiglycol carbonate (PADC). A PADC film was first irradiated by alpha particles and then chemically etched under specific conditions to generate pits with well-defined curvature at the incident positions of the alpha particles. The surface with these pits was employed as a model system for studying the effects of substrate curvature on cell behavior. As an application, the present work studied mechanosensing of substrate curvature by epithelial cells (HeLa cells) through regulation of microtubule (MT) dynamics. We used end-binding protein 3-green fluorescent protein (EB3-GFP) as a marker of MT growth to show that epithelial cells having migrated into the pits with curved surfaces had significantly smaller MT growth speeds than those having stayed on flat surfaces without the pits.

  13. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    Science.gov (United States)

    Belkić, Dževad

    1999-06-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/ dΩ for the basic charge exchange process H ++H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pad

  14. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    International Nuclear Information System (INIS)

    Belkic, Dzevad

    1999-01-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/dΩ for the basic charge exchange process H + +H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pade

  15. Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density

    Energy Technology Data Exchange (ETDEWEB)

    Paradzah, A.T.; Auret, F.D.; Legodi, M.J.; Omotoso, E.; Diale, M.

    2015-09-01

    Nickel Schottky diodes were fabricated on 4H-SiC. The diodes had excellent current rectification with about ten orders of magnitude between −50 V and +2 V. The ideality factor was obtained as 1.05 which signifies the dominance of the thermionic emission process in charge transport across the barrier. Deep level transient spectroscopy revealed the presence of four deep level defects in the 30–350 K temperature range. The diodes were then irradiated with 5.4 MeV alpha particles up to fluence of 2.6 × 10{sup 10} cm{sup −2}. Current–voltage and capacitance–voltage measurements revealed degraded diode characteristics after irradiation. DLTS revealed the presence of three more energy levels with activation enthalpies of 0.42 eV, 0.62 eV and 0.76 eV below the conduction band. These levels were however only realized after annealing the irradiated sample at 200 °C and they annealed out at 400 °C. The defect depth concentration was determined for some of the observed defects.

  16. The relationship between internally deposited alpha-particle radiation and subsite-specific liver cancer and liver cirrhosis. An analysis of published data

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, G.B. [Radiation Effects Research Foundation, Hiroshima (Japan)

    2002-12-01

    Chronic exposure to high linear energy transfer (LET) radiation has been shown to cause liver cancer in humans based on studies of patients who received Thorotrast, a colloidal suspension of thorium dioxide formerly used as a radiological contrast agent, and on studies of Russian nuclear weapons workers exposed to internally ingested plutonium. Risk estimates for these exposures and specific subtypes of liver cancer have not been previously reported. Combining published data with tumor registry data pertinent to the Thorotrast cohorts in Germany, Denmark, Portugal, and Japan and to Russian workers, we generally found significantly elevated risks of three major histologic types of liver tumors: hepatocellular carcinoma (HCC), cholangiocarcinoma (CC), and hemangiosarcoma (HS) for Thorotrast exposures. In contrast, HS was the only liver tumor significantly associated with the lower {alpha}-particle doses experienced by the Russian workers. Excess cases per 1,000 persons exposed to Thorotrast were similar for the three liver cancer subtypes but lower for plutonium exposure. Odds ratios (OR) of HS and CC for Thorotrast were from 26 to 789 and from 1 to 31 times higher than those for HCC, respectively. ORs of liver cirrhosis for Thorotrast exposure ranged from 2.7 (95% confidence interval (CI): 2.2-3.4) to 6.7 (5.1-8.7). (author)

  17. An experimental investigation on reduced radiological penumbra for intermediate energy x-rays: Implications for small field radiosurgery

    Science.gov (United States)

    Keller, Brian Michael

    Current day external beam radiation therapy typically uses x-ray energies in the megavoltage (6--18 MV) or in the superficial/orthovoltage (80--350 kVp) energy ranges. It has been found that intermediate energy x-rays (those greater than orthovoltage but sub-megavoltage) may offer an advantage in the field of high precision radiation therapy such as in radiosurgery. This advantage is a reduction in the radiological penumbra associated with small (less than about 3 cm) radiation dose fields. A consequence of reduced radiological penumbra is a more homogenous, conformal dose distribution in the patient with dose escalation and organ sparing made more feasible. The objectives of this thesis were as follows: to produce and to characterize an intermediate energy x-ray beam, to establish a method of accurate penumbra measurement at the micron level for millimeter size fields, to measure the radiological penumbra of single small intermediate energy x-ray fields, and to show the clinical consequences of a multiple beam irradiation in a stereotactic head phantom. A maximum photon energy of 1.2 +/- 0.1 MeV was determined for the intermediate energy x-ray spectrum at the expense of a low dose rate. A digital microscope with a computer controlled translation stage was investigated for its ability to resolve steep dose gradients in Gafchromic EBT film for field sizes as small as 1 mm and for photon energies as low as 100 kVp. The microscope-film system resolved gradients to within about 30 mum, limited by the inherent spatial resolution of the film, the noise of the system, and the uncertainties of measurement. Penumbra widths were compared for 1.2 MV versus 6 MV for identical irradiation conditions. In some instances, there was a five-fold reduction in the radiological penumbra of single 1.2 MV x-ray beams. A multiple beam arc irradiation demonstrated that the advantages seen with single beams carry over to multiple beams. The benefits of reduced radiological penumbra for

  18. Heavy Ion Physics at Low, Intermediate and Relativistic Energies using 4π Detectors. Proceedings of International Research Workshop

    International Nuclear Information System (INIS)

    Petrovici, M.; Sandulescu, A.; Pelte, D.; Stoecker, H.; Randrup, J.

    1997-01-01

    This monograph contains 37 communications presented at the International Research Workshop held at Poiana Brasov, Romania on October 7-14, 1996. The main subject was heavy ion reactions at low, intermediate and relativistic energies using 4π detectors. The following topics were focussed on: cold fragmentation of nuclear matter, preequilibrium and thermalization, thermal and chemical equilibrium, fragmentation and correlations in intermediate energy collisions, dynamical properties of hot and dense nuclear matter, in-medium effects, resonance and strange nuclear matter, signals of the deconfined state. The dynamical aspects and their role in triggering the liquid-gas phase transition at intermediate energies and the deconfined quark-gluon plasma at ultra-relativistic energies were of special interest. New experimental and theoretical results, illustrating the progress made during the last years in understanding the properties of nuclear matter in extreme conditions of pressure and temperature produced by heavy ion collisions, were presented and intensively discussed. The round table discussion, the last session of the Workshop, summarized through lively and extensive contributions the main subjects attacked during the Workshop. At the end the discussion focussed on the most important question, what strategy the nuclear physics community should embark on at this turn of the millennium

  19. Very backward π0- and eta0-production by proton projectiles on deuterium target at intermediate energies

    International Nuclear Information System (INIS)

    Berthet, P.; Frascaria, R.; Didelez, J.P.

    1984-01-01

    The production of π 0 and eta 0 mesons in the reactions pd→π 0 tau and pd→eta 0 tau has been studied at very backward angles for kinetic proton energies Tsub(p) ranging from 0.92 to 2.6 GeV. The excitation functions at phisub(π) = phisub(eta) = 180 0 display large structures which might be related to baryonic (Δ and N*) excitations in the intermediate state

  20. Elastic scattering of the intermediate energy kaon mesons on the nuclei and coulomb's effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhenqiu; Kong Lingjiang; Liu Xianhui

    1985-05-01

    In the frame of the eikonal scattering theory, using the basic parameters which are given by the different authors, the elastic scattering of the intermediate energy kaon mesons /sup 12/C and /sup 40/Ca are studied. The Coulomb effect is calculated too. The results are agreement with the experimental data. The Coulombv effect does not only enhance the small angle differential cross section, but also fill up the dip of the differential cross section.

  1. Alpha particle and proton relative thermoluminescence efficiencies in LiF:Mg, Cu, P:is track structure theory up to the task?

    International Nuclear Information System (INIS)

    Horowitz, Y. S.; Siboni, D.; Oster, L.; Livingstone, J.; Guatelli, S.; Rosenfeld, A.; Emfietzoglou, D.; Bilski, P.; Obryk, B.

    2008-01-01

    Low-energy alpha particle and proton heavy charged particle (HCP) relative thermoluminescence (TL) efficiencies are calculated for the major dosimetric glow peak in LiF:Mg, Cu, P (MCP-N) in the framework of track structure theory (TST). The calculations employ previously published TRIPOS-E Monte Carlo track segment values of the radial dose in condensed phase LiF calculated at the Instituto National de Investigaciones Nucleares (Mexico) and experimentally measured normalised 60 Co gamma-induced TL dose-response functions, f(D), carried out at the Inst. of Nuclear Physics (Poland). The motivation for the calculations is to test the validity of TST in a TL system in which f(D) is not supra-linear (f(D) >1) and is not significantly dependent on photon energy contrary to the behaviour of the dose-response of composite peak 5 in the glow curve of LiF:Mg, Ti (TLD-100). The calculated HCP relative efficiencies in LiF:MCP-N are 23-87 % lower than the experimentally measured values, indicating a weakness in the major premise of TST which exclusively relates HCP effects to the radiation action of the secondary electrons liberated by the HCP slowing down. However, an analysis of the uncertainties involved in the TST calculations and experiments (i.e. experimental measurement of f(D) at high levels of dose, sample light self-absorption and accuracy in the estimation of D R, especially towards the end of the HCP track) indicate that these may be too large to enable a definite conclusion. More accurate estimation of sample light self-absorption, improved measurements of f(D) and full-track Monte Carlo calculations of D R incorporating improvements of the low-energy electron transport are indicated in order to reduce uncertainties and enable a final conclusion. (authors)

  2. Time-dependent Occurrence Rate of Electromagnetic Cyclotron Waves in the Solar Wind: Evidence for the Effect of Alpha Particles?

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Feng, H. Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing (China); Chu, Y. H. [Institute of Space Science, National Central University, Chungli, Taiwan (China); Huang, J. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing (China)

    2017-09-20

    Previous studies revealed that electromagnetic cyclotron waves (ECWs) near the proton cyclotron frequency exist widely in the solar wind, and the majority of ECWs are left-handed (LH) polarized waves. Using the magnetic field data from the STEREO mission, this Letter carries out a survey of ECWs over a long period of 7 years and calculates the occurrence rates of ECWs with different polarization senses. Results show that the occurrence rate is nearly a constant for the ECWs with right-handed polarization, but it varies significantly for the ECWs with LH polarization. Further investigation of plasma conditions reveals that the LH ECWs take place preferentially in a plasma characterized by higher temperature, lower density, and larger velocity. Some considerable correlations between the occurrence rate of LH ECWs and the properties of ambient plasmas are discussed. The present research may provide evidence for the effect of alpha particles on the generation of ECWs.

  3. Elastic and inelastic scattering of alpha particles from sup 46 Ti at E sub. alpha. = 35 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Raghunatha Rao, V.; Sudarshan, M.; Sarma, A.; Singh, R. (North-Eastern Hill Univ., Shillong (India). Dept. of Physics); Banerjee, S.R.; Chintalapudi, S.N. (Bhabha Atomic Research Centre, Bombay (India). Variable Energy Cyclotron Project)

    1991-12-01

    Differential cross sections for elastic and inelastic scattering of 35 MeV alpha particles have been measured from {theta}{sub lab} =10{sup o} to 100{sup o} in 1{sup o}-2{sup o} steps. An optical model analysis of the elastic scattering data has been carried out using Woods-Saxon and Woods-Saxon squared radial dependences for real as well as imaginary parts of the potential. The most sensitive region of the potential in predicting the elastic scattering cross sections has been determined using a notch perturbation test. The problem of discrete family ambiguity in the optical model analysis of elastic data has also been investigated. The inelastic scattering data have been analysed in terms of the collective model using the distorted-wave Born approximation (DWBA), where the distorted waves are generated by the optical potential obtained from the elastic scattering data. (author).

  4. On resonant destabilization of toroidal Alfven eigenmodes by circulating and trapped energetic ions/alpha particles in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Biglari, H.; Zonca, F.; Chen, L.

    1991-10-01

    Toroidal Alfven eigenmodes are shown to be resonantly destabilized by both circulating and trapped energetic ions/alpha particles. In particular, the energetic circulating ions are shown to resonate with the mode not only at the Alfven speed ({upsilon}{sub A}), but also one-third of this speed, while resonances exist between trapped energetic ions and the wave when {upsilon} = {upsilon}{sub A}/21{epsilon}{sup {1/2}} (l=integer, {epsilon}=r/R is the local inverse aspect ratio), although the instability becomes weaker for resonances other than the fundamental. The oft-quoted criterion that instability requires super-Alfvenic ion velocities is thus sufficient but not necessary. 14 refs.

  5. Results of solid state nuclear track detector technique application in radon detection, by alpha particles tracks, for uranium prospecting in Caetite (BA-Brazil)

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1988-11-01

    The solid state nuclear track detector technique has been used in radon detection, by alpha particles tracks for uranium prospecting on the ground in Caetite city (Bahia-Brazil). The sensitive film to alpha particles used were CA 8015 exposed during 15 days and the results of three anomalies of this region are showed in a form of maps, made with the density of tracks obtained, and were compared with scintillation counter measurements. The technique showed to be simple and an effective auxiliary for the prospection of uranium ore bodies. The initial uranium exploration costs can be reduced by using this technique. (author) [pt

  6. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Jaworowski, J.; Leandersson, M.; El Bouanani, M. [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B. [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J.; Westerberg, L.; Van Veldhuizen, E.J. [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1996-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  7. Angular distribution of fragments from neutron-induced fission of 238U in the intermediate energy region

    International Nuclear Information System (INIS)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of 238 U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of 238 U

  8. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  9. Detection system with a large angular acceptance and an energy high dynamics, for heavy ion physics at intermediate energies: M.E.ω. detector

    International Nuclear Information System (INIS)

    Monnet, F.

    1985-01-01

    Built for intermediate energy heavy ions nuclear physics, the M.E.ω. detector uses various and complementary detection methods: ionization chamber, parallel plate avalanche counter, plastic scintillators. With these techniques, velocity, energy, mass and charge of nuclei were measured over wide range. From the detailed theoretical study of each method, limitations and perturbation causes are deduced. The solutions used for optimizing the detector, and the main results are exposed. The internal sectorisation of the detector, which permits a modulation in counting rate and electronical adjustments, has been revealed to be very suitable for heavy ions intermediate energy physics. Results of the first experiment realised with M.E.ω. (Ar + Ag at 35 MeV/u) are commented [fr

  10. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Annual progress report, 1988--1989

    International Nuclear Information System (INIS)

    1988-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988 under a grant from the US Department of Energy. The nucleon-nucleon research has involved studies of interactions between polarized neutrons and polarized protons. Its purpose is to help complete the determination of the nucleon-nucleon amplitudes at energies up to 800 MeV, as part of a program currently in progress at LAMPF, as well as to investigate the possibility of the existence of dibaryon resonances. The pion-nucleus research involves studies of this interaction in regions where it has not been adequately explored. These include experiments on elastic and double charge exchange scattering at energies above the /Delta/(1232) resonance, interactions with polarized nuclear targets, and investigations of pion absorption using a detector covering nearly the full solid angle region. 21 refs., 4 figs

  11. Excitation function of the alpha particle induced nuclear reactions on enriched {sup 116}Cd, production of the theranostic isotope {sup 117m}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Ditrói, F., E-mail: ditroi@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Takács, S. [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Haba, H.; Komori, Y. [RIKEN Nishina Center, Tokyo (Japan); Aikawa, M. [Graduate School of Science, Hokkaido University, Sapporo (Japan); Szűcs, Z. [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Saito, M. [Graduate School of Science, Hokkaido University, Sapporo (Japan)

    2016-10-15

    Highlights: • Alpha induced nuclear reactions on enriched {sup 116}Cd up to 51 MeV. • Electro-deposited target with Cu backing. • Comparison with the EMPIRE 3.2 and TENDL-2015 calculations. • Physical yield. • {sup 117m}Sn theranostic radioisotope. - Abstract: {sup 117m}Sn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of {sup 116}Cd metal onto high purity 12 μm thick Cu backing. The average deposited thickness was 21.9 μm. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of {sup 117m}Sn, {sup 117m,g}In, {sup 116m}In, {sup 115m}In and {sup 115m,g}Cd from enriched {sup 116}Cd were deduced and compared with the available literature data and with the results of the nuclear reaction model code calculations EMPIRE 3.2 and TALYS 1.8. Yield curves were also deduced for the measured nuclear reactions and compared with the literature.

  12. New features of nuclear excitation by {alpha} particles scattering; Nouveaux aspects de l'excitation nucleaire par diffusion de particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Saudinos, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Inelastic scattering of medium energy a particles by nuclei is known to excite preferentially levels of collective character. We have studied the scattering of isotopically enriched targets of Ca, Fe, Ni, Cu, Zn. In part I, we discuss the theoretical features of the interaction. In part II, we describe the experimental procedure. Results are presented and analysed in part III. {alpha} particles scattering by Ca{sup 40} is showed to excite preferentially odd parity levels. In odd nuclei we have observed multiplets due to the coupling of the odd nucleon with the even-even core vibrations. For even-even nuclei, a few levels are excited with lower cross-sections between the well-known first 2{sup +} and 3{sup -} states. Some could be members of the two phonon quadrupole excitation and involve a double nuclear excitation process. (author) [French] On sait que la diffusion inelastique des particules alpha de moyenne energie excite preferentiellement des niveaux de caractere collectif. Nous avons etudie la diffusion des particules alpha de 44 MeV du cyclotron de Saclay par des isotopes separes de Ca, Fe, Ni, Cu, Zn. Dans la premiere partie nous exposons les theories de cette interaction. Dans la seconde nous decrivons le systeme experimental. Les resultats sont donnes dans la troisieme partie. Nous montrons que les niveaux excites preferentiellement pour {sup 40}Ca par diffusion ({alpha},{alpha}') sont de parite negative. Dans les noyaux pair-impair nous avons observe des multiplets dus au couplage du nucleon celibataire avec les vibrations du coeur pair-pair. Pour les noyaux pair-pair nous avons pu etudier entre le premier niveau 2{sup +} et le niveau 3{sup -} deja bien connus certains etats plus faiblement excites. Il semble qu'ils sont dus a une excitation quadrupolaire a deux phonons et impliquent un processus de double excitation nucleaire. (auteur)

  13. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium. [Wave functions, preliminary experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.

  14. Measurement of Fragment Mass Distributions in Neutron-induced Fission of 238U and 232Th at Intermediate Energies

    International Nuclear Information System (INIS)

    Simutkin, V.D.

    2008-01-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the 238 U(n,f) and 232 Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both 238 U and 232 Th. Up to now, the intermediate energy measurements have been performed for 238 U only, and there are no data for the 232 Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the 232 Th(n,f) and 238 U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  15. Production of medically useful bromine isotopes via alpha-particle induced nuclear reactions

    Science.gov (United States)

    Breunig, Katharina; Scholten, Bernhard; Spahn, Ingo; Hermanne, Alex; Spellerberg, Stefan; Coenen, Heinz H.; Neumaier, Bernd

    2017-09-01

    The cross sections of α-particle induced reactions on arsenic leading to the formation of 76,77,78Br were measured from their respective thresholds up to 37 MeV. Thin sediments of elemental arsenic powder were irradiated together with Al degrader and Cu monitor foils using the established stacked-foil technique. For determination of the effective α-particle energies and of the effective beam current through the stacks the cross-section ratios of the monitor nuclides 67Ga/66Ga were used. This should help resolve discrepancies in existing literature data. Comparison of the data with the available excitation functions shows some slight energy shifts as well as some differences in curve shapes. The calculated thick target yields indicate, that 77Br can be produced in the energy range Eα = 25 → 17 MeV free of isotopic impurities in quantities sufficient for medical application.

  16. Measurement of the thickness and homogeneity of thin foils by slowing down alpha particles

    International Nuclear Information System (INIS)

    Bimbot, R.; Della Negra, S.; Deprun, C.; Gardes, D.; Rivet, M.F.

    1979-01-01

    The energy loss of 8.785 MeV α particles passing through a thin foil is used to measure the foil thickness. The measurement is performed in various points of the target, the abscissa and ordinate of which are set with precision from the outside of the chamber. This gives a thickness map of the target. The working up of the data, and the use of energy loss tables are made in a standard way. The absolute uncertainty is of some percent for 100 μg/cm 2 foils. The technique has been refined to reach the same precision for 10 μg/cm 2 targets [fr

  17. Radiosensitivity of Prostate Cancer Cell Lines for Irradiation from Beta Particle-emitting Radionuclide ¹⁷⁷Lu Compared to Alpha Particles and Gamma Rays.

    Science.gov (United States)

    Elgqvist, Jörgen; Timmermand, Oskar Vilhelmsson; Larsson, Erik; Strand, Sven-Erik

    2016-01-01

    The purpose of the present study was to investigate the radiosensitivity of the prostate cancer cell lines LNCaP, DU145, and PC3 when irradiated with beta particles emitted from (177)Lu, and to compare the effect with irradiation using alpha particles or gamma rays. Cells were irradiated with beta particles emitted from (177)Lu, alpha particles from (241)Am, or gamma rays from (137)Cs. A non-specific polyclonal antibody was labeled with (177)Lu and used to irradiate cells in suspension with beta particles. A previously described in-house developed alpha-particle irradiator based on a (241)Am source was used to irradiate cells with alpha particles. External gamma-ray irradiation was achieved using a standard (137)Cs irradiator. Cells were irradiated to absorbed doses equal to 0, 0.5, 1, 2, 4, 6, 8, or 10 Gy. The absorbed doses were calculated as mean absorbed doses. For evaluation of cell survival, the tetrazolium-based WST-1 assay was used. After irradiation, WST-1 was added to the cell solutions, incubated, and then measured for level of absorbance at 450 nm, indicating the live and viable cells. LNCaP, DU145, and PC3 cell lines all had similar patterns of survival for the different radiation types. No significant difference in surviving fractions were observed between cells treated with beta-particle and gamma-ray irradiation, represented for example by the surviving fraction values (mean±SD) at 2, 6, and 10 Gy (SF2, SF6, and SF10) for DU145 after beta-particle irradiation: 0.700±0.090, 0.186±0.050 and 0.056±0.010, respectively. A strong radiosensitivity to alpha particles was observed, with SF2 values of 0.048±0.008, 0.018±0.006 and 0.015±0.005 for LNCaP, DU145, and PC3, respectively. The surviving fractions after irradiation using beta particles or gamma rays did not differ significantly at the absorbed dose levels and dose rates used. Irradiation using alpha particles led to a high level of cell killing. The results show that the beta-particle emitter

  18. Alpha particles-and 3He inelastic scattering by 124Sn in the coulomb barrier region

    International Nuclear Information System (INIS)

    Appoloni, C.R.

    1976-01-01

    Angular distributions for inelastic scattering of α and 3 He particles in 124 Sn at the incident energies around Coulomb barrier were measured using the 8UD Pelletron Tandem Accelerator of The University of Sao Paulo. The results were analysed by DWBA with a collective form factor including the effects due to the interference between coulomb and nuclear excitations with the code PATIWEN (Ba75). The nuclear deformation parameters for the one phonon levels (2 + and 3 - ) have been obtained. (Author) [pt

  19. Relative biological efficiency of intermediate energy neutrons and 60Co rays for induction of chromosomal aberrations in Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Sturelid, S.; Bergman, R.

    1976-01-01

    Intermediate energy neutrons are unique in that a considerable fraction of critical interactions and of dose absorbed is not associated with ionization but with atomic collision. It is still unknown to what extent the qualitative difference in primary damage after atomic collision compared to that of ionization and excitation becomes expressed at biological levels. Chromosomal aberrations were studied in Chinese hamster fibroblasts exposed for 5-8 hours at 22 degree C to intermediate energy neutrons, mean energy 8.5 keV, or to 60 Co-gamma rays. RBE at the 10 per cent aberration frequency level in S-phase were 2.2+-0.6 for total aberrations, 2.1+-0.6 for chromatid breaks and 1.8+-0.5 for exchanges. For each chromatid aberration observed after recovery, about 200 bondbreaking atomic collisions besides 3000 primary iniozations should have occured in DNA. However, the extent to which the aberration response is due to atomic collisions is not clear. (author)

  20. Electron capture in low- and intermediate-energy collisions between completely stripped light ions and metastable H(2s) targets

    International Nuclear Information System (INIS)

    Blanco, S.A.; Falcon, C.A.; Reinhold, C.O.; Casaubon, J.I.; Piacentini, R.D.

    1987-01-01

    Total cross sections for electron capture from H(2s) targets by He 2+ ions have been computed in the impact velocity range 0.05-0.5 au. Calculations were performed using a molecular close-coupling approach with inclusion of electron translation factors. A ten-state molecular basis set was considered. A comparison is made with Landau-Zener results for the same system. Intermediate projectile energy classical Monte Carlo capture cross sections are also presented for H + , He 2+ , Li 3+ and C 6+ projectiles. (author)

  1. Universal fluctuations: a new approach to the study of ''phase transitions'' in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Frankland, J.D.; Chbihi, A.; Hudan, S.

    2002-01-01

    The universal theory of order parameter fluctuations (Δ-scaling laws) is applied to a wide range of intermediate energy heavy-ion collision data obtained with INDRA. This systematic study confirms that the observed fragment production is compatible with aggregation scenarios for in- or out-of-equilibrium continuous phase transitions, while not showing any sign of critical behaviour or phase coexistence. We stress the importance of the methodology employed in order to gain further insight into the mechanism(s) responsible. (authors)

  2. Determination of 210Pb by direct gamma-ray spectrometry, beta counting via 210Bi and alpha-particle spectrometry via 210Po in coal, slag and ash samples from thermal power plant

    International Nuclear Information System (INIS)

    Seslak, Bojan; Vukanac, Ivana; Kandic, Aleksandar; Durasevic, Mirjana; Eric, Milic; Jevremovic, Aleksandar

    2017-01-01

    In order to compare three different techniques and estimate radiological impact, activity concentration of 210 Pb in coal, slag and ash samples from thermal power plant 'Nikola Tesla', Serbia, were measured, and results are presented in this study. Determination of 210 Pb was carried out in three ways: using HPGe gamma spectrometer and via in-growth of 210 Po and 210 Bi by alpha-particle spectrometry and proportional counting, respectively. The results obtained for three different techniques were compared. Statistical analysis and comparison of methods were carried out by combination of Z score and χ 2 statistical tests. Tests results, as well as values of measured activities concentrations obtained by alpha and gamma spectrometry, showed that gamma spectrometry is a valid alternative to time-consuming alpha spectrometry for low level activity measurements of 210 Pb. This remark is also valid even for gamma spectrometers with poor efficiency in low energy region. (author)

  3. A Wien filter velocity analyzer for intermediate energy electron impact spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boechat-Roberty, H.M. [Observatorio Nacional do Brasil, Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1995-09-01

    A new electron velocity analyzer based on the Wien Filter principle, has been developed. In this analyzer an electrical and magnetic field perpendicular to each other, disperse electrons of different energies. Immersion electrostatic lenses are employed, in order to decelerate and accelerate the electrons respectively before and after energy dispersion. This analyzer has demonstrated an excellent capability in the determination of energy-loss spectra in an extended impact energy range (0.2 to 1.5 KeV). The high inherent signal/noise ratio has lead to the acquisition of well-defined and reliable inner-shell excitation spectra. (author). 18 refs.

  4. Nuclear stopping and compression in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Fu Fen; Xiao Zhigang; Zhang, Ya-Peng; Feng Zhaoqing; Jin Genming; Xu Hushan; Yao Nan; Yuan Xiaohua; Zhang Xueying; Zhang Ming

    2008-01-01

    The nuclear stopping and the radial flow are investigated with an isospin-dependent quantum molecular dynamics (IQMD) model for Ni + Ni and Pb + Pb from 0.4 to and 1.2 GeV/u. The expansion velocity as well as the degree of nuclear stopping are higher in the heavier system at all energies. The ratio between the flow energy and the total available energy in center of mass of the colliding systems exhibits a positive correlation to the degree of nuclear stopping. The maximum density (ρ max ) achieved in the compression is comparable to the hydrodynamics prediction only if the non-zero collision time effect is taken into account in the later. Due to the partial transparency, the growing of the maximum density achieved in the central region of the fireball with the increase of beam energy becomes gradually flat in the 1 GeV/u energy regime

  5. Theory of inelastic ion-atom scattering at low and intermediate energies

    Science.gov (United States)

    Schmid, G. B.; Garcia, J. D.

    1977-01-01

    Ab initio calculations are presented of inelastic energy loss and ionization phenomena associated with Ar(+)-Ar collisions at small distances of closest approach and for laboratory collision energies ranging from several keV to several hundred keV. Outer-shell excitations are handled statistically; inner-shell excitations are calculated from the viewpoint of quasidiabatic molecular orbital promotion. Auger electron yield, average state of ionization, and average inelastic energy loss are calculated per collision as a function of distance of closest approach of the collision partners for several laboratory collision energies. Average charge-state probabilities per collision partner are calculated as a function of the average inelastic energy loss per atom. It is shown that the structure in the data is due to the underlying structure in the inner-shell independent-electron quasimolecular promotion probabilities.

  6. Analysis of α-12C elastic scattering at intermediate energies by the S-matrix model

    Science.gov (United States)

    Berezhnoy, Yu. A.; Onyshchenko, G. M.; Pilipenko, V. V.

    The results of calculations of differential cross-sections for α-12C elastic scattering by the S-matrix model are presented for 10 energy values in the energy range 65MeV ≤ Eα ≤ 386MeV in a wide range of scattering angles. The behavior of various scattering characteristics as functions of the projectile energy is analyzed. It is shown that the chosen parametrization of S-matrix allows describing correctly the Fraunhofer oscillations of the cross-sections in the region of small scattering angles and the rainbow scattering pattern in the region of sufficiently large angles.

  7. Angular distribution of fragments from neutron-induced fission of {sup 238}U in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.

  8. Cell Cycle Checkpoint Proteins p21 and Hus1 Regulating Intercellular Signaling Induced By Alpha Particle Irradiation

    Science.gov (United States)

    Wu, Lijun; Zhao, Ye; Wang, Jun; Hang, Haiying

    In recent years, the attentions for radiation induced bystander effects (RIBE) have been paid on the intercellular signaling events connecting the irradiated and non-irradiated cells. p21 is a member of the Cip/Kip family and plays essential roles in cell cycle progression arrest after cellular irradiation. DNA damage checkpoint protein Hus1 is a member of the Rad9-Rad1-Hus1 complex and functions as scaffold at the damage sites to facilitate the activation of downstream effectors. Using the medium trasfer method and the cells of MEF, MEF (p21-/-), MEF (p21-/-Hus1-/-) as either medium donor or receptor cells, it was found that with 5cGy alpha particle irradiation, the bystander cells showed a significant induction of -H2AX for normal MEFs (p¡0.05). However, the absence of p21 resulted in deficiency in inducing bystander effects. Further results indicated p21 affected the intercellular DNA damage signaling mainly through disrupting the production or release of the damage signals from irradiated cells. When Hus1 and p21 were both knocked out, an obvious induction of -H2AX recurred in bystander cells and the induction of -H2AX was GJIC (gap junction-mediated intercellular communication) dependent, indicating the interrelationship between p21 and Hus1 regulated the production and relay of DNA damage signals from irradiated cells to non-irradiated bystander cells.

  9. The alpha particle X-ray spectrometer within the Rosetta mission: preparing the landing on a comet

    Energy Technology Data Exchange (ETDEWEB)

    Girones Lopez, Jordi; Fernandez Sanchez, Jose; Klingelhoefer, Goestar [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Mainz (Germany); Rodionov, Daniel [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Mainz (Germany); Space Research Institute IKI, Moskau (Russian Federation); Brueckner, Johannes [Max-Planck-Institut fuer Chemie, Mainz (Germany); Gellert, Ralf [Department of Physics, University of Guelph (Canada)

    2008-07-01

    One of the main objectives of the Rosetta mission is to gain a better understanding of the origin and formation of comets. There exist different theories about the possible chemical composition of comets assumed to be the most primitive bodies of the solar system. The chemical composition of the surface of the target comet 67/P Churyumov-Gerasimenko will be determined by measurements of the Alpha Particle X-ray Spectrometer (APXS), which is part of the payload of the Lander Philae. The APXS will irradiate the cometary surface with Curium-244 alpha sources exciting characteristic X-rays of the elements present. Using its high-resolution X-ray detector, most elements from Na to Ni (increasing atomic number) will be detected depending on their concentration. With its alpha detectors, elements like C and O and groups of elements with higher Z will be detected. Within the next few months, some internal parameters of the instrument will be optimized to improve the quality of the integrated X-ray spectra. These data will be used to explore the present state of the comet and derive its formation history.

  10. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    Science.gov (United States)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  11. In Situ Sub-cm Chemistry for Assessing Ancient Habitability on Mars with the Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Vanbommel, Scott; Gellert, Ralf; Berger, Jeff; Thompson, Lucy; Campbell, John L.; Edgett, Ken; McBride, Marie; Apxs Team; Mahli Team

    The Alpha Particle X-ray Spectrometer (APXS) is a chemical analysis instrument on board NASA's Mars rovers. Mounted at the end of the rover arm, the APXS conducts high-precision in situ measurements of rocks and regolith, playing a significant role in understanding the surface composition and geochemical processes on Mars. Curium-244 sources provide complementary PIXE and XRF excitation resulting in a slowly varying and high sensitivity across the range of geochemically important elements with the added benefits of low power demand, low mass, and robust durability. We combine oversampled APXS data with pictures from the arm-mounted MAHLI camera to produce a 3D model of the target and deconvolve the sub-cm-scale chemistry of visible endmembers within heterogeneous targets. Quantitative chemistry at these small scales is perfectly tailored for deconvolving chemical differences in the rock record that resulted from aqueous processes, particularly the fluid mobilization of biologically essential elements such as P, S, and Zn. This is critical for understanding the history of ancient Mars and contributes to Curiosity's quest to discover past habitable environments on Mars. This work has been supported by the Canadian Space Agency under contract 9F052-14-0592.

  12. Excitation functions for alpha-particle-induced reactions with natural antimony

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. L.; Shah, D. J.; Mukherjee, S.; Chintalapudi, S. N. [Vadodara, M. S. Univ. of Baroda (India). Fac. of Science. Dept. of Physics

    1997-07-01

    Stacked-foil activation technique and {gamma} - rays spectroscopy were used for the determination of the excitation functions of the {sup 121}Sb [({alpha}, n); ({alpha}, 2n); ({alpha},4 n); ({alpha}, p3n); ({alpha}, {alpha}n)]; and Sb [({alpha}, 3n); ({alpha}, 4n); ({alpha}, {alpha}3n)] reactions. The excitation functions for the production of {sup 124}I, {sup 123}I, {sup 121}I, {sup 121}Te and {sup 120}Sb were reported up to 50 MeV. The reactions {sup 121} Sb ({alpha}, {alpha}n) + {sup 123} Sb ({alpha}, {alpha}3n) are measured for the first time. Since natural antimony used as the target has two odd mass stable isotopes of abundances 57.3 % ({sup 121}Sb), their activation in some cases gives the same product nucleus through different reaction channels but with very different Q-values. In such cases, the individual reaction cross-sections are separated with the help of theoretical cross-sections. The experimental cross-sections were compared with the predictions based on hybrid model of Blann. The high-energy part of the excitation functions are dominated by the pre-equilibrium reaction mechanism and the initial exciton number n{sub 0} = 4 (4 p 0 h) gives fairly good agreement with presently measured results.

  13. Electrically active defects in p-type silicon after alpha-particle irradiation

    Science.gov (United States)

    Danga, Helga T.; Auret, F. Danie; Tunhuma, Shandirai M.; Omotoso, Ezekiel; Igumbor, Emmanuel; Meyer, Walter E.

    2018-04-01

    In this work, we investigated the defects introduced when boron (B) doped silicon (Si) was irradiated by making use of a 5.4 MeV americium (Am) 241 foil radioactive source with a fluence rate of 7×106 cm-2 s-1 at room temperature. Deep level transient spectroscopy (DLTS) and Laplace-DLTS measurements were used to investigate the electronic properties of the introduced defects. After exposure at a fluence of 5.1×1010 cm-2, the energy levels of the hole traps measured were: H(0.10), H(0.16), H(0.33) and H(0.52) The defect level H(0.10) was tri-vacancy related. H(0.33) was identified as the interstitial carbon (Ci) related defect which was a result of radiation induced damage. H(0.52) was a B-related defect. Explicit deductions about the origin of H(0.16) have not yet been achieved.

  14. Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance

    Science.gov (United States)

    Martino, J.; Miniussi, A.; Piat, M.; Prêle, D.; Pajot, F.; Decourcelle, T.; Voisin, F.; Bélier, B.; Coron, N.; Ghribi, A.; Marnieros, S.; Perbost, C.

    2014-08-01

    As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector's thermal architecture is mandatory. To investigate this question, we used an particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument.

  15. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  16. An investigation into electron scattering from pyrazine at intermediate and high energies

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A. G.; Fuss, M. C. [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid (Spain); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Almeida, D.; Ferreira da Silva, F.; Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); García, G., E-mail: g.garcia@iff.csic.es [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid (Spain); Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia)

    2013-11-14

    Total electron scattering cross sections for pyrazine in the energy range 10–500 eV have been measured with a new magnetically confined electron transmission-beam apparatus. Theoretical differential and integral elastic, as well as integral inelastic, cross sections have been calculated by means of a screening-corrected form of the independent-atom representation (IAM-SCAR) from 10 to 1000 eV incident electron energies. The present experimental and theoretical total cross sections show a good level of agreement, to within 10%, in the overlapping energy range. Consistency of these results with previous calculations (i.e., the R-matrix and Schwinger Multichannel methods) and elastic scattering measurements at lower energies, below 10 eV, is also discussed.

  17. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  18. Intermediate-energy nuclear theory. Final report, July 1, 1976-August 31, 1984

    International Nuclear Information System (INIS)

    Bryan, R.A.

    1985-02-01

    We summarize the research accomplishments of the Texas A and M Medium-Energy Theory Group which was funded by the Department of Energy from July 1976 through August 1984. Our research was mainly in the area of nucleon-nucleon and NNπ theory and data analysis, although some effort was also devoted to the elementary-particle aspects of these hadrons in order to better understand the NN force. Publications and reports are listed

  19. Total electron scattering cross section of Fluorocarbons at intermediate electron energies

    Science.gov (United States)

    Palihawadana, Prasanga; Villela, Gilberto; Ariyasinghe, Wickramasinghe

    2008-10-01

    Total electron scattering cross sections (TCS) of Tetrafluoromethane (CF4), Trifluoromethane (CHF3), Hexafluoroethane (C2F6) and Octafluorocyclobutane (C4F8) have been measured using the linear transmission technique for impact energies 0.10 -- 4.00 keV. These TCS are compared to existing experimental and theoretical TCS in the literature. Based on the present measurements, an empirical formula is developed to predict the TCS of fluorocarbons as a function of incident electron energy.

  20. High-energy X-ray diffraction studies of short- and intermediate-range structure in oxide glasses

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2002-01-01

    The feature of high-energy X-ray diffraction method is explained. The oxide glasses studies by using BL04B2, high-energy X-ray diffraction beam line of SPring-8, and the random system materials by high-energy monochromatic X-ray diffraction are introduced. An advantage of third generation synchrotron radiation is summarized. On SPring-8, the high-energy X-ray diffraction experiments of random system are carried out by BL04B2 and BL14B1 beam line. BL04B2 can select Si (111)(E=37.8 keV, λ=0.033 nm) and Si(220)(E=61.7 keV, λ=0.020 nm) as Si monochromator. The intermediate-range structure of (MgO) x (P 2 O 5 ) 1-x glass ,MgP 2 O 6 glass, B 2 O 3 glass, SiO 2 and GeO 2 are explained in detail. The future and application of high-energy X-ray diffraction are stated. (S.Y.)

  1. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  2. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  3. Nuclear structure at intermediate energies. Progress report, April 1, 1980-March 31, 1981

    International Nuclear Information System (INIS)

    Phillips, G.C.; Mutchler, G.S.

    1981-01-01

    During the contract year several results of prior LAMPF experiments were completed and prepared for publication. Progress was made in the data analysis of other experiments. Three LAMPF variable energy experiments were carried out with the polarized target PPT-VI: sigma/sub total, transverse/ (p(polarized)p(polarized)) and A/sub YY/ for p(polarized)p(polarized) elastic scattering at 14 energies between 300 and 800 MeV, and A/sub YY/ for p(polarized)p(polarized) → dπ + at a few energies. Proposals were made for future experiments: two for continued nucleon-nucleon studies and one for a search for neutrino oscillations

  4. Analysis for mass distribution of proton-induced reactions in intermediate energy range

    CERN Document Server

    Xiao Yu Heng

    2002-01-01

    The mass and charge distribution of residual products produced in the spallation reactions needs to be studied, because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. In present work, the Many State Dynamical Model (MSDM) is based on the Cascade-Exciton Model (CEM). The authors use it to investigate the mass distribution of Nb, Au and Pb proton-induced reactions in energy range from 100 MeV to 3 GeV. The agreement between the MSDM simulations and the measured data is good in this energy range, and deviations mainly show up in the mass range of 90 - 150 for the high energy proton incident upon Au and Pb

  5. Energetic proton emission in heavy ion collisions at intermediate energy. Pre-equilibrium and cooperative effects

    International Nuclear Information System (INIS)

    Sapienza, P.; Coniglione, R.; Colonna, M.; Agodi, C.; Alba, R.; Zoppo, A. Del; Finocchiaro, P.; Migneco, E.; Bellia, G.; Greco, V.; Catania Univ.

    2002-01-01

    Energetic proton emission has been investigated as a function of the centrality in the reaction 58 Ni + 58 Ni at 30 AMeV. Protons with energy extending up to a relevant fraction of the total available energy in the reaction were measured and studied. The dependence on the reaction centrality has been extensively investigated and data have been compared with the results of microscopic transport calculations. The more striking observation concerns the extremely energetic proton (E p NN ≥ 130 MeV) multiplicity which is found to increase almost quadratically with the number of participant nucleons thus indicating the onset of a mechanism beyond one and two-body dynamics. (author)

  6. Towards a better understanding of hard photon emission in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Alba, R.; Maiolino, C.; Agodi, C.; Del Zoppo, A.; Coniglione, R.; Milazzo, P.M.; Sapienza, P.; Bellia, G.; Bruno, M.; Colonna, M.; Colonna, N.; D' Agostino, M.; Fiandri, M.L.; Finocchiaro, P.; Gramegna, F.; Iori, I.; Loukachine, K.; Margagliotti, G.V.; Mastinu, P.F.; Migneco, E.; Moroni, A.; Piattelli, P.; Rui, R.; Santonocito, D.; Tonetto, F.; Vannini, G

    1999-07-26

    High energy photon spectra have been measured in several {sup 58}Ni induced reactions at 30A MeV incident energy. A two source analysis of the data has been performed using a two exponential parameterization of the associated gamma spectra. The relative intensity of the two components has been deduced as a function of the total mass of the interacting system and of the impact parameter. To attempt a characterization of the emission sources, correlations between photons and IMF's have been measured for the first time.

  7. Towards a better understanding of hard photon emission in intermediate energy heavy ion collisions

    Science.gov (United States)

    Alba, R.; Maiolino, C.; Agodi, C.; Del Zoppo, A.; Coniglione, R.; Milazzo, P. M.; Sapienza, P.; Bellia, G.; Bruno, M.; Colonna, M.; Colonna, N.; D'Agostino, M.; Fiandri, M. L.; Finocchiaro, P.; Gramegna, F.; Iori, I.; Loukachine, K.; Margagliotti, G. V.; Mastinu, P. F.; Migneco, E.; Moroni, A.; Piattelli, P.; Rui, R.; Santonocito, D.; Tonetto, F.; Vannini, G.

    High energy photon spectra have been measured in several 58Ni induced reactions at 30A MeV incident energy. A two source analysis of the data has been performed using a two exponential parameterization of the associated gamma spectra. The relative intensity of the two components has been deduced as a function of the total mass of the interacting system and of the impact parameter. To attempt a characterization of the emission sources, correlations between photons and IMF's have been measured for the first time.

  8. Towards a better understanding of hard photon emission in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Alba, R.; Maiolino, C.; Agodi, C.; Del Zoppo, A.; Coniglione, R.; Milazzo, P.M.; Sapienza, P.; Bellia, G.; Bruno, M.; Colonna, M.; Colonna, N.; D'Agostino, M.; Fiandri, M.L.; Finocchiaro, P.; Gramegna, F.; Iori, I.; Loukachine, K.; Margagliotti, G.V.; Mastinu, P.F.; Migneco, E.; Moroni, A.; Piattelli, P.; Rui, R.; Santonocito, D.; Tonetto, F.; Vannini, G.

    1999-01-01

    High energy photon spectra have been measured in several 58 Ni induced reactions at 30A MeV incident energy. A two source analysis of the data has been performed using a two exponential parameterization of the associated gamma spectra. The relative intensity of the two components has been deduced as a function of the total mass of the interacting system and of the impact parameter. To attempt a characterization of the emission sources, correlations between photons and IMF's have been measured for the first time

  9. Elastic scattering of polarized protons from 3He at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Bracco, A.; Gubler, H.P.

    1982-09-01

    Using the polarized proton beam facility of the TRIUMF cyclotron, differential cross sections and analyzing powers have been measured in the angular range 20 0 - 150 0 c.m. for proton elastic scattering from 3 He at incident proton energies of 200, 300, 415 and 515 MeV. The differential cross sections exhibit a minimum at t = -0.33 (GeV/c) 2 which becomes more pronounced with increasing energy. There is evidence for the onset of a second minimum corresponding to the interference between double and triple scattering amplitudes. Large analyzing powers are observed at the lower energies. The data from the present analysis, together with data obtained from the literature in the energy range 100-1000 MeV, have been analyzed within the framework of the Glauber multiple scattering formalism. Nucleon-nucleon scattering parameters were taken from a global phase shift analysis of nucleon-nucleon elastic scattering data. Reasonable agreement with the data is obtained

  10. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  11. A hybrid model for the investigation of heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Heide, B.M.

    1995-09-01

    The following topics were dealt with: The coupling of the Botzmann-Uehling-Uhlenbeck (BUU) model with Kopenhagen multifragmentation model realising a new hybrid model, application on 197 Au+ 197 Au reactions between 100 and 250 A.MeV, calculation of the chracteristics of the fragmentation system including mass number, excitation energy, angular momenta, two-particle correlation function

  12. Identification of intermediate energy heavy ions in the focal plane of a spectrometer

    International Nuclear Information System (INIS)

    Buenerd, M.; Ballon, J.; Chauvin, J.; Lebrun, D.; Martin, P.; Bonin, B.; Bruge, G.; Lugol, J.C.; Alamanos, N.; Papineau, L.; Roussel, P.

    1985-01-01

    Heavy ions with mass A<14 and E/Aproportional120 MeV have been identified in the focal plane of a magnetic spectrometry by means of a simple telescope made of two slabs of plastic scintillator. The method should be applicable up to Aproportional20 in mass and down to E/Aproportional50 MeV in energy per nucleon. (orig.)

  13. Elastic and inelastic scattering of 12C ions at intermediate energies

    International Nuclear Information System (INIS)

    Hostachy, J.Y.; Buenerd, M.; Chauvin, J.; Lebrun, D.; Martin, P.

    1988-01-01

    Elastic and inelastic scattering of 12 C ions on 12 C and 208 Pb targets have been measured at the incident energies per nucleon E/A=120 MeV/u and E/A=200 MeV/u. Optical-model analysis is reported and nuclear surface transparency effects are discussed, together with the nuclear potential-energy dependence. The transparency region extends down to a radial internuclear distance of about 3 fm for the 12 C- 12 C system and 8 fm for the 12 C- 208 Pb system. A decrease of the imaginary potential with increasing incident energy is deduced for the two systems. Anomalous collapse of the real potential in the surface region is observed for 12 C- 208 Pb system at 200 MeV/u. DWBA analysis of data on the 2 + , 4.4 MeV state of 12 C is reported and trends for the energy dependence of mean-field excitations are deduced. (orig.)

  14. Verification of MENDL2 and IEAF-2001 Data bases at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Titarenko, Y. E. (Yury E.); Batyaev, V. F. (Vyacheslav F.); Karpikhin, E. I. (Evgeny I.); Zhivun, V. M. (Valery M.); Koldobsky, A. B. (Aleksander B.); Mulambetov, R. D. (Ruslan D.); Mulambetova, S. V.; Trebukhovsky, Y. V. (Yury V.); Zaitsev, S. L.; Lipatov, K. A.; Mashnik, S. G. (Stepan G.); Prael, R. E. (Richard E.)

    2004-01-01

    The work presents results on computer simulations of two experiments whose aim was measuring the threshold activation reaction rates in {sup 12}C, {sup 19}F, {sup 27}Al, {sup 59}Co, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 93}Nb, {sup 115}In, {sup 169}Tm, {sup 181}Ta, {sup 197}Au, and {sup 209}Bi thin samples placed inside and outside a 0.8-GeV proton-irradiated 4-cm thick W target and a 92-cm thick W-Na composite target of 15-cm diameter both. In total, more than 1000 values of activation reaction rates were determined in both experiments. The measured data were compared with results by the LAHET code using several nuclear data bases for the respective excitation functions, namely, ENDF/B6 for cross section of neutrons at energies below 20 MeV and MENDL2 together with MENDL2P for cross sections of protons and neutrons of 20 to 100 MeV energies. The recently developed IEAF-2001 data base that provides neutron cross sections up to 150 MeV was used as well. Simulation-to-experiment results obtained using MENDL2 and IEAF-2001 are presented. The agreement between simulation and experiment was found satisfactory for both data bases. Nevertheless; further studies should be conducted to improve simulations of the production of secondary protons and high-energy neutrons, as well as the high-energy neutron elastic scattering. Our results allow drawing some conclusions concerning the reliability of the transport codes and data bases used to simulate Accelerator Driven Systems (ADS), particularly with Na-cooled W targets. The high-energy threshold excitation functions to be used in activation-based unfolding of neutron spectra inside the ADS can be also inferred from our results.

  15. Experimental measurement of radiological penumbra associated with intermediate energy x-rays (1 MV) and small radiosurgery field sizes

    International Nuclear Information System (INIS)

    Keller, Brian M.; Beachey, David J.; Pignol, Jean-Philippe

    2007-01-01

    Stereotactic radiosurgery is used to treat intracranial lesions with a high degree of accuracy. At the present time, x-ray energies at or above Co-60 gamma rays are used. Previous Monte Carlo simulations have demonstrated that intermediate energy x-ray photons or IEPs (defined to be photons in the energy range of 0.2-1.2 MeV), combined with small field sizes, produce a reduced radiological penumbra leading to a sharper dose gradient, improved dose homogeneity and sparing of critical anatomy adjacent to the target volume. This hypothesis is based on the fact that, for small x-ray fields, a dose outside the treatment volume is dictated mainly by the range of electrons set into motion by x-ray photons. The purpose of this work is: (1) to produce intermediate energy x rays using a detuned medical linear accelerator (2) to characterize the energy of this beam (3) to measure the radiological penumbra for IEPs and small fields to compare with that produced by 6 MV x rays or Co-60, and (4) to compare these experimental measurements with Monte Carlo computer simulations. The maximum photon energy of our IEP x-ray spectrum was measured to be 1.2 MeV. Gafchromic EBT films (ISP Technologies, Wayne, NJ) were irradiated and read using a novel digital microscopy imaging system with high spatial resolution. Under identical irradiation conditions the measured radiological penumbra widths (80%-20% distance), for field sizes ranging from 0.3x0.3 to 4.0x4.0 cm 2 , varied from 0.3-0.77 mm (1.2 MV) and from 1.1-2.1 mm (6 MV). Even more dramatic were the differences found when comparing the 90%-10% or the 95%-5% widths, which are in fact more significant in radiotherapy. Monte Carlo simulations agreed well with the experimental findings. The reduction in radiological penumbra could be substantial for specific clinical situations such as in the treatment of an ocular melanoma abutting the macula or for the treatment of functional disorders such as trigeminal neuralgia (a nonlethal

  16. Myocardial perfusion assessment by dual-energy computed tomography in patients with intermediate to high likelihood of coronary artery disease

    International Nuclear Information System (INIS)

    De Zam, M.C.; Capunay, C.; Rodriguez Granillo, G.A.; Deviggiano, A.; Campisi, R.; Munain, M. López de; Vallejos, J.; Carrascosa, P.M.

    2015-01-01

    Objectives. We sought to explore the feasibility and diagnostic performance of dual-energy computed tomography (DECT) for the evaluation of myocardial perfusion in patients with intermediate to high likelihood of coronary artery disease (CAD), and to assess the impact of beam hardening artifacts (HAE). Methods. The present prospective study involved patients with known or suspected CAD referred for myocardial perfusion imaging by single-photon emission computed tomography (SPECT). Twenty patients were included in the study protocol, and scanned using DECT imaging (n = 20). The same pharmacological stress was used for DECT and SPECT scans. Results. A total of 680 left ventricular segments were evaluated by DECT and SPECT. The contrast to noise ratio was 8.8±2.9. The diagnostic performance of DECT was very good in identifying perfusion defects [area under ROC curve (AUC) of DECT 0.90 (0.86-0.94)] compared with SPECT, and remained unaffected when including only segments affected by beam hardening artifacts (BHA) [AUC= DECT 0.90 (0.84-0.96)]. Conclusions. In this pilot investigation, myocardial perfusion assessment by DECT imaging in patients with intermediate to high likelihood of CAD was feasible and remained unaffected by the presence of BHA. (authors) [es

  17. Impact of thermal and intermediate energy neutrons on the semiconductor memories for the CERN accelerators

    CERN Document Server

    Cecchetto, Matteo; Gerardin, Simone

    A wide quantity of SRAM memories are employed along the Large Hadron Collider (LHC), the main CERN accelerator, and they are subjected to high levels of ionizing radiations which compromise the reliability of these devices. The Single Event Effect (SEE) qualification for components to be used in the complex high-energy accelerator at CERN relies on the characterization of two cross sections: 200-MeV protons and thermal neutrons. However, due to cost and time constraints, it is not always possible to characterize the SEE response of components to thermal neutrons, which is often regarded as negligible for components without borophosphosilicate glass (BPSG). Nevertheless, as recent studies show, the sensitivity of deep sub-micron technologies to thermal neutrons has increased owing to the presence of Boron 10 as a dopant and contact contaminant. The very large thermal neutron fluxes relative to high-energy hadron fluxes in some of the heavily shielded accelerator areas imply that even comparatively small therm...

  18. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium

    Science.gov (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng

    2018-01-01

    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  19. Pre-equilibrium particle emission in the heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bellia, G.; Migneco, E.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. del; Finocchiaro, P.; Loukachine, K.; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Peghaire, A.

    1996-01-01

    Hard photons and high energy protons from Ar and Xe induced reactions at 44 MeV/u were analysed in a series of experiments performed with the detector MEDEA. A careful analysis shows a strong correlation between hard γ and fast protons giving an unambiguous signature of the n-p first chance Bremsstrahlung hypothesis. Some preliminary results on the emission of fast protons are reported

  20. Hard Photons:. a Probe of Dynamical Effects in Heavy Ion Collisions at Intermediate Energy

    Science.gov (United States)

    Alba, R.; Agodi, C.; Maiolino, C.; Del Zoppo, A.; Colonna, M.; Bellia, G.; Coniglione, R.; Finocchiaro, P.; Loukachine, K.; Migneco, E.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Bruno, M.; D'Agostino, M.; Fiandri, M. L.; Vannini, G.; Colonna, N.; Gramegna, F.; Mastinu, P. F.; Iori, I.; Moroni, A.; Margagliotti, G. V.; Milazzo, P. M.; Rui, R.

    2002-01-01

    Thermal photons have been used as a clock to determine the time of IMF emission during the evolution of the nuclear reaction. The method has been applied to the reaction 58Ni + 197Au at 30 and 45 MeV/amu incident energy. The results put in evidence that the relative contribution of the two possible production mechanisms (dynamical and statistical) is quite different in the two cases. A comparison with theoretical calculations strongly supports the experimental findings.

  1. Hard photon and energetic proton emission in heavy ion collisions at intermediate energy

    Science.gov (United States)

    Sapienza, P.; Coniglione, R.; Migneco, E.; Agodi, C.; Alba, R.; Bellia, G.; Del Zoppo, A.; Finocchiaro, P.; Loukachine, K.; Maiolino, C.; Piattelli, P.; Santonocito, D.; Blumenfeld, Y.; Le Faou, J. H.; Suomijarvi, T.; Frascaria, N.; Roynette, J. C.; Scarpaci, J. A.; Garron, J. P.; Gillibert, A.; Alamanos, N.; Auger, F.; Peghaire, A.; Chomaz, Ph.

    1998-02-01

    The emission of hard photons and pre-equilibrium protons has been investigated in exclusive clusive experiments performed with MEDEA detector. The observation of the γ-proton anticorrelation indicate that the dominant production mechanism is the first chance neutron-proton collisions. Very energetic protons, with energy more than twice the kinematical limit for nucleon-nucleon collisions, have been observed in several reactions.

  2. Experimental apparatus for the study of small angle neutron-proton elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Vorobyov, A.A.; Korolev, G.A.; Dobrovolsky, A.V.; Khanzadeev, A.V.; Petrov, G.E.; Spiridenkov, E.M.; Terrien, Y.; Lugol, J.C.; Saudinos, J.; Silverman, B.H.; Wellers, F.

    1988-01-01

    An experimental setup for measurements of absolute differential cross sections and analyzing powers in small angle elastic np scattering is described. The main part of the apparatus consists of a multielectrode ionization chamber IKAR filled with methane, serving as both a gas target and a recoil detector. The apparatus was used in measurements with a polarized neutron beam from the Saturne synchrotron (Saclay, France) in the energy range from 378 to 1135 MeV. (orig.)

  3. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  4. H2@Scale: Technical and Economic Potential of Hydrogen as an Energy Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jadun, Paige [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pivovar, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-09

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energy production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  5. Design and calibration of a two-channel low-noise heterodyne receiver for use in a CO2 laser Thomson scattering alpha particle diagnostic

    Science.gov (United States)

    Bennett, C. A.; Richards, R. K.; Hutchinson, D. P.

    1988-03-01

    A dual channel low noise heterodyne receiver has been constructed as part of a development effort to build a carbon dioxide laser based Thomson scattering alpha particle diagnostic for a burning plasma experiment. The receiver employs two wide bandwidth (greater than 1 GHz) HgCdTe photovoltaic mixers followed by low noise IF amplifiers. A noise equivalent power of less than 3.0 times 10 to the 20th power WHz has been demonstrated. Design details and calibration methods are described.

  6. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes

    International Nuclear Information System (INIS)

    Pouthier, Th.

    2006-12-01

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  7. Theoretical research in intermediate-energy nuclear physics. [Technical progress report, April 1, 1993--March 31, 1994

    International Nuclear Information System (INIS)

    Seki, R.

    1994-01-01

    This paper discusses progress that has been made on the following seven problems: (1) (e, e'p) at high momentum transfer; (2) post,acceleration effects in two-nucleon interferometry of heavy-ion collisions; (3) pion-nucleus interactions above 0.5 GeV; (4) chiral symmetry breaking in nuclei and picnic atom anomaly; (5) atomic screening on nuclear astronomical reactions; (6) QCD related work (coherent pion production from skyrmion-antiskyrmion annihilation, QCD in 1 + 1 dimensions, and correlation functions in the QCD vacuum), and (7) kaonic hydrogen atom experiment. The problems deal with various topics mostly in intermediate-energy nuclear physics. We place priority on (1) and (2), and describe them somewhat in detail below. Other problems are our on-going projects, but we are placing lower priority on them in the second and third year

  8. Fission of intermediate mass nuclei by bremsstrahlung photons in the energy range 0.8-1.8 GeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-01-01

    The fission of intermediate mass nuclei in the Al-Ta internal induced by bremsstrahlung photons of maximum energies between 0,8 to 1,8 GeV is studied. Thin targets of Nd and Sm and dense targets of Al,Ti,Co,Zr,Nb,Ag,In and Ta are utilized, and all the aspects related with the fission fragment absorption by the targets themselves are considered. The samples are exposed in th 2,5 GeV Electron Synchrotron at Bonn University. Muscovite mica, CR-39 and makrofol are used as fission fragments detectors. Fission cross sections and nuclear fissionabilities of the studied elements are estimated. (L.C.) [pt

  9. Experimental determination of the effective nucleon-nucleon interaction for p-nucleus reactions at intermediate energies

    International Nuclear Information System (INIS)

    McClelland, J.B.; Aas, B.; Azizi, A.

    1982-01-01

    A complete measurement of the polarization transfer observables has been made for the first time in the (p,p') reaction at intermediate energies. Measurements are reported for the 12 C(p,p') 12 C reaction to the 1 + , T = 0(12.71 MeV) and 1 + , T = 1(15.11 MeV) states at 500 MeV at laboratory scattering angles of 3.5 0 , 5.5 0 , 7.5 0 , and 12.0 0 . Linear combinations of these observables are shown to exhibit a very selective dependence on the isoscalar and isovector spin-dependent components of the nucleon-nucleon interaction. To the extent of the validity of the single collision approximation, these amplitudes are compared directly to the free nucleon-nucleon amplitudes at small momentum transfers

  10. The decay of hot nuclei formed in La-induced reactions at intermediate energies

    International Nuclear Information System (INIS)

    Libby, B.; Mignerey, A.C.; Madani, H.; Marchetti, A.A.; Colonna, M.; DiToro, M.

    1992-01-01

    The decay of hot nuclei formed in lanthanum-induced reactions utilizing inverse kinematics has been studied from E/A = 35 to 55 MeV. At each bombarding energy studied, the probability for the multiple emission of complex fragments has been found to be independent of target. Global features (total charge, source velocity) of the reaction La + Al at E/A = 45 MeV have been reproduced by coupling a dynamical model to study the collision stage of the reaction to a statistical model of nuclear decay

  11. High energy x-radiographic assessment of conditioned intermediate level waste blocks

    International Nuclear Information System (INIS)

    Lewcock, A.I.; Burch, S.F.; Reynolds, W.N.; Pullen, D.A.W.; Smith, D.

    1985-07-01

    This report describes an effective technique for examining the quality of the solidification matrix material in a 500 litre waste drum, testing for homogeneity and major cracks and the confirmation of set. A high energy x-ray source, (an 8 MeV Linac) and a special x-ray TV system, were used to examine several different types of solidified waste form, with and without background radiation, simulated by the use of an uncollimated radiographic isotope. The system as tested showed no discernable image degradation when the isotope was positioned to give a representative background dose as experienced with active ILW monoliths. (author)

  12. γ-rays as a probe to study nuclear dynamics and nuclear structure at intermediate energies

    International Nuclear Information System (INIS)

    Schutz, Y.

    1987-01-01

    The usefulness of gamma rays in nuclear physics is reviewed, and it is shown how they offer insight into the structure and damping of giant resonances, and how they can be used as an isospin filter. Results from inclusive and exclusive experiments at GANIL are discussed. It is stressed that although the production of high energy gamma rays in heavy ion reactions between 30 MeV/A and 86 MeV/A is understood qualitatively, most models fail in being more quantitative

  13. The (3He,t) and (d,2He)reactions at intermediate energies

    International Nuclear Information System (INIS)

    Brockstedt, A.

    1987-09-01

    The ( 3 He,t) reaction has been studied at 0.6-2.3 GeV at small scattering angles, 0-7 degrees, on various nuclei ( 12 C, 13 C, 26 Mg, 40 Ca, 48 Ca, 54 Fe, 90 Zr, 159 Tb, 208 Pb) including a proton target. The reaction is a single-step reaction and selects the spin-isospin channel. Angular distributions for low-lying states in 12 N are well described by DWIA calculations. From 13 C to 13 N transitions the ratio J στ /J τ , at momentum transfer, q, close to zero, is derived. The ratio remains roughly constant in the region 300 - 700 MeV/nucleon. The position of the quasi-free peak is shifted compared with free nucleon-nucleon scattering. The shift is towards higher excitation energies at q approx 1.4 fm -1 , and towards lower excitation energies at q approx 2.5 fm -1 . The p( 3 He,t)Δ ++ reaction is analysed as one-pion exchange and the ( 3 He,t) form factor is extracted. The shape and position of the Δ resonance seem to be independent of target mass for the targets studied. Compared with the p to Δ ++ transition the position is shifted towards lower excitation energy in nuclei. The (d,2p[ 1 S 0 ]) reaction, with the two protons in an 1 S 0 state labelled 2 He, is studied at 0.65 and 2.0 GeV at small angles, 0-4 degrees, on some of the targets used in the ( 3 He,t) experiment (p, 12 C, 40 Ca, 54 Fe). This reaction is also a one-step reaction that can be used for studies of spin-isospin excitations. Cross sections and tensor analysing powers are determined for the p(d, 2 He)n reaction. These results are compared with PWIA calculations. The Δ resonance in carbon is also here shifted down in excitation energy compared with the proton target. (author)

  14. Investigation of the performance of alpha particle counting and alpha-gamma discrimination by pulse shape with micro-pixel avalanche photodiode

    International Nuclear Information System (INIS)

    Ahmadov, G.; Madatov, R.; Sadigov, A.; Sadygov, Z.; Jafarova, E.; Ahmadov, G.; Sadygov, Z.; Olshevski, A.; Zerrouk, F.; Mukhtarov, R.

    2015-01-01

    Being capable measuring small lights gives possibility to use micro-pixel avalanche photodiodes with scintillators. It is shown two prototypes to use micro-pixel avalanche photodiodes with and without scintillators as alpha and gamma counters in this paper. First prototype is to use two micro-pixel avalanche photodiodes. One for detecting alpha particles and closer to it, the second one with a thin plastic scintillator for detecting gamma rays. Second prototype is called two-layers configuration in which it is used only one micro-pixel avalanche photodiode, but two scntillators with different decay times. One can distinquish alpha particle and gamma ray events by using pulse shape discrimination techniques in the two-layer configuration. In this work an alpha particle and gamma ray counting performance of micro-pixel avalanche photodiodes without scintillators and its combination of plastic and BGO+ plastic scintillators was investigated. Obtained results showed the detection performance of the micro-pixel avalanche photodiodes in combination with plastic scintillator was about the same as conventional semiconductor detectors

  15. Microscopic theory for nucleon-nucleus optical potential in intermediate energies

    International Nuclear Information System (INIS)

    He Guozhu; Cai Chonghai

    1984-01-01

    Based on the scattering theory of KMT and FGH we calculate the nucleon-nucleus optical potentials of 4 He, 16 O and 40 Ca from the Paris N-N potential given by M. Lacombe et al. The real part Vsub(R)(r) of our optential has the form of Woods-Saxon when the kinetic energy E of the incident nucleon is low. The depth of Vsub(R)(r) will decrease as E increases, and it turns into positive in the interior of nucleus when E approx.= 300 MeV. The repulsive effect in the interior of nucleus increases rapidly as E increases even more, butthere always exists some attractive effect at the surface of nucleus. Therefore, Vsub(R)(r) has generally the wine-bottle bottom shape. We also calculate the quatity Jv/N = (4π/N)∫sub(0)sub(infinity)Vsub(R)(r)r 2 dr. Our results are basically in acordance with those of M.Jaminon et al's relativistic Hatree calculation as well as the experimental results. In this work we also calculate the imaginary part of optical potential and its variation with the kinetic energy of the incident nucleon

  16. Intermediate steps towards the 2000 W society in Switzerland: An energy-economic scenario analysis

    International Nuclear Information System (INIS)

    Schulz, Thorsten F.; Kypreos, Socrates; Barreto, Leonardo; Wokaun, Alexander

    2008-01-01

    In the future, sustainable development under the umbrella of the 2000 W society could be of major interest. Could the target of the 2000 W society, i.e. a primary energy per capita (PEC) consumption of 2000 W, be realized until 2050? Various combinations of PEC and CO 2 targets are tested, and the additional costs to be paid by the society are estimated. The assessment is carried out with the Swiss MARKAL model, a bottom-up energy-system model projecting future technology investments for Switzerland. The analysis reveals that the 2000 W society should be seen as a long-term goal. For all contemplated scenarios, a PEC consumption of 3500 W per capita (w/cap) is feasible in the year 2050. However, strong PEC consumption targets can reduce CO 2 emissions to an equivalent of 5% per decade at maximum. For stronger CO 2 emission reduction goals, corresponding targets must be formulated explicitly. At an oil price of 75 US$ 2000 /bbl in 2050, the additional (cumulative, discounted) costs to reach a 10% CO 2 reduction per decade combined with a 3500 W per capita target amount to about 40 billion US$ 2000 . On the contrary, to reach pure CO 2 reduction targets is drastically cheaper, challenging the vision of the 2000 W society

  17. The role of non-elastic nuclear processes for intermediate-energy protons in silicon targets

    International Nuclear Information System (INIS)

    Hormaza, Joel Mesa; Garcia, Cesar E.; Arruda Neto, Joao D.T.; Rodrigues, Tulio E.; Paschuck, Sergei A.; Evseev, Ivan

    2013-01-01

    The transportation of energetic ions in bulk matter is of direct interest in several areas including shielding against ions originating from either space radiations or terrestrial accelerators, cosmic ray propagation studies in galactic medium, or radiobiological effects resulting from the work place or clinical exposures. For carcinogenesis, terrestrial radiation therapy, and radiobiological research, knowledge of beam composition and interactions is necessary to properly evaluate the effects on human and animal tissues. For the proper assessment of radiation exposures both reliable transport codes and accurate input parameters are needed. In the last years efforts have been increasing in order to develop more effective models to describe and predict the damages induced by radiation in electronic devices. In this sense, the interaction of protons with those devices, particularly which operate in space, is a topic of paramount importance, mainly because although the majority of them are made with silicon, experimental data on p+Si nuclear processes is very sparse. In this work we have used a new quite sophisticated Monte Carlo multicollisional intranuclear cascade (MCMC) code for pre-equilibrium emission, plus de-excitation of residual nucleus by two ways: evaporation of particles (mainly nucleons, but also composites) and possibly fragmentation/fission in the case of heavy residues, in order to study some observable of nuclear interaction of protons between 100-200 MeV in a 28 Si target. The code has been developed with very recent improvements that take into account Pauli blocking effects in a novel and more precise way, as well as a more rigorous energy balance, an energy stopping time criterion for pre-equilibrium emission and the inclusion of deuteron, triton and 3He emissions in the evaporation step, which eventually concurs with fragmentation/break-up stage. The fragment mass distributions, as well as the multiplicities and the spectra of secondary particles

  18. 4He(p,2p)3H reaction at intermediate energies

    International Nuclear Information System (INIS)

    van Oers, W.T.H.; Murdoch, B.T.; Koene, B.K.S.; Hasell, D.K.; Abegg, R.; Margaziotis, D.J.; Epstein, M.B.; Moss, G.A.; Greeniaus, L.G.; Greben, J.M.; Cameron, J.M.; Rogers, J.G.; Stetz, A.W.

    1982-01-01

    The 4 He(p,2p) 3 He reaction has been studied at 250, 350, and 500 MeV using coplanar symmetric and asymmetric geometries. The data are presented as energy-sharing spectra, coplanar symmetric angular distributions, and quasifree angular distributions. A comparison with distorted-wave impulse approximation calculations indicates reasonable agreement for small recoil momenta (q< or approx. =150 MeV/c). For larger recoil momenta, the distorted-wave impulse approximation calculations increasingly underestimate the data. The discrepancies are substantially reduced by inclusion of a spin-orbit term in the optical potential used to generate the distorted waves. Improvements of the single particle wave function for the struck nucleon influence the calculations to a lesser degree. The remaining discrepancies at large recoil momenta may, in part be ascribed to multiple scattering effects and exchange processes not included in the standard distorted-wave impulse approximation

  19. Salient features of heavy ion reactions in the intermediate energy region

    International Nuclear Information System (INIS)

    Jakobsson, B.

    1987-01-01

    In this lecture the attention is focused on the most central and therefore generally also the most violent collisions. It is necessary to remember that the non-participating volumes could be very different for symmetric and asymmetric reactions. The onset of the multifragmentation channel or rather the cease of the fusion process is the first topic to be discussed. This question is directly related to the limitation in energy and momentum transfer and thus to the question about nuclear transparency. Exclusive data on multifragmentation on an event-by-event basis, which may help the model constructors, is presented as the second topic. In lecture the onset of fragmentation, fragment sizes in multifragmentation processes, the origin of light particle correlations and emission of pions and kaons close to the threshold are discussed

  20. Theoretical and experimental studies of the neutron rich fission product yields at intermediate energies

    Directory of Open Access Journals (Sweden)

    Äystö J.

    2012-02-01

    Full Text Available A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compound nucleon emission is described with the two-component exciton model using Monte Carlo method. Decay of excited compound nuclei is treated within time-dependent statistical model with inclusion of the nuclear friction effect. The charge distribution of the primary fragment isobaric chain was considered as a result of frozen quantal fluctuations of the isovector nuclear density. The theoretical predictions of the independent fission product cross sections are used for normalization of the measured fission product isotopic distributions.

  1. MENDL2 and IEAF-2001 nuclide production yields data bases verification at intermediate energies.

    Energy Technology Data Exchange (ETDEWEB)

    Titarenko, Y. E. (Yury E.); Batyaev, V. F. (Vyacheslav F.); Zhivun, V. M. (Valery M.); Mulambetov, R. D. (Ruslan D.); Mulambetova, S. V.; Zaitsev, S. L.; Lipatov, K. A.; Mashnik, S. G. (Stepan G.); Prael, R. E. (Richard E.)

    2004-01-01

    The work presents the results of computer simulation of two experiments which aim was measuring the threshold activation reaction rates in {sup 12}C, {sup 19}F, {sup 27}Al, {sup 59}Co, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 93}Nb, {sup 115}In, {sup 169}Tm, {sup 181}Ta, {sup 197}Au, and {sup 209}Bi thin samples placed inside and outside the 0.8-GeV proton-irradiated 4-cm thick W target and 92-cm thick W-Na composite target of 15-cm diameter both. In total, more than 1000 values of activation reaction were determined in the both experiments. The measured reaction rates were compared with the rates simulated by the LAHET code with the use of several nuclear databases for the respective excitation functions, namely, MENDL2/2P for neutron/proton cross sections up to 100 MeV, and recently developed IEAF-2001 that provides neutron cross sections up to 150 MeV. The comparison between the simulation-to-experiment agreements obtained via the MENDL2 and IEAF-2001 is presented. The agreement between simulation and experiment has been found generally satisfactory for both of the databases. The high-energy threshold excitation functions to be used in the activation-based unfolding of neutron spectra inside the Accelerator Driven Systems (ADS), particularly with Na-cooled W targets, can be inferred from the results.

  2. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    International Nuclear Information System (INIS)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas

  3. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  4. Intermediate energy electron cooling for antiproton sources using a Pelletron accelerator

    International Nuclear Information System (INIS)

    Cline, D.B.; Adney, J.; Ferry, J.; Kells, W.; Larson, D.J.; Mills, F.E.; Sundquist, M.

    1983-01-01

    It has been shown at FNAL that the electron cooling of protons is a very efficient method for reaching high luminosity in a proton beam. The emittance of the 120 KeV electron beam used at Fermilab corresponds to a cathode temperature of 0.1 eV. In order to apply cooling techniques to GeV proton beams the electron energies required are in the MeV range. In the experiment reported in this paper the emittance of a 3-MeV Pelletron electron accelerator was measured to determine that its emittance scaled to a value appropriate for electron cooling. The machine tested was jointly owned and operated by the University of California at Santa Barbara and National Electrostatics Corporation for research into free-electron lasers which also require low emittance beams for operation. This paper describes the thermal emittance of the beam to be the area in phase space in which 90% of the beam trajectories lie and goes on to describe the emittance-measurement method both in theory and application

  5. Study of interactions between hadrons and light nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Levy, Dominique.

    1977-01-01

    A theoretical study of the following reactions: πN→πN, πd→πd and Nd→Nπd, at incident energies of a few hundreds MeV is presented. The amplitudes of the πN→πN reaction are studied when at least one of the external particles is off-mass-shell. This study leads to the selection of a model used subsequently. For the πd→πd reaction, the simple scattering model is analyzed in detail then the Glauber and Brueckner double scattering models are compared. In the simple scattering model, the effect of the Fermi motion is examined in detail: a calculation of this effect, taking into account both the deuteron D wave and the nucleon spins is completed. Several approximations to the Fermi integral are also presented and the deficiencies of the models are discussed. In the inelastic Nd→Nπd reaction, the peak observed around 1150 MeV in the invariant mass spectrum of the Nπ final system is studied. This Nπ(1150) effect is explained using a Deck-type model. Other mechanisms that might contribute to the Nd→Nπd reaction, in particular at high transfers, are analyzed [fr

  6. Long-term residual radioactivity in an intermediate-energy proton linac

    CERN Document Server

    Blaha, J; Silari, M; Vollaire, J

    2014-01-01

    A new 160 MeV H−H− linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling w...

  7. Energy spectra of protons in diffraction break-up of deuterons on 12C and 40Ca at intermediate energies

    Directory of Open Access Journals (Sweden)

    V. V. Davydovskyy

    2016-08-01

    Full Text Available In the diffraction approximation generalized to the case of inelastic processes with longitudinal momentum transfer, the reaction of the deuteron break-up on nuclei at medium energies is studied, taking into account the Coulomb and nuclear interactions. The formulas for the calculation of the energy spectra of the emerging protons are obtained up to the second order with respect to the ratio of the deuteron radius to the nucleus radius. Three types of model wave functions of the deuteron were used in the calculations: Yukawa, exponential and Gaussian. The wave function of np-pair in continuum is built orthogonal to the wave function of deuteron. This allows one to take into account qualitatively the interaction in the final state and avoid false contributions to the cross section at near zero momentum transfer. A comparison with experimental data on the break-up of deuterons with energy of 56 MeV on carbon and calcium with the registration of the emitted neutrons and protons at zero angles is carried out. It is shown that the contribution of the Coulomb mechanism dominates in the cross section. The best description of the spectra of protons is achieved by using the Yukawa form of the wave function of the deuteron. It is also shown that taking into account the transfer of longitudinal momentum to the deuteron nucleons improves the experimental data description. In the case of non-zero nucleon escape angles, the effect of taking into account longitudinal momentum can reach several hundred percent.

  8. V&V of MCNP 6.1.1 Beta Against Intermediate and High-Energy Experimental Data

    Energy Technology Data Exchange (ETDEWEB)

    Mashnik, Stepan G [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-08

    This report presents a set of validation and verification (V&V) MCNP 6.1.1 beta results calculated in parallel, with MPI, obtained using its event generators at intermediate and high-energies compared against various experimental data. It also contains several examples of results using the models at energies below 150 MeV, down to 10 MeV, where data libraries are normally used. This report can be considered as the forth part of a set of MCNP6 Testing Primers, after its first, LA-UR-11-05129, and second, LA-UR-11-05627, and third, LA-UR-26944, publications, but is devoted to V&V with the latest, 1.1 beta version of MCNP6. The MCNP6 test-problems discussed here are presented in the /VALIDATION_CEM/and/VALIDATION_LAQGSM/subdirectories in the MCNP6/Testing/directory. README files that contain short descriptions of every input file, the experiment, the quantity of interest that the experiment measures and its description in the MCNP6 output files, and the publication reference of that experiment are presented for every test problem. Templates for plotting the corresponding results with xmgrace as well as pdf files with figures representing the final results of our V&V efforts are presented. Several technical “bugs” in MCNP 6.1.1 beta were discovered during our current V&V of MCNP6 while running it in parallel with MPI using its event generators. These “bugs” are to be fixed in the following version of MCNP6. Our results show that MCNP 6.1.1 beta using its CEM03.03, LAQGSM03.03, Bertini, and INCL+ABLA, event generators describes, as a rule, reasonably well different intermediate- and high-energy measured data. This primer isn’t meant to be read from cover to cover. Readers may skip some sections and go directly to any test problem in which they are interested.

  9. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  10. Alpha-particle doses to human organs and tissues from internally-deposited 226Ra and 228Ra

    International Nuclear Information System (INIS)

    Keane, A.T.; Schlenker, R.A.

    1981-01-01

    Estimation of radiation doses to the soft tissues from internally-deposited 226 Ra and 228 Ra is relevant to an investigation of soft-tissue malignancies in radium-exposed persons being conducted at the Center for Human Radiobiology. Alpha-particle doses in a 50-year period following a single injection of 226 Ra or 228 Ra are presented for 31 soft tissues and organs of the adult human. The dose estimates were derived from the ICRP alkaline earth model fitted to data on retention of 226 Ra in soft tissues and bone, combined with reported ratios of 226 Ra to Ca in soft tissue and bone at natural levels and the distribution of Ca in the tissues of Reference Man (ICRP23). The median of the 31 organ and tissue doses from the α-particles of 226 Ra itself is 0.08 rad per injected μCi. An additional average dose of 0.01 rad per μCi 226 Ra daughter products produced in soft tissue or transferred from bone to soft tissue. Soft-tissue doses from α-particles of the 228 Ra decay series are about six times those from 226 Ra α-particles for equal injected activities of 228 Ra and 226 Ra, with the assumption that 228 Ra daughter products do not transfer from the organ in which they are produced. The 50-year dose to the red marrow of bone from α-particles originating in bone is 0.55 rad per μCi 226 Ra injected and 1.0 rad per μCi 228 Ra injected. For ingestion by dial painters of luminous compound containg 226 Ra or 228 Ra with a daughter-to-parent activity ratio of 0.5, the dose to the mucosal alyer of the lower large intestine from α-particles originating in the gut contents is about 0.1 rad per μCi systemic intake of 226 Ra or 228 Ra

  11. Distorted wave models applied to electron emission study in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Fainstein, P.D.

    1989-01-01

    The electron emission from different atoms induced by impact of multicharged bare ions at intermediate and high energies is studied. To perform these studies, the continuum distorted wave-eikonal initial state model is used. With this distorted wave model, analytical expressions are obtained for the transition amplitudes as a function of the transverse momentum transfer for hydrogen targets in an arbitrary initial state and for every any orbital of a multielectronic target represented as a linear combination of Slater type orbitals. With these expressions, the different cross sections which are compared with the experimental data available are numerically calculated. The results obtained for different targets and projectiles and the comparison with other theoretical models and experimental data allows to explain the electron emission spectra and to predict new effects which have not been measured so far. The results of the present work permit to view the ionization process as the evolution of the active electron in the combined field of the target and projectile nuclei. (Author) [es

  12. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  13. Studies of reaction mechanism in 12C + 12C system at intermediate energy of 28.7 MeV/N

    International Nuclear Information System (INIS)

    Magiera, A.

    1996-01-01

    The reaction mechanism in 12 C + 12 C system at intermediate energy of about 30 MeV/nucleon was studied. The contribution of various reaction mechanisms (inelastic scattering, transfer reactions, compound nucleus reactions, sequential decay following inelastic excitation and transfer) to the total reaction cross section were found. The analysis of inclusive and coincidence spectra shows that sequential fragmentation processes dominate

  14. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  15. Prediction of the transition energies of atomic No and Lr by the intermediate Hamiltonian coupled cluster method

    International Nuclear Information System (INIS)

    Borschevsky, A.; Eliav, E.; Kaldor, U.; Vilkas, M.J.; Ishikawa, Y.

    2007-01-01

    Complete text of publication follows: Measurements of the spectroscopic properties of the superheavy elements present a serious challenge to the experimentalist. Their short lifetimes and the low quantities of their production necessitate reliable prediction of transition energies to avoid the need for broad wavelength scans and to assist in identifying the lines. Thus, reliable high-accuracy calculations are necessary prior and parallel to experimental research. Nobelium and Lawrencium are at present the two most likely candidates for spectroscopic measurements, with the first experiments planned at GSI, Darmstadt. The intermediate Hamiltonian (IH) coupled cluster method is applied to the ionization potentials, electron affinities, and excitation energies of atomic nobelium and lawrencium. Large basis sets are used (37s31p26d21f16g11h6i). All levels of a particular atom are obtained simultaneously by diagonalizing the IH matrix. The matrix elements correspond to all excitations from correlated occupied orbitals to virtual orbitals in a large P space, and are 'dressed' by folding in excitations to higher virtual orbitals (Q space) at the coupled cluster singles-and-doubles level. Lamb-shift corrections are included. The same approach was applied to the lighter homologues of Lr and No, lutetium and ytterbium, for which many transition energies are experimentally known, in order to assess the accuracy of the calculation. The average absolute error of 20 excitation energies of Lu is 423 cm -1 , and the error limits for Lr are therefore put at 700 cm -1 . Predicted Lr excitations with large transition moments in the prime range for the planned experiment, 20,000-30,000 cm -1 , are 7p → 8s at 20,100 cm -1 and 7p →p 7d at 28,100 cm -1 . In case of Yb, the calculated ionization potential was within 20 cm -1 of the experiment, and the average error of the 20 lowest calculated excitations was about 300 cm -1 . Hence, the error limits of nobelium are set to 800 cm -1

  16. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  17. Elastic and inelastic scattering of 1.37 GeV {alpha} particles from {sup 12}C and {sup 40,42,44,48}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zhang, Y.; Yang, C.; Shen, J.; Robson, B.A. [Department of Theoretical Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT0200 (Australia)]|[Department of Physics, Guangxi Normal University, Guilin 541001]|[People`s Republic of China China Center of Advanced Science and Technology, (World Laboratory), Beijing 100080]|[People`s Republic of China Institute of High Energy Physics, Academia Sinica, P.O. Box 918 (4-1), Beijing 100039]|[People`s Republic of China Department of Physics, The School of Zhejiang Light Industry, Hangzhou 310015, People`s Republic of Chinai]|[Department of Physics, Zhejiang University, Hangzhou 310027, People`s Republic of (China)

    1996-11-01

    Elastic and inelastic scattering data of 1.37 GeV {alpha} particles on {sup 12}C and {sup 40,42,44,48}Ca are analyzed within the framework of the Glauber theory. Collective excitations to one-phonon levels are treated using the Tassie model. The effect of the coupling between the elastic and inelastic channels is considered. It is shown that a phase variation of the nucleon-nucleon elastic scattering amplitude leads to a large increase in the calculated differential cross section. The presence of a phase variation leads to a substantial improvement. {copyright} {ital 1996 The American Physical Society.}

  18. Relative efficiency of the radiothermoluminescence induced by 238Pu alpha-particles in LiF:Mg, Al2O3 and CaSO4:Dy

    International Nuclear Information System (INIS)

    Vicy, Masok.

    1978-01-01

    This work represents a comparative study of the radiothermoluminescence (R.T.L.) induced by 60 Co gamma rays and 238 Pu alpha-particles in three R.T.L. materials: lithium fluoride, alumina and dysprosium activated calcium sulphate. The T.L. glow curves induced by the two radiations are very similar. However, for the same absorbed dose, different sensitivity is seen to each form of irradiation. Measurements of the relative R.T.L. efficiency, epsilon, were made in the linear zone (dose [fr

  19. Some Calculated (p,α Cross-Sections Using the Alpha Particle Knock-On and Triton Pick-Up Reaction Mechanisms: An Optimisation of the Single-Step Feshbach–Kerman–Koonin (FKK Theory

    Directory of Open Access Journals (Sweden)

    Felix S. Olise

    2016-04-01

    Full Text Available The Feshbach–Kerman–Koonin (FKK multi-step direct (MSD theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process and proton-triton (for the pick-up process interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  20. ENERGY DRINKS CONSUMPTION AND ITS RELATIONSHIP WITH HYPERACTIVITY/INATTENTION BEHAVIOUR AMONG THE INTERMEDIATE AND HIGH SCHOOL MALE AND FEMALE STUDENTS

    Directory of Open Access Journals (Sweden)

    Awad S. Alsamghan

    2016-09-01

    Full Text Available BACKGROUND New studies has revealed the consumption of energy drinks as a common, linked with potential risky hyperactivity/inattention behaviour among the adolescent and especially college students. To assess the prevalence of the energy drinks consumption and to evaluate hyperactivity/inattention behaviour symptoms among the adolescent intermediate and high school male and female students in Abha city. MATERIALS AND METHODS A cross-sectional study. The self-administered questionnaires were distributed among students who were studying in the intermediate and high school. Schools were randomly selected and all students (N=602 participated with consent. Total sample size included 602 students, 50% students from intermediate school and 50% students from high school. The tools used in the present study to collect the information from the students were a structured standardised questionnaire includes the basics characteristic, demographic and consumption of energy drinks related information. RESULTS Prevalence of the energy drinks consumption among students studying in intermediate and high school level was 303 (50.3%. Male 162 (53.3% are more consuming energy drinks than female 141 (46.7%. Students who are studying in high school (56.1% drinking more energy drinks than students (43.9% in higher level. Mean score of SDQ was 21.53±5.414 falling in abnormal category. Mean±SD score of the hyperactivity subscale of the SDQ was 3.76±1.980. Female students 66 (21.9%, p=0.162 are more likely to score hyperactivity subscale compared to male students 52 (17.3% (Table 1. Bivariate logistic regression analysis (Table 2 revealed that there was a significance association found with risk of hyperactivity/inattention (OR=2.47, 95% Cl=1.61, 3.78 who consumed energy drinks. Most of the types of energy drinks types were associated with hyperactivity as regression analysis results shown. No association observed with study levels. CONCLUSION Energy drinks

  1. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    International Nuclear Information System (INIS)

    Riquier, Hélène; Abel, Denis; Wera, Anne-Catherine; Heuskin, Anne-Catherine; Genard, Géraldine; Lucas, Stéphane; Michiels, Carine

    2015-01-01

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results

  2. In vivo effects of 5. 3 MeV alpha particles from sup 210 Po in mouse testes: comparison with internal Auger emitters

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.V.; Narra, V.R.; Govelitz, G.F.; Lanka, V.K.; Howell, R.W. (University of Medicine and Dentistry of New Jersey, Newark, NJ (USA). Dept. of Radiology); Sastry, K.S.R. (Massachusetts Univ., Amherst, MA (USA). Dept. of Physics and Astronomy)

    1990-01-01

    Using spermatogenesis in the mouse testis as the experimental model, we have investigated the in vivo effects of 5.3 MeV {alpha} particles in the decay of {sup 210}Po localised in the organ. Spermatogonial cell killing and induction of abnormal shapes in epididymal sperm are the biological end points. The mean lethal dose (D{sub 37}) to the organ at 37% survival of spermatogonia is 100 mGy, while a dose of 5 mGy doubles the fraction of abnormal sperm in the epididymis. In contrast to these findings with densely ionising {alpha} particles are our results for the sparsely ionising 477 keV photons from internal {sup 7}Be, with D{sub 37} = 670 mGy, and 250 mGy for a doubling of the abnormal sperm fraction. These results, and those obtained with several internal Auger emitters in the same model, are examined in terms of radionuclide localisation and radiation quality. (author).

  3. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Riquier, Hélène; Abel, Denis [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Wera, Anne-Catherine; Heuskin, Anne-Catherine [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Genard, Géraldine [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Lucas, Stéphane [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Michiels, Carine, E-mail: carine.michiels@unamur.be [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium)

    2015-03-18

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  4. Examination of the conditions of a broadening of the general tax for polluting activities to the intermediate energy consumptions, examination of the conditions of exoneration and attenuation for the energy uses in the industry

    International Nuclear Information System (INIS)

    Beaulinet, M.

    2000-05-01

    This document examines the conditions for a broadening of the general tax on polluting activities to the intermediate energy consumptions in order to reinforce the fight against greenhouse effect and to better master the energy consumption. It analyses the characteristics of each energy source with respect to the principle of a taxation of the consumptions. Finally, several scenarios are analyzed to show the advantage and drawbacks of such a system. A first evaluation and a preliminary tariffing are given. (J.S.)

  5. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions]. Nuclear chemistry progress report, August 1, 1990--August 1, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ``best`` semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  6. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Progress report, January 1, 1985-December 31, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1985-87. These studies have involved investigations of nucleon-nucleon and pion-nucleus interactions. They have been carried out at the LAMPF accelerator at the Los Alamos National Laboratory, at the SIN laboratory near Zurich, Switzerland, and at the TRIUMF accelerator in Vancouver, Canada. 86 refs., 5 figs

  7. Charge- and parity-projected Hartree-Fock method for the strong tensor correlation and its application to the alpha particle

    International Nuclear Information System (INIS)

    Sugimoto, Satoru; Ikeda, Kiyomi; Toki, Hiroshi

    2004-01-01

    We propose a new mean-field-type framework which can treat the strong correlation induced by the tensor force. To treat the tensor correlation we break the charge and parity symmetries of a single-particle state and restore these symmetries of the total system by the projection method. We perform the charge and parity projections before variation and obtain a Hartree-Fock-like equation, which is solved self-consistently. We apply the Hartree-Fock-like equation to the alpha particle and find that by breaking the parity and charge symmetries, the correlation induced by the tensor force is obtained in the projected mean-field framework. We emphasize that the projection before the variation is important to pick up the tensor correlation in the present framework

  8. Identification of 210Pb and 210Po in the bulk of copper samples with a low-background alpha particle counter

    Science.gov (United States)

    Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; Sato, K.; Sekiya, H.; Takachio, O.; Takeda, A.; Tasaka, S.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Itow, Y.; Kanzawa, K.; Kegasa, R.; Masuda, K.; Takiya, H.; Fushimi, K.; Kanzaki, G.; Martens, K.; Suzuki, Y.; Xu, B. D.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Takeuchi, Y.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Miyasaka, M.; Nishijima, K.; Nakamura, S.

    2018-03-01

    We established a method to assay 210Pb and 210Po contaminations in the bulk of copper samples using a low-background alpha particle counter. The achieved sensitivity for the 210Pb and 210Po contaminations reaches a few mBq/kg. Due to this high sensitivity, the 210Pb and 210Po contaminations in oxygen free copper bulk were identified and measured for the first time. The 210Pb contaminations of our oxygen free copper samples were 17-40 mBq/kg. Based on our investigation of copper samples in each production step, the 210Pb in oxygen free copper was understood to be a small residual of an electrolysis process. This method to measure bulk contaminations of 210Pb and 210Po could be applied to other materials.

  9. Benchmarking the Geant4 full system simulation of an associated alpha-particle detector for use in a D-T neutron generator.

    Science.gov (United States)

    Zhang, Xiaodong; Hayward, Jason P; Cates, Joshua W; Hausladen, Paul A; Laubach, Mitchell A; Sparger, Johnathan E; Donnald, Samuel B

    2012-08-01

    The position-sensitive alpha-particle detector used to provide the starting time and initial direction of D-T neutrons in a fast-neutron imaging system was simulated with a Geant4-based Monte Carlo program. The whole detector system, which consists of a YAP:Ce scintillator, a fiber-optic faceplate, a light guide, and a position-sensitive photo-multiplier tube (PSPMT), was modeled, starting with incident D-T alphas. The scintillation photons, whose starting time follows the distribution of a scintillation decay curve, were produced and emitted uniformly into a solid angle of 4π along the track segments of the alpha and its secondaries. Through tracking all photons and taking into account the quantum efficiency of the photocathode, the number of photoelectrons and their time and position distributions were obtained. Using a four-corner data reconstruction formula, the flood images of the alpha detector with and without optical grease between the YAP scintillator and the fiber-optic faceplate were obtained, which show agreement with the experimental results. The reconstructed position uncertainties of incident alpha particles for both cases are 1.198 mm and 0.998 mm respectively across the sensitive area of the detector. Simulation results also show that comparing with other faceplates composed of 500 μm, 300 μm, and 100 μm fibers, the 10-μm-fiber faceplate is the best choice to build the detector for better position performance. In addition, the study of the background originating inside the D-T generator suggests that for 500-μm-thick YAP:Ce coated with 1-μm-thick aluminum, and very good signal-to-noise ratio can be expected through application of a simple threshold. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Maneva, Y. G.; Poedts, Stefaan; Viñas, Adolfo F.; Moya, Pablo S.; Wicks, Robert T.

    2015-01-01

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-β fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω p , Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles

  11. Mechanism-based labeling defines the free energy change for formation of the covalent glycosyl-enzyme intermediate in a xyloglucan endo-transglycosylase.

    Science.gov (United States)

    Piens, Kathleen; Fauré, Régis; Sundqvist, Gustav; Baumann, Martin J; Saura-Valls, Marc; Teeri, Tuula T; Cottaz, Sylvain; Planas, Antoni; Driguez, Hugues; Brumer, Harry

    2008-08-08

    Xyloglucan endo-transglycosylases (XETs) are key enzymes involved in the restructuring of plant cell walls during morphogenesis. As members of glycoside hydrolase family 16 (GH16), XETs are predicted to employ the canonical retaining mechanism of glycosyl transfer involving a covalent glycosyl-enzyme intermediate. Here, we report the accumulation and direct observation of such intermediates of PttXET16-34 from hybrid aspen by electrospray mass spectrometry in combination with synthetic "blocked" substrates, which function as glycosyl donors but are incapable of acting as glycosyl acceptors. Thus, GalGXXXGGG and GalGXXXGXXXG react with the wild-type enzyme to yield relatively stable, kinetically competent, covalent GalG-enzyme and GalGXXXG-enzyme complexes, respectively (Gal=Galbeta(1-->4), G=Glcbeta(1-->4), and X=Xylalpha(1-->6)Glcbeta(1-->4)). Quantitation of ratios of protein and saccharide species at pseudo-equilibrium allowed us to estimate the free energy change (DeltaG(0)) for the formation of the covalent GalGXXXG-enzyme as 6.3-8.5 kJ/mol (1.5-2.0 kcal/mol). The data indicate that the free energy of the beta(1-->4) glucosidic bond in xyloglucans is preserved in the glycosyl-enzyme intermediate and harnessed for religation of the polysaccharide in vivo.

  12. Study of the p+{sup 12}C reaction at energies up to 30 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Masahide; Yamamoto, A.; Yoshioka, S. [Kyushu Univ., Fukuoka (Japan)] [and others

    1998-03-01

    Double differential cross sections of charged-particles emitted in the p+{sup 12}C reaction were measured in the energy region from 14 to 26 MeV. The observed continuous components of emitted protons and {alpha}-particles were analyzed by assuming sequential decay of intermediate reaction products and/or simultaneous breakup process. It was found that the three body simultaneous decay, p+{alpha}+{sup 8}Be, and the sequential decay via p+{sup 12}C{sup *}{sub 3-} and {alpha}+{sup 9}B{sub g.s.} are most important in the proton-induced breakup of {sup 12}C for energies up to 30 MeV. (author)

  13. Measurement of Fragment Mass Distributions in Neutron-induced Fission of {sup 238}U and {sup 232}Th at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Simutkin, V.D. [Uppsala University, P.O Box 525, SE-751 20 Uppsala (Sweden)

    2008-07-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the {sup 238}U(n,f) and {sup 232}Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both {sup 238}U and {sup 232}Th. Up to now, the intermediate energy measurements have been performed for {sup 238}U only, and there are no data for the {sup 232}Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the {sup 232}Th(n,f) and {sup 238}U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  14. Intermediate energy nuclear physics (Task C) and charge exchange reactions (Task W). Technical progress report, October 1, 1985-October 1, 1986

    International Nuclear Information System (INIS)

    Kraushaar, J.J.

    1986-10-01

    This report describes the experimental work in intermediate energy research carried out over the past year at the University of Colorado. The experimental program is very broad in nature, ranging from investigations in pion-nucleus interactions, nucleon charge exchange, inelastic electron scattering, and nucleon transfer reactions. The experiments were largely carried out at the Los Alamos Meson Physics Facility, but important programs were conducted at the Tri-University Meson Facility at the University of British Columbia, the Indiana University Cyclotron Facility and Netherlands Institute for Nuclear Physics Research (NIKHEF-K)

  15. Response functions of 58Ni, 116Sn and 208Pb to the excitation of intermediate-energy α-particles

    International Nuclear Information System (INIS)

    Bonin, B.; Alamanos, N.; Berthier, B.; Bruge, G.; Faraggi, H.; Legrand, D.; Lugol, J.C.; Mittig, W.; Papineau, L.; Yavin, A.I.; Scott, D.K.; Levine, M.; Arvieux, J.; Farvacque, L.; Buenerd, M.

    1984-01-01

    Inelastic scattering of 340 MeV and 480 MeV α-particles has been measured on 58 Ni, 116 Sn and 208 Pb up to 60 MeV excitation energy. Consistent background subtraction and multipole analysis has provided the repartition of multipole strength for all three nuclei. The so-obtained response functions show the already known low-energy giant resonances in a detailed way, as well as new giant resonances at high energy. (orig.)

  16. A Free Energy Barrier Caused by the Refolding of an Oligomeric Intermediate Controls the Lag Time of Amyloid Formation by hIAPP.

    Science.gov (United States)

    Serrano, Arnaldo L; Lomont, Justin P; Tu, Ling-Hsien; Raleigh, Daniel P; Zanni, Martin T

    2017-11-22

    Transiently populated oligomers formed en route to amyloid fibrils may constitute the most toxic aggregates associated with many amyloid-associated diseases. Most nucleation theories used to describe amyloid aggregation predict low oligomer concentrations and do not take into account free energy costs that may be associated with structural rearrangements between the oligomer and fiber states. We have used isotope labeling and two-dimensional infrared spectroscopy to spectrally resolve an oligomeric intermediate during the aggregation of the human islet amyloid protein (hIAPP or amylin), the protein associated with type II diabetes. A structural rearrangement includes the F 23 G 24 A 25 I 26 L 27 region of hIAPP, which starts from a random coil structure, evolves into ordered β-sheet oligomers containing at least 5 strands, and then partially disorders in the fibril structure. The supercritical concentration is measured to be between 150 and 250 μM, which is the thermodynamic parameter that sets the free energy of the oligomers. A 3-state kinetic model fits the experimental data, but only if it includes a concentration independent free energy barrier >3 kcal/mol that represents the free energy cost of refolding the oligomeric intermediate into the structure of the amyloid fibril; i.e., "oligomer activation" is required. The barrier creates a transition state in the free energy landscape that slows fibril formation and creates a stable population of oligomers during the lag phase, even at concentrations below the supercritical concentration. Largely missing in current kinetic models is a link between structure and kinetics. Our experiments and modeling provide evidence that protein structural rearrangements during aggregation impact the populations and kinetics of toxic oligomeric species.

  17. A unified theory of resonant excitation of kinetic ballooning modes by energetic ions/alpha particles in tokamaks

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1991-10-01

    A complete theory of wave-particle interactions is presented whereby both circulating and trapped energetic ions can destabilize kinetic ballooning modes in tokamaks. Four qualitatively different types of resonances, involving wave-precessional drift, wave-transit, wave-bounce, and precessional drift-bounce interactions, are identified, and the destabilization potential of each is assessed. For a characteristic slowing-down distribution function, the dominant interaction is that which taps those resonant ions with the highest energy. Implications of the theory for present and future generation fusion experiments are discussed. 16 refs

  18. Elastic scattering of alpha particles from 208Pb to determine the properties of the alpha cluster states of 212Po

    International Nuclear Information System (INIS)

    Basu, C.; Adhikari, S.; Mitra, A.K.; Bhattacharya, S.; Bhattacharya, C.; Ghosh, T.K.; Banerjee, K.; Rana, T.K.; Pandey, R.; Prajapati, G.; Dey, A.; Meena, J.K.; Ray, S.

    2011-01-01

    In this work the study of α + 208 Pb elastic scattering have been undertaken to study the alpha spectroscopic properties of the cluster states of 212 Po and also obtain a α + 208 Pb potential to describe both elastic scattering and to predict the alpha cluster states and their properties in 212 Po. This two body cluster core picture is appropriate as both the components are closed shell nuclei. The measurements are performed at higher energy and analyzed in terms of the microscopic folding model for elastic scattering

  19. WE-FG-BRA-10: Radiodosimetry of a Novel Alpha Particle Therapy Targeted to Uveal Melanoma: Absorbed Dose to Organs in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Tichacek, Christopher J.; Tafreshi, Narges K.; Budzevich, Mikalai M.; Ruiz, Epifanio [Small Animal Imaging Core, Tampa, FL (United States); Wadas, Thaddeus J. [Wake Forest School of Medicine, Departments of Radiology and Cancer Biology, Winston-Salem, NC (United States); McLaughlin, Mark L. [Department of Chemistry, Tampa, FL (United States); H. Lee Moffitt Cancer Center & Research Institute (United States); Modulation Therapeutics, Inc., Tampa, FL (United States); Moros, Eduardo G.; Morse, David L.

    2016-06-15

    Purpose: The melanocortin-1 receptor (MC1R) is expressed in 94% of uveal melanomas and is described as an ideal target for this untreatable disease. MC1RL is a high affinity MC1R specific peptidomimetic ligand that can serve as a scaffold for therapeutic conjugates such as alpha particle emitting isotopes. The purpose of this study was to assess normal tissue distribution and risk as a result of using the DOTA chelator conjugated to MC1RL to deliver {sup 225}Ac: MC1RL-DOTA-{sup 225}Ac. Methods: 17 non-tumor bearing BALB/c mice were intravenously injected with the novel MC1RL-DOTA-{sup 225}Ac radiopharmaceutical with an average initial administered activity of 2.5 µCi. After the injection, three groups of animals (6, 6, and 5 per group) were euthanized at 24, 48, and 96 hour time points. A total of 11 organs of interest were harvested at each time point including kidneys and liver. Since the emitted alpha particles from {sup 225}Ac and its daughter products are not easy to detect directly, the isomeric gamma spectra were measured instead in the tissue samples using a modified Atomlab™ Gamma Counter (Biodex Medical Systems, Inc) and converted using factors for gamma ray abundance per alpha decay. Dosimetry was performed using measured radioactivity distribution in organs and the generalized internal dosimetry schema of MIRD pamphlet #21. Results: Our calculations have shown that the maximum absorbed dose was delivered to the liver with a total of 47 cGy per 96 hour period. The average dose per kidney was calculated to be 21 cGy. Heart, brain, lung, spleen, skin doses ranged from 0.01 to 1 cGy over the same time period. All animals gained weight over the 110 day decay period and no organ damage was observed by pathology. Conclusion: Based on our results, the risk of using the MC1RL-DOTA-{sup 225}Ac compound is relatively small in terms of deterministic radiation effects. Funding Support: NIH/NCI P50CA168536-03 Skin SPORE; NIH/NCI Phase I SBIR Contract #HHSN

  20. The stopping of heavy ions in the low-to-intermediate energy range: The apparent velocity threshold

    Energy Technology Data Exchange (ETDEWEB)

    Lifschitz, A.F. [Laboratoire d’Optique Apliquèe, ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Arista, N.R., E-mail: arista@cab.cnea.gov.ar [División Colisiones Atómicas, Centro Atómico Bariloche, CNEA, 8400 Bariloche (Argentina)

    2013-12-01

    We present a non-linear study of the energy loss of heavy ions in solids, which is based on the transport cross section (TCS) and the extension of the Friedel sum rule (EFSR) for moving ions. We apply this approach to study the velocity dependence of the energy loss of heavy ions in the energy region below the stopping power maximum. With this formulation we are able to explain some striking effects in the energy loss of heavy ions which have been experimentally observed long time ago (Brown and Moak (1972) [14]), but have not been explained so far by the existing theoretical models: the deviations from the proportionality with ion velocity (predicted by alternative models in the low energy range), and the “apparent velocity threshold”.