WorldWideScience

Sample records for intergranular corrosion

  1. Assessing resistance of stabilized corrosion resistant steels to intergranular corrosion

    International Nuclear Information System (INIS)

    Karas, A.; Cihal, V. Jr.; Vanek, V.; Herzan, J.; Protiva, K.; Cihal, V.

    1987-01-01

    Resistance to intergranular corrosion was determined for four types of titanium-stabilized steels from the coefficients of stabilization efficiency according to the degree the chemical composition was known. The ATA SUPER steel showed the highest resistance parameter value. The resistance of this type of steel of a specific composition, showing a relatively low value of mean nitrogen content was compared with steel of an optimized chemical composition and with low-carbon niobium stabilized, molybdenum modified steels. The comparison showed guarantees of a sufficient resistance of the steel to intergranular corrosion. The method of assessing the resistance to intergranular corrosion using the calculation of the minimum content of Cr', i.e., the effective chromium content, and the maximum effective carbon content C' giving the resistance parameter k seems to be prospective for practical use in the production of corrosion resistant steels. (author). 1 tab., 5 figs., 15 refs

  2. Intergranular corrosion mechanism of Alloy 400

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [Univ. of Toronto, Dept. of Chemical Engineering and Applied Chemistry, Toronto, Ontario (Canada)

    2008-07-01

    The objective of this study is to find the reason for the intergranular corrosion (or intergranular attack, IGA) of Monel 400 (70Ni-30Cu) tubes that occurs occasionally in practice. Generally, the hypothesized factors of IGA for Monel 400 tubing could be crevices, dissolved oxygen, low pH, reduced sulfur species, and precipitation of impurities at grain boundaries. Electrochemical techniques including cyclic polarization and long-term potentiostatic polarization were used to test two heats of Monel 400 tubing that had behaved differently in practice. To simulate the situation within a crevice or under a deposit, cupric ions were added to the base solution, which was either neutral or acidic in pH. Artificial crevices without the addition of cupric ions in the base solution and a limiting current model were created which helped to elucidate the mechanism of IGA. The effect of thiourea as a representative reduced sulfur compound was investigated. The results show that in neutral solution IGA occurs with little sensitivity to metallurgy and does not require thiourea, but in acid solution it only occurs with thiourea addition, and particular grain boundary microstructures are more susceptible. (author)

  3. 3-D simulation of intergranular stress corrosion crack interactions

    International Nuclear Information System (INIS)

    Zhang, Y.; Marrow, T.J.; Sherry, A.H.

    2009-01-01

    Full text of publication follows: Intergranular stress corrosion cracking (IGSCC) in austenitic stainless steels is a potential failure mechanism, which is result of local grain boundary chromium depletion by carbide precipitation or irradiation-induced segregation. Reliable models of crack nucleation and growth, and their sensitivity to microstructure, are required to underpin lifetime prediction and develop more resistant materials. A model for 3-D IGSCC crack growth has been developed which reproduces the interactions between the microstructure, the mechanical driving force for cracking and the kinetics of crack growth. In this paper, this model is used to investigate the interaction between adjacent initiating cracks, to observe the growth of those cracks before/after coalescence, and examine the sensitivity of short crack behaviour to random variations in microstructure. The model predictions are assessed against experimental observations of short intergranular stress corrosion crack behaviour, obtained by in-situ digital image correlation techniques

  4. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  5. Mechanistic differences between transgranular and intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Serebrinsky, Santiago A.; Galvele, Jose R.

    2000-01-01

    Constant extension rate tests (CERT or CSRT) with the strain rate (SR) covering a 7 orders of magnitude range were applied to the study of many systems. In particular, the kinetics of SCC were measured via the stress corrosion (SCC) crack propagation rate (CPR). The main experimental findings are: a) increasing SR produces a monotonic (logarithmic) increase in CPR; b) the slopes α in log CPR vs. log SR plots take distinct values depending on the morphology: intergranular (IG) cracks are more steeply accelerated by SR than transgranular (TG), with α lG =0.4 to 0.7 and α TG =0.2 to 0.3; c) an increase in SR only shifts the log CPR vs. potential curves to higher CPR values, without changing its shape. Quantitative evaluation shows that dislocations piled-up at grain boundaries may combine with the surface mobility mechanism to give the experimental results. (author)

  6. Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling

    International Nuclear Information System (INIS)

    La Fontaine, Alexandre; Yen, Hung-Wei; Trimby, Patrick; Moody, Steven; Miller, Sarah; Chensee, Martin; Ringer, Simon; Cairney, Julie

    2014-01-01

    An oxidation-assisted martensitic phase transformation was observed in an austenitic stainless steel after thermal cycling up to 970 °C in air in a solar thermal steam reformer. The intergranular corrosion areas were investigated by electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The structural-and-chemical maps revealed that within intergranular corrosion areas this martensitic transformation primarily occurs in oxidation-induced chromium-depleted zones, rather than due to only sensitization. This displacive transformation may also play a significant role in the rate at which intergranular corrosion takes place

  7. Ultrasonic inspection reliability for intergranular stress corrosion cracks

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P G; Taylor, T T; Spanner, J C; Doctor, S R; Deffenbaugh, J D [Pacific Northwest Lab., Richland, WA (USA)

    1990-07-01

    A pipe inspection round robin entitled Mini-Round Robin'' was conducted at Pacific Northwest Laboratory from May 1985 through October 1985. The research was sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research under a program entitled Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors.'' The Mini-Round Robin (MRR) measured the intergranular stress corrosion (GSC) crack detection and sizing capabilities of inservice inspection (ISI) inspectors that had passed the requirements of IEB 83-02 and the Electric Power Research Institute (EPRI) sizing training course. The MRR data base was compared with an earlier Pipe Inspection Round Robin (PIRR) that had measured the performance of inservice inspection prior to 1982. Comparison of the MRR and PIRR data bases indicates no significant change in the inspection capability for detecting IGSCC. Also, when comparing detection of long and short cracks, no difference in detection capability was measured. An improvement in the ability to differentiate between shallow and deeper IGSCC was found when the MRR sizing capability was compared with an earlier sizing round robin conducted by the EPRI. In addition to the pipe inspection round robin, a human factors study was conducted in conjunction with the Mini-Round Robin. The most important result of the human factors study is that the Relative Operating Characteristics (ROC) curves provide a better methodology for describing inspector performance than only probability of detection (POD) or single-point crack/no crack data. 6 refs., 55 figs., 18 tabs.

  8. Diffusion-coupled cohesive interface simulations of stress corrosion intergranular cracking in polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Chao; Gao, Yanfei; Wang, Yanli; Sham, T. -L.

    2017-09-01

    To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points. Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.

  9. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    Zamora R, L.

    1994-01-01

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  10. A stereological approach for measuring the groove angles of intergranular corrosion

    International Nuclear Information System (INIS)

    Gwinner, B.; Borgard, J.-M.; Dumonteil, E.; Zoia, A.

    2017-01-01

    Highlights: • The ICG morphology has been characterized in 3D by X-ray μ-tomography. • The measurement of the angles of the IGC groove on 2D cross sections induces a bias. • A methodology is proposed to estimate the true value of the IGC groove angles in 3D. - Abstract: Non-sensitized austenitic stainless steels can be prone to intergranular corrosion when they are in contact with an oxidizing medium like nitric acid. Intergranular corrosion is characterized by the formation of grooves along the grain boundaries. The angle of these grooves is a key parameter, which directly informs of the intergranular corrosion kinetics. Most of the time, the angles of the grooves are experimentally measured on 2-dimensional cross sections of the corroded samples. This study discusses the relationship between the groove angle measured on 2-dimensional sections and the true groove angle in 3-dimensional space. This approach could also be easily extended to the study of crack angle in the domains of corrosion-fatigue, stress corrosion cracking or mechanical fracture.

  11. Stress corrosion of Zircaloy-4. Fracture mechanics study of the intergranular - transgranular transition

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.

    2003-01-01

    Stress corrosion cracking susceptibility of Zircaloy-4 wires was studied in 1M NaCl, 1M KBr and 1M KI aqueous solutions, and in iodine alcoholic solutions. In all cases, intergranular attack preceded transgranular propagation. It is generally accepted that the intergranular-transgranular transition occurs when a critical value of the stress intensity factor is reached. In the present work it was confirmed that the transition from intergranular to transgranular propagation cracking in Zircaloy-4 wires also occurs when a critical value of the stress intensity factor is reached. This critical stress intensity factor in wire samples is independent of the solution tested and close to 10 MPa.m-1/2. This value is in good agreement with those reported in the literature measured by different techniques. (author)

  12. Demonstration through EPR tests of the sensitivity of austeno-ferritic steels to intergranular corrosion and stress corrosion cracking

    International Nuclear Information System (INIS)

    Lopez, Nathalie

    1997-01-01

    Duplex stainless steels can be sensitised to intergranular corrosion and stress corrosion cracking (SCC) under some conditions (heat treatments, welding). The aim of this work is to contribute to the validation of the EPR (Electrochemical Potentiodynamic Reactivation) test in order to determine conditions for normalisation. This method, based on the dissolution of chromium depleted areas due to precipitation of σ-phase, provides a degree of sensitisation to intergranular corrosion. The test is broaden considering the mechanical stress by the way of slow strain rate tests, performed in chloride magnesium and in a solution similar to the EPR solution. A metallurgical study puts on the precipitates and the structural modifications due to welding and heat treatments, in order to make a critical analysis of the EPR test. (author) [fr

  13. Characterization of acoustic emission signals generated by water flow through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Claytor, T.N.; Kupperman, D.S.

    1985-05-01

    A program is under way at Argonne National Laboratory (ANL) to develop an independent capability to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. The program will establish whether meaningful quantitative data on flow rates and leak location can be obtained from acoustic signatures of leaks due to intergranular stress corrosion cracks (TGSCCs) and fatigue cracks, and whether these can be distinguished from other types of leaks. 5 refs., 3 figs

  14. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    OpenAIRE

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation – assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs’ core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of...

  15. Structural analysis and intergranular corrosion tests of AISI 316L steel.

    Science.gov (United States)

    Stonawská, Z; Svoboda, M; Sozańska, M; Krístková, M; Sojka, J; Dagbert, C; Hyspecká, L

    2006-10-01

    Pure AISI 316L steel is investigated after solution heat treatment (1050 degrees C/H(2)O) and structural sensitization (650 degrees C). Two quite different intergranular corrosion tests are used to determine the degree of structural sensitization due to the precipitation of secondary phases along the grain boundaries (mainly the M(23)C(6) and sigma-phase): the oxalic acid etch test and the electrochemical potentio-kinetic reactivation test. Generally, the dissolution of chromium-rich carbides (M(23)C(6)) is provoked by oxalic acid etch tests, whereas the chromium-depleted zones, in the vicinity of chromium-rich carbides (M(23)C(6)), are attacked by electrochemical potentio-kinetic reactivation tests. Both intergranular corrosion tests are used to determine the maximum degree of structural sensitization. Thus structural analysis by carbon replicas reveals the Laves phase, and both the M(23)C(6) and (Cr,Mo)(x)(Fe,Ni)(y) phases. The results of intergranular corrosion tests are related to the findings of the structural analysis.

  16. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  17. Intergranular corrosion on the secondary coolant side of french PWR steam generators tubes

    International Nuclear Information System (INIS)

    Nordmann, F.; Cattant, F.; Comby, R.

    1990-01-01

    Intergranular corrosion on the OD of steam generator tubes in French units, led only to a very few plugged tubes, contrarily to most of the countries. Non destructive and destructive examinations have shown that corrosion at tube support plate level increases moderately and is likely initiated by sodium hydroxide; in addition, above tubesheet, significant and sometimes high contents of lead have been noted. Up to now, selected remedies include chemistry specifications with low sodium concentrations obtained by additional mixed bed on makeup water and power decreases for hideout return, when necessary [fr

  18. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal.

    Science.gov (United States)

    King, A; Johnson, G; Engelberg, D; Ludwig, W; Marrow, J

    2008-07-18

    Nondestructive three-dimensional mapping of grain shape, crystallographic orientation, and grain boundary geometry by diffraction contrast tomography (DCT) provides opportunities for the study of the interaction between intergranular stress corrosion cracking and microstructure. A stress corrosion crack was grown through a volume of sensitized austenitic stainless steel mapped with DCT and observed in situ by synchrotron tomography. Several sensitization-resistant crack-bridging boundaries were identified, and although they have special geometric properties, they are not the twin variant boundaries usually maximized during grain boundary engineering.

  19. Intergranular corrosion testing of austenitic stainless steels in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whillock, G.O.H.; Dunnett, B. F. [British Nuclear Fuels plc, BNFL, B170, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2004-07-01

    In hot strong nitric acid solutions, stainless steels exhibit intergranular corrosion. Corrosion rates are often measured from immersion testing of specimens manufactured from the relevant material (e.g. plate or pipe). The corrosion rates, measured from weight loss, are found to increase with time prior to reaching steady state, which can take thousands of hours to achieve. The apparent increase in corrosion rate as a function of time was found to be an artefact due to the surface area of the specimen's being used in the corrosion rate calculations, rather than that of the true area undergoing active corrosion i.e. the grain boundaries. The steady state corrosion rate coincided with the onset of stable grain dropping, where the use of the surface area of the specimen to convert the weight loss measurements to corrosion rates was found to be appropriate. This was confirmed by sectioning of the specimens and measuring the penetration depths. The rate of penetration was found to be independent of time and no induction period was observed. A method was developed to shorten considerably the testing time to reach the steady state corrosion rate by use of a pre-treatment that induces grain dropping. The long-term corrosion rates from specimens which were pre-treated was similar to that achieved after prolonged testing of untreated (i.e. initially ground) specimens. The presence of cut surfaces is generally unavoidable in the simple immersion testing of specimens in test solutions. However, inaccuracy in the results may occur as the measured corrosion rate is often influenced by the orientation of the microstructure, the highest rates typically being observed on the cut surfaces. Two methods are presented which allow deconvolution of the corrosion rates from immersion testing of specimens containing cut surfaces, thus allowing reliable prediction of the long-term corrosion rate of plate surfaces. (authors)

  20. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    International Nuclear Information System (INIS)

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation - assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs' core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of this study was to investigate the cracking susceptibility of irradiated SA 304L and factors contributing to cracking, using two different ion irradiations; iron and proton irradiations. Both resulted in generation of point defects in the microstructure and thereby causing hardening of the SA 304L. Material (unirradiated and iron irradiated) showed no susceptibility to intergranular cracking on subjection to SSRT with a strain rate of 5 * 10 -8 s -1 up to 4 % plastic strain in inert environment. But, irradiation (iron and proton) was found to increase intergranular cracking severity of material on subjection to SSRT in simulated PWR primary water environment at 340 C. Correlation between the cracking susceptibility and degree of localization was studied. Impact of iron irradiation on bulk oxidation of SA 304L was studied as well by conducting an oxidation test for 360 h in simulated PWR environment at 340 C. The findings of this study indicate that the intergranular cracking of 304L stainless steel in PWR environment can be studied using Fe irradiation despite its small penetration depth in material. Furthermore, it has been shown that the cracking was similar in both iron and proton irradiated samples despite different degrees of localization. Lastly, on establishing iron irradiation as a successful tool, it was used to study the impact of surface finish and strain paths on intergranular cracking susceptibility of the material. (author) [fr

  1. Mitigation of Intergranular Stress Corrosion Cracking in Al-Mg by Electrochemical Potential Control

    Science.gov (United States)

    McMahon, M. E.; Scully, J. R.; Burns, J. T.

    2017-08-01

    Intergranular stress corrosion cracking in the Al-Mg alloy AA5456-H116 is suppressed via cathodic polarization in 0.6 M NaCl, saturated (5.45 M) NaCl, 2 M MgCl2, and saturated (5 M) MgCl2. Three zones of intergranular stress corrosion cracking (IG-SCC) susceptibility correlate with pitting potentials of unsensitized AA5456-H116 and pure β phase (Al3Mg2) in each solution. These critical potentials reasonably describe the influence of α Al matrix and β phase dissolution rates on IG-SCC severity. Complete inhibition occurred at applied potentials of -1.0 V and -1.1 V versus saturated calomel electrode ( V SCE) in 0.6 M NaCl. Whereas only partial mitigation of IG-SCC was achieved at -0.9 V SCE in 0.6 M NaCl and at -0.9, -1.0, and -1.1 V SCE in the more aggressive environments. Correlation of pitting potentials in bulk environments with IG-SCC behavior suggests an effect of bulk environment [Cl-] and pH on the stabilized crack tip chemistry.

  2. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, Y. S.

    2015-01-01

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering

  3. Evaluation of austenitic stainless steels for transpassive corrosion by metal purification technology. Synergistic effect of Si and P on intergranular corrosion of Fe-18Cr-14Ni alloys

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Joji; Kako, Kenji; Kawakami, Eishi

    2001-01-01

    The synergistic effect of Si, Mn, C, P, and S on the transpassive corrosion of HP18Cr-14Ni alloys was studied in 13N nitric acid. The specimens were fabricated using a cold crucible method in a high-vacuum chamber to reduce contamination. The additions of Si<1% and Mn<2% had no effect on the corrosion behavior of HP18Cr-14Ni alloys, and the addition of Si<1% also had no effect on the corrosion behavior of HP18Cr-14Ni-1Mn alloys, although 1% Si induced intergranular corrosion in both the alloys. Thus, HP18Cr-14Ni-1Mn-0.5Si alloys were selected to evaluate the effects of C, P and S (100 ppm each). The addition of P, and the co-addition of C, P, and S to HP18Cr-14Ni-1Mn-0.5Si induced intergranular corrosion of the same degree in the solution annealed condition. This result suggests the synergistic effect of Si and P to induce intergranular corrosion, since the single addition of Si or P to this level did not lead to intergranular corrosion of HP18Cr-14Ni alloys. HP18Cr-14Ni-1Mn-0.5Si alloys containing C, P, and S at the 100 ppm level each showed superior corrosion resistance compared to a commercial Type 304L in 13N nitric acid. (author)

  4. Surprising intergranular ''non-corrosion'' of a 304 L stainless steel

    International Nuclear Information System (INIS)

    Le Thi Quynh Anh; Le Coze, J.

    1995-01-01

    A low chloride content solution, representative of an artificial saliva, was used to study the pitting and crevice resistance of a 304L wire used to fix teeth against each other in the mouth. On an industrial 304L alloy, corrosion inside deep pits showed a special character in which grain boundaries were not attacked : a honeycomb-like structure of the corroded surface was observed in which grain boundaries were the walls of the cells. This result was reproduced in a 1. 66 NaCl g/l solution, pH=7, on polished sections of ultra high purity base alloys, covered with a varnish layer in order to create a crevice-like situation. The electrochemical potential was imposed at values near passivity breakdown. The exposure times were 40 to 90 h at room temperature. UHP-alloys, representative of 304L steels, with subsequent additions of C, P and Mo were prepared and tested to determine the possible role of intergranular segregation or precipitation on honeycomb corrosion, in the as-quenched condition and after annealing (600 C, 30h). As a function of exposure time, different corrosion stages under the varnish layer were observed : crystallographic pitting, honeycomb corrosion and general dissolution. (orig.)

  5. Kinetics of the intergranular stress corrosion of AlCu alloys

    International Nuclear Information System (INIS)

    Rota, A.; Boehni, H.

    1989-01-01

    A new experimental method for the investigation of stress corrosion cracking mechanisms in thin sheets is presented: Using the foil penetration technique, the growth kinetics of the intergranular corrosion of age-hardened Al-Cu alloys have been measured in the unstressed condition and under various constant uniaxial tensile stresses. A pure binary Al-4wt%Cu alloy and a commercial AA 2024 alloy, both tempered to maximum susceptibility to intergranular corrosion, have been tested in aqueous chloride solutions under potentiostatic control. All measurements have been carried out on various sheet thicknesses between 0.2 and 1.0 mm under tensile stresses ranging from 0 to 88% of the 0.2% proof stress. A significant reduction of the penetration times by factors between 2 and 10, compared to the results for unstressed specimens, has been observed for all applied stress levels in systems where only small numbers of cracks are growing simultaneously. In systems with large numbers of cracks or complete crack networks, no influence of stress on the crack growth kinetics was found. The discussion of these results shows that all, even the highest observed mean crack growth rates can be explained by pure anodic dissolution of the grain boundary regions at the crack tips. The increase of the dissolution current density at the crack tips by tensile stresses is due to the widening of the crack, which reduces the integral ohmic resistance of the system and improves the mass transport conditions between the crack and the bulk electrolyte. The widening of the cracks depends on the stress distribution in the whole specimen cross section and not on the stress intensity at the crack tips. 23 refs., 14 figs., 1 tab

  6. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    Science.gov (United States)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-04-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  7. Influence of the selected structural parameter on a depth of intergranular corrosion of Al-Si7-Mg0,3 aluminum alloy

    Directory of Open Access Journals (Sweden)

    L. Bernat

    2015-10-01

    Full Text Available The paper presents an influence of the Dendrite Arm Spacing (DAS microstructure parameter on the intergranular corrosion of AlSi7Mg aluminum alloy. The samples were subjected to the corrosion process for: 2,5; 12; 24; 48 and 96 hours in NaCl + HCl + H2O solution. It was noted that the DAS parameter significantly influenced on a distribution and depth of the intergranular corrosion of the hypoeutectic Al - Si - Mg silumin.

  8. Determination of susceptibility to intergranular corrosion of stainless steels type X5CrNi18-10 in field

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2016-12-01

    Full Text Available In this paper, the DL EPR method (electrochemical potentiokinetic reactivation with double loop was modified and used to study the susceptibility to intergranular corrosion and stress corrosion cracking of a stainless steel type X5CrNi18-10. The tests were performed in a special electrochemical cell, with the electrolyte in the gel form. Modified DL EPR method is characterized by simple and high accuracy measurements as well as repeatability of the test results. The indicator of susceptibility to intergranular corrosion (Qr/QpGBA obtained by modified DL EPR method is in a very good agreement with the same indicator obtained by standard DL EPR method. The modified DL EPR method is quantitative and highly selective method. Small differences in the susceptibility of the stainless steel type CrNi18-10 to intergranular corrosion and stress corrosion cracking can be determined. Test results can be obtained in a short time. The cost of tests performed by modified DL EPR method is much lower than the cost of tests by conventional chemical methods. Modified DL EPR method can be applied in the field on the stainless steels constructions.

  9. Influence of C, N and Ti concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Munoz, J.A.

    2004-01-01

    The influence of Ti, C, and N concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel has been studied. A kinetic study of the corrosion process has been carried out using gravimetric tests according to ASTM A-262 practices B and C (Streicher and Huey, respectively). The TTS diagrams were drawn as a function of alloying elements concentration (C, N and Ti). Materials characterization under several test conditions was carried out using Scanning Electron Microscopy (SEM) analysing microstructural characteristics and the attack microstructure. The chemical resistance of these steels to intergranular test was function of N, C and Ti concentration. High Ti and N concentration favoured the precipitation of TiN during the material manufacture process. N forms TiN very stable, causing the removal of Ti from the matrix and, indirectly, favouring the Cr 23 C 6 precipitation during the sensitization process and increasing the corrosion rate. In order to inhibit the intergranular corrosion in these materials the N and Ti concentrations must be optimised. (authors)

  10. Intergranular corrosion in AA5XXX aluminum alloys with discontinuous precipitation at the grain boundaries

    Science.gov (United States)

    Bumiller, Elissa

    The US Navy currently uses AA5xxx aluminum alloys for structures exposed to a marine environment. These alloys demonstrate excellent corrosion resistance over other aluminum alloys (e.g., AA2xxx or AA7xxx) in this environment, filling a niche in the marine structures market when requiring a light-weight alternative to steel. However, these alloys are susceptible to localized corrosion; more specifically, intergranular corrosion (IGC) is of concern. IGC of AA5xxx alloys due to the precipitation of beta phase on the grain boundaries is a well-established phenomenon referred to as sensitization. At high degrees of sensitization, the IGC path is a continuous anodic path of beta phase particles. At lower degrees of sensitization, the beta phase coverage at the grain boundaries is not continuous. The traditional ranges of susceptibility to IGC as defined by ASTM B928 are in question due to recent studies. These studies showed that even at mid range degrees of sensitization where the beta phase is no longer continuous, IGC may still occur. Previous thoughts on IGC of these alloy systems were founded on the idea that once the grain boundary precipitate became discontinuous the susceptibility to IGC was greatly reduced. Additionally, IGC susceptibility has been defined metallurgically by compositional gradients at the grain boundaries. However, AA5xxx alloys show no compositional gradients at the grain boundaries, yet are still susceptible to IGC. The goal of this work is to establish criteria necessary for IGC to occur given no continuous beta phase path and no compositional gradient at the grain boundaries. IGC performance of the bulk alloy system AA5083 has been studied along with the primary phases present in the IGC system: alpha and beta phases using electrochemistry and modeling as the primary tools. Numerical modeling supports that at steady-state the fissure tip is likely saturated with Mg in excess of the 4% dissolved in the matrix. By combining these results

  11. Mechanism of intergranular stress corrosion cracking in HAZ for super-martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Yukio; Kimura, Mitsuo [Tubular Products and Casting Research Dept., JFE Steel Corporation, 1-1, Kawasaki-cho, Handa (Japan); Nakamichi, Haruo; Sato, Kaoru [Analysis and Characterization Research Dept., JFE Steel Corporation, 1-1, Minamiwatarida-cho, Kawasaki-ku, Kawasaki (Japan); Itakura, Noritsugu [Products Service and Development Dept., Chita Works, JFE Steel Corporation. 1-1, Kawasaki-cho, Handa (Japan); Masamura, Katsumi [Tubular Products Business Planning Dept., JFE Steel Corporation, 2-2-3, Uchisaiwai-sho, Chiyoda-ku, Tokyo (Japan)

    2004-07-01

    Mechanism of intergranular stress corrosion cracking (IGSCC) for heat affected zone (HAZ) of super-martensitic stainless steel was studied using two types of the steel. One was a lean grade, which was Mo free and low Ni, and the other was a high grade, which was Mo added and high Ni. Specimens received heat treatments simulating welding thermal cycles were applied to SCC tests. Cracks were observed in some specimens after U-bend SCC test under low pH environments. Thermal cycle conditions with sensitization were verified from the results. No crack was observed in the specimen with the thermal cycle simulating post welding heat treatment (PWHT) after sensitizing conditions. Therefore, PWHT was clarified to be effective to prevent the cracking. Cr carbides were observed along prior austenite grain boundary intermittently, and Cr depleted zone was confirmed on the grain boundary adjacent to carbides that precipitated on the grain boundary. It is, therefore, concluded that the cracking results from Cr depletion on prior austenite grain boundary accompanied by precipitation of Cr carbides under specific welding conditions. (authors)

  12. Electrochemical Methods for the Intergranular Corrosion Property Evaluation of Stainless Steels

    International Nuclear Information System (INIS)

    Lee, Jung Bok

    1987-01-01

    For the last fifteen years, the Electrochemical Potentiokinetic Reactivation (EPR) method, an electrochemical method, has been actively investigated for use in determining the degree of sensitization (DOS) in stainless steels (a metallurgical structure susceptible to intergranular corrosion). One of the reasons for this active investigation was due to the fact that the technique may be usable for field nondestructive measurements of DOS in stainless steels. In this paper, a brief overview of the technique, including the advantages and limitations, is discussed. Then, a new test method which is able to detect the sensitized metallurgical structures nondestructively after field welding is introduced. This new nondestructive method is a modification of the ASTM A262-A (the oxalic acid etch test). The improved test method employs a 30 second etching in a 10% oxalic acid solution under an anodic current density of 1 ampere per square centimeter at the temperatures above 60 .deg. C. Between 50 and 60 .deg. C the thirty second etching test should be used first. When the thirty second etching shows an under etched grain boundary, the etching time should be increased to ninety seconds. At temperatures below 50 .deg. C the ninety second etching, as described in ASTM A 262-A, should be employed. This improved test method can be used in the temperature range of 0 and 100 .deg. C

  13. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  14. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2007-01-01

    Intergranular corrosion behaviour of 316Ti and 321 austenitic stainless steels has been evaluated in relation to the influence exerted by modification of Ti, C and N concentrations. For this evaluation, electrochemical measurements - double loop electrochemical potentiokinetic reactivation (DL-EPR) - were performed to produce time-temperature-sensitization (TTS) diagrams for tested materials. Transmission (TEM) and scanning electron microscopy (SEM) were used to determine the composition and nature of precipitates. The addition of Ti promotes better intergranular corrosion resistance in stainless steels. The precipitation of titanium carbides reduces the formation of chromium-rich carbides, which occurs at lower concentrations. Also, the reduction of carbon content to below 0.03 wt.% improves sensitization resistance more than does Ti content. The presence of Mo in AISI 316Ti stainless steel reduces chromium-rich carbide precipitation; the reason is that Mo increases the stability of titanium carbides and tends to replace chromium in the formation of carbides and intermetallic compounds, thus reducing the risks of chromium-depletion

  15. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    Science.gov (United States)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  16. Effects of microstructure and local mechanical fields on intergranular stress corrosion cracking of a friction stir welded aluminum–copper–lithium 2050 nugget

    International Nuclear Information System (INIS)

    Dhondt, Matthieu; Aubert, Isabelle; Saintier, Nicolas; Olive, Jean Marc

    2014-01-01

    Highlights: • Applied stress changes the corrosion mode from pitting to intergranular cracking. • Residual stresses are sufficient to induce intergranular stress corrosion cracking. • Effect of crystallographic texture on the development of IGSCC evidenced by EBSD. • Cubic elasticity drives the local orientation of the intergranular cracking. • Tomography observations show the 3D nature of the corrosion development. - Abstract: The effects of the microstructure and mechanical fields on intergranular stress corrosion cracking (IGSCC) of the nugget zone of heat treated welds obtained by friction stir welding in the AA2050 aluminum alloy have been investigated at different scales. At low strain rate, in 1.0 NaCl aqueous solution, IGSCC develops in the microstructure, whereas only pitting corrosion is observed without any mechanical stress. Based on surface observations, EBSD analysis and X-ray tomography, the key role of sub-millimetric textured bands (induced by the welding process) on the IGSCC is demonstrated. Analyses at a more local scale show the grain boundary (low angle boundary, special coincident site lattice boundary or high angle boundary) do not have a significant effect on crack initiation. Crystal plasticity finite element calculations show that the threshold normal stress at grain boundaries for IGSCC development is about 80% of the macroscopic stress. It is also highlighted by crystal plasticity calculations that there is a drastic effect of the local stress field on the shape of cracks. Finally, it is shown that plasticity induced residual stresses are sufficient for the formation of IGSCC

  17. Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment

    International Nuclear Information System (INIS)

    Zhong, Xiangyu; Bali, Shirish Chandrakant; Shoji, Tetsuo

    2017-01-01

    Highlights: • Accelerated technique was developed for evaluation of stress corrosion cracking. • The effect of strain rate on stress corrosion cracking was investigated. • Typical intergranular crack feature was observed on the fracture surface. • The crack depth distribution shows two peaks feature. • The work hardened layer has a strong effect on stress corrosion cracking. - Abstract: Accelerated technique has been developed for evaluation of intergranular stress corrosion cracking (IGSCC) initiation behavior of non-sensitized materials in pressure water reactor environment by means of the implementation of hollowed cylindrical specimens under slow strain rate tensile. Typical IGSCC feature was observed on the fracture surface. The crack depth distribution showed two peaks feature which relates to the worked hardened layer on the inner surface. The specimens tested at lower strain rate showed higher fraction of IGSCC, larger number of cracks initiation, shorter elongation and smaller crack opening displacement, suggesting the transition behavior of IGSCC initiation and short crack growth.

  18. Investigation of thermally sensitised stainless steels as analogues for spent AGR fuel cladding to test a corrosion inhibitor for intergranular stress corrosion cracking

    Science.gov (United States)

    Whillock, Guy O. H.; Hands, Brian J.; Majchrowski, Tom P.; Hambley, David I.

    2018-01-01

    A small proportion of irradiated Advanced Gas-cooled Reactor (AGR) fuel cladding can be susceptible to intergranular stress corrosion cracking (IGSCC) when stored in pond water containing low chloride concentrations, but corrosion is known to be prevented by an inhibitor at the storage temperatures that have applied so far. It may be necessary in the future to increase the storage temperature by up to ∼20 °C and to demonstrate the impact of higher temperatures for safety case purposes. Accordingly, corrosion testing is needed to establish the effect of temperature increases on the efficacy of the inhibitor. This paper presents the results of studies carried out on thermally sensitised 304 and 20Cr-25Ni-Nb stainless steels, investigating their grain boundary compositions and their IGSCC behaviour over a range of test temperatures (30-60 °C) and chloride concentrations (0.3-10 mg/L). Monitoring of crack initiation and propagation is presented along with preliminary results as to the effect of the corrosion inhibitor. 304 stainless steel aged for 72 h at 600 °C provided a close match to the known pond storage corrosion behaviour of spent AGR fuel cladding.

  19. Ultrasonic pattern recognition study of intergranular stress corrosion cracks vs. weld crown reflectors in SS piping. Interim report

    International Nuclear Information System (INIS)

    Rose, J.L.; Singh, G.P.

    1978-09-01

    Pattern recognition techniques for discriminating between geometrical and crack reflector signals obtained during ultrasonic inspection of weld zone in Type 304 austenitic stainless steel piping have been applied to one set of data. Seven welds from four different 4-in diameter pipe specimens containing intergranular stress corrosion cracking (supplied by the GE pipe laboratory through SwRI) were examined ultrasonically. Geometrical reflectors considered in this feasibility study were crown type reflectors only, since they were readily available in the pipe specimens. The ultrasonic inspection was conducted in a pulse-echo mode using a 1.5 MHz nominal center frequency, 3/8-in diameter transducer mounted on a plexiglass shoe with a 45 0 refracted transverse wave. A version of the Southwest Research Institute pipe weld examination code was used for recording data. Ultrasonic signals were digitized and stored for further analysis. One hundred fifty-five indications were recorded from seven different welds, four of which were examined from both sides, and three from only one side. The ultrasonic data were correlated with dye penetration tests and ultrasonic examination conducted by SwRI in order to obtain correct training information. The data naturally fell into two categories, cracks and crowns (geometric reflectors). A total of 107 crown indications and 40 intergranular stress corrosion cracking (IGSCC) indications were further analyzed. The pattern recognition analysis indicated that an IGSCC indication was discriminated from a crown indication in about 98% of the cases. The success of the pattern recognition algorithm employed in this study demonstrates the applicability of this technique for solving such important problems as discrimination between IGSCC and geometric reflectors in 304 stainless steel pipe welds. Additional work on other kinds of geometric reflectors is required to establish an overall confidence level in reflector classification analysis

  20. Intergranular stress corrosion cracking of type 304 stainless steels treated with inhibitive chemicals in high temperature pure water

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, T.K. [Nuclear Science and Technology Development Center, National Tsing-Hua Univ. Taiwan (China); Lee, M.Y.; Tsai, C.H. [Department of Engineering and System Science, National Tsing-Hua Univ. Taiwan (China)

    2002-07-01

    Electrochemical potentiodynamic polarizations, electrochemical corrosion potential (ECP) measurements and slow strain rate tensile (SSRT) tests were conducted to investigate the intergranular stress corrosion cracking (IGSCC) characteristics of Type 304 stainless steels treated with inhibitive chemicals in simulated boiling water reactor (BWR) environments. A number of thermally sensitized specimens were prepared and were pre-oxidized in a 288 C environment with the presence of 300 ppb dissolved oxygen for 360 hours. Most of the specimens were then treated with various chemicals including powdered zirconium oxide (ZrO{sub 2}), powdered titanium oxide (TiO{sub 2}), and zirconyl nitrate [ZrO(NO{sub 3}){sub 2}] via static immersion at 90 C, 150 C, and 200 C. Test environments were specifically designed in a circulation loop to create a dissolved oxygen concentration of 300 ppb. Test results showed that the corrosion current densities of all treated specimens were lower than that of the untreated, pre-oxidized specimen at ambient temperature in a solution mixed with 1 mM K{sub 3}Fe(CN){sub 6} and 1 mM K{sub 4}Fe(CN){sub 6}. The ECPs of the treated specimens could be lower or higher than that of the pre-oxidized one at 288 C, depending upon the type of treating chemical and the treating temperature. In addition, IGSCC was observed on all specimens (treated or untreated) in the same environment. However, the untreated specimen exhibited lower elongation, shorter failure time, and more secondary cracks on the side surfaces. It was therefore suggested that inhibitive chemicals such as ZrO{sub 2}, TiO{sub 2}, and ZrO(NO{sub 3}){sub 2} did provide a certain degree of enhancement in improving the mechanical behavior of the treated specimens and in prolonging the IGSCC initiation time. (authors)

  1. Intergranular stress corrosion cracking of alloy 600 with dissolved oxygen content in primary water

    International Nuclear Information System (INIS)

    Kim, Y.S.; Maeng, W.Y.; Kim, S.S.

    2015-01-01

    Slow strain rate tests (SSRT) have been conducted using tensile specimens of Alloy 600 with a hump in simulated primary water of 360 Celsius degrees with dissolved oxygen (DO) of either 8 ppm or less than 10 ppb. At a strain rate of 2.5x10 -7 /s, Alloy 600 shows an elongation of 12.3% in water with 8 ppm DO but the lower elongation of 5.5% in water is obtained with below 10 ppb DO. Intergranular (IG) cracking was observed in Alloy 600 in water with below 10 ppb DO but not in water with 8 ppm DO especially along the outer regions of the fracture surface, which is in contrast with the internal oxidation mechanism. However, the inner regions of Alloy 600 showed IG cracking independent of the environment, indicating that IG cracking of Alloy 600 is an intrinsic phenomenon. Enhanced IG cracking of the Alloy 600 at DO below 10 ppb is found to be related to two times higher lattice contractions of the (200) planes in water with DO below 10 ppb, which results from a hydrogen-enhanced ordering transformation. (authors)

  2. Effect of the microstructure on the sensibilization to intergranular corrosion of a 24. 7 Cr7. 4Ni duplex stainless steel. Efecto de la microestructura en la sensibilizacion a la corrosion inoxidable duplex 24, 7Cr7,Ni

    Energy Technology Data Exchange (ETDEWEB)

    Otero, E.; Pardo, A.; Merino, C.; Hierro, P.; Perez, F.J.

    1993-01-01

    The influence of microstructure on the resistance to intergranular corrosion of a 24.4Cr7.4Ni is studied. The results are discussed both in terms of the Huey experiment as well as of the sweeping corresponding to the experimental conditions under which the experiments have been performed. Author (11 refs.)

  3. Inhibition of intergranular stress corrosion cracking of sensitized type 304 stainless steel. Annual report

    International Nuclear Information System (INIS)

    Brown, B.F.

    1977-01-01

    The effectiveness of various inhibitors in mitigating stress corrosion cracking of stainless steel in hot aqueous environment was evaluated. The inhibitors studied were of three types: poly-oxy-anions, organic competitive absorbers, and simple cations; the corrosive medium was 4M NaCl acidified with H 2 SO 4 to ph of about 2.3. The following conclusions were reached: pH does not affect cracking kinetics in a sensitive way; cracking time is highly dependent on chloride concentrations; poly-oxy-anions do not perform well; organics offer some possibilities as inhibitors; cationic additives can have effects varying from trivial to total suppression of cracking--behavior is both cation and concentration dependent. 2 figures, 5 tables

  4. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  5. Intergranular attack and stress corrosion cracking propagation behavior of alloy 600 in high-temperature caustic solution

    International Nuclear Information System (INIS)

    Kawamura, H.; Hirano, H.

    1999-01-01

    The effect of stress intensity factors (K) at the intergranular attack and stress corrosion crack (IGA/SCC) tips on the IGA/SCC propagation behavior of steam generator (SG) tubing was studied under accelerated test conditions. Values of K at the IGA/SCC crack tips were calculated using the statically indeterminate model. Based upon analysis of those factors, the double-cantilever beam (DCB) and SG model boiler tests were carried out to evaluate the effect of stress intensity on IGA/SCC crack propagation. K at the crack tips increased with increasing crack length. For a long crack, K decreased with an increasing number of cracks. However, for a short crack, K decreased slightly with an increasing number of cracks. DCB test results showed the IGA/SCC crack velocity of alloy 600 (UNS N06600) increased gradually with increasing K in the range from 15 MPa√m to ∼60 MPa√m. This is the range relevant to IGA/SCC crack tips of typical SG tubes under operating conditions of Pressurized-water reactors. Metallographic examination of tubes removed from the SG model boiler, fouled with 10 ppm sodium hydroxide (NaOH), showed IGA/SCC propagation rates were almost constant in the tested range of K

  6. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Schreiber, D. K.

    2018-02-01

    The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.

  7. Surprising Intergranular "Non-Corrosion" of a 304L Stainless Steel

    OpenAIRE

    Thi Quynh Anh , Le; Le Coze , J.

    1995-01-01

    A low chloride content solution, representative of an artificial saliva, was used to study the pitting and crevice resistance of a 304L wire used to fix teeth against each other in the mouth. On an industrial 304L alloy, corrosion inside deep pits showed a special character in which grain boundaries were not attacked : a honeycomb-like structure of the corroded surface was observed in which grain boundaries were the walls of the cells. This result was reproduced in a 1. 66 NaCl g/l solution, ...

  8. Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels.

    Science.gov (United States)

    Meisnar, Martina; Vilalta-Clemente, Arantxa; Gholinia, Ali; Moody, Michael; Wilkinson, Angus J; Huin, Nicolas; Lozano-Perez, Sergio

    2015-08-01

    Transmission Kikuchi diffraction (TKD), also known as transmission-electron backscatter diffraction (t-EBSD) is a novel method for orientation mapping of electron transparent transmission electron microscopy specimen in the scanning electron microscope and has been utilized for stress corrosion cracking characterization of type 316 stainless steels. The main advantage of TKD is a significantly higher spatial resolution compared to the conventional EBSD due to the smaller interaction volume of the incident beam with the specimen. Two 316 stainless steel specimen, tested for stress corrosion cracking in hydrogenated and oxygenated pressurized water reactor chemistry, were characterized via TKD. The results include inverse pole figure (IPFZ) maps, image quality maps and misorientation maps, all acquired in very short time (crack with respect to the grain boundary, deformation bands, twinning and slip. Furthermore, TKD has been used to measure the grain boundary misorientation and establish a gauge for quantifying plastic deformation at the crack tip and other regions in the surrounding matrix. Both grain boundary migration and slip transfer have been detected as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water

    Science.gov (United States)

    Liu, Tingguang; Xia, Shuang; Bai, Qin; Zhou, Bangxin; Zhang, Lefu; Lu, Yonghao; Shoji, Tetsuo

    2018-01-01

    The intergranular cracks and grain boundary (GB) network of a GB-engineered 316 stainless steel after stress corrosion cracking (SCC) test in high temperature high pressure water of reactor environment were investigated by two-dimensional and three-dimensional (3D) characterization in order to expose the mechanism that GB-engineering mitigates intergranular SCC. The 3D microstructure shown that the essential characteristic of the GB-engineered microstructure is formation of many large twin-boundaries as a result of multiple-twinning, which results in the formation of large grain-clusters. The large grain-clusters played a key role to the improvement of intergranular SCC resistance by GB-engineering. The main intergranular cracks propagated in a zigzag along the outer boundaries of these large grain-clusters because all inner boundaries of the grain-clusters were twin-boundaries (∑3) or twin-related boundaries (∑3n) which had much lower susceptibility to SCC than random boundaries. These large grain-clusters had tree-ring-shaped topology structure and very complex morphology. They got tangled so that difficult to be separated during SCC, resulting in some large crack-bridges retained in the crack surface.

  10. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  11. Mitigation strategies of intergranular corrosion in systems of reactors of water boiling (BWR). Combined action of the chemistry of the hydrogen and the oxygen; Estrategias de mitigacion de la corrosion intergranular en sistemas de reactores de agua en ebullicion (BWR). Accion combinada de la quimica del hidrogeno y del oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Verdugo, M.

    2015-07-01

    Inter-Granular Stress Corrosion cracking (IGSCC) in austenitic stainless steel and in austenitic nickel-based alloys has been the subject of many studies the aim of which was to resolve one of the main problems faced by BWR nuclear power plants since the 1960s. This corrosion phenomenon is the result of the combined action of three factors: sensitization of the material, high local stresses and an aggressive medium. This paper deals with these factors separately and analyzes the oxidative chemistry of BWR reactors (aggressivity of the medium) as one the main causes if IGSCC. (Author)

  12. Evaluation of intergranular corrosion techniques to determine phosphorus segregation in NiCrMoV rotor steel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Thomas, M.T.; Arey, B.W.

    1985-01-01

    Several chemical and electrochemical etching techniques have been evaluated for the indirect measurement of grain boundary phosphorus segregation. A picric acid based solution was found to promote intergranular attack proportional to the grain boundary phosphorus composition measured by Auger Electron Spectroscopy. Preliminary results indicate this solution may enable the nondestructive evaluation of a rotor steel's susceptibility to temper embrittlement and IGSCC

  13. Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050

    Science.gov (United States)

    Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao

    2018-04-01

    The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.

  14. Dresden 1 Radiation Level Reduction Program. Intergranular corrosion tests of sensitized Type-304 stainless steel in Dow NS-1, and stress corrosion cracking tests of Type-304 stainless steel and carbon and low alloy steels in Dow copper rinse solution

    International Nuclear Information System (INIS)

    Walker, W.L.

    1978-09-01

    Corrosion tests were performed to evaluate the extent of intergranular attack on sensitized Type-304 stainless steel by a proprietary Dow Chemical solvent, NS-1, which is to be used in the chemical cleaning of the Dresden 1 primary system. In addition, tests were performed to evaluate stress corrosion cracking of sensitized Type-304 stainless steel and post-weld heat-treated ASTM A336-F1, A302-B, and A106-B carbon and low alloy steels in a solution to be used to remove residual metallic copper from the Dresden 1 primary system surfaces following the chemical cleaning. No evidence of deleterious corrosion was observed in either set of tests

  15. Interfacial reactions in Ti-6Al-4V with laser-embedded SiC particles and the origin of intergranular corrosion susceptibility of an Al-Mg alloy

    NARCIS (Netherlands)

    Kooi, BJ; De Hosson, JTM; Carter, CB; Hall, EL; Nutt,; Briant, CL

    2000-01-01

    In the first part of the paper the microstructure of Ti-6Al-4V with laser embedded SiC particle is explained. The interfacial reaction between Ti and SiC is responsible for the largely improved wear resistance of the Ti alloy. In the second part the phase responsible for the intergranular corrosion

  16. Standard test method for determining the susceptibility to intergranular corrosion of 5XXX series Aluminum alloys by mass loss after exposure to nitric acid (NAMLT Test)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method describes a procedure for constant immersion intergranular corrosion testing of 5XXX series aluminum alloys. 1.2 This test method is applicable only to wrought products. 1.3 This test method covers type of specimen, specimen preparation, test environment, and method of exposure. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Evaluation of the IGSCC(Intergranular Stress Corrosion Cracking) resistance of inconel alloys by static potential method in high temperature and high pressure environment

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Nam, Tae Woon

    1997-01-01

    Inconel alloys which have good high temperature mechanical properties and corrosion resistance have been used extensively as steam generator tube of nuclear power plants. There have been some reports on the intergranular stress corrosion cracking (IGSCC) failure problems in steam generator tubes of nuclear reactors. In order to evaluate the effects of heat treatment and composition on the IGSCC behavior of inconel alloys in simulated nuclear reactor environment, four different specimens (inconel 600 MA, 600 TT, 690 MA and 690 TT) were prepared and tested by eletrochemical method. Static potential tests for stressed C-ring type inconel specimens were carried out in 10% NaOH solution at 300 deg C (75 atm). It was found that IGSCC was initiated in inconel 600 MA specimen, but the other three specimens were not cracked. Based on the gradients of corrosion current density of the four specimens as a function of test time, thermally treated alloys show better IGSCC resistance than mull-annealed alloys, and inconel 690 TT has better passivation characteristic than inconel 600 MA. Inconel 690 TT shows clear periodic passivation that indicates good SCC resistance. The good IGSCC resistance of inconel 690 TT is due to periodic passivation characteristics of surface layer. (author)

  18. Microstructural-Scale Model for Surfaces Spreading of Intergranular Corrosion in Sensitized Stainless Steels and Aluminum-Magnesium (AA5XXX) Alloys

    Science.gov (United States)

    Jain, Swati

    Components from AA5XXX (Al-Mg alloys with more than 3 wt% Mg) alloys are X attractive due to availability of low cost, high strength to weight ratio and good weldability. Therefore, these alloys have potential applications in Naval ships. However, these alloys become susceptible to IGC (intergranular corrosion) due to beta-phase precipitation due to improper heat treatment or inadvertent thermal exposure. Stainless steels may also become susceptible due to carbide precipitation and chromium depletion on grain boundaries. IGC susceptibility depends on the interplay between the metallurgical conditions, electrochemical conditions, and chemical conditions. Specific combinations cause IGC while others do not. The objective of this study is to investigate the conditions which bring about surface spreading of IGC in these alloy classes. To accomplish this goal, a microstructure scale model was developed with experimental inputs to understand the 2-D IGC spreading in stainless steels and AA5XXX alloys. The conditions strongly affecting IGC spreading were elucidated. Upon natural and artificial aging, the stainless steels become susceptible to intergranular corrosion because of chromium depletion in the grain boundaries. After aging Al-Mg (AA5XXX) alloys show susceptibility due to the precipitation of the beta-phase (Al3Mg7) in the grain boundaries. Chromium depleted grain boundaries in stainless steels are anodically more active as compared to the interior of the grains. (3-phase rich grain boundaries have lower OCP (open circuit potential) and pitting potentials as compared to the Al-Mg solid solutions. A new approach to modeling the IGC surface spreading in polycrystalline materials that is presented. This model is the first to couple several factors into one granular scale model that illustrates the way in which they interact and IGC occurs. It sheds new information on conditions which cause IGC spreading in two alloy classes and describes a new theory for the critical

  19. Contribution of solution pH and buffer capacity to suppress intergranular stress corrosion cracking of sensitized type 304 stainless steel at 95 C

    International Nuclear Information System (INIS)

    Zhang, S.; Shibata, T.; Haruna, T.

    1999-01-01

    Controlling pH of high-temperature water to ∼pH 7 at 300 C by adding lithium hydroxide (LiOH) into the coolant system of a pressurized water reactor (PWR) successfully has been mitigating the corrosion of PWR component materials. The effects of solution pH and buffer capacity on intergranular stress corrosion cracking (IGSCC) of sensitized type 304 stainless steel ([SS] UNS S30400) was examined at 95 C by slow strain rate technique (SSRT) with an in-situ cracking observation system. It was found that an increase in solution pH or buffer capacity increased crack initiation time and decreased mean crack initiation frequency, but exerted almost no effect on crack propagation. This inhibition effect on IGSCC initiation was explained as resulting from a retarding effect of solution pH and buffer capacity on the decrease in pH at crack nuclei caused by the hydrolysis of metal ions dissolved when the passive film was ruptured by strain in SSRT

  20. Effects of Dy{sub 71.5}Fe{sub 28.5} intergranular addition on the microstructure and the corrosion resistance of Nd–Fe–B sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Zhang, Pei; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2015-06-15

    To satisfy high-temperature applications, heavy rare-earth (RE) Dy is commonly introduced into the Nd–Fe–B sintered magnets to improve the coercivity. In addition to forming (Nd, Dy){sub 2}Fe{sub 14}B, Dy also exists in the intergranular RE-rich phase. Hence, understanding the effect of Dy on the electrochemical characteristics of the RE-rich phase and corrosion resistance of the magnet is of importance. In this work, eutectic alloy Dy{sub 71.5}Fe{sub 28.5} powders were added into the (Pr{sub 0.2}Nd{sub 0.8}){sub 12.3}Fe{sub bal}B{sub 6.1} magnet through binary-alloy approach to investigate the corrosion resistance of the magnet in electrochemical and hot/humid environments. The results demonstrate that Dy is enriched in the intergranular phase, improving its electrode potential and stability due to the higher electrode potential of Dy than Nd or Pr. As a consequence, the electrode potential difference between the 2:14:1 phase and the RE-rich phase is reduced, improving the corrosion resistance. Furthermore, formation of (Pr, Nd, Dy){sub 2}Fe{sub 14}B shell with stronger local anisotropy surrounding the 2:14:1 phase grains improves the coercivity with a slight remanence loss. Therefore, intergranular adding Dy–Fe alloy powders can obtain both high magnetic properties and good corrosion resistance simultaneously. - Highlights: • Eutectic Dy{sub 71.5}Fe{sub 28.5} powders were intergranular added to NdFeB sintered magnets. • The doped magnet showed improved corrosion resistance compared to Dy-free magnet. • Dy enrichment in RE-rich intergranular phase improved its electrode potential. • (Nd, Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • Both corrosion resistance and coercivity were improved in Dy–Fe doped magnet.

  1. Effects of pre-cold work on the intergranular corrosion in HAZ of type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Choi, S.P.; Hong, J.H.; Chi, S.W.

    1981-01-01

    The annealed specimens and the 10% cold-worked specimens have been welded and the base metal, the HAZ, and the weld metal of each specimen have been cut to measure the corrosion rates according to Practice A through Practice E of ASTM A 262. It is obtained that the corrosion rates of the base metal, the HAZ, and the weld metal in the 65 % boiling nitric acid were 12.11 mpy, 40.25 mpy, and 10.55 mpy respectively for the annealed specimens and 435.21 mpy, 480.72 mpy, and 10.55 mpy respectively for the 10% cold-worked specimens and the HAZ measured from the fusion line of the weld was extended from 4mm to 7mm for the annealed specimens and from 3mm to 6.8mm for the 10% cold-worked specimens in the case of 3.5mm-thick specimens and 25 +-5 KJ/inch of heat input. It has been confirmed through the experiments that: 1. The cold work has an effect reducing sensitization in the HAZ since the ratio of corrosion rate of the HAZ to the base metal of the 10% cold-worked specimens is smaller than that of the annealed specimens. 2. The results can be explained not by the Cr-depletion theory and the electro-chemical theory but by the strain theory, and 3. The sensitization tests of ASTM A 262 can be a method to judge the quality of the austenitic stainless steels

  2. Pattern recognition model to estimate intergranular stress corrosion cracking (IGSCC) at crevices and pit sites of 304 SS in BWR environments

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna

    2004-01-01

    Many publications have shown that crack growth rates (CGR) due to intergranular stress corrosion cracking (IGSCC) of metals is dependent on many parameters related to the manufacturing process of the steel and the environment to which the steel is exposed. Those parameters include, but are not restricted to, the concentration of chloride, fluoride, nitrates, and sulfates, pH, fluid velocity, electrochemical potential (ECP), electrolyte conductivity, stress and sensitization applied to the steel during its production and use. It is not well established how combinations of each of these parameters impact the CGR. Many different models and beliefs have been published, resulting in predictions that sometimes disagree with experimental observations. To some extent, the models are the closest to the nature of IGSCC, however, there is not a model that fully describes the entire range of observations, due to the difficulty of the problem. Among the models, the Fracture Environment Model, developed by Macdonald et al., is the most physico-chemical model, accounting for experimental observations in a wide range of environments or ECPs. In this work, we collected experimental data on BWR environments and designed a data mining pattern recognition model to learn from that data. The model was used to generate CGR estimations as a function of ECP on a BWR environment. The results of the predictive model were compared to the Fracture Environment Model predictions. The results from those two models are very close to the experimental observations of the area corresponding to creep and IGSCC controlled by diffusion. At more negative ECPs than the potential corresponding to creep, the pattern recognition predicts an increase of CGR with decreasing ECP, while the Fracture Environment Model predicts the opposite. The results of this comparison confirm that the pattern recognition model covers 3 phenomena: hydrogen embrittlement at very negative ECP, creep at intermediate ECP, and IGSCC

  3. Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants

    Science.gov (United States)

    Karlsen, Wade; Diego, Gonzalo; Devrient, Bastian

    2010-11-01

    Cold-work has been associated with the occurrence of intergranular cracking of stainless steels employed in light water reactors. This study examined the deformation behavior of AISI 304, AISI 347 and a higher stacking fault energy model alloy subjected to bulk cold-work and (for 347) surface deformation. Deformation microstructures of the materials were examined and correlated with their particular mechanical response under different conditions of temperature, strain rate and degree of prior cold-work. Select slow-strain rate tensile tests in autoclaves enabled the role of local strain heterogeneity in crack initiation in pressurized water reactor environments to be considered. The high stacking fault energy material exhibited uniform strain hardening, even at sub-zero temperatures, while the commercial stainless steels showed significant heterogeneity in their strain response. Surface treatments introduced local cold-work, which had a clear effect on the surface roughness and hardness, and on near-surface residual stress profiles. Autoclave tests led to transgranular surface cracking for a circumferentially ground surface, and intergranular crack initiation for a polished surface.

  4. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  5. Intergranular corrosion in unserviced austenitic stainless steel pipes made of alloy 904L; Kornzerfall in nicht betriebsbeanspruchten rostfreien austenitischen Rohren aus Alloy 904L

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Cagliyan, Erhan; Fischer, Boromir; Giller, Madeleine; Riesenbeck, Susanne [Siemens AG, Energy Sector, Berlin (Germany). Gasturbinenwerk Berlin

    2017-09-01

    Seamless tubes of the highly corrosion resistant austenitic steel 1.4539, X1NiCrMoCu25-20-5 (Alloy 904L) were observed to exhibit signs of inter-crystalline damage to a depth of several layers of grains and in particular on their internal surface. The material had been stored and had not been put into service. A number of hypotheses had been discussed to explain the predominant cause of the damage. Using optical light and scanning electron microscopy investigation techniques, clear evidence was obtained indicating it to be inter-crystalline corrosion due to the sensitisation of the grain boundaries. The most probable cause of this was determined to be the presence of residual deposits from the rolling process, which due to poor cleaning, had not been completely removed prior to the final solution annealing treatment. This explaining why predominantly the internal surface of the tubes was affected.

  6. The effect of low-temperature isothermal heat treatments on the intergranular corrosion of AISI 316 stainless steel simulated weld heat-affected zones

    International Nuclear Information System (INIS)

    Juhas, M.C.

    1989-01-01

    Type 316 stainless steel (ss) is a candidate all for containment of high-level nuclear waste. If the containers are sealed by welding, the heat affected zones (HAZs) of the welds may be susceptible to sensitization to concurrent nucleation and growth of chromium-rich M 23 C 6 carbides. Prior to the present study, it was suspected that the carbides which nucleated during welding could grow during the containment life of the nuclear waste. In this investigation, type 316 ss containing systematic variations in carbon and nitrogen have been exposed to thermal cycles simulating a single-pass weld HAZ, followed by long-term (∼2,000 hours) isothermal heat treatments in the range 300 degree-400 degree C. Sensitization was detected using two corrosion methods; (1) double loop electrochemical potentiokinetic reactivation (DL-EPR) test and (2) ferric sulfate weight loss (Streicher) test. Optical metallography and analytical electron microscopy (AEM) were employed to identify grain boundary carbides and composition of grain boundaries, respectively. The corrosion tests indicated that chromium depletion did not occur in any of the heat treatments in all of the alloys. The Streicher tests showed that the grain boundaries were selectively attacked only after the HAZ simulation, however the ensuing low temperature exposure did not enhance the susceptibility. Discrete grain boundary carbides were observed on 15-25% of the boundaries in the high carbon alloys (0.08 wt.%). The AEM results showed that when carbides were present, the chromium level at the grain boundaries was slightly depressed with respect to the matrix, however the minimum level was never less than ∼ 16 wt.%. The conclusions of this study are that carbides which formed during HAZ simulation in high-carbon type 316 ss did not significantly grow or change the nature of the grain boundaries at low temperatures

  7. Stress corrosion of alloy 600: mechanism proposition

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A fissuring model by stress corrosion based on interactions corrosion-plasticity on the fissure top is proposed to describe the generally intergranular bursting of INCONEL 600 in the PWR. The calculation shows, and some observations check experimentally, that a pseudo intergranular cracking bound to the zigzag micro facets formation along the joints may be so that a completely intergranular bursting. This pseudo intergranular mode makes up a signature of the proposed mechanism. It may be suggested that it may exist one continuity mechanism between the trans and intergranular cracking by stress corrosion of ductile cubic centered faces materials. 2 figs

  8. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  9. The Effect of Temperature on the Preferential Intergranular Oxidation Susceptibility of Alloy 600

    Science.gov (United States)

    Bertali, G.; Burke, M. G.; Scenini, F.; Huin, N.

    2018-02-01

    Oxidation studies were performed on solution-annealed Alloy 600 in high-temperature steam at 400 °C and in simulated pressurized water reactor primary water at 320 °C under environmental conditions where this alloy is known to be susceptible to intergranular stress corrosion cracking. Advanced analytical transmission electron microscopy characterization and detailed scanning electron microscopy analysis highlighted extensive preferential intergranular oxidation as well as enhanced Cr and O diffusivities associated with this oxidation. These findings, as well as the preferential intergranular oxidation susceptibility and diffusion-induced grain boundary migration, are discussed in terms of their roles as precursors to stress corrosion cracking.

  10. Intergranular stress corrosion cracking: A rationalization of apparent differences among stress corrosion cracking tendencies for sensitized regions in the process water piping and in the tanks of SRS reactors

    International Nuclear Information System (INIS)

    Louthan, M.R.

    1990-01-01

    The frequency of stress corrosion cracking in the near weld regions of the SRS reactor tank walls is apparently lower than the cracking frequency near the pipe-to-pipe welds in the primary cooling water system. The difference in cracking tendency can be attributed to differences in the welding processes, fabrication schedules, near weld residual stresses, exposure conditions and other system variables. This memorandum discusses the technical issues that may account the differences in cracking tendencies based on a review of the fabrication and operating histories of the reactor systems and the accepted understanding of factors that control stress corrosion cracking in austenitic stainless steels

  11. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  12. Scanning reference electrode techniques in localized corrosion

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Vyas, B.

    1979-04-01

    The principles, advantages, and implementations of scanning reference electrode techniques are reviewed. Data related to pitting, intergranular corrosion, welds and stress corrosion cracking are presented. The technique locates the position of localized corrosion and can be used to monitor the development of corrosion and changes in the corrosion rate under a wide range of conditions

  13. Intergranular stresses in Incoloy-800

    International Nuclear Information System (INIS)

    Holden, T.M.; Holt, R.A.; Clarke, A.P.

    1997-01-01

    The generation of intergranular residual strains under uniaxial loading conditions in the plastic regime has been measured in detail by neutron diffraction in Incoloy-800. A relatively simple theory, based on the Taylor model, gives a good semiquantitative account of the magnitudes of the strains. The results clarify the interpretation of measurements made earlier on Incoloy-800 steam generator tubes. (author)

  14. Intergranular attack evaluation from hideout return

    International Nuclear Information System (INIS)

    Nordmann, F.; Dupin, M.; Menet, O.; Fiquet, J.-M.

    1989-01-01

    Intergranular Attack (IGA) is the secondary side corrosion mechanism on PWR steam generator tubing, which can occur most frequently even with a good waterchemistry. It has moderately developed in a few French units. Consequently, several remedies have been implemented, such as sodium content decrease in makeup water and application of more stringent chemistry specifications. In order to evaluate the local chemistry in restricted areas where IGA may occur, a large hideout return programme has been carried out on many units. It shows that free alkalinity returning during shutdown is usually ranging from 0.5 to 5 g of sodium per steam generator, and that the required time to let it return is about 40 hours. However, high temperature pH calculations indicate that such an amount of alkalinity can correspond to a potentially corrosive solution in restricted areas, where a concentration factor of 10 5 to 10 7 can be reached, inducing a pH of 10 at 300 o C. Studies are still in progress in order to define when a shutdown should be required to allow hideout return and help to prevent IGA. (author)

  15. Corrosion Resistance of 7475-T7351 Aluminum Alloy Plate for Aviation

    OpenAIRE

    LIU Ming; LI Hui-qu; CHEN Jun-zhou; LI Guo-ai; CHEN Gao-hong

    2017-01-01

    The intergranular corrosion and exfoliation corrosion properties of 7475-T7351 aluminum alloy plate for aviation were investigated, and the corrosion behaviors of the alloy were analyzed by metallographic analysis(MA) and transmission electron microscope(TEM). The results show that no obvious intergranular corrosion is observed, but exfoliation corrosion grade of 7475-T7351 aluminum alloy increases from EA on surface to EC in the core. The exfoliation corrosion of 7475 alloy plate is mainly b...

  16. The comparison of corrosion resistance between Baosteel's alloy 690 tube and foreign alloy 690 tube

    International Nuclear Information System (INIS)

    Ma Mingjuan; Zhang Lefu; Li Yan

    2012-01-01

    Alloy 690 having excellent corrosion resistance is widely used for SG tubes. The intergranular corrosion and pitting corrosion resistance of Baosteel's alloy 690 tube, Country A alloy 690 tube and Country B alloy 690 tube have been analysed by comparison. It shows that: The intergranular corrosion of Baosteel's alloy 690 tube tested complied with ASTM G28 Standard could satisfy the technical requirement. However.some of Baosteel's alloy 690 tube in intergranular corrosion resistance had less performance than Country A. In addition, pitting corrosion tested with ASTM G48 Standard shown the Baosteel's alloy 690 tube better than Country B. (authors)

  17. Corrosion in weldments of electric power plants: Analysis and cure

    International Nuclear Information System (INIS)

    Donati, J.R.; Zacharie, G.

    1990-01-01

    This article reviews some cases of corrosion essentially intergranular and stress corrosion: heat exchanger of LMFBR reactor, stress corrosion by chlorides in the primary coolant circuit, stress corrosion in pure water and sodium hydroxide in steam generators of PWR..., remedies adopted are described in each case [fr

  18. A new stress corrosion cracking model for Inconel 600 in PWR media

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A model of cracking in corrosion under stress, based on corrosion-plasticity interactions at cracking points, is proposed to describe the generally intergranular breakage of Inconel 600 in PWR medium. It is shown by calculation, and verified experimentally by observations in SEM, that a pseudo-intergranular breakage connected to the formation of micro facets in zigzags along the joints is possible, as well as a completely intergranular breakage. This allows us to assume that a continuity of mechanisms exists between the trans- and intergranular cracking by corrosion under material stress. (author)

  19. Corrosion of high purity Fe-Cr-Ni alloys in 13 N boiling nitric acid

    International Nuclear Information System (INIS)

    Ohta, Joji; Mayuzumi, Masami; Kusanagi, Hideo; Takaku, Hiroshi

    1998-01-01

    Corrosion in boiling nitric acid was investigated for high purity Fe-18%Cr-12%Ni alloys and type 304L stainless steels (SS). Owing to very low impurity concentration, the solution treated high purity alloys show almost no intergranular corrosion while the type 304L SS show severe intergranular corrosion. Both in the high purity alloys and type 304L SS, aging treatments ranging from 873 K to 1073 K for 1 h enhance intergranular corrosion. During the aging treatments, impurities should be segregated to the grain boundaries. The corrosion behaviors were discussed from a standpoint of impurity segregation to grain boundaries. This study is of importance for purex reprocessing of spent fuels

  20. ON THE ORIGIN OF INTERGRANULAR JETS

    International Nuclear Information System (INIS)

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Steiner, O.

    2011-01-01

    We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band Hα images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band Hα images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

  1. Encyclopedia of electrochemistry. Vol. 4. Corrosion and oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Stratmann, M. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Frankel, G.S. (eds.) [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    2003-07-01

    This book is one of the eleven volumes of the ''Encyclopaedia of Electrochemistry'' and provides both an introduction to the different fields of corrosion as well as a detailed overview of the subjects. The volume is divided into seven main chapters each of them containing some special papers written by well known specialists. The main chapters are structured as follows: 1. Fundamentals (of corrosion, thermodynamics, kinetics and transport phenomena in electrolytic corrosion); 2. Homogeneous corrosion of metallic materials in electrolytes; 3. Corrosion of oxide covered materials (Atmospheric corrosion; Passivity of metals, alloys, and semiconductors); 4. Localised corrosion phenomena (Crevice corrosion; Pitting corrosion; Intergranular corrosion); 5. Corrosion protection 6. Corrosion in special environments (Molten salt-induced corrosion of metals; High-temperature corrosion of metals by gases; Microbiologically influenced corrosion); and 7. Electrochemical techniques for corrosion.

  2. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    Science.gov (United States)

    2013-02-01

    alloying additions are predicted to optimize corrosion performance and be compatible with AA 6061 and 5052 from the standpoint of mitigating...34Corrosion of metals and alloys . Determination of resistance to intergranular corrosion of solution heat- treatable aluminium alloys " 1996. 25. ASTM...binary aluminium alloys —I. Al-Cu alloys . Pitting and intergranular corrosion," Corros Sei 17, 3 (1977): p. 179. 42. I.L. Müller and J.R. Galvele

  3. Role of hydrogen in the intergranular cracking mechanism by stress corrosion in primary medium of nickel based alloys 600 and 690; Role de l'hydrogene dans le mecanisme de fissuration intergranulaire par corrosion sous contrainte en milieu primaire des alliages base nickel 600, 690

    Energy Technology Data Exchange (ETDEWEB)

    Odemer, G.; Coudurier, A.; Jambon, F.; Chene, J. [CEA Saclay, Dept. de Physico-Chimie (DEN/DANS/DPC/SCCME/LECA), 91 - Gif sur Yvette (France); Odemer, G.; Coudurier, A.; Chene, J. [Evry Univ., UMR 8587 CNRS / CEA, LAMBE, 91 (France)

    2007-07-01

    The aim of this work is to characterize the sensitivity to hydrogen embrittlement of alloys 600 and 690 in order to better understand the eventual role of hydrogen in the stress corrosion mechanism which affects these alloys when they are exposed in PWR primary medium. (O.M.)

  4. Part of the hydrogen in the intergranular crack by stress corrosion in primary circuit for the 600 and 690 nickel base alloys; Role de l'hydrogene dans le mecanisme de fissuration intergranulaire par corrosion sous contrainte en milieu primaire des alliages base nickel 600 et 690

    Energy Technology Data Exchange (ETDEWEB)

    Odemer, G.; Coudurier, A.; Jambon, F.; Chene, J. [CEA Saclay, Dept. de Physico-Chimie (DPC/SCCME/LECA), 91 - Gif sur Yvette (France); Odemer, G.; Coudurier, A.; Chene, J. [Evry Univ., UMR 8587 CNRS / CEA, LAMBE, 91 (France)

    2007-07-01

    The aim of this study is, in a first part, to characterize the hydrogen embrittlement sensitivity of the 600 and 690 based alloys in order to better understand the hydrogen role in the stress corrosion mechanism which appears in theses alloys in the primary circuit of the PWR type reactors. The authors studies how the hydrogen embrittlement is resulting from an interaction between the hydrogen and the plastic deformation. (A.L.B.)

  5. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  6. Intergranular oxidation of alloy 600 exposed to simulated PWR primary water

    International Nuclear Information System (INIS)

    Giovanna Caballero Hinostroza, J.; Duhamel, C.; Crepin, J.; Couvant, T.

    2015-01-01

    Intergranular stress corrosion cracking (IGSCC) of Alloy 600 in PWR environment is a phenomenon that involves several factors related to the material, the environment and the mechanical loading. Previous studies suggest that the intrusion of oxide along grain boundaries is the key step in the initiation of IGSCC. This work focuses on the effect of dissolved hydrogen content and the role of chromium carbides on the intergranular oxidation kinetics. Oxidation tests are carried out on non-stressed specimens in autoclave with hydrogen contents ranging between 3 and 60 mLH 2 /kg H 2 O. The surface and intergranular oxides formed are characterized by analytical transmission electron microscopy (ATEM). Results of short oxidation tests (100 h) show that chromium carbides have a high reactivity compared to the matrix. For grain boundaries with emerging chromium carbide at the surface, regardless of the dissolved hydrogen content, an enhanced oxidation at the top of carbides is observed followed by a preferential oxide growth at the matrix carbide/interface. On the contrary, grain boundaries without chromium carbides at the surface may be slightly oxidized. Longer oxidation tests (1000 h) show that if chromium carbides are buried in the matrix, oxidation ingress along the grain boundaries is delayed. (authors)

  7. Efectos intergranulares en perovskitas de manganeso nanocristalinas

    Directory of Open Access Journals (Sweden)

    Hueso, L. E.

    2000-06-01

    Full Text Available Intergranular magnetotransport effects are studied on polycrystalline manganites. Reducing grain size through sol-gel technology allows us to show new results on these materials. Intrinsic colossal magnetoresistance is destroyed in metalinsulator phase transition for grain size smaller than 150 nm. In low temperature region, that is, T < 30K, semiconductor resistivity behavior indicates Coulomb blockade between grains.

    En este artículo se examinan los efectos intergranulares sobre el transporte eléctrico en muestras cerámicas de perovskitas de manganeso que presentan magnetorresistencia colosal. La progresiva reducción del tamaño de partícula que nos permite la tecnología sol-gel hace que estos materiales muestren nuevas e inesperadas propiedades. Así, en la zona de la transición metal-aislante, se destruye la magnetorresistencia intrínseca del compuesto para tamaños de partícula D≤150 nm. A bajas temperaturas (T < 30K, la aparición de un comportamiento activado de la resistividad sugiere la presencia de Bloqueo de Coulomb entre granos.

  8. Corrosion evaluation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of {+-} 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs.

  9. MAGNETIC FIELD TWISTING BY INTERGRANULAR DOWNDRAFTS

    Energy Technology Data Exchange (ETDEWEB)

    Taroyan, Youra; Williams, Thomas [Department of Physics, IMPACS, Aberystwyth University, Aberystwyth (United Kingdom)

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  10. Grain boundary segregation and intergranular failure

    International Nuclear Information System (INIS)

    White, C.L.

    1980-01-01

    Trace elements and impurities often segregate strongly to grain boundaries in metals and alloys. Concentrations of these elements at grain boundaries are often 10 3 to 10 5 times as great as their overall concentration in the alloy. Because of such segregation, certain trace elements can exert a disproportionate influence on material properties. One frequently observed consequence of trace element segregation to grain boundaries is the occurrence of grain boundary failure and low ductility. Less well known are incidences of improved ductility and inhibition of grain boundary fracture resulting from trace element segregation to grain boundaries in certain systems. An overview of trace element segregation and intergranular failure in a variety of alloy systems as well as preliminary results from studies on Al 3% Li will be presented

  11. Corrosion problems in light water nuclear reactors

    International Nuclear Information System (INIS)

    Berry, W.E.

    1984-01-01

    The corrosion problems encountered during the author's career are reviewed. Attention is given to the development of Zircaloys and attendant factors that affect corrosion; the caustic and chloride stress corrosion cracking (SCC) of austenitic stainless steel steam generator tubing; the qualification of Inconel Alloy 600 for steam generator tubing and the subsequent corrosion problem of secondary side wastage, caustic SCC, pitting, intergranular attack, denting, and primary side SCC; and SCC in weld and furnace sensitized stainless steel piping and internals in boiling water reactor primary coolants. Also mentioned are corrosion of metallic uranium alloy fuels; corrosion of aluminum and niobium candidate fuel element claddings; crevice corrosion and seizing of stainless steel journal-sleeve combinations; SCC of precipitation hardened and martensitic stainless steels; low temperature SCC of welded austenitic stainless steels by chloride, fluoride, and sulfur oxy-anions; and corrosion problems experienced by condensers

  12. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  13. Grain boundary defects initiation at the outer surface of dissimilar welds: corrosion mechanism studies

    International Nuclear Information System (INIS)

    De Bouvier, O.; Yrieix, B.

    1995-11-01

    Dissimilar welds located on the primary coolant system of the French PWR I plants exhibit grain boundary defects in the true austenitic zones of the first buttering layer. If grain boundaries reach the interface, they can extend to the martensitic band. Those defects are filled with compact oxides. In addition, the ferritic base metal presents some pits along the interface. Nowadays, three mechanisms are proposed to explain the initiation of those defects: stress corrosion cracking, intergranular corrosion and high temperature intergranular oxidation. This paper is dealing with the study of the mechanisms involved in the corrosion phenomenon. Intergranular corrosion tests performed on different materials show that only the first buttering layer, even with some δ ferrite, is sensitized. The results of stress corrosion cracking tests in water solutions show that intergranular cracking is possible on a bulk material representative of the first buttering layer. It is unlikely on actual dissimilar welds where the ferritic base metal protects the first austenitic layer by galvanic coupling. Therefore, the stress corrosion cracking assumption cannot explain the initiation of the defects in aqueous environment. The results of the investigations and of the corrosion studies led to the conclusion that the atmosphere could be the only possible aggressive environment. This conclusion is based on natural atmospheric exposure and accelerated corrosion tests carried out with SO 2 additions in controlled atmosphere. They both induce a severe intergranular corrosion on true sensitized austenitic materials. This corrosion studies cannot conclude definitively on the causes of the defect initiation on field, but they show that the atmospheric corrosion could produce intergranular attacks in the pure austenitic zones of the first buttering layer of the dissimilar welds and that this corrosion is stress assisted. (author). 1 ref., 6 figs., 4 tabs

  14. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    Lemuet, Daniel

    1981-01-01

    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  15. Morphological kinetics and localized corrosion

    International Nuclear Information System (INIS)

    Santarini, G.

    1992-01-01

    A phenomenological modeling is proposed for physicochemical systems that evolve by initiation and growth of well distinct defects. It consists in a mathematical treatment of data on the evolution of defect distribution, which leads to the knowledge of evolution parameters ultimately usable for behaviour predictions. A method is given for calculating a validity parameter which quantifies the pertinence of the choice for analytical representations. An example of application to localized corrosion is given with the intergranular stress corrosion cracking of Alloy 600 in high temperature water. (Author). 6 refs

  16. A contribution to the question of stress-corrosion cracking of austenitic stainless steel cladding in nuclear power plants

    International Nuclear Information System (INIS)

    Kupka, I.; Mrkous, P.

    1977-01-01

    A brief review is presented of the basic types of corrosion damage (uniform corrosion, intergranular corrosion, stress corrosion) and their influence on operational safety are estimated. Corrosion cracking is analyzed of austenitic stainless steel cladding taking into account the adverse impact of coolant and stress (both operational and residual) in a light water reactor primary circuit. Experimental data are given of residual stresses in the stainless steel clad material, as well as their magnitude and distribution after cladding and heat treatment. (author)

  17. Method of Evaluating Hydrogen Embrittlement Susceptibility of Tempered Martensitic Steel Showing Intergranular Fracture

    Science.gov (United States)

    Matsumoto, Yu; Takai, Kenichi

    2018-02-01

    A stress application method in delayed fracture susceptibility tests was investigated using 1450 MPa class tempered martensitic steel. Its fracture mode under hydrogen charging was mainly intergranular because of its relatively small Si content of 0.21 mass pct. The conditions for consistency in fracture strength between tensile tests and constant load tests (CLTs) were clarified: first, to conduct hydrogen precharging before stress application; and second, to choose a sufficiently low crosshead speed in tensile tests. When hydrogen precharging was not conducted before CLTs, the fracture strength was higher than the values in CLTs with hydrogen charging and in tensile tests. If the crosshead speed was too high, the fracture strength obtained was higher than the values in CLTs. The dependence of the fracture strength on crosshead speed was seen for both notched and smooth bar specimens. These results suggested that plastic deformation, i.e., dislocation motion, was related to intergranular fracture with a tear pattern as well as to quasi-cleavage fracture. In addition, cathodic electrolysis in an alkaline solution containing NaOH should be used as the hydrogen charging method to avoid the effects of corrosion.

  18. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  19. High temperature and stress corrosion cracking of 310S austenitic stainless steel in wet chloride corrosive environment

    Directory of Open Access Journals (Sweden)

    T. Pornpibunsompop

    2018-01-01

    Full Text Available High temperature corrosion and stress corrosion cracking of 310S austenitic stainless steel in wet chloride environment at a high temperature was investigated. The result showed that high temperature corrosion products mostly consisted of ferrous oxides and chromium oxides. Chloride ions attacked a chromium passive film and strongly reacted with iron and chromium. As a result of metal chlorides being volatized, tunnel of pores inside corrosion layer existed. Intergranular stress corrosion cracking was observed. The oxide originated on surface could act as a crack initiator and a crack propagation would progress along grain boundaries and particularly along tunnel of pores.

  20. Overview of Intergranular Fracture of Neutron Irradiated Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Anna Hojná

    2017-09-01

    Full Text Available Austenitic stainless steels are normally ductile and exhibit deep dimples on fracture surfaces. These steels can, however, exhibit brittle intergranular fracture under some circumstances. The occurrence of intergranular fracture in the irradiated steels is briefly reviewed based on limited literature data. The data are sorted according to the irradiation temperature. Intergranular fracture may occur in association with a high irradiation temperature and void swelling. At low irradiation temperature, the steels can exhibit intergranular fracture at low or even at room temperatures during loading in air and in high temperature water (~300 °C. This paper deals with the similarities and differences for IG fractures and discusses the mechanisms involved. The intergranular fracture occurrence at low temperatures might be correlated with decohesion or twinning and strain martensite transformation in local narrow areas around grain boundaries. The possibility of a ductile-to-brittle transition is also discussed. In case of void swelling higher than 3%, quasi-cleavage at low temperature might be expected as a consequence of ductile-to-brittle fracture changes with temperature. Any existence of the change in fracture behavior in the steels of present thermal reactor internals with increasing irradiation dose should be clearly proven or disproven. Further studies to clarify the mechanism are recommended.

  1. Intergranular precipitation in aluminium-copper oriented bi-crystals

    International Nuclear Information System (INIS)

    Le Coze, Jean

    1972-01-01

    In the first part of this research thesis, the author addresses the fabrication of aluminium-copper oriented bi-crystals by discussing the specific problems raised by this fabrication, and by describing the aspect after a thermal treatment chosen to reach a defined objective: the visibility of precipitates in all grain boundaries, and a secondary role of kinetic parameters. The second part addresses the density of intergranular precipitates by reporting and commenting the results of precipitate numbering in symmetric and asymmetric boundaries performed by using optic microscopy. The third part addresses the dimensions and shapes of intergranular precipitates. The author there reports the study of the average dimensions of precipitates with respect to boundary nature. Some additional remarks are made regarding their shape and crystallographic nature. Numerical results are obtained from measurements performed on photographs of carbon replicates taken by using an electronic microscope. The author then reports the study of the width of the area of low precipitation density at the edge of boundaries. A copper assessment in the intergranular band is performed which shows the type of relationship which seems to exist between previously studied phenomena. Finally, the author reports the study of the relationship between boundary atomic structure and intergranular precipitation. A grain boundary model has been developed and allows a definition of intergranular germination sites to be obtained

  2. Intergranular area microalloyed aluminium-silicate ceramics fractal analysis

    Directory of Open Access Journals (Sweden)

    Purenović J.

    2013-01-01

    Full Text Available Porous aluminium-silicate ceramics, modified by alloying with magnesium and microalloying with alluminium belongs to a group of advanced multifunctional ceramics materials. This multiphase solid-solid system has predominantly amorphous microstructure and micro morphology. Intergranular and interphase areas are very complex, because they represent areas, where numbered processes and interactions take place, making new boundaries and regions with fractal nature. Fractal analysis of intergranular microstructure has included determination of ceramic grain fractal dimension by using Richardson method. Considering the fractal nature of intergranular contacts, it is possible to establish correlation between material electrical properties and fractal analysis, as a tool for future correlation with microstructure characterization. [Projekat Ministarstva nauke Republike Srbije, br. ON 172057 i br. III 45012

  3. Corrosion phenomenon of stainless steel in boiling nitric acid solution using large-scale mock-up of reduced pressurized evaporator

    International Nuclear Information System (INIS)

    Ueno, Fumiyoshi; Kato, Chiaki; Motooka, Takafumi; Ichikawa, Shiro; Yamamoto, Masahiro

    2008-01-01

    To evaluate the component life in a spent nuclear fuel reprocessing plant, a large-scale mock-up test apparatus of a reduced pressurized thermosiphon evaporator was constructed, and the corrosion mechanism of a heat transfer tube made of ultralow carbon type 304 stainless steel in boiling nitric acid solution was studied. The corrosion tests were conducted for about 36,000 h, and changes in the corrosion amount and rate in the test duration were discussed. The relationships between the amount of corrosion and tube surface temperature and heat flux were investigated, and the corrosion propagation mechanism considering intergranular penetration was studied based on the observations of morphologies of corrosion surfaces and the measurements of intergranular penetration depths. After a long duration, the increases in the corrosion amount and rate saturated when intergranular penetration and grain dropping occurred by turns. This result means that a linear estimation can be applied to the life prediction for corrosion. Three portions of the tube were observed, and the amounts of corrosion were different among the three portions, but no difference in the morphology of intergranular corrosion existed. The amount of corrosion was affected by both tube surface temperature and heat flux. A large amount of corrosion could be observed in both the boiling starting portion and the top, where high tube surface temperature and heat flux were observed. (author)

  4. Micromechanical Aspects of Transgranular and Intergranular Failure Competition

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Tarafder, M.; Hadraba, Hynek

    2011-01-01

    Roč. 465, - (2011), s. 399-402 ISSN 1013-9826 R&D Projects: GA ČR(CZ) GAP107/10/0361 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics

  5. A fractal model for intergranular fractures in nanocrystals

    International Nuclear Information System (INIS)

    Lung, C.W.; Xiong, L.Y.; Zhou, X.Z.

    1993-09-01

    A fractal model for intergranular fractures in nanocrystals is proposed to explain the dependence of fracture toughness with grain size in this range of scale. Based on positron annihilation and internal friction experimental results, we point out that the assumption of a constant grain boundary thickness in previous models is too simplified to be true. (author). 7 refs, 6 figs

  6. Micromechanics of creep fracture : Simulation of intergranular crack growth

    NARCIS (Netherlands)

    Onck, Patrick; Giessen, Erik van der

    1998-01-01

    A computational model is presented to analyze intergranular creep crack growth in a polycrystalline aggregate in a discrete manner and based directly on the underlying physical micromechanisms. A crack tip process zone is used in which grains and their grain boundaries are represented discretely,

  7. Corrosion in steam generators of PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Hyspecka, L.; Tvrdy, M.

    1988-01-01

    Problems are discussed of heat exchange tubes of Westinghouse type vertical steam generators exhibiting corrosion damage such as point corrosion, planar corrosion, tube denting, corrosion stress cracking, crevice corrosion, fretting corrosion and intergranular corrosion. Attention is also paid to problems of WWER-440 type horizontal steam generators, where the level fluctuation area is critical; noncompact porous deposits of the corrosion products give rise to crevice effects and cause significant concentration of chloride ions and other additions. This problem can be partly resolved by a modification of the collector design at the level variation area. An additional measure is the production of steel 08Kh18N10T with a very low level of harmful elements and inclusions. (Z.M.). 3 figs., 11 refs

  8. Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment

    Directory of Open Access Journals (Sweden)

    Zhongyu Cui

    2015-01-01

    Full Text Available Atmospheric corrosion behavior of 2A12 aluminum alloy exposed to a tropical marine environment for 4 years was investigated. Weight loss of 2A12 alloy in the log-log coordinates can be well fitted with two linear segments, attributing to the evolution of the corrosion products. EIS results indicate that the corrosion product layer formed on the specimens exposed for 12 months or longer presents a good barrier effect. Corrosion morphology changes from pitting corrosion to severe intergranular corrosion with the extension of exposure time, resulting in the reduction of the mechanical properties.

  9. Electrochemical noise measurements of steel corrosion in the molten NaCl-K2SO4 system

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2005-01-01

    -called active corrosion (i.e., the corrosion proceeds with no passivation due to the influence of chlorine), characterized by the formation of volatile metal chlorides as a primary corrosion product. It was found possible to obtain an empirical separation of general and intergranular corrosion using kurtosis (a...... on this basis. Approximate values of polarization resistances of AISI347 and 15Mo3 steels were determined to be 250 and 100 Omega cm(2), respectively....

  10. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  11. Stress corrosion of low alloy steel forgings

    International Nuclear Information System (INIS)

    Thornton, D.V.; Mould, P.B.; Patrick, E.C.

    1976-01-01

    The catastrophic failure of a steam turbine rotor disc at Hinkley Point 'A' Power station was shown to have been caused by the growth of a stress corrosion crack to critical dimensions. This failure has promoted great interest in the stress corrosion susceptibility of medium strength low alloy steel forgings in steam environments. Consequently, initiation and growth of stress corrosion cracks of typical disc steels have been investigated in steam and also in water at 95 0 C. Cracking has been shown to occur, predominantly in an intergranular manner, with growth rates of between 10 -9 and 10 -7 mm sec. -1 . It is observed that corrosion pitting and oxide penetration prior to the establishment of a stress corrosion crack in the plain samples. (author)

  12. Corrosion under stress of AISI 304 steel in thiocyanate solutions

    International Nuclear Information System (INIS)

    Perillo, P.M.; Duffo, G.S.

    1989-01-01

    Corrosion susceptibility under stress of AISI 304 steel sensitized in a sodium thiocyanate solution has been studied and results were compared with those obtained with solutions of thiosulfate and tetrathionate. Sensitized steel type 304 is highly susceptible to corrosion when under intergranular stress (IGSCC) in thiocyanate solutions but the aggressiveness of this anion is less than that of the other sulphur anions studied (thiosulfate and tetrathionate). This work has been partly carried out in the Chemistry Department. (Author) [es

  13. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  14. An overview of materials degradation by stress corrosion in PWRs

    International Nuclear Information System (INIS)

    Scott, P. M.

    2004-01-01

    The aging of water cooled and moderated nuclear steam supply systems has given rise to many material corrosion problems of which stress corrosion cracking has proved to be one of the most serious. The aim of this paper is to review some examples of corrosion and particularly stress corrosion problems from the author's experience of interpreting and modelling these phenomena in PWR systems. Examples of stress corrosion cracking in PWR systems described include the major issue of Alloy 600 intergranular cracking in primary PWR coolants, for which it is generally perceived that both adequate life prediction models and remedial measures now exist. Intergranular corrosion and stress corrosion cracking of Alloy 600 steam generator tubes that occur in occluded superheated crevices on the secondary side of steam generators due to hide-out and concentration of water borne impurities are also addressed. Rather less extensive or well known examples are discussed such as the stress corrosion cracking of carbon and low alloy steels and of stainless steels in occluded dead-leg situations where it is sometimes difficult to guarantee adequate control of water chemistry, particularly at plant start-up. Reference is also be made to the use of high strength fastener materials in PWR systems as well as to the emerging issue of the effect of high neutron doses on the stress corrosion resistance of core structural components fabricated from austenitic stainless steels. (authors)

  15. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  16. Solvent effects on stress corrosion cracking of zirconium and Zircaloy-4 in iodine

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    2000-01-01

    Localized corrosion (pitting, intergranular attack and stress corrosion cracking) of Zircaloy-4 and its principal component, zirconium, was investigated in solutions of iodine in different alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-octanol). Intergranular attack was found in all of the solutions tested, and the attack velocity increases when the size of the alcohol molecule decreases. In some cases it was found that intergranular attack is accompanied by pitting. Slow strain-rate experiments showed that the propagation rate of stress corrosion cracks also depends on the size of the solvent molecule. From these results it may be inferred that the cause of the variation in the velocity is the steric hindrance of the alcohol molecules. The surface mobility SCC mechanism may account for these results. (author)

  17. Corrosion of AA2024-T3 Part III: Propagation

    International Nuclear Information System (INIS)

    Glenn, A.M.; Muster, T.H.; Luo, C.; Zhou, X.; Thompson, G.E.; Boag, A.; Hughes, A.E.

    2011-01-01

    Research highlights: → Corrosion of AA2024 in 0.1 M NaCl was examined for immersion times up to 120 min. → Rings of corrosion product with H 2 evolution developed after 5 min immersion. → Intergranular attack penetrated up to 60 μm below the rings within 120 min. → After 240 min mixed intergranular attack and grain etchout were observed. - Abstract: Optical and electron microscopies and EBSD were used to study the early stages of corrosion propagation during stable pit formation on AA2024-T3. Polished AA2024-T3 developed large scale rings of corrosion product, typically a few hundred microns in diameter, within 2 h of exposure to 0.1 M NaCl at room temperature. These features were sectioned using diamond ultramicrotomy and substantial subsurface attack, in the form of intergranular corrosion was observed beneath these sites with virtually no grain etchout. A model is proposed for the mechanism of stable pit progression which involves extensive grain boundary attack, followed by grain etchout leading to open pit formation.

  18. Corrosion behavior of high purity Fe-Cr-Ni alloys in trans-passive condition

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Jyoji; Kako, Kenji

    1998-01-01

    The corrosion behavior of high-purity (99.99%) Fe-Cr-Ni alloys was investigated in 13 N nitric acid with/without Ce 4+ ions to clarify the effect of impurities on the trans-passive corrosion of stainless steel. The following results were obtained. (1) Almost no intergranular corrosion was observed in the high-purity alloys, although the corrosion rate of the matrix region was nearly the same as that of a commercial stainless steel with the same Cr and Ni content. (2) Due to the improved intergranular corrosion resistance, the effect of the purification became significant in the corrosion condition with the grain-separation being predominant. (3) The high-purity alloys showed higher susceptivility to intergranular corrosion with aging treatment between 873 K and 1073 K. Although the sulfuric acid/copper sulfate test suggested the formation of Cr-depleted zones, a grain boundary micro-analysis using a FETEM with an EDX did not reveal any change in Cr content or impurity segregain along the grain boundaries. The mechanism of corrosion enhancement resulting from the aging treatment remains nuclear. (author)

  19. Grain-boundary microchemistry and intergranular cracking of irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1993-01-01

    Constant-extension-rate tensile tests and grain-boundary analysis by Auger electron spectroscopy were conducted on high and commercial-purity (HP and CP) Type 304 stainless steel (SS) specimens from irradiated boiling-water reactor (BWR) components to identify the mechanisms of irradiation-assisted stress corrosion cracking (IASCC). Contrary to previous beliefs, susceptibility to intergranular fracture could not be correlated with radiation-induced segregation of impurities such as Si, P, C, or S, but a correlation was obtained with grain-boundary Cr concentration, indicating a role for Cr depletion. Detailed analysis of grain-boundary chemistry was conducted on BWR neutron absorber tubes that were fabricated from two similar heats of HP Type 304 SS of virtually identical bulk chemical composition but exhibiting a significant difference in susceptibility to IASCC after irradiation to ∼2 x 10 21 n/cm 2 (E > 1 MeV). Grain-boundary concentrations of Cr Ni, Si, P, S, and C of the cracking-resistant and -susceptible HP heats were virtually identical. However, grain boundaries of the cracking-resistant material contained less N and more B and Li than those of the cracking-susceptible material. This observation indicates that, besides the deleterious effect of grain-boundary Cr depletion, a synergism between grain-boundary segregation of N and B and transmutation to H and Li plays an important role in IASCC

  20. The intergranular segregation of boron in substoichiometric Ni/sub 3/Al

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, A.

    1987-12-01

    The intermetallic compound Ni/sub 3/Al offers promise as a material for high temperature applications. In addition to its unusual property of increasing strength with temperature (until approx.700/sup 0/C), it has excellent corrosion and oxidation resistance. Microalloying the alloy with boron has been shown to be dramatically effective in improving its inherent intergranular brittleness. This improvement results from the strong tendency of boron to segregate to the grain boundaries of Ni/sub 3/Al. This research deals with the study of the segregation behavior of boron. Auger electron spectroscopy was chosen as the technique adopted to study this segregation. The strong effect of segregant level on the grain boundary strength level can be controlled by thermal history variations and by variations in the level of solute in the bulk. Cathodic hydrogen charging was shown to be a potent tool in opening up other wise cohesive boundaries for analysis. The effective binding energy of boron at the grain boundaries of Ni/sub 3/Al was calculated from experimental data; it was found to vary between 0.2 and 0.45 eV. Kinetics of segregation have been investigated; the present set of kinetic studies were shown to be inadequate to find a diffusion coefficient and that temperatures lower than those studied here need to be used. As an associated investigation, a set of elemental standards were developed for the particular scanning Auger microprobe used in this study. 141 refs., 94 figs., 26 tabs.

  1. Evaluation of intergranular cracks on the ring header cross at Grand Gulf Unit No. 1

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1987-01-01

    A metallurgical investigation was performed on a sample of cracked ring header cross material from the Grand Gulf Unit No. 1 Nuclear Power Station. The cracks were located in a 6-7 in (15-17.5 cm) width band running circumferentially below the cross to cap weld with a similar band above the cross to discharger pipe weld. The indications were up to 19 mm in length and 6.0 mm in depth. This particular sample was cut from a cross which had not seen actual service but which had been used to qualify the induction heating stress improvement (IHSI) technique for the Grand Gulf units. The base material was SA 182 material manufactured to SA 403-type WP 304 stainless steel. The investigation consisted of visual/dye penetrant examination, chemical analysis, hardness testing, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy. The evaluated cracks were intergranular and initiated on the forging's exterior surface. The grain size of the material was larger than ASTM 00 and no definitive corrosive species were found by Energy Dispersive Spectroscopy (EDS). The cracking is considered to be the result of the forging having been overheated/burned during manufacture. (author)

  2. Effects of Grain Boundary Morphologies on Stress Corrosion Cracking of Alloy 600

    Directory of Open Access Journals (Sweden)

    Kim H.P.

    2017-06-01

    Full Text Available Effects of grain boundary morphologies on stress corrosion cracking (SCC of Alloy 600 have been studied in 40% NaOH at 315°C using C-ring specimens. The configuration of the grain boundary and the intergranular carbide density were controlled by heat treatment. SCC tests were performed at +150 mV above the corrosion potential. The specimen with a serrated grain boundary showed higher SCC resistance than that with a straight grain boundary. This appears to be caused by the fact that the specimen with the serrated grain boundary has longer SCC path. SCC resistance also increased with intergranular carbide density probably due to enhanced relaxation of stress at intergranular carbide.

  3. Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D. G.; ten Brink, Gert; Katgerman, L.

    2010-01-01

    Intergranular brittle fracture has been mainly observed and reported in steel alloys and precipitation hardened At-alloys where intergranular precipitates cover a major fraction of the grain boundary area. 7xxx series aluminum alloys suffer from this problem in the as-cast condition when brittle

  4. Some aspects of the role of intergranular fluids in the compositional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the nature of element exchange between two minerals via the mediation of an intergranular fluid. It is shown that a coupling of thermodynamics and kinetics controls the evolution of the system and the concentration of an element in the intergranular fluid is a key parameter of interest. The results have important implications ...

  5. Grain Boundary Segregation and Intergranular Fracture in Molybdenum

    Science.gov (United States)

    Kumar, A.; Eyre, B. L.

    1980-04-01

    The refractory group VIA metals generally exhibit intergranular brittleness when they are in the recrystallized condition. This causes severe problems in their fabrication and places major limitations on their practical application. The phenomenon, generally referred to as recrystallization embrittlement, results in large increases in the ductile-to-brittle transition temperature and a change in fracture mode in the lower shelf regime from cleavage to intergranular with a significant decrease in ductility. The embrittlement is widely considered to be associated with interstitial impurities but there have been few systematic studies to elucidate their effects. The present paper reports results from a systematic study of segregation and intergranular embrittlement in binary molybdenum-oxygen and ternary molybdenum-oxygen-carbon alloys. The experiments were carried out on 'bamboo' specimens containing a series of identical single grain boundaries traversing their cross-sections. Measurements have been made of the activation energy for oxygen segregation to grain boundaries in the binary molybdenum-oxygen alloys. The influence of carbon additions on the level of oxygen segregation has also been determined. In addition, the influence of oxygen segregation on the energy to fracture has been studied and this has involved quantitative measurements of the work of fracture and the contribution made by plastic deformation. Results from metallographic studies are also presented, showing the effects of segregation on fracture surface topography and dislocation structures immediately adjacent to the fracture surfaces. In discussing the results we consider the thermodynamics of oxygen segregation to grain boundaries and the role played by carbon in inhibiting segregation. It is proposed that carbon either increases the effective solubility of oxygen in molybdenum or acts as a trap for oxygen atoms. In either case the effect is to reduce the driving force for segregation. We also

  6. Radiolysis and corrosion aspects of the aqueous self-cooled blanket concept

    International Nuclear Information System (INIS)

    Bruggeman, A.; Snykers, M.; Bogaerts, W.F.; Waeben, R.; Embrechts, M.J.; Steiner, D.

    1989-01-01

    Corrosion and radiolysis aspects of the Aqueous Self-Cooled Blanket concept, proposed as a potential shielding breeding blanket for near term fusion devices and fusion reactors, have been investigated. On the basis of preliminary results for selected aqueous solutions of lithium compounds, no particular corrosion problems have been revealed for the low-temperature concept envisaged for NET and radiolysis effects might be controlled by appropriate countermeasures. For the reactor-relevant high-temperature concept particular attention has to be paid to intergranular stress-corrosion and to the synergistic radiolysis-corrosion effects. Further information is needed from tests performed in relevant operational conditions. (orig.)

  7. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    Science.gov (United States)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface, and intergranular corrosion does not take place. In the fuel salt with [U(IV)]/[U(III)] = 4-20 the potentials of uranium

  8. Amorphous intergranular phases control the properties of rodent tooth enamel

    Science.gov (United States)

    Gordon, Lyle M.; Cohen, Michael J.; MacRenaris, Keith W.; Pasteris, Jill D.; Seda, Takele; Joester, Derk

    2015-02-01

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg2+, F-, and CO32-. However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg2+ is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  9. Fracture statistics of brittle materials with intergranular cracks

    International Nuclear Information System (INIS)

    Batdorf, S.B.

    1975-01-01

    When brittle materials are used for structural purposes, the initial design must take their relatively large dispersion in fracture stress properly into account. This is difficult when failure probabilities must be extremely low, because empirically based statistical theories of fracture, such as that of Weibull, cannot reliably predict the stresses corresponding to failure probabilities much lower than n -1 , where n is the number of specimens tested. Recently McClintock proposed a rational method of predicting the size distribution of intergranular cracks. The method assumed that large cracks are random aggregations of cracked grain boundaries. The present paper employs this method to find the size distribution of penny-shaped cracks, and also P(f), the probability of failure of a specimen of volume V subjected to a tensile stress sigma. The present paper is a pioneering effort, which should be applicable to ceramics and related materials

  10. Weak Frictional Healing as Controlled by Intergranular Pressure Solution

    Science.gov (United States)

    He, C.

    2017-12-01

    Unstable fault slips due to velocity weakening requires a frictional healing effect that is stronger than the instantaneous rate effect. Based on a previous analytical result regarding the healing effect at spherical contacts by intergranular pressure solution (He et al., 2013), we extend the analysis to incorporate the full range of dilatancy angles from π/6 to -π/6, covering uphill and downhill situations of many contacts with different dilatancy angles. Assuming that both healing effect (parameter b) and instantaneous rate effect (parameter a) are controlled by intergranular pressure solution, and averaging over the whole range of dilatancy angle, our analysis derives each of the two effects as a function of temperature. The result shows velocity weakening for friction coefficient>0.274. As hydrothermal conditions are important for deep portion of actual fault zones, the strength of velocity weakening is of interest when the related faulting behavior is concerned. As a measure of the strength of velocity weakening, the derived ratio b/a fully controlled by pressure solution shows an upper bound of 1.22. Data analyses in previous studies on plagioclase (He et al., 2013) and oceanic basalt (Zhang and He, 2017) shows a range of b/a =1.05-1.2, consistent with the analytical result. The valuescontacts, especially under hydrothermal conditions in fault zones. For comparable ratios of system stiffness to the critical value, numerical simulations with a single-degree-of-freedom system show that a smaller b/a significantly reduces the peak slip velocity as a result of reduced period of free oscillation corresponding to the lower stiffness (Fig.1). This is an effect similar to that by reduced effective normal stress due to overpressure of pore fluid, which lowers the stiffness suitable for unstable slips, thus weakens the peak slip velocity.

  11. Stress Corrosion Cracking Behavior of Hardening-Treated 13Cr Stainless Steel

    Science.gov (United States)

    Niu, Li-Bin; Ishitake, Hisamitsu; Izumi, Sakae; Shiokawa, Kunio; Yamashita, Mitsuo; Sakai, Yoshihiro

    2018-03-01

    Stress corrosion cracking (SCC) behavior of the hardening-treated materials of 13Cr stainless steel was examined with SSRT tests and constant load tests. In the simulated geothermal water and even in the test water without addition of impurities, the hardening-treated materials showed a brittle intergranular fracture due to the sensitization, which was caused by the present hardening-treatments.

  12. Effect of carbide precipitation on the corrosion behavior of Inconel alloy 690

    International Nuclear Information System (INIS)

    Sarver, J.M.; Crum, J.R.; Mankins, W.L.

    1987-01-01

    Intergranular carbide precipitation reactions have been shown to affect the stress corrosion cracking (SCC) resistance of nickel-chromium-iron alloys in environments relative to nuclear steam generators. Carbon solubility curves, time-temperature-sensitization plots and other carbide precipitation data are presented for alloy 690 as an aid in developing heat treatments for improved SCC resistance

  13. The Role of Stress in the Corrosion Cracking of Aluminum Alloys

    Science.gov (United States)

    2013-03-01

    aluminium alloy in sodium chloride solution," Journal of Corrosion Science, vol. 65, pp. 387-396, 2012. [26] X. F. Liu et al. "The influence of tensile...circular pits around cathodic intermetallic particles, as listed in Table 1, a process generally referred to as “pitting.” When the chloride ions...grain boundaries acts as a catalyst prompting crack growth and subsequent intergranular corrosion cracking through anodic dissolution [4]. As chloride

  14. Corrosion fracture of bolts of nuclear power steam generators

    International Nuclear Information System (INIS)

    Hrivnak, I.

    1990-01-01

    Bolts connecting collector bodies with lids were the first components of steam generators at Czechoslovak WWER-440 units on which corrosion damage was observed in 1982 to 1983. Corrosion cracks developed particularly in the cylindrical parts of the bolts. This was due to intergranular corrosion caused by the unsuitable chemical composition of the steel used, by secondary water level fluctuations, by the surrounding environment of the bolts being unamenable to deaeration, as well as by inappropriate tightening of the bolts which gave rise to additional deformation stress. Steps were taken to eliminate all these drawbacks, and owing to this the corrosion cracking of the bolts was prevented for longer than 6 years. Cracks were observed again in 1989; they occurred then not only in the cylindrical parts but also in the thread parts of the bolts. The corrosion was again of intergranular nature. As yet, the cause of the corrosion cracking of the bolts is not unambiguously known. It is largely assumed that the material used, viz. the high-strength KhN35VT nickel alloy, is exceedingly sensitive to the working procedure and to stress. (Z.M.)

  15. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  16. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    International Nuclear Information System (INIS)

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-01-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here

  17. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    Energy Technology Data Exchange (ETDEWEB)

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  18. Intergranular crack propagation rates in sensitized Type 304 stainless steel in an oxygenated water environment

    International Nuclear Information System (INIS)

    Park, J.Y.; Shack, W.J.

    1983-01-01

    Intergranular stress-corrosion crack (IGSCC) propagation rates were measured in three heats of sensitized Type 304 stainless steel (SS) as a function of applied load and sensitization in high-purity water with 8 ppM. Active-loading tests yielded IGSCC propagation rates ranging from approx. 2 x 10 -10 to 1 x 10 -9 m/s (approx. 2 x 10 -5 to 2 x 10 -4 in./h) over the range of stress intensities from 25 to 46 MPa√m (22 to 41 ksi√in.). If the dependence of propagation rate on stress intensity is assumed to follow a power law, a least-squares fit of data yields (da/dt) = 1.23 x 10 -8 K 2 42 (in./h) for K in ksi√in. Deflection-controlled tests on standard 12.7-mm-thick compact tension specimens yielded IGSCC propagation rates from 7 x 10 -12 to 2 x 10 -10 m/s (10 -6 to 2 x 10 -5 in./h) at effective average stress intensities in the range 21 to 26 MPa√m (19 to 24 ksi√in.). Crack lengths were determined by compilance measurements using in-situ high-temperature clip gage or LVDT methods, optical metallography on the side faces of the specimen, and fractography of the cracked surface after completion of the tests. The optical metallography measurements did not provide useful estimates of crack lengths, because large variations in IGSCC propagation across the thickness of the specimens occurred. The effects of the degree of sensitization on the IGSCC propagation rate are obscured by the data scatter. However, it seems clear that these variables do not lead to order-of-magnitude changes in the crack propagation rate

  19. Investigation on the corrosion behavior of nuclear grade stainless cladding materials

    International Nuclear Information System (INIS)

    Qiu Shaoyu; Sun Danqi; Li Yanling; He Yanchun; Zheng Jian

    2002-01-01

    Tests of pitting corrosion and intergranular corrosion of two Chinese stainless cladding materials are carried out according to standards of GB4334.7-84 and French RCC-M MC1310. Under the water chemistry condition simulating pressurized water reactors (PWRs) coolant (temperature, 345 degree C; B,800 mg/L; Li,2 mg/L), their stress corrosion and uniform corrosion behaviors are studied. The results show that no stress corrosion cracking in U-shape samples is found and average static uniform corrosion rate is less than 2 mg/dm 2 after testing in high temperature borated water for 5000 h. Both of stainless cladding materials have better corrosion resistance

  20. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    International Nuclear Information System (INIS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-01-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  1. Stress corrosion cracking of Zircaloy-4 in non-aqueous iodine solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea V.

    2006-01-01

    In the present work the susceptibility to intergranular attack and stress corrosion cracking of Zircaloy-4 in different iodine alcoholic solutions was studied. The influence of different variables such as the molecular weight of the alcohols, the water content of the solutions, the alcohol type (primary, secondary or tertiary) and the temperature was evaluated. To determine the susceptibility to stress corrosion cracking the slow strain rate technique was used. Specimens of Zircaloy-4 were also exposed between 0.5 and 300 hours to the solutions without applied stress to evaluate the susceptibility to intergranular attack. The electrochemical behavior of the material in the corrosive media was studied by potentiodynamic polarization tests. It was determined that the active species responsible for the stress corrosion cracking of Zircaloy-4 in iodine alcoholic solutions is a molecular complex between the alcohol and iodine. The intergranular attack precedes the 'true' stress corrosion cracking phenomenon (which is associated to the transgranular propagation of the crack) and it is controlled by the diffusion of the active specie to the tip of the crack. Water acts as inhibitor to intergranular attack. Except for methanolic solutions, the minimum water content necessary to inhibit stress corrosion cracking was determined. This critical water content decreases when increasing the molecular weight of the alcohol. An explanation for this behavior is proposed. The susceptibility to stress corrosion cracking also depends on the type of the alcohol used as solvent. The temperature dependence of the crack propagation rate is in agreement with a thermal activated process, and the activation energy is consistent with a process controlled by the volume diffusion of the active species. (author) [es

  2. Atmospheric corrosion of uranium-carbon alloys

    International Nuclear Information System (INIS)

    Rousset, P.; Accary, A.

    1965-01-01

    The authors study the corrosion of uranium-carbon alloys having compositions close to that of the mono-carbide; they show that the extent of the observed corrosion effects increases with the water vapour content of the surrounding gas and they conclude that the atmospheric corrosion of these alloys is due essentially to the humidity of the air, the effect of the oxygen being very slight at room temperature. They show that the optimum conditions for preserving U-C alloys are either a vacuum or a perfectly dry argon atmosphere. The authors have also established that the type of corrosion involved is a corrosion which 'cracks under stress' and is transgranular (it can also be intergranular in the case of sub-stoichiometric alloys). They propose, finally, two hypotheses for explaining this mechanism, one of which is illustrated by the existence, at the fissure interface, of corrosion products which can play the role of 'corners' in the mono-carbide grains. (authors) [fr

  3. Chemistry and corrosion on steam generators in PWRs

    International Nuclear Information System (INIS)

    Berge, J.P.; Nordmann, F.

    1989-01-01

    After a review of the objectives of primary coolant chemistry, the reasons are given for the 'decaying lithium' specification and for its development to decrease dose rates while avoiding increasing the risks of primary side cracking of steam generator pipes. For conditioning secondary coolant, the choice of volatile conditioning (ammoniac or morpholine) and its characteristics are specified. The different types of corrosion of steam generators are discussed, particularly cracking under stress corrosion on the primary side and intergranular attack of the pipes on the secondary side; the associated remedies and consequences are also discussed. 8 figs., 3 tabs., 5 refs

  4. Aircraft Corrosion

    Science.gov (United States)

    1981-08-01

    transport anciens dont il a fallu remplacer les panneaux extrados en raison de is corrosion profonde des lisses. Ce type d’avion a etc mis en service h partir...as six years) where lavatories are placed above the lower section of the aft pressure dome bulkhead (fig.8)., corrosion Is found in the bulkhead web ...due to leakage of toilet fluids. One of the most severe corrosion ever found In this area was with the corrosion completely penetrated through the web

  5. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER)

    International Nuclear Information System (INIS)

    Matadamas C, N.

    1995-01-01

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H 3 BO 3 Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author)

  6. Imaging and thickness measurement of amorphous intergranular films using TEM

    International Nuclear Information System (INIS)

    MacLaren, I.

    2004-01-01

    Fresnel fringe analysis is shown to be unreliable for grain boundaries in yttrium-doped alumina: the determined thicknesses do not agree well with those measured from high resolution transmission electron microscopy (HRTEM), the asymmetry between under- and overfocus is very large, and Fresnel fringes are sometimes shown at boundaries which contain no amorphous film. An alternative approach to the analysis of HRTEM images of grain boundary films is demonstrated: Fourier filtering is used to remove the lattice fringes from the image thereby significantly enhancing the visibility of the intergranular films. The apparent film thickness shows a discrepancy between measurements from the original HRTEM image and the filtered image. It was shown that fringe delocalisation and diffuseness of the amorphous/crystalline interfaces will lead to a significant underestimate of the thickness in unprocessed HRTEM images. In contrast to this, the average thickness can be much more accurately measured from the Fourier-filtered image, provided the boundary is oriented accurately edge-on

  7. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  8. Pitting corrosion

    International Nuclear Information System (INIS)

    Allgaier, W.

    1985-01-01

    Pitting corrosion is a kind of electrolytic corrosion by which the surface of a material is locally affected owing to inhomogeneities on the part of the material or medium. The paper deals briefly with questions relating to the importance, to parameters medium or materialwise, influence on production and construction, as well as the general conditions for pitting corrosion. In particular oxygen corrosion in unalloyed and low-alloy steel, and pitting corrosion in ferritic chromium-steel and austenitic chromium-nickel (molybdenum) steel is described. (DG) [de

  9. Corrosion-fatigue lifetime of Aluminium–Copper–Lithium alloy 2050 in chloride solution

    OpenAIRE

    Guérin , Mathilde; Alexis , Joël; Andrieu , Eric; Blanc , Christine; Odemer , Grégory

    2015-01-01

    International audience; The fatigue behaviour of Aluminium–Copper–Lithium 2050 alloy under two metallurgical states (T34 and T84) was studied in air for healthy and pre-corroded samples in a 0.7 NaCl solution. The results were compared to those obtained during fatigue–corrosion tests performed in a similar chloride medium. Preliminary corrosion tests demonstrated that the T34 metallurgical state was susceptible to intergranular corrosion, while the T84 metallurgical state was susceptible to i...

  10. Contribution to surface physicochemical factors to stress corrosion resistance in stainless steels

    International Nuclear Information System (INIS)

    Gras, Jean-Marie

    1974-01-01

    The author of this research thesis first presents and discusses the various aspects of stress corrosion cracking of Fe-Cr-Ni alloys of high purity: experimental conditions (alloy elaboration, sample preparation), corrosion results (Schaeffer diagram, crack morphology, intergranular corrosion), influence of addition elements in ferritic alloys. He reports an electrochemical study of stainless steels in magnesium chloride (experimental conditions, influence of metallurgic and environmental parameters on polarization resistance, current-voltage curves), and an analytical study of layers formed in the magnesium chloride

  11. Corrosion deformation interaction during stress corrosion cracking of alloy 600 in primary water

    International Nuclear Information System (INIS)

    Boursier, J.M.; Noel, D.; Rios, R.; Vaillant, F.; Magnin, T.

    1993-12-01

    In order to study the mechanisms involved in the SCC of Alloy 600 in primary water, the influence of chemical and microstructural parameters was assessed. Recent fractographic examinations performed on fracture surfaces of specimens are presented together with the influence of the environment on the creep rate to the nickel-base alloy. These results lead to the conclusion that intergranular stress corrosion cracking (IGSCC) of Alloy 600 could result from a cleavage-cracking mechanism involving interactions between dissolution/hydrogen adsorption and plasticity. (authors). 20 refs., 10 figs., 5 tabs

  12. Influence of sulfide concentration on the corrosion behavior of pure copper in synthetic seawater

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawasaki, Manabu

    2008-01-01

    Corrosion rate and stress corrosion cracking (SCC) behavior of pure copper under anaerobic conditions were studied by immersion tests and slow strain rate tests (SSRT) in synthetic seawater containing Na 2 S. The corrosion rate was increased with sulfide concentration both in simple saline solution and in bentnite-sand mixture. The results of SSRT showed that copper was susceptible to intergranular attack; selective dissolution at lower sulfide concentration (less than 0.005 M) and SCC at higher sulfide concentration (0.01 M). It was expected that if the sulfide concentration in groundwater is less than 0.001 M, pure copper is possible to exhibit superior corrosion resistance under anaerobic condition evident by very low corrosion rates and immunity to SCC. In such a low sulfide environment, copper overpack has the potential to achieve super-long lifetimes exceeding several tens of thousands years according to long-term simulations of corrosion based on diffusion of sulfide in buffer material

  13. Influence of surface treatments on corrosion resistance of stainless steels. Residual stresses in metals

    International Nuclear Information System (INIS)

    Berge, J. Philippe

    1968-05-01

    In a first part, this research thesis proposes presentation of the definition of a surface condition: chemical characteristics such as passivity and contamination, physical characteristics (obtained through micrographic methods, X ray diffusion, magnetic methods), and micro-geometrical characteristics. The author notably discusses the measurement of characteristics either by appropriate conventional methods or by an original method in the case of passivity. In a second part, the author reports the study of the influence of surface condition on different types of corrosion of stainless steels in chemical environments (corrosion in sulphuric acid, intergranular corrosion, stress corrosion cracking in magnesium chloride, pitting corrosion) and of high temperature oxidation (corrosion in pressurized water, oxidation in dry vapour or in carbon dioxide)

  14. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  15. Analitical electron mycroscopy (AEM) investigations of primary water stress corrosion cracking (SCC) in nickel alloys

    International Nuclear Information System (INIS)

    Fish, J.S.; Perry, D.J.; Lewis, N.; Thompson, C.D.; Yang, W.J.S.

    1997-08-01

    The microstructure of nickel alloys, particularly the grain boundary composition and intergranular precipitates, plays an important role in high temperature primary water stress corrosion cracking (SCC) performance. Analytical electron microscopy (AEM) was used to examine SCC cracks in Alloys 600 and X-750 to investigate the role of grain boundary precipitates, dislocations and oxides in primary water SCC (PWSCC). Analysis of oxides by AEM and ESCA/Auger indicates that the crack tip oxides are different than the oxides formed on the outer surfaces. Comparison of heats with good and poor SCC resistance has identified metallurgical features that affect cracking. These AEM results show that the mechanism of PWSCC in nickel-base alloys does not involve void formation or blunting of the crack tip near intergranular carbides. The role of grain boundary composition, the interaction of cracks with carbides and other intergranular precipitates, and observations from AEM examinations ahead of the crack tip are discussed in relation to the mechanism of SCC

  16. Corrosion protection

    Science.gov (United States)

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  17. Irradiation-assisted stress corrosion cracking of austenitic alloys

    International Nuclear Information System (INIS)

    Was, G.S.; Atzmon, M.

    1991-01-01

    An experimental program has been conducted to determine the mechanism of irradiation-assisted stress-corrosion cracking (IASCC) in austenitic stainless steel. High-energy protons have been used to produce grain boundary segregation and microstructural damage in samples of controlled impurity content. The densities of network dislocations and dislocation loops were determined by transmission electron microscopy and found to resemble those for neutron irradiation under LWR conditions. Grain boundary compositions were determined by in situ fracture and Auger spectroscopy, as well as by scanning transmission electron microscopy. Cr depletion and Ni segregation were observed in all irradiated samples, with the degree of segregation depending on the type and amount of impurities present. P, and to a lesser extent P, impurities were observed to segregate to the grain boundaries. Irradiation was found to increase the susceptibility of ultra-high-purity (UHP), and to a much lesser extent of UHP+P and UHP+S, alloys to intergranular SCC in 288 degree C water at 2 ppm O 2 and 0.5 μS/cm. No intergranular fracture was observed in arcon atmosphere, indicating the important role of corrosion in the embrittlement of irradiated samples. The absence of intergranular fracture in 288 degree C argon and room temperature tests also suggest that the embrittlement is not caused by hydrogen introduced by irradiation. Contrary to common belief, the presence of P impurities led to a significant improvement in IASCC over the ultrahigh purity alloy

  18. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    International Nuclear Information System (INIS)

    Wagner, J.N.; Hofmann, M.; Wimpory, R.; Krempaszky, C.; Stockinger, M.

    2014-01-01

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given

  19. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2014-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., generating defects in materials of major components and fuel claddings, increasing shutdown radiation and increasing the volume of radwaste sources. Corrosion behaviors are much affected by water qualities and differ according to the values of water qualities and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of key issues that determine corrosion related problems but it is not the only issue. Most phenomena for corrosion related problems, e.g., flow-accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. In the paper, theoretical models based on electrochemistry to estimate wall thinning rate of carbon steel piping due to flow-accelerated corrosion and corrosive conditions determining IGSCC crack initiation and growth rate are introduced. (author)

  20. Corrosion of nickel and stainless steels in concentrated lithium hydroxide solutions

    International Nuclear Information System (INIS)

    Graydon, J.W.; Kirk, D.W.

    1990-06-01

    The corrosion behaviour of four alloys in 3 and 5 mol/L lithium hydroxide solutions under a hydrogen atmosphere at 95 degrees C was investigated. Corrosion of Nickel 200 and the stainless steels 316, 316L, and E-Brite 26-1 was assessed in two sets of immersion tests lasting 10 and 136 days. Corrosion rates were determined by weight loss, susceptibility to stress corrosion cracking was evaluated using U-bends, and the details of the corrosion process were studied on specimens with a mirror finish using light and electron microscopy, x-ray spectrometry and mapping, and x-ray diffraction. The long term corrosion rates were low for all alloys ( 2 , β-LiFeO 2 , and a very iron-rich β-LiFe 5 0 8 . The passivating layer on the nickel was Ni(OH) 2 . The underlying metal corroded evenly except for the 316 stainless steels. These showed a uniform intergranular corrosion with minor drop-out of smaller grains likely because of segregation of impurities to the grain boundaries. The walls of these intergranular crevices were covered with a passivating layer of chromium oxide. (8 figs., 5 tabs., 11 refs.)

  1. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  2. Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, I. [North Carolina State Univ., Raleigh, NC (United States); Zikry, M.A. [North Carolina State Univ., Raleigh, NC (United States); Ziaei, S. [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.

  3. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening

    International Nuclear Information System (INIS)

    Lu Guanghong; Zhang Ying; Deng Shenghua; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi; Liu Feng; Horikawa, Keitaro; Kanno, Motohiro

    2006-01-01

    Using a first-principles computational tensile test, we show that the ideal tensile strength of an Al grain boundary (GB) is reduced with both Na and Ca GB segregation. We demonstrate that the fracture occurs in the GB interface, dominated by the break of the interfacial bonds. Experimentally, we further show that the presence of Na or Ca impurity, which causes intergranular fracture, reduces the ultimate tensile strength when embrittlement occurs. These results suggest that the Na/Ca-induced intergranular embrittlement of an Al alloy originates mainly from the GB weakening due to the Na/Ca segregation

  4. Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, R.S., E-mail: rsdutta@barc.gov.i [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2009-09-01

    This paper reviews corrosion related issues of Ni-Cr-Fe based (in a general sense) and Ni-Cu based steam generator tube materials for nuclear power plants those have been dealt with for last more than four decades along with some updated information on corrosion research. The materials include austenitic stainless steels (SSs), Alloy 600, Monel 400, Alloy 800 and Alloy 690. Compatibility related issues of these alloys are briefly discussed along with the alloy chemistry and microstructure. For austenitic SSs, stress corrosion cracking (SCC) behaviour in high temperature aqueous environments is discussed. For Alloy 600, intergranular cracking in high temperature water including hydrogen-induced intergranular cracking is highlighted along with the interactions of material in various environments. In case of Monel 400, intergranular corrosion and pitting corrosion at ambient temperature and SCC behaviour at elevated temperature are briefly described. For Alloy 800, the discussion covers SCC behaviour, surface characterization and microstructural aspects of pitting, whereas hydrogen-related issues are also highlighted for Alloy 690.

  5. Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials

    International Nuclear Information System (INIS)

    Dutta, R.S.

    2009-01-01

    This paper reviews corrosion related issues of Ni-Cr-Fe based (in a general sense) and Ni-Cu based steam generator tube materials for nuclear power plants those have been dealt with for last more than four decades along with some updated information on corrosion research. The materials include austenitic stainless steels (SSs), Alloy 600, Monel 400, Alloy 800 and Alloy 690. Compatibility related issues of these alloys are briefly discussed along with the alloy chemistry and microstructure. For austenitic SSs, stress corrosion cracking (SCC) behaviour in high temperature aqueous environments is discussed. For Alloy 600, intergranular cracking in high temperature water including hydrogen-induced intergranular cracking is highlighted along with the interactions of material in various environments. In case of Monel 400, intergranular corrosion and pitting corrosion at ambient temperature and SCC behaviour at elevated temperature are briefly described. For Alloy 800, the discussion covers SCC behaviour, surface characterization and microstructural aspects of pitting, whereas hydrogen-related issues are also highlighted for Alloy 690.

  6. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  7. Effect of water impurities on stress corrosion cracking in a boiling water reactor

    International Nuclear Information System (INIS)

    Ljungbery, L.G.; Cubicciotti, D

    1985-01-01

    A series of stress corrosion tests, including corrosion potential and water chemistry measurements, has been performed in the Swedish Ringhals-1 boiling water reactor. Tests have been run under reactor start-up and reactor power operation with normal reactor water conditions and with alternate water chemistry in which hydrogen is added to the feedwater to suppress stress corrosion cracking. During one alternate water chemistry test, there was significant intergranular corrosion cracking of sensitized stainless specimens. It is shown that nitrate and sulfate, arising from an accidental resin intrusion, are likely causes. Nitrate increases the oxidizing power of the water, and sulfate enhances cracking under oxidizing conditions. During another test under start-up conditions, enhanced transgranular stress corrosion cracking in low alloy steels and possibly initiation of cracking in a nickel base alloy was observed as a result of resin intrusion into the reactor water. The intrusion produced acid and sulfate, which are believed to enhance hydrogen cracking conditions

  8. Influence of microstructure in corrosion behavior of an Inconel 600 commercial alloy in 0.1 M sodium thiosulfate solution

    International Nuclear Information System (INIS)

    Granados, J.; Rodriguez, F.J.; Arganis, C.

    1999-01-01

    The Inconel 600 is used in diverse components of BWR and PWR type reactors, where diverse cases of intergranular stress corrosion have been presented. It has been reported susceptibility to the corrosion of this alloy, in presence of thiosulfates, which come from the degradation of the ion exchange resins of water treatments that use the reactors. The objective of this work is to study the influence of metallurgical condition in the corrosion velocity of Inconel 600 commercial alloy, in a 0.1 M thiosulfates solution. (Author)

  9. Intergranular pressure solution in halite aggregates and quartz sands : an experimental investigation

    NARCIS (Netherlands)

    Schutjens, P.M.T.M.

    1991-01-01

    This thesis reports an experimental investigation into intergranular pressure solution (IPS) as a compaction mechanism in wet (i.e. brine-saturated) halite aggregates and wet quartz sands. The aims were to determine the compaction behaviour under conditions favouring IPS, to clarify the

  10. Intergranular pressure solution in halite aggregates and quartz sands : an experimental investigation

    NARCIS (Netherlands)

    Schutjens, P.M.T.M.

    1991-01-01

    This thesis reports an experimental investigation into intergranular pressure solution (IPS) as a compaction mechanism in wet (i.e. brine-saturated) halite aggregates and wet quartz sands. The aims were to determine the compaction behaviour under conditions favouring IPS, to clarify the underlying

  11. Conversion of transgranular to intergranular fracture in NiCr steels

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Němec, O.; Dlouhý, Ivo

    2008-01-01

    Roč. 75, č. 12 (2008), s. 3677-3691 ISSN 0013-7944 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness * fracture stress * micromechanics * micromechanism * fractal dimension Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  12. Height-dependent Velocity Structure of Photospheric Convection in Granules and Intergranular Lanes with Hinode /SOT

    Energy Technology Data Exchange (ETDEWEB)

    Oba, T. [Department of Space and Astronautical Science/SOKENDAI (The Graduate University for Advanced Studies), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Iida, Y. [Department of Science and Technology/Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337 (Japan); Shimizu, T., E-mail: oba.takayoshi@ac.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2017-02-10

    The solar photosphere is the visible surface of the Sun, where many bright granules, surrounded by narrow dark intergranular lanes, are observed everywhere. The granular pattern is a manifestation of convective motion at the photospheric level, but its velocity structure in the height direction is poorly understood observationally. Applying bisector analysis to a photospheric spectral line recorded by the Hinode Solar Optical Telescope, we derived the velocity structure of the convective motion in granular regions and intergranular lanes separately. The amplitude of motion of the convective material decreases from 0.65 to 0.40 km s{sup −1} as the material rises in granules, whereas the amplitude of motion increases from 0.30 to 0.50 km s{sup −1} as it descends in intergranular lanes. These values are significantly larger than those obtained in previous studies using bisector analysis. The acceleration of descending materials with depth is not predicted from the convectively stable condition in a stratified atmosphere. Such convective instability can be developed more efficiently by radiative cooling and/or a gas pressure gradient, which can control the dynamical behavior of convective material in intergranular lanes. Our analysis demonstrated that bisector analysis is a useful method for investigating the long-term dynamic behavior of convective material when a large number of pixels is available. In addition, one example is the temporal evolution of granular fragmentation, in which downflowing material develops gradually from a higher layer downward.

  13. Coupling crevice chemistry with a corrosion model in laboratory: A first application to the analysis of secondary side corrosion in service

    International Nuclear Information System (INIS)

    Pavageau, E.M.; Vaillant, D.; Dimpre, S.; Bouchacourt, M.; Millet, L.

    2002-01-01

    Secondary side corrosion of tubes in Alloy 600 develops in flow-restricted areas between tubes and tubesheet or tube support plates since pollutants of the secondary water can concentrate under heat flux. So EDF has undertaken an important effort of modeling the degradation (intergranular attack IGA and intergranular stress corrosion cracking IGSCC). Three models of corrosion are available or under development depending on the type of crevice environment that could be deduced from the analysis of secondary water and from pulled tube examinations: the first one in strongly alkaline environments (sodium hydroxide environments), the second one in sulfate environments, sulfate being one of the main species analyzed in water after hideout return, the third one in complex environments that could duplicate the deposits, films and degradation observed on pulled tubes. The crevice chemistry during operation was first evaluated using analyses of secondary water after hideout return and the MULTEQ code. The local chemical conditions were introduced into the corrosion model generated in laboratory and gave results which were compared to field experience. Encouraging results were found with the sodium hydroxide model for some of the old French plant units in the early period of operation. A similar approach is under investigation with the sulfate corrosion model for the entire time of operation and for the other plant units. (authors)

  14. Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw; Chang, Chi-Hung; Kai, Ji-Jung

    2014-03-15

    Highlights: •Corrosion behaviors of Hastelloy-N and -B3 in molten FLiNaK salt at 700 °C. •The alleviated corrosion rate of alloys was observed after long-hour immersion. •Long-term corrosion rate was limited by diffusion from matrix to alloy surface. •Corrosion pattern transferred from intergranular corrosion into general corrosion. •Presence of minor H{sub 2}O did not greatly influence the long-term corrosion behavior. -- Abstract: This study investigated long-term corrosion behaviors of Ni-based Hastelloy-N and Hastelloy-B3 under moisture-containing molten alkali fluoride salt (LiF–NaF–KF: 46.5–11.5–42%) environment at an ambient temperature of 700 °C. The Hastelloy-N and Hastelloy-B3 experienced similar weight losses for tested duration of 100–1000 h, which was caused by aggregate dissolution of Cr and Mo into FLiNaK salts. The corrosion rate of both alloys was high initially, but then reduced during the course of the test. The alleviated corrosion rate was due to the depletion of Cr and Mo near surface of the alloys and thus the long-term corrosion rate was controlled by diffusion of Cr and Mo outward to the alloy surface. The results of microstructural characterization revealed that the corrosion pattern for both alloys tended to be intergranular corrosion at early stage of corrosion test, and then transferred to general corrosion for longer immersion hours.

  15. Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments

    International Nuclear Information System (INIS)

    Ouyang, Fan-Yi; Chang, Chi-Hung; Kai, Ji-Jung

    2014-01-01

    Highlights: •Corrosion behaviors of Hastelloy-N and -B3 in molten FLiNaK salt at 700 °C. •The alleviated corrosion rate of alloys was observed after long-hour immersion. •Long-term corrosion rate was limited by diffusion from matrix to alloy surface. •Corrosion pattern transferred from intergranular corrosion into general corrosion. •Presence of minor H 2 O did not greatly influence the long-term corrosion behavior. -- Abstract: This study investigated long-term corrosion behaviors of Ni-based Hastelloy-N and Hastelloy-B3 under moisture-containing molten alkali fluoride salt (LiF–NaF–KF: 46.5–11.5–42%) environment at an ambient temperature of 700 °C. The Hastelloy-N and Hastelloy-B3 experienced similar weight losses for tested duration of 100–1000 h, which was caused by aggregate dissolution of Cr and Mo into FLiNaK salts. The corrosion rate of both alloys was high initially, but then reduced during the course of the test. The alleviated corrosion rate was due to the depletion of Cr and Mo near surface of the alloys and thus the long-term corrosion rate was controlled by diffusion of Cr and Mo outward to the alloy surface. The results of microstructural characterization revealed that the corrosion pattern for both alloys tended to be intergranular corrosion at early stage of corrosion test, and then transferred to general corrosion for longer immersion hours

  16. Ontario Hydro studies on copper corrosion under waste disposal conditions

    International Nuclear Information System (INIS)

    Lam, K.W.

    1990-01-01

    The corrosion rate of copper is generally greater in aerated solutions containing sulphide; also, in the presence of sulphide there is the fear that pitting may occur. Experiments have been carried out to study the corrosion of copper in deaerated groundwater/bentonite slurries with and without added sulphide for exposure periods from two months to one year. The groundwater contains 6500 ppm of chloride and 1000 ppm of sulphate. Tests were also performed in the presence of a 150 rad/h radiation field. In deaerated slurries at 75C the corrosion rate is less than 2 μm/a. With one addition of 10 mg/l sulphide, the rate increases by a factor of ten. With daily sulphide additions to deaerated solutions the corrosion rate initially falls but then rises and stabilizes after 15 days. In aerated solutions the corrosion increases over the first 25 days and then stabilizes. The corrosion rate of copper reached a steady value in 15 to 30 days. Rates are higher in aerated solutions, but the effect of adding sulphide is not so marked in aerated solutions as in unaerated solutions. The highest corrosion rate, less than 150 μm/a, was observed in aerated slurries saturated with sulphide. For deaerated solutions in the absence of sulphide the corrosion rate increases with temperature, but in aerated solutions the rate decreases. For solutions containing added sulphide the influence of temperature is negligible. The effect of a radiation field may be beneficial; in the presence of a radiation field the corrosion rate is less than 20 μm/a. After descaling the coupons showed a high density of irregularly shaped pits both in the presence and absence of sulphide, resulting from intergranular attack. The pitting factor for the highest corrosion rate is around 15

  17. Corrosion of structural materials and electrochemistry in high temperature water of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke

    2008-01-01

    The latest experiences with corrosion in the cooling systems of nuclear power plants are reviewed. High temperature cooling water causes corrosion of structural materials, which often leads to adverse effects in the plants, e.g., increased shutdown radiation, generation of defects in materials of major components and fuel claddings, and increased volume of radwaste sources. Corrosion behavior is greatly affected by water quality and differs according to the water quality values and the materials themselves. In order to establish reliable operation, each plant requires its own unique optimal water chemistry control based on careful consideration of its system, materials and operational history. Electrochemistry is one of the key issues that determine corrosion-related problems, but it is not the only issue. Most corrosion-related phenomena, e.g., flow accelerated corrosion (FAC), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC) and thinning of fuel cladding materials, can be understood based on an electrochemical index, e.g., the electrochemical corrosion potential (ECP), conductivities and pH. The most important electrochemical index, the ECP, can be measured at elevated temperature and applied to in situ sensors of corrosion conditions to detect anomalous conditions of structural materials at their very early stages. (orig.)

  18. Stress corrosion cracking behavior of Nd:YAG laser-treated aluminum alloy 7075

    International Nuclear Information System (INIS)

    Yue, T.M.; Yan, L.J.; Chan, C.P.

    2006-01-01

    Nd-YAG laser surface treatment was conducted on 7075-T651 aluminum alloy with the aim of improving the stress corrosion cracking resistance of the alloy. Laser surface treatment was performed under two different gas environments, air and nitrogen. After the laser treatment, coarse constituent particles were removed and fine cellular/dendritic structures had formed. In addition, for the N 2 -treated specimen, an AlN phase was detected. The results of the stress corrosion test showed that after 30 days of immersion, the untreated specimen had been severely attacked by corrosion, with intergranular cracks having formed along the planar grain boundaries of the specimen. For the air-treated specimen, some relatively long stress corrosion cracks and a small number of relatively large corrosion pits were found. The cracks mainly followed the interdendritic boundaries; the fusion boundary was found to be acting as an arrestor to corrosion attacks. In contrast, only few short stress corrosion cracks appeared in the N 2 -treated specimen, indicating an improvement in corrosion initiation resistance. The superior corrosion resistance was attributed to the formation of the AlN phase in the surface of the laser-melted layer, which is an electrical insulator. The electrochemical impedance measurements taken during the stress corrosion test showed that the film resistance of the laser-treated specimens was always higher than that of the untreated specimen, with the N 2 -treated specimen showing the highest resistance

  19. A study on the corrosion test of equipment material handling hot molten salt

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Jeong, M.S.; Hong, S.S.; Cho, S.H.; Shin, Y.J.; Park, H.S.; Zhang, J.S.

    1999-02-01

    On this technical report, corrosion behavior of austenitic stainless steels of SUS 316L and SUS 304L in molten salt of LiCl-Li 2 O has been investigated in the temperature range of 650 - 850 dg C. Corrosion products of SUS 316L in molten salt consisted of two layers, an outer layer of LiCrO 2 and inner layer of Cr 2 O 3 .The corrosion layer was uniform in molten salt of LiCl, but the intergranular corrosion occurred in addition to the uniform corrosion in mixed molten salt of LiCl-Li 2 O. The corrosion rate increased slowly with the increase of temperature up to 750 dg C, but above 750 dg C rapid increase in corrosion rate observed. SUS 316L stainless steel showed slower corrosion rate and higher activation energy for corrosion than SUS 304L, exhibiting higher corrosion resistance in the molten salt. In heat-resistant alloy, dense protective oxide scale of LiCrO 2 was formed in molten salt of LiCl. Whereas in mixed molten salt of LiCl-Li 2 O, porous non-protective scale of Li(Cr, Ni, Fe)O 2 was formed. (Author). 44 refs., 4 tabs., 16 figs

  20. The role of time-dependent deformation in intergranular crack initiation of alloy 600 steam generator tubing material

    International Nuclear Information System (INIS)

    Was, G.S.; Lian, K.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) of two commercial alloy 600 conditions (600LT, 600HT) and controlled- purity Ni-18Cr-9Fe alloys (CDMA, CDTT) were investigated using constant extension rate tensile (CERT) tests in primary water (0.01M LiOH+0.01M H 3 BO 3 ) with 1 bar hydrogen overpressure at 360 degrees C and 320 degrees C. Heat treatments produced two types of microstructures in both commercial and controlled-purity alloys: one dominated by grain boundary carbides (600HT and CDTT) and one dominated by intragranular carbides (600LT and CDMA). CERT tests were conducted over a range of strain rates and at two temperatures with interruptions at specific strains to determine the crack depth distributions. Results show that in all samples, IGSCC was the dominant failure mode. For both the commercial alloy and the controlled-purity alloys, the microstructure with grain boundary carbides showed delayed crack initiation and shallower crack depths than did the intragranular carbide microstructure under all experimental conditions. This data indicates that a grain boundary carbide microstructure is more resistant to IGSCC than an intragranular carbide microstructure. Observations support both the film rupture/slip dissolution mechanism and enhanced localized plasticity. The advantage of these results over previous studies is that the different carbide distributions were obtained in the same commercial alloy using different heat treatments, and in the other case, in nearly identical controlled-purity alloys. Therefore, observations of the effects of carbide distribution on IGSCC can more confidently be attributed to the carbide distribution alone rather than other potentially significant differences in microstructure or composition

  1. The role of time-dependent deformation in intergranular crack initiation of alloy 600 steam generator tubing material

    Energy Technology Data Exchange (ETDEWEB)

    Was, G.S.; Lian, K.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) of two commercial alloy 600 conditions (600LT, 600HT) and controlled- purity Ni-18Cr-9Fe alloys (CDMA, CDTT) were investigated using constant extension rate tensile (CERT) tests in primary water (0.01M LiOH+0.01M H{sub 3}BO{sub 3}) with 1 bar hydrogen overpressure at 360{degrees}C and 320{degrees}C. Heat treatments produced two types of microstructures in both commercial and controlled-purity alloys: one dominated by grain boundary carbides (600HT and CDTT) and one dominated by intragranular carbides (600LT and CDMA). CERT tests were conducted over a range of strain rates and at two temperatures with interruptions at specific strains to determine the crack depth distributions. Results show that in all samples, IGSCC was the dominant failure mode. For both the commercial alloy and the controlled-purity alloys, the microstructure with grain boundary carbides showed delayed crack initiation and shallower crack depths than did the intragranular carbide microstructure under all experimental conditions. This data indicates that a grain boundary carbide microstructure is more resistant to IGSCC than an intragranular carbide microstructure. Observations support both the film rupture/slip dissolution mechanism and enhanced localized plasticity. The advantage of these results over previous studies is that the different carbide distributions were obtained in the same commercial alloy using different heat treatments, and in the other case, in nearly identical controlled-purity alloys. Therefore, observations of the effects of carbide distribution on IGSCC can more confidently be attributed to the carbide distribution alone rather than other potentially significant differences in microstructure or composition.

  2. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    2012-02-01

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  3. Exfoliation Corrosion and Pitting Corrosion and Their Role in Fatigue Predictive Modeling: State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    David W. Hoeppner

    2012-01-01

    Full Text Available Intergranular attack (IG and exfoliation corrosion (EC have a detrimental impact on the structural integrity of aircraft structures of all types. Understanding the mechanisms and methods for dealing with these processes and with corrosion in general has been and is critical to the safety of critical components of aircraft. Discussion of cases where IG attack and exfoliation caused issues in structural integrity in aircraft in operational fleets is presented herein along with a much more detailed presentation of the issues involved in dealing with corrosion of aircraft. Issues of corrosion and fatigue related to the structural integrity of aging aircraft are introduced herein. Mechanisms of pitting nucleation are discussed which include adsorption-induced, ion migration-penetration, and chemicomechanical film breakdown theories. In addition, pitting corrosion (PC fatigue models are presented as well as a critical assessment of their application to aircraft structures and materials. Finally environmental effects on short crack behavior of materials are discussed, and a compilation of definitions related to corrosion and fatigue are presented.

  4. Magnetic properties, microstructure and corrosion behavior of (Pr,nd)12.6Fe81.3B6.1-type sintered magnets doped with (Pr,nd)30Fe62Ga8

    Science.gov (United States)

    Ni, Junjie; Zhang, Zhenyu; Liu, Ying; Jia, Zhengfeng; Huang, Baoxu; Yin, Yibin

    2016-10-01

    NdFeB sintered magnets with (Pr,Nd)30Fe62Ga8 were prepared by a binary powder blending method and their magnetic properties, microstructure and corrosion behavior were investigated. Addition of 3 wt% (Pr,Nd)30Fe62Ga8 was found to be the most effective for improving (BH)max and iHc of the magnets. The increase in both magnetic parameters was related to the alteration in microstructure. However, in other samples the occurrence of micropore and the aggregation of intergranular phases harmed the magnetic properties. Such disadvantageous microstructure features also caused higher corrosion current density, thus decreasing the corrosion resistance of the sample with higher additive content. In addition, the Ga-containing intergranular phases that are more stable than the (Pr,Nd)-rich phase formed in the additive doped magnets, leading to better corrosion resistance of the 3 wt% additives doped sample in comparison with the contrastive sample.

  5. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage

    International Nuclear Information System (INIS)

    Auzoux, Q.

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  6. Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach

    Science.gov (United States)

    Upadhyay, M. V.; Capek, J.; Van Petegem, S.; Lebensohn, R. A.; Van Swygenhoven, H.

    2017-05-01

    Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.

  7. Atomistic simulations on intergranular fracture toughness of copper bicrystals with symmetric tilt grain boundaries

    Science.gov (United States)

    Cui, Cheng Bin; Beom, Hyeon Gyu

    2018-01-01

    The intergranular fracture toughness of Cu bicrystals with symmetric tilt grain boundaries was investigated using atomistic simulations. Mode I fracture of Cu bicrystals with an intergranular crack was considered. The boundary conditions were specified by the near-tip displacement fields obtained based on linear elastic fracture mechanics (LEFM). Based on the energy interpretation of the energy release rate, a two-specimen method was adopted to determine the fracture toughness. The simulation results of the fracture toughness matched well with those determined using LEFM. In contrast to the toughness obtained using the Griffith energy criterion, the atomistic simulation results for the same bicrystal were not constants, but dependent on the crack-tip circumstances. This behavior was mainly associated with the different local stress conditions and fracture patterns observed for the different models.

  8. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  9. Corrosion inhibitors

    International Nuclear Information System (INIS)

    El Ashry, El Sayed H.; El Nemr, Ahmed; Esawy, Sami A.; Ragab, Safaa

    2006-01-01

    The corrosion inhibition efficiencies of some triazole, oxadiazole and thiadiazole derivatives for steel in presence of acidic medium have been studied by using AM1, PM3, MINDO/3 and MNDO semi-empirical SCF molecular orbital methods. Geometric structures, total negative charge on the molecule (TNC), highest occupied molecular energy level (E HOMO ), lowest unoccupied molecular energy level (E LUMO ), core-core repulsion (CCR), dipole moment (μ) and linear solvation energy terms, molecular volume (V i ) and dipolar-polarization (π *), were correlated to corrosion inhibition efficiency. Four equations were proposed to calculate corrosion inhibition efficiency. The agreement with the experimental data was found to be satisfactory; the standard deviations between the calculated and experimental results ranged between ±0.03 and ±4.18. The inhibition efficiency was closely related to orbital energies (E HOMO and E LUMO ) and μ. The correlation between quantum parameters and experimental inhibition efficiency has been validated by single point calculations for the semi-empirical AM1 structures using B3LYP/6-31G** as a higher level of theory. The proposed equations were applied to predict the corrosion inhibition efficiency of some related structures to select molecules of possible activity from a presumable library of compounds

  10. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process

    Directory of Open Access Journals (Sweden)

    Farhad Gharavi

    2015-07-01

    Full Text Available In this work, the corrosion behavior of welded lap joints of AA6061-T6 aluminum alloy produced by friction stir welding process has been investigated. Corrosion properties of welded lap joints were studied by cyclic polarization and electrochemical impedance spectroscopy tests. All tests were performed in an aerated 0.6 mol L−1 NaCl aqueous solution with pH = 6.5 at a temperature of 30 °C to characterize corrosion morphology and realize corrosion features of weld regions as opposed to the parent alloy. The microstructure of weld nugget (WN, heated affected zone (HAZ, and parent alloy were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The experimental results indicated that the welding process has a major effect on the corrosion resistance, which possibly associated to the break-down and dissolution of intermetallic particles. It is supposed that an increasing in intermetallic distributed throughout the matrix of weld regions increases the galvanic corrosion couples. Furthermore, by decreasing the grain size in the weld regions, the susceptibility to corrosion is enhanced. The pitting corrosion and intergranular attack are the dominant corrosion types in the weld regions and the parent alloy.

  11. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  12. Thresholds of time dependent intergranular crack growth in a nickel disc alloy Alloy 720Li

    Directory of Open Access Journals (Sweden)

    Li Hangyue

    2014-01-01

    Full Text Available At high temperatures in air, introducing a dwell period at the peak stress of fatigue cycles promotes time dependent intergranular crack growth which can increase crack growth rates by upto a few orders of magnitude from the rates of transgranular fatigue crack growth in superalloys. It is expected that time dependent intergranular crack growth in nickel-based superalloys may not occur below a critical mechanical driving force, ΔKth−IG, analogous to a fatigue threshold (ΔKth and a critical temperature, Tth. In this study, dwell fatigue crack growth tests have been carefully designed and conducted on Alloy 720Li to examine such thresholds. Unlike a fatigue threshold, the threshold stress intensity factor range for intergranular crack growth is observed to be highly sensitive to microstructure, dwell time and test procedure. The near threshold crack growth behaviour is made complex by the interactions between grain boundary oxidation embrittlement and crack tip stress relaxation. In general, lower ΔKth−IG values are associated with finer grain size and/or shorter dwell times. Often a load increasing procedure promotes stress relaxation and tends to lead to higher ΔKth−IG. When there is limited stress relaxation at the crack tip, similar ΔKth−IG values are measured with load increasing and load shedding procedures. They are generally higher than the fatigue threshold (ΔKth despite faster crack growth rates (da/dN in the stable crack growth regime. Time dependent intergranular crack growth cannot be activated below a temperature of 500 ∘C.

  13. Microstructural Evidences of Intergranular Pressure Solution during Frictional Sliding at Hydrothermal Conditions

    Science.gov (United States)

    Ma, X.; Yao, S.; He, C.

    2017-12-01

    In the framework of rate- and state-dependent friction, velocity weakening is the result of a healing effect at intergranular contacts that is stronger than the instantaneous rate effect. Intergranular pressure solution has been proposed to be a feasible mechanism for the frictional healing effect (He et al., 2013), but to date no substantial evidences have been reported in related microstructures. In this study we report our reanalyses on samples of plagioclase gouge deformed at hydrothermal conditions with effective normal stresses of 100 MPa, 200 MPa, and 300 MPa, pore pressures of 30 MPa and 100 MPa, and temperatures from 100oC to 600oC. With an Inlens image detector in a scanning electron microscope, our focus is to find the evidences of the pressure solution processes during frictional sliding. As it has been difficult to observe the signatures of pressure solution during frictional sliding at the solution sites due to the short contact time of frequently-switching contact pairs, now we focus on the results of precipitation instead, which is the final process of pressure solution. With high magnification, we find the following evidences of intergranular pressure solution: 1) crystal growth as a result of precipitation is ubiquitously observed in deformed samples at temperatures above 200oC; 2) very fine-grained precipitated particles with flaky morphologies typically appear in intensely sheared regions and between relatively large particles in moderately sheared regions; 3) the precipitated grains are concentrated periodically in zones orientated at 45-50 degrees to the fault strike. These observations indicate that intergranular pressure solution is the dominant process responsible for the frictional healing effect.

  14. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-01-01

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs. PMID:28788129

  15. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    Science.gov (United States)

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (Palloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  16. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2014-07-01

    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  17. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-07-22

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700-900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350-550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  18. Investigation on a "tentacle-like" corrosion feature on Bronze Age tin-bronze objects

    Science.gov (United States)

    Piccardo, Paolo; Mödlinger, Marianne; Ghiara, Giorgia; Campodonico, Serena; Bongiorno, Valeria

    2013-12-01

    Studying the micro-structure of Austrian, Bosnian and Croatian Bronze Age objects made of tin bronze, a rare kind of corrosion feature, called in the following "tentacle-like" according to its specific way of penetrating the metallic matrix, was noted and investigated. Differing from the more classical intergranular, pitting, or crevice corrosion features, the "tentacle-like" corrosion is not following the grain boundaries, nor precisely positioned under the etching area, but penetrates mainly the crystal matrix without any apparent order. This paper discusses the first results achieved and the following hypotheses formulated in respect of the typology of this corrosion. The analyses were carried out by optical microscopy, Raman microspectroscopy, and scanning electron microscopy equipped with EDX spectroscopy for quantitative analyses.

  19. Diffusion-controlled intergranular penetration and embrittlement of copper by liquid bismuth between 300 and 600 Celsius degrees

    International Nuclear Information System (INIS)

    Laporte, V.

    2005-02-01

    Hybrid reactors are a new concept for energy production and nuclear waste treatment. Among other requirements, structural materials have to withstand liquid metal embrittlement. This thesis aimed therefore to identify the controlling mechanism for the intergranular embrittlement of copper in contact with liquid bismuth. Scanning electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy have been used to analyze fracture surfaces of both copper polycrystals and a copper bicrystal (symmetric tilt boundary 50 degrees ). These analyses reveal both parabolic intergranular penetration kinetics and a maximal intergranular bismuth concentration that is less than two monolayers equivalent. These two results allow us to identify grain boundary diffusion as the controlling mechanism for the intergranular penetration of copper by liquid bismuth between 300 and 600 Celsius degrees, showing the absence of perfect grain boundary wetting. (author)

  20. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  1. Discontinuous Inter-Granular Separations (DIGS) in the Gas Nitride Layer of ISS Race Rings

    Science.gov (United States)

    Figert, John; Dasgupta, Rajib; Martinez, James

    2010-01-01

    The starboard solar alpha rotary joint (SARJ) race ring on the International space station (ISS) failed due to severe spalling of the outer diameter, 45 degree (outer canted) nitrided surface. Subsequent analysis at NASA-KSC revealed that almost all of the debris generated due to the failure was nitrided 15-5 stainless steel. Subsequent analysis of the nitride control coupons (NCC) at NASA-JSC revealed the presence of discontinuous inter-granular separations (DIGS) in the gas nitride layer. These DIGS were present in the inter-granular networking located in the top 2 mils of the nitride layer. The manufacturer's specification requires the maximum white structure to be 0.0003 inches and intergranular networking below the allowable white structure depth to be cause for rejection; a requirement that the NCCs did not meet. Subsequent testing and analysis revealed that lower DIGS content significantly lowered the probability of nitride spalling in simulated, dry condition runs. One batch of nitride samples with DIGS content similar to the port SARJ (did not fail on orbit) which exhibited almost no nitride spalling after being run on one test rig. Another batch of nitride samples with DIGS content levels similar to the starboard SARJ exhibited significant nitride spalling on the same test rig with the same load under dry conditions. Although DIGS were not the root cause of starboard race ring failure, testing indicates that increased DIGS reduced the robustness of the gas nitride layer under dry operating conditions.

  2. Disorder-induced melting in nickel: implication to intergranular sulfur embrittlement

    International Nuclear Information System (INIS)

    Heuer, J.K.; Okamoto, P.R.; Lam, N.Q.; Stubbins, J.F.

    2002-01-01

    Why and how sulfur segregation leads to intergranular embrittlement of nickel has been investigated by a combination of Auger electron spectroscopy, slow-strain-rate tensile tests, ion-implantation, and Rutherford backscattering spectrometry studies. Grain-boundary sulfur concentrations in dilute Ni-S alloys were systematically varied by time-controlled annealing of specimens at 625 deg. C. The critical sulfur concentration for 50% intergranular fracture of 15.5±3.4 at.% S was found to be, within experimental error, equal to the critical implant concentration of 14.2±3.3 at.% S required to induce 50% amorphization of single-crystal nickel during S + implantation at liquid nitrogen temperature. This suggests that segregation-induced intergranular embrittlement, like implantation-induced amorphization, may be a disorder-induced melting process, albeit one occurring locally at grain boundaries. In addition, a kinetic model for segregation-induced embrittlement based on Poisson statistics is introduced, and the synergistic effects of hydrogen-sulfur co-segregation on embrittlement are discussed

  3. Effect of intergranular stress on yielding of 316H during room temperature cyclic loading

    International Nuclear Information System (INIS)

    Assessment of cyclic deformation is an integral part of nuclear power plant life assessment code, as many of the components in plant go through scheduled and unscheduled cyclic deformation owing to varying thermal and mechanical stresses. In polycrystalline material like 316H, a type of micro stress known as intergranular stress is generated due to elastic and plastic anisotropies during such cyclic loading. In tension-compression loading cycles, these stresses remain in the material as a residual stress upon unloading to zero stress from the tensile/compressive peak or intermediates stresses. The magnitude of these stresses vary depending on the point in the cycle from which it was unloaded from. When the material is re-loaded either in the same or reverse loading direction these residual stresses increase or decrease the effective stress acting in the material and as such the macroscopic yield stress of the material in subsequent cycle is changed significantly. The magnitude of intergranular stresses in many differently oriented grain families can be measured simultaneously using time of flight (ToF) neutron diffraction technique. In this paper, we have used this technique to experimentally study, how these intergranular stresses affect the yield (proof) stress of 316H at room temperature. (author)

  4. Stress corrosion cracking of zirconium and its alloys in halogenide solutions

    International Nuclear Information System (INIS)

    Farina, Silvia B.

    2001-01-01

    A doctoral thesis developed at the corrosion labs in CNEA a few years ago showed that zirconium and Zircaloy-4 were susceptible to stress corrosion cracking (SCC) in chloride aqueous solutions at potentials above the pitting potential. However, the nature of the phenomenon was not elucidated. On the other hand, references about the subject were scarce and contradictory. The development of new SCC models, in particular, the surface mobility SCC mechanism suggested a review of zirconium and Zircaloy-4 SCC in halogenide aqueous solutions. This mechanism predicts that zirconium should be susceptible to SCC not only in chloride solutions but also in bromide and iodide solutions due to the low melting point of the surface compounds formed by the interaction between the metal and the environment. The present work was aimed to determine the conditions under which SCC takes place and the mechanism operating during this process. For that purpose, the effect of electrochemical potential, strain rate and temperature on the SCC susceptibility of both, zirconium and Zircaloy-4 in chloride, bromide and iodide solutions was investigated. It was observed that those materials undergo stress corrosion cracking only at potentials higher than the breakdown potential. The crack velocity increased slightly with the applied potential, and the strain rate had an accelerating effect on the crack propagation rate. In both materials two steps were found during cracking. The first one was characterized as intergranular attack assisted by stress due to an anodic dissolution process. This step is followed by a transition to a transgranular mode of propagation, which was considered as the 'true' stress corrosion cracking step. The intergranular attack is the rate-determining step due to the fact that the transgranular propagation rate is higher than the intergranular propagation rate. Several stress corrosion cracking mechanisms were analyzed to explain the transgranular cracking. The predictions

  5. Correlation between low-temperature creep and intergranular diffusion of Kh16N15M3B type steel

    International Nuclear Information System (INIS)

    Solonin, M.I.; Kondrat'ev, V.P.; Krasina, T.A.; Voejkov, V.P.; Tarasyuk, V.B.; Fedorov, G.B.; Ryabenko, A.V.

    1990-01-01

    The results are presented for Kh16N15M3B type steel containing different amounts of carbon, molybdenum and niobium that was tested the diffusion mobility of iron-59 species. It is shown that at 400-500 deg C the diffusion of iron-59 is only intergranular. The correlation established between creep and diffusion. It is shwn that the activation energies for creep and intergranular diffusion correlate. 5 refs.; 4 figs.; 3 tabs

  6. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    Science.gov (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Susceptibility to Stress Corrosion Cracking of 254SMO SS

    Directory of Open Access Journals (Sweden)

    De Micheli Lorenzo

    2002-01-01

    Full Text Available The susceptibility to stress corrosion cracking (SCC of solubilized and sensitized 254SMO SS was studied in sodium chloride, and sodium fluoride solutions at 80 °C and sulfuric acid solutions in presence of sodium chloride at 25 °C. The influence of salt concentration, pH values and the addition of thiosulfate was examined. The susceptibility to SCC was evaluated by Slow Strain Rate Tests (SSRT, at 1.5 x 10-6 s-1 strain rate. The behavior of 254SMO was compared to those of AISI 316L SS and Hastelloy C276. 254SMO showed an excellent resistance to SCC in all conditions, except in the more acidic solutions (pH <= 1 where, in the sensitized conditions, intergranular stress corrosion cracking occurred.

  8. Tunneling corrosion mechanism of the hot forged austenitic stainless steel in highly oxidizing nitric acid

    International Nuclear Information System (INIS)

    Nagano, Hiroo; Kajimura, Haruhiko

    1993-01-01

    Austenitic Stainless Steels have been used for reprocessing plants where spent nuclear fuels are dealt with in hot nitric acid. Conventional stainless steels are resistant enough to nitric acid. However, they are prone to localized corrosion when nitric acid becomes highly oxidizing with birth of oxidants such as Ce 4+ or Cr 6+ ion during the reprocessing. Pitting type corrosion, so-called tunneling or end-grain corrosion occurred on the forgings of 25%-20%-Nb stainless steel (310Nb stainless steel) in such nitric acid solutions because of transpassive corrosion. It has been well known that metal surfaces of steel products casted, forged or rolled are susceptible to the tunneling corrosion in aggressive corrosion media. Nevertheless, neither clear explanations of the mechanism nor definite countermeasures have been proposed yet. This paper describes the mechanism and countermeasures on the tunneling corrosion of stainless steels in nitric acid relevant to spent nuclear fuel reprocessing. The results obtained are as follows: both general and intergranular corrosion occur on austenitic stainless steels in boiling 8N HNO 3 with Cr 6+ ions. Tunneling corrosion is initiated and propagates at the metal surfaces of 310Nb stainless steel forgings along chromium depleted areas vertical to metal flows. The grooves due to the tunneling corrosion are of diameters of 0.5 to 2 mm with a maximum depth of 6mm depending on exposure time and Cr 6+ concentration in nitric acid. Tunneling corrosion proceeds by build up of galvanic corrosion cells with Cr depleted parts as anodes and their neighborhoods as cathodes. The Cr depleted parts are formed during solidification of ingots and still retained parallel to the metal flow even after forging. The ESR (Electro Slag Remelting) is one of the useful preventive methods to tunneling corrosion from the view point of steel homogenization

  9. The growth of small corrosion fatigue cracks in alloy 2024

    Science.gov (United States)

    Piascik, Robert S.; Willard, Scott A.

    1993-04-01

    The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.

  10. Corrosion characteristics of an aqueous self-cooled fusion blanket

    International Nuclear Information System (INIS)

    Bogaerts, W.F.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Jackson, D.

    1986-01-01

    A novel aqueous self-cooled blanket concept (ASCB) has recently been proposed. This blanket concept, as applied to a MARS-like tandem mirror reactor, consists of disks of spiraling tubes of Zircaloy-4 housed in a structural container of vanadium alloy (V-15 Ti-5 Cr). The Zircaloy tubes are cooled by a mixture of light and heavy water with 9 g of LiOH per 100 cm 3 of water dissolved in the coolant. A major issue for the feasibility of the integrated blanket coil concept is the chemical compatibility of the coolant and Zircaloy. Initial corrosion tests have been undertaken in order to resolve this question. Results clearly show that successful alloy heats can be prepared, for which corrosion problems will probably not be the limiting factor of the ASCB design concept. As is quite well known from fission engineering studies, small variations in the alloy compositions or in the metallurgical structure may, however, be able to cause significant alterations in the oxidation or corrosion rates. Further tests will be necessary to resolve the remaining uncertainties and to determine the behavior of successful alloy heats in the presence of trace impurities in order to address the sensitivity to localized corrosion phenomena such as pitting, stress corrosion cracking, and intergranular attack

  11. Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior

    Science.gov (United States)

    Lou, Xiaoyuan; Andresen, Peter L.; Rebak, Raul B.

    2018-02-01

    Intergranular and intragranular Si and Mn rich oxide inclusions are present in laser additive manufactured austenitic stainless steel. The uniform oxide dispersions in additive manufactured material promoted early initiation of microvoids and reduced its impact toughness relative to powder metallurgy (hot isostatic pressing) and wrought materials. For stress corrosion cracking in high temperature water, the silica inclusions along the grain boundaries preferentially dissolved and appeared to accelerate oxidation and caused extensive crack branching.

  12. Surface engineering for corrosion and wear resistance

    National Research Council Canada - National Science Library

    Davis, J. R

    2001-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Pitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Crevice Corrosion . . . . . . . . ....

  13. Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical Reactivation Method: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Arıkan

    2012-01-01

    Full Text Available In the present study as in our previous studies (Arikan and Doruk, 2008 and Arikan et al., 2012, similar specimens taken from a hot rolled cylindrical duplex stainless steel (DSS bar with 22% Cr grade were solution annealed at 1050°C and then aged at 800∘C from 100 to 31622 min for sensitization treatment. Double loop electrochemical potentiodynamic reactivation and standard weight loss immersion acid tests were conducted. The solution annealed samples were found unsensitized. The samples aged for 100 min were less sensitized whereas samples aged for 316 min and more time were sensitized. The degree of sensitization (DOS can be attributed to higher contribution of chromium and molybdenum depleted areas that result from intermetallic phases. However, especially the samples aged from 3162 to 31622 min have revealed chromium replenishment. Consequently, the degree of sensitization was lowered in comparison to the results obtained in previous studies.

  14. Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical Reactivation Method

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Arıkan

    2012-01-01

    Full Text Available Specimens taken from a hot-rolled cylindrical duplex stainless steel (DSS bar with 22% Cr grade were solution annealed at 1050∘C and then aged at 725∘C from 100 to 31622 min for sensitization treatment. Double loop electrochemical potentiodynamic reactivation and standard weight loss immersion acid tests were conducted. The solution-annealed samples were found unsensitized. Those samples aged for 100 and 316 min were less sensitized whereas samples aged for 1000 min and especially those aged for 3162, 10000, and 31622 min were heavily sensitized. The degree of sensitization (DOS can be attributed to higher contribution of chromium- and molybdenum-depleted areas resulting from intermetallic phases.

  15. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  16. Elucidation of corrosion factors based on the data acquisition simulating complex real environment. Examples of marine environment and nuclear facilities

    International Nuclear Information System (INIS)

    Yamamoto, Masahiro

    2016-01-01

    This study has devised a test method simulating real environment as an accelerated corrosion test, and has elucidated the factors that determine the actual corrosion phenomena based on analysis of the obtained data. As part of this effort, this paper explains implemented contents on the corrosion phenomena of nuclear facilities associated with radioactive materials and marine environment. As for the macroscopic corrosion phenomena of common steel in the marine environment, the process where the maximum of corrosion rate just below a tidal zone proceeds under natural environment was analyzed using an experimental tank. The mechanism was assumed like this: At just under the tidal zone, anode current flows at the time of high tide flow by a larger amount than in the underwater part, whose effect makes the anode current continuously flow even at the time of low tide flow, which increases a corrosion amount. This study also examined in detail the intergranular corrosion phenomena of stainless steel under Np-containing conditions at nuclear fuel reprocessing facilities. The result showed that Np contained in boiling nitric acid solution was reduced to pentavalent on metal's surface, corroding stainless steel, and it afterwards was re-oxidized to hexavalent in the solution. The mechanism to accelerate corrosion by repeating this process could be proposed. As for the corrosion phenomena of stainless steel in a light-water reactor, the measurement results suggested the corrosion environment containing oxygen or hydrogen peroxide produced by radiolysis. (A.O.)

  17. Influence of microstructure in corrosion behavior of an Inconel 600 commercial alloy in 0.1 M sodium thiosulfate solution; Influencia de la microestructura en el comportamiento a la corrosion de una aleacion comercial Inconel 600 en solucion de Tiosulfato de sodio 0.1 M

    Energy Technology Data Exchange (ETDEWEB)

    Granados, J.; Rodriguez, F.J.; Arganis, C. [Facultad de Quimica, UNAM, C.P. 04510 Mexico D.F. (Mexico)

    1999-07-01

    The Inconel 600 is used in diverse components of BWR and PWR type reactors, where diverse cases of intergranular stress corrosion have been presented. It has been reported susceptibility to the corrosion of this alloy, in presence of thiosulfates, which come from the degradation of the ion exchange resins of water treatments that use the reactors. The objective of this work is to study the influence of metallurgical condition in the corrosion velocity of Inconel 600 commercial alloy, in a 0.1 M thiosulfates solution. (Author)

  18. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review

    Directory of Open Access Journals (Sweden)

    Ghusoon Ridha Mohammed

    2017-01-01

    Full Text Available The effects of input heat of different welding processes on the microstructure, corrosion, and mechanical characteristics of welded duplex stainless steel (DSS are reviewed. Austenitic stainless steel (ASS is welded using low-heat inputs. However, owing to differences in the physical metallurgy between ASS and DSS, low-heat inputs should be avoided for DSS. This review highlights the differences in solidification mode and transformation characteristics between ASS and DSS with regard to the heat input in welding processes. Specifically, many studies about the effects of heat energy input in welding process on the pitting corrosion, intergranular stress, stresscorrosion cracking, and mechanical properties of weldments of DSS are reviewed.

  19. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    International Nuclear Information System (INIS)

    Naudin, C.; Frund, J.M.; Pineau, A.

    1999-01-01

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made

  20. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, C.; Frund, J.M. [EDF, Moret sur Loing (France). Direction des Etudes et Recherches; Pineau, A. [Ecole des Mines de Paris, Evry (France). Centre des Materiaux

    1999-04-09

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made.

  1. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    International Nuclear Information System (INIS)

    Jothi, S.; Winzer, N.; Croft, T.N.; Brown, S.G.R.

    2015-01-01

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity

  2. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  3. Corrosion Behavior of Platinum-Enhanced Radiopaque Stainless Steel (PERSS®) for Dilation-Baloon Expandable Coronary Stents

    Energy Technology Data Exchange (ETDEWEB)

    Covino, Jr., Bernard S.; Craig, Charles H.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; Jablonski, Paul D.; Turner, Paul C.; Radisch, Jr., Herbert R.; Gokcen, Nev A.; Friend, Clifford M.; Edwards, Michael R.

    2002-05-01

    Dilation-balloon expandable coronary stents are commonly made of implant grade stainless steels conforming to ASTM F138/F139, e.g., Biodur? 316LS (UNS S31673). Typical of such stents is the Boston Scientific/Interventional Technologies? (BS/IVT) LP-StentTM. In 2000, BS/IVT determined that the addition of 5 to 6 wt % platinum to Biodur 316LS produced a stainless steel with enhanced radiopacity to make their stents more visible radiographically and thus more effective clinically. A goal of the program was to ensure platinum additions would not adversely affect the corrosion resistance of Biodur 316LS. The corrosion resistance of 5-6 wt % PERSS? alloys and Biodur 316LS was determined using electrochemical tests for general, pitting, crevice and intergranular corrosion. Experimental methods included ASTM A262E, F746, F2129, and potentiodynamic polarization. The 6 wt % PERSS? alloy (IVT 78) had a resistance to pitting, crevice and intergranular corrosion that was similar to the Biodur 316LS base material. IVT 78 was a single-phase austenitic alloy with no evidence of inclusions or precipitates. It was more resistant to pitting corrosion than 5 wt % PERSS? alloys. Performance of the PERSS? alloys was not a function of alloy oxygen content in the range 0.01 to 0.03 wt %.

  4. Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2017-10-01

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gas bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.

  5. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  6. Effect of cryogenic cooling on corrosion of friction stir welded AA7010-T7651

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Davenport, A. J.; Ambat, Rajan

    2010-01-01

    Purpose - The purpose of this paper is to study how cryogenic CO2 cooling during the welding process affects corrosion behaviour of friction stir welding (FSW) AA7010-T7651. Design/methodology/approach - Friction stir welded AA7010-17651 was produced with a rotation speed of 288 rpm and a travel...... speed of 58 mm/min. The liquid CO2 was sprayed onto the weld centre line immediately after the toolpiece. The microstructures of welds in different regions were observed using Field Emission Gun Scanning Electron Microscope (FEG-SEM). The effect on the corrosion susceptibility was investigated using...... a gel visualisation test and potentiodynamic polarisation measurements using a micro-electrochemical technique. Findings - The main corrosion region for both FSWs AA7010-T7651 produced with and without cryogenic CO2 cooling is in the HAZ region, which exhibited intergranular attack. Cryogenic cooling...

  7. Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.T., E-mail: jiasqq1225@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Chen, J.F.; Zhou, J.Y.; Ge, M.Z.; Lu, Y.L.; Li, X.L. [School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China)

    2015-10-28

    7075 aluminum alloy weldments were processed by an intensive process known as laser shock peening (LSP), meanwhile its stress corrosion behaviors were observed by scanning electron microscopy (SEM) and slow strain rate tensile (SSRT) tests. Results showed that the effect of LSP on corrosion behavior of the joint was fairly useful and obvious. With LSP, the elongation, time of fracture and static toughness after the SSRT test were improved by 11.13%, 20% and 100%, respectively. At the same time, the location of the fracture also changed. LSP led to a transition of the fracture type from transgranular to intergranular The reasons for these enhancements of the joint on corrosion behavior were caused by microstructure, residual stress, micro-hardness, and fracture appearance.

  8. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments

    International Nuclear Information System (INIS)

    Lee, H T; Wu, J L

    2009-01-01

    This study investigates the correlation between the thermal cycles experienced by Alloy 690 weldments fabricated using gas tungsten arc welding (GTAW) and laser beam welding (LBW) processes, and their corresponding corrosion resistance properties. The corrosion resistance of the weldments is evaluated using a U-bend stress corrosion test in which the specimens are immersed in a boiling, acid solution for 240 h. The experimental results reveal that the LBW inputs significantly less heat to the weldment than the GTAW, and therefore yields a far faster cooling rate. Moreover, the corrosion tests show that in the GTAW specimen, intergranular corrosion (IGC) occurs in both the fusion zone (FZ) and the heat affected zone (HAZ). By contrast, the LBW specimen shows no obvious signs of IGC.

  9. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings; Journee Thematique: Corrosion et Traitements de surface dans les Installations Nucleaires. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  10. Stress corrosion cracking of Ni base alloys in Pb-contaminated caustic solutions

    International Nuclear Information System (INIS)

    Kim, Mi Ae; Kim, Dong Jin; Kim, Joung Soo; Kim, Hong Pyo

    2009-01-01

    Steam generator tubes in pressurized water reactors(PWRs) form a pressure boundary between the primary and secondary sides. Austenitic stainless steel was used initially for the tubing, but it was changed to Alloy 600 as the results of corrosion problems. Experiences with Alloy 600 in the late 1960s and early 1970s, in the early high temperature large PWRs, identified numerous corrosion problems. Efforts for the development of a new made and the result was Alloy 690. Since the mid-1980s new and replacement steam generators have used Alloy 690. However, PWRs with Alloy 600 steam generators are still being operated. A lot of problems related to corrosion have been reported in Alloy 600 steam generator tubes of operating nuclear power plants(NPPs), and the outer diameter stress corrosion cracking (ODSCC) and intergranular attack(IGA) which have been occurring in Alloy 600 tubes are known to be the leading causes of PWR steam generator tube plugging in the USA and worldwide. According to Smith and Stratton, Alloy 690 is also reported to be susceptible to stress corrosion cracking and intergranular attack in deaerated (with argon) caustic solutions. It has been reported that contaminated lead in the secondary side cooling water is accumulated in the sludge piled on top of the tube sheet thus accelerating stress corrosion cracking in the SG tubes of NPPs. The detailed mechanism of accelerated stress corrosion cracking of Alloy 600 and 690 by Pb, however, has yet to be completely understood. It was observed that Pb dissolved in water can produce PbSCC at a Pb concentration as low as 0.1 ppm in these alloys. Lead is known to be one of the most aggressive environmental species that can accumulate in the crevice between the tubes and sludge piled on TTS in steam generators. Many laboratory experiments indicate that the stress corrosion cracking of steam generator tubing materials is accelerated in the presence of lead species in a caustic environment. In order to observe the

  11. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  12. Sensitization to Corrosion as Initiator of Fatigue Fracture in Compressor Blades

    Directory of Open Access Journals (Sweden)

    Vladimír CIHAL

    2011-06-01

    Full Text Available Certain failures of stainless steels interpreted purely in terms of fracture mechanisms may in fact be closely associated with previous damage caused by localized corrosion. The closeness of the link between fatigue and corrosion is documented by the case history of compressor blades made of grade 14Cr17Ni2 (X14CrNi17-2 stainless steel. Fatigue fracturing observed in areas near the blade root tended to follow intergranular pathways, indicating that some additional mechanism other than fatigue might be involved. This suspicion was confirmed by electrochemical potentiokinetic reactivation (EPR measurements in situ, which revealed sensitization to intergranular corrosion. It has been found that at the transition between the blade root and the blade proper the surfaces had been ground and polished too vigorously, heating the subcutaneous layers to within the danger zone of 400-600°C. Preferential integranular attack in these locations was the initiation mechanism that provoked a subsequent failure of the blades by fatigue fracture.

  13. Irradiation-assisted stress corrosion cracking of materials from commercial BWRs: Role of grain-boundary microchemistry

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Hins, A.G.; Kassner, T.F.

    1994-01-01

    Constant-extension-rate tensile tests and grain-boundary analysis by Auger electron spectroscopy were conducted on high- and commercial-purity (HP and CP) Type 304 stainless steel (SS) specimens from irradiated boiling-water reactor (BWR) components to determine susceptibility to irradiation-assisted stress corrosion cracking (IASCC) and to identify the mechanisms of intergranular failure. The susceptibility of HP neutron absorber tubes to intergranular stress corrosion cracking (IGSCC) was higher than that of CP absorber tubes or CP control blade sheath. Contrary to previous beliefs, susceptibility to intergranular fracture could not be correlated with radiation-induced segregation of impurities such as Si, P, C, N, or S, but a correlation was obtained with grain-boundary Cr concentration, indicating a role for Cr depletion that promotes IASCC. Detailed analysis of grain-boundary chemistry was conducted on neutron absorber tubes that were fabricated from two similar heats of HP Type 304 SS of virtually identical bulk chemical composition but exhibiting a significant difference in susceptibility to IGSCC for similar fluence. Grain-boundary concentrations of Cr, Ni, Si, P, S, and C in the crack-resistant and -susceptible HP heats were virtually identical. However, grain boundaries of the cracking-resistant material contained less N and more B and Li (transmutation product from B) than those of the crack-susceptible material, indicating beneficial effects of low N and high B contents

  14. Corrosion property for solid state bonded joint of SUS304L stainless steel and Zr; SUS304L ko to Zr ko tono koso setsugo tsugite no taishokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ei, K.; Irie, H.; Kasugai, T. [National Research Institute for Metals, Tsukuba (Japan)

    1999-05-01

    Corrosion resistance of diffusion bonded joint with Ta foil inserted between the bonded surfaces and friction welding joint for SUS304L and Zr was examined in 3N-HNO{sub 3} solution contained Cr{sup 6+} ion. In a short term dipping test, it was difficult to qualitatively investigate the corrosion property for both joints, because it depended strongly on the surface condition (preparation) of the specimen before the test. In a long term dipping test, however, the type of the corrosion was mainly found intergranular corrosion in SUS304L base metal for all of the joints, moreover this developed the falling off the crystal grain of SUS304L base metal. In this corrosion process, a possibility that galvanic potential difference between dissimilar metals accelerated corrosion was pointed out, then local potential gradient was investigated using a measuring system, in which a sharp vibrating probe was scanned across the joint interface. SUS304L base metal showed a positive local potential gradient which indicated on acceleration of corrosion in SUS304L. But it was not so large and corrosion rates of SUS304L for the both solid state joining were nearly same value as that without Zr or Ta base metals. The acceleration of the corrosion at dissimilar metal joints were not observed from the results of the dipping test and the measurement of the local potential gradient, it is considered that there is no problem of the corrosion resistance in these joints. (author)

  15. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.

    Science.gov (United States)

    Gordon, Lyle M; Cohen, Michael J; MacRenaris, Keith W; Pasteris, Jill D; Seda, Takele; Joester, Derk

    2015-02-13

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue. Copyright © 2015, American Association for the Advancement of Science.

  16. Analysis of intergranular crack propagation in brittle polycrystals with a generalized finite element method and network algorithm

    NARCIS (Netherlands)

    Shabir, Z.; Van der Giessen, E.; Duarte, C.A.; Simone, A.

    2009-01-01

    Two different approaches to intergranular crack propagation in brittle polycrystals are contrasted. Crack paths resulting from a method that allows a detailed description of the stress field within a polycrystal are compared to cracks dictated by topological considerations. In the first approach, a

  17. Effects of cold work, sensitization treatment, and the combination on corrosion behavior of stainless steels in nitric acid

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Ohta, J.; Arai, T.

    1998-01-01

    In a reprocessing process, spent nuclear fuels from light-water reactors are dissolved in nitric acid (HNO 3 ) to separate and recover the fissile materials such as uranium and plutonium from the radioactive fission products. Corrosion behavior of two stainless steels (SS) was investigated in nitric acid (HNO 3 ) for the effect of cold work (CW), sensitization heat treatment (Sens.), and a combination (CW + Sens.). The corrosion rate of the solution-treated type 304 SS (UNS S30400) with extra-low carbon (type 304ELC SS (UNS S30403)) increased with time and reached constant values after 1,000 h of immersion. However, constant corrosion rates were obtained for 25% Cr-20% Ni-Nb (type 310Nb SS [UNS S31040]) from the initial stage of immersion. CW mitigated corrosion of the solution-treated SS. The effect of CW was different on the two types of SS, with the sensitization heat-treated type 304 ELC SS showing higher corrosion rates and type 310Nb SS lower corrosion rates by CW. Corrosion resistance of type 310Nb SS was superior to type 304 ELC SS after all treatments. Chromium concentration of the sensitization-treated type 304 ELC SS was lower in the grain-boundary region than of the solution-treated one, although no chromium carbide precipitation was observed. This may have been the cause of intergranular corrosion enhancement by sensitization treatment

  18. The effect lead impurities on the corrosion resistance of alloy 600 and alloy 690 in high temperature water

    International Nuclear Information System (INIS)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-01-01

    Degradation of nickel-based alloy steam generator (SG) tubing caused by lead-induced corrosion has been reported recently in some PWR plants. Several laboratory studies also have shown that lead causes intergranular or transgranular stress corrosion cracking (IGSCC or TGSCC) of the tubing materials. Information from previous studies suggests two possible explanations for the mechanism of lead-induced corrosion. One is selective dissolution of tube metal elements, resulting in formation of a lead-containing nickel-depleted oxide film as observed in mildly acidic environments. The other explanation is an increase in potential, as has been observed in lead-contaminated caustic environments, although not in all volatile treatment (AVT) water such as the ammonium-hydrazine water chemistry. These observation suggest that an electrochemical reaction between metal elements and dissolved lead might be the cause of lead-induced corrosion. The present work was undertaken to clarify the lead-induced corrosion mechanism of nickel-based alloys from an electrochemical viewpoint, focusing on mildly acidic and basic environments. These are the probable pH conditions in the crevice region between the tube and tube support plate of the SG where corrosion damage could occur. Measurements of corrosion potential and electrochemical polarization of nickel-based alloys were performed to investigate the effect of lead on electrochemical behavior of the alloys. Then, constant extension rate tests (CERT) were carried out to determine the corrosion susceptibility of the alloys in a lead-contaminated environment. (J.P.N.)

  19. Effect of cold working and annealing on stress corrosion cracking of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Yeon, Y.M.; Kwun, S.I.

    1983-01-01

    A study was made of the effects of cold working and annealing on the stress corrosion cracking of AISI 304 stainless steel in boiling 42% MgCl 2 solution. When the 60% or 76% of yield stress was applied, the resistance to SCC showed maximum at 30% of cold work. However, when the same load was applied to the annealed specimens after cold working, the resistance to SCC decreased abruptly at 675degC annealing. The fracture mode changed mode change mixed → intergranular → transgranular as the amount of cold work increased. (Author)

  20. Laboratory study of corrosion of steam generator tubes: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Sala, B.; Organista, M. [Centre Technique Framatome, Le Creusot (France). Dept. Chimie-Corrosion; Henry, K.; Erre, R. [CNRS-CRMD, Orleans (France); Gelpi, A. [Framatome, Paris la Defense (France). Dept. Materiaux et Technologies; Cattant, F.; Dupin, M. [EDF, Avoine (France)

    1995-12-31

    The secondary side intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) of steam generator tubes often occurs in crevices where impurities are concentrated, due to local elevated temperatures and restricted water flow. From the analysis of tubes pulled from plants, it is believed that alumino-silicates deposits and/or organic species may play a role in the development of IGA in near neutral environments. New observations suggest that similar environments and similar processes are operative inside the corroded grain boundaries. A former study using autoclave tests was mainly devoted to the formation of alumino-silicate deposits similar to those observed in plants. The present work pursued the study of local environments responsible for IGA/SC. It confirms former results on the catalytic decomposition of organic species into acetates and presents more details on the mechanism of formation of alumino-silicate deposits on alloy 600, particularly on the role of iron and, to a lesser extent, nickel cations. It was showed that, under the alumino-silicate deposits and in the presence of some organic species, a non-protective chromium rich layer may grow instead of the usual protective spinel oxide. The mechanism responsible for the formation of this layer is believed to involve interaction between iron and, to a lesser extent, nickel with silica and/or possible interaction between chromium and acetates. Preliminary capsule tests indicate that these conditions may induce the initiation of IGA.

  1. Effects of fabrication practices and techniques on the corrosion and mechanical properties of Ni-Cr-Mo nickel based alloys UNS N10276, N06022, N06686, and N06625

    International Nuclear Information System (INIS)

    Hinshaw, E.B.; Crum, J.R.

    1996-01-01

    Ni-Cr-Mo alloys have excellent resistance to both oxidizing and reducing type environments; however, heat treating, surface condition, welding, and type of welding consumable can have a significant affect on the corrosion resistance and mechanical properties of these alloys. It is also important when performing standard ASTM intergranular corrosion tests on welded test coupons to make an accurate comparison of alloys being tested. A standard weld procedure and consistent post-weld sample conditioning method should be incorporated into the comparison test program. An evaluation of the effect of various fabrication practices on the corrosion resistance of the alloy was performed using accelerated corrosion tests ASTM G28B. The fabrication conditions examined were as-welded, welded-pickled, welded-annealed-pickled, welded annealed ground, welded-ground, using over matching filler metals, and various levels of heat input. In addition to fabrication techniques, the effect of ASTM G28B test duration on corrosion rates of UNS N10276, N06022, N06686, and N06625 was evaluated. ASTM G28A intergranular corrosion and mechanical testing using welded coupons of UNS N06625 were also performed to determine the affect of post-weld annealing and aging heat treatments on the corrosion resistance and mechanical properties of UNS N06625

  2. On the toughening of brittle materials by grain bridging:promoting intergranular fracture through grain angle, strength, andtoughness

    Energy Technology Data Exchange (ETDEWEB)

    Foulk III, J.W.; Johnson, G.C.; Klein, P.A.; Ritchie, R.O.

    2007-11-15

    The structural reliability of many brittle materials such asstructural ceramics relies on the occurrence of intergranular, as opposedto transgranular, fracture in order to induce toughening by grainbridging. For a constant grain boundary strength and grain boundarytoughness, the current work examines the role of grain strength, graintoughness, and grain angle in promoting intergranular fracture in orderto maintain such toughening. Previous studies have illustrated that anintergranular path and the consequent grain bridging process can bepartitioned into five distinct regimes, namely: propagate, kink, arrest,stall and bridge. To determine the validity of the assumed intergranularpath, the classical penentration/deflection problem of a crack impingingon an interface is reexamined within a cohesive zone framework forintergranular and transgranular fracture. Results considering both modesof propagation, i.e., a transgranular and intergranular path, reveal thatcrack-tip shielding is a natural outcome of the cohesive zone approach tofracture. Cohesive zone growth in one mode shields the opposing mode fromthe stresses required for cohesive zone initiation. Although stablepropagation occurs when the required driving force is equivalent to thetoughness for either transgranular or intergranular fracture, the mode ofpropagation depends on the normalized grain strength, normalized graintoughness, and grain angle. For each grain angle, the intersection ofsingle path and multiple path solutions demarcates "strong" grains thatincrease the macroscopic toughness and "weak" grains that decrease it.The unstable transition to intergranular fracture reveals that anincreasinggrain toughness requires a growing region of the transgranularcohesive zone be at and near the peak cohesive strength. The inability ofthe body to provide the requisite stress field yields an overdriven andunstable configuration. The current results provide restrictions for theachievement of substantial toughening

  3. Stainless steel corrosion in French LMFBR - Feedback and prevention against risks

    International Nuclear Information System (INIS)

    Grabon, V.; Brissonneau, L.; Billey, C.

    2015-01-01

    This paper deals with the mechanisms and the conditions leading to the most threatening corrosion risks specific to the use of sodium at high temperature as coolant in FBR (Fast Breeder Reactors) - apart from wastage (rapid erosion-corrosion of the steam generator tubes by sodium hydroxide due to steam-water leaks in sodium): Stress Corrosion Cracking (SCC) induced in sodium polluted by sodium hydroxide (following sodium-water reaction or incomplete cleaning of component), SCC induced by caustic solution during maintenance operations (cleaning of component or repair on drained sodium circuit inducing moist air ingress), and Intergranular Attack (IGA) induced on sensitized stainless steels by acid solutions used during maintenance operations (decontamination of component, chemical cleaning). These risks are illustrated by some examples of corrosion encountered through Phenix experience or in CEA sodium loops. The paper also describes the solutions and the preventive measures that have been put in place against these corrosion risks, in the form of design rules and operating procedures. Generally the plant operator cannot control the material parameters (metal composition, aging, stress) during the lifetime of the facility. Thus most of the time preventive measures consist in excluding at least one of the two other factors related to the chemical environment and/or to the operating conditions. Moreover corrosion of the primary components during cleaning and decontamination operations before repairing should be carefully examined to authorize their reuse in the reactor

  4. Catastrophes caused by corrosion

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    For many years, huge attention has been paid to the problem of corrosion damage and destruction of metallic materials. Experience shows that failures due to corrosion problems are very important, and statistics at the world level shows that the damage resulting from the effects of various forms of corrosion is substantial and that, for example, in industrialized countries it reaches 4-5% of national incomes. Significant funds are determined annually for the prevention and control of corrosion...

  5. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  6. Microbiological corrosion of metals

    International Nuclear Information System (INIS)

    Vladislavlev, V.V.

    1992-01-01

    Problems is considered of development of the microbiological corrosion of the NPP equipment. The main attention is paid to the selective character of microbiological corrosion in zones of welded joints of austenitic steels. It is noted that the presence of technological defects promotes growth of corrosional damages. Methods for microbiological corrosion protection are discussed

  7. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  8. Stress-corrosion cracking in BWR and PWR piping

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1983-07-01

    Intergranular stress-corrosion cracking of weld-sensitized wrought stainless steel piping has been an increasingly ubiquitous and expensive problem in boiling-water reactors over the last decade. In recent months, numerous cracks have been found, even in large-diameter lines. A number of potential remedies have been developed. These are directed at providing more resistant materials, reducing weld-induced stresses, or improving the water chemistry. The potential remedies are discussed, along with the capabilities of ultrasonic testing to find and size the cracks and related safety issues. The problem has been much less severe to date in pressurized-water reactors, reflecting the use of different materials and much lower coolant oxygen levels

  9. Characterization of the sodium corrosion behavior of commercial austenitic steels

    International Nuclear Information System (INIS)

    Shiels, S.A.; Bagnall, C.; Keeton, A.R.; Witkowski, R.E.; Anantatmula, R.P.

    1980-01-01

    During the course of an on-going evaluation of austenitic alloys for potential liquid metal fast breeder reactor (LMFBR) fuel pin cladding application, a series of commercial alloys was selected for study. The data obtained led to the recognition of an underlying pattern of behavior and enabled the prediction of surface chemistry changes. The changes in surface topographical development from alloy to alloy are shown and the important role played by the element molybdenum in this development is indicated. The presentation also illustrates how a total damage equation was evolved to encompass all aspects of weight loss and metal/sodium interactions: wall thinning ferrite layer formation and intergranular attack. The total damage equation represents a significant departure from the classical description of sodium corrosion in which weight loss is simply translated into wall thinning

  10. Research on atmospheric corrosion of steel using synchrotron radiation

    International Nuclear Information System (INIS)

    Yamashita, M.; Uchida, H.; Konishi, H.; Mizuki, J.

    2004-01-01

    Correlation between local structure around Cr in the protective rust layer on weathering steel and protective performance of the rust layer is presented as an example of corrosion research using synchrotron radiation which has recently been applied in various research fields as a useful tool. In addition, in situ observation of initial process of rust formation on steel is also mentioned. It was pointed out by considering the X-ray absorption fine structure spectra that the nanostructure of the protective rust layer on weathering steel primarily comprises of small Cr-goethite crystals containing surface adsorbed and/or intergranular CrO x 3-2X complex anions. This CrO x 3-2X explains the protective performance of the rust layer originated by dense aggregation of fine crystals with cation selectivity of the Cr-goethite. It is very advantageous to employ white X-rays for in situ observation of rusting process of a carbon steel covered with electrolyte thin films because rust structure might change very quickly. This in situ observation revealed the effect of ion species on the change in rust phase during wet/dry repeating. It can be said that application of synchrotron radiation on corrosion research is so useful to understand the nanostructure of surface oxides which closely relate to corrosion behavior of metals and alloys. (author)

  11. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in the US: A literature review

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1988-01-01

    Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys. Though all three austenitic candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these forms of localized attack. Both types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented for Alloy 825 under comparable conditions. Gamma irradiation has been found to enhance SCC of Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while microbiologically induced corrosion effects have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. Of the copper-based alloys, CDA 715 has the best overall resistance to localized attack. Its resistance to pitting is comparable to that of CDA 613 and superior to that of CDA 102. Observed rates of dealloying in CDA 715 are less than those observed in CDA 613 by orders of magnitude. The resistance of CDA 715 to SCC in tarnishing ammonical environments is comparable to that of CDA 102 and superior to that of CDA 613. Its resistance to SCC in nontarnishing ammonical environments is comparable to that of CDA 613 and superior to that of CDA 102. 22 refs., 8 figs., 4 tabs

  12. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...... is presented. Various failure modes resulting from the corrosion and influence factors are discussed including humid and gaseous conditions....

  13. An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments. Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, Jesse

    1999-01-01

    OAK-B135 An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments. Technical Progress Report. This program focuses on understanding the mechanisms causing corrosion damage to steam generator tubes in a pressurized water reactor (PWR) and the effects of the proposed remedial measures. The crevice formed by the tube/tube support plate (T/TSP) intersection in a PWR steam generator is a concentration site for nonvolatile impurities (referred to as hideout) in the steam generator water. The restricted mass transport in the small crevice volume prevents the species, which concentrate during the generation of steam, from quickly dispersing into the bulk water. The concentrated solutions in crevices have been a contributing cause of several forms of corrosion of steam generator tubes including intergranular attack/stress corrosion cracking (IGA/SCC), pitting, and wastage.

  14. Effect of Copper on Corrosion of Forged AlSi1MgMn Automotive Suspension Components

    Science.gov (United States)

    Koktas, Serhan; Gokcil, Emre; Akdi, Seracettin; Birol, Yucel

    2017-09-01

    Recently, modifications in the alloy composition and the manufacturing process cycle were proposed to achieve a more uniform structure with no evidence of coarse grains across the section of the AlSi1MgMn alloys. Cu was added to the AlSi1MgMn alloy to improve its age hardening capacity without a separate solution heat treatment. However, Cu addition degrades the corrosion resistance of this alloy due to the formation of Al-Cu precipitates along the grain boundaries that are cathodic with respect to the aluminum matrix and thus encourage intergranular corrosion. The present work was undertaken to identify the impact of Cu addition on the corrosion properties of AlSi1MgMn alloys with different Cu contents. A series of AlSi1MgMn alloys with 0.06-0.89 wt.% Cu were tested in order to identify an optimum level of Cu addition.

  15. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    Science.gov (United States)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for

  16. Présentation des phénomènes de corrosion et des différents moyens de lutte disponibles. Description of Corrosion Phenomena and Different Ways of Combating Them.

    Directory of Open Access Journals (Sweden)

    Crolet J. L.

    2006-11-01

    Full Text Available Cet article donne une présentation générale des phénomènes de corrosion des matériaux métalliques. II s'attache à montrer comment les moyens de lutte contre la corrosion découlent très naturellement de la bonne compréhension de ces phénomènes.Les aspects électrochimiques, indispensables pour cette compréhension, sont présentés de manière aussi directe et brève que possible. Les divers modes de résistance à la corrosion sont décrits, qu'il s'agisse de modes a naturels » comme l'inertie chimique, la passivité, la pseudo-passivité ou les couches de patine, ou bien encore de modes a provoqués » comme le contrôle du milieu corrosif, l'inhibition, la protection cathodique ou la protection par revêtement.Enfin, les principales interactions entre effets mécaniques et corrosion sont abordées, et en particulier l'érosion-corrosion et la fragilisation par H.S. Des conjugaisons de phénomènes comme la corrosion galvanique, la corrosion inter-granulaire, la corrosion bactérienne sont également présentées. This article gives a general description of corrosion phenomena affecting metallic materials. It attempts ta show how corrosion control and prevention methods quite naturally require a good understanding of these phenomena.The electrochemical aspects indispensable for this understanding are described as directly and briefly as possible.Various types of corrosion resistance are described, whether concerning a natural » types such as chemical inertia, passivity, pseudo-passivity or patina loyers, or else c induced types » such as contrat of the corrosive medium, inhibition, cathodic protec-tion or protection by coating.The principal` interactions between mechanical effects and corrosion are taken up, and especially erosion corrosion and H2S embrittlement. Combinations of pheno-mena are also described, such as galvanic corrosion, intergranular corrosion and bacterial corrosion.

  17. Corrosion mechanism of Z3 CN18.10 stainless steel in the presence of nitric acid condensates

    International Nuclear Information System (INIS)

    Balbaud, Fanny

    1998-01-01

    In installations handling concentrated boiling nitric acid, a severe intergranular corrosion can sometimes occur in condensation zones constituted of non-sensitized Z3 CN 18.10 stainless steel. Corrosion tests in reactors and in a specific loop, CIRCE, allowed to specify the conditions of occurrence of this type of corrosion and showed the similitude with the corrosion in non-renewed liquid nitric acid: the specific parameters linked to the condensate phase are the high ratio metallic surface area to volume of condensate and the low renewing rate which induce a concentration of oxidation products of the metal and of reduction products of nitric acid. The initiation of the intergranular corrosion is attributed to the increase in the reduction rate of nitric acid by an autocatalytic mechanism which was demonstrated by electrochemical measurements on platinum and on stainless steel. The reduction mechanism involves a charge transfer step where nitrous acid, the electro-active species, is reduced into nitrogen monoxide and a chemical regeneration reaction of nitrous acid. The thermodynamic study led to a representation of the chemical and electrochemical properties of nitric acid. This study allowed also to determine the Gibbs free energy of formation of nitrous acid in solution in concentrated nitric acid at 100 deg. C. The diagram, constructed in coordinates log(P O 2 ) / [-log(P HNO 3 )] or E eXperimental / [-log(P HNO 3 )], shows that the final reduction product of nitric acid depends on the concentration of nitric acid: at 100 deg. C, NO is obtained for concentrations lower than 8 mol.L -1 and NO 2 is obtained for higher concentrations. All these results allowed to propose a corrosion mechanism of Z3 CN 18.10 stainless steel in the presence of nitric acid condensates. [fr

  18. Stress Corrosion Crack Growth of Alloy 52M in Simulated PWR Primary Water

    Science.gov (United States)

    Toloczko, M. B.; Olszta, M. J.; Bruemmer, S. M.

    Crack-growth experiments have been performed on five different alloy 52M welds in simulated PWR primary water at 350°C or 360°C. The alloy 52M test matrix included V-groove and narrow-gap welds, an overlay on alloy 182, and an inlay on alloy 82. For the overlay and inlay materials, crack growth rates are reported only on the alloy 52M weld well beyond the dilution zone. In one of the narrow gap welds, the crack path was oriented to pass through a distribution of pre-existing weld cracks and their influence on stress-corrosion behavior is evaluated. Intergranular stress corrosion cracking (IGSCC) is observed in several alloy 52M welds, however propagation rates remain below 5x10-9 mm/s in all cases. Comparisons will be made to our previous SCC measurements on alloy 152 and 52 welds.

  19. Corrosion behaviour of 8090 alloy in saline solution with moderate aggressiveness

    International Nuclear Information System (INIS)

    Conde, A.; Damborenea, J.J.

    1998-01-01

    Corrosion studies of Al-Li alloys are not so extensive and concentrate almost exclusively on atmospheric exposure tests and accelerated laboratory tests due to the fact they provide a reasonable approximation to the real behaviour of the alloy in service conditions. This paper attempts to establish a correlation between the evolution of the impedance diagrams and the process of the attack undergone by a commercial 8090 T8171 alloy, with the aim of establishing the kinetics of the corrosion process. After 100 h of immersion, samples showed only a slight intergranular attack. As a results of the low aggressiveness of the solution no major deviations from the ideal behaviour described by the Randles circuit are expected in the impedance plots. After 50 hours of testing, the impedance diagram evolves towards two semicircles which seem to be related with the charge transfer and ionic migration through the oxide layer and the adsorption of electrolyte anions. (Author) 7 refs

  20. Relaxation and corrosion resistance of alloy 800 used for steam generator tubes of ship borne boilers

    International Nuclear Information System (INIS)

    Corrieu, J.M.; Cortial, F.; Maillard, J.L.; Vernot-Loier, C.; Lebeau, M.

    1994-01-01

    The INCO ''INCOLOY 800'' trademark groups the Fe-Cr-Ni alloys containing 30 to 35% nickel, 19 to 23% chromium, 0,15 to 0,60% aluminium, 0,15 to 0,60% titanium and less than 0,10% carbon contents, used as construction materials for condenser and heat exchanger tubes. In parallel with water chemistry control and studies aimed at reducing the residual stresses resulting from tube expansion, studies have been conducted to a better understanding of this alloy, its metallurgy and its corrosion behaviour under accurately defined fabrication and heat treatment conditions. The purpose of this paper is to present the results of a behaviour study of INDRET alloy 800 concerning isothermal relaxation and effects of the said relaxation heat treatments on alloy microstructure studied with a transmission electron-chemical method to determine the sensitiveness to intergranular corrosion, and by electrochemistry in pressurized hot water. (authors). 4 figs., 5 tabs., 7 refs

  1. Theoretical studies on the mechanical behavior of granular materials under very low intergranular stresses

    Science.gov (United States)

    French, Kenneth W., Jr.

    1986-01-01

    The salient aspects of the theoretical modeling of a conventional triaxial test (CTC) of a cohesionless granular medium with stress and strain rate loading are described. Included are a controllable gravitational body force and provision for low confining pressure and/or very low intergranular stress. The modeling includes rational, analytic, and numerical phases, all in various stages of development. The numerical evolutions of theoretical models will be used in final design stages and in the analysis of the experimental data. In this the experimental design stage, it is of special interest to include in the candidate considerations every anomaly found in preliminary terrestrial experimentation. Most of the anomalies will be eliminated by design or enhanced for measurement as the project progresses. The main aspect of design being not the physical apparatus but the type and trajectories of loading elected. The major considerations that have been treated are: appearance and growth of local surface aberrations, stress-power coefficients, strain types, optical strain, radial bead migration, and measures of rotation for the proper stress flux.

  2. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.

    2013-09-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.

  3. Atomistic Structure, Strength, and Kinetic Properties of Intergranular Films in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garofalini, Stephen H

    2015-01-08

    Intergranular films (IGFs) present in polycrystalline oxide and nitride ceramics provide an excellent example of nanoconfined glasses that occupy only a small volume percentage of the bulk ceramic, but can significantly influence various mechanical, thermal, chemical, and optical properties. By employing molecular dynamics computer simulations, we have been able to predict structures and the locations of atoms at the crystal/IGF interface that were subsequently verified with the newest electron microscopies. Modification of the chemistry of the crystal surface in the simulations provided the necessary mechanism for adsorption of specific rare earth ions from the IGF in the liquid state to the crystal surface. Such results had eluded other computational approaches such as ab-initio calculations because of the need to include not only the modified chemistry of the crystal surfaces but also an accurate description of the adjoining glassy IGF. This segregation of certain ions from the IGF to the crystal caused changes in the local chemistry of the IGF that affected fracture behavior in the simulations. Additional work with the rare earth ions La and Lu in the silicon oxynitride IGFs showed the mechanisms for their different affects on crystal growth, even though both types of ions are seen adhering to a bounding crystal surface that would normally imply equivalent affects on grain growth.

  4. Grain boundary segregation of elements of groups 14 and 15 and its consequences for intergranular cohesion of ferritic iron

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šandera, P.; Horníková, J.; Řehák, Petr; Pokluda, J.

    2017-01-01

    Roč. 52, č. 10 (2017), s. 5822-5834 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144; GA MŠk(CZ) LQ1601 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : grain boundary segregation * segregation enthalpy * intergranular fracture * strengthening/embrittling energy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.599, year: 2016

  5. Quantitative assessment of intergranular damage due to PWR primary water exposure in structural Ni-based alloys

    International Nuclear Information System (INIS)

    Ter-Ovanessian, Benoît; Deleume, Julien; Cloué, Jean-Marc; Andrieu, Eric

    2013-01-01

    Highlights: ► IG damage occurred on Ni-base alloys during exposure at high temperature water. ► Two characterization methods yield a tomographic analysis of this IG damage. ► Connected or isolated intergranular oxygen/oxide penetrations are quantified. ► Such quantitative description provides information on IGSCC susceptibility. - Abstract: Two nickel-based alloys, alloy 718 and alloy 600, known to have different resistances to IGSCC, were exposed to a simulated PWR primary water environment at 360 °C for 1000 h. The intergranular oxidation damage was analyzed in detail using an original approach involving two characterization methods (Incremental Mechanical Polishing/Microcopy procedure and SIMS imaging) which yielded a tomographic analysis of the damage. Intergranular oxygen/oxide penetrations occurred either as connected or isolated penetrations deep under the external oxide/substrate interface as far as 10 μm for alloy 600 and only 4 μm for alloy 718. Therefore, assessing this damage precisely is essential to interpret IGSCC susceptibility.

  6. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Directory of Open Access Journals (Sweden)

    Nguyen Trung-Kien

    2017-01-01

    Full Text Available This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  7. The influence of phosphorus on the corrosion of iron in calcium nitrate

    International Nuclear Information System (INIS)

    Windisch, C.F. Jr.; Baer, D.R.; Jones, R.H.; Engelhard, M.H.

    1992-01-01

    This paper reports that intergranular stress corrosion cracking (IGSCC) of metallic alloys including iron is strongly influenced by the presence of grain boundary impurities such as phosphorus. In this study to determine how phosphorus affects the corrosion of ion, electrochemical polarization methods were used in conjunction with surface analyses employing ultrahigh vacuum transfer. Specifically, these methods were used to examine the corrosion of iron, iron/phosphorus alloys, and iron implanted with phosphorus in deaerated 55 weight percent Ca(NO 3 ) 2 solutions at 60 degrees C. The presence of phosphorus in iron accelerated corrosion in both the active and passive regions, with the effect being more pronounced in the passive region. In the active region, the phosphorus was oxidized to phosphate which, in turn, appeared to assist the dissolution of the semiprotective Fe 3 O 4 . In the passive region, the phosphorus (when unoxidized) accelerated corrosion by some other mechanism. The FePO 4 that formed in the passive region did not inhibit passivation by, rather, was incorporated in the passive film. The chemical transformations would appear to explain, at least partly, the high IGSCC rates observed for ion containing phosphorus segregated at grain boundaries

  8. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    International Nuclear Information System (INIS)

    Adhe, K.N.; Kain, V.; Madangopal, K.; Gadiyar, H.S.

    1996-01-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 C for 30 min to 10 h. The heat-treated samples than undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr 23 C 6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted

  9. Stress corrosion cracking of turbine disc steels: a study of mechanism

    International Nuclear Information System (INIS)

    Gras, J.M.; Vaillant, F.; Dordonat, M.; Dury, J.P.

    1993-06-01

    Stress corrosion cracking was found to affect shrunk-on discs of 900 MW-EDF turbines. Investigations revealed that intergranular cracking occurred in high-stress confined locations, where concentrations of pollutants resulting from some assembling operations could take place (MoS 2 sometimes used as a lubricant, carbonated compounds with chloride as in paint marks). Laboratory tests allowed to assess the chemical conditions (pH, electrochemical potential, pollutants) responsible for the stress corrosion cracking of NiCrMo V-steels. Three main E-pH fields were found to favour stress corrosion cracking, whose boundaries may be dependant on the anionic species. The crack growth rates in these conditions were measured at 95 and 130 deg C, and compared to the observed average measurements from service. The most likely mechanism seems to involve molybdic acid, as a result of thermal decomposition of MoS 2 or generated by general corrosion of Mo-containing steel. Cracks might also have been initiated by carbonated compounds. The relevance of classical models to stress corrosion cracking of disc steel was discussed with respect to electrochemical behaviour. (authors). 15 refs., 8 figs., 1 tab

  10. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy.

    Science.gov (United States)

    Nair, R B; Arora, H S; Mukherjee, Sundeep; Singh, S; Singh, H; Grewal, H S

    2018-03-01

    Cavitation erosion and corrosion of structural materials are serious concerns for marine and offshore industries. Durability and performance of marine components are severely impaired due to degradation from erosion and corrosion. Utilization of advanced structural materials can play a vital role in limiting such degradation. High entropy alloys (HEAs) are a relatively new class of advanced structural materials with exceptional properties. In the present work, we report on the cavitation erosion behavior of Al 0.1 CoCrFeNi HEA in two different media: distilled water with and without 3.5wt% NaCl. For comparison, conventionally used stainless steel SS316L was also evaluated in identical test conditions. Despite lower hardness and yield strength, the HEA showed significantly longer incubation period and lower erosion-corrosion rate (nearly 1/4th) compared to SS316L steel. Enhanced erosion resistance of HEA was attributed to its high work-hardening behavior and stable passivation film on the surface. The Al 0.1 CoCrFeNi HEA showed lower corrosion current density, high pitting resistance and protection potential compared to SS316L steel. Further, HEA showed no evidence of intergranular corrosion likely due to the absence of secondary precipitates. Although, the degradation mechanisms (formation of pits and fatigue cracks) were similar for both the materials, the damage severity was found to be much higher for SS316L steel compared to HEA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963)

    International Nuclear Information System (INIS)

    Langlois, G.

    1963-01-01

    The corrosion of the following metals or alloys by UF 6 : nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [fr

  12. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.

    Science.gov (United States)

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-09-29

    The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.

  13. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments...... and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  14. SRB seawater corrosion project

    Science.gov (United States)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  15. Microbiologically Influenced Corrosion

    Science.gov (United States)

    2015-11-05

    Widdel, F. (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Envi- ronmental...inCluding oil and gas, from to 2011 [2]. Over that period of time approximately of all releases were attributed to corrosion . National ;sociati<Jn...c>fComJsicmEngineers (NACE) International [3] the cost of corrosion for onshore gas and liquid nsn1ission pipelines was $7 billion. However, there

  16. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  17. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D. (Sedco Forex, Montrouge (France)); Edwards, R. (Schlumberger Well Services, Columbus, OH (United States)); Hayman, A. (Etudes et Productions Schlumberger, Clamart (France)); Hill, D. (Schlumberger Dowell, Tulsa, OK (United States)); Mehta, S. (Schlumberger Dowell, St. Austell (United Kingdom)); Semerad, T. (Mobil Oil Indonesia, Inc., Sumatra (Indonesia))

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  18. The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloy

    International Nuclear Information System (INIS)

    Bagheri Hariri, Mohiedin; Gholami Shiri, Sajad; Yaghoubinezhad, Yadollah; Mohammadi Rahvard, Masoud

    2013-01-01

    Highlights: • No reports available on study both corrosion–mechanical properties of FSWed AA5052. • Optimum corrosion and mechanical properties of SZ were attained at (ω = 400, υ = 250). • An extremely fine grain structure was obtained in the SZ at (ω = 400, υ = 250). • At (ω = 400, υ = 250), further grain reinforcement in SZ accelerated the passivation. • Grain reinforcement in weld at (ω = 400, υ = 250) improved the mechanical properties. - Abstract: This study attempts to find an optimum combination of the welding tool rotation rate (ω) and traveling speed (υ), concerning the corrosion and mechanical properties of Friction Stir Welded (FSWed) AA5052 Aluminum alloy. The effect of the tool speeds on the FSWed AA5052 are investigated via potentiodynamic polarization, open circuit potential (OCP) monitoring, test of the susceptibility to intergranular corrosion, weight loss, tension and micro-hardness tests. Optical microscope and Scanning Electron Microscopy (SEM) were employed for studying the morphology and analyzing the probable intergranular attacks. It was found that by increasing υ up to 200 mm/min at ω = 400 rpm, the microstructural evolution is in a way that the finer grain structure intensifies the anodic reactivity of the Stir Zone (SZ). At faster υ (about 250 mm/min), further grain reinforcement resulted in a predominant effect of passive film formation and thereby an unexpected high corrosion resistant SZ with a proper mechanical characteristics was attained

  19. Electrochemical corrosion investigations on austenitic CrNi-steels in nitric acid with and without additions of metal ions

    International Nuclear Information System (INIS)

    Simon, R.

    1988-04-01

    The aim of the present work was to develop an electrochemical short-time test procedure for detecting intergranular corrosion (IGC) susceptibility of austenitic CrNi-steels in strongly oxidizing media, as e.g. concentrated nitric acid. This procedure should cover the test parameters of the usually applied ASTM Standard Huey Test, which is performed in boiling 14.4 n nitric acid. The described electrochemical test procedure - a potentiostatic polarisation of steel specimens in the transpassive range - is presented as an alternative to the Huey Test with equivalent results, but with a reduced testing time. (orig./IHOE) [de

  20. Archaeological analogs and corrosion

    International Nuclear Information System (INIS)

    David, D.

    2008-01-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  1. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  2. Corrosive Poisonings in Adults

    Science.gov (United States)

    Chibishev, Andon; Pereska, Zanina; Chibisheva, Vesna; Simonovska, Natasa

    2012-01-01

    Ingestion of corrosive substances may cause severe to serious injuries of the upper gastrointestinal tract and the poisoning can even result in death. Acute corrosive intoxications pose a major problem in clinical toxicology since the most commonly affected population are the young with psychic disorders, suicidal intent and alcohol addiction. The golden standard for determination of the grade and extent of the lesion is esophagogastroduodenoscopy performed in the first 12-24 hours following corrosive ingestion. The most common late complications are esophageal stenosis, gastric stenosis of the antrum and pyloris, and rarely carcinoma of the upper gastrointestinal tract. Treatment of the acute corrosive intoxications include: neutralization of corrosive agents, antibiotics, anti-secretory therapy, nutritional support, collagen synthesis inhibitors, esophageal dilation and stent placement, and surgery. PMID:23678319

  3. Corrosion of NdFeB permanent magnet materials

    International Nuclear Information System (INIS)

    Warren, G.W.; Gao, G.; Li, Q.

    1991-01-01

    NdFeB is an important class of new magnetic materials, however corrosion resistance is a serious concern and literature on the electrochemical behavior of NdFeB is scarce. This paper reports the results of an electrochemical investigation of the corrosion behavior of sintered NdFeB magnets obtained from three manufacturers. Linear polarization (cyclic voltammetry) experiments were conducted in aqueous solutions ranging in pH from 0.7 to 13.5. A limited degree of passivation was observed in all solutions which is believed to be due to the formation of a complex Fe-Nd oxide and/or hydroxide film. The presence of a small amount of chloride ion, 10 to 100 ppm, shows only a slight effect, but higher concentrations (1000 ppm) cause a total breakdown in passivity and a dramatic increase in anodic current. The cathodic potential sweep shows an abrupt and unusual oxidation process, giving rise to an oxidation peak not commonly seen. This peak may result from dissolution of the film or preferential attack of intergranular phases

  4. Environmental factors influencing stress corrosion cracking in boiling water reactors

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1984-01-01

    The mechanisms of intergranular stress corrosion cracking (IGSCC) of sensitized stainless steels in boiling water reactor (BWR) primary coolant are reviewed, with emphasis on the role the environment plays on both the initiation and propagation processes. Environmental factors discussed include oxygen (corrosion potential), temperature, and dissolved ions in the water and the range of strain rates at which IGSCC occurs. Both crack propagation rates and the range of strain rates at which IGSCC occurs decrease rapidly as temperature is increased above approximately 200 0 C, in essentially the same manner as the solubility of magnetite decreases in acidic solutions. A mechanism of crack propagation is presented base on this observation. To establish water chemistry guidelines for crack-free operation of BWR's containing sensitized stainless steel, more information is needed on the role of absorption of impurities in the surface and deposited oxides and on the interaction between the oxygen and impurity levels required to maintain an electrochemical potential in a range where IGSCC is unlikely to occur. The relative effects of short bursts of impurities and longer term lower concentrations of these same impurities also need to be evaluated

  5. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock-salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Koester, R.; Fiehn, B.; Halm, G.

    1991-01-01

    In previous corrosion studies performed in salt brines, unalloyed steels, Ti 99.8-Pd and Hastelloy C4 have proved to be the most promising materials for long-term resistant packagings to be used in heat-generating waste (vitrified HLW, spent fuel) disposal in rock-salt formations. Investigations of the iron-base materials Ni-Resist D2 and D4, cast iron and Si-cast iron have also been carried out in order to complete the results available to date. The three steels (fine-grained steel, low-carbon steel, cast steel) investigated and Ti 99.8-Pd resisted pitting and crevice corrosion as well as stress-corrosion cracking under all test conditions. Gamma dose-rates of 1 Gy/h - 100 Gy/h or H 2 S concentrations in the brines as well as welding and explosion plating did not influence noticeably the corrosion behaviour of the materials. Furthermore, the determined corrosion rates of the steels (50 μm/a-250 μm/a, depending on the test conditions) are intercomparable and imply technically acceptable corrosion allowances for the thick-walled containers discussed. For Ti 99.8-Pd no detectable corrosion was observed. By contrast, Hastelloy C4 proved susceptible to pitting and crevice corrosion at gamme dose-rates higher than 1 Gy/h and in the presence of H 2 S (25 mg/l) in Q-brine. The materials Ni Resist D2 and D4, cast iron and Si-cast iron corroded at negligible rates in the in-situ experiments performed in rock salt/limited amounts of NaCI-brine. Nevertheless, these materials must be ruled out as container materials because they have proved to be susceptible to pitting and intergranular corrosion in previous laboratory studies conducted with MgCI 2 -rich brine (Q-brine) in excess. 15 refs.; 29 figs.; 7 tabs

  6. Fundamental aspects of stress corrosion cracking of copper relevant to the Swedish deep geologic repository concept

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Ganesh; Carcea, Anatolie; Ulaganathan, Jagan; Wang, Shengchun; Huang, Yin; Newman, Roger C. [Dept. of Chemical Engineering and Applied Chemistry, Univ. of Toronto, Toronto (Canada)

    2013-03-15

    Phosphorus-doped oxygen-free copper will be used as the outer barrier in canisters that will contain spent nuclear fuel in the proposed Swedish underground repository. The possibility of stress corrosion cracking (SCC) is a concern, in view of isolated reports of cracking or intergranular corrosion of pure copper in sulfide solutions. This concern was addressed in the present work using copper tensile specimens provided by SKB. Methods included slow strain rate testing, constant strain tensile testing, electrochemical and surface analytical studies of corrosion products, and electron backscatter diffraction analysis of grain orientation effects on corrosion. The base solutions were prepared from NaCl or synthetic sea water with addition of varying amounts of sodium sulfide at room temperature and 80 degree Celsius. No SCC was found in any of the testing, for a range of sulfide concentrations from 5-50 mM at room temperature or 8 C, including tests where small anodic or cathodic potential displacements were applied from the open-circuit (corrosion) potential. Neither was SCC found in constant-strain immersion testing with very large strain. The Cu2S corrosion product is generally very coarse, fragile, and easily spalled off in severe corrosion environments, i.e. high sulfide concentration, high temperature, less perfect de aeration, etc. But it could also consist of very fine grains, relatively compact and adherent, on particular grain orientations when it was formed on an electro polished surface in a very well-deaerated solution. These orientations have not yet been identified statistically, although some preference for thin, adherent films was noted on orientations close to (100). The notion that the corrosion reaction is always controlled by inward aqueous-phase diffusion of sulfide may thus not be unconditionally correct for this range of sulfide concentrations; however it is hard to distinguish the role of diffusion within pores in the film. In the actual

  7. Corrosion Failures in Marine Environment

    OpenAIRE

    R. Krishnan

    1985-01-01

    This paper gives a brief description of typical marine environments and the most common form of corrosion of materials used in this environment. Some typical case histories of failures pertaining to pitting, bimetallic corrosion, dealloying, cavitation and stress corrosion cracking are illustrated as typical examples of corrosion failures.

  8. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  9. Magnetic Barkhausen Noise and Neutron Diffraction Techniques for the Study of Intergranular Residual Strains in Mild Steel

    International Nuclear Information System (INIS)

    Hutanu, Roxana; Clapham, Lynann; Rogge, Ronald

    2004-01-01

    Intergranular residual stresses (IS) are microscopic residual stresses which have been found to accumulate along the direction in steels. The direction is also the magnetic easy axis direction in steel. This work involved Magnetic Barkhausen Noise (MBN) studies on steel samples, deformed uniaxially to increasing levels of strain. The MBN results indicated that a bulk magnetic easy axis was produced by the deformation process, and neutron diffraction experiments showed that this easy axis was correlated with the tensile strain in grains oriented in the direction

  10. Local radiolysis and electrochemical corrosion potential in crevice environment

    International Nuclear Information System (INIS)

    Wada, Yoichi; Watanabe, Atsushi; Ishida, Kazushige; Tachibana, Masahiko; Shigenaka, Naoto; Kawashima, Norio; Aizawa, Motohiro

    2012-09-01

    Effects of γ-ray irradiation upon crevice corrosion (CC) of type 316L stainless steel (316L SS) as an initiation site of stress corrosion cracking in a boiling water reactor (BWR) environment have been studied using a material corrosion test loop which could be irradiated with a 60 Co γ-ray source during testing. The CC tests were conducted using crevice specimens with various crevice gaps. Scanning electron microscope observations showed that many specimen surfaces exhibited a selective grain boundary dissolution, that is intergranular attack (IGA) as a result of the CC when the crevice gap was narrower than a certain value. The initiation of IGA was accelerated by either simulated corrosion product filling or γ-ray irradiation. When γ-rays were present, the IGA was observed in a shorter immersion time than the no-irradiation condition. In the γ-ray irradiation environment, Fe oxide on the crevice specimen surface was highly oxidized and strongly adhered to the base metal. Electrochemical corrosion potentials (ECPs) inside crevice specimens were also measured under various crevice gap conditions without irradiation in order to understand the CC mechanism in high temperature water. The narrower the crevice gap of the 316L specimens was, the lower the internal ECP was. Based on comparison with the CC test results, it was concluded that the IGA occurred in the gap where the internal ECP was below -0.4 V vs SHE and difference between internal and external ECPs were very large. Even for γ-ray irradiation at 10 4 Gy/h, the internal ECP was estimated to be low since the assumed maximum production rates of radiolytic oxidants were not high enough to get a large cathodic current density in a narrower crevice gap to give high ECP on the crevice walls. However, since the γ-ray irradiation accelerated the corrosion rate of the SS inside a crevice, the ECP must not be a unique parameter governing the CC. It was assumed that oxidation of Fe 2+ ion in water near the

  11. Effects of iron content on microstructure and crevice corrosion of titanium Grade-2

    International Nuclear Information System (INIS)

    He, X.; Noel, J.J.; Shoesmith, D.W.

    2003-01-01

    The effects of iron content on microstructure and crevice corrosion of titanium Grade-2 (Ti-2) were studied using a galvanic coupling technique combined with optical microscopy and secondary ion mass spectrometry (SIMS) imaging. The study reveals that iron content has a significant effect on the microstructure and crevice corrosion behavior of Ti-2. The grain size decreases significantly with the increasing iron content. For Ti-2 material of medium iron content, crevice corrosion was readily initiated and exhibited extensive intergranular attack which could be associated with the more reactive iron-stabilized β-phase within the α-phase matrix as revealed by SIMS imaging. By contrast, Ti-2 materials with low and high iron content showed suppressed crevice attack. The small surface area of available grain boundaries in Ti-2 of low iron content accounted for this limited attack. For the material with high iron content, SIMS imaging suggest that some Ti x Fe intermetallic particles were formed. These particles may act as proton reduction catalysts and enhance crevice corrosion resistance. (author)

  12. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  13. Effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels

    International Nuclear Information System (INIS)

    Kim, Jae Young; Park, Yong Soo; Kim, Young Sik

    1998-01-01

    This paper dealt with the effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels. The experimental alloys were made by vacuum induction melting and then hot rolled. The alloys were designed by controlling Cr eq /Ni eq ratio. Two alloys had austenitic phase and one alloy showed (austenite+ferrite) du-plex phase. High nitrogen addition in austenitic alloys stabilized the austenitic structure and then suppressed the formations of ferrite and α martensite, but martensite was formed in the case of large Cr eq /Ni eq ratio and low nitrogen addition. Pitting initiation site was grain boundary in austenitic alloys and was ferrite/austenite phase boundary in duplex alloy in the HCl solution. In sulfuric acids, austenitic alloys showed uniform corrosion, but ferrite phase was preferentially corroded in duplex alloy. The preferential dissolution seems to be related with the distribution of alloying elements between ferrite and austenite. Intergranular corrosion test showed that corrosion rate by immersion Huey test had a linear relation with degree of sensitization by EPR test

  14. Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments

    Science.gov (United States)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  15. Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments

    Science.gov (United States)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1983-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  16. Fabrication of Inconel 182 weldments with environmentally induced axial stress corrosion cracks

    International Nuclear Information System (INIS)

    Walker, W.L.

    1988-01-01

    Nuclear Regulatory Commission requirements for NDE qualification have been tightened to include qualification on actual cracked specimens, rather than specimens with EDM notches and drilled holes. In the past, the emphasis has been on specimens of type 304 stainless steel with intergranular stress corrosion cracking in weld heat-affected zones. More recently, interdendritic stress corrosion cracking of Inconel 182 welds has been observed in operating BWRs and a need has arisen for laboratory specimens of this type. EPRI has addressed this need in the past with the production of 0.75-in.- and 1.5-in.-thick specimens, but these were relatively small specimens that did not incorporate the geometric considerations associated with large-diameter weldments. To overcome the shortcomings of the earlier specimens, a full-size 28-in.-diameter nozzle-to-recirculation pipe weld mockup will be prepared with environmentally induced interdendritic stress corrosion cracking in the Inconel 182 weldment. The current program consists of three phases: demonstration of the acoustic invisibility of weld-incorporated implants; production of environmental interdendritic stress corrosion cracks in 0.5-in.- and 0.75-in.-thick Inconel 182 weldments; and incorporation of cracked sections of the small specimens into the full-size Inconel 182 weldment between 4-in.-long rings of A508 Class 2 low-alloy steel and type 316L stainless steel. The fabrication of these weldments is described

  17. Corrosion-resistant uranium

    Science.gov (United States)

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  18. Corrosion of PWR steam generators

    International Nuclear Information System (INIS)

    Garnsey, R.

    1979-01-01

    Some designs of pressurized water reactor (PWR) steam generators have experienced a variety of corrosion problems which include stress corrosion cracking, tube thinning, pitting, fatigue, erosion-corrosion and support plate corrosion resulting in 'denting'. Large international research programmes have been mounted to investigate the phenomena. The operational experience is reviewed and mechanisms which have been proposed to explain the corrosion damage are presented. The implications for design development and for boiler and feedwater control are discussed. (author)

  19. BWR steel containment corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  20. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  1. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  2. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and ``quasi-cleavage'' fracture of lath martensitic steels

    Science.gov (United States)

    Nagao, Akihide; Dadfarnia, Mohsen; Somerday, Brian P.; Sofronis, Petros; Ritchie, Robert O.

    2018-03-01

    Hydrogen embrittlement of lath martenistic steels is characterized by intergranular and "quasi-cleavage" transgranular fracture. Recent transmission electron microscopy (TEM) analyses (Nagao et al., 2012a, 2014a, 2014b, 2014c) of samples lifted from beneath fracture surfaces through focused ion beam machining (FIB) revealed a failure mechanism that can be termed hydrogen-enhanced-plasticity mediated decohesion. Fracture occurs by the synergistic action of the hydrogen-enhanced localized plasticity and decohesion. In particular, intergranular cracking takes place by dislocation pile-ups impinging on prior austenite grain boundaries and "quasi-cleavage" is the case when dislocation pile-ups impinge on block boundaries. These high-angle boundaries, which have already weakened by the presence of hydrogen, debond by the pile-up stresses. The micromechanical model of Novak et al. (2010) is used to quantitatively describe and predict the hydrogen-induced failure of these steels. The model predictions verify that introduction of nanosized (Ti,Mo)C precipitates in the steel microstructure enhances the resistance to hydrogen embrittlement. The results are used to discuss microstructural designs that are less susceptible to hydrogen-induced failure in systems with fixed hydrogen content (closed systems).

  3. Effect of specimen size on intergranular mode fracture toughness of Cr-Mo-V steel in the transition temperature region

    International Nuclear Information System (INIS)

    Shimomura, Keiichi; Shoji, Tetsuo; Takahashi, Hideaki; Saito, Kiyoshi.

    1986-01-01

    A determination procedure of intergranular mode fracture toughness has been studied on the basis of elastic-plastic fracture mechanics and by use of AE technique to detect an onset of microscopic pop-in cracking at the crack front. Experiments were performed on a steam turbine rotor steel (Cr-Mo-V steel) at 150 deg C, and four different sizes of compact tension specimens having the thickness of 10 mm(0.4TCT), 25 mm(1TCT), 50 mm(2TCT), and 100 mm(4TCT) were used. In combination with the fractographic observation on fractured surfaces, the fracture toughness determined by AE technique, J iAE , was proposed as the critical J-integral value characterizing an onset of a microscopic intergranular mode pop-in fracture, and its size effects was discussed. Each lower value of K JAE (= √(E · J iAE /(1 - ν 2 ))) obtained from smaller specimens such as 0.4TCT and 1TCT specimens was coincident with that from the large specimens. Furthermore, the toughness values of 2TCT and 4TCT specimens, K IC(AE) , met the size requirement for the plane-strain fracture toughness, and were about 76 percent of the valid K IC . This evidence suggests that the fracture toughness by AE technique proposed here is a suitable parameter to the toughness value of the brittle fracture initiation more conservative than the plane-strain fracture toughness value. (author)

  4. First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism

    International Nuclear Information System (INIS)

    Zhang Ying; Lu Guanghong; Hu Xuelan; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi

    2007-01-01

    We have performed a first-principles computational tensile test (FPCTT) on an Na-segregated Al grain boundary (GB) with an Si additive. We show that the Si additive in the GB greatly increases both the tensile strength and the toughness of the Na-segregated Al GB. We demonstrate that the final GB fracture is dominated by the breaking of interfacial stronger Al-Si bonds according to the bond evolution with increasing strain. Based on the Na-induced Al intergranular embrittlement mechanism explored before and the present calculation results, we propose a GB-strengthening mechanism by adding a strengthening element such as Si for Al alloy to suppress the intergranular embrittlement by an Na impurity. Such an intergranular embrittlement suppression mechanism can explain the experimental observations

  5. Characterizing the effect of creep on stress corrosion cracking of cold worked Alloy 690 in supercritical water environment

    Science.gov (United States)

    Zhang, Lefu; Chen, Kai; Du, Donghai; Gao, Wenhua; Andresen, Peter L.; Guo, Xianglong

    2017-08-01

    The effect of creep on stress corrosion cracking (SCC) was studied by measuring crack growth rates (CGRs) of 30% cold worked (CW) Alloy 690 in supercritical water (SCW) and inert gas environments at temperatures ranging from 450 °C to 550 °C. The SCC crack growth rate under SCW environments can be regarded as the cracking induced by the combined effect of corrosion and creep, while the CGR in inert gas environment can be taken as the portion of creep induced cracking. Results showed that the CW Alloy 690 sustained high susceptibility to intergranular (IG) cracking, and creep played a dominant role in the SCC crack growth behavior, contributing more than 80% of the total crack growth rate at each testing temperature. The temperature dependence of creep induced CGRs follows an Arrhenius dependency, with an apparent activation energy (QE) of about 225 kJ/mol.

  6. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  7. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...

  8. Effect of laser-arc hybrid welding on fracture and corrosion behaviour of AA6061-T6 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Daquan, E-mail: zhdq@sh163.net [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Jin Xin; Gao Lixin [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Joo, Hyung Goun [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Kang Yong, E-mail: KYL2813@yonsei.ac.kr [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-03-15

    Research highlights: {yields} A dendritic cellular structure was formed in the weld fusion zone (WFZ) and caused alloying element segregation. {yields} The precipitation of intermetallic phases and the formation of galvanic corrosion couplings contribute to the improving pitting susceptibility in the WFZ. {yields} The intergranular corrosion nucleates on pit walls and spreads from them. - Abstract: The welding condition of the hybrid laser-gas metal arc (GMA) welding for AA6061-T6 alloy was optimized by tensile test. Formability performance was checked by the bend test. Fractographic analysis indicates a large number of fine ductile type voids in the fracture surface. The microstructure measurements exhibit a dendritic cellular structure in the weld fusion zone (WFZ) and a partially melted zone adjacent to the fusion boundaries. The corrosion behaviour of the weldment and the base alloy were investigated by weight-loss test in nitric acid solution. The WFZ suffers more severe pitting than the rest regions in the weldment. It shows that corrosion cracking is owing to the precipitation of intermetallic phases and the formation of galvanic corrosion couplings in the weldment of AA6061-T6 alloy.

  9. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  10. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR; Evaluacion del agrietamiento por corrosion bajo esfuerzo en ambientes de reactores nucleares tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C. R.

    2010-07-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  11. Evaluation of corrosive behavior of SAE 5155 by corrosion environment

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2005-01-01

    In this study, the influence of shot peening and corrosive condition for corrosion property was investigated on immersed in 3.5% NaCl, 10% HNO 3 + 3% HF, 6% FeCl 3 . The immersion test was performed on two kinds of specimen. The immersion periods was performed 30days. Corrosion potential, weight loss were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated

  12. Corrosion testing facilities in India

    International Nuclear Information System (INIS)

    Viswanathan, R.; Subramanian, Venu

    1981-01-01

    Major types of corrosion tests, establishment of specifications on corrosion testing and scope of their application in practice are briefly described. Important organizations in the world which publish specifications/standards are listed. Indian organizations which undertake corrosion testing and test facilities available at them are also listed. Finally in an appendix, a comprehensive list of specifications relevant to corrosion testing is given. It is arranged under the headings: environmental testing, humidity tests, salt spray/fog tests, immersion tests, specification corrosion phenomena, (tests) with respect to special corrosion media, (tests) with respect to specific corrosion prevention methods, and specific corrosion tests using electrical and electrochemical methods (principles). Each entry in the list furnishes information about: nature of the test, standard number, and its specific application. (M.G.B.)

  13. Corrosion inhibitors for concrete bridges.

    Science.gov (United States)

    2004-12-01

    Deicing salts and salt-water spray can cause serious corrosion problems for reinforced concrete bridge structures. : These problems can lead to costly and labor-intensive repair and even replacement of the structure. Surface applied : corrosion inhib...

  14. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold is rea......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure.......A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold...

  15. Intergranular aspects of the oxidation of austenitic stainless steels by water vapor at 6000C

    International Nuclear Information System (INIS)

    Hersubeno, J.B. de la S.

    1982-06-01

    This work deals with the corrosion of 17 Cr-13 Ni stainless steel poly- and bicrystals by steam at 600 0 C. For studying the reactions kinetics, several methods were used: discontinuous and continuous (thermobalance) gravimetric techniques, metallography on sections and analysis of the oxides layers (electronic microprobe and radiocrystallography). The main results are the following: - after an ''induction'' period of variable duration, the oxidation kinetics is roughly parabolic. The constants Ksub(p) of the parabolic laws (between 2 and 4x10 -2 μm 2 h -1 for the oxides layers thickness) as well as the induction durations (between 5 and 50 hours) depend on the orientation of crystalline faces exposed to the steam; - oxidation proceeds by formation of an iron, chromium and nickel spinel layer in contact with the alloy and of an external magnetite layer. The spinel layer nearly fills the space left by alloy regression; - the grains boundaries are subject to penetrations or thickness reductions of the spinel layer. This phenomena are strongly related to grains misorientations; for symetrical tilt bicrystals of [001] axis, the boundaries with low (8 0 , 15 0 ) and (67 0 ) misorientations are the most deeply oxidized [fr

  16. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  17. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, M.; de la Fuente, D.; Díaz, I.; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morphology of steel c...

  18. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, Manuel; Fuente, Daniel de la; Díaz, Iván; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morpholog...

  19. Study of intergranular precipitation in Al 6.8 pc at. Zn and Al 12.1 pc at. Zn

    International Nuclear Information System (INIS)

    Bouzaher, Abdallah

    1981-01-01

    As the homogeneous decomposition of alloys with structural hardening is generally accompanied by an heterogeneous precipitation on defects such as dislocations, grain boundaries, and so on, this research thesis reports the study of intergranular precipitation in a Al Zn alloy (Al 15 pc wt.Zn and Al 25 oc wt.Zn) by using transmission electronic microscopy for a local and direct observation of precipitation at grain boundaries. Moreover, possibilities of diffraction of present phases allow their structures and possible epitaxies to be determined. This technique also allows grain boundaries to be analysed and their parameters to be determined. In order to study bare areas and boundary migration, scanning electronic microscopy has been used on massive samples, and X ray analysis has been used on thin ones

  20. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  1. Accelerated cyclic corrosion tests

    Directory of Open Access Journals (Sweden)

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  2. Stress corrosion cracking of iron-nickel-chromium alloys in primary circuit environment of PWR-type reactors

    International Nuclear Information System (INIS)

    Boursier, Jean-Marie

    1993-01-01

    Stress corrosion cracking of Alloy 600 steam generator tubing is a great concern for pressurized water reactors. The mechanism that controls intergranular stress corrosion cracking of Alloy 600 in primary water (lithiated-borated water) has yet to be clearly identified. A study of stress corrosion cracking behaviour, which can identify the main parameters that control the cracking phenomenon, was so necessary to understand the stress corrosion cracking process. Constant extension rate tests, and constant load tests have evidenced that Alloy 600 stress corrosion cracking involves firstly an initiation period, then a slow propagation stage with crack less than 50 to 80 micrometers, and finally a rapid propagation stage leading to failure. The influence of mechanical parameters have shown the next points: - superficial strain hardening and cold work have a strong effect of stress corrosion cracking resistance (decrease of initiation time and increase of crack growth rate), - strain rate was the most suitable parameter for describing the different stage of propagation. The creep behaviour of alloy 600 has shown an increase of creep rate in primary water compared to air, which implies a local interaction plasticity/corrosion. An assessment of the durations of the initiation and the propagation stages was attempted for the whole uniaxial tensile tests, using the macroscopic strain rate: - the initiation time is less than 100 hours and seems to be an electrochemical process, - the durations of the propagation stage are strongly dependent on the strain rate. The behaviour in high primary water temperature of Alloys 690 and 800, which replace Alloy 600, was studied to appraise their margin, and validate their choice. Then the last chapter has to objective to evaluate the crack tip strain rate, in order to better describe the evolution of the different stages of cracking. (author) [fr

  3. The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mirhashemihaghighi, Shadi; Światowska, Jolanta [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Maurice, Vincent, E-mail: vincent.maurice@chimie-paristech.fr [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Seyeux, Antoine; Klein, Lorena H. [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Salmi, Emma; Ritala, Mikko [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Marcus, Philippe [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-30

    Highlights: • 10–50 nm thick alumina coatings were grown on copper by atomic layer deposition. • Surface smoothening by substrate annealing was studied as pre-deposition treatment. • Corrosion protection is promoted by pre-treatment for 10 nm but not for thicker films. • Local adhesion failure is assigned to the stresses accumulated in the thicker films. • Surface smoothening decreases the interfacial strength bearing the film stresses. - Abstract: Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 °C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries.

  4. Effect of thermal stabilization on the low-temperature stress-corrosion cracking of Inconel 600

    International Nuclear Information System (INIS)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    The propensity to low-temperature stress-corrosion cracking (SCC) of thermally stabilized Inconel 600 in sulfur-bearing environments has been investigated using U-bends and slow-strain-rate testing. The results have been compared with those of sensitized Inconel 600. The potential dependence of crack-propagation rate has been established in a single test by using several U-bends held at different potentials, by choosing an appropriate electrical circuitry. The difference in SCC susceptibility of the sensitized and stabilized materials is discussed in terms of the grain-boundary chromium depletion and resulting intergranular attack in boiling ferric sulfate-sulfuric acid tests, and electrochemical potentiokinetic reactivation (EPR) tests. 10 figures

  5. Stress Corrosion Cracking of Zircaloy-4 in Halide Solutions: Effect of Temperature

    Directory of Open Access Journals (Sweden)

    Farina S.B.

    2002-01-01

    Full Text Available Zircaloy-4 was found to be susceptible to stress corrosion cracking in 1 M NaCl, 1 M KBr and 1 M KI aqueous solutions at potentials above the pitting potential. In all the solutions tested crack propagation was initially intergranular and then changed to transgranular. The effect of strain rate and temperature on the SCC propagation was investigated. An increase in the strain rate was found to lead to an increase in the crack propagation rate. The crack propagation rate increases in the three solutions tested as the temperatures increases between 20 and 90 °C. The Surface-Mobility SCC mechanism accounts for the observation made in the present work, and the activation energy predicted in iodide solutions is similar to that found in the literature.

  6. Stress corrosion crack initiation of alloy 600 in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2017-07-01

    Stress corrosion crack (SCC) initiation of three mill-annealed (MA) alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular (IG) attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and IGSCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Processes controlling the SCC initiation in MA alloy 600 are discussed. IN PRESS, CORRECTED PROOF, 05/02/2017 - mfl

  7. Investigation into the role of lead in free-span axial corrosion at Oconee Nuclear Station

    International Nuclear Information System (INIS)

    Rochester, D.P.; Eaker, R.W.; Wald, J.D.

    2002-01-01

    In 1994 and 1996, tubes removed from the Oconee Nuclear Station once through steam generators (OTSG) confirmed the presence of intergranular stress corrosion cracking (IGSCC) in the free-span region. The IGSCC is occurring in the superheated region of the steam generators, which is an area with no crevices and very light surface deposits. The tubes were subjected to a variety of routine examination techniques such as metallography, scanning electron microscopy (SEM), and Auger electron spectroscopy (AES). These analyses provided considerable information, but were inconclusive in determining the specific damage mechanism involved. Consequently, the tubes were analyzed by secondary ion mass spectroscopy (SIMS), high-resolution X-ray photoelectron spectroscopy (XPS), and analytical transmission electron microscopy (ATEM). The results of these analyses revealed features, morphologies and chemical contaminants, which included lead, that were not apparent by the more traditional analyses. (authors)

  8. Metallurgical study of stress corrosion in aqueous media of alloy 600 (NC15Fe)

    International Nuclear Information System (INIS)

    Garriga-Majo, Denis

    1993-01-01

    The development of intergranular cracks have been noticed in steam generator tubes made of alloy 600. These cracks result in tube embrittlement, and several actions have been implemented to try to improve tube strength, mainly by reducing the applied mechanical solicitations. For given temperature, chemistry and mechanical solicitations, the alloy sensitivity seems to depend on its micro-structural condition. Thus, after a general description of stress corrosion cracking phenomena, the main existing theories are reviewed as well as means to reproduce these cracking phenomena in laboratory. The author addresses general and microstructure properties of Alloy 600, metallurgical, electrochemical or mechanical parameters which govern its stress corrosion cracking behaviour, and different theories proposed to model and predict this behaviour. In the second part, the author studies the structure of Alloy 600 tubes before their installation in the steam generator: metallurgical study, search for parameters enabling the prediction of tube microstructure and tensile characteristics, study of the origin of microstructure differences with respect to tube fabrication batch. The third part addresses the study of Alloy 600 plasticity and creep with respect to its micro-structural condition, with a particular attention to material deformation mechanisms at grain boundaries. The fourth part reports the analysis of the stress corrosion behaviour of steam generator tubes in pure water and in primary environment [fr

  9. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen

    International Nuclear Information System (INIS)

    Bouvier, O. de; Bouchacourt, M.; Fruzzetti, K.

    2002-01-01

    Flow accelerated corrosion (FAC) of carbon steels has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (i.e. pH and oxygen content), temperature, hydrodynamic or mass transfer conditions (i.e. flow velocity, geometry, steam quality..) and steel composition on the corrosion kinetics has been demonstrated both theoretically and experimentally. However, the effect of a reducing environment and variable redox conditions have not yet been fully explored. It's well known that a reducing environment is effective in increasing the resistance of steam generator tubing to intergranular attack / stress corrosion cracking (IGA/SCC) and pitting. In that way, secondary water chemistry specifications have been modified from low hydrazine to high hydrazine chemistry in the steam-water circuit. Nevertheless, increasing hydrazine levels up to 200 μg/kg could have a detrimental effect by potentially enhancing the FAC process. Moreover, in order to have a complete understanding of the possible impact of the water chemistry environment it is also important to consider the impact of redox conditions during shutdowns (cold and/or hot shutdowns) and start up periods when aerated water injections are made to maintain a constant water level in the Steam Generators from the auxiliary feedwater circuit. Therefore, a common EDF and EPRI R and D effort has been recently carried out to study the effects of hydrazine and oxygen on FAC. The results are presented as follows. (authors)

  10. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel

    International Nuclear Information System (INIS)

    Lu, B.T.; Chen, Z.K.; Luo, J.L.; Patchett, B.M.; Xu, Z.H.

    2005-01-01

    The effect of microstructural changes in 304 austenitic stainless steel induced by the processes of gas tungsten arc welding (GTAW) and laser-beam welding (LBW) on the pitting and stress corrosion cracking (SCC) behaviors was investigated. According to the in situ observations with scanning reference electrode technique (SRET) and the breakdown potentials of the test material with various microstructures, the GTAW process made the weld metal (WM) and heat-affected zone (HAZ) more sensitive to pitting corrosion than base metal (BM), but the LBW process improved the pitting resistance of the WM. In the initiation stage of SCC, the cracks in the BM and HAZ propagated in a transgranular mode. Then, the crack growth mechanism changed gradually into a mixed transgranular + intergranular mode. The cracks in the WM were likely to propagate along the dendritic boundaries. The crack initiation rate, crack initiation lifetime and crack propagation rate indicated that the high-to-low order of SCC resistance is almost the same as that for pitting resistance. High heat-input (and low cooling rate) was likely to induce the segregation of alloying elements and formation of Cr-depleted zones, resulting in the degradation in the corrosion resistance

  11. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, O. de [EDF, R and D Div., Moret sur Loing (France); Bouchacourt, M. [EDF, Engineering and Service Div., Villeurbanne (France); Fruzzetti, K. [EPRI, Science and Technology Div., Palo Alto, CA (United States)

    2002-07-01

    Flow accelerated corrosion (FAC) of carbon steels has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (i.e. pH and oxygen content), temperature, hydrodynamic or mass transfer conditions (i.e. flow velocity, geometry, steam quality..) and steel composition on the corrosion kinetics has been demonstrated both theoretically and experimentally. However, the effect of a reducing environment and variable redox conditions have not yet been fully explored. It's well known that a reducing environment is effective in increasing the resistance of steam generator tubing to intergranular attack / stress corrosion cracking (IGA/SCC) and pitting. In that way, secondary water chemistry specifications have been modified from low hydrazine to high hydrazine chemistry in the steam-water circuit. Nevertheless, increasing hydrazine levels up to 200 {mu}g/kg could have a detrimental effect by potentially enhancing the FAC process. Moreover, in order to have a complete understanding of the possible impact of the water chemistry environment it is also important to consider the impact of redox conditions during shutdowns (cold and/or hot shutdowns) and start up periods when aerated water injections are made to maintain a constant water level in the Steam Generators from the auxiliary feedwater circuit. Therefore, a common EDF and EPRI R and D effort has been recently carried out to study the effects of hydrazine and oxygen on FAC. The results are presented as follows. (authors)

  12. Manufacturing method for intragranular stress corrosion cracking-induced test specimen for stainless steel pipeline

    International Nuclear Information System (INIS)

    Futagawa, Kiyoshi.

    1994-01-01

    In a manufacturing step for intragranular stress corrosion cracking-induced for stainless steel pipelines, pipe are abutted against with each other and welded, and a heat affected portion is applied with a sensitizing heat treatment. Further, a crevice jig is attached near the heat affected portion at the inner surface of the pipe and kept in a chlorine ion added water under high temperature and high pressure at a predetermined period of time. If tap water is used instead of purified water for C.P.T. test in a step of forming sample of IGSCC (intergranular stress corrosion cracking), since the chlorine ion concentration in the tap water is relatively high, TGSCC (intragranular stress corrosion crackings caused in all of the samples. A heat input and an interlayer temperature are determined for the material of stainless pipe having a carbon content of more than 0.05% so that the welding residual stress on the inner surface is applied as tension. The condition for the heat treatment is determined as, for example, 500degC x 24hr, and the samples are kept under water at high temperature and high pressure applied with chlorine ions for 500 to 200hours. As a result, since samples of TGSCC can be formed by utilizing the manufacturing step for IGSCC, there is no requirement for providing devices for applying environmental factors separately. (N.H.)

  13. Corrosion Behavior of SnO2-based Electrode Ceramics in Soda-lime Glass Liquid

    International Nuclear Information System (INIS)

    Luo Guoqiang; Shen Qiang; Li Qizhong; Zhang Dongming; Wang Chuanbin; Zhang Lianmeng

    2011-01-01

    Dense SnO 2 -based electrode ceramics have extensive application prospect in glass electric-melting industry due to the excellent electrically-conductive and chemical property in high temperatures and oxidation environment. In this paper, dense SnO 2 -based electrode ceramics doped with MnO 2 and Sb 2 O 3 were prepared by pressureless sintering method and the corrosion rate in soda-lime glass liquid as well as the microstructure evolution was mainly investigated. The results suggested that SnO 2 -based ceramics had good corrosion resistance, and the minimum value was only 2.54x10 -4 mm/h when MnO2 content is 1.0% and Sb 2 O 3 content is 0.1%. Composition Elements of Glass liquid were detected in the grain boundary and some intergranular pores. It was found that SnO 2 grains remained unchanged, whereas MnO 2 was easily dissolved into molten glass liquid. SnO 2 -based electrode ceramics with dense structure and few amounts of additives had excellent corrosion resistance to the molten glass.

  14. Stress corrosion cracking behavior of weldments of ferritic stainless steels in high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Shimogori, Kazutoshi

    1985-01-01

    Considering the application of a ferritic stainless steel as heat exchanger tubing for a moisture separator reheater of light water reactors, stress corrosion cracking behavior at the weldment of commercial ferritic stainless steels in high temperature pure water was studied. Double U-bend method was used for the study and the relationship with microstructure was discussed. Welded joint of Type 439SS containing 0.021% C, 0.025% N and 0.27% Ti with In-82 type filler metal was susceptible to intergranular stress corrosion cracking if a tight crevice was provided by inserting a teflon sheet between the inner and outer specimens of double U-bend. This was attributable to the formation of chromium depleted zone due to the precipitation of chromium carbides/nitrides along ferrite grain boundaries. On the other hand welded joint of Type 444SS with 0.007% C, 0.010% N and 0.26% Nb was immune to stress corrosion cracking, and this might be attributed to the higher ratio of Nb/(C+N) content. (author)

  15. Irradiation assisted stress corrosion cracking of low carbon stainless steel in BWR

    International Nuclear Information System (INIS)

    Mayuzumi, Masami

    2008-01-01

    Some examples and characteristics of old intergranular stress corrosion cracking (IGSCC) and the improvement methods are described. Stress corrosion cracking (SCC) of low carbon stainless steel in the core shroud and major piping of BWR has been reported since 1990. Most parts of them start at the transgranular stress corrosion cracking (TGSCC) and progress to IGSCC. The shape of crack is originated by the residual tensile stress that depends on welding and mechanical processing. The chromium-deficient layer was not observed. The crack progressed from the parent materials to the deposited metal with low content of ferrite. SCC crack growth rates of type SUS316 were 1/10 of type SUS304 stainless steel. The countermeasures of SCC of low carbon stainless steel to control its generation and progressing are stated. Method for SCC of major piping can include the introduction heating stress improvement (IHSI) and narrow gap edge welding. Methods for SCC of shroud include the laser peening, water jet peening, and polish processing. (S.Y.)

  16. Accelerated Stress Corrosion Crack Initiation of Alloys 600 and 690 in Hydrogenated Supercritical Water

    Science.gov (United States)

    Moss, Tyler; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.

  17. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR

    International Nuclear Information System (INIS)

    Arganis J, C. R.

    2010-01-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  18. Tensile stress corrosion cracking of type 304 stainless steel irradiated to very high dose

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.

    2001-09-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to {approximately}50 dpa at {approximately}370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

  19. Corrosion of bio implants

    Indian Academy of Sciences (India)

    Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used ...

  20. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  1. Corrosion in seawater systems

    International Nuclear Information System (INIS)

    Henrikson, S.

    1988-01-01

    Highly alloyed stainless steels have been exposed to natural chlorinated and chlorine-free seawater at 35 deg. C. Simulated tube-tubesheet joints, weld joints and galvanic couples with titanium, 90/10 CuNi and NiAl bronze were tested and evaluated for corrosion. The corrosion rates of various anode materials - zinc, aluminium and soft iron - were also determined. Finally the risk of hydrogen embrittlement of tubes of ferritic stainless steels and titanium as a consequence of cathodic protection was studied. An attempt was also made to explain the cracking mechanism of the ferritic steels by means of transmission electron microscopy. One important conclusion of the project is that chlorinated seawater is considerably more corrosive to stainless steels than chlorine-free water, whereas chlorination reduces the rate of galvanic corrosion of copper materials coupled to stainless steels. Hydrogen embrittlement of ferritic stainless steels and titanium as a consequence of cathodic protection of carbon steel or cast iron in the same structure can be avoided by strict potentiostatic control of the applied potential. (author)

  2. Smart Coatings for Corrosion Protection

    Science.gov (United States)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  3. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Ibe, Eishi; Nakata, Kiyatomo; Fuse, Motomasa; Ohsumi, Katsumi; Takashima, Yoshie

    1995-01-01

    Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the crack growth rate, even if microcracks are present on the structural materials. Several disadvantage caused by HWC are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated base on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of Hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants -- e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom -- are planned that would collect data to support the theoretical considerations

  4. Effects of hardness and test temperature on the stress-corrosion cracking susceptibility of carbon steel in simulated BWR environment

    International Nuclear Information System (INIS)

    Nakayama, Guen; Akashi, Masatsune

    1998-01-01

    Carbon steels which are used for such as water supply line, core spray line, and clean up heat exchanger in Boiling Water Reactor (BWR) Plant, are main structural materials as well as an austenitic stainless steels, and Ni based alloys. It has been well known that carbon steels can become susceptible to stress-corrosion cracking (SCC) in BWR primary coolant water environments, i.e., the high-temperature, high-purity water containing dissolved oxygen. Nevertheless, their sensitivity of SCC appears to be markedly smaller compared to that of weld-sensitized Type 304 stainless steels, whole failure has often been observed. This paper examines the critical condition, especially effects of hardness, and temperature for the initiation of SCC by means of Slow Strain Rate Tensile (SSRT) test, and Creviced Bent Beam (CBB) test as laboratory accelerated tests. It has been shown that, (1) Intergranular stress-corrosion cracking (IGSCC) initiates over hardness of Hv 400 for single bead weld material, simulated corner weld; (2) in middle temperature domain around 160 to 190degC range, so many stress-corrosion cracks initiate, but each crack is not so deep, on the other hand, in high temperature domain, stress-corrosion cracks initiate few in number, but each cracks is developed so deep. (author)

  5. Tensile and stress corrosion cracking properties of type 304 stainless steel irradiated to a very high dose

    International Nuclear Information System (INIS)

    Chung, H.M.; Strain, R.V.; Shack, W.J.

    2001-01-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20-100 displacement per atom or dpa) by the end of life. Our databases and mechanistic understanding of the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high doses, i.e. is it purely mechanical failure or is it stress-corrosion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-II reactor after irradiation to ∼50 dpa at ∼370 deg. C. Slow-strain-rate tensile tests were conducted at 289 degree sign C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microscopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at a low ECP, and this susceptibility led to a poor work-hardening capability and low ductility

  6. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods

    Science.gov (United States)

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-01-01

    The keeper and cast dowel–coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt–chromium, CoCr; silver–palladium–gold, PdAu; gold–platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr–keeper complex but not to the AuPt–keeper complex. Only the keeper area of cast CoCr–keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt–keeper complexes had the highest free corrosion potential, followed by the PdAu–keeper complex. We concluded that although the corrosion resistance of the CoCr–keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr– and PdAu–keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt–keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area. PMID:27388806

  7. Corrosion research from the practical view - 1987

    International Nuclear Information System (INIS)

    Behrens, D.; Rahmel, A.; Baselt, J.P.

    1987-09-01

    This volume contains brief descriptions of R+D projects in corrosion research, including those just terminated, those still going on, and those due to begin soon. On the whole, the brief accounts cover 133 individual projects. The topics of the nine project groups are: Hydrogen-induced material damage; stress-cracking corrosion; fatigue cracking corrosion and local corrosion; fluid-flow-induced corrosion; high-temperature corrosion; material behaviour in waters and soils; corrosion in special media; material behaviour in seawater; corrosion protection by means of coatings and coverings; testing procedures for detecting material damage due to corrosion. (orig./MM) [de

  8. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  9. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  10. Corrosion control for low-cost reliability

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This conference was held September 19-24, 1993 in Houston, Texas to provide a forum for exchange of state-of-the-art information on corrosion. Topics of interest focus on the following: atmospheric corrosion; chemical process industry corrosion; high temperature corrosion; and corrosion of plant materials. Individual papers have been processed separately for inclusion in the appropriate data bases

  11. Effect of Heat Treatments on the Microstructure, Hardness and Corrosion Behavior of Nondendritic AlSi9Cu3(Fe Cast Alloy

    Directory of Open Access Journals (Sweden)

    Nacer ZAZI

    2013-09-01

    Full Text Available In this paper we studied the influence of heat treatments on properties of AlSi9Cu3(Fe nondendritic cast alloy. Solution heat treatment, six hours at 520 °C, while making the grains more spherical modifies corrosion morphology into intergranular corrosion and corrosion surrounding spherical particles in 3 % NaCl solution. Past solution treatment, quenching at 520 °C after one hour with two weeks of natural aging transform the shape of grains into equiaxes form. Two weeks of natural aging and 30 minutes of aging at 150, 200, 250 °C after solution treatment and quenching give birth to the "Chinese script" form of the Al15(MnFe3Si intermetallic particles. The prolongation of the duration period of aging to one hour at 200 °C is sufficient to transform the morphology of corrosion into located corrosion by pitting, and a longer aging cancels the "Chinese script" form. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1397

  12. Low-energy EDX--a novel approach to study stress corrosion cracking in SUS304 stainless steel via scanning electron microscopy.

    Science.gov (United States)

    Meisnar, Martina; Lozano-Perez, Sergio; Moody, Michael; Holland, James

    2014-11-01

    Intergranular stress corrosion cracking (IGSCC) in type SUS304 stainless steels, tested under pressurized water reactor (PWR) primary water conditions, has been characterized with unprecedented spatial resolution using scanning electron microscopy (SEM) and novel low-energy (∼3 kV) energy dispersive X-ray spectroscopy (EDX). An advancement of the large area silicon drift detector (SDD) has enhanced its sensitivity for X-rays in the low-energy part of the atomic spectrum. Therefore, it was possible to operate the SEM at lower accelerating voltages in order to reduce the interaction volume of the beam with the material and achieve higher spatial resolution and better signal-to-noise ratio. In addition to studying the oxide chemistry at the surface of intergranular stress corrosion cracks, the technique has proven capable of resolving Ni enrichment ahead of some crack tips. Active cracks could be distinguished from inactive ones due to the presence of oxides in the open crack and Ni-rich regions ahead of the crack tip. Furthermore, it has been established that SCC features can be better resolved with low-energy (3 kV) than high-energy (12 kV) EDX. The low effort in sample preparation, execution and data analysis makes SEM the ideal tool for initial characterization and selection of the most important SCC features such as dominant cracks and interesting crack tips, later to be studied by transmission electron microscopy (TEM) and atom probe tomography (APT). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Microbiologically Influenced Corrosion

    Science.gov (United States)

    2009-01-01

    Aliphatic amines and nitrites used as corrosion inhibitors can be degraded by microorganisms, decreasing the effectiveness of the compounds and...workers (123) reported that silicone rubber dental liners could be degraded by yeasts. Moisture and chemical resistant polymeric coatings and...to be susceptible. 7.5. Concrete. Concrete is an inert aggregate, such as rock and gravel, surrounded by a cement binder. Concrete is a moderately

  14. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  15. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li{sub 2}BeF{sub 4}(FLiBe) salt

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Guiqiu, E-mail: guiqiuzheng@gmail.com [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); He, Lingfeng [Idaho National Laboratory, Idaho Fall, ID (United States); Carpenter, David [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Sridharan, Kumar [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI (United States)

    2016-12-15

    The microstructural developments in the near-surface regions of AISI 316 stainless steel during exposure to molten Li{sub 2}BeF{sub 4} (FLiBe) salt have been investigated with the goal of using this material for the construction of the fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). Tests were conducted in molten FLiBe salt (melting point: 459 °C) at 700 °C in graphite crucibles and 316 stainless steel crucibles for exposure duration of up to 3000 h. Corrosion-induced microstructural changes in the near-surface regions of the samples were characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS capabilities. Intergranular corrosion attack in the near-surface regions was observed with associated Cr depletion along the grain boundaries. High-angle grain boundaries (15–180°) were particularly prone to intergranular attack and Cr depletion. The depth of attack extended to the depths of 22 μm after 3000-h exposure for the samples tested in graphite crucible, while similar exposure in 316 stainless steel crucible led to the attack depths of only about 11 μm. Testing in graphite crucibles led to the formation of nanometer-scale Mo{sub 2}C, Cr{sub 7}C{sub 3} and Al{sub 4}C{sub 3} particle phases in the near-surface regions of the material. The copious depletion of Cr in the near-surface regions induced a γ-martensite to α-ferrite phase (FeNi{sub x}) transformation. Based on the microstructural analysis, a thermal diffusion controlled corrosion model was developed and experimentally validated for predicting long-term corrosion attack depth.

  16. The study of stress application and corrosion cracking on Ni-16 Cr-9 Fe (Alloy 600) C-ring samples by polychromatic X-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Jing; Fuller, Marina L Suominen; McIntyre, N Stewart; Carcea, Anatolie G; Newman, Roger C; Kunz, Martin; Tamura, Nobumichi [Toronto; (UWO); (LBNL)

    2012-03-27

    Microscopic strains associated with stress corrosion cracks have been investigated in stressed C-rings of Ni-16 Cr-9 Fe (Alloy 600) boiler tubing. Polychromatic X-ray microdiffraction was used to measure deviatoric strain tensors and the distribution of dislocations near cracks that had been propagated in electrochemically accelerated corrosion tests. An associated investigation of the C-ring-induced strains prior to corrosion showed significant tensile strain in the stress axis direction by the torsional closure of the alloy tube section in the C-ring test. Significant grain lattice rotation and pronounced plastic strain at some grain boundaries were noted. Stress-corrosion-cracking-generated intergranular cracks were produced in two Alloy 600 specimens after 6 h and 18 h tests. The diffraction patterns and resultant strain tensors were mapped around the cracked area to a 1 μm spatial resolution. The strain tensor transverse to the crack growth direction showed tensile strain at the intergranular region just ahead of the crack tip for both specimens. Both cracks were found to follow grain boundary pathways that had the lowest angle of misorientation. Dislocation distributions within each grain were qualitatively obtained from the shapes of the diffraction spots and the effect of 'hard' and 'soft' grains on the crack pathway was explored for both 6 h and 18 h specimens. The Schmid factor of one of the grains adjacent to the crack at the 6 h and 18 h initiation sites was found to be the lowest, compared to Schmid factors calculated for surface grains away from the initiation site, and also along the crack path into the bulk.

  17. Pipe Lines – External Corrosion

    Directory of Open Access Journals (Sweden)

    Dan Babor

    2008-01-01

    Full Text Available Two areas of corrosion occur in pipe lines: corrosion from the medium carried inside the pipes; corrosion attack upon the outside of the pipes (underground corrosion. Electrolytic processes are also involved in underground corrosion. Here the moisture content of the soil acts as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc. present in the soil. The nature and amount of these soluble materials can vary within a wide range, which is seen from the varying electrical conductivity and pH (varies between 3 and 10. Therefore the characteristics of a soil will be an important factor in under-ground corrosion.

  18. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  19. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effects of neutron radiation and residual stresses on the corrosion of welds in light water reactor internals

    International Nuclear Information System (INIS)

    Schaaf, Bob van der; Gavillet, Didier; Lapena, Jesus; Ohms, Carsten; Roth, Armin; Dyck, Steven van

    2006-01-01

    After many years of operation in Light Water Reactors (LWR) Irradiation Assisted Stress Corrosion Cracking (IASCC) of internals has been observed. In particular the heat-affected zone (HAZ) has been associated with IASCC attack. The welding process induces residual stresses and micro-structural modifications. Neutron irradiation affects the materials response to mechanical loading. IASCC susceptibility of base materials is widely studied, but the specific conditions of irradiated welds are rarely assessed. Core component relevant welds of Type 304 and 347 steels have been fabricated and were irradiated in the High Flux Reactor (HFR) in Petten to 0.3 and 1 dpa (displacement per atom). In-service welds were cut from the thermal shield of the decommissioned BR-3 reactor. Residual stresses, measured using neutron diffraction, ring core tests and X-ray showed residual stress levels up to 400 MPa. Micro-structural characterization showed higher dislocation densities in the weld and HAZ. Neutron radiation increased the dislocation density, resulting in hardening and reduced fracture toughness. The sensitization degree of the welds, measured with the electrochemical potentio-dynamic reactivation method, was negligible. The Slow Strain Rate Tensile (SSRT) tests, performed at 290 deg. C in water with 200 ppb dissolved oxygen, (DO), did not reveal inter-granular cracking. Inter-granular attack of in-service steel is observed in water with 8 ppm (DO), attributed not only to IASCC, but also to IGSCC from thermal sensitization during fabrication. Stress-relieve annealing has caused Cr-grain boundary precipitation, indicating the sensitization. The simulated internal welds, irradiated up to 1.0 dpa, did not show inter-granular cracking with 8 ppm DO. (authors)

  1. Corrosion of beryllium oxide

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    Data are reported on the volatilization rate of beryllium oxide in moist air depending on temperature and water vapour concentration. They are concerned with powder samples or sintered shapes of various densities. For sintered samples, the volatilization rate is very low under the following conditions: - temperature: 1300 deg. C, - water vapour concentration in moist air: 25 g/m 3 , - flow rate: 12 I/hour corresponding to a speed of 40 m/hour on the surface of the sample. For calcinated powders (1300 deg. C), grain growth has been observed under a stream of moist air at 1100 deg. C. For instance, grain size changes from 0,5 to at least 2 microns after 500 hours of exposure at this temperature. Furthermore, results data are reported on corrosion of sintered beryllium oxide in pressurized water. At 250 deg. C, under a pressure of 40 kg/cm 2 water is very slightly corrosive; however, internal strains are revealed. Finally, some features on the corrosion in liquid sodium are exposed. (author) [fr

  2. Corrosion of fuel assembly materials

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Beslu, P.

    1985-08-01

    Corrosion of zircaloy-4 is reviewed in relation with previsions of improvement in PWRs performance: higher fuel burnup; increase coolant temperature, implying nucleate boiling on the hot clad surfaces; increase duration of the cycle due to load-follow operation. Actual knowledge on corrosion rates, based partly on laboratory tests, is insufficient to insure that external clad corrosion will not constitute a limitation to these improvements. Therefore, additional testing within representative conditions is felt necessary [fr

  3. Testing methodologies for corrosion fatigue

    OpenAIRE

    Delmotte, Edward; Micone, Nahuel; De Waele, Wim

    2015-01-01

    Offshore constructions are subjected to cyclic loading conditions. This situation is combined with the corrosive nature of the surrounding environment. It is of actual concern whether the combined effect is more damaging or not than the superposition of each effect independently. This literature review first introduces the reader to corrosion fatigue. Thereafter a critical comparison of some typical lab-scale fatigue corrosion test setups is given. Special emphasis is devoted to the instru...

  4. Corrosion Monitors for Embedded Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casias, Adrian L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  5. Corrosion problems of power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings contain 26 contributions, out of which 11 have been inputted in INIS. These are concerned with methods for the evaluation of corrosion resistance of materials for the nuclear industry, with examination of the corrosion behavior of composite overlays and of steels after the action of decontamination solutions, and with theoretical models of crack propagation. Corrosion problems of steam turbines, steam generator tubes and thermocouple bushings are discussed. (M.D.). 28 figs., 8 tabs., 63 refs

  6. Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co alloy

    International Nuclear Information System (INIS)

    Jin, Chaoxiang; Chen, Renjie; Yin, Wenzong; Tang, Xu; Wang, Zexuan; Ju, Jinyun; Lee, Don; Yan, Aru

    2016-01-01

    The magnetic properties, thermal stability and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co were investigated. The thermal stabilities of coercivity and remanence were simultaneously enhanced without heavy rare earth elements, resulting from the partial substitution of Pr for Nd and Co for Fe in matrix phase, respectively. After Pr–Co addition, RE-rich phase reduced and new phases containing Pr and Co, such as (NdPr) (FeCo) 2 (NdPr) 3 (FeCo) and (NdPr) 2 (FeCo) 17 phases, were formed. With the increase of Pr–Co addition amount, intrinsic coercivity firstly decreased sharply which was mainly caused by the formation of soft ferromagnetic (NdPr) (FeCo) 2 phase, and subsequently presented a remarkable recovery induced by the formation of non-magnetic (NdPr) 3 (FeCo) phase and transformation of (NdPr) (FeCo) 2 phase from ferromagnetic to non-magnetic. Due to the reduction of matrix phase proportion, the remanence decreased monotonously after the addition of Pr–Co for more than 10 wt. %. - Highlights: • The improved thermal stabilities of coercivity and remanence were obtained. • An abnormal remarkable recovery of coercivity was found. • The evolution of Co-containing phases was clarified.

  7. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock

    Science.gov (United States)

    Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-12-01

    Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.

  8. A comparative EBSD and micro-XRD study of the intergranular grain structure in CP-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, P.A., E-mail: Peter.Lynch@csiro.a [CSIRO Materials Science and Engineering, Gate 5 Normanby Road, Clayton, Victoria 3168 (Australia); Tomus, D.; Bettles, C.J. [Monash University, ARC Centre of Excellence for Design in Light Metals, Materials Engineering, Clayton, Victoria 3800 (Australia); Gibson, M.A.; Stevenson, A.W. [CSIRO Materials Science and Engineering, Gate 5 Normanby Road, Clayton, Victoria 3168 (Australia)

    2010-07-21

    Electron Backscatter Diffraction (EBSD) and scanning polychromatic X-ray micro-diffraction (micro-XRD) have been applied to study the intergranular grain structure in CP-Ti strip. Prior to synchrotron experimentation, a polycrystalline CP-Ti sample was electrochemically polished and a series of fiducial markers were placed on the surface to define a 500 {mu}mx500 {mu}m region of interest. Within this area EBSD was used to obtain an orientation map of the grains at the sample surface. Synchrotron polychromatic X-ray micro-diffraction data, collected on beamline 12.3.2 at the Advanced Light Source, was then used to map an area of 200x60 {mu}m{sup 2} within the region of interest. Comparison of the respective grain maps indicated an average grain size of {approx}50 {mu}m. Micro-XRD data was initially used to locate the same surface grains determined by EBSD. Based on comparison of the Euler angles, grain orientation maps from the two data sets were found to be in close agreement. The typical rolling texture found in CP-Ti was identified with the basal pole maxima tilted slightly toward the transverse direction. Subsequent 3D analysis of the Laue pattern intensity distribution of the surface grains revealed that some of the large grains identified by EBSD formed sub-cell structures below the sample surface.

  9. A comparative EBSD and micro-XRD study of the intergranular grain structure in CP-Ti

    Science.gov (United States)

    Lynch, P. A.; Tomus, D.; Bettles, C. J.; Gibson, M. A.; Stevenson, A. W.

    2010-07-01

    Electron Backscatter Diffraction (EBSD) and scanning polychromatic X-ray micro-diffraction (micro-XRD) have been applied to study the intergranular grain structure in CP-Ti strip. Prior to synchrotron experimentation, a polycrystalline CP-Ti sample was electrochemically polished and a series of fiducial markers were placed on the surface to define a 500 μm×500 μm region of interest. Within this area EBSD was used to obtain an orientation map of the grains at the sample surface. Synchrotron polychromatic X-ray micro-diffraction data, collected on beamline 12.3.2 at the Advanced Light Source, was then used to map an area of 200×60 μm 2 within the region of interest. Comparison of the respective grain maps indicated an average grain size of ˜50 μm. Micro-XRD data was initially used to locate the same surface grains determined by EBSD. Based on comparison of the Euler angles, grain orientation maps from the two data sets were found to be in close agreement. The typical rolling texture found in CP-Ti was identified with the basal pole maxima tilted slightly toward the transverse direction. Subsequent 3D analysis of the Laue pattern intensity distribution of the surface grains revealed that some of the large grains identified by EBSD formed sub-cell structures below the sample surface.

  10. The effect of water quality on the intergranular attack of inconel alloy 600 in deaerated water at 350 deg C

    International Nuclear Information System (INIS)

    Hirano, Hideo; Takaku, Hiroshi

    1987-01-01

    Intergranular Attack (IGA) tests were conducted to examine the effect of water quality on the IGA of Inconel alloy 600 in deaerated water at 350 deg C. The main test results are as follows. (1) The inhibitory effect of boric acid on IGA has been studied. IGA and SCC propagation rates in NaOH 20 wt%-Na 2 CO 3 4 wt% apueous solution were extremely suppressed by the addition of boric acid, and the numbers of SCC cracks also extremely decreased. IGA and SCC did not occure in 10 4 ppm boric acid apueous solution, and IGA initiated in NaOH 20 wt%-Na 2 CO 3 4 wt% solution did not propagate in 10 4 ppm boric acid solution. (2) The Effect of HCI and H 2 SO 4 on IGA has been studied. In 10 ppm HCl solution, SCC occures but IGA did not occure. On the other hand, IGA and SCC occurred in HCI 40 ppm-H 2 SO 4 60 ppm solution. The addition of boric acid into HCI 40 ppm-H 2 SO 4 60 ppm solution did not suppressed IGA. (3) The inhibitory effect of some chemical species on IGA was examined. CH 3 COOH, NaNO 3 , Ca(NO 3 ) 2 and GeCl 4 suppressed IGA and SCC. (author)

  11. Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chaoxiang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Chen, Renjie, E-mail: chenrj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Yin, Wenzong; Tang, Xu; Wang, Zexuan; Ju, Jinyun [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Don [University of Dayton, Dayton OH (United States); Yan, Aru, E-mail: aruyan@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Enginnering, Chinese Academy of Sciences, Ningbo 315201 (China); Rare Earth Magnetic Materials Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-06-15

    The magnetic properties, thermal stability and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr–Co were investigated. The thermal stabilities of coercivity and remanence were simultaneously enhanced without heavy rare earth elements, resulting from the partial substitution of Pr for Nd and Co for Fe in matrix phase, respectively. After Pr–Co addition, RE-rich phase reduced and new phases containing Pr and Co, such as (NdPr) (FeCo){sub 2} (NdPr){sub 3}(FeCo) and (NdPr){sub 2}(FeCo){sub 17} phases, were formed. With the increase of Pr–Co addition amount, intrinsic coercivity firstly decreased sharply which was mainly caused by the formation of soft ferromagnetic (NdPr) (FeCo){sub 2} phase, and subsequently presented a remarkable recovery induced by the formation of non-magnetic (NdPr){sub 3}(FeCo) phase and transformation of (NdPr) (FeCo){sub 2} phase from ferromagnetic to non-magnetic. Due to the reduction of matrix phase proportion, the remanence decreased monotonously after the addition of Pr–Co for more than 10 wt. %. - Highlights: • The improved thermal stabilities of coercivity and remanence were obtained. • An abnormal remarkable recovery of coercivity was found. • The evolution of Co-containing phases was clarified.

  12. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  13. Possible first occurrence of external corrosion on alloy 600TT tubes in France

    International Nuclear Information System (INIS)

    Boccanfuso, M.; Thebault, Y.; Massini, B.; Bigne, L.

    2015-01-01

    During the last decade, in different countries, several occurrences of external corrosion have been identified on steam generator (SG) tube bundles equipped with thermally treated 600 alloy. In France, this feedback leads EDF to enhance the SG inspection program. Nevertheless, until now, no damage of this type was reported. Recently, during in-service inspection at the Cattenom plant on a SG equipped with alloy 600TT tubes, Eddy current tests have highlighted a signal that could be related to external corrosion. The tube was removed and sent to the EDF hot laboratory for destructive examinations. Various exams were performed at different scales to characterize the causes of this NDT signal, the material properties and the residual stresses. The assessments carried out on the tube conclude that the source of the damage is external intergranular stress corrosion cracking, also called ODSCC (Outside Diameter Stress Corrosion Cracking) making it the first occurrence on the tube bundles made of alloy 600TT in the French fleet. This first case of 600 TT ODSCC in France is an unexpected and particular one, because of its altitude in the full mechanical rolling area. This is reinforced by the low number of occurrences noted to date (only one after nearly 30 years of operation of alloy 600TT tube bundles). International (Biblis) OPEX had identified recent IGSCC with cracks initiated and propagated in the tubesheet. For this case, the scenario considered requires highly restrictive conditions (tube in the sludge zone and on the periphery of the tube bundle, including the tube lane) and may explain the singular nature of the Cattenom tube

  14. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Chopra, O. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Gruber, Eugene E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shack, William J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  15. Corrosion Behavior of Ni3(Si,Ti in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The corrosion behaviour of the intermetallic compounds Ni3(Si,Ti (L12: single phase, has been investigated using an immersion test, electrochemical method, scanning electron microscope in 0.5 kmol/m3 HCl at 303 K. In addition, the corrosion behaviour of austenitic stainless steel type 304 and C276 was studied under the same experimental conditions as references. It was found that the intergranular attack was observed for Ni3(Si,Ti in the immersion test. From the immersion test and polarization curves, Ni3(Si,Ti had the moderate corrosion resistance, while the corrosion resistances of C 276 and type 304 were the highest and the lowest. Ni3(Si,Ti and type 304 were difficult to form a stable passive film, but not for C276. A further experiment must be conducted to clarify the stability of film for Ni3(Si,Ti in detail.

  16. Facilities Corrosion Impacts: When Corrosion Wins, the Mission Ends

    Science.gov (United States)

    2010-02-10

    Product/Results - Technology demonstrations and implementations at DoD Installations. - Cost and performance reports. - Recommendations for design ...guidance updates– ACSIM Installation Design Standards Payoff Service life extension of aging mission critical utilities and structures. Reduction in...corrosion.  Technology- Microcapsules in the form of microscopic spheres on the order of 50 to 150 microns in diameter containing corrosion-inhibiting

  17. Archaeological analogs and corrosion; Analogues archeologiques et corrosion

    Energy Technology Data Exchange (ETDEWEB)

    David, D

    2008-07-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  18. Phytochemicals as Green Corrosion Inhibitors in Various Corrosive ...

    African Journals Online (AJOL)

    There is an intensive effort underway to develop new plant origin corrosion inhibitors for metal subjected to various environmental conditions. These efforts have been motivated by the desire to replace toxic inhibitors used for mitigation of corrosion of various metals and alloys in aqueous solutions. Plants represent a class ...

  19. phytochemicals as green corrosion inhibitors in various corrosive ...

    African Journals Online (AJOL)

    Mgina

    with aggressive environment is one among the acceptable practices used to reduce and/or prevent corrosion. ... may exhibit electrochemical activity such as corrosion inhibition (Davis et al. 2001). Some of their results ... zinc and copper in both HCl and H2SO4 acid solutions using gravimetric and polarization measurement ...

  20. Estudio de la susceptibilidad de un acero inoxidable austenítico estabilizado con niobio al dañado por tensocorrosión en medio H2S (SSC y corrosión intergranular (IGC en otros medios agresivos

    Directory of Open Access Journals (Sweden)

    Gutiérrez de Saiz-Solabarría, S.

    1998-05-01

    Full Text Available Behavior to hydrogen damage caused by stress corrosion in a H2S medium (SSC and to intergranular corrosion (IGC in different mediums, such as oxalic acid (C2H2O4-2H20, iron sulphate-50 % sulfuric acid [Fe2(SO43-50 % H2SO4], nitric acid (HNO3, copper sulphate-16 % sulfuric acid (CuSO4-5H2O-16 % H2SO4 and cooper sulphate-50 % sulfuric acid (CuSO4-5H2O-50 % H2SO4, is studied in an AISI 347 austenitic stainless steel stabilized with 0.61 mass % Nb and hot rolled to a seamless pipe with 273.1 mm in diameter and 18.2 mm in thickness.

    Se estudia el comportamiento de un acero inoxidable austenítico del tipo AISI 347 estabilizado con un 0,61 % en masa de Nb, laminado en caliente para producir una tubería sin soldadura de 273,1 mm de diámetro y 18,2 mm de espesor, frente al dañado por hidrógeno generado por tensocorrosión en medio H2S (SSC y frente a la corrosión intergranular (IGC en diferentes medios agresivos tales como ácido oxálico (C2H2O4∙2H2O, sulfato de hierro-50% ácido sulfúrico [Fe2 (SO43-50 % H2SO4], ácido nítrico (HNO3, sulfato de cobre-16% ácido sulfúrico (CuSO4-5H2O-16 % H2SO4 y sulfato de cobre-50 % ácido sulfúrico (CuSO4-5H2O-50 % H2SO4, respectivamente.

  1. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  2. New technologies - new corrosion problems

    International Nuclear Information System (INIS)

    Heitz, E.

    1994-01-01

    Adequate resistance of materials to corrosion is equally important for classical and for new technologies. This article considers the economic consequences of corrosion damage and, in addition to the long-known GNP orientation, presents a new approach to the estimation of the costs of corrosion and corrosion protection via maintenance and especially corrosion-related maintenance. The significance of ''high-tech'', ''medium-tech'' and ''low-tech'' material and corrosion problems is assessed. Selected examples taken from new technologies in the areas of power engineering, environmental engineering, chemical engineering, and biotechnology demonstrate the great significance of the problems. It is concluded that corrosion research and corrosion prevention technology will never come to an end but will constantly face new problems. Two technologies are of particular interest since they focus attention on new methods of investigation: microelectronics and final disposal of radioactive wastes. The article closes by considering the importance of the transfer of experience and technology. Since the manufacturs and operators of machines and plant do not generally have access to the very latest knowledge, they should be kept informed through advisory services, experimental studies, databases, and further education. (orig.) [de

  3. corrosion inhibitor for carbon steels

    African Journals Online (AJOL)

    potentiodynamic polarisation techniques. It was found that. CNSL reduces the extent of the electrochemical processes taking place on carbon steel undergoing corrosion. The corrosion rate of the carbon steel was reduced by over 92 % when only 300 ppm of CNSL was applied. This indicates that. CNSL is a potential ...

  4. Tensammetric Studies on Corrosion Inhibitors

    Indian Academy of Sciences (India)

    Tensammetric Studies on Corrosion Inhibitors-I 277 paralleled potential data and corrosion data given in the next section. The only chemicals which bring about increased polarization of the steel speci- mens are sodium nitrite, dicyclohexylamine nitrite, cyclohexylamine and morpholine. The extent of polarization follows the ...

  5. Agricultural Polymers as Corrosion Inhibitors

    Science.gov (United States)

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  6. DPC materials and corrosion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  7. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  8. Electrochemical studies of corrosion inhibitors

    Science.gov (United States)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  9. Fatigue and Corrosion in Metals

    CERN Document Server

    Milella, Pietro Paolo

    2013-01-01

    This textbook, suitable for students, researchers and engineers, gathers the experience of more than 20 years of teaching fracture mechanics, fatigue and corrosion to professional engineers and running experimental tests and verifications to solve practical problems in engineering applications. As such, it is a comprehensive blend of fundamental knowledge and technical tools to address the issues of fatigue and corrosion. The book initiates with a systematic description of fatigue from a phenomenological point of view, since the early signs of submicroscopic damage in few surface grains and continues describing, step by step, how these precursors develop to become mechanically small cracks and, eventually, macrocracks whose growth is governed by fracture mechanics. But fracture mechanics is also introduced to analyze stress corrosion and corrosion assisted fatigue in a rather advanced fashion. The author dedicates a particular attention to corrosion starting with an electrochemical treatment that mechanical e...

  10. Investigation and evaluation of stress-corrosion cracking in piping of light water reactor plants

    International Nuclear Information System (INIS)

    1979-01-01

    In 1975, a Pipe Cracking Study Group, established by the United States Nuclear Regulatory Commission (USNRC), reviewed intergranular stress-corrosion cracking (IGSCC) in Bioling Water Reactors (BWRs) and issued a report. During 1978, IGSCC was reported for the first time in large-diameter piping (> 20 in.) in a BWR in Germany. This discovery, together with the reported questions concerning the interpretation of ultrasonic inspections, led to the activation of a new Pipe Crack Study Group (PCSG) by USNRC. The charter of the new PCSG was expanded: (1) to include review of potential for stress-corrosion cracking in Pressurized Water Reactors (PWRs) as well as BWRs, (2) to examine operating experience in foreign reactors relevant to IGSCC, and (3) to study five specific questions. The PCSG limited the scope of the study to BWR and PWR piping runs and safe ends attached to the reactor pressure vessel. Not considered were components such as the reactor pressure vessel, pumps, valves, steam generators, large steam turbines, etc. Throughout this report, as well as in the title, the safe ends are arbitrarily defined as piping

  11. Corrosion experience with the secondary side of steam generators in Japan

    International Nuclear Information System (INIS)

    Takamatsu, H.; Kitera, T.; Arioka, K.

    1996-01-01

    The authors have long years of experience with corrosion damage, on the secondary side of Steam Generator (SG) tubes. At first, this problem occurred as a result of wall thinning on the tubes owing to addition of sodium phosphate for water treatment in the secondary system in Pressurized Water Reactors (PWR). To prevent this problem, All Volatile Treatment (AVT) replaced sodium phosphate. In spite of this, Stress Corrosion Cracking (SCC) occurred at the crevices of the tube sheet owing to residual sodium phosphate, and Intergranular Attack (IGA) occurred at the Tube Support Plate (TSP) crevices even under an AVT environment. The possible cause of this problem seems to be a combination of an alkaline environment and an oxidizing condition. When the IGA was detected, it was difficult to find out the exact causative species from the operating data and examination of pulled tubes at that time. The only available working techniques for establishing the cause were evaluation of long-term water chemistry records and analysis of the oxide film on the IGA fracture surfaces. Once IGA occurs, improvements in water chemistry cannot be guaranteed to affect the inside of crevices, and thus the preventive measures may fail to provide the intended effect. IGA occurred in a greater magnitude, so that some SGs had to be replaced. Additionally, the authors also experienced pitting and circumferential SCC on the secondary side of SG tubes, though the number of cracked tubes was limited

  12. Evaluation of the Stress Corrosion Cracking Behavior of Inconel 600 Alloy by Acoustic Emission

    International Nuclear Information System (INIS)

    Sung, Key Yong; Kim, In Sup; Yoon, Young Ku

    1996-01-01

    Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to 400μm in length and below 100μm in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE

  13. Effects of oxidation and hot corrosion on the erosion of silicon nitride

    International Nuclear Information System (INIS)

    Kim, Jong Jip

    2005-01-01

    The effect of oxidation and hot corrosion on the solid particle erosion was investigated for hot-pressed silicon nitride using as- polished, pre-oxidized and pre-corroded specimens by molten sodium sulfates. Erosion tests were performed at 22, 500 and 900 .deg. C using angular silicon carbide particles of mean diameter 100 μm. Experimental results show that solid particle erosion rate of silicon nitride increases with increasing temperature for as-polished or pre-oxidized specimens in consistent with the prediction of a theoretical model. Erosion rate of pre-oxidized specimens is lower than that of as-polished specimens at 22 .deg. C, but it is higher at 900 .deg. C. Lower erosion rate at 22 .deg. C in the pre-oxidized specimens is attributed due to the blunting of surface flaws, and the higher erosion rate at 900 .deg. C is due to brittle lateral cracking. Erosion rate of pre-corroded specimens decreases with increasing temperature. Less erosion at 900 .deg. C than at 22 .deg. C is associated with the liquid corrosion products sealing off pores at 900 .deg. C and the absence of inter-granular crack propagation observed at 22 .deg. C

  14. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  15. A countermeasure for external stress corrosion cracking in piping components by means of residual stress improvement on the outer surface

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiro; Umemoto, Tadahiro

    1988-01-01

    Many techniques have been proposed as countermeasures for the External Stress Corrosion Cracking (ESCC) on austenitic stainless steel piping caused by sea salt particles. However, not one seems perfect. The method proposed here is an expansion of IHSI (Induction Heating Stress Improvement) which has been successfully implemented in many nuclear power plants as a remedy for Intergranular Stress Corrossion Cracking. The proposed method named EIHSI (External IHSI) can make the residual stress compressive on the outer surface of the piping components. In order to confirm the effectiveness of EIHSI, one series of tests were conducted on a weld joint between the pipe flange and the straight pipe. The measured residual stresses and also the results of the cracking test revealed that EIHSI is a superior method to suppress the ESCC. The outline of EIHSI and the verification tests are presented in this paper. (author)

  16. Effect of water content on the stress corrosion cracking susceptibility of Zircaloy-4 in iodine-alcoholic solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea; Farina, Silvia B.; Duffo, Gustavo S.

    2005-01-01

    The stress corrosion cracking (SCC) susceptibility of Zircaloy-4 (UNS R60804) was studied in 10 g/L iodine dissolved in various alcohols: methanol, ethanol, 1 propanol, 1-butanol, 1-pentanol and 1-octanol. SCC was observed in all the systems studied and it was found that the higher the size of alcohol molecule, the lower the SCC susceptibility. The existence of intergranular attack -controlled by the diffusion of the active species- is a condition for the SCC process to occur. In the present work the inhibiting effect of water on the SCC susceptibility of Zircaloy-4 in iodine-alcoholic solutions was also investigated and the results showed that the minimum water content to inhibit the SCC process depends on the type of alcohol used as a solvent. (author) [es

  17. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy.

    Science.gov (United States)

    Wang, S D; Xu, D K; Wang, B J; Sheng, L Y; Han, E H; Dong, C

    2016-07-08

    Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed.

  18. Improvement of hydrogen sorption properties of compounds based on Vanadium “bcc” alloys by mean of intergranular phase development

    International Nuclear Information System (INIS)

    Planté, D.; Raufast, C.; Miraglia, S.; Rango, P. de; Fruchart, D.

    2013-01-01

    Highlights: •Decrease of “bcc” pseudo cell with the increase of amount of additive. •Additive phase improve activation kinetics. •Chromium in the “bcc” matrix decreases the lattice parameter and destabilizes hydride formation/dissociation. •Lower working temperatures could be obtain. -- Abstract: Body centered cubic structure (“bcc”) type alloys based on Vanadium [1] reveal promising characteristics for mobile applications. These disordered solid solutions have particular metal/hydride equilibrium and some regulation aspects have leaded us to pay special attention to this type of material [2]. Compounds based on Vanadium-rich solid solution have been elaborated in order to destabilize γ hydride phase (corresponding to the face centered cubic (“fcc”) structure of VH 2 ). Addition of Ni and Zr-rich Laves phase as a secondary phase results in the development of a particular microstructure composed of a principal “bcc” matrix rounded by intergranular activating phase. This results in a facilitated and faster activation of these compounds. The present study shows that some constituting species of the secondary phase have diffused in the main matrix and therefore have modified the thermodynamic of hydride. In fact, chromium diffusion into the “bcc” matrix destabilizes hydride. It is correlated to the lower stability of chromium hydride compared to Vanadium hydride. The enthalpic terms of each sample have been measured (assuming standard entropy of 130 J mol −1 K −1 ). The equilibrium metal/hydride can be easily switched in order to adapt it to a mobile hydride tank and obtain low working temperature in regard to the potential use

  19. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  20. Secondary side corrosion in steam generator tubes: lessons learned in France from the in-service inspection results

    International Nuclear Information System (INIS)

    Comby, R.

    1997-01-01

    Non-destructive testing (NDT) has proved to be very important in the maintenance of steam generator tubing. This is particularly true in the case of secondary side corrosion, because this type of degradation leads to various morphologies which are often complex (intergranular attack) (IGA), intergranular stress corrosion cracking (IGSCC), or a mixture of both. Their detection and characterization by the usual NDT techniques have been achieved through numerous laboratory studies, which were conducted in order to determine the performance and limitations of NDT. Pulled tube examination in a hot laboratory was very valuable, for both NDT and fracture mechanics aspects. The eddy current bobbin coil probe, used for multipurpose inspection of tubes, allows the detection of IGA-SCC at the tube support plate elevation. In France, the use of rotating probes is not required for that type of degradation, since the repair criterion is based on bobbin coil results only. The bobbin coil is also used for detection of IGSCC occurring in free spans, within sludge deposits. The eddy current rotating probe allows, in that case, characterization of main cracks. Concerning the outer diameter initiated circumferential cracks which occur at the top of the tube sheet, only the rotating probe is used. An ultrasonic (UT) inspection was performed several times, in order to obtain information on UT capabilities. The goal of tube inspection is obviously knowledge of the status of steam generators, but also to follow up degradations and to estimate their revolution, and to verify the beneficial effect of some corrective measures, e.g. boric acid injection. (orig.)

  1. Improvement of PWR reliability by corrosion prevention

    International Nuclear Information System (INIS)

    Takamatsu, Hiroshi

    1999-01-01

    Since first PWR in Japan started commercial operation in 1970, we have encountered the various modes of corrosion on primary and secondary side components. We have paid much efforts for resolving these corrosion problems, that is, investigating the causes of corrosion and establishing the countermeasures for these corrosion. We summarize these efforts in this article. (author)

  2. Corrosion detection of nanowires by magnetic sensors

    KAUST Repository

    Kosel, Jürgen

    2017-10-05

    Disclosed are various embodiments related to a corrosion detection device for detecting corrosive environments. A corrosion detection device comprises a magnetic sensor and at least one magnetic nanowire disposed on the magnetic sensor. The magnetic sensor is configured to detect corrosion of the one or more magnetic nanowires based at least in part on a magnetic field of the one or more magnetic nanowires.

  3. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  4. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this paper, approach in the field of SBS corrosion is reviewed. Electrochemical and microbial corrosion factors, corrosion mechanism, measurement of metal corrosion rate, corrosion evaluation and ...

  5. Atmospheric corrosion of mild steel

    Directory of Open Access Journals (Sweden)

    Morcillo, M.

    2011-10-01

    Full Text Available The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a the morphology of steel corrosion products and corrosion product layers; and b long-term atmospheric corrosion ( > 10 years.

    La corrosión atmosférica del acero suave es un tema de gran amplitud que ha sido tratado por muchos autores en numerosas regiones del mundo. Este artículo de compilación incorpora publicaciones relevantes sobre esta temática, en particular sobre la naturaleza de los productos de corrosión atmosférica, mecanismos y cinética de los procesos de corrosión atmosférica, prestando una atención especial a dos aspectos sobre los que la información publicada ha sido menos abundante: a morfología de los productos de corrosión del acero y capas de productos de corrosión, y b corrosión atmosférica a larga duración (> 10 años.

  6. Stress corrosion cracking in 3,5 NiCrMoV steel in a 403 K potential-PH diagram

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Itoh [Mitsubishi Heavy Industries, Ltd., Takasago Research and Development Center, (Japan); Takashi, Momoo [Mitsubishi Heavy Industries Ltd., Takasago Machinery Works, (Japan)

    2001-07-01

    3,5 NiCrMoV steel is used in low-pressure turbine rotors and discs. It has been pointed out that intergranular stress corrosion cracking may occur in this material in the wet region at temperatures of about 400 K. Accordingly, the authors focused on the environmental conditions under which stress corrosion cracking (SCC) occurs. A potential-pH diagram was used to investigate the region in which SCC occurs in the high strength materials that are particularly susceptible to SCC. The investigation found that SCC is initiated in this material not only in the high caustic region but in the neutral region as well. The investigation also found that initiation and propagation were accelerated in dissolved oxygen environments with increased chemical potential in the neutral region. Since careful observation of the starting point of cracks has shown that corrosion pits trigger SCC, subsequent immersion tests under constant potential were conducted. The results showed that corrosion pits are generated at the high potential range. These results led to the development of an acceleration test environment for laboratory to determine the susceptibility of SCC in field turbine disc and rotor materials. (author)

  7. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  8. Stress corrosion cracking behaviour of Alloy 600 in high temperature water

    International Nuclear Information System (INIS)

    Webb, G.L.; Burke, M.G.

    1995-01-01

    The stress corrosion cracking (SCC) susceptibility of Alloy 600 in deaerated water at 360 deg. C, as measured with statistically-loaded U-bend specimens, is dependent upon microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures, as determined by light optical metallography (LOM). In CWA tubing materials one crack dominated and grew to a large size that was observable by visual inspection. HWA materials with a low hot-working finishing temperature (below 925 deg. C) and final anneals at temperatures ranging from 1010 deg. C to 1065 deg. C developed both large cracks, similar to those found in CWA materials, and also small intergranular microcracks, which are detectable only by destructive metallographic examination. HWA materials with a high hot-working finishing temperature (above 980 deg. C) and high-temperature final anneal (above 1040 deg. C), with grain boundaries that are fully decorated, developed only microcracks, which were observed in all specimens examined. These materials developed no large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 deg. C for 7h), which reduced or eliminates SCC in Alloy 600, did not eliminate microcrack formation in the high temperature processed HWA materials. Detailed microstructural characterization using conventional metallographic and analytical electron microscopy (AEM) techniques was performed on selected materials to identify the factors responsible for the observed differences in cracking behaviour. 11 refs, 12 figs, 3 tabs

  9. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  10. Corrosion aspects in reprocessing technology

    International Nuclear Information System (INIS)

    Fauvet, P.; Pinard Legry, G.

    1992-01-01

    This paper presents two examples illustrating the importance of the physicochemical conditions existing at the metal-medium interface on the corrosion behaviour of materials utilized in spent fuel reprocessing plants: corrosion of a stainless steel in the presence of nitric acid condensates, which is much more severe than in the liquid bulk; behaviour of zirconium, which has an outstanding corrosion resistance in nitric acid, but may suffer depassivation in drastic conditions (not existing in reprocessing plants), with the consequence of a loss of the protective effect of the zirconia passive layer

  11. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  12. Critical Study of Corrosion Damaged Concrete Structures

    OpenAIRE

    Sallehuddin Shah Ayop; John Cairns

    2013-01-01

    Corrosion of steel reinforcement in concrete is one of the major problems with respect to the durability of reinforced concrete structures. The degradation of the structure strength due to reinforcement corrosion decreases its design life. This paper presents the literature study on the influence of the corrosion on concrete structure starting from the mechanism of the corrosion until the deterioration stage and the structural effects of corrosion on concrete structures.

  13. Corrosion and corrosion fatigue of airframe aluminum alloys

    Science.gov (United States)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  14. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  15. RETRACTED: Granular and intergranular conduction in La1.32Sr1.68Mn2O7 layered manganite system

    Science.gov (United States)

    Narjis, A.; El kaaouachi, A.; Dlimi, S.; Biskupski, G.; Daoudi, E.; Errai, M.; Sybous, A.; Limouny, L.

    2013-06-01

    We report a comprehensive study of the electrical and magneto-transport properties of La1.32Sr1.68Mn2O7 layered manganite system under different pressures and in the temperature range of 4.2 K to 300 K. An increase in the resistivity at low temperature has been observed and explained in terms of Coulomb Blockade effect. Magnetoresistance data are explained by assuming that the transport occurs through the mechanism of intergranular as well as granular paths with a pronounced manifestation of Spin Polarization Tunneling phenomenon. By qualitatively comparing the relative fractions of these channels, we explain the resistivity behavior in each temperature range.

  16. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni

    2013-01-01

    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  17. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  18. Corrosion-Resistant Acrylic Coatings

    Science.gov (United States)

    1992-03-31

    ester solvents include ethylene glycol acceptable for anti-corrosive compositions. Blistering in monoethyl ether acetate, diethylene glycol monoethyl ...corrosion and 0 is i inch or more methyl isobutyl ketone. diethyl ketone, and cyclohexa- creepage from the scribe. Ratings of 3 or above are none. Glycol ...45 * coating is determined in accordance with ASTM ether acetate, etc. D714-56. This method describes blister size as numbers The coating has

  19. Environmentally Friendly Corrosion Preventative Compounds

    Science.gov (United States)

    Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela

    2012-01-01

    The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.

  20. Corrosion testing in flash tanks

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, S.J.; Stead, N.J.

    1999-07-01

    As kraft pulp mills adopt modified cooking processes, an increasing amount of corrosion of carbon steel digester systems is being encountered. Many mills have had severe corrosion in the flash tanks, in particular, the first ({number{underscore}sign}1) flash tank. The work described in this report was aimed at characterizing the corrosion. Coupons of carbon steel, several stainless steels and titanium were exposed at two mills. At mill A, identical sets of coupons were exposed in the {number{underscore}sign}1 and {number{underscore}sign}2 flash tank. At mill B, three identical sets of coupons were placed in flash tank {number{underscore}sign}1. The results of the exposures showed that both carbon steel and titanium suffered high rates of general corrosion, while the stainless steels suffered varying degrees of localized attack. The ranking of the resistance of corrosion in the flash tank was the same ranking as would be expected in a reducing acid environment. In the light of the coupon results, organic acids is concluded to be the most likely cause of corrosion of the flash tanks.

  1. Inhibition of stress corrosion cracking of alloy 600 in 10% NaOH solutions with and with lead oxide at 315 C

    International Nuclear Information System (INIS)

    Hur, D.H.; Kim, J.S.; Baek, J.S.; Kim, J.G.

    2002-01-01

    Alloy 600 steam generator tube materials have experienced various degradations by corrosion such as stress corrosion cracking (SCC) on the inner and outer diameter surface of tube, intergranular attack and pitting, and by mechanical damage such as fretting-wear and fatigue. These tube degradations not only increase the costs for tube inspection, maintenance and repair but also reduce the operation safety and the efficiency of plants. Therefore, the methodologies have been extensively developed to mitigate them. The addition of inhibitors to the coolant is a feasible method to mitigate tube degradations in operating plants. In this paper, a new inhibitor is proposed to mitigate the secondary side stress corrosion cracking of alloy 600 tubes. The effect of inhibitors on the electrochemical behavior and the stress corrosion cracking resistance of alloy 600 was evaluated in 10% sodium hydroxide solution with and without lead oxide at 315 C. The specimens of a C-ring type for stress corrosion cracking test were polarized at 150 mV above the corrosion potential for 120 hours without and with inhibitors such as titanium oxide, titanium boride, cerium boride. The chemical compositions of the films formed on the crack tip in the C-ring specimens were analyzed using a scanning Auger electron spectroscopy. The cerium boride, the most effective inhibitors, was observed to decrease the crack propagation rate more than a factor of three compared with that obtained in pure 10% NaOH solution. Furthermore, no SCC was observed in lead contaminated 10% NaOH solution by the addition of the cerium boride. (authors)

  2. A Theoretical Model for Metal Corrosion Degradation

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2010-01-01

    Full Text Available Many aluminum and stainless steel alloys contain thin oxide layers on the metal surface which greatly reduce the corrosion rate. Pitting corrosion, a result of localized breakdown of such films, results in accelerated dissolution of the underlying metal through pits. Many researchers have studied pitting corrosion for several decades and the exact governing equation for corrosion pit degradation has not been obtained. In this study, the governing equation for corrosion degradation due to pitting corrosion behavior was derived from solid-state physics and some solutions and simulations are presented and discussed.

  3. Solutions of corrosion Problems in advanced Technologies

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    were investigated using light optical and scanning electron microscopy. The ferritic steels suffered from corrosion mainly via material loss. The austenitic steels suffered from predominantly selective corrosion resulting in chromium depletion from the alloy. A clear trend was observed that selective...... corrosion increased with increasing chromium content of the alloy.......Austenitic and ferritic steels were exposed in the superheater area of a straw-fired CHP plant. The specimens were exposed for 1400 hours at 450-600°C. The rate of corrosion was assessed based on unattacked metal remaining. The corrosion products and course of corrosion for the various steel types...

  4. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    International Nuclear Information System (INIS)

    Zhang Ruijin; Castel, Arnaud; Francois, Raoul

    2010-01-01

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  5. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    Science.gov (United States)

    Tham, Kim Kong; Kushibiki, Ryosuke; Kamada, Tomonari; Hinata, Shintaro; Saito, Shin

    2018-05-01

    Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms), uniaxial magnetocrystalline anisotropy (Ku), and magnetic grain diameter (GD) of the granular media show linear correlation with volume weighted average for melting point (Tm) of each oxides (Tmave). Ku of magnetic grains (Kugrain) shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α). By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  6. General Corrosion and Localized Corrosion of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847])

  7. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  8. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Unknown

    SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this ... corrosion mechanism, measurement of metal corrosion rate, corrosion evaluation and prediction of corrosion are also discussed ..... Hou Baorong and Li Yantao 1998 Studia Marina Sinica 13 119.

  9. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  10. Hanford transuranic storage corrosion review

    International Nuclear Information System (INIS)

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions

  11. Corrosion effects on friction factors

    International Nuclear Information System (INIS)

    Magleby, H.L.; Shaffer, S.J.

    1996-01-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly

  12. Combining hygrothermal and corrosion models to predict corrosion of metal fasteners embedded in wood

    Science.gov (United States)

    Samuel L. Zelinka; Dominique Derome; Samuel V. Glass

    2011-01-01

    A combined heat, moisture, and corrosion model is presented and used to simulate the corrosion of metal fasteners embedded in solid wood exposed to the exterior environment. First, the moisture content and temperature at the wood/fastener interface is determined at each time step. Then, the amount of corrosion is determined spatially using an empirical corrosion rate...

  13. Quantitative measures of corrosion and prevention: application to corrosion in agriculture

    NARCIS (Netherlands)

    Schouten, J.C.; Gellings, P.J.

    1987-01-01

    The corrosion protection factor (c.p.f.) and the corrosion condition (c.c.) are simple instruments for the study and evaluation of the contribution and efficiency of several methods of corrosion prevention and control. The application of c.p.f. and c.c. to corrosion and prevention in agriculture in

  14. Some observations about the Incoloy 800 corrosion

    International Nuclear Information System (INIS)

    Baptista, W.; Sathler, L.; Mattos, O.R.

    1985-01-01

    The chemical and electrochemical characteristics of synthetic solutions similar to those inside the occluded cell corrosion - OCC (pitting, cracks from stress corrosion) of incoloy 800, 25 0 C are studied. (E.G.) [pt

  15. Corrosion of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    Unknown

    alloyed intermetallics were susceptible to galvanic corrosion, due to the presence of carbides. Keywords. Corrosion; iron aluminides; Fe3Al; potentiodynamic polarization. 1. Introduction. Ordered intermetallic alloys based on iron aluminides of.

  16. Cracking of SHCC due to reinforcement corrosion

    NARCIS (Netherlands)

    Savija, B.; Lukovic, M.; Pacheco Farias, J.; Schlangen, H.E.J.G.; Saouma, V.; Bolander, J.; Landis, E.

    2016-01-01

    Reinforcement corrosion is the most important deterioration mechanism affecting reinforced concrete infrastructures. After corrosion starts, expansive pressures are exerted onto the surrounding concrete, causing cracking and spalling of the cover concrete. The amount of cover cracking can possibly

  17. Accelerated Test Method for Corrosion Protective Coatings

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as...

  18. Rail base corrosion and cracking prevention

    Science.gov (United States)

    2014-07-01

    Rail base corrosion combined with fatigue or damage can significantly reduce rail life. Studies were done to examine the relative contribution of damage, corrosion, and fatigue on rail life. The combined effects can be separated into constituent fact...

  19. Microencapsulation of Corrosion Indicators for Smart Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  20. Corrosion product film-induced stress facilitates stress corrosion cracking

    OpenAIRE

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic subst...

  1. Smart Coatings for Launch Site Corrosion Protection

    Science.gov (United States)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  2. Marine atmospheric corrosion of carbon steels

    OpenAIRE

    Morcillo, Manuel; Alcántara, Jenifer; Díaz, Iván; Chico, Belén; Simancas, Joaquín; de la Fuente, Daniel

    2015-01-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products...

  3. Filiform corrosion formation on painted aluminium extrusions

    Energy Technology Data Exchange (ETDEWEB)

    Nordlien, J.H. [SINTEF Materials Technology, Trondheim (Norway). Dept. of Corrosion and Surface Technology; Defrancq, J. [Lab. for Strength of Materials and Welding Technology, Univ. of Gent (Belgium); Zuest, W. [Algroup Alusuisse, Technology Center, Neuhausen (Switzerland); Benmalek, M. [Pechiney, Centre de Recherches de Voreppe, Voreppe (France); Stuckart, R. [Hydro Aluminium Extrusion, Lausanne (Switzerland)

    2000-07-01

    The filiform corrosion susceptibility of extruded, chromated and coated AA 6060/6063 alloys has been investigated. It is shown that, provided sufficient metal is removed before chromating, these alloys will exhibit high filiform corrosion resistance. In those cases where extensive filiform corrosion attack is observed during corrosion testing it is shown to be due to a reactive surface region, formed during the thermo-mechanical processing of the alloy and remaining after chemical pretreatment for painting. (orig.)

  4. Corrosion monitoring using FSM technology

    International Nuclear Information System (INIS)

    Strommen, R.; Horn, H.; Gartland, P.O.; Wold, K.; Haroun, M.

    1995-01-01

    FSM is a non-intrusive monitoring technique based on a patented principle, developed for the purpose of detection and monitoring of both general and localized corrosion, erosion, and cracking in steel and metal structures, piping systems, and vessels. Since 1991, FSM has been used for a wide range of applications, including for buried and open pipelines, process piping offshore, subsea pipelines and flowlines, applications in the nuclear power industry, and in materials, research in general. This paper describes typical applications of the FSM technology, and presents operational experience from some of the land-based and subsea installations. The paper also describes recent enhancements in the FSM technology and in the analysis of FSM readings, allowing for monitoring and detailed quantification of pitting and mesa corrosion, and of corrosion in welds

  5. Electrochemical corrosion of metallic biomaterials.

    Science.gov (United States)

    Pourbaix, M

    1984-05-01

    Methods of electrochemical thermodynamics (electrode potential-pH equilibrium diagrams) and electrochemical kinetics (polarization curves) may help to understand and predict the corrosion behaviour of metals and alloys in the presence of body fluids. A short review of the literature is given concerning some applications of such methods, both in vitro and in vivo, relating to surgical implants (stainless steels, chromium-cobalt-molybdenum alloys, titanium and titanium alloys) and to dental alloys (silver-tin-copper amalgams, silver-base and gold-base casting alloys, nickel-base casting alloys). Attention is drawn to the necessity of more basic research on crevice- and fretting-corrosion of surgical implant materials and dental alloys, and to the toxicity of corrosion products. A perfect understanding of the exact significance of electrode-potentials is essential for the success of such a task.

  6. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... the supersaturated alloy, into a diverse carbide network. Finally, the foils turn into metal dust accompanied by a thinning and disappearance of the foils. Investigations of TEM samples, prepared by means of FIB, on the carbide network revealed a lamellar structure with carbides and austenite. Finally, the mutual...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting...

  7. Corrosion of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    Corrosion rates were also obtained by immersion testing. The variation of corrosion rate as a function of time was similar for both the intermetallics. The variation in corrosion rate as a function of time has been explained based on the observed potentiodynamic polarization behaviour. Scanning electron microscopy of ...

  8. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  9. 49 CFR 193.2625 - Corrosion protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  10. Corrosion inhibitor testing in archaeological conservation

    Directory of Open Access Journals (Sweden)

    Robert Faltermeier

    1997-11-01

    Full Text Available Metal objects from archaeological contexts often suffer serious damage by corrosion. Various methods for inhibiting corrosion have been developed, but their effects need to be evaluated. Here new research is described on how treatments to inhibit the corrosion of copper and copper-alloy artefacts may be tested.

  11. Corrosion and chemical resistant masonry materials handbook

    National Research Council Canada - National Science Library

    Sheppard, Walter Lee

    1986-01-01

    ... and other equipment. But few other than chemists and chemical engineers identify "corrosion" as chemical degradation or destruction of a material, and therefore, something that can happen to nonmetals (concrete, plastics, brick, timber, etc.) as well as to nletals. The National Association of Corrosion Engineers so defined "corrosion" over thirty years ago but this f...

  12. The Corrosivity of the Mauritian Atmosphere

    African Journals Online (AJOL)

    Nafiisah

    the outdoor exposure of carbon steel samples of commercial quality. They were exposed at three sites, ... 25% of this cost could be avoided by using appropriate corrosion control technology. Atmospheric corrosion is ... then compared with ISO 9223 to determine the corrosivity of the atmosphere at the three different sites.

  13. Electrochemical Measurement of Atmospheric Corrosion

    Science.gov (United States)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  14. Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt.% NaCl solution

    International Nuclear Information System (INIS)

    Khireche, S.; Boughrara, D.; Kadri, A.; Hamadou, L.; Benbrahim, N.

    2014-01-01

    Highlights: • We elaborate Al–5Zn–xSn sacrificial anodes (x = 0.1%, 0.2% and 0.4%). • Increasing Sn amount does activate Al alloys. • The anode dissolution in NaCl initiates at precipitations where Sn is enriched. • Sn enhances uniform attack on the surface of the Al alloy. • Al–Zn–Sn anodes perform better than the Al–Zn anode. - Abstract: The effect of zinc and tin addition to pure aluminum was investigated in 3 wt.% NaCl solution. The corrosion behavior of the elaborated samples (Al, Al–Zn and Al–Zn–Sn) was studied by open circuit potential, Tafel plot and electrochemical impedance spectroscopy. For the microstructure characterization, Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy were used. The aluminum activation increases in the following order: Al < Al–5Zn < Al–5Zn–0.1Sn < Al–5Zn–0.2Sn < Al–5Zn–0.4Sn. The impedance measurements and the microscopic observations confirmed the great activity of Al–Zn and Al–Zn–Sn compared to pure Al. The segregation at the grain boundaries leads to intergranular corrosion

  15. Comparison of corrosion performance of grade 316 and grade 347H stainless steels in molten nitrate salt

    Science.gov (United States)

    Trent, M. C.; Goods, S. H.; Bradshaw, R. W.

    2016-05-01

    Stainless steel samples machined from SA-312 TP316 and SA-213 TP347H pipe were exposed to a molten nitrate salt environment at 600°C (1112°F) for up to 3000 hours in order to generate corrosion rates for use in concentrated solar power (CSP) facilities. Descaled weight loss measurements were made at 1000, 2000, and 3000 hours, with optical and scanning electron microscopy being performed on samples at the longest exposure time. The 316 and 347H alloys exhibited metal losses of 4.4 and 4.8 um respectively at 3000 hours. A linear fit to the data sets yielded annualized metal loss rates of 8.4 and 8.8 um/yr. The oxides were relatively uniform in thickness and multilayered. The inner layer consisted of a (Fe, Cr)-spinel with appreciable amounts of Mn while the outer layer was an oxide composed of only Fe. No pitting, intergranular attack, or other localized attack was found, despite the presence of a sensitized microstructure in both alloys and chloride impurity in the salt mixture. The observations presented here indicate that the two alloys perform quite comparably with respect to molten salt-induced corrosion and in that regard; either would be expected to perform satisfactorily in the intended application.

  16. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water

    Science.gov (United States)

    Fournier, L.; Savoie, M.; Delafosse, D.

    2007-06-01

    The low cycle fatigue (LCF) behaviour of precipitation-strengthened A-286 austenitic stainless steel was first investigated at room temperature under 0.2% plastic strain control. LCF led to hardening for the first 20 cycles and then to significant softening. LCF-induced dislocation microstructure was characterized using both bright and dark-field imaging techniques in transmission electron microscopy. Cycling softening was correlated with the formation of precipitate-free localized deformation bands. The effect of these precipitate-free localized deformation bands on A-286 stress corrosion cracking (SCC) behaviour in PWR primary water was then examined by means of constant extension rate tensile (CERT) tests at 320 °C and 360 °C. Comparative CERT tests were performed on companion specimens with similar yield stress but pre-fatigued to a few cycles (4-8) or between 125 and 200 cycles. Specimens pre-fatigued to a few cycles with no precipitate-free localized deformation bands exhibited little susceptibility to intergranular SCC (IGSCC). In contrast, the presence of precipitate-free localized deformation bands formed by pre-fatigue to between 125 and 200 cycles strongly promoted IGSCC. The interest of the approach used in this study is to provide insight into the role of localized deformation in irradiation assisted stress corrosion cracking.

  17. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water

    International Nuclear Information System (INIS)

    Fournier, L.; Savoie, M.; Delafosse, D.

    2007-01-01

    The low cycle fatigue (LCF) behaviour of precipitation-strengthened A-286 austenitic stainless steel was first investigated at room temperature under 0.2% plastic strain control. LCF led to hardening for the first 20 cycles and then to significant softening. LCF-induced dislocation microstructure was characterized using both bright and dark-field imaging techniques in transmission electron microscopy. Cycling softening was correlated with the formation of precipitate-free localized deformation bands. The effect of these precipitate-free localized deformation bands on A-286 stress corrosion cracking (SCC) behaviour in PWR primary water was then examined by means of constant extension rate tensile (CERT) tests at 320 o C and 360 o C. Comparative CERT tests were performed on companion specimens with similar yield stress but pre-fatigued to a few cycles (4-8) or between 125 and 200 cycles. Specimens pre-fatigued to a few cycles with no precipitate-free localized deformation bands exhibited little susceptibility to intergranular SCC (IGSCC). In contrast, the presence of precipitate-free localized deformation bands formed by pre-fatigue to between 125 and 200 cycles strongly promoted IGSCC. The interest of the approach used in this study is to provide insight into the role of localized deformation in irradiation assisted stress corrosion cracking

  18. An overview of stress corrosion in nuclear reactors from the late 1950s to the 1990s

    International Nuclear Information System (INIS)

    Bush, S.H.; Chockie, A.D.

    1996-02-01

    This report examines the problems that US and certain foreign reactors have experienced with intergranular and transgranular stress corrosion cracking. Included is a review of the failure modes and mechanisms, various corrective measures, and the techniques available to detect and size the cracks. The information has been organized into four time periods: late 1950s to mid 1960s; mid 1960s to 1975; 1975 to 1985; and 1985 to 1991. The key findings concerning BWRs are: Corrective actions have led to a substantial reduction of IGSCC; Control of carbon levels - through use of ELC or NG grades of austenitic stainless steels - should minimize IGSCC; Control of residual stresses, particularly with IHSI, greatly reduces the incidence of IGSCC; Hydrogen water treatment controls the oxygen and should limit IGSCC; The problem with furnace-sensitized safe ends is well recognized and should not recur; In most cases, severe circumferential SCC should lead to detectable leakage so that leak-before-break can be identified; IGSCC of austenitic stainless steels can occur in all pipe sizes from smallest to largest, especially when stress, sensitization, and oxygen are all present. In the case of PWRs, it is clear that the incidents of primary water stress corrosion cracking appear to be increasing. Cases containing steam generators, austenitic stainless steels, and Inconels have been known for years. Now it is occurring in safe ends and piping at very low oxygen levels. Secondary side water chemistry must be controlled to prevent SCC in PWRs. 18 refs

  19. On the Stress Corrosion Cracking and Hydrogen Embrittlement Behavior of Austenitic Stainless Steels in Boiling Saturated Magnesium Chloride Solutions

    Directory of Open Access Journals (Sweden)

    Osama M. Alyousif

    2012-01-01

    Full Text Available The stress corrosion cracking (SCC and hydrogen embrittlement (HE behaviors for types 304, 310, and 316 austenitic stainless steels were investigated in boiling saturated magnesium chloride solutions using a constant load method under different conditions including test temperature, applied stress, and sensitization. Both of type 304 and type 316 stainless steels showed quite similar behavior characteristics, whereas type 310 stainless steel showed a different behavior. The time to failure (tf parameter was used among other parameters to characterize the materials behavior in the test solution and to develop a mathematical model for predicting the time to failure in the chloride solution. The combination of corrosion curve parameters and fracture surface micrographs gave some explanation for the cracking modes as well as an indication for the cracking mechanisms. On the basis of the results obtained, it was estimated that intergranular cracking was resulted from hydrogen embrittlement due to strain-induced formation of martensite along the grain boundaries, while transgranular cracking took place by propagating cracks nucleated at slip steps by dissolution.

  20. Iodine stress corrosion cracking of Zircaloy: Laboratory data, a phenomenological model, and predictions of in-reactor behavior

    International Nuclear Information System (INIS)

    Miller, A.K.; Tasooji, A.

    1981-01-01

    Data from laboratory tests performed on unirradiated and irradiated Zircaloy have been used as the basis for developing a phenomenological model of iodine-induced stress corrosion crack initiation and growth. The model is capable of predicting the response of cladding subjected to complex loading conditions. Major features of the data incorporated into the model include the existence of a threshold stress, the effect of iodine concentration, temperature effects, the role of chemical inhomogeneities and mechanical flaws, crack initiation in smooth specimens, crack propagation rates as a function of stress intensity in flawed specimens, and the detrimental effect of irradiation. The major physical processes addressed by the model include intergranular stress corrosion cracking (SCC), transgranular SCC, ductile rupture, iodine penetration by surface diffusion along existing on incipient cracks, and stress and strain intensification and triaxiality caused by cracks or flaws. A probabilistic description of the size distribution of the flaws found in as-fabricated cladding is used at the basis for quantitatively extrapolating the laboratory test results to predict in-reactor cladding behavior. The in-reactor SCC resistance of a large fuel assembly is predicted to be substantially lower and more variable than that of small laboratory specimens. (orig.)

  1. An overview of stress corrosion in nuclear reactors from the late 1950s to the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S.H. [Review and Synthesis Associates, Richland, WA (United States); Chockie, A.D. [Chockie Group International Inc., Seattle, WA (United States)

    1996-02-01

    This report examines the problems that US and certain foreign reactors have experienced with intergranular and transgranular stress corrosion cracking. Included is a review of the failure modes and mechanisms, various corrective measures, and the techniques available to detect and size the cracks. The information has been organized into four time periods: late 1950s to mid 1960s; mid 1960s to 1975; 1975 to 1985; and 1985 to 1991. The key findings concerning BWRs are: Corrective actions have led to a substantial reduction of IGSCC; Control of carbon levels - through use of ELC or NG grades of austenitic stainless steels - should minimize IGSCC; Control of residual stresses, particularly with IHSI, greatly reduces the incidence of IGSCC; Hydrogen water treatment controls the oxygen and should limit IGSCC; The problem with furnace-sensitized safe ends is well recognized and should not recur; In most cases, severe circumferential SCC should lead to detectable leakage so that leak-before-break can be identified; IGSCC of austenitic stainless steels can occur in all pipe sizes from smallest to largest, especially when stress, sensitization, and oxygen are all present. In the case of PWRs, it is clear that the incidents of primary water stress corrosion cracking appear to be increasing. Cases containing steam generators, austenitic stainless steels, and Inconels have been known for years. Now it is occurring in safe ends and piping at very low oxygen levels. Secondary side water chemistry must be controlled to prevent SCC in PWRs. 18 refs.

  2. Corrosion problems of power engineering

    International Nuclear Information System (INIS)

    1987-12-01

    The proceedings of the conference Corrosion Problems of Power Engineering held from 8 to 10 Dec 1987 in Marianske Lazne (CS) contain the full texts of 26 papers of which 12 fall under the INIS Subject Scope. The papers discuss structural materials for the components of the primary and secondary coolant circuits of nuclear power plants with WWER type reactors. Attention is devoted to various aspects of corrosion behaviour of the materials during normal operation of a nuclear power plant and in deactivation agents. (Z.M.)

  3. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  4. Corrosion Reliability of Electronic Systems

    DEFF Research Database (Denmark)

    Ambat, Rajan; Jensen, Stine G.; Møller, Per

    2008-01-01

    Inherently two factors namely multi-material usage and potential bias makes electronic devices susceptible to corrosion if exposed to humid conditions. The problem is compounded today due to miniaturization and contamination effects. The reduction in size of the components and close spacing...... on a Printed Circuit Board (PCB) for high density packing has greatly increased the risk of corrosion under humid conditions. An important issue is the failures due to electrolytic metal migration. This paper describes an investigation of the electrolytic migration of Sn-Pb solder lines on PCBs in humid...

  5. Finite element analysis of the influence of elastic anisotropy on stress intensification at stress corrosion cracking initiation sites in fcc alloys

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2018-05-01

    A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.

  6. Stress Corrosion Cracking of Aluminum Alloys

    Science.gov (United States)

    2012-09-10

    observations. In his study on SCC of AISI 304 stainless steel, Roychowdhury[3] detected no apparent SCC in solutions containing 1 ppm thiosulfate and...gradual SCC with increasing thiosulfate concentration. Trabanelli[15] found no evidence of SCC of AISI 304 stainless steel in 10-5 M NaF solution but...intergranular SCC by increasing the NaF concentration. Micheli[21] noticed solution-treated AISI 316L stainless steels immune to SCC in aqueous

  7. Investigation of the main chemical properties of water-magnesium chloride solutions. Application to the understanding of stress corrosion phenomena in 17.12 Mo stainless steel

    International Nuclear Information System (INIS)

    Hasni, Abdellatif

    1988-01-01

    This research thesis reports the investigation of the main chemical properties of concentrated aqueous solutions of MgCl 2 and of their influence of stress corrosion of 17Cr-12Ni-2Mo stainless steel. It shows that the most important chemical properties are the equilibrium pH and the acidity range of MgCl 2 aqueous solutions, and that they strongly depend on solution temperature and concentration. The medium pH is governed by the increased acidity of water in presence of Mg ++ ions, while the acidity range is determined by a hydrolysis reaction of these ions which results in a precipitation of magnesium hydroxyl-chlorides. The investigation of stress corrosion behaviour of the steel in MgCl 2 solutions with varying temperature and concentration shows that this behaviour comes down to a prevailing pH effect which results from the variation of these both parameters, with a not negligible but less important effect of temperature. A study of cracking surfaces indicates that it is possible to pass from a transgranular to an intergranular mode by a variation of either media aggressiveness (pH, temperature, voltage) or strain rate. These results are explained by a concept of kinetic factor which limits stress corrosion [fr

  8. pitting corrosion susceptibility pitting corrosion susceptibility of aisi ...

    African Journals Online (AJOL)

    eobe

    The susceptibility of austenitic (AISI 301) stainless steel to pitting corrosion was evaluated in sodium chloride ... halides, the most aggressive and thus, the most frequently investigated is the chloride ions, particularly its effect on pit formation in 18/8 stainless steel [1 - 3]. ... in sea water), and moderately high temperatures.

  9. 219-S CORROSION STUDY

    International Nuclear Information System (INIS)

    DIVINE, J.R.; PARSONS, G.L.

    2008-01-01

    A minor leak was detected in a drain line for Hood 2B located in the 222-S Laboratory. The line transfers radioactive waste, spent analytical standards, and chemicals used in various analytical procedures. Details are in the report provided by David Comstock, 2B NDE June 2008, work package LAB-WO-07-2012. Including the noted leak, the 222-S Laboratory has experienced two drain line leaks in approximately the last two years of operation. As a consequence, CH2M HILL Hanford Group, Inc. (CH2M HILL) requested the support of ChemMet, Ltd., PC (ChemMet) at the Hanford Site 222-S Laboratory. The corrosion expertise from ChemMet was required prior to preparation of a compatibility assessment for the 222-S Laboratory waste transfer system to assure the expected life of the piping system is extended as much as practicable. The system includes piping within the 222-S Laboratory and the 219-S Waste Storage and Transfer Facility and Operations Process. The ChemMet support was required for an assessment by 222-S staff to analyze what improvements to operational activities may be implemented to extend the tank/piping system life. This assessment will include a summary of the various material types, age, and locations throughout the facility. The assessment will also include a discussion of materials that are safe for drain line disposal on a regular basis, materials that are safe for disposal on a case-by-case basis including specific additional requirements such as flushing, neutralization to a specific pH, and materials prohibited from disposal. The assessment shall include adequate information for 222-S Laboratory personnel to make informed decisions in the future disposal of specific material types by discussing types of compatibility of system materials and potential wastes. The assessment is expected to contain some listing of acceptable waste materials but is not anticipated to be a complete or comprehensive list. Finally the assessment will encompass a brief discussion of

  10. Assessing Level and Effectiveness of Corrosion Education in the UAE

    Directory of Open Access Journals (Sweden)

    Hwee Ling Lim

    2012-01-01

    Full Text Available The consequences of corrosion can be minimized by an engineering workforce well trained in corrosion fundamentals and management. Since the United Arab Emirates incurs the second highest cost of corrosion after Saudi Arabia, this paper examined the quality of corrosion education in the UAE. Surveys with academia and industry respondents showed that dedicated corrosion courses and engineering courses that integrated corrosion into the curricula were available in UAE universities, but graduates had insufficient knowledge of corrosion engineering and superficial understanding of corrosion in real-life design contexts. The effectiveness of corrosion education is determined by both competence in corrosion knowledge/skills and availability of resources (faculty and research. Though most departments would not hire new corrosion-specialist faculty, department research efforts and industry partnerships in corrosion research were present. The paper concluded with recommendations for improving knowledge and skills of future engineers in corrosion and enhancing corrosion instruction to better meet industry needs.

  11. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  12. The effect of inter-granular constraints on the response of polycrystalline piezoelectric ceramics at the surface and in the bulk

    DEFF Research Database (Denmark)

    Hossain, Mohammad J.; Wang, Zhiyang; Khansur, Neamul H.

    2016-01-01

    The electro-mechanical coupling mechanisms in polycrystalline ferroelectric materials, including a soft PbZrxTi1−xO3 (PZT) and lead-free 0.9375(Bi1/2Na1/2)TiO3-0.0625BaTiO3 (BNT-6.25BT), have been studied using a surface sensitive low-energy (12.4 keV) and bulk sensitive high-energy (73 ke...... methods demonstrates that the intergranular constraints have a significant influence on the electric-field-induced electro-mechanical responses in polycrystalline ferroelectrics. These results have implications for the design of higher performance polycrystalline piezoelectrics....

  13. Corrosion of UN in water

    International Nuclear Information System (INIS)

    Sunder, S.; Miller, N.H.

    1996-10-01

    Corrosion of UN in water was investigated as a function of pH and temperature using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and by measuring the amount of ammonia formed due to its corrosion. The XPS results indicate that a freshly fractured surface of UN is quickly converted to U0 2 on exposure to liquid water or water vapours at ambient temperatures. These results show that UN is unstable in contact with water. The corrosion rate of UN is estimated to be ≥40 μmol·m -2 ·h -1 in deaerated water at ∼92 o C. There was no significant difference in corrosion rates measured in water at initial pHs of ∼6 and ∼10.3. These results contradict the literature reports stating that UN is stable in contact with boiling water. The implications of these results on the suitability of UN as a nuclear fuel for reactors are discussed. (author)

  14. Tubing with high corrosion resistance

    Science.gov (United States)

    Ioffe, A. V.; Tetyueva, T. V.; Vyboyshchik, M. A.; Trifonova, E. A.; Lutsenko, E. S.

    2010-07-01

    The optimum chemical composition and the regime for heat treatment of heat-resistant steel 15Kh5M are determined for the production of tubing with strength of group L80 (API 5CT) and high cold resistance and resistance to carbon dioxide and sulfurated hydrogen corrosion at low alloying additives of chromium and molybdenum.

  15. Less-toxic corrosion inhibitors

    Science.gov (United States)

    Humphries, T. S.

    1981-01-01

    Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

  16. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch

    1997-01-01

    to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  17. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    International Nuclear Information System (INIS)

    Rebak, R B

    2005-01-01

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation--When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container--Alloy 22 has been extensively tested for

  18. The dual role of microbes in corrosion

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  19. The dual role of microbes in corrosion.

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  20. Coercivity enhancement of Dy-free Nd–Fe–B sintered magnets by intergranular adding Ho{sub 63.4}Fe{sub 36.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Wu, Chen; Zhang, Pei; Liu, Xiaolian; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-01-01

    High coercivity Nd–Fe–B sintered magnets serving in high-temperature environments always consume expensive and scarce heavy rare-earth Dy, which has simulated considerable interest to reduce Dy usage. In this work, coercivity of Dy-free magnets was investigated through intergranular adding eutectic Ho{sub 63.4}Fe{sub 36.6} powders. The coercivity increases gradually up to 4 wt% Ho{sub 63.4}Fe{sub 36.6} addition, however the remanence starts to deteriorate drastically as the addition is over 2.5 wt%. Coercivity above 18.0 kOe is obtained at the expense of a slight reduction in remanence through optimizing the addition amount and sintering conditions. The coercivity enhancement is explained through microstructural observations and elemental distribution analysis. (i) (Nd, Ho){sub 2}Fe{sub 14}B shell forms in the outer region of 2:14:1 phase grains, strengthening the local magnetic anisotropy filed, (ii) RE-rich grain boundary phase with low Fe content is thickened, weakening the magnetic coupling between adjacent 2:14:1 phase grains, and (iii) 2:14:1 phase grains are refined upon lowering sintering temperature, reducing the microstructural defects and the stray fields aroused from neighboring grains. - Highlights: • Eutectic Ho{sub 63.4}Fe{sub 36.6} powders were intergranular added to NdFeB sintered magnets. • The doped Dy-free magnet possessed coercivity of 18.0 kOe, remanence of 13.15 kGs. • (Nd, Ho){sub 2}Fe{sub 14}B shell formed in the surface of the matrix grains, increasing the H{sub A}. • Thick grain boundaries with low Fe content formed, decoupling the matrix grains. • By sintered at lower temperature, the matrix phase grains were refined.

  1. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  2. Predicting the Performance of Organic Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2017-12-01

    Full Text Available The withdrawal of effective but toxic corrosion inhibitors has provided an impetus for the discovery of new, benign organic compounds to fill that role. Concurrently, developments in the high-throughput synthesis of organic compounds, the establishment of large libraries of available chemicals, accelerated corrosion inhibition testing technologies, and the increased capability of machine learning methods have made discovery of new corrosion inhibitors much faster and cheaper than it used to be. We summarize these technical developments in the corrosion inhibition field and describe how data-driven machine learning methods can generate models linking molecular properties to corrosion inhibition that can be used to predict the performance of materials not yet synthesized or tested. We briefly summarize the literature on quantitative structure–property relationships models of small organic molecule corrosion inhibitors. The success of these models provides a paradigm for rapid discovery of novel, effective corrosion inhibitors for a range of metals and alloys in diverse environments.

  3. Corrosion Control in the Aerospace Industry

    Science.gov (United States)

    Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..

  4. Evolutionary Computation Techniques for Predicting Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Amine Marref

    2013-01-01

    Full Text Available Corrosion occurs in many engineering structures such as bridges, pipelines, and refineries and leads to the destruction of materials in a gradual manner and thus shortening their lifespan. It is therefore crucial to assess the structural integrity of engineering structures which are approaching or exceeding their designed lifespan in order to ensure their correct functioning, for example, carrying ability and safety. An understanding of corrosion and an ability to predict corrosion rate of a material in a particular environment plays a vital role in evaluating the residual life of the material. In this paper we investigate the use of genetic programming and genetic algorithms in the derivation of corrosion-rate expressions for steel and zinc. Genetic programming is used to automatically evolve corrosion-rate expressions while a genetic algorithm is used to evolve the parameters of an already engineered corrosion-rate expression. We show that both evolutionary techniques yield corrosion-rate expressions that have good accuracy.

  5. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  6. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  7. Future and benefits of corrosion research

    International Nuclear Information System (INIS)

    Staehle, Roger W.

    2002-01-01

    The subject of corrosion is a design science. The subject of stress analysis is a design science as is the subject of heat transfer. When the subject of corrosion is considered in the framework design a clear framework of the priorities and objectives becomes apparent. Further, corrosion becomes a more explicit and important subject in the overall design, manufacturing, and operation phases of equipment: in this framework, the funding and support of corrosion work is necessary to the designers and users of equipment. The subject of corrosion is usually less important in the early stages of operation of equipment: in these early stages, the subjects. Corrosion becomes important to the longer term reliability and safety of equipment. Corrosion is often a principal determiner of design life. Corrosion is often more important after the manufacturing warranty is expired: therefore the subject is often more important to the user than to the manufacturer. In order that the subject of corrosion is considered and incorporated in the design as well as in user specifications, there must be a language and means of easily understood communication between the design-operation community and the corrosion community. For example, the designers do not understand the language of 'pitting potential': rather, they understand design life and permissible stress. Thus, corrosion must be put into terms that can be understood and utilized by designers and operators. Two methodologies have been developed for communicating effectively between the corrosion and the design communities: these are the 'Corrosion Based Design Approach' and the 'Location for Analysis Matrix.' These provide simple check off lists to designers for asking questions and assuring that credible answers have been obtained on issues that affect reliable and economic performance. Both of these subject are discussed in this presentation. The future of corrosion research is its effective linkage with design and operation of

  8. A state of the art on primary side stress corrosion cracking in nuclear power plant

    International Nuclear Information System (INIS)

    Kim, H. P.; Kim, J. S.; Han, J. H.; Lee, D. H.; Lim, Y. S.; Suh, J. H.; Hwang, S. S.; Hur, D. H.

    1999-09-01

    A state of art on primary water stress corrosion cracking (PWSCC) of alloy 600 used as steam generator tubing of nuclear power plant and remedial action on the PWSCC were reviewed and analyzed. One of the major metallurgical factors which have effect on PWSCC is Cr carbide distribution. A semicontinuous intergranular Cr carbide distribution enhance PWSCC of alloy 600. PWSCC rate is reported to be reported to be proportional to exp(-50 cal/RT) σ 4 . PWSCC rate also increase with increase in hydrogen partial pressure from 0 to 150 ppm and then decreased with further increase in hydrogen partial pressure to 757 ppm. Development of PWSCC prediction technology which takes into account tubing material, fabrication process and operating history of steam generator is needed to manage PWSCC of domestic nuclear power plant. PWSCC has mainly occurred at expansion irregularities within tubesheet, expansion transitions, dented tube support plate intersections and transition and apex of U bend. Remedial actions to PWSCC are sleeving, plugging, temperature reduction, Ni plating, Ni sleeving, shot peening and steam generator replacement in worst case. Option to remedial actions depend on plant specific such as plant age, leak rate from primary to secondary, density and progression of PWSCC. Ni sleeving developed in Framatome seems to be a powerful method because it never subject to PWSCC. Remedial action should be developed and evaluated for possible PWSCC of domestic nuclear power plant. (author)

  9. Irradiation-assisted stress corrosion cracking considerations at temperatures below 288 degree C

    International Nuclear Information System (INIS)

    Simonen, E.P.; Jones, R.H.; Bruemmer, S.M.

    1995-03-01

    Irradiation-assisted stress corrosion cracking (IASCC) occurs above a critical neutron fluence in light-water reactor (LWR) water environments at 288 C, but very little information exists to indicate susceptibility as temperatures are reduced. Potential low-temperature behavior is assessed based on the temperature dependencies of intergranular (IG) SCC in the absence of irradiation, radiation-induced segregation (RIS) at grain boundaries and micromechanical deformation mechanisms. IGSCC of sensitized SS in the absence of irradiation exhibits high growth rates at temperatures down to 200 C under conditions of anodic dissolution control, while analysis of hydrogen-induced cracking suggests a peak crack growth rate near 100 C. Hence from environmental considerations, IASCC susceptibility appears to remain likely as water temperatures are decreased. Irradiation experiments and model predictions indicate that RIS also persists to low temperatures. Chromium depletion may be significant at temperatures below 100C for irradiation doses greater than 10 displacements per atom (dpa). Macromechanical effects of irradiation on strength and ductility are not strongly dependent on temperature below 288 C. However, temperature does significantly affect radiation effects on SS microstructure and micromechanical deformation mechanisms. The critical conditions for material susceptibility to IASCC at low temperatures may be controlled by radiation-induced grain boundary microchemistry, strain localization due to irradiation microstructure and irradiation creep processes. 39 refs

  10. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  11. Quantitative measures of corrosion and prevention: application to corrosion in agriculture

    OpenAIRE

    Schouten, J.C.; Gellings, P.J.

    1987-01-01

    The corrosion protection factor (c.p.f.) and the corrosion condition (c.c.) are simple instruments for the study and evaluation of the contribution and efficiency of several methods of corrosion prevention and control. The application of c.p.f. and c.c. to corrosion and prevention in agriculture in The Netherlands is considered in detail. Attention is paid to relations between c.p.f. and c.c., the corrosion costs, possible cost savings and the applied corrosion protection scheme on farms. It ...

  12. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  13. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-06-11

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young's modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC.

  14. Civil Engineering Corrosion Control. Volume 1. Corrosion Control - General

    Science.gov (United States)

    1975-01-01

    inum by electrolysis and partly by re-forming the film. In time, the layer of corrosion products formed maintains an alkaline condition at the aluminum... brines , strong, hot caustic solutions, hydro- fluoric and hydrofluosilicic acids, hot sulfates and sul- fites, sulfurous acid, phosphoric acid, and...and fractionating towers, brine and sea water applications 317 Process equipment involving strong acids or chlor- inated solvents 321 Furnace parts in

  15. Corrosion Protection of Electrically Conductive Surfaces

    Directory of Open Access Journals (Sweden)

    Jian Song

    2012-11-01

    Full Text Available The basic function of the electrically conductive surface of electrical contacts is electrical conduction. The electrical conductivity of contact materials can be largely reduced by corrosion and in order to avoid corrosion, protective coatings must be used. Another phenomenon that leads to increasing contact resistance is fretting corrosion. Fretting corrosion is the degradation mechanism of surface material, which causes increasing contact resistance. Fretting corrosion occurs when there is a relative movement between electrical contacts with surfaces of ignoble metal. Avoiding fretting corrosion is therefore extremely challenging in electronic devices with pluggable electrical connections. Gold is one of the most commonly used noble plating materials for high performance electrical contacts because of its high corrosion resistance and its good and stable electrical behavior. The authors have investigated different ways to minimize the consumption of gold for electrical contacts and to improve the performance of gold plating. Other plating materials often used for corrosion protection of electrically conductive surfaces are tin, nickel, silver and palladium. This paper will deal with properties and new research results of different plating materials in addition to other means used for corrosion protection of electrically conductive surfaces and the testing of corrosion resistance of electrically conductive surfaces.

  16. Development of green vapour corrosion inhibitor

    Science.gov (United States)

    Asmara, Y. P.; Suraj, V.; Siregar, J. P.; Kurniawan, T.; Bachtiar, D.; Mohamed, N. M. Z. N.

    2017-10-01

    Corrosion control using inhibitor is an effective method to protect carbon steel from corrosion. Due to environmental toxicity of chemical inorganic corrosion inhibitors (synthetic), green inhibitors are potentially to develop. In atmospheric conditions, green vapour corrosion inhibitors are the best solutions to replace the uses of inorganic corrosion inhibitors. This research used chemical acid extraction from the key lime (citrus aurantiifolia) leaves and seeds. They are used as the main ingredients to produce this effective green corrosion inhibitor. The experiments investigated effects of corrosion inhibition on corrosion rate of low carbon steel in 3% NaCl solution using both fog salt chamber and electrochemical cell. Using salt fog chamber to represent atmospheric conditions, and corrosion rates are evaluated visually and calculated using weight loss methods. Corrosion rate on electrochemical cell were calculated using linear polarization resistance (LPR) methods. All of the experiments were set in natural conditions at pH 7. Using weight loss for three days exposure time, the efficiency of the inhibitor reached 82.39%.

  17. Thermally activated dislocation creep model for primary water stress corrosion cracking of NiCrFe Alloys

    International Nuclear Information System (INIS)

    Hall, M.M. Jr.

    1995-01-01

    There is a growing awareness that environmentally assisted creep plays an important role in intergranular stress corrosion cracking (IGSCC) of NiCrFe alloys in the primary coolant water environment of a pressurized water reactor (PWR). The expected creep mechanism is the thermally activated glide of dislocations. This mode of deformation is favored by the relatively low temperature of PWR operation combined with the large residual stresses that are most often identified as responsible for the SCC failure of plant components. Stress corrosion crack growth rate (CGR) equations that properly reflect the influence of this mechanism of crack tip deformation are required for accurate component life predictions. A phenomenological IGSCC-CGR model, which is based on an apriori assumption that the IGSCC-CGR is controlled by allow temperature dislocation creep mechanism, is developed in this report. Obstacles to dislocation creep include solute atoms such as carbon, which increase the lattice friction force, and forest dislocations, which can be introduced by cold prestrain. Dislocation creep also may be environmentally assisted due to hydrogen absorption at the crack tip. The IGSCC-CGR model developed here is based on an assumption that crack growth occurs by repeated fracture events occurring within an advancing crack-tip creep-fracture zone. Thermal activation parameters for stress corrosion cracking are obtained by fitting the CGR model to IGSCC-CGR data obtained on NiCrFe alloys, Alloy X-750 and Alloy 600. These IGSCC-CGR activation parameters are compared to activation parameters obtained from creep and stress relaxation tests. Recently reported CGR data, which exhibit an activation energy that depends on yield stress and the applied stress intensity factor, are used to benchmark the model. Finally, the effects of matrix carbon concentration, grain boundary carbides and absorbed hydrogen concentration are discussed within context of the model. (author). 19 refs, 7 figs

  18. Analysis of corrosive environmental factors of seabed sediment

    Indian Academy of Sciences (India)

    Unknown

    relation between distance from seashore and corrosivity of seabed sediment. Keywords. Seabed sediment; corrosion; environmental factors. 1. Introduction. The corrosion due to seabed sediment is an important branch of corrosion research. The problem of metal corrosion in seabed sediments has become more and more.

  19. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons... internal corrosion. Each coupon or other means of monitoring internal corrosion must be checked two times...

  20. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Unknown

    corrosion mechanism, measurement of metal corrosion rate, corrosion evaluation and prediction of corrosion are also discussed here. Keywords. ... The corrosion rate at high temperature can be four times bigger than at low temperature. ... exchange of substance and energy depends only on the surface SBS, therefore, it is ...