WorldWideScience

Sample records for interim spent fuel

  1. Spent fuel interim storage

    International Nuclear Information System (INIS)

    Bilegan, Iosif C.

    2003-01-01

    The official inauguration of the spent fuel interim storage took place on Monday July 28, 2003 at Cernavoda NNP. The inaugural event was attended by local and central public authority representatives, a Canadian Government delegation as well as newsmen from local and central mass media and numerous specialists from Cernavoda NPP compound. Mr Andrei Grigorescu, State Secretary with the Economy and Commerce Ministry, underlined in his talk the importance of this objective for the continuous development of nuclear power in Romania as well as for Romania's complying with the EU practice in this field. Also the excellent collaboration between the Canadian contractor AECL and the Romanian partners Nuclear Montaj, CITON, UTI, General Concret in the accomplishment of this unit at the planned terms and costs. On behalf of Canadian delegation, spoke Minister Don Boudria. He underlined the importance which the Canadian Government affords to the cooperation with Romania aiming at specific objectives in the field of nuclear power such as the Cernavoda NPP Unit 2 and spent fuel interim storage. After traditional cutting of the inaugural ribbon by the two Ministers the festivities continued on the Cernavoda NPP Compound with undersigning the documents regarding the project completion and a press conference

  2. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    Roland, V.; Hunter, I.

    2001-01-01

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  3. Spent fuel interim management: 1995 update

    International Nuclear Information System (INIS)

    Anderson, C.K.

    1995-01-01

    The problems of interim away-from-reactor spent fuel storage and storage in spent fuel pools at the reactor site are discussed. An overview of the state-of-the-art in the USA, Europe, and Japan is presented. The technical facilities for away-from-reactor storage are briefly described, including wet storage pools, interactive concrete systems, metallic containers, and passive concrete systems. Reprocessing technologies are mostly at the design stage only. It is predicted that during the 20 years to come, about 50 000 tonnes of spent fuel will be stored at reactor sites regardless of the advance of spent fuel reprocessing or interim storage projects. (J.B.). 4 tabs., 2 figs

  4. Materials behavior in interim storage of spent fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Gilbert, E.R.; Inman, S.C.

    1982-01-01

    Interim storage has emerged as the only current spent-fuel management method in the US and is essential in all countries with nuclear reactors. Materials behavior is a key aspect in licensing interim-storage facilities for several decades of spent-fuel storage. This paper reviews materials behavior in wet storage, which is licensed for light-water reactor (LWR) fuel, and dry storage, for which a licensing position for LWR fuel is developing

  5. Options for the interim storage of spent fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    1995-01-01

    Different concepts for the interim storage of spent fuel arising from operation of a NPP are discussed. We considered at reactor as well as away from reactor storage options. Included are enhancements of existing storage capabilities and construction of a new wet or dry storage facility. (author)

  6. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  7. Improving of spent fuel monitoring in condition of Slovak wet interim spent fuel storage facility

    International Nuclear Information System (INIS)

    Miklos, M.; Krsjak, V.; Bozik, M.; Vasina, D.

    2008-01-01

    Monitoring of WWER fuel assemblies condition in Slovakia is presented in the paper. The leak tightness results of fuel assemblies used in Slovak WWER units in last 20 years are analyzed. Good experiences with the 'Sipping system' are described. The Slovak wet interim spent fuel storage facility in NPP Jaslovske Bohunice was build and put in operation in 1986. Since 1999, leak tests of WWER-440 fuel assemblies are provided by special leak tightness detection system 'Sipping in Pool' delivered by Framatome-ANP facility with external heating for the precise detection of active specimens. Another system for monitoring of fuel assemblies condition was implemented in December 2006 under the name 'SVYPP-440'. First non-active tests started at February 2007 and are described in the paper. Although those systems seems to be very effective, the detection time of all fuel assemblies in one storage pool is too long (several months). Therefore, a new 'on-line' detection system, based on new sorbent KNiFC-PAN for effective 134 Cs and 137 Cs activity was developed. This sorbent was compared with another type of sorbent NIFSIL and results are presented. The design of this detection system and its possible application in the Slovak wet spent fuel storage facility is discussed. For completeness, the initial results of the new system are also presented. (authors)

  8. Advantages on dry interim storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, L.S. [Centro Tecnologico da Marinha em Sao Paulo, Av. Professor Lineu Prestes 2468, 05508-900 Sao Paulo (Brazil); Rzyski, B.M. [IPEN/ CNEN-SP, 05508-000 Sao Paulo (Brazil)]. e-mail: romanato@ctmsp.mar.mil.br

    2006-07-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  9. Advantages on dry interim storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, L.S.; Rzyski, B.M.

    2006-01-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  10. On-site interim storage of spent nuclear fuel: Emerging public issues

    International Nuclear Information System (INIS)

    Feldman, D.L.; Tennessee Univ., Knoxville, TN

    1992-01-01

    Failure to consummate plans for a permanent repository or above- ground interim Monitored Retrievable Storage (MRS) facility for spent nuclear fuel has spurred innovative efforts to ensure at-reactor storage in an environmentally safe and secure manner. This article examines the institutional and socioeconomic impacts of Dry Cask Storage Technology (DCST)-an approach to spent fuel management that is emerging as the preferred method of on-site interim spent fuel storage by utilities that exhaust existing storage capacity

  11. Integrated system of safety features for spent fuel interim storage

    International Nuclear Information System (INIS)

    Pantazi, Doina; Stanciu, Marcela; Mateescu, Silvia; Marin, Ion

    1999-01-01

    The design of the spent fuel interim storage facility (SFISF) must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility. To elaborate the safety documentation necessary for licensing, we were trying to chose the most appropriate approach related to safety features for SFISF, based on national and international regulations, standards and recommendations, as well as on the experience of other countries with similar facilities and finally, on our own experience in designing other nuclear objectives in Romania. The paper presents the issues that we consider important for the safety evaluation and are developed as a detailed diagram. The diagram contains in a logical succession the following issues: - fundamental principles of radioprotection; - fundamental safety principles of radioactive waste management; - safety objectives of SFISF; - safety criteria for SFISF; - safety requirements for SFISF; - siting criteria for SFISF; - siting requirements for SFISF. (authors)

  12. Spent Fuel Long Term Interim Storage: The Spanish Policy

    International Nuclear Information System (INIS)

    Fernandez-Lopez, Javier

    2014-01-01

    ENRESA is the Spanish organization responsible for long-term management of all categories of radioactive waste and nuclear spent fuel and for decommissioning nuclear installations. It is also in charge of the management of the funds collected from waste producers and electricity consumers. The national policy about radioactive waste management is established at the General Radioactive Waste Plan by the Government upon proposal of the Ministry of Industry, Energy and Tourism. Now the Plan in force is the Sixth Plan approved in 2006. The policy on spent nuclear fuel, after description of the current available options, is set up as a long term interim storage at a Centralized Temporary Storage facility (CTS, or ATC in Spanish acronym) followed by geologic disposal, pending technological development on other options being eligible in the future. After a site selection process launched in 2009, the site for the ATC has been chosen at the end of 2011. The first steps for the implementation of the facility are described in the present paper. (authors)

  13. Safety aspects of spent nuclear fuel interim storage installations

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade. Div. de Sistemas da Qualidade]. E-mail: romanato@ctmsp.mar.mil.br; Rzyski, Barbara Maria [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Div. de Ensino]. E-mail: bmrzyski@ipen.br

    2007-07-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  14. Safety aspects of spent nuclear fuel interim storage installations

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2007-01-01

    Nowadays safety and security of spent nuclear fuel (SNF) interim storage installations are very important, due to a great concentration of fission products, actinides and activation products. In this kind of storage it is necessary to consider the physical security. Nuclear installations have become more vulnerable. New types of accidents must be considered in the design of these installations, which in the early days were not considered like: fissile material stolen, terrorists' acts and war conflicts, and traditional accidents concerning the transport of the spent fuel from the reactor to the storage location, earthquakes occurrence, airplanes crash, etc. Studies related to airplane falling had showed that a collision of big commercials airplanes at velocity of 800 km/h against SNF storage and specially designed concrete casks, do not result in serious structural injury to the casks, and not even radionuclides liberation to the environment. However, it was demonstrated that attacks with modern military ammunitions, against metallic casks, are calamitous. The casks could not support a direct impact of this ammo and the released radioactive materials can expose the workers and public as well the local environment to harmful radiation. This paper deals about the main basic aspects of a dry SNF storage installation, that must be physically well protected, getting barriers that difficult the access of unauthorized persons or vehicles, as well as, must structurally resist to incidents or accidents caused by unauthorized intrusion. (author)

  15. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongjin; Choi, Kwangsoon; Yoon, Hyungjoon; Park, Jungsu [KEPCO-E and C, Yongin (Korea, Republic of)

    2014-05-15

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage.

  16. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  17. Properties of light water reactor spent fuel cladding. Interim report

    International Nuclear Information System (INIS)

    Farwick, D.G.; Moen, R.A.

    1979-08-01

    The Commercial Waste and Spent Fuel Packaging Program will provide containment packages for the safe storage or disposal of spent Light Water Reactor (LWR) fuel. Maintaining containment of radionuclides during transportation, handling, processing and storage is essential, so the best understanding of the properties of the materials to be stored is necessary. This report provides data collection, assessment and recommendations for spent LWR fuel cladding materials properties. Major emphasis is placed on mechanical properties of the zircaloys and austenitic stainless steels. Limited information on elastic constants, physical properties, and anticipated corrosion behavior is also provided. Work is in progress to revise these evaluations as the program proceeds

  18. Dry storage of spent fuel elements: interim facility

    International Nuclear Information System (INIS)

    Quihillalt, O.J.

    1993-01-01

    Apart from the existing facilities to storage nuclear fuel elements at Argentina's nuclear power stations, a new interim storage facility has been planned and projected by the Argentinean Atomic Energy Commission (CNEA) that will be constructed by private group. This article presents the developments and describes the activities undertaken until the national policy approach to the final decision for the most suitable alternative to be adopted. (B.C.A.). 09 refs, 01 fig, 09 tabs

  19. Interim storage of spent fuel elements in the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Szabo, B.

    1998-01-01

    The interim storage of spent fuel cassettes of the Paks NPP provides storage for 50 years at the Paks NPP site. The modular dry storage technology is presented. The technological design and the licensing of the facility has been made by the GEC Alsthom ESL firm. This storage facility can accommodate 450 fuel cassettes until their final disposal. (R.P.)

  20. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    International Nuclear Information System (INIS)

    1978-01-01

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited

  1. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  2. Federal interim storage fee study for civilian spent nuclear fuel: a technical and economical analysis

    International Nuclear Information System (INIS)

    1983-07-01

    This report describes the study conducted by the Department of Energy (the Department) regarding payment charges for the federal interim storage (FIS) of spent fuel and presents the details of the study results. It describes the selection of a methodology for calculating a FIS fee schedule, sets forth the estimates of cost for construction and operation of FIS facilities, provides a range of estimates for the fee for FIS services, and identifies special contractual considerations associated with providing FIS services to authorized users. The fee is structured for a range of spent fuel capacities because of uncertainties regarding the schedule of availability and amount of spent fuel that may require and qualify for FIS. The results set forth in the report were used as a basis for development of the report entitled Payment Charges for Federal Interim Storage of Spent Nuclear Fuel from Civilian Nuclear Power Plants in the United States, dated July 1983

  3. Application of dose evaluation of the MCNP code for interim spent fuel cask storage facility

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Iimoto, Takeshi; Ishikawa, Satoshi; Tsuboi, Takafumi; Teramura, Masahiro; Okamura, Tomomi; Narumiya, Yoshiyuki

    2007-01-01

    The interim storage facility for spent fuel metallic cask is designed as a concrete building structure with air inlet and outlet for circulating the natural cooling. The feature of the interim storage facility is big capacity of spent fuel at several thousands MTU and restricted site usage. It is important to evaluate realistic dose rate in shielding design of the interim storage facility, therefore the three-dimensional continuous-energy Monte Carlo radiation transport code MCNP that exactly treating the complicated geometry was applied. The validation of dose evaluation for interim storage facility by MCNP code were performed by three kinds of neutron shielding benchmark experiments; cask shadow shielding experiment, duct streaming experiment and concrete deep penetration experiment. Dose rate distributions at each benchmark were measured and compared with the calculated results. The comparison showed a good consistency between calculation and experiment results. (author)

  4. Current status of the first interim spent fuel storage facility in Japan

    International Nuclear Information System (INIS)

    Shinbo, Hitoshi; Kondo, Mitsuru

    2008-01-01

    In Japan, storage of spent fuels outside nuclear power plants was enabled as a result of partial amendments to the Nuclear Reactor Regulation Law in June 2000. Five months later, Mutsu City in Aomori Prefecture asked the Tokyo Electric Power Company (TEPCO) to conduct technical surveys on siting of the interim spent fuel storage facility (we call it 'Recyclable-Fuel Storage Center'). In April 2003, TEPCO submitted the report on siting feasibility examination, concluded that no improper engineering data for siting, construction of the facility will be possible from engineering viewpoint. Siting Activities for publicity and public acceptance have been continued since then. After these activities, Aomori Prefecture and Mutsu City approved siting of the Recyclable Fuel Storage Center in October 2005. Aomori Prefecture, Mutsu City, TEPCO and Japan Atomic Power Company (JAPC) signed an agreement on the interim spent fuel storage Facility. A month later, TEPCO and JAPC established Recyclable-Fuel Storage Company (RFS) in Mutsu City through joint capital investment, specialized in the first interim spent fuel storage Facility in Japan. In May 2007, we made an application for establishment permit, following safety review by regulatory authorities. In March 2008, we started the preparatory construction. RFS will safely store of spent fuels of TEPCO and JAPC until they will be reprocessed. Final storage capacity will be 5,000 ton-U. First we will construct the storage building of 3,000 ton-U to be followed by second building. We aim to start operation by 2010. (author)

  5. Interim licensing criteria for physical protection of certain storage of spent fuel

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1994-11-01

    This document presents interim criteria to be used in the physical protection licensing of certain spent fuel storage installations. Installations that will be reviewed under this criteria are those that store power reactor spent fuel at decommissioned power reactor sites; independent spent fuel storage installations located outside of the owner controlled area of operating nuclear power reactors; monitored retrievable storage installations owned by the Department of Energy, designed and constructed specifically for the storage, of spent fuel; the proposed geologic repository operations area; or permanently shutdown power reactors still holding a Part 50 license. This criteria applies to both dry cask and pool storage. However, the criteria in this document does not apply to the storage of spent fuel within the owner-controlled area of operating nuclear power reactors

  6. Experience with the licensing of the interim spent fuel storage facility modification

    International Nuclear Information System (INIS)

    Bezak, S.; Beres, J.

    1999-01-01

    After political and economical changes in the end of eighties, the utility operating the nuclear power plants in the Slovak Republic (SE, a.s.) decided to change the original scheme of the back-end of the nuclear fuel cycle; instead of reprocessing in the USSR/Russian Federation spent fuel will be stored in an interim spent fuel storage facility until the time of the final decision. As the best solution, a modification of the existing interim spent fuel storage facility has been proposed. Due to lack of legal documents for this area, the Regulatory Authority of the Slovak Republic (UJD SR) performed licensing procedures of the modification on the basis of recommendations by the IAEA, the US NRC and the relevant parts of the US CFR Title 10. (author)

  7. Concrete storage cask for interim storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Fujiwara, Hiroaki; Kobayashi, Shunji; Shionaga, Ryosuke

    2004-01-01

    Experiments and analytical evaluation of the fabrication, non-destructive inspection and structural integrity of reinforced concrete body for storage casks were carried out to demonstrate the concrete storage cask for spent fuel generated from nuclear power plants. Analytical survey on the type of concrete material and fabrication method of the storage cask was performed and the most suitable fabrication method for the concrete body was identified to reduce concrete cracking. The structural integrity of the concrete body of the storage cask under load conditions during storage was confirmed and the long term integrity of concrete body against degradation dependent on environmental factors was evaluated. (author)

  8. Transitioning aluminum clad spent fuels from wet to interim dry storage

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Iyer, N.C.; Sindelar, R.L.; Peacock, H.B. Jr.

    1994-01-01

    The United States Department of Energy (DOE) currently owns several hundred metric tons of aluminum clad, spent nuclear fuel and target assemblies. The vast majority of these irradiated assemblies are currently stored in water basins that were designed and operated for short term fuel cooling prior to fuel reprocessing. Recent DOE decisions to severely limit the reprocessing option have significantly lengthened the time of storage, thus increasing the tendency for corrosion induced degradation of the fuel cladding and the underlying core material. The portent of continued corrosion, coupled with the age of existing wet storage facilities and the cost of continuing basin operations, including necessary upgrades to meet current facility standards, may force the DOE to transition these wet stored, aluminum clad spent fuels to interim dry storage. The facilities for interim dry storage have not been developed, partially because fuel storage requirements and specifications for acceptable fuel forms are lacking. In spite of the lack of both facilities and specifications, current plans are to dry store fuels for approximately 40 to 60 years or until firm decisions are developed for final fuel disposition. The transition of the aluminum clad fuels from wet to interim dry storage will require a sequence of drying and canning operations which will include selected fuel preparations such as vacuum drying and conditioning of the storage atmosphere. Laboratory experiments and review of the available literature have demonstrated that successful interim dry storage may also require the use of fuel and canister cleaning or rinsing techniques that preclude, or at least minimize, the potential for the accumulation of chloride and other potentially deleterious ions in the dry storage environment. This paper summarizes an evaluation of the impact of fuel transitioning techniques on the potential for corrosion induced degradation of fuel forms during interim dry storage

  9. International long-term interim storage for spent fuel. An independent storage service investor model

    International Nuclear Information System (INIS)

    Leister, P.

    1999-01-01

    Thinking globally the obvious world-wide demands for large storage capacities for spent fuel within the next decades and the newly arising demands for long-term interim storage of spent fuel urges to respond by international interim storage facilities of high capacity. Low cost storage can be achieved only by arranging the storage facility underground in a suitable host rock formation and by selecting the geographical are by an international competition under those countries, who are willing to offer their land. The investor and operator of an international storage facility selected and realised by a competition on the free market as well as the country where the storage is built are both bound by two different kinds of contacts. The main contract is between the offering country/region and the independent operator. The independent operator has in addition a series of contracts with various utilities, which are interested to have their spent fuel stored for a longer period

  10. Conceptual design of an interim dry storage system for the Atucha nuclear power plant spent fuels

    International Nuclear Information System (INIS)

    Nassini, Horacio E.P.; Fuenzalida Troyano, C.S.; Bevilacqua, Arturo M.; Bergallo, Juan E.

    2005-01-01

    The Atucha I nuclear power station, after completing the rearrangement and consolidation of the spent fuels in the two existing interim wet storage pools, will have enough room for the storage of spent fuel from the operation of the reactor till December 2014. If the operation is extended beyond 2014, or if the reactor is decommissioned, it will be necessary to empty both pools and to transfer the spent fuels to a dry storage facility. This paper shows the progress achieved in the conceptual design of a dry storage system for Atucha I spent fuels, which also has to be adequate, without modifications, for the storage of fuels from the second unity of the nuclear power station, Atucha II, that is now under construction. (author) [es

  11. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  12. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    2011-01-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  13. Radiation shielding at interim storage facility for CANDU-type nuclear spent fuel

    International Nuclear Information System (INIS)

    Mateescu, S.; Radu, M. Pantazi D.; Stanciu, M.

    1997-01-01

    Technical measures in radiological protection are taken in the interim storage facility design to ensure that, during normal operation, exposures of workers and members of public to ionizing radiation are limited to levels lower than regulatory limits. The spent fuel storage design provides for radiation exposure to be as low as reasonable achievable (ALARA principles). The evaluation of radiation shields includes the most conservative provisions: - all locations which may contain spent fuel are full; - the spent fuel has reached the maximum burnup; - the post irradiation cooling period should be the minimum reasonable; - equipment for handling contains the maximum amount of spent fuel. Radiation shields should ensure that external radiation fields do not exceed limits accepted by the Regulatory Body Module. The evaluation has been performed with two computer codes, QAD-5K and MICROSHIELD-4. (authors)

  14. Interim report spent nuclear fuel retrieval system fuel handling development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  15. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  16. Safety Consideration for a Wet Interim Spent Fuel Store at Conceptual Design Stage

    International Nuclear Information System (INIS)

    Astoux, Marion

    2014-01-01

    EDF Energy plans to build and operate two UK EPRs at the Hinkley Point C (HPC) site in Somerset, England. Spent fuel from the UK EPRs will need to be managed from the time it is discharged from the reactor until it is ultimately disposed of and this will involve storing the spent fuel for a period in the fuel building and thereafter in a dedicated interim facility until it can be emplaced within the UK Geological Disposal Facility. EDF Energy has proposed that this interim store should be located on the Hinkley Point site which is consistent with UK policy. This Interim Spent Fuel Store (ISFS) will have the capability to store for at least one hundred years the spent fuel arising from the operation of the two EPR units (sixty years operation). Therefore, specificities regarding the lifetime of the facility have to be accounted for its design. The choice of interim storage technology was considered in some depth for the HPC project and wet storage (pool) was selected. The facility is currently at conceptual design stage, although its construction will be part of main site construction phase. Safety functions and safety requirements for this storage facility have been defined, in compliance with WENRA 'Waste and Spent Fuel Storage - Safety Reference Level Report' and IAEA Specific Safety Guide no. 15 'Storage of Spent Nuclear Fuel'. EDF technical know-how, operational feedback on existing storage pools, UK regulatory context and Fukushima experience feedback have also been accounted for. Achievement of the safety functions as passively as reasonably practicable is a key issue for the design, especially in accident situations. Regarding lifetime aspects, ageing management of equipments, optimisation of the refurbishment, climate change, passivity of the facility, and long-term achievement of the safety functions are among the subjects to consider. Adequate Operational Limits and Conditions will also have to be defined, to enable the long-term achievement of the safety

  17. Transport casks help solve spent fuel interim storage problems

    International Nuclear Information System (INIS)

    Dierkes, P.; Janberg, K.; Baatz, H.; Weinhold, G.

    1980-01-01

    Transport casks can be used as storage modules, combining the inherent safety of passive cooling with the absence of secondary radioactive waste and the flexibility to build up storage capacity according to actual requirements. In the Federal Republic of Germany, transport casks are being developed as a solution to its interim storage problems. Criteria for their design and licensing are outlined. Details are given of the casks and the storage facility. Tests are illustrated. (U.K.)

  18. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2. GSFLS visit findings and evaluations. Interim report

    International Nuclear Information System (INIS)

    1978-01-01

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This report describes a global framework that evaluates spent fuel disposition requirements, influencing factors and strategies. A broad sampling of foreign governmental officials, electric utility spokesmen and nuclear power industry officials responsible for GSFLS policies, plans and programs were surveyed as to their views with respect to national and international GSFLS related considerations. The results of these GSFLS visit findings are presented herein. These findings were then evaluated in terms of technical, institutional and legal/regulatory implications. The GSFLS evaluations, in conjunction with perceived US spent fuel objectives, formed the basis for selecting a set of GSFLS strategies which are reported herein

  19. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2. GSFLS visit findings and evaluations. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This report describes a global framework that evaluates spent fuel disposition requirements, influencing factors and strategies. A broad sampling of foreign governmental officials, electric utility spokesmen and nuclear power industry officials responsible for GSFLS policies, plans and programs were surveyed as to their views with respect to national and international GSFLS related considerations. The results of these GSFLS visit findings are presented herein. These findings were then evaluated in terms of technical, institutional and legal/regulatory implications. The GSFLS evaluations, in conjunction with perceived US spent fuel objectives, formed the basis for selecting a set of GSFLS strategies which are reported herein.

  20. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    Science.gov (United States)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  1. Criteria for Corrosion Protection of Aluminum-Clad Spent Nuclear Fuel in Interim Wet Storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1999-01-01

    Storage of aluminum-clad spent nuclear fuel at the Savannah River Site (SRS) and other locations in the U. S. and around the world has been a concern over the past decade because of the long time interim storage requirements in water. Pitting corrosion of production aluminum-clad fuel in the early 1990''s at SRS was attributed to less than optimum quality water and corrective action taken has resulted in no new pitting since 1994. The knowledge gained from the corrosion surveillance testing and other investigations at SRS over the past 8 years has provided an insight into factors affecting the corrosion of aluminum in relatively high purity water. This paper reviews some of the early corrosion issues related to aluminum-clad spent fuel at SRS, including fundamentals for corrosion of aluminum alloys. It updates and summarizes the corrosion surveillance activities supporting the future storage of over 15,000 research reactor fuel assemblies from countries over the world during the next 15-20 years. Criteria are presented for providing corrosion protection for aluminum-clad spent fuel in interim storage during the next few decades while plans are developed for a more permanent disposition

  2. Cna 1 spent fuel element interim dry storage system thermal analysis

    International Nuclear Information System (INIS)

    Hilal, R. E; Garcia, J. C; Delmastro, D. F

    2006-01-01

    At the moment, the Atucha I Nuclear Power Plant (Cnea-I) located in the city of Lima, has enough room to store its spent fuel (Sf) in their two pools spent fuel until about 2015.In case of life extension a spend fuel element interim dry storage system is needed.Nucleolectrica Argentina S.A. (N A-S A) and the Comision Nacional de Energia Atomica (Cnea), have proposed different interim dry storage systems.These systems have to be evaluated in order to choose one of them.The present work's objective is the thermal analysis of one dry storage alternative for the Sf element of Cna 1.In this work a simple model was developed and used to perform the thermal calculations corresponding to the system proposed by Cnea.This system considers the store of sealed containers with 37 spent fuels in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.Fulfill the maximum cladding temperature requirement ( [es

  3. Interim Storage of Spent Nuclear Fuel before Final Disposal in Germany - Regulator's view

    International Nuclear Information System (INIS)

    Arens, G.; Goetz, Ch.; Geupel, Sandra; Gmal, B.; Mester, W.

    2014-01-01

    For spent nuclear fuel management in Germany the concept of dry interim storage in dual purpose casks before direct disposal is applied. The Federal Office for Radiation Protection (BfS) is the competent authority for licensing of interim storage facilities. The competent authority for surveillance of operation is the responsible authority of the respective federal state (Land). Currently operation licenses for storage facilities have been granted for a storage time of 40 years and are based on safety demonstrations for all safety issues as safe enclosure, shielding, sub-criticality and decay heat removal under consideration of operation conditions. In addition, transportability of the casks for the whole storage period has to be provided. Due to current delay in site selection and exploration of a disposal site, an extension of the storage time beyond 40 years could be needed. This will cause appropriate actions by the licensee and the competent authorities as well. A brief description of the regulatory base of licensing and surveillance of interim storage is given from the regulators view. Furthermore the current planning for final disposal of spent nuclear fuel and high level waste and its interconnections between storage and disposal concepts are shortly explained. Finally the relevant aspects for licensing of extended storage time beyond 40 years will be discussed. Current activities on this issue, which have been initiated by the Federal Government, will be addressed. On the regulatory side a review and amendment of the safety guideline for interim storage of spent fuel has been performed and the procedure of periodic safety review is being implemented. A guideline for implementing an ageing management programme is available in a draft version. Regarding safety of long term storage a study focussing on the identification and evaluation of long term effects as well as gaps of knowledge has been finished in 2010. A continuation and update is currently underway

  4. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.; Swan, R. [Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Rossa, R. [SCK-CEN, Mol (Belgium); Liljenfeldt, H. [SKB in Oskarshamn (Sweden)

    2015-07-01

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)

  5. Design, construction and commissioning of an interim spent fuel store for the decommissioning of Ignalina NPP, Lithuania

    International Nuclear Information System (INIS)

    Rainer Goehring; Martin Beverungen; Phil Smith

    2006-01-01

    The contract for the design, construction and commissioning (turn-key) of an interim spent fuel store facility (ISFSF) has been awarded to a Consortium of GNS Gesellschaft fuer Nuklear Service and RWE NUKEM GmbH under the lead of RWE NUKEM. The contract was signed on the 12.01.2005. The Interim Spent Fuel Storage Facility (ISFSF) is financed by the Ignalina Decommissioning Support Fund which is managed by EBRD. All spent fuel assemblies, currently stored in the spent fuel pits at the reactors plus future arising (about 18000 in total) will be loaded in the CONSTOR R RBMK1500/M2 containers, which are stored in the new facility. The initial contract has been awarded for 3500 spent fuel assemblies. (authors)

  6. Expansion of storage capacity of interim spent fuel storage (MSVP) Bohunice

    International Nuclear Information System (INIS)

    Pilat, P.; Fridrich, V.

    2005-01-01

    This article describes modifications of Interim spent fuel storage, performed with aim of storage capacity expansion, seismic stability enhancement, and overall increase of service life as well as assuring of MSVP safe operation. Uniqueness of adopted technical solutions is based upon the fact that mentioned innovations and modifications were performed without any changes, neither in ground plan nor architecture of MSVP structure. It also important to mention that all modifications were performed during continual operation of MSVP without any breaks of limits or operational regulations. Reconstruction and innovation of existing construction and technological systems of MSVP has assured required quality standard comparable with actual trends. (authors)

  7. Relative risk measure suitable for comparison of design alternatives of interim spent nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Ferjencik, M.

    1997-01-01

    Accessible reports on risk assessment of interim spent nuclear fuel storage facilities presume that only releases of radioactive substances represent undesired consequences. However, only certain part of the undesired consequences is represented by them. Many other events are connected with safety and are able to cause losses to the operating company. The following two presumptions are pronounced based on this. 1. Any event causing a disturbance of a safety function of the storage facility is an incident event. 2. Any disturbance of a safety function is an undesired consequence. If the facility safety functions are identified and if the severity of their disturbances is quantified, then it is possible to combine consequence severity quantifications and event frequencies into a risk measure. Construction and application of such a risk measure is described in this paper. The measure is shown to be a tool suitable for comparison of interim storage technology design alternatives. (author)

  8. Spent Fuel Test - Climax: technical measurements. Interim report, fiscal year 1982

    International Nuclear Information System (INIS)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1983-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted for the US Department of Energy (DOE) under the technical direction of the Lawrence Livermore National Laboratory (LLNL). Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April to May 1980, thus initiating a test with a planned 3- to 5-year fuel storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Three exchanges of spent fuel between the SFT-C and a surface storage facility furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and two previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 2-1/2 years of the test on more than 900 channels. Data continue to be acquired from the test. Some data are now available for analysis and are presented here. Highlights of activities this year include analysis of fracture data obtained during site characterization, laboratory studies of radiation effects and drilling damage in Climax granite, improved calculations of near-field heat transfer and thermomechanical response, a ventilation effects study, and further development of the data acquisition and management systems

  9. German Approach for the Transport of Spent Fuel Packages after Interim Storage

    International Nuclear Information System (INIS)

    Wille, Frank; Wolff, Dietmar; Droste, Bernhard; Voelzke, Holger

    2014-01-01

    In Germany the concept of dry interim storage of spent nuclear fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently (in 2012) revised 'Guidelines for dry cask storage of spent nuclear fuel and heat-generating waste' by the German Waste management Commission (ESK) which are very similar to the former RSK (reactor safety commission) guidelines. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties which satisfy the proofs for the compliance of the safety objectives at that time. In recent years the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report including evaluation of long term behavior of components and specific operating procedures of the package. Present research and knowledge concerning the long term behavior of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behavior of aged metal and elastomeric seals under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period (aged package). Assessment methods for the material compatibility, the behavior of fuel assemblies and the aging behavior of shielding parts are issues as well. This paper describes the state

  10. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3A. GSFLS technical analysis (appendix). Interim report

    International Nuclear Information System (INIS)

    1978-01-01

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. A technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives

  11. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3. GSFLS technical and financial analysis. Interim report

    International Nuclear Information System (INIS)

    1978-01-01

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported herein. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. A technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives

  12. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3A. GSFLS technical analysis (appendix). Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Kriger, A.

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. A technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives.

  13. Spent fuel test - Climax: technical measurements. Interim report, Fiscal Year 1983

    International Nuclear Information System (INIS)

    Patrick, W.C.; Butkovich, T.R.; Carlson, R.C.

    1984-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted as part of the Nevada Nuclear Waste Storage Investigations. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April-May 1980. The spent-fuel canisters were retrieved and the thermal sources were de-energized in March-April 1983 when test data indicated that test objectives were met during the 3-year storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. In addition to emplacement and retrieval operations, three exchanges of spent-fuel between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and three previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the 3-1/2 year duration of the test on more than 900 channels. Data acquisition from the test is now limited to instrumentation calibration and evaluation activities. Data now available for analysis are presented here. Highlights of activities this year include a campaign of in situ stress measurements, mineralogical and petrological studies of pretest core samples, microfracture analyses of laboratory irradiated cores, improved calculations of near-field heat transfer and thermomechanical response during the final months of heating as well as during a six-month cool-down period, metallurgical analyses of selected test components, and further development of the data acquisition and data management systems. 27 references, 68 figures, 10 tables

  14. Spent fuel test - Climax: technical measurements. Interim report, Fiscal Year 1983

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C.; Butkovich, T.R.; Carlson, R.C.; Durham, W.B.; Ganow, H.C.; Hage, G.L.; Majer, E.L.; Montan, D.N.; Nyholm, R.A.; Rector, N.L.

    1984-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted as part of the Nevada Nuclear Waste Storage Investigations. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April-May 1980. The spent-fuel canisters were retrieved and the thermal sources were de-energized in March-April 1983 when test data indicated that test objectives were met during the 3-year storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. In addition to emplacement and retrieval operations, three exchanges of spent-fuel between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and three previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the 3-1/2 year duration of the test on more than 900 channels. Data acquisition from the test is now limited to instrumentation calibration and evaluation activities. Data now available for analysis are presented here. Highlights of activities this year include a campaign of in situ stress measurements, mineralogical and petrological studies of pretest core samples, microfracture analyses of laboratory irradiated cores, improved calculations of near-field heat transfer and thermomechanical response during the final months of heating as well as during a six-month cool-down period, metallurgical analyses of selected test components, and further development of the data acquisition and data management systems. 27 references, 68 figures, 10 tables.

  15. Development of dual-purpose metal cask for interim storage of spent nuclear fuel (1). Outline of cask structure

    International Nuclear Information System (INIS)

    Shimizu, Masashi; Hayashi, Makoto; Kashiwakura, Jun

    2003-01-01

    Spent fuels discharged from nuclear power plants in Japan are planed to be reprocessed at the nuclear fuel recycle plant under construction at Rokkasho-mura. Since the amount of the spent fuels exceeds that of recycled fuel, the spent fuels have to be properly stored and maintained as recycle fuel resource until the beginning of the reprocessing. For that sake, interim storage installations are being constructed outside the nuclear power plants by 2010. The storage dry casks have been practically used as the interim storage in the nuclear power plants. From this reason, the storage system using the storage dry casks is promising as the interim storage installations away form the reactors, which are under discussion. In the interim storage facilities, the storage using the dry cask of the storage metal cask with business showings, having the function of transportation is now under discussion. By employing transportation and storage dual-purpose cask, the repack equipments can be exhausted, and the reliability of the interim storage installations can be increased. Hitachi, Ltd. has been developing the high reliable and economical transportation and storage dry metal cask. In this report, the outline of our developing transportation and storage dry cask is described. (author)

  16. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    International Nuclear Information System (INIS)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-01-01

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal

  17. Radiation shielding and dose rate evaluation at the interim storage facility for spent fuel from Cernavoda NPP

    International Nuclear Information System (INIS)

    Stanciu, Marcela; Mateescu, Silvia; Pantazi, Doina; Penescu, Maria

    2000-01-01

    At present studies necessary to license the Interim Storage Facility for the Spent Fuel (CANDU type) from Cernavoda NPP are developed in our country.The spent fuel from Cernavoda NPP is discharged into Spent Fuel Bay in Service Building of the plant, where it remains several years for cooling. After this period, the bundles of spent fuel are to be transferred to the Interim Storage Facility.The dry interim storage solution seems to be the most appropriate variant for Cernavoda NPP.The design of the Spent Fuel Interim Storage Facility must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility achievement. In this paper we intend to present the calculation of radiation shielding at the spent fuel interim storage facility for two technical solutions: - Concrete Monolithic Module and Concrete Storage Cask. In order to quantify the fuel composition after irradiation, the isotope generation and depletion code ORIGEN 2.1 has been used, taking into account a cooling time of 7 years and 9 years, respectively, for these two variants. The shielding calculations have been performed using the computer codes QAD-5K and MICROSHIELD-4. The evaluations refer only to gamma radiation because the resulting neutron source (from (α,n) reactions and spontaneous fission) is insignificant as compared to the gamma source. The final results consist in the minimum thickness of the shielding and the corresponding external dose rates, ensuring a design average dose rate based on national and international regulations. (authors)

  18. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  19. Korean interim storage issues and R and D activities on spent fuel management

    International Nuclear Information System (INIS)

    Ji Sup Yoon; Seung-Gy Ro; Hyun-Soo Park

    1999-01-01

    Korea has witnessed over a decade of vicissitudes in the issue of radioactive waste management due mainly to the problem of site acquisition. As the major mission of the nation at radioactive waste management programme was to provide a center for disposal of low-level radwaste and for interim storage of spent nuclear fuel from nuclear power plants, the question of site securing has had a big impact on the implement action of overall programme. The site problem has resulted in, as an aftermath, restructuring of the overall programme for radioactive waste management. Missions of NEMAC (Nuclear Environment Management Center), originally established as a subsidiary of Korea Atomic Energy Research Institute (KAERI), for the national programme was dissolved as of the end of last year. Beginning of this year, a new entity NETEC (Nuclear Environment Technology Center) as a subsidiary of KEPCO (Korea Electric Power Co.) has taken over major tasks of the past NEMAC, while the R and D work associated with the past task of NEMAC is transferred back to KAERI. This paper gives a review on the past background which has driven the radioactive waste management in Korea to the current state of the affairs, with special emphasis on R and D activities associated with spent nuclear fuel transportation, handling, and storage. (author)

  20. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Cho, Chun-Hyung; Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun

    2011-01-01

    Research highlights: → We compare the costs of wet and dry interim storage facilities for PWR spent fuel. → We use the parametric method and quotations to deduce unknown cost items. → Net present values and levelized unit prices are calculated for cost comparisons. → A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  1. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chun-Hyung, E-mail: skycho@krmc.or.kr [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-15

    Research highlights: > We compare the costs of wet and dry interim storage facilities for PWR spent fuel. > We use the parametric method and quotations to deduce unknown cost items. > Net present values and levelized unit prices are calculated for cost comparisons. > A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  2. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Directory of Open Access Journals (Sweden)

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  3. Interim storage packagings for spent fuels : how to optimize an universal design to local needs

    International Nuclear Information System (INIS)

    Konirsch, O.; Kawabata, T.; Hunter, I.

    2003-01-01

    For the last ten years, the interim storage market for spent fuels issued from Nuclear Power Plants has significantly increased all over the world: there are presently many storage projects either in Asia, in North America and in Europe. Even if there is no international regulation on that field, there is a big concern from all the nuclear industry to try to harmonise the specification for the definition of the Interim Storage Systems. One example of this harmonisation is the common and general wish to develop systems, which allow to be easily transportable either to a final repository or to a reprocessing plant. As this destination is generally not yet known, the storage system should be able to be transported all over the world. On the other hand, the specific requirement for the storage facility and its associated equipment are subject to local and/or national regulation. COGEMA LOGISTICS Group has developed two different technologies which are compatible with this principle of harmonisation: dual purpose metallic cask represented by the TN24 family and the concrete storage system NUHOMS(R). For both technologies, basic designs can be adapted to the local needs in term of performance and of national regulation. To cover all the world, COGEMA LOGISTICS Group has its own subsidiaries, in Asia, in North America and in Europe with their own autonomous engineers teams for designing, licensing, manufacturing and delivering the transport/storage products. COGEMA LOGISTICS Group is presently the leader on the dry interim storage market. The purpose of the present paper is to show how it is possible to optimise a basic existing design of a dual purpose metallic cask for a local need of storage. Taking into account the national rules for storage and the international regulation for transport, the designer shall minimise the development cost for a completely new design and maximise the capacity of the packaging regarding the allowable limits in the Nuclear Power Plant, in

  4. Cost studies concerning decontamination and dismantling. The interim store for spent fuel at Studsvik

    International Nuclear Information System (INIS)

    Sjoeblom, Rolf; Sjoeoe, Cecilia; Lindskog, Staffan; Cato, Anna

    2006-04-01

    The interim store for spent fuel at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. The interim store comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e.g. expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to calibrate against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of the interim store, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the

  5. Thermal-hydraulic experiment and analysis for interim dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yoo, Seung Hun

    2011-02-01

    The experimental and numerical studies of interim storages for nuclear spent fuels have been performed to investigate thermal-hydraulic characteristics of the dry storage systems and to propose new methodologies for the analysis and the design. Three separate researches have been performed in the present study: (a) Development of a scaling methodology and thermal-hydraulic experiment of a single spent fuel assembly simulating a dry storage cask: (b) Full-scope simulation of a dry storage cask by the use of Computational Fluid Dynamics (CFD) code: (c) Thermal-hydraulic design of a tunnel-type interim storage facility. In the first study, a scaling methodology has been developed to design a scaled-down canister. The scaling was performed in two steps. For the first step, the height of a spent fuel assembly was reduced from full height to half height. In order to consider the effect of height reduction on the natural convection, the scaling law of Ishii and Kataoka (1984) was employed. For the second step, the quantity of spent fuel assemblies was reduced from multiple assemblies to a single assembly. The scaling methodology was validated through the comparison with the experiment of the TN24P cask. The Peak Cladding Temperature (PCT), temperature gradients, and the axial and radial temperature distribution in the nondimensional forms were in good agreement with the experimental data. Based on the developed methodology, we have performed a single assembly experiment which was designed to simulate the full scale of the TN24P cask. The experimental data was compared with the CFD calculations. It turns out that their PCTs were less than the maximum allowable temperature for the fuel cladding and that the differences of their PCTs were agreed within 3 .deg. C, which was less than measurement uncertainty. In the second study, the full-scope simulations of the TN24P cask were performed by FLUENT. In order to investigate the sensitivity of the numerical and physical

  6. Concepts for the interim storage of spent fuel elements from research reactors in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Niephaus, D.; Bensch, D.; Quaassdorff, P.; Plaetzer, S.

    1997-01-01

    Research reactors have been operated in the Federal Republic of Germany since the late fifties. These are Material Test Reactors (MTR) and training, Research and Isotope Facilities of General Atomic (TRIGA). A total of seven research reactors, i.e. three TRIGA and four MTR facilities were still in operation at the beginning of 1996. Provisions to apply to the back-end of the fuel cycle are required for their continued operation and for already decommissioned plants. This was ensured until the end of the eighties by the reprocessing of spent fuel elements abroad. In view of impeding uncertainties in connection with waste management through reprocessing abroad, the development of a national back-end fuel cycle concept was commissioned by the Federal Minister of Education, Science, Research and Technology in early 1990. Development work was oriented along the lines of the disposal concept for irradiated light-water reactor fuel elements from nuclear power plants. Analogously, the fuel elements from research reactors are to be interim-stored on a long-term basis in adequately designed transport and storage casks and then be directly finally disposed without reprocessing after up to forty years of interim storage. As a first step in the development of a concept for interim storage, several sites with nuclear infrastructure were examined and assessed with respect to their suitability for interim storage. A reasonably feasible reference concept for storing the research reactor fuel elements in CASTOR MTR 2 transport and storage casks at the Ahaus interim storage facility (BZA) was evaluated and the hot cell facility and AVR store of Forschungszentrum Juelich (KFA) were proposed as an optional contingency concept for casks that cannot be repaired at Ahaus. Development work was continued with detailed studies on these two conceptual variants and the results are presented in this paper. (author)

  7. Interim spent-fuel storage options at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Thakkar, A.R.; Hylko, J.M.

    1991-01-01

    Although spent fuel can be stored safely in waterfilled pools at reactor sites, some utilities may not possess sufficient space for life-of-plant storage capability. In-pool storage capability may be increased by reracking assemblies, rod consolidation, double tiering spent-fuel racks, and by shipping spent fuel to other utility-owned facilities. Long-term on-site storage capability for spent fuel may be provided by installing (dry-type) metal casks, storage and transportation casks, concrete casks, horizontal concrete modules, modular concrete vaults, or by constructing additional (pool-type) storage installations. Experience to date has provided valuable information regarding dry-type or pool-type installations, cask handling and staffing requirements, security features, decommissioning activities, and radiological issues

  8. Nuclear cost studies for decontamination and dismantling. The interim storage for spent fuels at Studsvik

    International Nuclear Information System (INIS)

    Sjoeblom, Rolf; Sjoeoe, Cecilia; Lindskog, Staffan; Cato, Anna

    2005-05-01

    The interim store for spent fuel (FA) at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. FA comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e g expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to 'calibrate' against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of FA, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the drains; Radiological

  9. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report

    International Nuclear Information System (INIS)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.

    2008-01-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO 2 , CeO 2 , plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and

  10. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  11. Behavior of spent nuclear fuel and storage-system components in dry interim storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions

  12. The probabilistic risk analysis of external hazards of an interim storage for spent nuclear fuel in Olkiluoto

    International Nuclear Information System (INIS)

    Puukka, Tiia

    2014-01-01

    Due to natural disasters occurred in the world and the experiences perceived of the Fukushima nuclear accident, the particular knowledge of the role and influence of external hazards in the safety of interim storage of spent nuclear fuel has been emphasized. For that reason it is substantial that they are included in the probabilistic risk assessment (PRA) of the interim storage facility. This is also required by the Regulatory Guides issued by The Finnish Radiation and Nuclear Safety Authority STUK. To enhance safety culture and nuclear safety in Olkiluoto, The Finnish utility Teollisuuden Voima Oyj has recently completed an analysis of external natural (seismic events are studied as a separate analysis) and unintentional human-induced risks associated with the spent fuel pool cooling and decay heat removal systems as part of the full-scope PRA study for the interim storage of spent fuel (KPA store). The analysis had four goals to achieve: (1) to determine the definition of an initiating event in the context of the KPA store, (2) to identify all potential external hazards and hazard combinations, (3) to perform a qualitative screening analysis based on frequency-strength analysis and detailed plant responses analysis and (4) to model the hazards passed the screening analysis so that model can be used as a risk analysis tool in the risk informed decision making and operating procedures. The assessment carried out included the analysis of operation procedures of decay heat removal, the study of external hazards related initiating events included in the PRA of the OL1 and OL2 nuclear power plants and their dependencies on the initiating events of the KPA store. All external hazards related initiating events were modeled using fault tree linking method. The main result and conclusion of this study was that using the screening analysis, initiating events caused by external hazards that could lead to leakage of the spent fuel pools or that could pose a threat to the

  13. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    Energy Technology Data Exchange (ETDEWEB)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Klennert, Lindsay A.; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively

  14. Scheme of higher-density storage of spent nuclear fuel in Chernobyl NPP interim storage facility no. 1

    International Nuclear Information System (INIS)

    Britan, P.M.

    2008-01-01

    On 29. March 2000 the Cabinet of Ministers of Ukraine issued a decree prescribing that the last operating unit of Chernobyl NPP be shut down before its design lifetime expiry. In accordance with the Contract concluded on 14 June 1999 between the National Energy-generating Company 'Energoatom' and the Consortium of Framatome, Campenon Bernard-SGE and Bouygues, in order to store the spent ChNPP fuel a new interim dry storage facility (ISF-2) for spent ChNPP fuel would be built. Currently the spent nuclear fuel (spent fuel assemblies - SFAs) is stored in reactor cooling pools and in the reactors on Units 1, 2, 3, as well as in the wet Interim Storage Facility (ISF-1). Taking into account the expected delay with the commissioning of ISF-2, and in connection with the scheduled activities to build the New Safe Confinement (including the taking-down of the existing ventilation stack of ChNPP Units 3 and 4) and the expiry of the design operation life of Units 1 and 2, it is expedient to remove the nuclear fuel from Units 1, 2 and 3. This is essential to improve nuclear safety and ensure that the schedule of construction of the New Safe Confinement is met. The design capacity of ISF-1 (17 800 SFAs) is insufficient to store all SFAs (21 284) currently on ChNPP. A technically feasible option that has been applied on other RBMK plants is denser storage of spent nuclear fuel in the cooling ponds of the existing ISF-1. The purpose of the proposed modifications is to introduce changes to the ISF-1 design supported by necessary justifications required by the Ukrainian codes with the objective of enabling the storage of additional SFAs in the existing storage space (cooling pools). The need for the modification is caused by the requirement to remove nuclear fuel from the ChNPP units as soon as possible, before the work begins to decommission these units, as well as to create safe conditions for the construction of the New Safe Confinement over the existing Shelter Unit. (author)

  15. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  16. Study on uncertainty evaluation system for the safety evaluation of interim spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyeon; Shin, Myeong Won; Rhy, Seok Jin; Cho, Dong Keon; Park, Dong Hwan [Kyunghee Univ., Seoul (Korea, Republic of); Cheong, Beom Jin [Minstry of Science and Technology, Gwacheon (Korea, Republic of)

    1998-03-15

    The main objective os to develop a technical standards for the facility operation of the interm, spent fuel storage facility and to develop a draft for the technical criteria to be legislated. The another objective os to define a uncertainty evaluation system for burn up credit application in criticality analysis and to investigate an applicability of this topic for future regulatory activity. Investigate a status of art for the operational criteria of spent fuel interm wet storage. Collect relevant laws, decree, notices and standards related to the operation of storage facility and study on the legislation system. Develop a draft of technical standards and criteria to be legislated. Define an evaluation system for the uncertainty analysis and study on the status of art in the field of criticality safety analysis. Develop an uncertainty evaluation system in criticality analysis with burnup credit and investigate an applicability as well as its benefits of this policy.

  17. Savannah River Site FY 1998 Spent Nuclear Fuel Interim Management Plan

    International Nuclear Information System (INIS)

    Dupont, M.E.

    1998-01-01

    This document has been prepared to present in one place the near and long-term plans for safe management of Savannah River Site (SRS) spent nuclear fuel inventories until final disposition has been identified and implemented. The activities described are consistent with FY 1998 Annual Operational Plan guidance and with the December 1997 SRS Accelerated Cleanup Plan update. Summarized are highlights, key decision dates, and baseline assumptions of this plan

  18. An information management system for a spent nuclear fuel interim storage facility

    International Nuclear Information System (INIS)

    Horak, K.; Giles, T.; Finch, R.; Jow, H.N.; Chiu, H.L.

    2010-01-01

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  19. An information management system for a spent nuclear fuel interim storage facility.

    Energy Technology Data Exchange (ETDEWEB)

    Finch, Robert J.; Chiu, Hsien-Lang (Taiwan Power Co., Taipei, 10016 Taiwan); Giles, Todd; Horak, Karl Emanuel; Jow, Hong-Nian (Jow International, Kirkland, WA)

    2010-12-01

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  20. Spent fuel test-climax: technical measurements interim report, FY 1980

    International Nuclear Information System (INIS)

    Carlson, R.C.; Patrick, W.C.; Wilder, D.G.; Brough, W.G.; Montan, D.N.; Harben, P.E.; Ballou, L.B.; Heard, H.C.

    1980-01-01

    The Spent Fuel Test--Climax (SFT-C), a test of the retrievable geologic storage of spent fuel assemblies from an operating commercial power reactor, is under way at the Nevada Test Site of the US Department of Energy. Although the main thrust of the project is a demonstration of the feasibility of packaging, handling, storing, and retrieving the highly radioactive fuel assemblies, over 800 data channels have been installed to monitor the response of the rock to the heat and radiation produced by the fuel assemblies and to distinguish in that response the effect due to heat alone. Temperatures in the test array are tracking well with thermal modeling calculations performed before the test was started. The fuel assemblies have been in place since May 1980. The canisters have passed through skin temperature maxima of about 145 0 C and are currently declining in temperature. Evidence is emerging that the thermomechanical response of the rock surrounding the SFT-C is strongly affected by fractures and other discontinuities inthe rock. Most of the effort to date has been in project construction, design, and installation of the instrumentation. Although the data are available in raw form for verification purposes, the data are not as yet in a suitable form for detailed analyses. Work continues on the data management aspects of the project and in continued monitoring of the test

  1. Water Quality Analysis Study Pond and Interim Storage for Spent Fuel

    International Nuclear Information System (INIS)

    Dyah Sulistyani R; Husen Zamroni; Sudiyati

    2007-01-01

    Purification system of Storage facility of spent fuel which there is in Indonesia is integrated purification system. Reservoir pond of fuel contains approximately 995 m 3 demin water and in pond equipped with some of reservoir racks of spent fuel which must always avoid from factor-factor causing corrosion. In process of this purification system, water impurity which has been activation and also which is not is activation before will filtered and catch by passing of ion exchange so that will reduce conductivity and fuel coolant water activity. Water quality pond and canals links must fulfill specifications, among other: degree of acidity (pH) primary cooling water ranges from 5.5 and 6.5 ; its conductivity 1 - 8 μ S/cm, content analysis CI 0.03 - 0.06 ppm and NO 3 0.1 - 0.2 ppm, radionuclide activity Cs 137 742 Bq/l and Co 60 657 Bq/l and the temperature be kept of less than 40℃ to avoid from corrosion speed. (author)

  2. Spent fuel test - Climax: technical measurements. Interim report, fiscal year 1981

    International Nuclear Information System (INIS)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1982-01-01

    The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test

  3. Spent fuel test - Climax: technical measurements. Interim report, fiscal year 1981

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1982-04-30

    The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test.

  4. Criticality and shielding calculations of an interim dry storage system for the spent fuel from Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Silva, M

    2006-01-01

    The Atucha I Nuclear Power Plant (CNA-I) has enough room to store its spent fuel (SF) in damp in its two pool houses until the middle of 2015.Before that date there is the need to have an interim dry storage system for spent fuel that would make possible to empty at least one of the pools, whether to keep the plant operating if its useful life is extended, or to be able to empty the reactor core in case of decommissioning.Nucleolectrica Argentina S.A. (NA-SA) and the Comision Nacional de Energia Atomica (CNEA), due to their joint responsibility in the management of the SF, have proposed interim dry storage systems.These systems have to be evaluated in order to choose one of them by the end of 2006.In this work the Monte Carlo code MCNP was used to make the criticality and shielding calculations corresponding to the model proposed by CNEA.This model suggests the store of sealed containers with 36 or 37 SF in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.The results of the criticality calculations indicates that the solutions of SF proposed have widely fulfilled the requirements of subcriticality, even in supposed extreme accidental situations.Regarding the transference cask, the SF dose rate estimations allow us to make a feedback for the design aiming to the geometry and shielding improvements.Regarding the store modules, thicknesses ranges of concrete walls are suggested in order to fulfill the dose requirements stated by the Autoridad Regulatoria Nuclear Argentina [es

  5. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Khan, A.; Pattantyus, P.

    1999-01-01

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  6. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Pattantyus, P.

    1998-01-01

    The current status of the Canadian Spent Fuel Management is described. This includes wet and dry interim storage, transportation issues and future plans regarding final disposal based on deep underground emplacement in stable granite rock. Extension of wet interim storage facilities is not planned, as dry storage technologies have found wide acceptance. (author)

  7. Simulation of interim spent fuel storage system with discrete event model

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Song, Ki Chan; Lee, Jae Sol; Park, Hyun Soo

    1989-01-01

    This paper describes dynamic simulation of the spent fuel storage system which is described by statistical discrete event models. It visualizes flow and queue of system over time, assesses the operational performance of the system activities and establishes the system components and streams. It gives information on system organization and operation policy with reference to the design. System was tested and analyzed over a number of critical parameters to establish the optimal system. Workforce schedule and resources with long processing time dominate process. A combination of two workforce shifts a day and two cooling pits gives the optimal solution of storage system. Discrete system simulation is an useful tool to get information on optimal design and operation of the storage system. (Author)

  8. Interim report on safety assessment of spent fuel disposal TILA-96

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.

    1996-12-01

    The TILA-96 study, a continuation and update of the TVO-92 safety analysis for Finnish radioactive waste disposal, confirms that the planned system for spent fuel disposal fulfills the proposed safety criteria. Provided that no major disruptive event hits the repository, initially intact copper canisters preserve their integrity for millions of years and no significant amount of radioactive substances will ever escape from the repository. Impacts of potential canister failures have been analysed employing conservative assumptions, models and data. In the case of single canister failures, the results show that the margin to the proposed regulatory criteria is more than three orders of magnitude in the dose rate and more than four orders of magnitude in the release rates into the biosphere. Even in the extreme cases, where all 1500 canisters are assumed to be initially defective or to disappear simultaneously at 10 000 years in the worst possible location in the repository, all the proposed safety criteria would be passed. When realistic modelling and data are used in the consequence analyses, the results show negligible releases and doses. (refs.)

  9. Interim report on safety assessment of spent fuel disposal TILA-96

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T.; Nordman, H. [VTT Energy, Espoo (Finland)

    1996-12-01

    The TILA-96 study, a continuation and update of the TVO-92 safety analysis for Finnish radioactive waste disposal, confirms that the planned system for spent fuel disposal fulfills the proposed safety criteria. Provided that no major disruptive event hits the repository, initially intact copper canisters preserve their integrity for millions of years and no significant amount of radioactive substances will ever escape from the repository. Impacts of potential canister failures have been analysed employing conservative assumptions, models and data. In the case of single canister failures, the results show that the margin to the proposed regulatory criteria is more than three orders of magnitude in the dose rate and more than four orders of magnitude in the release rates into the biosphere. Even in the extreme cases, where all 1500 canisters are assumed to be initially defective or to disappear simultaneously at 10 000 years in the worst possible location in the repository, all the proposed safety criteria would be passed. When realistic modelling and data are used in the consequence analyses, the results show negligible releases and doses. (refs.).

  10. Safety aspects of long-term dry interim storage of Type B spent fuel and high-level transport casks

    International Nuclear Information System (INIS)

    Wolff, D.; Probst, U.; Voelzke, H.; Droste, B.; Roedel, R.

    2004-01-01

    Based on the German decision to minimise transport of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities several on-site storage facilities were licensed until the end of 2003. Because of the large amount of Type B(U) transport casks which are going to be used for long-term interim storage the question of time-limited Type B(U) licence maintenance during the storage period of up to 40 years has been discussed under different aspects. This paper describes present technical aspects of the discussion. A main aspect of qualification of transport casks for interim storage is the long-term behaviour of the metallic seal-lid system. Here we present results from current long-term experimental tests with metallic 'Helicoflex' seals in which pool water is enclosed. This series of tests has been performed by the Federal Institute for Materials Research and Testing (BAM) on behalf of the Federal Office for Radiation Protection (BfS) since 2001. Finally, the paper presents a German concept for an exchange of experience, know-how and state-of-the-art between authorities and technical experts with regard to cask dispatch in nuclear facilities. BAM has taken over a central role in this so-called 'coordinating institution for cask dispatching information' ('KOBAF') which entails management of an online database of cask-specific documents and a technical working group meeting twice a year. The goal is to keep comparable technical standards for all nuclear sites and storage facilities which are going to load and dispatch casks of the same or similar types under the responsibility of different German state governments for the coming decades. (author)

  11. Safety aspects of long-term dry interim storage of type-B spent fuel and HLW transport casks

    International Nuclear Information System (INIS)

    Wolff, D.; Probst, U.; Voelzke, H.; Droste, B.; Roedel, R.

    2004-01-01

    Based on the German decision to minimise transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities several on-site storage facilities have been licensed till the end of 2003. Because of the large amount of type-B transport casks which are going to be used for long-term interim storage the question of time limited type-B license maintenance during the storage period of up to 40 years has been discussed under different aspects. This paper describes present technical aspects of the discussion. A main aspect of transport cask qualification for interim storage is the long-term behaviour of the metallic seal lid system. Concerning this results from current experimental long-term tests with metallic ''Helicoflex''-seals in which pool water is enclosed are presented. The test series has been performed by the Federal Institute for Materials Research and Testing (BAM) on behalf of the Federal Office for Radiation Protection (BfS) since 2001. Finally, the paper presents a German concept for an authorities' and technical experts' exchange of experience, know-how and state of the art referring to cask dispatch in nuclear facilities. BAM has taken over a central role in this so-called ''co-ordinating institution for cask dispatching information'' (''KOBAF'') which contains an online data base and a technical working group meeting twice a year. The goal is to keep comparable technical standards for all nuclear sites and storage facilities which are going to load and dispatch casks of the same or similar types under the responsibility of different German state governments for the next decades

  12. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1986-12-01

    This document is the third annual report on plans for providing Federal Interim Storage (FIS) capacity. References are made to the first and second annual reports, as necessary. Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. A generic description of the approach that the Department plans to follow in deploying FIS facilities is also described

  13. Implementation plan for deployment of Federal Interim Storage facilities for commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1985-01-01

    This document is the second annual report on plans for providing Federal Interim Storage (FIS) capacity. References are made to the first annual report as necessary (DOE/RW-0003, 1984). Background factors and aspects that were considered in the development of this deployment plan and activities and interactions considered to be required to implement an FIS program are discussed. The generic approach that the Department plans to follow in deploying FIS facilities is also described

  14. A process of spent nuclear fuel treatment with the interim storage of TRU by use amidic extractants

    International Nuclear Information System (INIS)

    Tachimori, Shoichi; Suzuki, Shinichi; Sasaki, Yuji

    2001-01-01

    A new chemical process, ARTIST process, is proposed for the treatment of spent nuclear fuel. The main concept of the ARTIST process is to recover and stock separately all actinides, uranium and a mixture of transuranics, and to dispose fission products. The process composed of two main steps, a uranium exclusive isolation and a total recovery of transuranium elements (TRU); which copes with the nuclear non-proliferation measures, and additional processes. Both actinide products are solidified by calcination and allowed to the interim storage for future utilization. These separations are achieved by use of amidic extractants in accord with the CHON principle. The technical feasibility of the ARTIST process was explained by the experimental results of both the branched-alkyl monoamides in extracting uranium and suppressing the extraction of tetravalent actinides due to the steric effect and the diglycolic amide in thorough extraction of all TRU by tridentate coordination. When these TRU are requested to put into reactors, LWR or FBR, for power generation or the Accelerator-Driven System (ADS) for transmutation, lanthanides are to be removed from TRU by utilizing a soft nitrogen donor ligand. (author)

  15. Interim nuclear spent fuel storage facility - From complete refusal to public acceptance

    International Nuclear Information System (INIS)

    Kacena, Michal

    1998-01-01

    Full text: As usual in P.R., there was a complicated, politically sensitive situation we had to face at the beginning and it wasn't easy to create the right P.R. programme with the right targets: CEZ needed a new storage facility for the nuclear spent fuel from its two NPPs - Dukovany and Temelin. Firstly, CEZ preferred to build an on-site facility for the Dukovany NPP to last until the year 2004; secondly, a facility for the Temelin NPP several years later. But the Czech Government decided to limit Dukovany's storage capacity during a public discussion in 1992. Therefore, at the end of 1993, CEZ started the site selection process for a central storage facility targeted at ten regions in the country. In P.R. we decided on two main goals: 1. To gain public acceptance of a central storage facility at least at one site, and hopefully at more. 2. To change public opinion (especially around the Dukovany NPP) in order to create the proper atmosphere for changing the government's decision to limit storage capacity. We wanted to prove that we could choose the fight technical and economical solution without political limits. This obviously presented a challenge as it would be problematic for CEZ to be very visible in the campaign: We wanted people to know that the government had made a bad decision, but we also had to make it clear that our objections were based not on questions of momentary corporate advantage but instead on solid technical grounds. Most would only see self interest. We wanted to show them the facts. Of course, some times it wasn't easy to hit both targets at the same time. There was a lot of hard work in the middle. We gained new experience and we learned a lot trying to get public confidence in nuclear safety, in our company's reliability and in some local profits for a storage site: Firstly none of those regions was excited by the idea o a storage facility in its backyard. Most of them were very strongly and actively against it and did not want to

  16. Pre-conceptual study on the review framework for the radiation shielding safety of the PWR spent fuel cask interim storage in Korea

    International Nuclear Information System (INIS)

    Kim, Byeong-Soo; Jeong, Jae-Hak; Jeong, Chan-Woo

    2006-01-01

    In Korea, 20 nuclear power plants are in operation and lots of spent fuels are on the onsite storage. The onsite storage capacity in Korea is supposed to be full around at the year of 2016 and interim storage facilities could be considered to be constructed before 2016. A review framework to evaluate the radiation shielding safety of the interim storage facilities is developed in this study. It includes acceptance criteria, review procedures and activities of independent analyses. A case study is performed to apply the review framework. Modeling the review reference storage, evaluating the source terms and calculating the photon fluxes are performed. It is shown that the application of the review framework could satisfy the regulatory demand that would arise in the near future in the review area of the radiation shielding safety of the interim storage in Korea. (author)

  17. Gamma dose rate calculations for conceptual design of a shield system for spent fuel interim dry storage in CNA 1

    International Nuclear Information System (INIS)

    Blanco, A; Gomez S

    2012-01-01

    After completing the rearrangement of the Spent Fuel Elements (SFE) into a compact arrangement in the two storage water pools, Atucha Nuclear Reactor 1 (ANR 1) will leave free position for the wet storage of the SFE discharged until December 2014. Even, in two possible scenarios, such as extending operation from 2015 or the cessation of operation after that date, it will be necessary to empty the interim storage water pools transferring the SFE to a temporary dry storage system. Because the law 25.018 'Management of Radioactive Wastes' implies for the first scenario - operation beyond 2015 - that Nucleoelectrica Argentina S.A. will still be in charge of the dry storage system and for the second - the cessation of operation after 2015 - the National Commission of Atomic Energy (CNEA) will be in charge by the National Management Program of Radioactive Wastes, the interim dry storage system of SNF is an issue of common interest which justifies go forward together. For that purpose and in accordance with the criticality and shielding calculations relevant to the project, in this paper we present the dose rate calculations for shielding conceptual design of a system for dry interim storage of the SFE of ANR 1. The specifications includes that the designed system must be suitable without modification for the SFE of the ANR 2. The results for the calculation of the photon dose rate, in touch and at one meter far, for the Transport Module and the Container of the SFE, are presented, which are required and controlled by the National Regulatory Authority (NRA) and the International Atomic Energy Agency (IAEA). It was used the SAS4 module of SCALE5.1 system and MCNP5. As a design tool for the photon shielding in order to meet current standards for allowable dose rates, a radial and axial parametric analysis were developed based on the thickness of lead of the Transport Module. The results were compared and verified between the two computing systems. Before this

  18. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  19. Consultation Report. Consultation under the Environmental Act sixth chapter 4 paragraph for interim storage, encapsulation and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    2010-09-01

    This consultation report is an appendix to the Environmental Impact Assessment (EIA) which in turn is an appendix to SKB's application under the Environmental Code for the continued operation of CLAB (Central interim storage for spent Nuclear Fuel, located on the Simpevarp Peninsula in Oskarshamn municipality), to build the encapsulation plant and operate it integrated with CLAB and to construct and operate the disposal facility in Soederviken at Forsmark in Oesthammar municipality, and SKB's application for a license under the Nuclear Activities Act to construct and operate the disposal facility at Forsmark. The aim of the consultation report is to give an overall picture of the consultations

  20. Conditioning of spent fuel for interim and final storage in the pilot conditioning plant (PKA) at Gorleben

    International Nuclear Information System (INIS)

    Lahr, H.; Willax, H.O.; Spilker, H.

    1999-01-01

    In 1994, due to the change of the nuclear law in Germany, the concept of direct final disposal for spent fuel was developed as an equivalent alternative to the waste management with reprocessing. Since 1979, tests for the direct final disposal of spent fuel have been conducted in Germany. In 1985, the State and the utilities came to an agreement to develop this concept of waste management to technical maturity. Gesellschaft fuer Nuklear-Service (GNS) was commissioned by the utilities with the following tasks: to develop and test components with regard to conditioning technology, to construct and operate the pilot conditioning plant (PKA), and to develop casks suitable for final disposal. Since 1990, the construction of the PKA has taken place at the Brennelementlager Gorleben site. The PKA has been designed as a multipurpose facility and can thus fulfil various tasks within the framework of the conditioning and management of spent fuel assemblies and radioactive waste. The pilot character of the plant allows for development and testing in the field of spent fuel assembly conditioning. The objectives of the PKA may be summarized as follows: to condition spent fuel assemblies, to reload spent fuel assemblies and waste packages, to condition radioactive waste, and to do maintenance work on transport and storage casks as well as on waste packages. Currently, the buildings of the PKA are constructed and the technical facilities are installed. The plant will be ready for service in the middle of 1999. It is the first plant of its kind in the world. (author)

  1. Intermodal transportation of spent fuel

    International Nuclear Information System (INIS)

    Elder, H.K.

    1983-09-01

    Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate

  2. Near surface spent fuel storage: environmental issues

    International Nuclear Information System (INIS)

    Nelson, I.C.; Shipler, D.B.; McKee, R.W.; Glenn, R.D.

    1979-01-01

    Interim storage of spent fuel appears inevitable because of the lack of reprocessing plants and spent fuel repositories. This paper examines the environmental issues potentially associated with management of spent fuel before disposal or reprocessing in a reference scenario. The radiological impacts of spent fuel storage are limited to low-level releases of noble gases and iodine. Water needed for water basin storage of spent fuel and transportation accidents are considered; the need to minimize the distance travelled is pointed out. Resource commitments for construction of the storage facilities are analyzed

  3. Management and storage of spent fuel from CEA research reactors

    International Nuclear Information System (INIS)

    Merchie, F.

    1996-01-01

    CEA research reactors and their interim spent fuel storage facilities are described. Long-term solutions for spent fuel storage problems, involving wet storage at PEGASE or dry storage at CASCAD, are outlined in some detail. (author)

  4. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  5. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  6. Overview on spent fuel management strategies

    International Nuclear Information System (INIS)

    Dyck, P.

    2002-01-01

    This paper presents an overview on spent fuel management strategies which range from reprocessing to interim storage in a centralised facility followed by final disposal in a repository. In either case, more spent fuel storage capacity (wet or dry, at-reactor or away-from-reactor, national or regional) is required as spent fuel is continuously accumulated while most countries prefer to defer their decision to choose between these two strategies. (author)

  7. Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

  8. Techniques for laser processing, assay, and examination of spent fuel

    International Nuclear Information System (INIS)

    Gray, J.H.; Mitchell, R.C.; Rogell, M.L.

    1981-11-01

    Fuel examination studies were performed which have application to interim spent fuel storage. These studies were in three areas, i.e., laser drilling and rewelding demonstration, nondestructive assay techniques survey, and fuel examination techniques survey

  9. Spent fuels program

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1983-01-01

    The goal of this task is to support the Domestic Spent Fuel Storage Program through studies involving the transport of spent fuel. A catalog was developed to provide authoritative, timely, and accessible transportation information for persons involved in the transport of irradiated reactor fuel. The catalog, drafted and submitted to the Transportation Technology Center, Sandia National Laboratories, for their review and approval, covers such topics as federal, state, and local regulations, spent fuel characteristics, cask characteristics, transportation costs, and emergency response information

  10. Calculation of radiation exposure of the environment of interim storage facilities for the dry storage of spent fuel in dual-purpose casks

    Energy Technology Data Exchange (ETDEWEB)

    Wortmann, B.; Stratmann, W. [STEAG Encotec GmbH, Essen (Germany)

    2004-07-01

    Acceptance problems in the public concerning the transport of spent nuclear fuel elements and a new political objective of the Federal Government have forced the German utilities to embark on on-site interim storage projects for the temporary storage of spent nuclear fuel elements. STEAG encotec GmbH, Essen, Germany, was awarded contracts for the conceptual planning including necessary shielding calculations for the majority of the 13 nuclear sites which opted for the dry storage concept. The capacity of the storage facilities ranges from 80 to 100 casks, according to the storage needs of the plants. The average dose rate at the surface of each cask was limited to 0.5 mSv/h, independent of the type of radiation. These new buildings should not significantly increase the exposure of the public to radiation already originating from the existing nuclear power plant. The layout of the storage building therefore has to ensure that additional target values of 10-20 iSv/y are not exceeded. These very low target values as well as the requirement to avoid high mechanical impacts to the casks in case of external events led to a thickness of walls and ceilings of between 1.2 m and 1.3 m. To remove the decay heat from the casks by natural convection sufficient cross sections of the air inlet and outlet ducts are required.

  11. Spent nuclear fuel sampling strategy

    International Nuclear Information System (INIS)

    Bergmann, D.W.

    1995-01-01

    This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation

  12. The study of the installation of spent fuel interim storage facility from safety aspect point of view

    International Nuclear Information System (INIS)

    Djunaidi, Prayogo S.

    1999-01-01

    The installation of the ISFSF of the RSG-GAS has been come a cureneed, since the RSG-GAS has been operating for more than 10 years. The spent fuel stored in the reactor storage pool in creasing from time to time and therefore a long time storage is needed until the decommissioning of the reactor. The safety aspect related to the installation of the ISFSF has been studied, but the most important aspect are prevention of criticality of the spen fuel in the storage. The radiation dose must be less than that has been recommended by ICRP and the release of the radioactive material must be avoided . In this paper one of the safety aspects i.e. the radiological aspect is described, while the other aspects are referenced to safety analysis report of the facility. From the calculation it can be seen that in accident condition the total radiation dose received by the handling operator is 1.06 mSv and 1.6 mSv resulted from Kr-85 and 1-131. This is lower than the limitation recommended by the ICRP No. 60.1990. Verification for other safety aspect of the facility in still needed

  13. Spent fuel characterization for the commercial waste and spent fuel packaging program

    International Nuclear Information System (INIS)

    Fish, R.L.; Davis, R.B.; Pasupathi, V.; Klingensmith, R.W.

    1980-03-01

    This document presents the rationale for spent fuel characterization and provides a detailed description of the characterization examinations. Pretest characterization examinations provide quantitative and qualitative descriptions of spent fuel assemblies and rods in their irradiated conditions prior to disposal testing. This information is essential in evaluating any subsequent changes that occur during disposal demonstration and laboratory tests. Interim examinations and post-test characterization will be used to identify fuel rod degradation mechanisms and quantify degradation kinetics. The nature and behavior of the spent fuel degradation will be defined in terms of mathematical rate equations from these and laboratory tests and incorporated into a spent fuel performance prediction model. Thus, spent fuel characterization is an essential activity in the development of a performance model to be used in evaluating the ability of spent fuel to meet specific waste acceptance criteria and in evaluating incentives for modification of the spent fuel assemblies for long-term disposal purposes

  14. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, A., E-mail: afavalli@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Schwalbach, P. [European Commission, DG Energy, Euratom Safeguards Luxemburg, Luxemburg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Tobin, S.J.; Trellue, H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Vaccaro, S. [European Commission, DG Energy, Euratom Safeguards Luxemburg, Luxemburg (Luxembourg)

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute {sup 137}Cs count rate and the {sup 154}Eu/{sup 137}Cs, {sup 134}Cs/{sup 137}Cs, {sup 106}Ru/{sup 137}Cs, and {sup 144}Ce/{sup 137}Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  15. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Science.gov (United States)

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  16. Cost studies concerning decontamination and dismantling. The interim store for spent fuel at Studsvik; Kaerntekniska kostnadsstudier avseende dekontaminering och nedlaeggning. Mellanfoervaret foer anvaent kaernbraensle i Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeblom, Rolf; Sjoeoe, Cecilia [Tekedo AB, Nykoeping (Sweden); Lindskog, Staffan; Cato, Anna [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2006-04-15

    The interim store for spent fuel at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. The interim store comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e.g. expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to calibrate against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of the interim store, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the

  17. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Enos, David George [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  18. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  19. Cost Sensitivity Analysis for Consolidated Interim Storage of Spent Fuel: Evaluating the Effect of Economic Environment Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cumberland, Riley M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Kent Alan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jarrell, Joshua J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joseph, III, Robert Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    This report evaluates how the economic environment (i.e., discount rate, inflation rate, escalation rate) can impact previously estimated differences in lifecycle costs between an integrated waste management system with an interim storage facility (ISF) and a similar system without an ISF.

  20. Spent fuel management

    International Nuclear Information System (INIS)

    2005-01-01

    The production of nuclear electricity results in the generation of spent fuel that requires safe, secure and efficient management. Appropriate management of the resulting spent fuel is a key issue for the steady and sustainable growth of nuclear energy. Currently about 10,000 tonnes heavy metal (HM) of spent fuel are unloaded every year from nuclear power reactors worldwide, of which 8,500 t HM need to be stored (after accounting for reprocessed fuel). This is the largest continuous source of civil radioactive material generated, and needs to be managed appropriately. Member States have referred to storage periods of 100 years and even beyond, and as storage quantities and durations extend, new challenges arise in the institutional as well as in the technical area. The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs

  1. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2002-01-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO 2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO 2 dissolution determined from electrochemical experiments with 238 Pu doped UO 2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO 2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with α doped UO 2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO 2 / water interfaces under He 2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO 2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of

  2. Seal performance of thermal aged metal gasket of dual purpose metal cask for interim spent fuel storage after external impact load

    International Nuclear Information System (INIS)

    Takeshi Yokoyama; Masami Kato; Satoshi Itooka

    2005-01-01

    As for interim storage for spent nuclear fuels using dual purpose dry metal cask in Japan, we recognize one of the important technical issues that there is a possibility for the cask with degraded metal gasket during storage to apply to transportation. In our study until 2003 focused on degradation of important components for the cask safety performance during storage and application to transportation, for metal gasket, we conducted property tests for degradation and influence of lid movement on seal performance, and furthermore verification tests. From the results, we developed the method to evaluate leak rate from lid with degraded metal gasket at accidents during transportation and in addition, we found as follows: Lid would hardly move and leak rate would not increase seriously during fire event. Leak rate from lid with degraded metal gasket could be evaluated by using results of leak rate trend depending on horizontal displacement of lid by external impact load. So, with regard to influence of lid movement on seal performance, we conducted additional test for extending horizontal displacement in lid moving in 2004. In addition, seal performance was discussed from the results, both previous and latest test. (authors)

  3. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  4. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  5. Spent fuel storage and isolation

    International Nuclear Information System (INIS)

    Bensky, M.S.; Kurzeka, W.J.; Bauer, A.A.; Carr, J.A.; Matthews, S.C.

    1979-02-01

    The principal spent fuel activities conducted within the commercial waste and spent fuel within the Commercial Waste and Spent Fuel Packaging Program are: simulated near-surface (drywell) storage demonstrations at Hanford and the Nevada Test Site; surface (sealed storage cask) and drywell demonstrations at the Nevada Test Site; and spent fuel receiving and packaging facility conceptual design. These investigations are described

  6. Spent fuel management of NPPs in Argentina

    International Nuclear Information System (INIS)

    Alvarez, D.E.; Lee Gonzalez, H.M.

    2010-01-01

    There are two Nuclear Power Plants in operation in Argentina: 'Atucha I' (unique PHWR design) in operation since 1974, and 'Embalse' (typical Candu reactor) which started operation in 1984. Both NPPs are operated by 'Nucleoelectrica Argentina S.A' which is responsible for the management and interim storage of spent fuel till the end of the operative life of the plants. A third NPP, 'Atucha II' is under construction, with a similar design of Atucha I. The legislative framework establishes that after final shutdown of a NPP the spent fuel will be transferred to the 'National Atomic Energy Commission', which is also responsible for the decommissioning of the Plants. In Atucha I, the spent fuel is stored underwater, until another option is implemented meanwhile in Embalse the spent fuel is stored during six years in pools and then it is moved to a dry storage. A decision about the fuel cycle back-end strategy will be taken before year 2030. (authors)

  7. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  8. Spent Fuel Working Group Report

    International Nuclear Information System (INIS)

    O'Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary's initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group's Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities

  9. Research reactor spent fuel management in Argentina

    International Nuclear Information System (INIS)

    Audero, M.A.; Bevilacqua, A.M.; Mehlich, A.M.; Novara, O.

    2002-01-01

    The research reactor spent fuel (RRSF) management strategy will be presented as well as the interim storage experience. Currently, low-enriched uranium RRSF is in wet interim storage either at reactor site or away from reactor site in a centralized storage facility. High-enriched uranium RRSF from the centralized storage facility has been sent to the USA in the framework of the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The strategy for the management of the RRSF could implement the encapsulation for interim dry storage. As an alternative to encapsulation for dry storage some conditioning processes are being studied which include decladding, isotopic dilution, oxidation and immobilization. The immobilized material will be suitable for final disposal. (author)

  10. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  11. Guidebook on spent fuel storage

    International Nuclear Information System (INIS)

    1984-01-01

    The Guidebook summarizes the experience and information in various areas related to spent fuel storage: technological aspects, the transport of spent fuel, economical, regulatory and institutional aspects, international safeguards, evaluation criteria for the selection of a specific spent fuel storage concept, international cooperation on spent fuel storage. The last part of the Guidebook presents specific problems on the spent fuel storage in the United Kingdom, Sweden, USSR, USA, Federal Republic of Germany and Switzerland

  12. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  13. Comparison of wet and dry storage of spent nuclear fuels

    International Nuclear Information System (INIS)

    Soederman, E.

    1998-06-01

    Technologies for interim storage of spent nuclear fuels are reviewed. Pros and cons of wet and dry storage are discussed. No conclusions about preferences for one or the other technologies can be made

  14. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  15. Spent Fuel in Chile

    International Nuclear Information System (INIS)

    López Lizana, F.

    2015-01-01

    The government has made a complete and serious study of many different aspects and possible road maps for nuclear electric power with strong emphasis on safety and energy independence. In the study, the chapter of SFM has not been a relevant issue at this early stage due to the fact that it has been left for later implementation stage. This paper deals with the options Chile might consider in managing its Spent Fuel taking into account foreign experience and factors related to safety, economics, public acceptance and possible novel approaches in spent fuel treatment. The country’s distinctiveness and past experience in this area taking into account that Chile has two research reactors which will have an influence in the design of the Spent Fuel option. (author)

  16. Spent fuel receipt scenarios study

    International Nuclear Information System (INIS)

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs

  17. Nuclear cost studies for decontamination and dismantling. The interim storage for spent fuels at Studsvik.; Kaerntekniska kostnadsstudier avseende dekontaminering och nedlaeggning. Mellanfoervaret foer anvaent kaernbraensle (FA) i Studsvik.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeblom, Rolf; Sjoeoe, Cecilia [Tekedo AB, Nykoeping (Sweden); Lindskog, Staffan; Cato, Anna [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2005-05-01

    The interim store for spent fuel (FA) at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. FA comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e g expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to 'calibrate' against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of FA, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the drains

  18. Radwaste management and spent fuel management in JAVYS

    International Nuclear Information System (INIS)

    Bozik, M.; Strazovec, R.

    2010-01-01

    In this work authors present radwaste management and spent fuel management in JAVYS, a.s. Processing of radioactive wastes (RAW) in the Bohunice Radioactive Waste Processing Center and surface storage of RAW in National RAW Repository as well as Interim Spent fuel storage in Jaslovske Bohunice are presented.

  19. Arrival condition of spent fuel after storage, handling, and transportation

    International Nuclear Information System (INIS)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables

  20. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs

  1. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs.

  2. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    Ollila, K.

    1993-11-01

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  3. Final environmental statement: US Spent Fuel Policy. Storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    1980-05-01

    In October 1977, the Department of Energy (DOE) announced a Spent Fuel Storage Policy for nuclear power reactors. Under this policy, as approved by the President, US utilities will be given the opportunity to deliver spent fuel to US Government custody in exchange for payment of a fee. The US Government will also be prepared to accept a limited amount of spent fuel from foreign sources when such action would contribute to meeting nonproliferation goals. Under the new policy, spent fuel transferred to the US Government will be delivered - at user expense - to a US Government-approved site. Foreign spent fuel would be stored in Interim Spent Fuel Storage (ISFS) facilities with domestic fuel. This volume of the environmental impact statement includes effects associated with implementing or not implementing the Spent Fuel Storage Policy for the foreign fuels. The analyses show that there are no substantial radiological health impacts whether the policy is implemented or not. In no case considered does the population dose commitment exceed 0.000006% of the world population dose commitment from natural radiation sources over the period analyzed. Full implementation of the US offer to accept a limited amount of foreign spent fuel for storage provides the greatest benefits for US nonproliferation policy. Acceptance of lesser quantities of foreign spent fuel in the US or less US support of foreign spent fuel storage abroad provides some nonproliferation benefits, but at a significantly lower level than full implementation of the offer. Not implementing the policy in regard to foreign spent fuel will be least productive in the context of US nonproliferation objectives. The remainder of the summary provides a brief description of the options that are evaluated, the facilities involved in these options, and the environmental impacts, including nonproliferation considerations, associated with each option

  4. Comparison of concepts for independent spent fuel storage facilities

    International Nuclear Information System (INIS)

    Held, Ch.; Hintermayer, H.P.

    1978-01-01

    The design and the construction costs of independent spent fuel storage facilities show significant differences, reflecting the fuel receiving rate (during the lifetime of the power plant or within a very short period), the individual national policies and the design requirements in those countries. Major incremental construction expenditures for storage facilities originate from the capacity and the type of the facilities (casks or buildings), the method of fuel cooling (water or air), from the different design of buildings, the redundancy of equipment, an elaborate quality assurance program, and a single or multipurpose design (i.e. interim or long-term storage of spent fuel, interim storage of high level waste after fuel storage). The specific costs of different designs vary by a factor of 30 to 60 which might in the high case increase the nuclear generating costs remarkably. The paper also discusses the effect of spent fuel storage on fuel cycle alternatives with reprocessing or disposal of spent fuel. (author)

  5. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    International Nuclear Information System (INIS)

    Mays, Gary T.; Belles, Randy; Cetiner, Mustafa Sacit; Howard, Rob L.; Liu, Cheng; Mueller, Don; Omitaomu, Olufemi A.; Peterson, Steven K.; Scaglione, John M.

    2012-01-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  6. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Sacit M [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  7. Consultation Report. Consultation under the Environmental Act sixth chapter 4 paragraph for interim storage, encapsulation and disposal of spent nuclear fuel; Samraadsredogoerelse. Samraad enligt miljoebalkens 6:e kapitel 4:e paragraf avseende mellanlagring, inkapsling och slutfoervaring av anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    This consultation report is an appendix to the Environmental Impact Assessment (EIA) which in turn is an appendix to SKB's application under the Environmental Code for the continued operation of CLAB (Central interim storage for spent Nuclear Fuel, located on the Simpevarp Peninsula in Oskarshamn municipality), to build the encapsulation plant and operate it integrated with CLAB and to construct and operate the disposal facility in Soederviken at Forsmark in Oesthammar municipality, and SKB's application for a license under the Nuclear Activities Act to construct and operate the disposal facility at Forsmark. The aim of the consultation report is to give an overall picture of the consultations.

  8. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  9. Actual Situation and Further Development of Interim Storage of Spent Nuclear Fuel (SNF) and Highly Active Waste (HAW) from the View of the Competent Authority in the Field of section 6

    International Nuclear Information System (INIS)

    Gastl, Christoph; Drobniewski, Christian

    2014-01-01

    According to the German atomic law the storage of nuclear material has to be licensed following section 6 by the competent authority in this field, which is the Federal Office for Radiation Protection. Interim storage in its actual form started in 2002 in the interim storage facility next to the NPP Lingen. Since this time each NPP erected its own storage facilities and three central storage facilities have been built. The spent nuclear fuel (SNF) and the vitrified high level waste (HAW) will be stored there until final disposal. The time span from now on to the point of opening of a final disposal facility shall be presented from a regulators point of view, divided into different phase which could spread from years to decades. Special attention shall be drawn on the different aspects influencing the licensing process and its duration at the moment and in future including the capabilities of the competent authority. (authors)

  10. Cost analysis methodology of spent fuel storage

    International Nuclear Information System (INIS)

    1994-01-01

    The report deals with the cost analysis of interim spent fuel storage; however, it is not intended either to give a detailed cost analysis or to compare the costs of the different options. This report provides a methodology for calculating the costs of different options for interim storage of the spent fuel produced in the reactor cores. Different technical features and storage options (dry and wet, away from reactor and at reactor) are considered and the factors affecting all options defined. The major cost categories are analysed. Then the net present value of each option is calculated and the levelized cost determined. Finally, a sensitivity analysis is conducted taking into account the uncertainty in the different cost estimates. Examples of current storage practices in some countries are included in the Appendices, with description of the most relevant technical and economic aspects. 16 figs, 14 tabs

  11. Safety assessment for spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs

  12. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation

    International Nuclear Information System (INIS)

    1976-05-01

    Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives

  13. The spent fuel safety experiment

    International Nuclear Information System (INIS)

    Harmms, G.A.; Davis, F.J.; Ford, J.T.

    1995-01-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The integral reactivity worth of the spent fuel can be assessed by comparing the measured delayed critical fuel loading with and without spent fuel. An analytical effort to model the experiments and anticipate the core loadings required to yield the delayed critical conditions runs in parallel with the experimental effort

  14. Spent fuel reprocessing method

    International Nuclear Information System (INIS)

    Shoji, Hirokazu; Mizuguchi, Koji; Kobayashi, Tsuguyuki.

    1996-01-01

    Spent oxide fuels containing oxides of uranium and transuranium elements are dismantled and sheared, then oxide fuels are reduced into metals of uranium and transuranium elements in a molten salt with or without mechanical removal of coatings. The reduced metals of uranium and transuranium elements and the molten salts are subjected to phase separation. From the metals of uranium and transuranium elements subjected to phase separation, uranium is separated to a solid cathode and transuranium elements are separated to a cadmium cathode by an electrolytic method. Molten salts deposited together with uranium to the solid cathode, and uranium and transuranium elements deposited to the cadmium cathode are distilled to remove deposited molten salts and cadmium. As a result, TRU oxides (solid) such as UO 2 , Pu 2 in spent fuels can be reduced to U and TRU by a high temperature metallurgical method not using an aqueous solution to separate them in the form of metal from other ingredients, and further, metal fuels can be obtained through an injection molding step depending on the purpose. (N.H.)

  15. The Spent Fuel Management in Finland and Modifications of Spent Fuel Storages

    International Nuclear Information System (INIS)

    Maaranen, Paeivi

    2014-01-01

    The objective of this presentation is to share the Finnish regulator's (STUK) experiences on regulatory oversight of the enlargement of a spent fuel interim storage. An overview of the current situation of spent fuel management in Finland will also be given. In addition, the planned modifications and requirements set for spent fuel storages due to the Fukushima accident are discussed. In Finland, there are four operating reactors, one under construction and two reactors that have a Council of State's Decision-in-Principle to proceed with the planning and licensing of a new reactor. In Olkiluoto, the two operating ASEA-Atom BWR units and the Areva EPR under construction have a shared interim storage for the spent fuel. The storage was designed and constructed in 1980's. The option for enlarging the storage was foreseen in the original design. Considering three operating units to produce their spent fuel and the final disposal to begin in 2022, extra space in the spent fuel storage is estimated to be needed in around 2014. The operator decided to double the number of the spent fuel pools of the storage and the construction began in 2010. The capacity of the enlarged spent fuel storage is considered to be sufficient for the three Olkiluoto units. The enlargement of the interim storage was included in Olkiluoto NPP 1 and 2 operating license. The licensing of the enlargement was conducted as a major plant modification. The operator needed the approval from STUK to conduct the enlargement. Prior to the construction of this modification, the operator was required to submit the similar documentation as needed for applying for the construction license of a nuclear facility. When conducting changes in an old nuclear facility, the new safety requirements have to be followed. The major challenge in the designing the enlargement of the spent fuel storage was to modify it to withstand a large airplane crash. The operator chose to cover the pools with protecting slabs and also to

  16. Spent fuel storage requirements

    International Nuclear Information System (INIS)

    Fletcher, J.

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration (EIA) for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor (AR) capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as currently licensed by the Nuclear Regulatory Commission (NRC). This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000. The reference case is bounded by two alternative cases. One, a current capacity case, assumes that only those pool storage capacity increases currently planned by the operating utilities will occur. The second, or maximum capacity with transshipment case, assumes maximum development of pool storage capacity as described above and also assumes no constraints on transshipment of spent fuel among pools of reactors of like type (BWR, PWR) within a given utility. In all cases, a full core discharge capability (full core reserve or FCR) is assumed to be maintained for each reactor, except that only one FCR is maintained when two reactors share a common pool. For the current AR capacity case the indicated storage requirements in the year 2000 are indicated to be 18,190 MTU; for the maximum capacity with transshipment case they are 11,320 MTU

  17. Spent fuel transportation problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.A.

    1977-01-01

    In this paper, problems of transportation of nuclear spent fuel to reprocessing plants are discussed. The solutions proposed are directed toward the achievement of the transportation as economic and safe as possible. The increase of the nuclear power plants number in the USSR and the great distances between these plants and the reprocessing plants involve an intensification of the spent fuel transportation. Higher burnup and holdup time reduction cause the necessity of more bulky casks. In this connection, the economic problems become still more important. One of the ways of the problem solution is the development of rational and cheap cask designs. Also, the enforcement in the world of the environmental and personnel health protection requires to increase the transportation reliability and safety. The paper summarizes safe transportation rules with clarifying the following questions: the increase of the transport unit quantity of the spent fuel; rational shipment organization that minimizes vehicle turnover cycle duration; development of the reliable calculation methods to determine strength, thermal conditions and nuclear safety of transport packaging as applied to the vehicles of high capacity; maximum unification of vehicles, calculation methods and documents; and cask testing on models and in pilot scale on specific test rigs to assure that they meet the international safe fuel shipment rules. Besides, some considerations on the choice and use of structural materials for casks are given, and problems of manufacturing such casks from uranium and lead are considered, as well as problems of the development of fireproof shells, control instrumentation, vehicles decontamination, etc. All the problems are considered from the point of view of normal and accidental shipment conditions. Conclusions are presented [ru

  18. How Canada has controlled the spent fuel storage problem

    International Nuclear Information System (INIS)

    Mosey, D.

    1985-01-01

    A report on the irradiated fuel storage workshop held in Toronto in October 1984. In particular Canada's attitude to spent fuel is examined. The basic fuel cycle has been envisaged as running from mining and refining, through interim storage to final geologic disposal, with reprocessing as an option to be considered when it looks economically attractive. (U.K.)

  19. Nondestructive verification and assay systems for spent fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Phillips, J.R.; Bosler, G.E.; Eccleston, G.W.; Halbig, J.K.; Hatcher, C.R.; Hsue, S.T.

    1982-04-01

    This is an interim report of a study concerning the potential application of nondestructive measurements on irradiated light-water-reactor (LWR) fuels at spent-fuel storage facilities. It describes nondestructive measurement techniques and instruments that can provide useful data for more effective in-plant nuclear materials management, better safeguards and criticality safety, and more efficient storage of spent LWR fuel. In particular, several nondestructive measurement devices are already available so that utilities can implement new fuel-management and storage technologies for better use of existing spent-fuel storage capacity. The design of an engineered prototype in-plant spent-fuel measurement system is approx. 80% complete. This system would support improved spent-fuel storage and also efficient fissile recovery if spent-fuel reprocessing becomes a reality

  20. Spent fuel management in South Africa

    International Nuclear Information System (INIS)

    Bredell, P.J.; Stott, A.K.

    1998-01-01

    Eskom, the South African utility, operates one of the largest electricity networks in the world. However, only 6% of the South African generating capacity is nuclear; the remainder is coal fired and hydroelectric. The nuclear component consists of the Koeberg Nuclear Power Plant, comprising two French supplied PWRs of 920 MWe each, situated approximately 45 kilometres from cape Town. Construction started in 1976 and the two reactors reached criticality in 1984 and 1985 respectively. South Africa also has an Oak Ridge type research reactor, called SAFARI, operated by the South African Atomic Energy Corporation (AEC) at their Pelindaba site near Pretoria. This research reactor was commissioned in 1965, and has been in operation ever since. South Africa has a National Radioactive Waste Disposal facility called Vaalputs, some 600 km north of Cape Town. The facility, operated by AEC, is presently licensed only for the disposal of low and intermediate radioactive level wastes. Vaalputs offers unique features as a potential interim spent fuel storage and final disposal site, such as favorable geology (granite), low seismicity, low population density, remoteness from industrial centres and and conditions. Therefore, this site has been investigated by the AEC as a potential interim spent fuel storage site, but has not yet been licensed for this purpose. Hence, all spent fuel is currently stored on the two sites at Koeberg and Pelindaba respectively. The spent fuel storage pools at Koeberg have recently been enlarged to accommodate the lifetime spent fuel arisings of the plant. Since late 1997, the Safari spent fuel is stored in a pipe storage facility, constructed away from the reactor on the Pelindaba site. (author)

  1. Safety aspects of dry spent fuel storage and spent fuel management

    International Nuclear Information System (INIS)

    Botsch, W.; Smalian, S.; Hinterding, P.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    The storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. In Germany dual purpose casks for SF or HLW are used for safe transportation and interim storage. TUV and BAM, who work as independent experts for the competent authorities, present the storage licensing process including sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields (authors)

  2. Spent fuel: prediction model development

    International Nuclear Information System (INIS)

    Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.

    1979-07-01

    The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained

  3. Safe transport of spent fuels after long-term storage

    International Nuclear Information System (INIS)

    Aritomi, M.; Takeda, T.; Ozaki, S.

    2004-01-01

    Considering the scarcity of energy resources in Japan, a nuclear energy policy pertaining to the spent fuel storage has been adopted. The nuclear energy policy sets the rules that spent fuels generated from LWRs shall be reprocessed and that plutonium and unburnt uranium shall be recovered and reused. For this purpose, a reprocessing plant, which has a reprocessing capability of 800 ton/yr, is under construction at Rokkasho Village. However, it is anticipated that the start of its operation will be delayed. In addition, the amount of spent fuels generated from nuclear power plants exceeds its reprocessing capability. Therefore, the establishment of storage technology for spent fuels becomes an urgent problem in Japan in order to continue smoothly the LWR operations. In this paper, the background of nuclear power generation in Japan is introduced at first. Next, the policy of spent fuel storage in Japan and circumstances surrounding the spent fuels in Japan are mentioned. Furthermore, the major subjects for discussions to settle and improve 'Standard for Safety Design and Inspection of Metal Casks for Spent Fuel Interim Storage Facility' in Atomic Energy Society of Japan are discussed, such as the integrity of fuel cladding, basket, shielding material and metal gasket for the long term storage for achieving safe transport of spent fuels after the storage. Finally, solutions to the unsolved subject in establishing the spent fuel interim storage technologies ase introduced accordingly

  4. Spent fuel management in India

    International Nuclear Information System (INIS)

    Balu, K.

    1998-01-01

    From Indian point of view, the spent fuel management by the reprocessing and plutonium recycle option is considered to be a superior and an inevitable option. The nuclear energy programme in Indian envisages three stages of implementation involving installation of thermal reactors in the first phase followed by recycling of plutonium from reprocessed fuel in fast breeder reactors and in the third phase utilization of its large thorium reserves in reactor system based on U-233-Th cycle. The Indian programme for Waste Management envisages disposal of low and intermediate level radioactive waste in near surface disposal facilities and deep geological disposal for high level and alpha bearing wastes. A Waste Immobilization Plant (WHIP), employing metallic melter for HLW vitrification is operational at Tarapur. Two more WIPs are being set up at Kalpakkam and Tarapur. A Solid waste Storage Surveillance Facility (SSSF) is also set up for interim storage of vitrified HLW. Site investigations are in progress for selecting site for ultimate disposal in igneous rock formations. R and D works is taken up on partitioning of HLW. Solvent extraction and extraction chromatographic studies are in progress. Presently emphasis is on separation of heat generating short lived nuclides like strontium and alpha emitters. (author)

  5. Fabrication of the Spent Fuel Elements Rack on the ISFSF

    International Nuclear Information System (INIS)

    Slamet Wiranto; Sigit Purwanto; Safrul, H.

    2004-01-01

    The Interim Storage For Spent Fuel elements (ISFSF) was designed to be able to store the 33 spent fuel element racks with capacity of 1386 of normal spent fuel elements and 2 racks for 36 of defected ones. Until now, only 9 out of 33 racks of normal spent fuel elements and lout of 2 racks of defected fuel elements are available. Five of them have suffered from corrosion so that they are not fulfilled the requirements of the spent fuel elements storage anymore. Meanwhile, the spent fuel storage racks in the reactor are almost full. It means, the transfer of the spent fuel from reactor spent fuel storage to the ISFSF pool are compulsory needed. Therefore, it is necessary to provide the new ISFSF spent fuel storage rack with better material and fabrication method than the old one. In this design all materials consist of SS 316 L that are welded with the Argon TIG-welding. Right now there has been one new spent fuel storage rack fabricated with capacity of 42 normal spent fuel elements. (author)

  6. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  7. NAC-1 cask dose rate calculations for LWR spent fuel

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1999-01-01

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation

  8. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Kurokawa, Hideaki; Kumagaya, Naomi; Oda, Masashi; Matsuda, Masami; Maruyama, Hiromi; Yamanaka, Tsuneyasu.

    1997-01-01

    The structure of a spent fuel storage rack is determined by the material, thickness, size of square cylindrical tubes (the gap between spent fuel assemblies and the square cylindrical tubes) and pitch of the arrangement (the gap between each of the square cylindrical tubes). In the present invention, the thickness and the pitch of the arrangement of the square tubes are optimized while evaluating subcriticality. Namely, when the sum of the thickness of the water gap at the outer side (the pitch of arrangement of the cylindrical tubes) and the thickness of the cylindrical tubes is made constant, the storage rack is formed by determining the thickness of the cylindrical tubes which is smaller than the optimum value among the combination of the thickness of the water gap at the outer side and that of the cylindrical tube under the effective multiplication factor to be performed. Then, the weight of the rack can be reduced, and the burden of the load on the bottom of the pool can be reduced. Further, the amount of the constitutional materials of the rack itself can be reduced thereby capable of reducing the cost for the materials of the rack. (T.M.)

  9. WWER spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Bower, C C; Lettington, C [GEC Alsthom Engineering Systems Ltd., Whetstone (United Kingdom)

    1994-12-31

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs.

  10. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Bower, C.C.; Lettington, C.

    1994-01-01

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  11. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  12. Spent fuel management fee methodology and computer code user's manual

    International Nuclear Information System (INIS)

    Engel, R.L.; White, M.K.

    1982-01-01

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively

  13. Containing method for spent fuel and spent fuel containing vessel

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Hanada, Yoshine.

    1996-01-01

    Upon containing spent fuels, a metal vessel main body and a support spacer having fuel containing holes are provided. The support spacer is disposed in the inside of the metal vessel main body, and spent fuel assemblies are loaded in the fuel containing holes. Then, a lid is welded at the opening of the metal vessel main body to provide a sealing state. In this state, heat released from the spent fuel assemblies is transferred to the wall of the metal vessel main body via the support spacer. Since the support spacer has a greater heat conductivity than gases, heat of the spent fuel assemblies tends to be released to the outside, thereby capable of removing heat of the spent fuel assemblies effectively. In addition, since the surfaces of the spent fuel assemblies are in contact with the inner surface of the fuel containing holes of the support spacer, impact-resistance and earthquake-resistance are ensured, and radiation from the spent fuel assemblies is decayed by passing through the layer of the support spacer. (T.M.)

  14. Corrosion surveillance in spent fuel storage pools

    International Nuclear Information System (INIS)

    Howell, J.P.

    1996-01-01

    In mid-1991, corrosion of aluminum-clad spent nuclear fuel was observed in the light-water filled basins at the Savannah River site. A corrosion surveillance program was initiated in the P, K, L-Reactor basins and in the Receiving Basin for Offsite Fuels (RBOF). This program verified the aggressive nature of the pitting corrosion and provided recommendations for changes in basin operations to permit extended longer term interim storage. The changes were implemented during 1994--1996 and have resulted in significantly improved basin water quality with conductivity in the 1--3 microS/cm range. Under these improved conditions, no new pitting has been observed over the last three years. This paper describes the corrosion surveillance program at SRS and what has been learned about the corrosion of aluminum-clad in spent fuel storage pools

  15. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Mineo, H.; Nomura, Y.; Sakamoto, K.

    1998-01-01

    In Japan 52 commercial nuclear power units are now operated, and the total power generation capacity is about 45 GWe. The cumulative amount of spent fuel arising is about 13,500 tU as of March 1997. Spent fuel is reprocessed, and recovered nuclear materials are to be recycled in LWRs and FBRs. In February 1997 short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, backend measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away from reactor sites, considering the increasing amount of spent fuel arising. Research and development on spent fuel storage has been carried out, particularly on dry storage technology. Fundamental studies are also conducted to implement the burnup credit into the criticality safety design of storage and transportation casks. Rokkasho reprocessing plant is being constructed towards its commencement in 2003, and Pu utilization in LWRs will be started in 1999. Research and development of future recycling technology are also continued for the establishment of nuclear fuel cycle based on FBRs and LWRs. (author)

  16. Spent fuel management overview: a global perspective

    International Nuclear Information System (INIS)

    Bonne, A.; Crijns, M.J.; Dyck, P.H.; Fukuda, K.; Mourogov, V.M.

    1999-01-01

    The paper defines the main spent fuel management strategies and options, highlights the challenges for spent fuel storage and gives an overview of the regional balances of spent fuel storage capacity and spent fuel arising. The relevant IAEA activities in the area of spent fuel management are summarised. (author)

  17. Final environmental impact statement: US Spent Fuel Policy. Charge for spent fuel storage

    International Nuclear Information System (INIS)

    1980-05-01

    The United States Government policy relating to nuclear fuel reprocessing, which was announced by President Carter on April 7, 1977, provides for an indefinite deferral of reprocessing, and thus commits light water reactor (LWR) plants to a once-through fuel cycle during that indefinite period. In a subsequent action implementing that policy, the Department of Energy (DOE) on October 18, 1977 announced a spent fuel policy which would enable domestic, and on a selective basis, foreign utilities to deliver spent fuel to the US Government for interim storage and final geologic disposal, and pay the Government a fee for such services. This volume addresses itself to whether the fee charged for these services, by its level or its structure, would have any effect on the environmental impacts of implementing the Spent Fuel Policy itself. This volume thus analyzes the fee and various alternatives to determine the interaction between the fee and the degree of participation by domestic utilities and foreign countries in the proposed spent fuel program for implementing the Spent Fuel Policy. It also analyzes the effect, if any, of the fee on the growth of nuclear power

  18. Spent fuel treatment in Japan

    International Nuclear Information System (INIS)

    Takahashi, K.

    1999-01-01

    In Japan, 52 nuclear power reactors are operating with a total power generation capacity of 45 GWe. The cumulative amount of spent fuel arising, as of March 1998, is about 14,700 W. Spent fuel is reprocessed and recovered nuclear materials are to be recycled in LWRs and FBRs. Pu utilization in LWRs will commence in 1999. In January 1997, short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of the reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, back-end measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away-from-reactor sites, considering the increasing amount of spent fuel arising. Valuable experience was been accumulated at the Tokai Reprocessing Plant (TRP), from the start of hot operation in 1977 up to now. The role of the TRP will be changed from an operation-oriented to a more R and D oriented facility, when PNC is reorganized into the new organization JNC. The Rokkasho reprocessing plant is under construction and is expected to commence operation in 2003. R and D of future recycling technologies is also continued for the establishment of a nuclear fuel cycle based on FBRs and LWRs. (author)

  19. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  20. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Guay, P.; Bonnet, C.

    1991-01-01

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  1. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  2. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  3. Experiments for evaluation of corrosion to develop storage criteria for interim dry storage of aluminum-alloy clad spent nuclear fuel

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.; Murphy, T.H.

    1994-01-01

    The technical bases for specification of limits to environmental exposure conditions to avoid excessive degradation are being developed for storage criteria for dry storage of highly-enriched, aluminum-clad spent nuclear fuels owned by the US Department of Energy. Corrosion of the aluminum cladding is a limiting degradation mechanism (occurs at lowest temperature) for aluminum exposed to an environment containing water vapor. Attendant radiation fields of the fuels can lead to production of nitric acid in the presence of air and water vapor and would exacerbate the corrosion of aluminum by lowering the pH of the water solution. Laboratory-scale specimens are being exposed to various conditions inside an autoclave facility to measure the corrosion of the fuel matrix and cladding materials through weight change measurements and metallurgical analysis. In addition, electrochemical corrosion tests are being performed to supplement the autoclave testing by measuring differences in the general corrosion and pitting corrosion behavior of the aluminum cladding alloys and the aluminum-uranium fuel materials in water solutions

  4. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  5. Report on the long-term interim storage of spent fuels and vitrified wastes; Gutachten zur Langzeitzwischenlagerung abgebrannter Brennelemente und verglaster Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-12-03

    Long-term interim storage for several hundred years is an option on the management of high-level radioactive wastes. The decision on final disposal is postponed. Worldwide the long-term interim storage is not part of the disposal concept - a geologic final repository is the ultimate aim. Using today's technology the interim storage over several hundred years is supposed to be uncritical. Aging management is the most important challenge - the renewal of the facilities would have to be expected. Possible social change and their impact on the interim storage problem has not been considered.

  6. Spent fuel element storage facility

    International Nuclear Information System (INIS)

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  7. Assessment of spent fuel cooling

    International Nuclear Information System (INIS)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.

    1997-01-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD's work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools

  8. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  9. Survey of wet and dry spent fuel storage

    International Nuclear Information System (INIS)

    1999-07-01

    Spent fuel storage is one of the important stages in the nuclear fuel cycle and stands among the most vital challenges for countries operating nuclear power plants. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and for coordinating and encouraging closer co-operation among Member States. Spent fuel management is recognized as a high priority IAEA activity. In 1997, the annual spent fuel arising from all types of power reactors worldwide amounted to about 10,500 tonnes heavy metal (t HM). The total amount of spent fuel accumulated worldwide at the end of 1997 was about 200,000 t HM of which about 130,000 t HM of spent fuel is presently being stored in at-reactor (AR) or away-from-reactor (AFR) storage facilities awaiting either reprocessing or final disposal and 70,000 t HM has been reprocessed. Projections indicate that the cumulative amount generated by 2010 may surpass 340,000 t HM and by the year 2015 395,000 t HM. Part of the spent fuel will be reprocessed and some countries took the option to dispose their spent fuel in a repository. Most countries with nuclear programmes are using the deferral of a decision approach, a 'wait and see' strategy with interim storage, which provides the ability to monitor the storage continuously and to retrieve the spent fuel later for either direct disposal or reprocessing. Some countries use different approaches for different types of fuel. Today the worldwide reprocessing capacity is only a fraction of the total spent fuel arising and since no final repository has yet been constructed, there will be an increasing demand for interim storage. The present survey contains information on the basic storage technologies and facility types, experience with wet and dry storage of spent fuel and international experience in spent fuel transport. The main aim is to provide spent fuel

  10. Method of decladding spent fuel

    International Nuclear Information System (INIS)

    Fukutome, Kazuyuki; Kitagawa, Kazuo.

    1988-01-01

    Purpose: To enable to safety and easy decladding of nuclear fuels thereby reduce the processing cost. Constitution: Upon dismantling of a spent fuel rod, the fuel rod is heated at least to such a temperature that the ductility of a fuel can is recovered, then transported by using seizing rollers, by which the fuel rod is pressurized from the outer circumference to break the nuclear fuels at the inside thereof. Then, the destructed fuels are recovered from both ends of the fuel can. With such a constitution, since the ductility of the fuel can is recovered by heating, when the fuel rod is passed through the rollers in this state, the fuel can is deformed to destroy the nuclear fuels at the inside thereof. Since the nuclear fuels are destroyed into small pieces, they can be taken out easily from both ends of the fuel can. (Kawakami, Y.)

  11. Spent fuel management in Spain

    International Nuclear Information System (INIS)

    Gonzalez, J.L.

    2002-01-01

    The spent fuel management strategy in Spain is presented. The strategy includes temporary solutions and plans for final disposal. The need for R and D including partitioning and transmutation, as well as the financial constraints are also addressed. (author)

  12. Transportation of spent MTR fuels

    International Nuclear Information System (INIS)

    Raisonnier, D.

    1997-01-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs

  13. Transportation of spent MTR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  14. An overview on the nuclear spent fuel management in Romania

    International Nuclear Information System (INIS)

    Radu, M.

    2001-01-01

    The sources of radioactive waste in Romania are users of radiation and radioactive materials in industry (including nuclear electricity generation), medicine, agriculture and research and also the processing of materials that are naturally radioactive, such as uranium ores. The different types of radioactive waste are classified into four categories of waste: excepted waste, low level waste, medium level waste and high level waste. A spent fuel management sub-programme as a part of the Radioactive Waste Management programme was initiated by the former Romanian Electricity Company (RENEL) in 1992. Within the frame of R and D of the Radioactive Waste and Spent Fuel Management Programme, the topics cover investigations, studies and research to identify the sites and the conceptual designs for a Spent Fuel Interim Storage Facility (SFISF) and also a Spent Fuel Disposal Facility (SFDF). Changes in the organization of the nuclear activities of RENEL, involving both responsibilities and financing aspects, led to interruption of the programme. The programme includes study of the main methods and the existing technologies for the design, operation and safety of an interim storage facility (including transport aspects). It also includes analysis of details on the site selection for this facility and for a spent fuel final disposal facility. The achievement of the spent fuel interim storage facility is proceeding. The results from the studies performed in the last years will permit us to prepare the feasibility study next year and the documentation required by our regulatory body for starting the process to obtain a license for a SFISF at Cernavoda. A second phase is the assessment of a long term strategy to select and adopt a proven disposal technology for spent fuel, corresponding with a selected site. The status of the work performed in the frame of this programme and also the situation of the spent fuel from research reactors are presented. (author)

  15. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-01-01

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  16. Interim results from UO2 fuel oxidation tests in air

    International Nuclear Information System (INIS)

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j.

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO 2 , fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO 2 pellets in the temperature range of 135 to 250 0 C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10 5 R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10 5 R/h gamma field. 33 refs., 51 figs., 6 tabs

  17. Calculation of radiation dose rate above water layer of Interim Spent Fuel Storage Jaslovske Bohunice by the point Kernels (VISIPLAN) and Monte Carlo (MCNP4C) methods

    International Nuclear Information System (INIS)

    Slavik, O.; Kucharova, D.; Listjak, M.; Fueloep, M.

    2008-01-01

    The aim of this paper is to evaluate maximal dose rate (DR) of gamma radiation above different configurations of reservoirs with spent nuclear fuel with cooling period 1.8 year and to compare by buildup factor method (Visiplan) and Monte Carlo simulations and to appreciate influence of scattered photons in the case of calculation of fully filled fuel transfer storage (FTS). On the ground of performed accounts it was shown, that relative contributions of photons from adjacent reservoirs are in the case buildup factor method (Visiplan) similar to Monte Carlo simulations. It means, that Visiplan can be used also for valuation of contributions of of dose rates from neighbouring reservoirs. It was shown, that calculations of DR by Visiplan are conservatively overestimated for this source of radiation and thickness of shielding approximately 2.6 - 3 times. Also following these calculations resulted, that by storage of reservoirs with cooling period 1.8 years in FTS is not needed any additional protection measures for workers against primal safety report. Calculated DR also above fully filled FTS by these reservoirs in Jaslovske Bohunice is very low on the level 0.03 μSv/h. (authors)

  18. Calculation of radiation dose rate above water layer of Interim Spent Fuel Storage Jaslovske Bohunice by the point Kernels (VISIPLAN) and Monte Carlo (MCNP4C) methods

    International Nuclear Information System (INIS)

    Slavik, O.; Kucharova, D.; Listjak, M.; Fueloep, M.

    2009-01-01

    The aim of this paper is to evaluate maximal dose rate (DR) of gamma radiation above different configurations of reservoirs with spent nuclear fuel with cooling period 1.8 year and to compare by buildup factor method (Visiplan) and Monte Carlo simulations and to appreciate influence of scattered photons in the case of calculation of fully filled fuel transfer storage (FTS). On the ground of performed accounts it was shown, that relative contributions of photons from adjacent reservoirs are in the case buildup factor method (Visiplan) similar to Monte Carlo simulations. It means, that Visiplan can be used also for valuation of contributions of of dose rates from neighbouring reservoirs. It was shown, that calculations of DR by Visiplan are conservatively overestimated for this source of radiation and thickness of shielding approximately 2.6 - 3 times. Also following these calculations resulted, that by storage of reservoirs with cooling period 1.8 years in FTS is not needed any additional protection measures for workers against primal safety report. Calculated DR also above fully filled FTS by these reservoirs in Jaslovske Bohunice is very low on the level 0.03 μSv/h. (authors)

  19. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Shirahashi, K.; Maeda, M.; Nakai, T.

    1996-01-01

    Japan has scarce energy resources and depends on foreign resources for 84% of its energy needs. Therefore, Japan has made efforts to utilize nuclear power as a key energy source since mid-1950's. Today, the nuclear energy produced from 49 nuclear power plants is responsible for about 31% of Japan's total electricity supply. The cumulative amount of spent fuel generated as of March 1995 was about 11,600 Mg U. Japan's policy of spent fuel management is to reprocess spent nuclear fuel and recycle recovered plutonium and uranium as nuclear fuel. The Tokai reprocessing plant continues stable operation keeping the annual treatment capacity or around 90 Mg U. A commercial reprocessing plant is under construction at Rokkasho, northern part of Japan. Although FBR is the principal reactor to use plutonium, LWR will be a major power source for some time and recycling of the fuel in LWRs will be prompted. (author). 3 figs

  20. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  1. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  2. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  3. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  4. Intermodal transfer of spent fuel

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Weiner, R.F.

    1991-01-01

    As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handier exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. A study of the movement of spent fuel casks through ports, including the loading and unloading of containers from cargo vessels, afforded an opportunity to estimate the radiation doses to those individuals handling the spent fuels with doses to the public along subsequent transportation routes of the fuel. A number of states require redundant inspections and for escorts over long distances on highways; thus handlers, inspectors, escort personnel, and others who are not normally classified as radiation workers may sustain doses high enough to warrant concern about occupational safety. This paper addresses the question of radiation safety for these workers. Data were obtained during, observation of the offloading of reactor spent fuel (research reactor spent fuel, in this instance) which included estimates of exposure times and distances for handlers, inspectors and other workers during offloading and overnight storage. Exposure times and distance were also for other workers, including crane operators, scale operators, security personnel and truck drivers. RADTRAN calculational models and parameter values then facilitated estimation of the dose to workers during incident-free ship-to-truck transfer of spent fuel

  5. Transport device of spent fuel

    International Nuclear Information System (INIS)

    Watanabe, Takashi.

    1976-01-01

    Object: To provide a transport device of spent fuel particularly used in a fast breeder, which can enhance accessibility to travelling mechanism portions and exchangeability thereof to facilitate maintenance in the event of failure. Structure: On a travelling floor, which has a function to shield radioactive rays, extending in a direction of transporting spent fuel and being formed with a break passing through in a direction wall thickness, a travelling body is moved along the break. The travelling body has a support rod member mounted thereon, and the support rod member is moved within the break, the support rod member having a fuel support pocket suspended therefrom. (Furukawa, Y.)

  6. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  7. Behaviour of spent fuel assemblies during extended storage

    International Nuclear Information System (INIS)

    1987-04-01

    This report is the final report of the IAEA Co-ordinated Research Programme on Behaviour of Spent Fuel Assemblies During Extended Storage (BEFAST, Phase I, 1981-86). It contains the results on wet and dry spent fuel storage technologies obtained from 11 institutes (10 countries: Austria, Canada, Czechoslovakia, Finland, German Democratic Republic, Hungary, Japan, Sweden, USA and USSR) participating in the BEFAST CRP during the time period 1981-86. Names of participating institutes and chief investigators are given. The interim spent fuel storage has been recognized as an important independent step in the nuclear fuel cycle. Due to the delay in commercial reprocessing of spent fuel in some cases it should be stored up to 30-50 years or more before reprocessing or final disposal. This programme was evaluated by all its participants and observers as very important and helpful for the nuclear community and it was decided to continue it further (1986-91) as BEFAST, Phase II

  8. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  9. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  10. Spent fuel storage requirements, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    Historical inventories of spent fuel and Department of Energy (DOE) estimates of future discharges from US commercial nuclear reactors are presented for the next 20 years, through the year 2007. The eventual needs for additional spent fuel storage capacity are estimated. These estimates are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December 1987 and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to DOE through the 1988 RW-859 data survey and by DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 12 refs., 3 figs., 28 tabs

  11. Spent fuel storage

    International Nuclear Information System (INIS)

    Huppert

    1976-01-01

    To begin with, the author explains the reasons for intermediate storage of fuel elements in nuclear power stations and in a reprocessing plant and gives the temperature and radioactivity curves of LWR fuel elements after removal from the reactor. This is followed by a description of the facilities for fuel element storage in a reprocessing plant and of their functions. Futher topics are criticality and activity control, the problem of cooling time and safety systems. (HR) [de

  12. TMI-2 spent fuel shipping

    International Nuclear Information System (INIS)

    Quinn, G.J.; Burton, H.M.

    1985-01-01

    TMI-2 failed fuel will be shipped to the Idaho National Engineering Laboratory for use in the DOE Core Examination Program. The fuel debris will be loaded into three types of canisters during defueling and dry loaded into a spent fuel shipping cask. The cask design accommodates seven canisters per cask and has two separate containment vessels with ''leaktight'' seals. Shipments are expectd to begin in early 1986

  13. Container for spent fuel assembly

    International Nuclear Information System (INIS)

    Sawai, Takeshi.

    1996-01-01

    The container of the present invention comprises a container main body having a body portion which can contain spent fuel assemblies and a lid, and heat pipes having an evaporation portion disposed along the outer surface of the spent fuel assemblies to be contained and a condensation portion exposed to the outside of the container main body. Further, the heat pipe is formed spirally at the evaporation portions so as to surround the outer circumference of the spent fuel assemblies, branched into a plurality of portions at the condensation portion, each of the branched portion of the condensation portion being exposed to the outside of the container main body, and is tightly in contact with the periphery of the slit portions disposed to the container main body. Then, since released after heat is transferred to the outside of the container main body from the evaporation portion of the heat pipe along the outer surface of the spent fuel assemblies by way of the condensation portion of the heat pipes exposed to the outside of the container main body, the efficiency of the heat transfer is extremely improved to enhance the effect of removing heat of spent fuel assemblies. Further, cooling effect is enhanced by the spiral form of the evaporation portion and the branched condensation portion. (N.H.)

  14. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plants for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  15. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de.

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the Government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plant for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  16. Spent fuel storage pool

    International Nuclear Information System (INIS)

    Murakami, Naoshi.

    1996-01-01

    Fences are disposed to a fuel exchange floor surrounding the upper surface of a fuel pool for preventing overflow of pool water. The fences comprise a plurality of flat boards arranged in parallel with each other in the longitudinal direction while being vertically inclined, and slits are disposed between the boards for looking down the pool. Further, the fences comprise wide boards and are constituted so as to be laid horizontally on the fuel exchange floor in a normal state and uprisen by means of the signals from an earthquake sensing device. Even if pool water is overflow from the fuel pool by the vibrations occurred upon earthquake and flown out to the floor of the fuel exchange floor, the overflow from the fuel exchange floor is prevented by the fences. An operator who monitors the fuel pool can observe the inside of the fuel pool through the slits formed to the fences during normal operation. The fences act as resistance against overflowing water upon occurrence of an earthquake thereby capable of reducing the overflowing amount of water due to the vibrations of pool water. The effect of preventing overflowing water can be enhanced. (N.H.)

  17. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  18. Practical experience in spent fuel management for German nuclear power plants

    International Nuclear Information System (INIS)

    Althaus, D.; Luehrmann, A.; Seepolt, R.; Springer, K.

    1999-01-01

    The paper describes the practical experience in spent fuel management gained in the past by using the traditional route of reprocessing and, since the amendment to the Atomic Law in 1994, by using also direct disposal via interim storage. (author)

  19. Spent fuel pool cleanup and stabilization

    International Nuclear Information System (INIS)

    Miller, R.L.

    1987-06-01

    Each of the plutonium production reactors at Hanford had a large water-filled spent fuel pool to provide interim storage of irradiated fuel while awaiting shipment to the separation facilities. After cessation of reactor operations the fuel was removed from the pools and the water levels were drawn down to a 5- to 10-foot depth. The pools were maintained with the water to provide shielding and radiological control. What appeared to be a straightforward project to process the water, remove the sediments from the basin, and stabilize the contamination on the floors and walls became a very complex and time consuming operation. The sediment characteristics varied from pool to pool, the ion exchange system required modification, areas of hard-pack sediments were discovered on the floors, special arrangements to handle and package high dose rate items for shipment were required, and contract problems ensued with the subcontractor. The original schedule to complete the project from preliminary engineering to final stabilization of the pools was 15 months. The actual time required was about 25 months. The original cost estimate to perform the work was $2,651,000. The actual cost of the project was $5,120,000, which included $150,000 for payment of claims to the subcontractor. This paper summarizes the experiences associated with the cleanup and radiological stabilization of the 100-B, -C, -D, and -DR spent fuel pools, and discusses a number of lessons learned items

  20. Strategies and solutions in the temporary management of spent fuel in Spain

    International Nuclear Information System (INIS)

    Martinez Abad, J. E.; Rivera, M. I.

    2009-01-01

    The basic strategy for the spent fuel and HLW management contemplated in the Sixth General Radioactive Waste Plan focused on the centralised interim storage of spent fuel, based on proved dry storage system technologies, over the time periods required until their definitive or very long term management. Specially, the solution proposed as the most suitable for the Spanish case is the construction of a centralised interim spent fuel and HLW storage facility (ATC) for which as site is being searched. Until it becomes in operation, the interim spent fuel storage will be safety performed in the NPP reracked spent fuel pools or individual ISFSI constructed in the NPP site, in those cases additional storage capacity is required. (Author) 22 refs

  1. Towards a Swedish repository for spent fuel

    International Nuclear Information System (INIS)

    Ahlstroem, P.-E.

    1997-01-01

    Nuclear power is producing electricity for the benefit of society but is also leaving radioactive residues behind. It is our responsibility to handle these residues in a safe and proper manner. The development of a system for handling spent fuel from nuclear power plants has proceeded in steps. The same is true for the actual construction of facilities and will continue to be the case for the final repository for spent fuel and other types of long-lived wastes. The primary objective in constructing the repository will be to isolate and contain the radioactive waste. In case the isolation fails for some reason the multibarrier system should retain and retard the radionuclides that might come into contact with the groundwater. A repository is now planned to be built in two steps where the first step will include deposition of about 400 canisters with spent fuel. This first step should be finished in about 20 years from now and be followed by an extensive evaluation of the results from not only this particular step but also from the development of alternative routes before deciding on how to proceed. A special facility to encapsulate the spent fuel is also required. Such an encapsulation plant is proposed to be constructed as an extension of the existing interim storage CLAB. Finding a site for the repository is a critical issue in the implementation of any repository. The siting process started a few years ago and made some progress but is by no means yet completed. It will go on at least into the early part of the next decade. When the present nuclear power plants begin to be due for retirement there should also be some facilities in place to take permanent care of the long-lived radioactive residues. Progress in siting will be a prerequisite for success in our responsibility to make progress towards a safe permanent solution of the waste issue. (orig.)

  2. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1996-03-01

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  3. Spent fuel storage at Prairie Island: January 1995 status

    International Nuclear Information System (INIS)

    Closs, J.; Kress, L.

    1995-01-01

    The disposal of spent nuclear fuel has been an issue for the US since the inception of the commercial nuclear power industry. In the past decade, it has become a critical factor in the continued operation of some nuclear power plants, including the two units at Prairie Island. As the struggles and litigation over storage alternatives wage on, spent fuel pools continue to fill and plants edge closer to premature shutdown. Due to the delays in the construction of a federal repository, many nuclear power plants have had to seek interim storage alternatives. In the case of Prairie Island, the safest and most feasible option is dry cask storage. This paper discusses the current status of the Independent Spent Fuel Storage Installation (ISFSI) Project at Prairie Island. It provides a historical background to the project, discusses the notable developments over the past year, and presents the projected plans of the Northern States Power Company (NSP) in regards to spent fuel storage

  4. Spent LWR fuel encapsulation and dry storage demonstration

    International Nuclear Information System (INIS)

    Bahorich, R.J.; Durrill, D.C.; Cross, T.E.; Unterzuber, R.

    1980-01-01

    In 1977 the Spent Fuel Handling and Packaging Program (SFHPP) was initiated by the Department of Energy to develop and test the capability to satisfactorily encapsulate typical spent fuel assemblies from commercial light-water nuclear power plants and to establish the suitability of one or more surface and near surface concepts for the interim dry storage of the encapsulated spent fuel assemblies. The E-MAD Facility at the Nevada Test Site, which is operated for the Department of Energy by the Advanced Energy Systems Division (AESD) of the Westinghouse Electric Corporation, was chosen as the location for this demonstration because of its extensive existing capabilities for handling highly radioactive components and because of the desirable site characteristics for the proposed storage concepts. This paper describes the remote operations related to the process steps of handling, encapsulating and subsequent dry storage of spent fuel in support of the Demonstration Program

  5. Spent fuel management in Spain

    International Nuclear Information System (INIS)

    Gago, J.A.; Gravalos, J.M.

    1996-01-01

    There are presently nine Light Water Reactors in operation, representing around a 34% of the overall electricity production. In the early years, a small amount of spent fuel was sent to be reprocessed, although this policy was cancelled in favor of the open cycle option. A state owned company, ENRESA, was created in 1984, which was given the mandate to manage all kinds of radioactive wastes generated in the country. Under the present scenario, a rough overall amount of 7000 tU of spent fuel will be produced during the lifetime of the plants, which will go into final disposal. (author)

  6. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  7. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  8. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  9. Paper summary inventory assessment of DOE spent nuclear fuels

    International Nuclear Information System (INIS)

    Abbott, D.G.; Bringhurst, A.R.; Fillmore, D.L.

    1994-01-01

    The U.S. Department of Energy (DOE) has determined that it will not longer reprocess its spent nuclear fuel. This decision made it necessary to manage this fuel for long-term interim storage and ultimate disposal. DOE is developing a computerized database of its spent nuclear fuel inventory. This database contains information about the fuels and the fuel storage locations. There is approximately 2,618 metric tons initial heavy metal of fuel, stored at 12 locations. For analysis in an environmental impact statement, the fuel has been divided into six categories: naval, aluminum-based, Hanford defense, graphite, commercial-type, and test and experimental. This paper provides a discussion of the development of the database, and includes summary inventory information and a brief description of the fuels

  10. Hanford spent nuclear fuel project update

    Energy Technology Data Exchange (ETDEWEB)

    Williams, N.H.

    1997-08-19

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building.

  11. Multi-purpose container technologies for spent fuel management

    International Nuclear Information System (INIS)

    2000-12-01

    The management of spent nuclear fuel is an integral part of the nuclear fuel cycle. Spent fuel management resides in the back end of the fuel cycle, and is not revenue producing as electric power generation is. It instead results in a cost associated power generation. It is a major consideration in the nuclear power industry today. Because technologies, needs and circumstances vary from country to country, there is no single, standardized approach to spent fuel management. The projected cumulative amount of spent fuel generated worldwide by 2010 will be 330 000 t HM. When reprocessing is accounted for, that amount is likely to be reduced to 215 000 t HM, which is still more than twice as much as the amount now in storage. Considering the limited capacity of at-reactor (AR) storage, various technologies are being developed for increasing storage capacities. At present, many countries are developing away-from-reactor (AFR) storage in the form of pool storage or as dry storage. Further these AFR storage systems may be at-reactor sites or away-from-reactor sites (e.g. centrally located interim storage facilities, serving several reactors). The dry storage technologies being developed are varied and include vaults, horizontal concrete modules, concrete casks, and metal casks. The review of the interim storage plans of several countries indicates that the newest approaches being pursued for spent fuel management use dual-purpose and multi-purpose containers. These containers are envisaged to hold several spent fuel assemblies, and be part of the transport, storage, and possibly geological disposal systems of an integrated spent fuel management system

  12. Characteristics of spent nuclear fuel

    International Nuclear Information System (INIS)

    Notz, K.J.

    1988-04-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will, or may, eventually be disposed of in a geological repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. This report deals with spent fuels, but for completeness, the other sources are described briefly. Detailed characterizations are required for all of these potential repository wastes. These characteristics include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. In addition, the present inventories and projected quantities of the various wastes are needed. This information has been assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. 5 refs., 3 figs., 4 tabs

  13. Worldwide spent fuel transportation logistics

    International Nuclear Information System (INIS)

    Best, R.E.; Garrison, R.F.

    1978-01-01

    This paper presents an overview of the worldwide transportation requirements for spent fuel. Included are estimates of numbers and types of shipments by mode and cask type for 1985 and the year 2000. In addition, projected capital and transportation costs are presented. For the year 1977 and prior years inclusive, there is a cumulative worldwide requirement for approximately 300 MTU of spent fuel storage at away-from-reactor (AFR) facilities. The cumulative requirements for years through 1985 are projected to be nearly 10,000 MTU, and for the years through 2000 the requirements are conservatively expected to exceed 60,000 MTU. These AFR requirements may be related directly to spent fuel transportation requirements. In total nearly 77,000 total cask shipments of spent fuel will be required between 1977 and 2000. These shipments will include truck, rail, and intermodal moves with many ocean and coastal water shipments. A limited number of shipments by air may also occur. The US fraction of these is expected to include 39,000 truck shipments and 14,000 rail shipments. European shipments to regional facilities are expected to be primarily by rail or water mode and are projected to account for 16,000 moves. Pacific basin shipments will account for 4500 moves. The remaining are from other regions. Over 400 casks will be needed to meet the transportation demands. Capital investment is expected to reach $800,000,000 in 1977 dollars. Cumulative transport costs will be a staggering $4.4 billion dollars

  14. Government--utility interaction on spent fuel disposition

    International Nuclear Information System (INIS)

    Mills, L.E.

    1978-01-01

    The question of the needs of the electrical power industry for spent fuel storage in light of the moratorium on fuel reprocessing is addressed. The author feels that since the Federal government has assumed the responsibility for spent fuel storage, it is imperative that a firm plan, program, legislation, and funding be forthcoming immediately. Designation of an existing government site with existing nuclear activities in order to expedite the establishment of a storage facility is recommended. It is felt that the timing for such a site should be ''at the earliest possible date.'' Without storage facilities being provided by the government, utilities will be forced to build storage facilities at the reactor sites. This course of action is not considered cost effective but certainly preferable to shutting down the reactors. It is emphasized that spent fuel storage must be an interim solution and certainly not a final solution to the fuel reprocessing and waste disposal aspects of nuclear technology

  15. The united kingdom's changing requirements for spent fuel storage

    International Nuclear Information System (INIS)

    Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N.

    2013-01-01

    The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK

  16. Overview of spent fuel management and problems

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Ernst, P.C.

    1998-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel worldwide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialized and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. Some projections of spent fuel inventories to the year 2006 are presented and discussed. (author)

  17. Storage of spent fuel from power reactors. 2003 conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings.

  18. Storage of spent fuel from power reactors. 2003 conference proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings

  19. Characterization plan for Hanford spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF

  20. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Morikawa, Matsuo; Uchiyama, Yuichi.

    1983-01-01

    Purpose: To improve the safety and facilitate the design by limiting the relative displacement in a storage rack. Constitution: The outer wall of a storage rack disposed in water within a fuel pool, the pool wall opposing to the storage rack and the structure between the opposing storages racks are made as a space for confining the pool water or a structure formed with a slight gap, for example, a combination of a recessed structure and a protruded structure. In such a constitution, a space for confirming the pool water is established and the pool water thus confined forms a flow resistance when the storage rack vibrates upon earthquakes, serves as a damper and significantly reduces the responsivity. Furthermore, the relative displacement in the storage rack is limited to inhibit excess earthquake forces to exert on setting bolts and rack clamping bolts of the storage rack. (Sekiya, K.)

  1. Spent fuel storage criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Amin, E M; Elmessiry, A M [National center of nuclear safety and radiation control atomic energy authority, (Egypt)

    1995-10-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs.

  2. Spent fuel storage criticality safety

    International Nuclear Information System (INIS)

    Amin, E.M.; Elmessiry, A.M.

    1995-01-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs

  3. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  4. Overview of the spent nuclear fuel project at Hanford

    International Nuclear Information System (INIS)

    Daily, J.L.

    1995-02-01

    The Spent Nuclear Fuel Project's mission at Hanford is to open-quotes Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.close quotes The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program

  5. K-Basin spent nuclear fuel characterization data report

    International Nuclear Information System (INIS)

    Abrefah, J.; Gray, W.J.; Ketner, G.L.; Marschman, S.C.; Pyecha, T.D.; Thornton, T.A.

    1995-11-01

    The spent nuclear fuel (SNF) project characterization activities will be furnishing technical data on SNF stored at the K Basins in support of a pathway for placement of a ''stabilized'' form of SNF into an interim storage facility. This report summarizes the results so far of visual inspection of the fuel samples, physical characterization (e.g., weight and immersion density measurements), metallographic examinations, and controlled atmosphere furnace testing of three fuel samples shipped from the KW Basin to the Postirradiation Testing Laboratory (PTL). Data on sludge material collected by filtering the single fuel element canister (SFEC) water are also discussed in this report

  6. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  7. International symposium on storage of spent fuel from power reactors. Book of extended synopses

    International Nuclear Information System (INIS)

    1998-11-01

    This book of extended synopses includes papers presented at the International Symposium on Storage of Spent Fuel from Power Reactors organized by IAEA and held in Vienna from 9 to 13 November 1998. It deals with the problems of spent fuel management being an outstanding stage in the nuclear fuel cycle, strategy of interim spent fuel storage, transportation and encapsulation of spent fuel elements from power reactors. Spent fuel storage facilities at reactor sites are always wet while spent fuel storage facilities away from reactor are either wet or dry including casks and vaults. Different design solutions and constructions of storage or transportation casks as well as storing facilities are presented, as well as status of spent fuel storage together with experiences achieved in a number of member states, in the frame of safety, licensing and regulating procedures

  8. International symposium on storage of spent fuel from power reactors. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This book of extended synopses includes papers presented at the International Symposium on Storage of Spent Fuel from Power Reactors organized by IAEA and held in Vienna from 9 to 13 November 1998. It deals with the problems of spent fuel management being an outstanding stage in the nuclear fuel cycle, strategy of interim spent fuel storage, transportation and encapsulation of spent fuel elements from power reactors. Spent fuel storage facilities at reactor sites are always wet while spent fuel storage facilities away from reactor are either wet or dry including casks and vaults. Different design solutions and constructions of storage or transportation casks as well as storing facilities are presented, as well as status of spent fuel storage together with experiences achieved in a number of member states, in the frame of safety, licensing and regulating procedures Refs, figs, tabs

  9. Spent fuel characterization program in Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Lloret, M.; Canencia, R.; Blanco, J.; POMAR, C.

    2010-01-01

    Jose Cabrera Nuclear Power Plant (NPP) is a 14x14 PWR reactor built in 1964 in Spain (160 MWe). The commercial operation started in 1969 and finished in 2006. During year 2009, 377 fuel assemblies from cycles 11 to 29 have been stored in 12 containers HI-STORM 100, and positioned in an Interim Spent Fuel Storage Installation built near the NPP. The spent fuel characterization and classification is a critical and complex activity that could impact all the storage process. As every container has a number of positions for damaged fuel, the loading plans and the quantity of containers depends on the total fuels classified as damaged. The classification of the spent fuel in Jose Cabrera has been performed on the basis of the Interim Staff Guidance ISG-1 from USNRC, 'Damaged Fuel'. As the storage system should assure thermal limitations, criticality control, retrievability, confinement and shielding for radioactive protection, the criteria analyzed for every spent fuel have been the existence/non existence of fuel leaks; damage that could affect the criticality analysis (as missing fuel pins) and any situation that could affect the future retrievability, as defects on the top nozzle. The first classification was performed based upon existing core records. If there were no indication of operating leakers during the concerned cycles and the structural integrity was adequate, the fuel was classified as intact or undamaged. When operating records indicated a fuel leaker, an additional inspection by ultrasonic testing of all the fuel in the concerned cycle was performed to determine the fuel leakers. If the examination results indicated that the fuel has cladding cracks, it was classified as damaged fuel without considering if it was a gross breach or a hairline crack. Additionally, it was confirmed that the water chemistry specifications for spent fuel pool has been fulfilled. Finally, a visual inspection before dry cask storage was performed and foreign particles were

  10. Spent fuel characterization program in Jose Cabrera nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, M.; Canencia, R. [Product Engineering, Enusa Industrias Avanzadas S.A., Santiago Rusinol 12, 28040 Madrid (Spain); Blanco, J.; POMAR, C. [Direction of Nuclear Generation, Gas Natural SDG, Avda. San Luis 77, 28033 Madrid (Spain)

    2010-07-01

    Jose Cabrera Nuclear Power Plant (NPP) is a 14x14 PWR reactor built in 1964 in Spain (160 MWe). The commercial operation started in 1969 and finished in 2006. During year 2009, 377 fuel assemblies from cycles 11 to 29 have been stored in 12 containers HI-STORM 100, and positioned in an Interim Spent Fuel Storage Installation built near the NPP. The spent fuel characterization and classification is a critical and complex activity that could impact all the storage process. As every container has a number of positions for damaged fuel, the loading plans and the quantity of containers depends on the total fuels classified as damaged. The classification of the spent fuel in Jose Cabrera has been performed on the basis of the Interim Staff Guidance ISG-1 from USNRC, 'Damaged Fuel'. As the storage system should assure thermal limitations, criticality control, retrievability, confinement and shielding for radioactive protection, the criteria analyzed for every spent fuel have been the existence/non existence of fuel leaks; damage that could affect the criticality analysis (as missing fuel pins) and any situation that could affect the future retrievability, as defects on the top nozzle. The first classification was performed based upon existing core records. If there were no indication of operating leakers during the concerned cycles and the structural integrity was adequate, the fuel was classified as intact or undamaged. When operating records indicated a fuel leaker, an additional inspection by ultrasonic testing of all the fuel in the concerned cycle was performed to determine the fuel leakers. If the examination results indicated that the fuel has cladding cracks, it was classified as damaged fuel without considering if it was a gross breach or a hairline crack. Additionally, it was confirmed that the water chemistry specifications for spent fuel pool has been fulfilled. Finally, a visual inspection before dry cask storage was performed and foreign particles

  11. Multinational approaches relevant to spent fuel management

    International Nuclear Information System (INIS)

    Pellaud, B.

    2007-01-01

    The storage of spent fuel is a suitable candidate for a multilateral approach, primarily at the regional level. Small countries with only a few nuclear power plants would benefit economically from large joint facilities. The storage of special nuclear materials in a few safe and secure facilities would also enhance safeguards and physical protection. However, the final disposal of spent fuel and high level radioactive waste is the best candidate for a multilateral approach. It would offer major economic benefits and substantial non-proliferation benefits in spite of the legal, political and public acceptance challenges to be expected in most countries. The transfer of nuclear waste from the exporting country to the host country of an interim storage facility or of a final repository would be done under bilateral or multilateral agreements at the commercial and governmental levels, in accordance with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Bilateral or international oversight of joint facilities should be arranged, as needed, to achieve the confidence of the partners as to the safety and physical security of the proposed facility. Such monitoring should cover the adequacy of the technical design, its safety features, its environmental impact, the physical security of nuclear materials and possibly the financial management of the joint venture. After the initial choice of bilateral arrangements, some kind of international monitoring may become appropriate. Various organizations could fulfil such a function, in particular, the IAEA. Such monitoring would have nothing to do with nuclear safeguards; repository monitoring would be a parallel but independent activity of the IAEA. (author)

  12. Modular dry storage of spent fuel

    International Nuclear Information System (INIS)

    Baxter, J.W.

    1982-01-01

    Long term uncertainties in US spent fuel reprocessing and storage policies and programs are forcing the electric utilities to consider means of storing spent fuel at the reactor site in increasing quantitities and for protracted periods. Utilities have taken initial steps in increasing storage capacity. Existing wet storage pools have in many cases been reracked to optimize their capacity for storing spent fuel assemblies

  13. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  14. NEPA implementation: The Department of Energy's program to manage spent nuclear fuel

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1994-05-01

    The Department of Energy (DOE) is implementing the National Environmental Protection Act (NEPA) in its management of spent nuclear fuel. The DOE strategy is to address the short-term safety concerns about existing spent nuclear fuel, to study alternatives for interim storage, and to develop a long-range program to manage spent nuclear fuel. This paper discusses the NEPA process, the environmental impact statements for specific sites as well as the overall program, the inventory of DOE spent nuclear fuel, the alternatives for managing the fuel, and the schedule for implementing the program

  15. HTGR spent fuel storage study

    International Nuclear Information System (INIS)

    Burgoyne, R.M.; Holder, N.D.

    1979-04-01

    This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification

  16. Spent fuel canister docking station

    International Nuclear Information System (INIS)

    Suikki, M.

    2006-01-01

    The working report for the spent fuel canister docking station presents a design for the operation and structure of the docking equipment located in the fuel handling cell for the spent fuel in the encapsulation plant. The report contains a description of the basic requirements for the docking station equipment and their implementation, the operation of the equipment, maintenance and a cost estimate. In the designing of the equipment all the problems related with the operation have been solved at the level of principle, nevertheless, detailed designing and the selection of final components have not yet been carried out. In case of defects and failures, solutions have been considered for postulated problems, and furthermore, the entire equipment was gone through by the means of systematic risk analysis (PFMEA). During the docking station designing we came across with needs to influence the structure of the actual disposal canister for spent nuclear fuel, too. Proposed changes for the structure of the steel lid fastening screw were included in the report. The report also contains a description of installation with the fuel handling cell structures. The purpose of the docking station for the fuel handling cell is to position and to seal the disposal canister for spent nuclear fuel into a penetration located on the cell floor and to provide suitable means for executing the loading of the disposal canister and the changing of atmosphere. The designed docking station consists of a docking ring, a covering hatch, a protective cone and an atmosphere-changing cap as well as the vacuum technology pertaining to the changing of atmosphere and the inert gas system. As far as the solutions are concerned, we have arrived at rather simple structures and most of the actuators of the system are situated outside of the actual fuel handling cell. When necessary, the equipment can also be used for the dismantling of a faulty disposal canister, cut from its upper end by machining. The

  17. Spent fuel storage requirements 1987

    International Nuclear Information System (INIS)

    1987-09-01

    Historical inventories of spent fuel and utility estimates of future discharges from US commercial nuclear reactors are presented through the year 2005. The ultimate needs for additional storage capacity are estimated. These estimtes are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December, 1986, and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to the DOE Energy Information Administration (EIA) through the 1987 RW-859 data survey. 14 refs., 4 figs., 9 tabs

  18. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Watanabe, Yoshio; Kashiwagi, Eisuke; Sekikawa, Tsutomu.

    1997-01-01

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)

  19. Sealed can of spent fuel

    International Nuclear Information System (INIS)

    Suzuki, Yasuyuki.

    1976-01-01

    Object: To provide a seal plug cover with a gripping portion fitted to a canning machine and a gripping portion fitted to a gripper of the same configuration as a fuel body for handling the fuel body so as to facilitate the handling work. Structure: A sealed can comprises a vessel and a seal plug cover, said cover being substantially in the form of a bottomed cylinder, which is slipped on the vessel and air-tightly secured by a fastening bolt between it and a flange. The spent fuel body is received into the vessel together with coolant during the step of canning operation. Said seal plug cover has two gripping portions, one for opening and closing the plug cover of the canning machine as an exclusive use member, the other being in the form of a hook-shaped peripheral groove, whereby the gripping portions may be effectively used using the same gripper when the spent fuel body is transported while being received in the sealed can or when the fuel body is removed from the sealed can. (Kawakami, Y.)

  20. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  1. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  2. Spent fuel critical masses and supportive measurements

    International Nuclear Information System (INIS)

    Toffer, H.; Wells, A.H.

    1987-01-01

    Critical masses for spent fuel are larger than for green fuel and therefore use of the increased masses could result in improved handling, storage, and transport of such materials. To apply spent fuel critical masses requires an assessment of fuel exposure and the corresponding isotopic compositions. The paper discusses several approaches at the Hanford N Reactor in establishing fuel exposure, including a direct measurement of spent to green fuel critical masses. The benefits derived from the use of spent fuel critical masses are illustrated for cask designs at the Nuclear Assurance Corporation. (author)

  3. Surveillance instrumentation for spent-fuel safeguards

    International Nuclear Information System (INIS)

    McKenzie, J.M.; Holmes, J.P.; Gillman, L.K.; Schmitz, J.A.; McDaniel, P.J.

    1978-01-01

    The movement, in a facility, of spent reactor fuel may be tracked using simple instrumentation together with a real time unfolding algorithm. Experimental measurements, from multiple radiation monitors and crane weight and position monitors, were obtained during spent fuel movements at the G.E. Morris Spent-Fuel Storage Facility. These data and a preliminary version of an unfolding algorithm were used to estimate the position of the centroid and the magnitude of the spent fuel radiation source. Spatial location was estimated to +-1.5 m and source magnitude to +-10% of their true values. Application of this surveillance instrumentation to spent-fuel safeguards is discussed

  4. Baseline descriptions for LWR spent fuel storage, handling, and transportation

    International Nuclear Information System (INIS)

    Moyer, J.W.; Sonnier, C.S.

    1978-04-01

    Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables

  5. Baseline descriptions for LWR spent fuel storage, handling, and transportation

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, J.W.; Sonnier, C.S.

    1978-04-01

    Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

  6. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  7. Cask operation and maintenance for spent fuel storage

    International Nuclear Information System (INIS)

    Lee, J.S.

    2004-01-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage

  8. Physical protection of shipments of irradiated reactor fuel; Interim guidance. Regulatory report

    International Nuclear Information System (INIS)

    1980-06-01

    During May, 1979, the U.S. Nuclear Regulatory Commission approved for issuance in effective form new interim regulations for strengthening the protection of spent fuel shipments against sabotage and diversion. The new regulations were issued without benefit of public comment, but comments from the public were solicited after the effective date. Based upon the public comments received, the interim regulations were amended and reissued in effective form as a final interim rule in May, 1980. The present document supersedes a previously issued interim guidance document, NUREG-0561 (June, 1979) which accompanied the original rule. This report has been revised to conform to the new interim regulations on the physical protection of shipments of irradiated reactor fuel which are likely to remain in effect until the completion of an ongoing research program concerning the response of spent fuel to certain forms of sabotage, at which time the regulations may be rescinded, modified or made permanent, as appropriate. This report discusses the amended regulations and provides a basis on which licensees can develop an acceptable interim program for the protection of spent fuel shipments

  9. Probability of spent fuel transportation accidents

    International Nuclear Information System (INIS)

    McClure, J.D.

    1981-07-01

    The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10 -7 spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10 -9 /mile

  10. Mission Need Statement: Idaho Spent Fuel Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  11. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  12. Status of the spent fuel dry storage programme for Cernavoda NPP

    International Nuclear Information System (INIS)

    Radu, M.

    1999-01-01

    The Cernavoda NPP Unit 1 (600 MWe Standard type) is in operation since December 1996. Within the framework of the R and D Radioactive Waste and Spent Fuel Management Programme, investigations, studies and research are carried out on site identification and conceptual designs for both a Spent Fuel Interim Storage Facility and a Spent Fuel Disposal Facility. The status of the work performed in the framework of this programme as well as the situation of the spent fuel resulting from the Research Institutes will be presented in the paper. (author)

  13. Spent fuel management in France: Programme status

    International Nuclear Information System (INIS)

    Chaudat, J.P.

    1990-01-01

    France's programme is best characterized as a closed fuel cycle including reprocessing, Plutonium recycling in PWR and use of breeder reactors. The current installed nuclear capacity is 52.5 GWe from 55 units. The spent fuel management scheme chosen is reprocessing. This paper describes the national programme, spent nuclear fuel storage, reprocessing and contracts for reprocessing of spent fuel from various countries. (author). 5 figs, 2 tabs

  14. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  15. Dry storage of spent fuel

    International Nuclear Information System (INIS)

    Jeffrey, R.

    1993-01-01

    Scottish Nuclear's plans to build and operate dry storage facilities at each of its two nuclear power station sites in Scotland are explained. An outline of where waste materials arise as part of the operation and decommissioning of nuclear power stations, the volumes for each category of high-, intermediate-and low-level wastes and the costs involved are given. The present procedure for the spent fuels from Hunterston-B and Torness stations is described and Scottish Nuclear's aims of driving output up and costs down are studied. (UK)

  16. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  17. Spent fuel's behavior under dynamic drip tests

    International Nuclear Information System (INIS)

    Finn, P.A.; Buck, E.C.; Hoh, J.C.; Bates, J.K.

    1995-01-01

    In the potential repository at Yucca Mountain, failure of the waste package container and the cladding of the spent nuclear fuel would expose the fuel to water under oxidizing conditions. To simulate the release behavior of radionuclides from spent fuel, dynamic drip and vapor tests with spent nuclear fuel have been ongoing for 2.5 years. Rapid alteration of the spent fuel has been noted with concurrent release of radionuclides. Colloidal species containing americium and plutonium have been found in the leachate. This observation suggests that colloidal transport of radionuclides should be included in the performance assessment of a potential repository

  18. Spent fuel. Dissolution and oxidation

    International Nuclear Information System (INIS)

    Grambow, B.

    1989-03-01

    Data from studies of the low temperature air oxidation of spent fuel were retrieved in order to provide a basis for comparison between the mechanism of oxidation in air and corrosion in water. U 3 O 7 is formed by diffusion of oxygen into the UO 2 lattice. A diffusion coefficient of oxygen in the fuel matric was calculated for 25 degree C to be in the range of 10 -23 to 10 -25 m 2 /s. The initial rates of U release from spent fuel and from UO 2 appear to be similar. The lowest rates (at 25 degree c >10 -4 g/(m 2 d)) were observed under reducing conditions. Under oxidizing conditions the rates depend mainly of the nature and concentraion of the oxidant and/or on corbonate. In contact with air, typical initial rates at room temperature were in the range between 0.001 and 0.1 g/(m 2 d). A study of apparent U solubility under oxidizing conditions was performed and it was suggested that the controlling factor is the redox potential at the UO 2 surface rather than the E h of the bulk solution. Electrochemical arguments were used to predict that at saturation, the surface potential will eventually reach a value given by the boundaries at either the U 3 O 7 /U 3 O 8 or the U 3 O 7 /schoepite stability field, and a comparison with spent fuel leach data showed that the solution concentration of uranium is close to the calculated U solubility at the U 3 O 7 /U 3 O 8 boundary. The difference in the cumulative Sr and U release was calculated from data from Studsvik laboratory. The results reveal that the rate of Sr release decreases with the square root of time under U-saturated conditions. This time dependence may be rationalized either by grain boundary diffusion or by diffusion into the fuel matrix. Hence, there seems to be a possibility of an agreement between the Sr release data, structural information and data for oxygen diffusion in UO 2 . (G.B.)

  19. Development of a computer program for the cost analysis of spent fuel management

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won; Cha, Jeong Hun; Whang, Joo Ho

    2009-01-01

    So far, a substantial amount of spent fuels have been generated from the PWR and CANDU reactors. They are being temporarily stored at the nuclear power plant sites. It is expected that the temporary storage facility will be full of spent fuels by around 2016. The government plans to solve the problem by constructing an interim storage facility soon. The radioactive management act was enacted in 2008 to manage the spent fuels safety in Korea. According to the act, the radioactive waste management fund which will be used for the transportation, interim storage, and the final disposal of spent fuels has been established. The cost for the management of spent fuels is surprisingly high and could include a lot of uncertainty. KAERI and Kyunghee University have developed cost estimation tools to evaluate the cost for a spent fuel management based on an engineering design and calculation. It is not easy to develop a tool for a cost estimation under the situation that the national policy on a spent fuel management has not yet been fixed at all. Thus, the current version of the computer program is based on the current conceptual design of each management system. The main purpose of this paper is to introduce the computer program developed for the cost analysis of a spent fuel management. In order to show the application of the program, a spent fuel management scenario is prepared, and the cost for the scenario is estimated

  20. Progress on the Hanford K basins spent nuclear fuel project

    International Nuclear Information System (INIS)

    Culley, G.E.; Fulton, J.C.; Gerber, E.W.

    1996-01-01

    This paper highlights progress made during the last year toward removing the Department of Energy's (DOE) approximately, 2,100 metric tons of metallic spent nuclear fuel from the two outdated K Basins at the Hanford Site and placing it in safe, economical interim dry storage. In the past year, the Spent Nuclear Fuel (SNF) Project has engaged in an evolutionary process involving the customer, regulatory bodies, and the public that has resulted in a quicker, cheaper, and safer strategy for accomplishing that goal. Development and implementation of the Integrated Process Strategy for K Basins Fuel is as much a case study of modern project and business management within the regulatory system as it is a technical achievement. A year ago, the SNF Project developed the K Basins Path Forward that, beginning in December 1998, would move the spent nuclear fuel currently stored in the K Basins to a new Staging and Storage Facility by December 2000. The second stage of this $960 million two-stage plan would complete the project by conditioning the metallic fuel and placing it in interim dry storage by 2006. In accepting this plan, the DOE established goals that the fuel removal schedule be accelerated by a year, that fuel conditioning be closely coupled with fuel removal, and that the cost be reduced by at least $300 million. The SNF Project conducted coordinated engineering and technology studies over a three-month period that established the technical framework needed to design and construct facilities, and implement processes compatible with these goals. The result was the Integrated Process Strategy for K Basins Fuel. This strategy accomplishes the goals set forth by the DOE by beginning fuel removal a year earlier in December 1997, completing it by December 1999, beginning conditioning within six months of starting fuel removal, and accomplishes it for $340 million less than the previous Path Forward plan

  1. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Black, J.E.; King, F.D.

    1979-01-01

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  2. Determination of prerequisites for the estimation of transportation cost of spent fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Kim, Seong Ki; Cha, Jeong Hoon; Choi, Jong Won

    2007-10-01

    The cost for the spent fuel management includes the costs for the interim storage, the transportation, and the permanent disposal of the spent fuels. The scope of this report is limited to the cost for the spent fuel transportation. KAERI is developing a cost estimation method for the spent fuel transportation through a joint study with the French AREVA TN. Several prerequisites should be fixed in order to estimate the cost for the spent fuel transportation properly. In this report we produced them considering the Korean current status on the management of spent fuels. The representative characteristics of a spent fuel generated from the six nuclear reactors at the YG site were determined. Total 7,200 tons of spent fuels are projected with the lifespan of 60 years. As the transportation mode, sea transportation and road transportation is recommended considering the location of the YG site and the hypothetical Centralized Interim Storage Facility (CISF) and Final Repository (FR). The sea route and transportation time were analyzed by using a sea distance analysis program which the NORI (National Oceanographic Research Institute) supplies on a web. Based on the results of the analysis, the shipping rates were determined. The regulations related to the spent fuel transportation were reviewed. The characteristics of the transportation vessel and a trailer were suggested. The handling and transportation systems at the YG site, Centralized Interim Storage Facility, and the Final Repository were described in detail for the purpose of the cost estimation of the spent fuel transportation. From the detail description the major components of the transportation system were determined for the conceptual design. It is believed that the conceptual design of the transportation system developed in this report will be used for the analysis of transportation logistics and the cost estimation of spent fuels

  3. Expedited action recommended for spent nuclear fuel at Hanford

    International Nuclear Information System (INIS)

    Illman, D.

    1994-01-01

    After six months of study, Westinghouse Hanford Co. has proposed an expedited strategy to deal with spent nuclear fuel stored in rapidly deteriorating basins at the Hanford site in southeastern Washington. The two-phase approach calls for radioactive fuel to be removed from the basins and placed in special canisters, transported by rail to a new vault to be constructed at Hanford,and held there until a processing facility is built. Then the fuel would be stabilized and returned to the vault for interim storage of up to 40 years. The plan calls for waste fuel and sludge to be removed by 2000. More than 2,100 metric tons of spent fuel--nearly 80% of DOE's total spent-fuel inventory nationwide--is housed at the Hanford site in the two obsolete concrete water basins, called K East and K West. A specific location for the storage and processing facilities has not yet been identified, and rounds of environmental impact statements remain to be completed. While a recommended path seems to have been identified, there are miles to go before this spent fuel finally sleeps

  4. Intermodal transfer of spent fuel

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Weiner, R.F.

    1993-01-01

    This paper discusses RADTRAN calculational models and parameter values for describing dose to workers during incident-free ship-to-truck transfer of spent fuel. Data obtained during observation of the offloading of research reactor spent fuel at Newport News Terminal in the Port of Hampton Roads, Virginia, are described. These data include estimates of exposure times and distances for handlers, inspectors, and other workers during offloading and overnight storage. Other workers include crane operators, scale operators, security personnel, and truck drivers. The data are compared to the default data in RADTRAN 4, and the latter are found to be conservative. The casks were loaded under IAEA supervision at their point of origin, and three separate radiological inspections of each cask were performed at the entry to the port (Hampton Roads) by the U.S. Coast Guard, the state of Virginia, and the shipping firm. As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handler exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. (author)

  5. A central spent fuel storage in Sweden

    International Nuclear Information System (INIS)

    Gustafsson, B.; Hagberth, R.

    1978-01-01

    A planned central spent fuel storage facility in Sweden is described. The nuclear power program and quantities of spent fuel generated in Sweden is discussed. A general description of the facility is given with emphasis on the lay-out of the buildings, transport casks and fuel handling. Finally a possible design of a Swedish transportation system is discussed. (author)

  6. Final disposal of spent fuel in the Finnish bedrock

    International Nuclear Information System (INIS)

    1992-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel from the Olkiluoto nuclear power plant (TVO-I and TVO-II reactors). According to present estimates, a total of 1840 tU of spent fuel will be accumulated during the 40-year lifetime of the power plant. An interim storage facility for spent fuel (TVO-KPA Store) has operated at Olkiluoto since 1987. The spent fuel will be held in storage for several decades before it is shipped to the repository site. Both train and road transportation are possible. The spent fuel will be encapsulated in composite copper and steel canisters (ACP Canister) in a facility that will be build above the ground on the site where the repository is located. The repository will be constructed at the depth of several hundreds of meters in the bedrock. In 1987 five areas were selected for preliminary site investigations. The safety analysis (TVO-92) that was carried out shows that the proposed safety criteria would be met at each of the candidate sites. In future expected conditions there would never be significant releases of radioactive substances to the biosphere. The site investigations will be continued in the period 1993 to 2000. In parallel, a R and D programme will be devoted to the safety and technology of final disposal. The site for final disposal will be selected in the year 2000 with the aim of having the capability to start the disposal operations in 2020

  7. Pyroprocessing oxide spent nuclear fuels for efficient disposal

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P.

    1994-01-01

    Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment

  8. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  9. Spent fuel storage for ISER plant

    International Nuclear Information System (INIS)

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  10. Spent fuels transportation coming from Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Maritime transportation of spent fuels from Australia to France fits into the contract between COGEMA and ANSTO, signed in 1999. This document proposes nine information cards in this domain: HIFAR a key tool of the nuclear, scientific and technological australian program; a presentation of the ANSTO Australian Nuclear Science and Technology Organization; the HIFAR spent fuel management problem; the COGEMA expertise in favor of the research reactor spent fuel; the spent fuel reprocessing at La Hague; the transports management; the transport safety (2 cards); the regulatory framework of the transports. (A.L.B.)

  11. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  12. Studies and research concerning BNFP: spent fuel dry storage studies at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1980-09-01

    Conceptual designs are presented utilizing the Barnwell Nuclear Fuel Plant for the dry interim storage of spent light water reactor fuel. Studies were conducted to determine feasible approaches to storing spent fuel by methods other than wet pool storage. Fuel that has had an opportunity to cool for several years, or more, after discharge from a reactor is especially adaptable to dry storage since its thermal load is greatly reduced compared to the thermal load immediately following discharge. A thermal analysis was performed to help in determining the feasibility of various spent fuel dry storage concepts. Methods to reject the heat from dry storage are briefly discussed, which include both active and passive cooling systems. The storage modes reviewed include above and below ground caisson-type storage facilities and numerous variations of vault, or hot cell-type, storage facilities

  13. Comparison of the Transportation Risks Resulting from Accidents during the Transportation of the Spent Fuel

    International Nuclear Information System (INIS)

    Jeong Jong Tae; Cho, Dong Kuen; Choi, Heui Joo; Choi, Jong Won

    2007-01-01

    The safe, environmentally sound and publicly acceptable disposal of high level wastes and spent fuels is becoming a very important issue. The operational safety assessment of a repository including a transportation safety assessment is a fundamental part in order to achieve this goal. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for spent fuels. Also, we estimated and compared the transportation risks resulting from the accidents during the transportation of spent fuels for these four transportation scenarios

  14. Behavior of spent nuclear fuel in water pool storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1977-09-01

    Storage of irradiated nuclear fuel in water pools (basins) has been standard practice since nuclear reactors first began operation approximately 34 years ago. Pool storage is the starting point for all other fuel storage candidate processes and is a candidate for extended interim fuel storage until policy questions regarding reprocessing and ultimate disposal have been resolved. This report assesses the current performance of nuclear fuel in pool storage, the range of storage conditions, and the prospects for extending residence times. The assessment is based on visits to five U.S. and Canadian fuel storage sites, representing nine storage pools, and on discussions with operators of an additional 21 storage pools. Spent fuel storage experience from British pools at Winfrith and Windscale and from a German pool at Karlsruhe (WAK) also is summarized

  15. Spent fuel management in Japan - Facts and prospects

    International Nuclear Information System (INIS)

    Nagano, K.

    2002-01-01

    This paper discusses recent developments and future issues related to spent fuel management in Japan. With increasing pressure of spent fuel discharge from the power plants in operation and, in contrast, uncertainties in their processing and management services, spent fuel storage in short and medium terms has been receiving the highest priority in nuclear policy discussions in Japan. While small-scale interim storage devices, as well as capacity expansion (re-racking, etc.) and shared uses of existing devices, are introduced at number of power stations, large scale AFR (away from reactor) 'Storage of Recycle Fuel Resources' is expected to come in a medium and long-run. Commercial operation of 'Storage of Recycle Fuel Resources' is allowed its way, as the bill of amendment to the law for regulation of nuclear power reactors and other nuclear-related activities has passed in the Diet. In the meantime, the Atomic Energy Commission has launched working group discussions for revision of 'The Long-term Program of Research, Development and Utilization of Nuclear Energy' to be completed in 2000. This revision is hoped to set up a stage of national debate of nuclear policy, which might lead to fill conceptual gaps between bodies promoting nuclear development and general public. The author's attempt to illustrate the role of storage in spent fuel management is also presented from a theoretical point of view. (author)

  16. Advancing the Fork detector for quantitative spent nuclear fuel verification

    Science.gov (United States)

    Vaccaro, S.; Gauld, I. C.; Hu, J.; De Baere, P.; Peterson, J.; Schwalbach, P.; Smejkal, A.; Tomanin, A.; Sjöland, A.; Tobin, S.; Wiarda, D.

    2018-04-01

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations. A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This paper describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms

  17. Commercial waste and spent fuel packaging program. Annual report

    International Nuclear Information System (INIS)

    Hakl, A.R.

    1981-10-01

    This document is a report of activities performed by Westinghouse Advanced Energy Systems Division - Nevada Operations in meeting subtask objectives described in the Nevada Nuclear Waste Storage Investigations (NNWSI) Project Plan and revised planning documentation for Fiscal Year (FY) 1981. Major activities included: completion of the first fuel exchange in the Spent Fuel Test - Climax program; plasma arc welder development; modification and qualification of a canister cutter; installation, and activation of a remote area monitor, constant air monitor and an alpha/beta/gamma counting system; qualification of grapples required to handle pressurized water reactor or boiling water reactor fuel and high level waste (HLW) logs; data acquisition from the 3 kilowatt soil temperature test, 2 kw fuel temperature test, and 2 kw drywell test; calorimetry of the fuel assembly used in the fuel temperature test; evaluation of moisture accumulation in the drywells and recommendations for proposed changes; revision of safety assessment document to include HLW log operations; preparation of quality assurance plan and procedures; development and qualification of all equipment and procedures to receive, handle and encapsulate both the HLW log and spent fuel for the basalt waste isolation program/near surface test facility program; preliminary studies of both the requirements to perform waste packaging for the test and evaluation facility and a cask storage program for the DOE Interim Spent Fuel Management program; and remote handling operations on radioactive source calibration in support of other contractors

  18. Reprocessing method for spent fuel

    International Nuclear Information System (INIS)

    Fujie, Makoto; Shoji, Yuichi; Kobayashi, Tsuguyuki.

    1997-01-01

    After reducing oxides of uranium (U), plutonium (Pu) and miner actinides in spent fuels by magnesium (Mg) in a molten salt, rear earth element oxides and salts of alkali metals and alkaline earth metals contained in the molten salt phase are separated and removed. Further, the Mg phase containing the reduced metals is evaporated to separate and remove Mg, thereby recovering U, Pu and minor actinides. In a lithium (Li) process, Li 2 O also generated in the reduction step is regenerated to Li simultaneously, and the reduction is conducted while suppressing the Li 2 O concentration in the molten salt low. This can improve the reduction rate of oxides of U, Pu and minor actinides compared with conventional cases. Since Li 2 O is regenerated into Li in the reduction step of the Li process, deposited Li 2 O is not carried to an electrolysis purification step, and recovering rate of U, Pu and minor actinides is not lowered. (T.M.)

  19. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  20. Spent fuel management newsletter. No. 2

    International Nuclear Information System (INIS)

    1993-04-01

    This issue of the newsletter consists of two parts. The first part describes the IAEA Secretariat activities - work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes. The second part contains country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage and treatment of spent fuel

  1. Spent fuel management newsletter. No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-01

    This issue of the newsletter consists of two parts. The first part describes the IAEA Secretariat activities - work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes. The second part contains country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage and treatment of spent fuel.

  2. Shippingport Spent Fuel Canister System Description

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSB will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available

  3. A Study of Integrity Evaluation System for Spent Fuel and Selection of the Representative Spent Fuel

    International Nuclear Information System (INIS)

    Kim, J. G.; Lee, S. K.; Lim, C. J.; Kim, J. K.; Lee, S. J.

    2014-01-01

    Spent fuel (SF) integrity evaluation is a regulatory requirement that is described in 10 CFR 71(transportation) and 10 CFR 72(storage) of the U. S. NRC licensing requirement. NRC regulation states that retrievability of SF after storage should be ensured and SF integrity under the normal condition must be guaranteed during transportation and handling process that is entailed before/during/after the interim storage. And SF integrity evaluation under the hypothetical accident condition is a core technology element for an assessment of critical, shielding, and containment. In this paper, SF integrity evaluation system which is suitable for domestic situation is suggested, and necessity of representative SF selection and its method is described. The ultimate goal of the SF integrity evaluation is to evaluate a safety margin in case of transportation/ handling/storage of SFs. It means that retrievability of SF after storage should be assured and SF integrity must be guaranteed at normal condition in the process of transportation/handling accompanied before/during/after interim storage. In Korea, SF integrity evaluation system is not established up to date. Especially, representative SF selection technology that is essential to SF integrity evaluation has not been fulfilled. To overcome this situation effectively, the methodology and technology of an overseas agency need to be benchmarked. In this paper, an overseas SF integrity evaluation system is analyzed, and an evaluation system suitable for domestic situation is suggested. Also, necessity of representative SF selection and its method is described

  4. Licensing of spent fuel storage facility including its physical protection in the Czech Republic

    International Nuclear Information System (INIS)

    Fajman, V.; Sedlacek, J.

    1992-01-01

    The current spent fuel management policies as practised in the Czech Republic are described, and the conception of the fuel cycle back end is outlined. The general principles and the legislative framework are explained of the licensing process concerning spent fuel interim storage facilities, including the environmental impact assessment component. The history is outlined of the licensing process for the spent fuel storage facility at the Dukovany NPP site, including the licensing of the transport and storage cask. The basic requirements placed on the physical safeguarding of the facility and on the licensing process are given. (J.B.). 13 refs

  5. Remote technology applications in spent fuel management

    International Nuclear Information System (INIS)

    2005-03-01

    Spent fuel management has become a prospective area for application of remote technology in recent years with a steadily growing inventory of spent fuel arising from nuclear power production. A remark that could be made from the review of technical information collected from the IAEA meetings was that remote technology in spent fuel management has matured well through the past decades of industrial experiences. Various remote technologies have been developed and applied in the past for facility operation and maintenance work in spent fuel examination, storage, transportation, reprocessing and radioactive waste treatment, among others, with significant accomplishments in dose reduction to workers, enhancement of reliability, etc. While some developmental activities are continuing for more advanced applications, industrial practices have made use of simple and robust designs for most of the remote systems technology applications to spent fuel management. In the current state of affairs, equipment and services in remote technology are available in the market for applications to most of the projects in spent fuel management. It can be concluded that the issue of critical importance in remote systems engineering is to make an optimal selection of technology and equipment that would best satisfy the as low as reasonably achievable (ALARA) requirements in terms of relevant criteria like dose reduction, reliability, costs, etc. In fact, good selection methodology is the key to efficient implementation of remote systems applications in the modern globalized market. This TECDOC gives a review of the current status of remote technology applications for spent fuel management, based on country reports from some Member States presented at the consultancy meetings, of which updated reports are attached in the annex. The scope of the review covers the series of spent fuel handling operations involved in spent fuel management, from discharge from reactor to reprocessing or

  6. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sihm Kvenangen, Karen

    2007-06-15

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation.

  7. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Sihm Kvenangen, Karen

    2007-06-01

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation

  8. Neutron radiation characteristics of the IVth generation reactor spent fuel

    Science.gov (United States)

    Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey

    2018-03-01

    Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.

  9. China's spent fuel treatment: The present status and prospects

    International Nuclear Information System (INIS)

    Jiang Yunqing

    1999-01-01

    In the mid 1980s, China launched the development of nuclear power dominated by PWRs and opted for the closed fuel cycle strategy. On the basis of irradiated fuel reprocessing for defence purpose, an R and D programme for civil reprocessing has been implemented. Currently, China's spent fuel arising is limited but its amount will sharply increase with nuclear power expansion early next century. Spent fuel stored at reactor site for at least 5 years will be transported either by a combination of sea and rail or by road directly to the Lanzhou Nuclear Fuel Complex. A wet centralized storage facility with a 550 tHM capacity has been built for interim storage of spent fuel. Also, a multi-purpose reprocessing pilot plant with a maximum throughput of 400 kg HM/d is now under construction and will be put into commissioning by the turn of the century. A large-scale commercial reprocessing plant, perhaps with a capacity of 800 tHM/a, will be set up around 2020. Recovered uranium and plutonium from reprocessing will go to a demonstration plant and be manufactured into MOX fuel for FBR and PWR. The defence radwaste from reprocessing is at present being conditioned into the proper forms and will be disposed in appropriate repositories. All expertise and experience gained from these practices will be utilized in the future civil radwaste management. (author)

  10. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  11. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  12. Costing of spent nuclear fuel storage

    International Nuclear Information System (INIS)

    2009-01-01

    This report deals with economic analysis and cost estimation, based on exploration of relevant issues, including a survey of analytical tools for assessment and updated information on the market and financial issues associated with spent fuel storage. The development of new storage technologies and changes in some of the circumstances affecting the costs of spent fuel storage are also incorporated. This report aims to provide comprehensive information on spent fuel storage costs to engineers and nuclear professionals as well as other stakeholders in the nuclear industry. This report is meant to provide informative guidance on economic aspects involved in selecting a spent fuel storage system, including basic methods of analysis and cost data for project evaluation and comparison of storage options, together with financial and business aspects associated with spent fuel storage. After the review of technical options for spent fuel storage in Section 2, cost categories and components involved in the lifecycle of a storage facility are identified in Section 3 and factors affecting costs of spent fuel storage are then reviewed in the Section 4. Methods for cost estimation and analysis are introduced in Section 5, and other financial and business aspects associated with spent fuel storage are discussed in Section 6.

  13. Spent fuel behaviour during dry storage - a review

    International Nuclear Information System (INIS)

    Shivakumar, V.; Anantharaman, K.

    1997-09-01

    One of the strategies employed for management of spent fuel prior to their final disposal/reprocessing is their dry storage in casks, after they have been sufficiently cooled in spent fuel pools. In this interim storage, one of the main consideration is that the fuel should retain its integrity to ensure (a) radiological health hazard remains minimal and (b) the fuel is retrievable for down steam fuel management processes such as geological disposal or reprocessing. For dry storage of spent fuel in air, oxidation of the exposed UO 2 is the most severe of phenomena affecting the integrity of fuel. This is kept within acceptable limits for desired storage time by limiting the fuel temperature in the storage cask. The limit on the fuel temperature is met by having suitable limits on maximum burn-up of fuel, minimum cooling period in storage pool and optimum arrangement of fuel bundles in the storage cask from heat removal considerations. The oxidation of UO 2 by moist air has more deleterious effects on the integrity of fuel than that by dry air. The removal of moisture from the storage cask is therefore a very important aspect in dry storage practice. The kinetics of the oxidation phenomena at temperatures expected during dry storage in air is very slow and therefore the majority of the existing data is based on extrapolation of data obtained at higher fuel temperatures. This and the complex effects of factors like fission products in fuel, radiolysis of storage medium etc. has necessitated in having a conservative limiting criteria. The data generated by various experimental programmes and results from the on going programmes have shown that dry storage is a safe and economical practice. (author)

  14. Recent developments in spent fuel management in Norway - 59260

    International Nuclear Information System (INIS)

    Bennett, Peter J.; Oberlaender, Barbara C.

    2012-01-01

    Spent Nuclear Fuel (SNF) in Norway has arisen from irradiation of fuel in the NORA, Jeep I and Jeep II reactors at Kjeller, and in the Heavy Boiling Water Reactor (HBWR) in Halden. In total there is some 16 tonnes of SNF, with 12 tons of aluminium-clad fuel, of which 10 tonnes is metallic uranium fuel and the remainder oxide (UO 2 ). The portion of this fuel that is similar to commercial fuel (UO 2 clad in Zircaloy) may be suitable for direct disposal on the Swedish model or in other repository designs. However, metallic uranium and/or fuels clad in aluminium are chemically reactive and there would be risks associated with direct disposal. Two committees were established by the Government of Norway in January 2009 to make recommendations for the interim storage and final disposal of spent fuel in Norway. The Technical Committee on Storage and Disposal of Metallic Uranium Fuel and Al-clad Fuels was formed with the mandate to recommend treatment (i.e. conditioning) options for metallic uranium fuel and aluminium-clad fuel to render them stable for long term storage and disposal. This committee, whose members were drawn from the nuclear industry, reported in January 2010, and recommended commercial reprocessing as the best option for these fuels. The Phase-2 committee, which in part based its work on the work of previous committees and on the report of the Technical Committee, had the mandate to find the most suitable technical solution and localisation for intermediate storage for spent nuclear fuel and long-lived waste. The membership of this committee was chosen to represent a broad cross section of stakeholders. The committee evaluated different solutions and their associated costs, and recommended one of the options. The committee's report published in early 2011. This paper summarises the conclusions of the two committees, and thereby illustrates the steps taken by one country to formulate a strategy for the long-term management of its SNF. (authors)

  15. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  16. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  17. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  18. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    Ernst, P.C.

    1996-01-01

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  19. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  20. Status and current spent fuel storage practices in the United States

    International Nuclear Information System (INIS)

    Lake, W.H.

    1999-01-01

    Brief discussions are presented on the history and state of spent fuel generation by utilities that comprise the United States commercial nuclear power industry, the current situation regarding the Federal government's nuclear waste policy, and evolving spent fuel storage practices. These evolving spent fuel storage practices are the result of private sector initiatives, but appear to be influenced by various external factors. The paper is not intended to provide a comprehensive appraisal of the storage initiatives being conducted by the private sector. The focus, instead, is on the Federal government's role and activities related to spent fuel management. Although the Federal government has adopted a policy calling for deep geological disposal of spent fuel, the US Congress has recently begun to consider expanding that policy to include a centralized interim storage facility. In the absence of such an expanded policy, the Department of Energy has performed some preliminary activities that would expedite development of a centralized interim storage facility, if Congress were to enact such a policy. The Department's current activities with regard to developing a centralized interim storage facility, which are consistent with the current policy, are described in the paper. The paper also describes two important technical development activities that have been conducted by the Department of Energy to support improved efficiency in spent fuel management. The Department's activities regarding development of a burnup credit methodology, and a dry transfer system are summarized. (author)

  1. Immobilization of radioactive waste sludge from spent fuel storage pool

    International Nuclear Information System (INIS)

    Pavlovic, R.; Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as result of the research reactors' operation and radionuclides application in medicine, industry and agriculture, radioactive waste materials of the different categories and various levels of specific activities were generated. As a temporary solution, these radioactive waste materials are stored in the two hanger type interim storages for solid waste and some type of liquid waste packed in plastic barrels, and one of three stainless steal underground containers for other types of liquid waste. Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some aspects of immobilisation, conditioning and storage of this sludge are presented in this paper. (author

  2. Spent fuel dry storage experience at Gentilly 2 NGS

    International Nuclear Information System (INIS)

    Macici, N.

    1997-01-01

    In order to provide the needed interim storage facility for the spent fuel, Hydro-Quebec chose the dry storage CANSTOR module developed by the Atomic Energy of Canada Ltd (AECL). The decision was made based upon the technical feasibility, public and environmental protection criteria, operational flexibility, economic and space saving advantages. Before the commissioning of the spent fuel dry storage facility, the project received all the required approvals. A joint provincial - federal public hearings was held in summer of 1994 in order to assess the project in term of its impact on the environment. In September 1995 took place the first transfer of spent fuel from the station bay to the dry storage facility and since then 21000 bundles of spent fuel were transferred in the two CANSTOR modules built on the station site located within the protected area of the Gentilly-2 station. To date, the expected performance of the dry storage units and equipment have been met. A third CANSTOR module is to be built in summer of 1997 on the station site. (author)

  3. ATR Spent Fuel Options Study

    International Nuclear Information System (INIS)

    Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.; Luke, Dale E.; Patterson, M. W.; Robb, Alan K.; Sindelar, Robert; Smith, Rebecca E.; Tonc, Vincent F.; Tripp, Julia L.; Winston, Philip L.

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center's (INTEC's) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  4. ATR Spent Fuel Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Michael James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bean, Thomas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luke, Dale E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patterson, M. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, Alan K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sindelar, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonc, Vincent F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tripp, Julia L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  5. Development of metal cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    It is one of the realistic solutions against increasing demand on interim storage of spent fuel assemblies arising from nuclear power plants in Japan to apply dual purpose (transport and storage) metal casks. Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities, etc. in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage casks use various new design concepts and materials to improve thermal performance of the cask, structural integrity of the basket, durability of the neutron shielding material and so on. This paper summarizes an outline of the cask design that can accommodate BWR spent fuel assemblies as well as the new technologies applied to the design and fabrication. (author)

  6. Electrochemical processing of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions.

  7. Electrochemical processing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R.

    2008-01-01

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions

  8. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  9. German Approach to Spent Fuel Management

    International Nuclear Information System (INIS)

    Jussofie, A.; Graf, R.; Filbert, W.

    2010-01-01

    The management of spent fuel was based on two powerful columns until 30 June 2005, i. e. reprocessing and direct disposal. After this date any delivery of spent fuel to reprocessing plants was prohibited so that the direct disposal of unreprocessed spent fuel is the only available option in Germany today. The main steps of the current concept are: (i) Intermediate storage of spent fuel, which is the only step in practice. After the first cooling period in spent fuel storage pools it continues into cask-receiving dry storage facilities. Identification of casks, 'freezing' of inventories in terms of continuity of knowledge, monitoring the access to spent fuel, verifying nuclear material movements in terms of cask transfers and ensurance against diversion of nuclear material belong to the fundamental safeguards goals which have been achieved in the intermediate storage facilities by containment and surveillance techniques in unattended mode. (ii) Conditioning of spent fuel assemblies by separating the fuel rods from structural elements. Since the pilot conditioning facility in Gorleben has not yet come into operation, the underlying safeguards approach which focuses on safeguarding the key measurement points - the spent fuel related way in and out of the facility - has not been applied yet. (iii) Disposal in deep geological formations, but no decision has been made so far neither regarding the location of a geological repository nor regarding the safeguards approach for the disposal concept of spent fuel. The situation was complicated by a moratorium which suspended the underground exploration of the Gorleben salt dome as potential geological repository for spent fuel. The moratorium expires in October 2010. Nevertheless, considerable progress has been made in the development of disposal concepts. According to the basic, so-called POLLUX (registered) -concept spent fuel assemblies are to be conditioned after dry storage and reloaded into the POLLUX (registered) -cask

  10. Spent Fuel Management Newsletter. No. 1

    International Nuclear Information System (INIS)

    1990-03-01

    This Newsletter has been prepared in accordance with the recommendations of the International Regular Advisory Group on Spent Fuel Management and the Agency's programme (GC XXXII/837, Table 76, item 14). The main purpose of the Newsletter is to provide Member States with new information about the state-of-the-art in one of the most important parts of the nuclear fuel cycle - Spent Fuel Management. The contents of this publication consists of two parts: (1) IAEA Secretariat contribution -work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes, etc. (2) Country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage, treatment of spent fuel, some aspects of uranium and plutonium recycling, etc. The IAEA expects to publish the Newsletter once every two years between the publications of the Regular Advisory Group on Spent Fuel Management. Figs and tabs

  11. Status of spent fuel storage facilities in Switzerland

    International Nuclear Information System (INIS)

    Beyeler, P.C.; Lutz, H.R.; Heesen, W. von

    1999-01-01

    Planning of a dry spent fuel storage facility in Switzerland started already 15 years ago. The first site considered for a central interim storage facility was the cavern of the decommissioned pilot nuclear plant at Lucens in the French-speaking part of Switzerland. This project was terminated in the late eighties because of lack of public acceptance. The necessary acceptance was found in the small town of Wuerenlingen which has hosted for many years the Swiss Reactor Research Centre. The new project consists of centralised interim storage facilities for all types of radioactive waste plus a hot cell and a conditioning and incinerating facility. It represents a so-called integrated storage solution. In 1990, the new company 'ZWILAG Zwischenlager Wuerenlingen AG' (ZWILAG) was founded and the licensing procedures according to the Swiss Atomic law were initiated. On August 26, 1996 ZWILAG got the permit for construction of the whole facility including the operating permit for the storage facilities. End of construction and commissioning are scheduled for autumn 1999. The nuclear power station Beznau started planning a low level waste and spent fuel storage facility on its own, because in 1990 its management thought that by 1997 the first high active waste from the reprocessing facilities in France would have to be taken back. This facility at the Beznau site, called ZWIBEZ, was licensed according to a shorter procedure so its construction was finished by 1997. The two facilities for high level waste and spent fuel provide space for a total of 278 casks, which is sufficient for the waste and spent fuel of the four Swiss nuclear power stations including their life extension programme. (author)

  12. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  13. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  14. Nuclear criticality safety studies applicable to spent fuel shipping cask designs and spent fuel storage

    International Nuclear Information System (INIS)

    Tang, J.S.

    1980-11-01

    Criticality analyses of water-moderated and reflected arrays of LWR fresh and spent fuel assemblies were carried out in this study. The calculated results indicate that using the assumption of fresh fuel loading in spent fuel shipping cask design leads to assembly spacings which are about twice the spacings of spent fuel loadings. Some shipping cask walls of composite lead and water are more effective neutron reflectors than water of 30.48 cm

  15. Study on increasing spent fuel storage capacity at Juragua NPP

    International Nuclear Information System (INIS)

    Guerra Valdes, R.; Lopez Aldama, D.; Rodriguez Gual, M.; Garcia Yip, F.

    1999-01-01

    The delay in decision about the final disposal of the spent fuel, led to longer interim storage. The reracking og the storage pools was an economical and feasible option to increase the storage capacity on the site. Reracking of the storage facility led to the analysis of the new conditions for criticality, shielding, residual heat removal and mechanical loads over the structures. This paper includes a summary of the studies on criticality and dose rate changes in the vicinity of the storage pool of Juragua NPP

  16. Storage system and method for spent fuel elements

    International Nuclear Information System (INIS)

    Queiser, H.; Eckardt, B.

    1981-01-01

    The proposal concerns an additional protection against leakage of a FE-transport container for interim storage of spent fuel elements. The gastight container has a second cover placed at a short distance from the first cover. The intermediate hollow space can be connected with a measuring system which indicates if part of the trace gas (mostly helium) added as indicator has escaped from the container due to leakage. The description explains the method and the assembly of required lines and measuring points etc. (UWI) [de

  17. Spent fuel transport in fuel cycle

    International Nuclear Information System (INIS)

    Labrousse, M.

    1977-01-01

    The transport of radioactive substances is a minor part of the fuel cycle because the quantities of matter involved are very small. However the length and complexity of the cycle, the weight of the packing, the respective distances between stations, enrichment plants and reprocessing plants are such that the problem is not negligible. In addition these transports have considerable psychological importance. The most interesting is spent fuel transport which requires exceptionally efficient packaging, especially where thermal and mechanical resistance are concerned. To meet the safety criteria necessary for the protection of both public and users it was decided to use the maximum capacity consistent with rail transport and to avoid coolant fluids under pressure. Since no single type of packing is suitable for all existing stations an effort has been made to standardise handling accessories, and future trands are towards maximum automation. A discussion on the various technical solutions available for the construction of these packing systems is followed by a description of those used for the two types of packaging ordered by COGEMA [fr

  18. U.S. spent fuel transportation security in the post 9/11 world

    International Nuclear Information System (INIS)

    Anne, Catherine; Patterson, John; Williams, Blake

    2002-01-01

    On September 11, 2002 the terrible tragedies in New York, Pennsylvania and Washington, DC changed the world forever. Security issues not only impact our daily lives, but are also in a state flux concerning the shipment of spent nuclear fuel in the United States. The formation of the Homeland Security Advisory System and Interim Compensatory Measures from the NRC, along with other security measures, have affected the way we transport spent nuclear fuel. This paper describes the challenging and demanding way that security is planned, implemented and maintained in support of spent fuel shipments in the United States. (author)

  19. International experience in conditioning spent fuel elements

    International Nuclear Information System (INIS)

    Ashton, P.

    1991-04-01

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP) [de

  20. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  1. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  2. Release of segregated nuclides from spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.H.; Tait, J.C. [Atomic Energy Canada Ltd., Pinawa, MB (Canada). Whiteshell Laboratories

    1997-10-01

    The potential release of fission and activation products from spent nuclear fuel into groundwater after container failure in the Swedish deep repository is discussed. Data from studies of fission gas release from representative Swedish BWR fuel are used to estimate the average fission gas release for the spent fuel population. Information from a variety of leaching studies on LWR and CANDU fuel are then reviewed as a basis for estimating the fraction of the inventory of key radionuclides that could be released preferentially (the Instant Release Fraction of IRF) upon failure of the fuel cladding. The uncertainties associated with these estimates are discussed. 33 refs, 6 figs, 3 tabs.

  3. Transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lung, M.; Lenail, B.

    1987-01-01

    From a safety standpoint, spent fuel is clearly not ideal for permanent disposal and reprocessing is the best method of preparing wastes for long-term storage in a repository. Furthermore, the future may demonstrate that some fission products recovered in reprocessing have economic applications. Many countries have in fact reached the point at which the recycling of plutonium and uranium from spent fuel is economical in LWR's. Even in countries where this is not yet evident, (i.e., the United States), the French example shows that the day will come when spent fuel will be retrieved for reprocessing and recycle. It is highly questionable whether spent fuel will ever be considered and treated as waste in the same sense as fission products and processed as such, i.e., packaged in a waste form for permanent disposal. Even when recycled fuel material can no longer be reused in LWR's because of poor reactivity, it will be usable in FBR's. Based on the considerable experience gained by SGN and Cogema, this paper has provided practical discussion and illustrations of spent fuel transport and storage of a very important step in the nuclear fuel management process. The best of spent fuel storage depends on technical, economic and policy considerations. Each design has a role to play and we hope that the above discussion will help clarify certain issues

  4. Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984

    International Nuclear Information System (INIS)

    1986-04-01

    This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984

  5. Spent fuel workshop'2002

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2002-07-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO{sub 2} fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO{sub 2} dissolution determined from electrochemical experiments with {sup 238}Pu doped UO{sub 2} M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO{sub 2} studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with {alpha} doped UO{sub 2} in Boom clay conditions (K. Lemmens), Studies of the behavior of UO{sub 2} / water interfaces under He{sup 2+} beam (C. Corbel), Alpha and gamma radiolysis effects on UO{sub 2} alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines

  6. Corrosion surveillance programme for Latin American research reactor Al-clad spent fuel in water

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Haddad, R.; Ritchie, I.

    2002-01-01

    The objectives of the IAEA sponsored Regional Technical Co-operation Project for Latin America (Argentina, Brazil, Chile, Mexico, and Peru) are to provide the basic conditions to define a regional strategy for managing spent fuel and to provide solutions, taking into consideration the economic and technological realities of the countries involved. In particular, to determine the basic conditions for managing research reactor spent fuel during operation and interim storage as well as final disposal, and to establish forms of regional cooperation in the four main areas: spent fuel characterization, safety, regulation and public communication. This paper reports the corrosion surveillance activities of the Regional Project and these are based on the IAEA sponsored co-ordinated research project (CRP) on 'Corrosion of research reactor Al-clad spent fuel in water'. The overall test consists of exposing corrosion coupon racks at different spent fuel basins followed by evaluation. (author)

  7. Casette for storage of spent fuel assemblies

    International Nuclear Information System (INIS)

    Ericsson, S.

    1992-01-01

    Describes a design of a casette for spent fuel storage in a fuelstorage pool. The new design, based on flexible spacers, allows the fuel assemblies to be packed more compact and the fuel storage pool used in a more economic way

  8. Interim dry fuel storage for magnox reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, N [National Nuclear Corporation, Risley, Warrington (United Kingdom); Ealing, C [GEC Energy Systems Ltd, Whetstone, Leicester (United Kingdom)

    1985-07-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility.

  9. Interim dry fuel storage for magnox reactors

    International Nuclear Information System (INIS)

    Bradley, N.; Ealing, C.

    1985-01-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility

  10. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  11. Current status on the spent fuel dry storage management in Taiwan

    International Nuclear Information System (INIS)

    Chen, H.T.; Liu, C.H.

    2006-01-01

    Full text: Full text: One of the high priority issues for the continuous operation of nuclear power plants is how to manage and store spent fuel. In recent years, interim dry storage of spent fuel has become a significant solution in extending the storage capacity at a nuclear reactor site that lacks sufficient spent fuel pool storage capacity as in the world, and also in Taiwan. Although the re-racking project for the spent fuel pools has been undertaken, the Taiwan Power Company (TPC) Chinshan nuclear power plant still will lose its full core reserve by the year 2010. TPC has declared to build an on-site interim dry storage facility, this followed by geological disposal represents the most suitable option at this time. TPC is expected to submit the application for construction permit in 2006; preoperational test and storage should be put into operation by the end of 2008. Interim dry storage is a passive system. Materials used play a crucial role in the safety function of cask. The competent authority of spent fuel management in Taiwan, FCMA/AEC, will carry out a confirmatory evaluation regarding heat dissipation, structural seismic analysis, and radiation shielding to assure available safety function for casks after reviewing safety analysis report submitted by TPC. Third party inspection has been required to enhance quality assurance program and foreign technical consultation will be arranged. Although the security level for such facility will be kept to the same level as an NPP, a comprehensive analysis against a commercial airplane attack on cask should be made and addressed in the supplement of SAR. Licensing hearing is also required before issuing the construction permit. The paper presents the review plan and regulatory requirements for the licensing of an interim dry storage of spent fuel, the licensing procedure, and the development of dry storage cask for spent fuel in Taiwan

  12. Automatic spent fuel ID number reader (I)

    International Nuclear Information System (INIS)

    Tanabe, S.; Kawamoto, H.; Fujimaki, K.; Kobe, A.

    1991-01-01

    An effective and efficient technique has been developed for facilitating identification works of LWR spent fuel stored in large scale spent fuel storage pools of such as processing plants. Experience shows that there are often difficulties in the implementation of operator's nuclear material accountancy and control works as well as safeguards inspections conducted on spent fuel assemblies stored in deep water pool. This paper reports that the technique is realized as an automatic spent fuel ID number reader system installed on fuel handling machine. The ID number reader system consists of an optical sub-system and an image processing sub-system. Thousands of spent fuel assemblies stored in under water open racks in each storage pool could be identified within relatively short time (e.g. within several hours) by using this combination. Various performance tests were carried out on image processing sub-system in 1990 using TV images obtained from different types of spent fuel assemblies stored in various storage pools of PWR and BWR power stations

  13. Spent fuel dry storage in Hungary

    International Nuclear Information System (INIS)

    Buday, G.; Szabo, B.; Oerdoegh, M.; Takats, F.

    1999-01-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. Since 1989, approximately 40-50% of the total annual electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia. Most of the spent fuel assemblies have been shipped back to Russia. Difficulties with spent fuel transportation to Russia have begun in 1992. Since that time, some of the shipments were delayed, some of them were completely cancelled, thus creating a backlog of spent fuel filling all storage positions of the plant. To provide assurance of the continued operation, Paks NPPs management decided to implement an independent spent fuel storage facility and chose GEC-Althom's MVDS design. The construction of the facility started in February 1995 and the first spent fuel assembly was placed in the store in September 1997. The paper gives an overview of the situation, describing the conditions leading to the construction of the dry storage facility at Paks and its implementation. Finally, some information is given about the new Public Agency for Radioactive Waste Management established this year and responsible for managing the issues related to spent fuel management. (author)

  14. Hanford Spent Nuclear Fuel Project: Recommended path forward. Volume 2: Alternatives and path forward evaluation

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    The Hanford Spent Nuclear Fuel Project has completed an evaluation of four alternatives for expediting the removal of spent nuclear fuel from the K Basins and stabilizing and placing the fuel into interim storage. Four alternatives were compared: (1) Containerizing fuel in the K Basins, transporting fuel to a facility for stabilization, and interim storage of stabilized fuel in a dry storage facility (DSF); (2) Containerizing fuel in the K Basins, transporting fuel to a wet temporary staging facility, moving fuel to a facility for stabilization, and transporting stabilized fuel to an interim DSF; (3) Containerizing fuel in the K Basins in multi-canister overpacks, transporting fuel directly to a stabilization facility for passivation in the overpack, and interim storage of stabilized fuel in a DSF; (4) Packaging fuel for transport overseas and shipping fuel to a foreign reprocessing facility for reprocessing with eventual return of U, Pu and vitrified high level waste. The comparative evaluation consisted of a multi-attribute utility decision analysis, a public, worker and environmental health risk assessment, and a programmatic risk evaluation. The evaluation concluded that the best Path Forward combines the following concepts: Removal of K Basin fuel and sludge is uncoupled from the operation of a stabilization facility; A storage capability is provided to act as a lag storage or staging operation for overpack fuel containers as they are removed from the K Basins; Metal fuel drying and passivation should be maintained as the fuel stabilization process with the option of further refinements as more information becomes available; and The near term NEPA strategy should focus on expeditious removal of fuel and sludge from K Basins and placing overpacked fuel in temporary storage

  15. Review of spent fuel related issues in SKB's SR 97

    International Nuclear Information System (INIS)

    Grambow, B.

    2000-01-01

    example, it is shown that high uncertainties in release properties result from the (uncertain) choices in this partitioning. The analyses of the fuel performance in the case of groundwater access is in SR 97 is based on the assumption that the fuel integrity and fuel oxidation states do not alter prior to water access. No account is taken for potential fuel oxidation in a defected canister during interim storage or disposal. Fuel oxidation at surface temperatures of 200-400 deg C during storage or disposal is expected to be fast. This process is known to strongly alter fuel integrity. Special attention is given to processes and models which describe spent fuel dissolution and radionuclide release in the case of groundwater access to the fuel. Based on a detailed discussion of the current state of knowledge of radiation assisted fuel dissolution models it is concluded that the long term corrosion rates of the fuel matrix used by SKB with a value of 10 -8 /year are overly optimistic. The proposed long-term corrosion rate is considered to be independent on environmental parameters such as pH, pCO 2 or of fuel specific parameters such as burnup or surface area. As discussed in this review, these assumptions are in conflict with experimental observations. It is concluded that the SR 97 approach to the assessment for radionuclide release from spent fuel assemblies is characterized by an optimistic view which is not necessarily incorrect but which is not sustained by the base of current knowledge. A significant drawback is that the source term is not quantified based on the experimental results of a more than 20 year lasting spent fuel leaching program performed in the Studsvik laboratory, but rather on theoretical concepts whose quantification is poorly documented and on experimental data obtained from unirradiated UO 2

  16. Storage of spent fuel from power reactors. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The symposium gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts an international cooperation in this area should take. Dominant message retrieved from the symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration of time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. This is being addressed adequately by utilities, vendors and regulators alike Refs, figs, tabs

  17. Storage of spent fuel from power reactors. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1999-07-01

    The symposium gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts an international cooperation in this area should take. Dominant message retrieved from the symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration of time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. This is being addressed adequately by utilities, vendors and regulators alike

  18. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  19. Effects of environments on spent fuel

    International Nuclear Information System (INIS)

    Funk, C.W.; Jacobson, L.D.; Menon, M.N.

    1979-07-01

    This report describes the influence of water storage environment and transportation on spent light water reactor (LWR) fuel assemblies. It also estimates the storage duration and capacity requirements for several assumed scenarios

  20. TRIGA Mark II Ljubljana - spent fuel transportation

    International Nuclear Information System (INIS)

    Ravnik, M.; Dimic, V.

    2008-01-01

    The most important activity in 1999 was shipment of the spent fuel elements back to the United States for final disposal. This activity started already in 1998 with some governmental support. In July 1999 all spent fuel elements (219 pieces) from the TRIGA research reactor in Ljubljana were shipped back to the United Stated by the ship from the port Koper in Slovenia. At the same time shipment of the spent fuel from the research reactor in Pitesti, Romania, and the research reactor in Rome, Italy, was conducted. During the loading the radiation exposure to the workers was rather low. The loading and shipment of the spent nuclear fuel went very smoothly and according the accepted time table. During the last two years the TRIGA research reactor in Ljubljana has been in operation about 1100 hours per year and without any undesired shut-down. (authors)

  1. Spent fuel storage requirements 1993--2040

    International Nuclear Information System (INIS)

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges

  2. Probable leaching mechanisms for spent fuel

    International Nuclear Information System (INIS)

    Wang, R.; Katayama, Y.B.

    1981-01-01

    At the Pacific Northwest Laboratory, researchers in the Waste/Rock Interaction Technology Program are studying spent fuel as a possible waste form for the Office of Nuclear Waste Isolation. This paper presents probable leaching mechanisms for spent fuel and discusses current progress in identifying and understanding the leaching process. During the past year, experiments were begun to study the complex leaching mechanism of spent fuel. The initial work in this investigation was done with UO 2 , which provided the most information possible on the behavior of the spent-fuel matrix without encountering the very high radiation levels associated with spent fuel. Both single-crystal and polycrystalline UO 2 samples were used for this study, and techniques applicable to remote experimentation in a hot cell are being developed. The effects of radiation are being studied in terms of radiolysis of water and surface activation of the UO 2 . Dissolution behavior and kinetics of UO 2 were also investigated by electrochemical measurement techniques. These data will be correlated with those acquired when spent fuel is tested in a hot cell. Oxidation effects represent a major area of concern in evaluating the stability of spent fuel. Dissolution of UO 2 is greatly increased in an oxidizing solution because the dissolution is then controlled by the formation of hexavalent uranium. In solutions containing very low oxygen levels (i.e., reducing solutions), oxidation-induced dissolution may be possible via a previously oxidized surface, through exposure to air during storage, or by local oxidants such as O 2 and H 2 O 2 produced from radiolysis of water and radiation-activated UO 2 surfaces. The effects of oxidation not only increase the dissolution rate, but could lead to the disintegration of spent fuel into fine fragments

  3. Spent fuel management options for research reactors in Latin America

    International Nuclear Information System (INIS)

    2006-06-01

    Research reactors (RRs) have been operated in Latin America since the late 1950s, and a total of 23 RRs have been built in the region. At the time of writing (November 2005), 18 RRs are in operation, 4 have been shut down and 1 has been decommissioned. The number of operating RRs in Latin America represents around 6% of the existing operational RRs worldwide and around 21% of the RRs operating in developing countries. Common to all RRs in the region is a consistent record of safe and successful operation. With the purpose of carrying out a collaborative study of different aspects of the management of spent fuel from RRs, some countries from the region proposed to the IAEA in 2000 the organization of a Regional Project. The project (IAEA TC Regional Project RLA/4/018) that was approved for the biennium 2001-2002 and extended for 2003-2004 included the participation of Argentina, Brazil, Chile, Mexico and Peru. The main objectives of this project were: (a) to define the basic conditions for a regional strategy for managing spent fuel that will provide solutions compatible with the economic and technological realities of the countries involved; and (b) to determine what is needed for the temporary wet and dry storage of spent fuel from the research reactors in the countries of the Latin American region that participated in the project. This TECDOC is based on the results of TC Regional Project RLA/4/018. This project was successful in identifying and assessing a number of viable alternatives for RRSF management in the Latin American region. Options for operational and interim storage, spent fuel conditioning and final disposal have been carefully considered. This report presents the views of Latin American experts on RR spent fuel management and will be useful as reference material for the Latin American RR community, decision making authorities in the region and the public in general

  4. Spent Nuclear Fuel (SNF) Project Product Specification

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major

  5. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-12-07

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major

  6. Management and storage of spent research reactor fuel within the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Krull, W.

    1996-01-01

    Research reactors in the Federal Republic of Germany and their needs for the interim storage of spent nuclear fuel are described. Existing long-term interim storage facilities are described. Special licensing and legal restrictions imposed by the German Atomic Energy Act are outlined. Possible final solutions for the back end of the nuclear fuel cycle for research reactors, including reprocessing in the United Kingdom or France, return of US-origin fuel and a home-grown German solution are discussed. (author). 2 refs, 5 figs, 4 tabs

  7. Hanford K Basins spent nuclear fuels project update

    International Nuclear Information System (INIS)

    Hudson, F.G.

    1997-01-01

    Twenty one hundred metric tons of spent nuclear fuel are stored in two concrete pools on the Hanford Site, known as the K Basins, near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current wet pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in the K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported into the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building (CSB) in the 200 Area for staging prior to hot conditioning. The conditioning step to remove chemically bound water is performed by holding the MCO at 300 C under vacuum. This step is necessary to prevent excessive pressure buildup during interim storage that could be caused by corrosion. After conditioning, MCOs will remain in the CSB for interim storage until a national repository is completed

  8. Hanford K Basins spent nuclear fuels project update

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, F.G.

    1997-10-17

    Twenty one hundred metric tons of spent nuclear fuel are stored in two concrete pools on the Hanford Site, known as the K Basins, near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current wet pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in the K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported into the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building (CSB) in the 200 Area for staging prior to hot conditioning. The conditioning step to remove chemically bound water is performed by holding the MCO at 300 C under vacuum. This step is necessary to prevent excessive pressure buildup during interim storage that could be caused by corrosion. After conditioning, MCOs will remain in the CSB for interim storage until a national repository is completed.

  9. Pyrochemical processing of DOE spent nuclear fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1995-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  10. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Park, Seong Won; Shin, Y. J.; Cho, S. H.

    2004-03-01

    The research on spent fuel management focuses on the maximization of the disposal efficiency by a volume reduction, the improvement of the environmental friendliness by the partitioning and transmutation of the long lived nuclides, and the recycling of the spent fuel for an efficient utilization of the uranium source. In the second phase which started in 2001, the performance test of the advanced spent fuel management process consisting of voloxidation, reduction of spent fuel and the lithium recovery process has been completed successfully on a laboratory scale. The world-premier spent fuel reduction hot test of a 5 kgHM/batch has been performed successfully by joint research with Russia and the valuable data on the actinides and FPs material balance and the characteristics of the metal product were obtained with experience to help design an engineering scale reduction system. The electrolytic reduction technology which integrates uranium oxide reduction in a molten LiCl-Li 2 O system and Li 2 O electrolysis is developed and a unique reaction system is also devised. Design data such as the treatment capacity, current density and mass transfer behavior obtained from the performance test of a 5 kgU/batch electrolytic reduction system pave the way for the third phase of the hot cell demonstration of the advanced spent fuel management technology

  11. Characterization of Hanford K basin spent nuclear fuel and sludge

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1996-01-01

    A characterization plan was prepared to support the Integrated Process Strategy (IPS) for resolution of the safety and environmental concerns associated with the deteriorating Spent Nuclear Fuel (SNF) stored in the Hanford Site K Basins. This plan provides the structure and logic and identifies the information needs to be supported by the characterization activities. The IPS involves removal of the fuel elements from the storage canister and placing them in a container, i.e., Multiple Canister Overpack (MCO) capable of holding multiple tiers of baskets full of fuel. The MCOs will be vacuum dried to remove free water and shipped to the Container Storage Building (CSB) where they will be staged waiting for hot vacuum conditioning. The MCO will be placed in interim storage in the CSB following conditioning and disposition

  12. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    Medun, V.

    2001-01-01

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  13. Implementation process and deployment initiatives for the regionalized storage of DOE-owned spent nuclear fuel

    International Nuclear Information System (INIS)

    Dearien, J.A.; Smith, N.E.L.

    1995-01-01

    This report describes how DOE-owned spent nuclear fuel (SNF) will be stored in the interim 40-year period from 1996 to 2035, by which time it is expected to be in a National Nuclear Repository. The process is described in terms of its primary components: fuel inventory, facilities where it is stored, how the fuel will be moved, and legal issues associated with the process. Tools developed to deploy and fulfill the implementation needs of the National Spent Nuclear Fuel Program are also discussed

  14. Development of the Melt-Dilute Treatment Technology for Al-Based DOE Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Peacock, H.B.; Adams, T.M.; Iyer, N.C.

    1998-09-01

    Spent foreign and domestic research reactor fuel assemblies will be sent to Savannah River Site and prepared for interim and eventual geologic storage. Many of the fuel plates have been made with high enriched uranium, and during long term storage, the integrity of the fuel maybe effected if the canister is breached. To reduce the potential for criticality, proliferation, and reduce storage volume, a new treatment technology called melt-dilute is being developed at SRS. The technique will melt the spent fuel assemblies and will dilute the isotopic content to below 20%. The process is simple and versatile

  15. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  16. Spent fuel storage and transportation - ANSTO experience

    International Nuclear Information System (INIS)

    Irwin, Tony

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10 MW DIDO class High Flux Materials Test Reactor (HIFAR) since 1958. Refuelling the reactor produces about 38 spent fuel elements each year. Australia has no power reactors and only one operating research reactor so that a reprocessing plant in Australia is not an economic proposition. The HEU fuel for HIFAR is manufactured at Dounreay using UK or US origin enriched uranium. Spent fuel was originally sent to Dounreay, UK for reprocessing but this plant was shutdown in 1998. ANSTO participates in the US Foreign Research Reactor Spent Fuel Return program and also has a contract with COGEMA for the reprocessing of non-US origin fuel

  17. 1. The application of PIE techniques to the study of the corrosion of spent oxide fuel in deep-rock groundwaters. 2. Spent fuel degradation

    International Nuclear Information System (INIS)

    Forsyth, R.S.

    1991-01-01

    During the autumn of 1990, papers summarizing work performed at Studsvik as part of the SKB research programme designed to study the corrosion behaviour of spent nuclear fuel in deep-rock groundwater were presented at two scientific meetings: The first paper presents results and observations of the study of the corrosion of spent oxide fuel in deep-rock ground-waters. The PIE techniques were applied to the detailed study of spent fuel both before and after water contact. The second paper represents an up-dated reporting of results obtained in the Swedish programme relevant to preferential dissolution effects, including interim results from recently stored experiments specifically designed to study possible correlations between corrosion behaviour and fuel properties conditioned by burnup and/or local power variations. Recent observations during the search for corrosion sites in fuel exposed to corrosion for about 4 years are also presented. (KAE)

  18. Development of a Computer Program for the Analysis Logistics of PWR Spent Fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Choi, Jong Won; Cha, Jeong Hun

    2008-01-01

    It is expected that the temporary storage facilities at the nuclear power plants will be full of the spent fuels within 10 years. Provided that a centralized interim storage facility is constructed along the coast of the Korean peninsula to solve this problem, a substantial amount of spent fuels should be transported by sea or by land every year. In this paper we developed a computer program for the analysis of transportation logistics of the spent fuels from 4 different nuclear power plant sites to the hypothetical centralized interim storage facility and the final repository. Mass balance equations were used to analyze the logistics between the nuclear power plants and the interim storage facility. To this end a computer program, CASK, was developed by using the VISUAL BASIC language. The annual transportation rates of spent fuels from the four nuclear power plant sites were determined by using the CASK program. The parameter study with the program illustrated the easiness of logistics analysis. The program could be used for the cost analysis of the spent fuel transportation as well.

  19. Fact sheet on spent fuel management

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs. The proceedings of the 2003 IAEA conference on storage of spent fuel from power reactors has been ranked in the top twenty most accessed IAEA publications. These proceedings are available for free downloads at http://www-pub.iaea.org/MTCD/publications/PubDetails.asp?pubId=6924]. The IAEA organized and held a 2004 meeting focused on long term spent fuel storage provisions in Central and Eastern Europe, using technical cooperation funds to support participation by these Member States. Over ninety percent of the participants in this meeting rated its value as good or excellent, with participants noting that the IAEA is having a positive effect in stimulating communication, cooperation, and information dissemination on this important topic. The IAEA was advised in 2004 that results from a recent coordinated research project (IAEA-TECDOC-1343) were used by one Member State to justify higher clad temperatures for spent fuel in dry storage, leading to more efficient storage and reduced costs. Long term

  20. Hanford Spent Nuclear Fuel Project recommended path forward

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team's proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated)

  1. Features and safety aspects of spent fuel storage facility, Tarapur

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Tarapur is designed to store spent fuel arising from PHWRs in different parts of the country. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Tarapur was hot commissioned after regulatory clearances

  2. Licensing of spent nuclear fuel dry storage in Russia

    International Nuclear Information System (INIS)

    Kislov, A.I.; Kolesnikov, A.S.

    1999-01-01

    The Federal nuclear and radiation safety authority of Russia (Gosatomnadzor) being the state regulation body, organizes and carries out the state regulation and supervision for safety at handling, transport and storage of spent nuclear fuel. In Russia, the use of dry storage in casks will be the primary spent nuclear fuel storage option for the next twenty years. The cask for spent nuclear fuel must be applied for licensing by Gosatomnadzor for both storage and transportation. There are a number of regulations for transportation and storage of spent nuclear fuel in Russia. Up to now, there are no special regulations for dry storage of spent nuclear fuel. Such regulations will be prepared up to the end of 1998. Principally, it will be required that only type B(U)F, packages can be used for interim storage of spent nuclear fuel. Recently, there are two dual-purpose cask designs under consideration in Russia. One of them is the CONSTOR steel concrete cask, developed in Russia (NPO CKTI) under the leadership of GNB, Germany. The other cask design is the TUK-104 cask of KBSM, Russia. Both cask types were designed for spent nuclear RBMK fuel. The CONSTOR steel concrete cask was designed to be in full compliance with both Russian and IAEA regulations for transport of packages for radioactive material. The evaluation of the design criteria by Russian experts for the CONSTOR steel concrete cask project was performed at a first stage of licensing (1995 - 1997). The CONSTOR cask design has been assessed (strength analysis, thermal physics, nuclear physics and others) by different Russian experts. To show finally the compliance of the CONSTOR steel concrete cask with Russian and IAEA regulations, six drop tests have been performed with a 1:2 scale model manufactured in Russia. A test report was prepared. The test results have shown that the CONSTOR cask integrity is guaranteed under both transport and storage accident conditions. The final stage of the certification procedure

  3. Overview of symposium on storage of spent fuel from power reactors

    International Nuclear Information System (INIS)

    Bonne, A.; Crijns, M.J.; Dyck, H.P.

    2001-01-01

    An International Symposium on Storage of Spent Fuel from Power Reactors was held in Vienna from 9-13 November 1998. The Symposium was organized by the International Atomic Energy Agency in co-operation with the OECD Nuclear Energy Agency. Of the one hundred sixty participants registered, one hundred twenty-five (including 3 observers) representing 35 countries and 4 international organizations, attended the Symposium. 20 participants from developing countries received Agency's grants. During 4 main Sessions, 44 oral presentations of papers were made and subsequent discussions held. At a poster session 13 papers were presented. This paper will give an overview of the Symposium. The Symposium gave an opportunity to exchange information on the state of art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. It was obvious from the papers presented and the discussions that the handling and storage of spent fuel is continuously taking place safely. Dominant messages retrieved from the Symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. (author)

  4. Neutron intensity of fast reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Misao; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Neutron intensity of spent fuel of the JOYO Mk-II core with a burnup of 62,500 MWd/t and cooling time of 5.2 years was measured at the spent fuel storage pond. The measured data were compared with the calculated values based on the JOYO core management code system `MAGI`, and the average C/E approximately 1.2 was obtained. It was found that the axial neutron intensity didn`t simply follow the burnup distribution, and the neutron intensity was locally increased at the bottom end of the fuel region due to an accumulation of {sup 244}Cm. (author)

  5. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  6. Integrated spent nuclear fuel database system

    International Nuclear Information System (INIS)

    Henline, S.P.; Klingler, K.G.; Schierman, B.H.

    1994-01-01

    The Distributed Information Systems software Unit at the Idaho National Engineering Laboratory has designed and developed an Integrated Spent Nuclear Fuel Database System (ISNFDS), which maintains a computerized inventory of all US Department of Energy (DOE) spent nuclear fuel (SNF). Commercial SNF is not included in the ISNFDS unless it is owned or stored by DOE. The ISNFDS is an integrated, single data source containing accurate, traceable, and consistent data and provides extensive data for each fuel, extensive facility data for every facility, and numerous data reports and queries

  7. Spent fuel management in the Republic of Korea: Current status and plans

    International Nuclear Information System (INIS)

    Sang Doug Park

    1998-01-01

    Korea has selected nuclear energy as the major source for the electric power generation due to the insufficiency of energy resources in Korea. in compliance with the policy, Korea Electric Power Corporation (KEPCO) has expanded the nuclear power programme and faced the significant arisings of spent fuel. The interim At Reactor(AR) storage pools have very limited capacities and temporary expansion of this capacity has been taken such as re-racking and dry storage construction. There was a plan, to construct a centralized spent fuel storage facility, which was postponed officially by the government. Under the current situation, it is hard to establish the long-term spent fuel management strategy. 'Wait and See' is no more applicable to Korea. because of storage shortage. Within R and D, dry storage construction and DUPIC fuel cycle are being considered. In this paper, the spent fuel management programme of Korea is briefly reviewed. (author)

  8. A Review on Sabotage against Transportation of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Lim, Jihwan

    2016-01-01

    This report assesses the risk of routine transportation including cask response to an impact or fire accidents. In addition, we have still found the non-negligible difference among the studies for scenarios, approaches, and data. In order to evaluate attack cases on the same basis and reflect more realistic situations, at this moment, it is worthwhile to thoroughly review and analyze the existing studies and to suggest further development directions. In Section 2, we compare scenarios of terror attacks against spent fuel storage and transportation. Section 3 compares target scenarios, capabilities, and limitations of assessment methods. In addition, we collect and compare modeling data used for previous studies to analyze gaps and uncertainties in the existing studies. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility. The government should not be the only ones contributing to this dialogue. This dialogue that needs to happen should work both ways, with the government presenting their information and statistics and the public relaying their concerns for the government to review

  9. A Review on Sabotage against Transportation of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungyeol; Lim, Jihwan [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    This report assesses the risk of routine transportation including cask response to an impact or fire accidents. In addition, we have still found the non-negligible difference among the studies for scenarios, approaches, and data. In order to evaluate attack cases on the same basis and reflect more realistic situations, at this moment, it is worthwhile to thoroughly review and analyze the existing studies and to suggest further development directions. In Section 2, we compare scenarios of terror attacks against spent fuel storage and transportation. Section 3 compares target scenarios, capabilities, and limitations of assessment methods. In addition, we collect and compare modeling data used for previous studies to analyze gaps and uncertainties in the existing studies. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility. The government should not be the only ones contributing to this dialogue. This dialogue that needs to happen should work both ways, with the government presenting their information and statistics and the public relaying their concerns for the government to review.

  10. USA: energy policy and spent fuel and waste management

    International Nuclear Information System (INIS)

    Petroll, M.R.

    2001-01-01

    The new US administration under President Bush has shifted political weights in the country's energy policy. The policy pursued by the Clinton administration, which had been focused strongly on energy efficiency and environmental protection, will be revoked in a number of points, and the focus instead will now be on economics and continuity of supply, also against the backdrop of the current power supply crisis in California. However, it is more likely that fossil-fired generating capacity will be expanded or added than new nuclear generating capacity. As far as the policy of managing radioactive waste is concerned, no fast and fundamental changes are expected. Low-level waste arising in medicine, research, industry, and nuclear power plants will be stored in a number of shallow ground burial facilities also involving more than one federal state. The Yucca Mountain repository project will be advanced with a higher budget, and WIPP (Waste Isolation Plant) in the state of New Mexico has been in operation since 1998. Plans for the management of spent fuel elements include interim stores called ISFSIs (Independent Spent Fuel Storage Installations) both near and independent of nuclear power sites. Nineteen sites have been licensed, another eighteen are ready to be licensed. In addition, also international spent fuel and nuclear waste management approaches are being discussed in the United States which, inter alia, are meant to offer comprehensive solutions to countries running only a small number of nuclear power plants. (orig.) [de

  11. Spent fuel storage practices and perspectives for WWER fuel in Eastern Europe

    International Nuclear Information System (INIS)

    Takats, F.

    1999-01-01

    In this lecture the general issues and options in spent fuel management and storage are reviewed. Quantities of spent fuel world-wide and spent fuel amounts in storage as well as spent fuel capacities are presented. Selected examples of typical spent fuel storage facilities are discussed. The storage technologies applied for WWER fuel is presented. Description of other relevant storage technologies is included

  12. Spent fuel storage requirements 1989--2020

    International Nuclear Information System (INIS)

    1989-10-01

    Historical inventories of spent fuel are combined with Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the US to provide estimates of spent fuel storage requirements over the next 32 years, through the year 2020. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Historical data through December 1988 are derived from the 1989 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 14 refs., 3 figs., 28 tabs

  13. Spent fuel storage requirements, 1991--2040

    International Nuclear Information System (INIS)

    1991-12-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 50 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1990 are derived from the 1991 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges

  14. Spent fuel storage requirements, 1990--2040

    International Nuclear Information System (INIS)

    Walling, R.; Bierschbach, M.

    1990-11-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 51 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1989 are derived from the 1990 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 15 refs., 3 figs., 11 tabs

  15. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III) 2009–2014

    International Nuclear Information System (INIS)

    2015-10-01

    At the beginning of 2014, there were 437 nuclear power reactors in operation and 72 reactors under construction. To date, around 370 500 t (HM) (tonnes of heavy metal) of spent fuel have been discharged from reactors, and approximately 253 700 t (HM) are stored at various storage facilities. Although wet storage at reactor sites still dominates, the amount of spent fuel being transferred to dry storage technologies has increased significantly since 2005. For example, around 28% of the total fuel inventory in the United States of America is now in dry storage. Although the licensing for the construction of geological disposal facilities is under way in Finland, France and Sweden, the first facility is not expected to be available until 2025 and for most States with major nuclear programmes not for several decades afterwards. Spent fuel is currently accumulating at around 7000 t (HM) per year worldwide. The net result is that the duration of spent fuel storage has increased beyond what was originally foreseen. In order to demonstrate the safety of both spent fuel and the storage system, a good understanding of the processes that might cause deterioration is required. To address this, the IAEA continued the Coordinated Research Project (CRP) on Spent Fuel Performance Assessment and Research (SPAR-III) in 2009 to evaluate fuel and materials performance under wet and dry storage and to assess the impact of interim storage on associated spent fuel management activities (such as handling and transport). This has been achieved through: evaluating surveillance and monitoring programmes of spent fuel and storage facilities; collecting and exchanging relevant experience of spent fuel storage and the impact on associated spent fuel management activities; facilitating the transfer of knowledge by documenting the technical basis for spent fuel storage; creating synergy among research projects of the participating Member States; and developing the capability to assess the impact

  16. Storage method for spent fuel assembly

    International Nuclear Information System (INIS)

    Tajiri, Hiroshi.

    1992-01-01

    In the present invention, spent fuel assemblies are arranged at a dense pitch in a storage rack by suppressing the reactivity of the assemblies, to increase storage capacity for the spent fuel assemblies. That is, neutron absorbers are filled in the cladding tube of an absorbing rod, and the diameter thereof is substantially equal with that of a fuel rod. A great amount of the absorbing rods are arranged at the outer circumference of the fuel assembly. Then, they are fixed integrally to the fuel assembly and stored in a storage rack. In this case, the storage rack may be constituted only with angle materials which are inexpensive and installed simply. With such a constitution, in the fuel assembly having absorbing rods wound therearound, neutrons are absorbed by absorbing rods and the reactivity is lowered. Accordingly, the assembly arrangement pitch in the storage rack can be made dense. As a result, the storage capacity for the assemblies is increased. (I.S.)

  17. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  18. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Croson, M.L.

    1994-01-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  19. Hanford spent fuel inventory baseline

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1994-01-01

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors

  20. Storing the world's spent nuclear fuel

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.; Alonso, M.

    1985-01-01

    Given the world's prodigious future energy requirements and the inevitable depletion of oil and gas, it would be foolhardy consciously to seek limitations on the growth of nuclear power. Indeed, the authors continue to believe that the global nuclear power enterprise, as measured by installed reactor capacity, can become much larger in the future without increasing proliferation risks. To accomplish this objective will require renewed dedication to the non-proliferation regime, and it will require some new initiatives. Foremost among these would be the establishment of a spent fuel take-back service, in which one or a few states would retrieve spent nuclear fuel from nations generating it. The centralized retrieval of spent fuel would remove accessible plutonium from the control of national leaders in non-nuclear-weapons states, thereby eliminating the temptation to use this material for weapons. The Soviets already implement a retrieval policy with the spent fuel generated by East European allies. The authors believe that it is time for the US to reopen the issue of spent-fuel retrieval, and thus to strengthen its non-proliferation policies and the nonproliferation regime in general. 7 references

  1. Spent Nuclear Fuel (SNF) Removal Campaign Plan

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The overall operation of the Spent Nuclear Fuel Project will include fuel removal, sludge removal, debris removal, and deactivation transition activities. Figure 1-1 provides an overview of the current baseline operating schedule for project sub-systems, indicating that a majority of fuel removal activities are performed over an approximately three-and-one-half year time period. The purpose of this document is to describe the strategy for operating the fuel removal process systems. The campaign plan scope includes: (1) identifying a fuel selection sequence during fuel removal activities, (2) identifying MCOs that are subjected to extra testing (process validation) and monitoring, and (3) discussion of initial MCO loading and monitoring in the Canister Storage Building (CSB). The campaign plan is intended to integrate fuel selection requirements for handling special groups of fuel within the basin (e.g., single pass reactor fuel), process validation activities identified for process systems, and monitoring activities during storage

  2. Assessment of the risk of transporting spent nuclear fuel by truck

    International Nuclear Information System (INIS)

    Elder, H.K.

    1978-11-01

    The assessment includes the risks from release of spent fuel materials and radioactive cask cavity cooling water due to transportation accidents. The contribution to the risk of package misclosure and degradation during normal transport was also considered. The results of the risk assessment have been related to a time in the mid-1980's, when it is projected that nuclear plants with an electrical generating capacity of 100 GW will be operating in the U.S. For shipments from reactors to interim storage facilities, it is estimated that a truck carrying spent fuel will be involved in an accident that would not be severe enough to result in a release of spent fuel material about once in 1.1 years. It was estimated that an accident that could result in a small release of radioactive material (primarily contaminated cooling water) would occur once in about 40 years. The frequency of an accident resulting in one or more latent cancer fatalities from release of radioactive materials during a truck shipment of spent fuel to interim storage was estimated to be once in 41,000 years. No accidents were found that would result in acute fatalities from releases of radioactive material. The risk for spent fuel shipments from reactors to reprocessing plants was found to be about 20% less than the risk for shipments to interim storage. Although the average shipment distance for the reprocessing case is larger, the risk is somewhat lower because the shipping routes, on average, are through less populated sections of the country. The total risk from transporting 180-day cooled spent fuel by truck in the reference year is 4.5 x 10 -5 fatalities. An individual in the population at risk would have one chance in 6 x 10 11 of suffering a latent cancer fatality from a release of radioactive material from a truck carrying spent fuel in the reference year

  3. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)

    1982-01-01

    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  4. Container materials in environments of corroded spent nuclear fuel

    Science.gov (United States)

    Huang, F. H.

    1996-07-01

    Efforts to remove corroded uranium metal fuel from the K Basins wet storage to long-term dry storage are underway. The multi-canister overpack (MCO) is used to load spent nuclear fuel for vacuum drying, staging, and hot conditioning; it will be used for interim dry storage until final disposition options are developed. Drying and conditioning of the corroded fuel will minimize the possibility of gas pressurization and runaway oxidation. During all phases of operations the MCO is subjected to radiation, temperature and pressure excursions, hydrogen, potential pyrophoric hazard, and corrosive environments. Material selection for the MCO applications is clearly vital for safe and efficient long-term interim storage. Austenitic stainless steels (SS) such as 304L SS or 316L SS appear to be suitable for the MCO. Of the two, Type 304L SS is recommended because it possesses good resistance to chemical corrosion, hydrogen embrittlement, and radiation-induced corrosive species. In addition, the material has adequate strength and ductility to withstand pressure and impact loading so that the containment boundary of the container is maintained under accident conditions without releasing radioactive materials.

  5. Status and prospects for spent fuel management in France

    International Nuclear Information System (INIS)

    Portal, R.; L'Epine, P. de

    1996-01-01

    The spent fuel arisings and storage capacities, the interface between fuel storage and transportation activities, the spent fuel storage technology, the reprocessing and recycling industrial activities in France are described in the paper. (author). 6 figs, 8 tabs

  6. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, Y. H.

    2001-03-01

    Since the amount of the spent fuel rapidly increases, the current R and D activities are focused on the technology development related with the storage and utilization of the spent fuel. In this research, to provide such a technology, the mechanical head-end process has been developed. In detail, the swing and shock-free crane and the RCGLUD(Remote Cask Grappling and Lid Unbolting Device) were developed for the safe transportation of the spent fuel assembly, the LLW drum and the transportation cask. Also, the disassembly devices required for the head-end process were developed. This process consists of an assembly downender, a rod extractor, a rod cutter, a fuel decladding device, a skeleton compactor, a force-rectifiable manipulator for the abnormal spent fuel disassembly, and the gantry type telescopic transporter, etc. To provide reliability and safety of these devices, the 3 dimensional graphic design system is developed. In this system, the mechanical devices are modelled and their operation is simulated in the virtual environment using the graphic simulation tools. So that the performance and the operational mal-function can be investigated prior to the fabrication of the devices. All the devices are tested and verified by using the fuel prototype at the mockup facility

  7. Spent fuel management: Current status and prospects

    International Nuclear Information System (INIS)

    1988-12-01

    The main objective of the Advisory Group on Spent Fuel Management is to review the world-wide situation in Spent Fuel Management, to define the most important directions of national efforts and international cooperation in this area, to exchange information on the present status and progress in performing the back-end of Nuclear Fuel Cycle and to elaborate the general recommendations for future Agency programmes in the field of spent fuel management. This report which is a result of the third IAEA Advisory Group Meeting (the first and second were held in 1984 and 1986) is intended to provide the reader with an overview of the status of spent fuel management programmes in a number of leading countries, with a description of the past and present IAEA activities in this field of Nuclear Fuel Cycle and with the Agency's plans for the next years, based on the proposals and recommendations of Member States. A separate abstract was prepared for each of 14 papers presented at the advisory group meeting. Refs, figs and tabs

  8. Status and trends in spent fuel reprocessing. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1999-08-01

    Spent fuel management has always been an important part of the nuclear fuel cycle and is still one of the most important activities in all countries exploiting the peaceful use of nuclear energy. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and to coordinate and encourage closer co-operation among Member States in certain research and developing activities that are of common interest. As part of spent fuel management, reprocessing activities have been reviewed from time to time on a low profile level under the terminology 'spent fuel treatment'. However, spent fuel treatment covers, in broad terms, spent fuel storage (short, interim and long term), fuel rod consolidation, reprocessing and, in case the once-through cycle is selected, conditioning of the spent fuel for disposal. Hence the reprocessing activities under the heading 'spent fuel treatment' were somewhat misleading. Several meetings on spent fuel treatment have been organized during the fast decade: an Advisory Group meeting (AGM) in 1992, a Technical Committee meeting in 1995 and recently an Advisory Group meeting from 7 to 10 September 1998. The objectives of the meetings were to review the status and trends of spent fuel reprocessing, to discuss the environmental impact and safety aspects of reprocessing facilities and to define the most important issues in this field. Notwithstanding the fact that the Summary of the report does not include aspects of military reprocessing, some of the national presentations do refer to some relevant aspects (e.g. experience, fissile stockpiles)

  9. Radioactivity of spent TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P. [Reactor Department, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  10. Radioactivity of spent TRIGA fuel

    International Nuclear Information System (INIS)

    Usang, M. D.; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-01-01

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive

  11. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  12. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  13. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  14. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  15. Geomechanics of the Spent Fuel Test: Climax

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1987-07-01

    Three years of geomechanical measurements were made at the Spent Fuel Test-Climax (SFT-C) 1400 feet underground in fractured granitic rock. Heating of the rock mass resulted from emplacement of spent fuel as well as the heating by electrical heaters. Cooldown of the rock occurred after the spent fuel was removed and the heaters were turned off. The measurements program examines both gross and localized responses of the rock mass to thermal loading, to evaluate the thermomechanical response of sheared and fractured rock with that of relatively unfractured rock, to compare the magnitudes of displacements during mining with those induced by extensive heating of the rock mass, and to check assumptions regarding symmetry and damaged zones made in numerical modeling of the SFT-C. 28 refs., 113 figs., 10 tabs

  16. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly

  17. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools (SFSP's) will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a full size laser system operating in air and have used an array of 6 zircaloy BWR tubes to simulate an assembly. The reflective signal from the zircaloy rods is a strong function of position of the assembly, but in all cases is easily discernable from the reference scan of the background with no assembly. A design for a SFSP laser surveillance system incorporating laser ranging is discussed. 10 figures

  18. Spent fuel container alignment device and method

    Science.gov (United States)

    Jones, Stewart D.; Chapek, George V.

    1996-01-01

    An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.

  19. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    International Nuclear Information System (INIS)

    Oh, Jinho

    2013-01-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe

  20. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe.

  1. K-Basin spent nuclear fuel characterization data report 2

    International Nuclear Information System (INIS)

    Abrefah, J.; Gray, W.J.; Ketner, G.L.; Marschman, S.C.; Pyecha, T.D.; Thornton, T.A.

    1996-03-01

    An Integrated Process Strategy has been developed to package, condition, transport, and store in an interim storage facility the spent nuclear fuel (SNF) currently residing in the K-Basins at Hanford. Information required to support the development of the condition process and to support the safety analyses must be obtained from characterization testing activities conducted on fuel samples from the Basins. Some of the information obtained in the testing was reported in PNL-10778, K-Basin Spent Nuclear Fuel Characterization Data Report (Abrefah et al. 1995). That report focused on the physical, dimensional, metallographic examinations of the first K-West (KW) Basin SNF element to be examined in the Postirradiation Testing Laboratory (PTL) hot cells; it also described some of the initial SNF conditioning tests. This second of the series of data reports covers the subsequent series of SNF tests on the first fuel element. These tests included optical microscopy analyses, conditioning (drying and oxidation) tests, ignition tests, and hydrogen content tests

  2. K-Basin spent nuclear fuel characterization data report 2

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, J.; Gray, W.J.; Ketner, G.L.; Marschman, S.C.; Pyecha, T.D.; Thornton, T.A.

    1996-03-01

    An Integrated Process Strategy has been developed to package, condition, transport, and store in an interim storage facility the spent nuclear fuel (SNF) currently residing in the K-Basins at Hanford. Information required to support the development of the condition process and to support the safety analyses must be obtained from characterization testing activities conducted on fuel samples from the Basins. Some of the information obtained in the testing was reported in PNL-10778, K-Basin Spent Nuclear Fuel Characterization Data Report (Abrefah et al. 1995). That report focused on the physical, dimensional, metallographic examinations of the first K-West (KW) Basin SNF element to be examined in the Postirradiation Testing Laboratory (PTL) hot cells; it also described some of the initial SNF conditioning tests. This second of the series of data reports covers the subsequent series of SNF tests on the first fuel element. These tests included optical microscopy analyses, conditioning (drying and oxidation) tests, ignition tests, and hydrogen content tests.

  3. Sustainable Solutions for Nuclear used Fuels Interim Storage

    International Nuclear Information System (INIS)

    Arslan, Marc; Favet, Dominique; Issard, Herve; Le Jemtel, Amaury; Drevon, Caroline

    2014-01-01

    AREVA has a unique experience in providing sustainable solutions for used fuel management, fitted with the needs of different customers in the world and with regulation in different countries. These solutions entail both recycling and interim storage technologies. In a first part, we will describe the various types of solutions for Interim Storage of UNF that have been implemented around the world for interim storage at reactor or centralized Pad solution in canisters dry storage, vault type storages for dry storage, dry storage of transportation casks (dual purpose) pools for wet storage, The experience for all these different families of interim storages in which AREVA is involved is extensive and will be discussed with respect to the new challenges: increase of the duration of the interim storage (long term interim storage) increase of burn up of the fuels In a second part of the presentation, special recycling features will be presented. In that case, interim storage of the used fuels is ensured in pools. This provides in the long term good conditions for the behaviour of the fuel and its retrievability. With recycling, the final waste (Universal Canister of vitrified fission products and compacted hulls and end pieces): is stable and licensed in many countries for the final disposal (France, UK, Belgium, NL, Switzerland, Germany, Japan, upcoming: Spain, Australia, Italy). Presents neither safety criticality risks nor proliferation risks (AREVA conditioned HLW and LL-ILW are free of IAEA safeguard constraints thanks to AREVA process high recovery and purification yields). It can therefore be safely stored in interim storage for more than 100 years before final disposal. Some economic considerations will also be discussed. In particular, in the case of long term interim storage of used fuels, there are growing uncertainties regarding the future needs of repackaging and transportation, which can result in future cost overruns. Meanwhile, in the recycling policy

  4. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the

  5. Spent fuel drying system test results (second dry-run)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0

  6. Evaluation of potential for MSRE spent fuel and flush salt storage and treatment at the INEL

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Ostby, P.A.; Nebeker, R.L.

    1996-09-01

    The potential for interim storage as well as for treatment of the Molten Salt Reactor Experiment spent fuel at INEL has been evaluated. Provided that some minimal packaging and chemical stabilization prerequisites are satisfied, safe interim storage of the spent fuel at the INEL can be achieved in a number of existing or planned facilities. Treatment by calcination in the New Waste Calcining Facility at the INEL can also be a safe, effective, and economical alternative to treatment that would require the construction of a dedicated facility. If storage at the INEL is chosen for the Molten Salt Reactor Experiment (MSRE) spent fuel salts, their transformation to the more stable calcine solid would still be desirable as it would result in a lowering of risks. Treatment in the proposed INEL Remote-Handled Immobilization Facility (RHIF) would result in a waste form that would probably be acceptable for disposal at one of the proposed national repositories. The cost increment imputable to the treatment of the MSRE salts would be a small fraction of the overall capital and operating costs of the facility or the cost of building and operating a dedicated facility. Institutional and legal issues regarding shipments of fuel and waste to the INEL are summarized. The transfer of MSRE spent fuel for interim storage or treatment at the INEL is allowed under existing agreements between the State of idaho and the Department of energy and other agencies of the Federal Government. In contrast, current agreements preclude the transfer into Idaho of any radioactive wastes for storage or disposal within the State of Idaho. This implies that wastes and residues produced from treating the MSRE spent fuel at locations outside Idaho would not be acceptable for storage in Idaho. Present agreements require that all fuel and high-level wastes stored at the INEL, including MSRE spent fuel if received at the INEL, must be moved to a location outside Idaho by the year 2035

  7. Disposal of spent fuel from German nuclear power plants - 16028

    International Nuclear Information System (INIS)

    Graf, Reinhold; Brammer, Klaus-Juergen; Filbert, Wolfgang; Bollingerfehr, Wilhelm

    2009-01-01

    The 'direct disposal of spent fuel' as a part of the current German reference concept was developed as an alternative to spent fuel reprocessing and vitrified HLW disposal. The technical facilities necessary for the implementation of this part of the reference concept, the so called POLLUX R concept, i.e. interim storage buildings for casks containing spent fuel, a pilot conditioning facility, and a special cask 'POLLUX' for final disposal have been built. With view to a geological salt formation all handling procedures for the direct disposal of spent fuel were tested aboveground in full-scale test facilities. To optimise the reference concept, all operational steps have been reviewed for possible improvements. The two additional concepts for the direct disposal of SF are the BSK 3 concept and the DIREGT concept. Both concepts rely on borehole emplacement technology, vertical boreholes for the BSK 3 concept und horizontal boreholes for the DIREGT concept. Supported by the EU and the German Federal Ministry of Economics and Technology (BMWi), DBE TECHNOLOGY built an aboveground full-scale test facility to simulate all relevant handling procedures for the BSK 3 disposal concept. GNS (Company for Nuclear Service), representing the German utilities, provided the main components and its know-how concerning cask design and manufacturing. The test program was concluded recently after more than 1.000 emplacement operations had been performed successfully. The BSK 3 emplacement system in total comprises an emplacement device, a borehole lock, a transport cart, a transfer cask which will shuttle between the aboveground conditioning facility and the underground repository, and the BSK 3 canister itself, designed to contain the fuel rods of three PWR-fuel assemblies with a total of about 1.6 tHM. The BSK 3 concept simplifies the operation of the repository because the handling procedures and techniques can also be applied for the disposal of reprocessing residues. In addition

  8. Current status of spent fuel management in the Republic of Korea

    International Nuclear Information System (INIS)

    Min, D.K.; You, G.S.; Ro, S.G.; Park, H.S.

    1999-01-01

    Due to the lack of indigenous energy sources in Korea, the government selected nuclear energy as one of the major sources of electricity generation. According to the Korean government programme of a nuclear power development, currently, 14 nuclear power plants (NPPs) are in operation and 4 NPPs are under construction. In addition, further 10 NPPs are planned to be in operation by the year 2015. The large amount of spent fuel discharged from the nuclear power plants is accumulated in at-reactor (AR) storage pools. Due to the limited capacity of these AR storage pools, the safe and economic management of spent fuel is to be resolved. The spent fuel management strategy in Korea, basically depends on the interim storage in wet and dry storage facilities, including expansion of storage capacity. This paper describes the current status and plans of the spent fuel management in Korea. (author)

  9. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  10. Development and engineering plan for graphite spent fuels conditioning program

    International Nuclear Information System (INIS)

    Bendixsen, C.L.; Fillmore, D.L.; Kirkham, R.J.; Lord, D.L.; Phillips, M.B.; Pinto, A.P.; Staiger, M.D.

    1993-09-01

    Irradiated (or spent) graphite fuel stored at the Idaho Chemical Processing Plant (ICPP) includes Fort St. Vrain (FSV) reactor and Peach Bottom reactor spent fuels. Conditioning and disposal of spent graphite fuels presently includes three broad alternatives: (1) direct disposal with minimum fuel packaging or conditioning, (2) mechanical disassembly of spent fuel into high-level waste and low-level waste portions to minimize geologic repository requirements, and (3) waste-volume reduction via burning of bulk graphite and other spent fuel chemical processing of the spent fuel. A multi-year program for the engineering development and demonstration of conditioning processes is described. Program costs, schedules, and facility requirements are estimated

  11. Acceptance of spent fuel of varying characteristics

    International Nuclear Information System (INIS)

    Short, S.M.

    1990-03-01

    This paper is a preliminary overview of a study with the primary objective of establishing a set of acceptance selection criteria and corresponding spent fuel characteristics to be incorporated as a component of requirements for the Federal Waste Management System (FWMS). A number of alternative acceptance allocations and selection rules were analyzed to determine the operational sensitivity of each element of the FWMS to the resultant spent fuel characteristics. Preliminary recommendations of the study include three different sets of selection rules to be included in the FWMS design basis. 2 refs., 4 figs., 4 tabs

  12. Array Detector Modules for Spent Fuel Verification

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey

    2018-05-07

    Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.

  13. Transporting spent nuclear fuel: an overview

    International Nuclear Information System (INIS)

    1986-03-01

    Although high-level radioactive waste from both commercial and defense activities will be shipped to the repository, this booklet focuses on various aspects of transporting commercial spent fuel, which accounts for the majority of the material to be shipped. The booklet is intended to give the reader a basic understanding of the following: the reasons for transportation of spent nuclear fuel, the methods by which it is shipped, the safety and security precautions taken for its transportation, emergency response procedures in the event of an accident, and the DOE program to develop a system uniquely appropriate to NWPA transportation requirements

  14. Significance of campaigned spent fuel shipments

    International Nuclear Information System (INIS)

    Doman, J.W.; Tehan, T.E.

    1993-01-01

    Operational experience associated with spent fuel or irradiated hardware shipments to or from the General Electric Morris Facility is presented. The following specific areas are addressed: Problems and difficulties associated with meeting security and safeguard requirements of 10 CFR Part 73; problems associated with routing via railroad; problems associated with scheduling and impact on affected parties when a shipment is delayed or cancelled; and impact on training when shipments spread over many years. The lessons learned from these experiences indicate that spent fuel shipments are best conducted in dedicated open-quotes campaignsclose quotes that concentrate as much consecutive shipping activity as possible into one continuous time frame

  15. Spent fuel disposal problem in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Milanov, M; Stefanova, I [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1994-12-31

    The internationally agreed basic safety principles and criteria for spent fuel (SF) and high level waste (HLW) disposal are outlined. In the framework of these principles the specific problems of Bulgaria described in the `National Concept for Radioactive Waste Management and Disposal in Republic of Bulgaria` are discussed. The possible alternatives for spent fuel management are: (1) sending the spent fuel for disposal in other country; (2) once-through cycle and (3) closed fuel cycle. A mixed solution of the problem is implemented in Bulgaria. According to the agreement between Bulgaria and former Soviet Union a part of the spent fuel has been returned to Russia. The once-through and closed-fuel cycle are also considered. The projected cumulated amount of spent fuel is estimated for two cases: (1) the six units of Kozloduy NPP are in operation till the end of their lifetime (3300 tHM) and (2) low estimate (2700 tHM) - only units 5 and 6 are operated till the end of their lifetime. The reprocessing of the total amount of 3300 tHM will lead to the production of about 370 m{sup 3} vitrified high level wastes. Together with the HLW about 1850 m{sup 3} cladding hulls and 7800 m{sup 3} intermediate-level wastes will be generated, which should be disposed off in deep geological repository. The total production of radioactive waste in once-through cycle is 181 000 m{sup 3}, and in closed cycle - 190 000 m{sup 3}. Geological investigations are performed resulting in categorization of the territory of the country based on geological, geotechnical and hydrogeological conditions. This will facilitate the choice of the most suitable location for deep geological repository. 7 figs., 11 refs.

  16. Spent fuel surveillance and monitoring methods

    International Nuclear Information System (INIS)

    1988-05-01

    The Technical Committee Meeting on ''Spent Fuel Surveillance and Monitoring Methods'' (27-30 October 1987) has been organized in accordance with recommendations of the International Standing Advisory Group on Spent Fuel Management during its second meeting in 1986. The aim of the meeting was to discuss the above questions with emphasis on current design and operation criteria, safety principles and licensing requirements and procedures in order to prevent: inadvertent criticality, undue radiation exposure, unacceptable release of radioactivity as well as control for loss of storage pool water, crud impact, water chemistry, distribution and behaviour of particulates in cooling water, oxidation of intact and failed fuel rods as a function of temperature and burnup; distribution of radiation and temperature through dry cask wall, monitoring of leakages from pools and gas escapes from dry storage facilities, periodical integrity tests of the containment barriers, responsibilities of organizations for the required operation, structure, staff and subordination, etc. The presentations of the Meeting were divided into two sessions: Spent fuel surveillance programmes and practice in Member States (4 papers); Experimental methods developed in support of spent fuel surveillance programmes (5 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, S. H.

    2004-02-01

    In this research, the remote handling technology is developed for the advanced spent fuel conditioning process which gives a possible solution to deal with the rapidly increasing spent fuels. In detail, a fuel rod slitting device is developed for the decladding of the spent fuel. A series of experiments has been performed to find out the optimal condition of the spent fuel voloxidation which converts the UO 2 pellet into U 3 O 8 powder. The design requirements of the ACP equipment for hot test is established by analysing the modular requirement, radiation hardening and thermal protection of the process equipment, etc. The prototype of the servo manipulator is developed. The manipulator has an excellent performance in terms of the payload to weight ratio that is 30 % higher than that of existing manipulators. To provide reliability and safety of the ACP, the 3 dimensional graphic simulator is developed. Using the simulator the remote handling operation is simulated and as a result, the optimal layout of ACP is obtained. The supervisory control system is designed to control and monitor the several different unit processes. Also the failure monitoring system is developed to detect the possible accidents of the reduction reactor

  18. Spent Fuel Storage Operation - Lessons Learned

    International Nuclear Information System (INIS)

    2013-12-01

    Experience gained in planning, constructing, licensing, operating, managing and modifying spent fuel storage facilities in some Member States now exceeds 50 years. Continual improvement is only achieved through post-project review and ongoing evaluation of operations and processes. This publication is aimed at collating and sharing lessons learned. Hopefully, the information provided will assist Member States that already have a developed storage capability and also those considering development of a spent nuclear fuel storage capability in making informed decisions when managing their spent nuclear fuel. This publication is expected to complement the ongoing Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III); the scope of which prioritizes facility operational practices in lieu of fuel and structural components behaviour over extended durations. The origins of the current publication stem from a consultants meeting held on 10-12 December 2007 in Vienna, with three participants from the IAEA, Slovenia and USA, where an initial questionnaire on spent fuel storage was formulated (Annex I). The resultant questionnaire was circulated to participants of a technical meeting, Spent Fuel Storage Operations - Lessons Learned. The technical meeting was held in Vienna on 13-16 October 2008, and sixteen participants from ten countries attended. A consultants meeting took place on 18-20 May 2009 in Vienna, with five participants from the IAEA, Slovenia, UK and USA. The participants reviewed the completed questionnaires and produced an initial draft of this publication. A third consultants meeting took place on 9-11 March 2010, which six participants from Canada, Hungary, IAEA, Slovenia and the USA attended. The meeting formulated a second questionnaire (Annex II) as a mechanism for gaining further input for this publication. A final consultants meeting was arranged on 20-22 June 2011 in Vienna. Six participants from Hungary, IAEA, Japan

  19. Electrometallurgical treatment of oxide spent fuels

    International Nuclear Information System (INIS)

    Karell, E. J.

    1999-01-01

    The Department of Energy (DOE) inventory of spent nuclear fuel contains a wide variety of oxide fuel types that may be unsuitable for direct repository disposal in their current form. The molten-salt electrometallurgical treatment technique developed by Argonne National Laboratory (ANL) has the potential to simplify preparing and qualifying these fuels for disposal by converting them into three uniform product streams: uranium metal, a metal waste form, and a ceramic waste form. This paper describes the major steps in the electrometallurgical treatment process for oxide fuels and provides the results of recent experiments performed to develop and scale up the process

  20. Spent fuel treatment at ANL-West

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Levinskas, D.

    1994-01-01

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Cycle Facility at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will employ a pyrochemical process that also has applications for treating most of the fuel types within the Department of Energy complex. The treatment equipment is in its last stage of readiness, and operations will begin in the Fall of 1994

  1. Storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Machado, O.J.; Moore, J.T.; Cooney, B.F.

    1989-01-01

    This patent describes a rack for storing nuclear fuel assemblies. The rack including a base, an array of side-by-side fuel-storage locations, each location being a hollow body of rectangular transverse cross section formed of metallic sheet means which is readily bent, each body having a volume therein dimensioned to receive a fuel assembly. The bodies being mounted on the base with each body secured to bodies adjacent each body along welded joints, each joint joining directly the respective contiguous corners of each body and of bodies adjacent to each body and being formed by a series of separate welds spaced longitudinally between the tops and bottoms of the secured bodies along each joint. The spacings of the separate welds being such that the response of the rack when it is subjected to the anticipated seismic acceleration of the rack, characteristic of the geographical regions where the rack is installed, is minimized

  2. Spent nuclear fuel shipping basket

    International Nuclear Information System (INIS)

    Wells, A.H.

    1990-01-01

    This patent describes a basket for a cask for transporting nuclear fuel elements. It comprises: sleeve members, each of the sleeve members having interior cross-section dimensions for receiving a nuclear fuel assembly such that the assembly is restrained from lateral movement within the sleeve member, apertured disk members, means for axially aligning the apertures in the disk members, and means for maintaining the disk members in fixed spaced relationship to form a disk assembly, comprising an array of disks, the aligned apertures of the disks being adapted to receive the sleeve members and maintain them in fixed spaced relationship

  3. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    International Nuclear Information System (INIS)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage

  4. BR-100 spent fuel shipping cask development

    International Nuclear Information System (INIS)

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B ampersand W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs

  5. Robotic cleaning of a spent fuel pool

    International Nuclear Information System (INIS)

    Roman, H.T.; Marian, F.A.; Silverman, E.B.; Barkley, V.P.

    1987-01-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant

  6. Spent nuclear fuel project product specification

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1998-01-01

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification

  7. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Gal, I.

    1964-12-01

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing

  8. Hanford K basins spent nuclear fuel project update

    International Nuclear Information System (INIS)

    Williams, N.H.; Hudson, F.G.

    1997-07-01

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building

  9. Safety Aspects of Long Term Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Botsch, Wolfgang; Smalian, S.; Hinterding, P.; Drotleff, H.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    As a consequence of the lack of a final repository for spent nuclear fuel (SF) and high level waste (HLW), long term interim storage of SF and HLW will be necessary. As with the storage of all radioactive materials, the long term storage of SF and HLW must conform to safety requirements. Safety aspects such as safe enclosure of radioactive materials, safe removal of decay heat, sub-criticality and avoidance of unnecessary radiation exposure must be achieved throughout the complete storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. After the events of Fukushima, the advantages of passively and inherently safe dry storage systems have become more obvious. In Germany, dry storage of SF in casks fulfils both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground; one storage facility has also been built as a rock tunnel. In all these facilities the safe enclosure of radioactive materials in dry storage casks is achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat is ensured by the design of the storage containers and the storage facility, which also secures to reduce the radiation exposure to acceptable levels. TUV and BAM, who work as independent experts for the competent authorities, inform about spent fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields. All relevant safety issues such as safe enclosure, shielding, removal of decay heat and sub-criticality are checked and validated with state-of-the-art methods and computer codes before the license approval. In our presentation we discuss which of these aspects need to be examined closer for a long term interim storage. It is shown

  10. Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface

    International Nuclear Information System (INIS)

    Enos, David; Bryan, Charles R.

    2015-01-01

    Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.

  11. Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David; Bryan, Charles R.

    2015-10-01

    Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.

  12. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  13. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  14. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  15. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded

  16. Comparison of the transportation risks for the spent fuel in Korea for different transportation scenarios

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Cho, D.K.; Choi, H.J.; Choi, J.W.

    2011-01-01

    According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. At the start of the operation of the final repository (FR), by the year 2065, transport will then take place between the CISF and the FR. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios for a maritime transportation by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for the spent fuels in Korea. And, we estimated and compared the transportation risks for these four transportation scenarios. Also, we estimated and compared the transportation risks resulting from accidents during the transportation of PWR and PHWR spent fuels by road trailers from the CISF and the FR. From the results of this study, we found that risks resulting from accidents during the transportation of the spent fuels have a very low radiological risk activity with a manageable safety and health consequences. The results of this study can be used as basic data for the development of safe and economical logistics for a transportation of the spent fuels in Korea by considering the transportation costs for the four scenarios which will be needed in the near future.

  17. Spent fuel storage requirements. An update of DOE/RL-83-1

    International Nuclear Information System (INIS)

    1984-05-01

    Spent fuel storage capacities at some commercial light water reactors (LWRs) are inadequate to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information voluntarily supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) Federal Interim Storage (FIS) Program and the spent fuel research, development, and demonstration (RD and D) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. This report is the latest in a series published by the DOE on LWR spent fuel storage requirements. Since the planning needs of the CSFM program focus on the near-term management of spent fuel inventories from commercial nuclear power reactors, the estimates in this report cover the ten-year period from the present through 1983. The report also assesses the possible impacts of using various concepts to reduce the requirements for additional storage capacity

  18. DOE-owned spent nuclear fuel strategic plan. Revision 1

    International Nuclear Information System (INIS)

    1996-09-01

    The Department of Energy (DOE) is responsible for safely and efficiently managing DOE-owned spent nuclear fuel (SNF) and SNF returned to the US from foreign research reactors (FRR). The fuel will be treated where necessary, packaged suitable for repository disposal where practicable, and placed in interim dry storage. These actions will remove remaining vulnerabilities, make as much spent fuel as possible ready for ultimate disposition, and substantially reduce the cost of continued storage. The goal is to complete these actions in 10 years. This SNF Strategic Plan updates the mission, vision, objectives, and strategies for the management of DOE-owned SNF articulated by the SNF Strategic Plan issued in December 1994. The plan describes the remaining issues facing the EM SNF Program, lays out strategies for addressing these issues, and identifies success criteria by which program progress is measured. The objectives and strategies in this plan are consistent with the following Em principles described by the Assistance Secretary in his June 1996 initiative to establish a 10-year time horizon for achieving most program objectives: eliminate and manage the most serious risks; reduce mortgage and support costs to free up funds for further risk reduction; protect worker health and safety; reduce generation of wastes; create a collaborative relationship between DOE and its regulators and stakeholders; focus technology development on cost and risk reduction; and strengthen management and financial control

  19. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  20. Spent fuel and waste inventories and projections

    International Nuclear Information System (INIS)

    Carter, W.L.; Finney, B.C.; Alexander, C.W.; Blomeke, J.O.; McNair, J.M.

    1980-08-01

    Current inventories of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on judgments of the most reliable information available from Government sources and the open literature. Future waste generation rates and quantities to be accumulated over the remainder of this century are also presented, based on a present projection of US commercial nuclear power growth and expected defense-related activities. Spent fuel projections are based on the current DOE/EIA estimate of nuclear growth, which projects 180 GW(e) in the year 2000. It is recognized that the calculated spent fuel discharges are probably high in view of recent reactor cancellations; hence adjustments will be made in future updates of this report. Wastes considered, on a chapter-by-chapter basis, are: spent fuel, high-level wastes, transuranic wastes, low-level wastes, mill tailings (active sites), and remedial action wastes. The latter category includes mill tailings (inactive sites), surplus facilities, formerly utilized sites, and the Grand Junction Project. For each category, waste volume inventories and projections are given through the year 2000. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for present inventories of mill tailings

  1. Regional spent fuel storage facility (RSFSF)

    International Nuclear Information System (INIS)

    Dyck, H.P.

    1999-01-01

    The paper gives an overview of the meetings held on the technology and safety aspects of regional spent fuel storage facilities. The questions of technique, economy and key public and political issues will be covered as well as the aspects to be considered for implementation of a regional facility. (author)

  2. Total quality in spent fuel pool reracking

    International Nuclear Information System (INIS)

    Cranston, J.S.; Bradbury, R.B.; Cacciapouti, R.J.

    1993-01-01

    The nuclear utility environment is one of strict cost control under prescriptive regulations and increasing public scrutiny. This paper presents the results of A Total Quality approach, by a dedicated team, that addresses the need for increased on-site spent fuel storage in this environment. Innovations to spent fuel pool reracking, driven by utilities' specific technical needs and shrinking budgets, have resulted in both product improvements and lower prices. A Total Quality approach to the entire turnkey project is taken, thereby creating synergism and process efficiency in each of the major phases of the project: design and analysis, licensing, fabrication, installation and disposal. Specific technical advances and the proven quality of the team members minimizes risk to the utility and its shareholders and provides a complete, cost effective service. Proper evaluation of spent fuel storage methods and vendors requires a full understanding of currently available customer driven initiatives that reduce cost while improving quality. In all phases of a spent fuel reracking project, from new rack design and analysis through old rack disposal, the integration of diverse experts, at all levels and throughout all phases of a reracking project, better serves utility needs. This Total Quality environment in conjunction with many technical improvements results in a higher quality product at a lower cost

  3. Spent-fuel-stabilizer screening studies

    International Nuclear Information System (INIS)

    Wynhoff, N.; Girault, S.E.; Fish, R.L.

    1980-11-01

    A broad range of potential stabilizer materials was identified and screened for packaging spent fuel assemblies for underground storage. The screening took into consideration the thermal gradient, stress, differential thermal expansion, nuclear criticality, radiation shielding, cost, and availability. Recommended stabilizer materials for further testing include silica, quartz, mullite, zircon, bentonite, graphite, gases, lead, Zn alloys, Cu alloys, etc

  4. Comparison of spent nuclear fuel management alternatives

    International Nuclear Information System (INIS)

    Beebe, C.L.; Caldwell, M.A.

    1996-01-01

    This paper reports the process an results of a trade study of spent nuclear fuel (SNF)management alternatives. The purpose of the trade study was to provide: (1) a summary of various SNF management alternatives, (2) an objective comparison of the various alternatives to facilitate the decision making process, and (3) documentation of trade study rational and the basis for decisions

  5. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  6. High density aseismic spent fuel storage racks

    International Nuclear Information System (INIS)

    Louvat, J.P.

    1985-05-01

    After the reasons of the development of high density aseismic spent fuel racks by FRAMATOME and LEMER, a description is presented, as also the codes, standards and regulations used to design this FRAMATOME storage rack. Tests have been carried out concerning criticality, irradiation of Cadminox, corrosion of the cell, and the seismic behaviour

  7. Spent nuclear fuel project product specification

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    1999-01-01

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project

  8. Past and future IAEA spent fuel management activities

    International Nuclear Information System (INIS)

    Grigoriev, A.

    1993-01-01

    The main objectives and strategies of the Agency's activities in the area of spent fuel management are to promote the exchange of information between Member States on technical, safety, environmental and economic aspects of spent fuel management technology, including storage, transport and treatment of spent fuel, and to provide assistance to Member States in the planning, implementation and operation of nuclear fuel cycle facilities. This paper give a list of the meetings held since the last issue of the Spent Fuel Management Newsletter

  9. Analysis of near-term spent fuel transportation hardware requirements and transportation costs

    International Nuclear Information System (INIS)

    Daling, P.M.; Engel, R.L.

    1983-01-01

    A computer model was developed to quantify the transportation hardware requirements and transportation costs associated with shipping spent fuel in the commercial nucler fuel cycle in the near future. Results from this study indicate that alternative spent fuel shipping systems (consolidated or disassembled fuel elements and new casks designed for older fuel) will significantly reduce the transportation hardware requirements and costs for shipping spent fuel in the commercial nuclear fuel cycle, if there is no significant change in their operating/handling characteristics. It was also found that a more modest cost reduction results from increasing the fraction of spent fuel shipped by truck from 25% to 50%. Larger transportation cost reductions could be realized with further increases in the truck shipping fraction. Using the given set of assumptions, it was found that the existing spent fuel cask fleet size is generally adequate to perform the needed transportation services until a fuel reprocessing plant (FRP) begins to receive fuel (assumed in 1987). Once the FRP opens, up to 7 additional truck systems and 16 additional rail systems are required at the reference truck shipping fraction of 25%. For the 50% truck shipping fraction, 17 additional truck systems and 9 additional rail systems are required. If consolidated fuel only is shipped (25% by truck), 5 additional rail casks are required and the current truck cask fleet is more than adequate until at least 1995. Changes in assumptions could affect the results. Transportation costs for a federal interim storage program could total about $25M if the FRP begins receiving fuel in 1987 or about $95M if the FRP is delayed until 1989. This is due to an increased utilization of federal interim storage facility from 350 MTU for the reference scenario to about 750 MTU if reprocessing is delayed by two years

  10. NAC international dry spent fuel transfer technology

    International Nuclear Information System (INIS)

    Shelton, Thomas A.; Malone, James P.; Patterson, John R.

    1996-01-01

    Full text: For more than ten years NAC International (NAC) has designed, fabricated, tested and operated a variety of Dry Transfer Systems (DTS's) to transfer spent nuclear fuel from facilities with limited crane capabilities, limited accesses or limiting features to IAEA and USNRC licensed spent fuel transport casks or vice-versa. These DTS's have been operated in diverse environments in the United States and throughout the world and have proven to be a significant enhancement in transferring fuel between spent fuel pools, dry storage and hot cell facilities and spent fuel transport casks. Over the years, NAC has successfully and safely transferred more than two thousand fuel assemblies in DTS's. Our latest generation DTS incorporates years of extensive design and operating experience. It consists of a transfer cask with integrated fuel canister grapple, fuel canisters, and facility and cask adapters as well as a complement of related tools and equipment. The transfer cask is used to move irradiated HEU and LEU MTR fuel onsite in those instances where direct loading or unloading of the shipping cask is not possible due to dimensional, weight or other restrictions. The transfer cask is used to move canisters of fuel from the fuel storage location to the shipping cask. Adapters are employed to ensure proper interfacing of the transfer cask with fuel storage locations and shipping casks (NAC-LWT and NLI-1/2). Our existing fuel storage location adapter is designed for use with a storage pool; however, site or equipment specific adapters can easily be developed to allow interfacing with virtually any storage facility. Prior to movement of the first fuel canister in the transfer cask, the shipping cask is prepared for loading by proper set up of the base plate, shipping cask and shipping cask adapter. The fuel canisters are loaded with fuel and then retracted into the transfer cask via the fuel storage location adapter. The transfer cask is then moved to the shipping

  11. Safety of handling, storing and transportation of spent nuclear fuel and vitrified high-level wastes

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1977-11-01

    The safety of handling and transportation of spent fuel and vitrified high-level waste has been studied. Only the operations which are performed in Sweden are included. That is: - Transportation of spent fuel from the reactors to an independant spent fuel storage installation (ISFSI). - Temporary storage of spent fuel in the ISFSI. - Transportation of the spent fuel from the ISFSI to a foreign reprocessing plant. - Transportation of vitrified high-level waste to an interim storage facility. - Interim storage of vitrified high-level waste. - Handling of the vitrified high-level waste in a repository for ultimate disposal. For each stage in the handling sequence above the following items are given: - A brief technical description. - A description of precautionary measures considered in the design. - An analysis of the discharges of radioactive materials to the environment in normal operation. - An analysis of the discharges of radioactive materials due to postulated accidents. The dose to the public has been roughly and conservatively estimated for both normal and accident conditions. The expected rate of occurence are given for the accidents. The results show that above described handling sequence gives only a minor risk contribution to the public

  12. The psychosocial consequences of spent fuel disposal

    International Nuclear Information System (INIS)

    Paavola, J.; Eraenen, L.

    1999-03-01

    In this report the potential psychosocial consequences of spent fuel disposal to inhabitants of a community are assessed on the basis of earlier research. In studying the situation, different interpretations and meanings given to nuclear power are considered. First, spent fuel disposal is studied as fear-arousing and consequently stressful situation. Psychosomatic effects of stress and coping strategies used by an individual are presented. Stress as a collective phenomenon and coping mechanisms available for a community are also assessed. Stress reactions caused by natural disasters and technological disasters are compared. Consequences of nuclear power plant accidents are reviewed, e.g. research done on the accident at Three Mile Island power plant. Reasons for the disorganising effect on a community caused by a technological disaster are compared to the altruistic community often seen after natural disasters. The potential reactions that a spent fuel disposal plant can arouse in inhabitants are evaluated. Both short-term and long-term reactions are evaluated as well as reactions under normal functioning, after an incident and as a consequence of an accident. Finally an evaluation of how the decision-making system and citizens' opportunity to influence the decision-making affect the experience of threat is expressed. As a conclusion we see that spent fuel disposal can arouse fear and stress in people. However, the level of the stress is probably low. The stress is at strongest at the time of the starting of the spent fuel disposal plant. With time people get used to the presence of the plant and the threat experienced gets smaller. (orig.)

  13. US spent fuel research and experience

    Energy Technology Data Exchange (ETDEWEB)

    Machiels, A [EPRI and USDOE (United States)

    2012-07-01

    The structural performance of high-burnup spent fuel cladding during dry storage and transportation has been the subject of research and evaluation at EPRI for several years. The major issues addressed in this research program have included the following: Characterization and development of predictive models for damage mechanisms perceived to be potentially active during dry storage; Modeling and analysis of deformation processes during long-term dry storage; Development of cladding failure models and failure criteria, considering cladding material and physical conditions during dry storage and transportation; Failure analysis, considering end-of-dry-storage conditions, of spent fuel systems subjected to normal and accident conditions of transport, prescribed in Part 71 of Title 10 of the Code of Federal Regulations (10CFR71) While issues related to dry storage have largely been resolved, transportation issues have not, at least for spent fuel with discharge burnups greater than 45 GWd/MTU. A research program was launched in late 2002 following two NRC-industry meetings held on September 6, 2002 and October 23, 2002. The aim of the research program was to assess the performance of high-burnup spent fuel cladding under normal and accident conditions of transportation, as prescribed by 10CFR71, considering the physical characteristics and mechanical properties of cladding at the end of dry storage. The objective is to present a synthesis of the information that collectively forms a part of a technical basis intended to facilitate resolution of regulatory issues associated with the transportation of spent nuclear fuel characterized by discharge burnups greater than 45 GWd/MTU.

  14. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project (SPAR-II)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    As storage of spent fuel has become a key technology in spent fuel management, wet and dry storage have become mature technologies and continue to demonstrate good performance. Increased spent fuel storage capacity in combination with longer storage durations will be needed over the foreseeable future as many countries have delayed their decision on spent fuel disposal or reprocessing. Extended spent fuel storage is, and will remain, an important activity for all countries with nuclear power programmes. A number of countries are planning or have already initiated research programmes on spent fuel storage performance, and there is a continuing benefit in exchanging spent fuel storage experience of the Member States in order to build a comprehensive technology knowledge base. Potential degradation mechanisms that may affect cladding integrity during wet storage are uniform corrosion, pitting, galvanic, and microbiologically-influenced corrosion. Potential degradation mechanisms that may affect cladding integrity during dry storage and subsequent handling and transportation operations are air oxidation, thermal creep, stress corrosion cracking (SCC), delayed hydride cracking (DHC), hydride re-orientation, hydrogen migration and re-distribution. Investigations carried out so far indicate that from the degradation mechanisms that may affect the integrity of spent fuel assembly/bundle structure during interim storage, hydride re-orientation has the potential to impair the ability of the cladding to effectively withstand potentially adverse mechanical challenges resulting from handling or transportation accidents. Fuel integrity issues are related to the definition and criteria of fuel integrity, failure classification, packaging and retrieval of damaged fuel and transport of damaged fuel assemblies. Various monitoring technologies have been developed and used to confirm the continued spent fuel integrity during storage or to provide an early indication of developing

  15. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project (SPAR-II)

    International Nuclear Information System (INIS)

    2012-01-01

    As storage of spent fuel has become a key technology in spent fuel management, wet and dry storage have become mature technologies and continue to demonstrate good performance. Increased spent fuel storage capacity in combination with longer storage durations will be needed over the foreseeable future as many countries have delayed their decision on spent fuel disposal or reprocessing. Extended spent fuel storage is, and will remain, an important activity for all countries with nuclear power programmes. A number of countries are planning or have already initiated research programmes on spent fuel storage performance, and there is a continuing benefit in exchanging spent fuel storage experience of the Member States in order to build a comprehensive technology knowledge base. Potential degradation mechanisms that may affect cladding integrity during wet storage are uniform corrosion, pitting, galvanic, and microbiologically-influenced corrosion. Potential degradation mechanisms that may affect cladding integrity during dry storage and subsequent handling and transportation operations are air oxidation, thermal creep, stress corrosion cracking (SCC), delayed hydride cracking (DHC), hydride re-orientation, hydrogen migration and re-distribution. Investigations carried out so far indicate that from the degradation mechanisms that may affect the integrity of spent fuel assembly/bundle structure during interim storage, hydride re-orientation has the potential to impair the ability of the cladding to effectively withstand potentially adverse mechanical challenges resulting from handling or transportation accidents. Fuel integrity issues are related to the definition and criteria of fuel integrity, failure classification, packaging and retrieval of damaged fuel and transport of damaged fuel assemblies. Various monitoring technologies have been developed and used to confirm the continued spent fuel integrity during storage or to provide an early indication of developing

  16. Design and analysis of free-standing spent fuel racks in nuclear power plants

    International Nuclear Information System (INIS)

    Ashar, H.; DeGrassi, G.

    1989-01-01

    With the prohibition on reprocessing of spent fuel in the late 1970's the pools which were supposed to be short term storage became quasi-permanent storage spaces for spent fuel. Recognizing a need to provide permanent storage facilities for such nuclear wastes, the US Congress enacted a law cited as the Nuclear Waste Policy Act of 1982. The Act, in essence, required the Department of Energy to find ways for long term storage of high level waste. However, it also is required the owners of nuclear power plants to provide for interim storage of their spent fuel. The permanent government owned repositories are not scheduled to be operational until the year 2005. In order to accommodate the increasing inventory of spent fuel, the US utilities started looking for various means to store spent fuel at the reactor sites. One of the most economical ways to accommodate more spent fuel is to arrange storage locations as closely as possible at the same time making sure that the fuel remains subcritical and that there are adequate means to cope with the heat load. The free standing high density rack configuration is an outcome of efforts to accommodate to more fuel in the limited space. 3 refs., 3 figs

  17. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  18. Spent fuel assembly source term parameters

    International Nuclear Information System (INIS)

    Barrett, P.R.; Foadian, H.; Rashid, Y.R.; Seager, K.D.; Gianoulakis, S.E.

    1993-01-01

    Containment of cask contents by a transport cask is a function of the cask body, one or more closure lids, and various bolting hardware, and seals associated with the cavity closure and other containment penetrations. In addition, characteristics of cask contents that impede the ability of radionuclides to move from an origin to the external environment also provide containment. In essence, multiple release barriers exist in series in transport casks, and the magnitude of the releasable activity in the cask is considerably lower than the total activity of its contents. A source term approach accounts for the magnitude of the releasable activity available in the cask by assessing the degree of barrier resistance to release provided by material characteristics and inherent barriers that impede the release of radioactive contents. Standardized methodologies for defining the spent-fuel transport packages with specified regulations have recently been developed. An essential part of applying the source term methodology involves characterizing the response of the spent fuel under regulatory conditions of transport. Thermal and structural models of the cask and fuel are analyzed and used to predict fuel rod failure probabilities. Input to these analyses and failure evaluations cover a wide range of geometrical and material properties. An important issue in the development of these models is the sensitivity of the radioactive source term generated during transport to individual parameters such as temperature and fluence level. This paper provides a summary of sensitivity analyses concentrating on the structural response and failure predictions of the spent fuel assemblies

  19. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  20. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.; O'Neill, G.F.

    1980-01-01

    A power reactor operator, confronted with rising spent fuel inventories that would soon exceed his storage capacity, has to decide what to do with this fuel if he wants to continue reactor operations. A low cost option would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) basins for storage, and away-from-reactor (AFR) basins for storage. Economic considerations for each of the alternatives are compared

  1. Reracking to increase spent fuel storage capacity

    International Nuclear Information System (INIS)

    1980-05-01

    Many utilities have already increased their spent fuel pool storage capacity by replacing aluminum racks having storage densities as low as 0.2 MTU/ft 2 with stainless steel racks which can more than double storage densities. Use of boron-stainless steel racks or thin stainless steel cans containing reassembled fuel rods allows even higher fuel storage densities (up to approximately 1.25 MTU/ft 2 ). This report evaluates the economics of smaller storage gains that occur if pools, already converted to high density storage, are further reracked

  2. Subsurface storage of commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    Richards, L.M.; Szulinski, M.J.

    1979-01-01

    The Atlantic Richfield Company has developed the concept of storing spent fuel in dry caissons. Cooling is passive; safety and safeguard features appear promising. The capacity of a caisson to dissipate heat depends on site-specific soil characteristics and on the diameter of the caisson. It is estimated that approx. 2 kW can be dissipated in the length of one fuel element. Fuel elements can be stacked with little effect on temperature. A spacing of approx. 7.5 m (25 ft) between caissons appears rasonable. Business planning indicates a cost of approx. 0.2 mill/kWh for a 15-yr storage period. 12 figures, 4 tables

  3. Historical overview of domestic spent fuel shipments

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Armstrong, S.; Hamberger, C.; Schmid, S.

    1991-01-01

    The purpose of this paper is to provide available historical data on most commercial and research reactor spent fuel shipments that have been completed in the United States between 1964 and 1989. This information includes data on the sources of spent fuel that has been shipped, the types of shipping casks used, the number of fuel assemblies that have been shipped, and the number of shipments that have been made. The data are updated periodically to keep abreast of changes. Information on shipments is provided for planning purposes; to support program decisions of the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM); and to inform interested members of the public, federal, state, and local government, Indian tribes, and the transportation community. 5 refs., 7 figs., 2 tabs

  4. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  5. Impact analysis of spent fuel jacket assemblies

    International Nuclear Information System (INIS)

    Aramayo, G.A.

    1994-01-01

    As part of the analyses performed in support of the reracking of the High Flux Isotope Reactor pool, it became necessary to prove the structural integrity of the spent fuel jacket assemblies subjected to gravity drop that result from postulated accidents associated with the handling of these assemblies while submerged in the pool. The spent fuel jacket assemblies are an integral part of the reracking project, and serve to house fuel assemblies. The structure integrity of the jacket assemblies from loads that result from impact from a height of 10 feet onto specified targets has been performed analytically using the computer program LS-DYNA3D. Nine attitudes of the assembly at the time of impact have been considered. Results of the analyses show that there is no failure of the assemblies as a result of the impact scenarios considered

  6. Remote technology in the spent fuel route in the UK

    International Nuclear Information System (INIS)

    Webster, A.W.

    1999-01-01

    Remote technologies employed in front end (commercial) reprocessing operations of metallic and oxide fuel at Sellafield in the UK are described. An overview of the transportation, fuel receiving and preparation facilities are given together with the remote technology developments employed to improve operations. It is concluded that the facilities and remote technology used within them are mature and based upon simple and robust principles. Remote operations and maintenance in these facilities is often easier than in many facilities downstream of the dissolution stage. Fuel design considerations for shearing and handling are described and it is concluded that advanced and higher burnup fuel can be accommodated by existing reprocessing and interim storage routes with current remote technologies. Two different storage systems are available from UK companies which use existing spent fuel