WorldWideScience

Sample records for interactions theories simulations

  1. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites.

    Science.gov (United States)

    Ganesan, Venkat; Jayaraman, Arthi

    2014-01-07

    Polymer nanocomposites are a class of materials that consist of a polymer matrix filled with inorganic/organic nanoscale additives that enhance the inherent macroscopic (mechanical, optical and electronic) properties of the polymer matrix. Over the past few decades such materials have received tremendous attention from experimentalists, theoreticians, and computational scientists. These studies have revealed that the macroscopic properties of polymer nanocomposites depend strongly on the (microscopic) morphology of the constituent nanoscale additives in the polymer matrix. As a consequence, intense research efforts have been directed to understand the relationships between interactions, morphology, and the phase behavior of polymer nanocomposites. Theory and simulations have proven to be useful tools in this regard due to their ability to link molecular level features of the polymer and nanoparticle additives to the resulting morphology within the composite. In this article we review recent theory and simulation studies, presenting briefly the methodological developments underlying PRISM theories, density functional theory, self-consistent field theory approaches, and atomistic and coarse-grained molecular simulations. We first discuss the studies on polymer nanocomposites with bare or un-functionalized nanoparticles as additives, followed by a review of recent work on composites containing polymer grafted or functionalized nanoparticles as additives. We conclude each section with a brief outlook on some potential future directions.

  2. A Monte Carlo simulation for the field theory with quartic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sergio Mittmann dos [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio Grande do Sul (IFRS), Porto Alegre, RS (Brazil)

    2011-07-01

    Full text: In the work [1-S. M. Santos, B. E. J. Bodmann and A. T. Gomez, Um novo metodo computacional para a teoria de campos na rede: resultados preliminares, IV Escola do Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, 2002; and 2-S. M. Santos and B. E. J. Bodmann, Simulacao na rede de teorias de campos quanticos, XXVIII Congresso Nacional de Matematica Aplicada e Computacional (CNMAC), Sao Paulo, 2005], a computational method on the lattice was elaborated for the problem known as scalar field theory with quartic interaction (for instance, see: J. R. Klauder, Beyound conventional quantization, Cambridge: Cambridge University Press, 2000). This one introduced an algorithm, which allows the simulation of a given field theory and is independent of the lattice spacing, by redefining the fields and the parameters (the mass m and the coupling constant g). This kind of approach permits varying the dimension of the lattice without changing the computational complexity of the algorithm. A simulation was made using the Monte Carlo method, where the renormalized mass m{sub R}, the renormalized coupling constant g{sub R} and the two point correlation function were determined with success. In the present work, the genuine computational method is used for new simulations. Now, the Monte Carlo method is not used just for the simulation of the algorithm, like in [1, 2], but also for defining the adjust parameters (the mass and the coupling constant), introduced ad hoc in [1, 2]. This work presents the first simulations' outcomes, where best results that [1, 2] were determined, for the renormalized mass and the renormalized coupling constant. (author)

  3. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    Science.gov (United States)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  4. Plasma theory and simulation research

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the ''sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak)

  5. Game theory and experimental games the study of strategic interaction

    CERN Document Server

    Colman, Andrew M

    1982-01-01

    Game Theory and Experimental Games: The Study of Strategic Interaction is a critical survey of the essential ideas of game theory and the findings of empirical research on strategic interaction. Some experiments using lifelike simulations of familiar kinds of strategic interactions are presented, and applications of game theory to the study of voting, the theory of evolution, and moral philosophy are discussed.Comprised of 13 chapters, this volume begins with an informal definition of game theory and an outline of the types of social situations to which it applies. Games of skill, games of cha

  6. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  7. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  8. RISM theory distribution functions for Lennard--Jones interaction site fluids

    International Nuclear Information System (INIS)

    Johnson, E.; Hazoume, R.P.

    1978-01-01

    Reference interaction site model (RISM) theory distribution functions for Lennard-Jones interaction site fluids are discussed. The comparison with computer simulation results suggests that these distribution functions are as accurate as RISM distribution functions for fused hard sphere molecular fluids

  9. Simulating human behavior for national security human interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Michael Lewis; Hart, Dereck H.; Verzi, Stephen J.; Glickman, Matthew R.; Wolfenbarger, Paul R.; Xavier, Patrick Gordon

    2007-01-01

    This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humans were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.

  10. The renormalized theory of beam-beam interaction

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1988-06-01

    A new approach to calculate analytically the particle distribution in the presence of beam-beam interaction and synchrotron radiation effects for an electron-positron colliding beam storage ring is presented. The method is based on correct calculation of the Green's function which includes the full effect of the beam-beam force on the distortion of particle orbits, borrowing the renormalization technique of quantum field therory. By this way, the theory is applicable to any level of beam-beam interaction, no matter whether chaos ensues in phase space or not. This paper is devoted mostly to verificaiton of the theory by comparison with the results of computer simulations. Fairly good agreements are obtained. 5 refs., 3 figs

  11. Theory and simulation of epitaxial rotation. Light particles adsorbed on graphite

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise to frustra...... found a modulated 4 x 4 structure. Energy, structure-factor intensities, peak positions, and epitaxial rotation angles as a function of temperature and coverage have been determined from the simulations. Good agreement with theory and experimental data is found.......We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise...... between the commensurate and incommensurate phase for the adsorbed systems. From our simulations and our theory, we are, able to understand the gamma phase of D2 as an ordered phase stabilized by disorder. It can be described as a 2q-modulated structure. In agreement with the experiments, we have also...

  12. Theory, modeling and simulation: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  13. Theory, modeling and simulation: Annual report 1993

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE's research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies

  14. Social cognitive theory, metacognition, and simulation learning in nursing education.

    Science.gov (United States)

    Burke, Helen; Mancuso, Lorraine

    2012-10-01

    Simulation learning encompasses simple, introductory scenarios requiring response to patients' needs during basic hygienic care and during situations demanding complex decision making. Simulation integrates principles of social cognitive theory (SCT) into an interactive approach to learning that encompasses the core principles of intentionality, forethought, self-reactiveness, and self-reflectiveness. Effective simulation requires an environment conducive to learning and introduces activities that foster symbolic coding operations and mastery of new skills; debriefing builds self-efficacy and supports self-regulation of behavior. Tailoring the level of difficulty to students' mastery level supports successful outcomes and motivation to set higher standards. Mindful selection of simulation complexity and structure matches course learning objectives and supports progressive development of metacognition. Theory-based facilitation of simulated learning optimizes efficacy of this learning method to foster maturation of cognitive processes of SCT, metacognition, and self-directedness. Examples of metacognition that are supported through mindful, theory-based implementation of simulation learning are provided. Copyright 2012, SLACK Incorporated.

  15. Intercorporeality and aida: Developing an interaction theory of social cognition.

    Science.gov (United States)

    Tanaka, Shogo

    2017-06-01

    The aim of this article is to develop an interaction theory (IT) of social cognition. The central issue in the field of social cognition has been theory of mind (ToM), and there has been debate regarding its nature as either theory-theory or as simulation theory. Insights from phenomenology have brought a second-person perspective based on embodied interactions into the debate, thereby forming a third position known as IT. In this article, I examine how IT can be further elaborated by drawing on two phenomenological notions-Merleau-Ponty's intercorporeality and Kimura's aida . Both of these notions emphasize the sensory-motor, perceptual, and non-conceptual aspects of social understanding and describe a process of interpersonal coordination in which embodied interaction gains autonomy as an emergent system. From this perspective, detailed and nuanced social understanding is made possible through the embodied skill of synchronizing with others.

  16. Molecular Theory and the Effects of Solute Attractive Forces on Hydrophobic Interactions.

    Science.gov (United States)

    Chaudhari, Mangesh I; Rempe, Susan B; Asthagiri, D; Tan, L; Pratt, L R

    2016-03-03

    The role of solute attractive forces on hydrophobic interactions is studied by coordinated development of theory and simulation results for Ar atoms in water. We present a concise derivation of the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions, a derivation that clarifies the close relation of LMF theory to the EXP approximation applied to this problem long ago. The simulation results show that change from purely repulsive atomic solute interactions to include realistic attractive interactions diminishes the strength of hydrophobic bonds. For the Ar-Ar rdfs considered pointwise, the numerical results for the effects of solute attractive forces on hydrophobic interactions are opposite in sign and larger in magnitude than predicted by LMF theory. That comparison is discussed from the point of view of quasichemical theory, and it is suggested that the first reason for this difference is the incomplete evaluation within LMF theory of the hydration energy of the Ar pair. With a recent suggestion for the system-size extrapolation of the required correlation function integrals, the Ar-Ar rdfs permit evaluation of osmotic second virial coefficients B2. Those B2's also show that incorporation of attractive interactions leads to more positive (repulsive) values. With attractive interactions in play, B2 can change from positive to negative values with increasing temperatures. This is consistent with the puzzling suggestions of decades ago that B2 ≈ 0 for intermediate cases of temperature or solute size. In all cases here, B2 becomes more attractive with increasing temperature.

  17. Direction: unified theory of interactions

    International Nuclear Information System (INIS)

    Valko, P.

    1987-01-01

    Briefly characterized are the individual theories, namely, the general relativity theory, the Kaluza-Klein theory, the Weyl theory, the unified theory of electromagnetic and weak interactions, the supergravity theory, and the superstring theory. The history is recalled of efforts aimed at creating a unified theory of interactions, and future prospects are outlined. (M.D.). 2 figs

  18. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    Science.gov (United States)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  19. U(1) Wilson lattice gauge theories in digital quantum simulators

    Science.gov (United States)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  20. The theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1991-01-01

    The Theory of Particle Interactions introduces students and physicists to the chronological development, concepts, main methods, and results of modern quantum field theory -- the most fundamental, abstract, and mathematical branch of theoretical physics. Belokurov and Shirkov, two prominent Soviet theoretical physicists, carefully describe the many facets of modern quantum theory including: renormalization theory and renormalization group; gauge theories and spontaneous symmetry breaking; the electroweak interaction theory and quantum chromodynamics; the schemes of the unification of the fundamental interactions; and super-symmetry and super-strings. The authors use a minimum of mathematical concepts and equations in describing the historical development, the current status, and the role of quantum field theory in modern theoretical physics. Because readers will be able to comprehend the main concepts of modern quantum theory without having to master its rather difficult apparatus, The Theory of Particle Interactions is ideal for those who seek a conceptual understanding of the subject. Students, physicists, mathematicians, and theoreticians involved in astrophysics, cosmology, and nuclear physics, as well as those interested in the philosophy and history of natural sciences will find The Theory of Particle Interactions invaluable and an important addition to their reading list

  1. Theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1986-01-01

    Development and modern state of the theory of elementary particle interactions is described. The main aim of the paper is to give a picture of quantum field theory development in the form easily available for physicists not occupied in this field of science. Besides the outline of chronological development of main representations, the description of renormalization and renorm-groups, gauge theories, models of electro-weak interactions and quantum chromodynamics, the latest investigations related to joining all interactions and supersymmetries is given

  2. Simulation of a Schema Theory-Based Knowledge Delivery System for Scientists.

    Science.gov (United States)

    Vaughan, W. S., Jr.; Mavor, Anne S.

    A future, automated, interactive, knowledge delivery system for use by researchers was tested using a manual cognitive model. Conceptualized from schema/frame/script theories in cognitive psychology and artificial intelligence, this hypothetical system was simulated by two psychologists who interacted with four researchers in microbiology to…

  3. Renormalization theory of beam-beam interaction in electron-positron colliders

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs

  4. Simulation and theory of spontaneous TAE frequency sweeping

    International Nuclear Information System (INIS)

    Wang Ge; Berk, H.L.

    2012-01-01

    A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle–wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached. (paper)

  5. Simulation and theory of spontaneous TAE frequency sweeping

    Science.gov (United States)

    Wang, Ge; Berk, H. L.

    2012-09-01

    A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.

  6. Compact X-ray sources. Simulating the electron/strong laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Anthony [DESY, CFEL, Hamburg (Germany)

    2016-07-01

    The collision of an intense laser with an electron bunch can be used to produce X-rays via the inverse Compton scattering (ICS) mechanism. The ICS can be simulated via either a classical theory in which electrons and photons are treated in terms of classical electromagnetic waves - or a quantum theory in which charged particles interact with strong electromagnetic fields. The laser intensity used in a practical ICS collision is likely to be at such a level that quantum effects may be significant and the use of quantum theory may become a necessity. A simulation study is presented here comparing the classical and quantum approaches to the ICS. A custom particle-in-cell (PIC) software code, with photon generation by monte carlo of the exact quantum transition probability is used to simulate the quantum treatment. Peak resonant energies and the angular distribution of the X-rays are obtained and compared with those predicted by the classical theory. The conditions under which significant differences between the two theories emerges is obtained.

  7. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory.

    Science.gov (United States)

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities.

  8. Modelling of ballistic low energy ion solid interaction - conventional analytic theories versus computer simulations

    International Nuclear Information System (INIS)

    Littmark, U.

    1994-01-01

    The ''philosophy'' behind, and the ''psychology'' of the development from analytic theory to computer simulations in the field of atomic collisions in solids is discussed and a few examples of achievements and perspectives are given. (orig.)

  9. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  10. Unified theory of effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, Kazuo, E-mail: k-takaya@sophia.ac.jp

    2016-09-15

    We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh–Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin–Wigner, and Bloch–Horowitz theories on the formal side, and the extended Krenciglowa–Kuo and the extended Lee–Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbative and nonperturbative theories on the basis of the main frame expansion.

  11. Theory of fundamental interactions

    International Nuclear Information System (INIS)

    Pestov, A.B.

    1992-01-01

    In the present article the theory of fundamental interactions is derived in a systematic way from the first principles. In the developed theory there is no separation between space-time and internal gauge space. Main equations for basic fields are derived. In is shown that the theory satisfies the correspondence principle and gives rise to new notions in the considered region. In particular, the conclusion is made about the existence of particles which are characterized not only by the mass, spin, charge but also by the moment of inertia. These are rotating particles, the particles which represent the notion of the rigid body on the microscopical level and give the key for understanding strong interactions. The main concepts and dynamical laws for these particles are formulated. The basic principles of the theory may be examined experimentally not in the distant future. 29 refs

  12. To theory of gravitational interaction

    OpenAIRE

    Minkevich, A. V.

    2008-01-01

    Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.

  13. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  14. Theory of interacting dislocations on cylinders.

    Science.gov (United States)

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  15. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  16. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  17. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    Science.gov (United States)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of

  18. Third and fourth quarter progress report on plasma theory and simulation, July 1-December 31, 1986

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1987-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of plasma instabilities, heating, transport, plasma-wall interactions, and large potentials in plasmas. We also work on the improvement of simulation both theoretically and practically

  19. A theory of the strong interactions

    International Nuclear Information System (INIS)

    Gross, D.J.

    1979-01-01

    The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)

  20. Nonlinear turbulence theory and simulation of Buneman instability

    International Nuclear Information System (INIS)

    Yoon, P. H.; Umeda, T.

    2010-01-01

    In the present paper, the weak turbulence theory for reactive instabilities, formulated in a companion paper [P. H. Yoon, Phys. Plasmas 17, 112316 (2010)], is applied to the strong electron-ion two-stream (or Buneman) instability. The self-consistent theory involves quasilinear velocity space diffusion equation for the particles and nonlinear wave kinetic equation that includes quasilinear (or induced emission) term as well as nonlinear wave-particle interaction term (or a term that represents an induced scattering off ions). We have also performed one-dimensional electrostatic Vlasov simulation in order to benchmark the theoretical analysis. Under the assumption of self-similar drifting Gaussian distribution function for the electrons it is shown that the current reduction and the accompanying electron heating as well as electric field turbulence generation can be discussed in a self-consistent manner. Upon comparison with the Vlasov simulation result it is found that quasilinear wave kinetic equation alone is insufficient to account for the final saturation amplitude. Upon including the nonlinear scattering term in the wave kinetic equation, however, we find that a qualitative agreement with the simulation is recovered. From this, we conclude that the combined quasilinear particle diffusion plus induced emission and scattering (off ions) processes adequately account for the nonlinear development of the Buneman instability.

  1. Density-functional theory simulation of large quantum dots

    Science.gov (United States)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  2. Long-range interactions in lattice field theory

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations

  3. Long-range interactions in lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, J.M.

    1981-06-01

    Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.

  4. A comparison between integral equation theory and molecular dynamics simulations of dense, flexible polymer liquids

    International Nuclear Information System (INIS)

    Curro, J.G.; Schweizer, K.S.; Grest, G.S.; Kremer, K.; Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801; Institut fur Festkorperforschung der Kernforschungsanlage Julich, D-5170 Julich, Federal Republic of Germany)

    1989-01-01

    Recently we (J.G.C. and K.S.S.) formulated a tractable ''reference interaction site model'' (RISM) integral equation theory of flexible polymer liquids. The purpose of this paper is to compare the results of the theory with recent molecular dynamics simulations (G.S.G. and K.K.) on dense chain liquids of degree of polymerization N=50 and 200. Specific comparisons were made between theory and simulation for the intramolecular structure factor ω(k) and the intermolecular radial distribution function g(r) in the liquid. In particular it was possible to independently test the assumptions inherent in the RISM theory and the additional ideality approximation that was made in the initial application of the theory. This comparison was accomplished by calculating the intermolecular g(r) using the simulated intramolecular structure factor, as well as, ω(k) derived from a freely jointed chain model.The RISM theory results, using the simulated ω(k), were found to be in excellent agreement, over all length scales, with the g(r) from molecular dynamics simulations. The theoretical predictions using the ''ideal'' intramolecular structure factor tended to underestimate g(r) near contact, indicating local intramolecular expansion of the chains. This local expansion can be incorporated into the theory self consistently by including the effects of the ''medium induced'' potential on the intramolecular structure

  5. Simulation Methodology in Nursing Education and Adult Learning Theory

    Science.gov (United States)

    Rutherford-Hemming, Tonya

    2012-01-01

    Simulation is often used in nursing education as a teaching methodology. Simulation is rooted in adult learning theory. Three learning theories, cognitive, social, and constructivist, explain how learners gain knowledge with simulation experiences. This article takes an in-depth look at each of these three theories as each relates to simulation.…

  6. Foundational Elements of Applied Simulation Theory: Development and Implementation of a Longitudinal Simulation Educator Curriculum.

    Science.gov (United States)

    Chiu, Michelle; Posner, Glenn; Humphrey-Murto, Susan

    2017-01-27

    Simulation-based education has gained popularity, yet many faculty members feel inadequately prepared to teach using this technique. Fellowship training in medical education exists, but there is little information regarding simulation or formal educational programs therein. In our institution, simulation fellowships were offered by individual clinical departments. We recognized the need for a formal curriculum in educational theory. Kern's approach to curriculum development was used to develop, implement, and evaluate the Foundational Elements of Applied Simulation Theory (FEAST) curriculum. Needs assessments resulted in a 26-topic curriculum; each biweekly session built upon the previous. Components essential to success included setting goals and objectives for each interactive session and having dedicated faculty, collaborative leadership and administrative support for the curriculum. Evaluation data was collated and analyzed annually via anonymous feedback surveys, focus groups, and retrospective pre-post self-assessment questionnaires. Data collected from 32 fellows over five years of implementation showed that the curriculum improved knowledge, challenged thinking, and was excellent preparation for a career in simulation-based medical education. Themes arising from focus groups demonstrated that participants valued faculty expertise and the structure, practicality, and content of the curriculum. We present a longitudinal simulation educator curriculum that adheres to a well-described framework of curriculum development. Program evaluation shows that FEAST has increased participant knowledge in key areas relevant to simulation-based education and that the curriculum has been successful in meeting the needs of novice simulation educators. Insights and practice points are offered for educators wishing to implement a similar curriculum in their institution.

  7. Plasma theory and simulation: Third and fourth quarterly progress report, July 1, 1986-December 31, 1986

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1986-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of plasma instabilities, heating, transport, plasma-wall interactions, and large potentials in plasmas. We also work on the improvement of simulation both theoretically and practically. Two separate papers are included in this report

  8. Reconstruction of Nietzsche’s Theory of Simulation

    Directory of Open Access Journals (Sweden)

    Elizbar Elizbarashvili

    2014-03-01

    Full Text Available The article shows the interior plane of contact of thinking of German philosopher Friedrich Nietzsche and French philosopher Jean Baudrillard. We have formed the metaphor world of Nietzsche and his philosophy and found the common code between these metaphors and philosophic language of the language of the simulation theory by Jean Baudrillard. The decoding and interpretation of the material was made on its basis. As a result, we came to the conclusion that Nietzsche philosophy had the simulation plane before postmodernism and it is possible to reconstruct the simulation theory of his philosophy at the rational level. The article considers the specified mechanisms of Nietzsche simulation theory. Zarathustra personality, the great tempter and connects the mechanisms of faith and courage.

  9. Interactive simulations for promoting transdisciplinary understanding: a case study of the Western Cape fisheries, South Africa

    Directory of Open Access Journals (Sweden)

    Cecile Proches

    2012-07-01

    Full Text Available Simulations have proven beneficial in enabling participants from various backgrounds to meaningfully engage in learning from experience. The aim of this paper is to investigate how interactive simulations can play a role in navigating the changes faced in a multi- stakeholder setting, characterised by users dependent on marine resources and an authorising institution. Relevant literature in the areas of simulation and gaming, change management, systems thinking, and complexity theory was examined. A qualitative research approach and purposive sampling were employed. Interviews were first conducted with diverse stakeholders in the Western Cape fisheries of South Africa to determine the issues. A simulation was thereafter designed. The main findings from this study indicate that simulation use illustrates how the various stakeholders in a system interact, and how their actions and decisions influence each other. The simulation may be used in other areas of natural resource management, as well as in other kinds of multi- stakeholder scenarios. Keywords: Simulation and gaming, Change management, Fisheries, Multi-stakeholder scenarios, Systems thinking, Complexity theory Disciplines: Conflict Resolution, Leadership Studies, Management Studies, Natural Resource Management

  10. Introduction to gauge theories of electroweak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1982-01-01

    Intended as a lecture for physicists who are not familiar with the sophisticated theoretical models in particle physics. Starting with the standard gauge model of electromagnetic, weak and strong interactions the recent developments of a unified gauge theory of electroweak interactions are shown. Shortcomings in the unitarity problem of the V-A fermi theory of charged intermediate vector bosons. Presented are the spontaneous symmetry breaking in quantum mechanics, the abelian higgs model as an example of a spontaneously broken gauge field theory, the minimal gauge group of electroweak interactions, the fermion mass generation. Further on the anomalies in quantum field theory are discussed and the radiative corrections to the vector boson masses are considered. (H.B.)

  11. Oxygen ordering in YBa2Cu3O6+x using Monte Carlo simulation and analytic theory

    DEFF Research Database (Denmark)

    Mønster, D.; Lindgård, Per-Anker; Andersen, N.H.

    2001-01-01

    We have simulated the phase diagram and structural properties of the oxygen ordering in YBa2Cu3O6+x testing simple extensions of the asymmetric next-nearest-neighbor Ising (ASYNNNI) Model. In a preliminary paper [Phys. Rev. B 60, 110 (1999)] we demonstrated that the inclusion of a single further...... on a nano scale into box-like domains and anti-domains of typical average dimension (10a,30b,2c). Theory and model simulations demonstrate that the distribution of such domains causes deviations from Lorentzian line shapes, and not the Porod effect. Analytic theory is used to estimate the effect of a range...... of values of the interaction parameters used, as well as the effect of an extension to include infinite ranged interactions. In the experiments a large cap is found between the onset temperatures of the ortho-I and ortho-II orders at x=0.5. This cannot be fully reproduced in the simulations. The simulations...

  12. Interactive Foresight Simulation

    DEFF Research Database (Denmark)

    Hansen, Mette Sanne; Rasmussen, Lauge Baungaard; Jacobsen, Peter

    2016-01-01

    The Combined Simulation Approach (CSA) is a way to evaluate risks and address potential unforeseen problems in a more interactive way than what is often observed in practice in companies or sectors. The approach is based on a combination of scenario analysis and discrete-event computer simulation...

  13. Effective field theory for NN interactions

    International Nuclear Information System (INIS)

    Tran Duy Khuong; Vo Hanh Phuc

    2003-01-01

    The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)

  14. Ray-theory approach to electrical-double-layer interactions.

    Science.gov (United States)

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  15. Teachers' Beliefs and Their Intention to Use Interactive Simulations in Their Classrooms

    Science.gov (United States)

    Kriek, Jeanne; Stols, Gerrit

    2010-01-01

    In this pilot study, we sought to examine the influence of the beliefs of Grade 10 to 12 physical science teachers on their intended and actual usage of interactive simulations (Physics Education Technology, or PhET) in their classrooms. A combination of the Theory of Planned Behaviour, the Technology Acceptance Model and the Innovation Diffusion…

  16. Intelligently interactive combat simulation

    Science.gov (United States)

    Fogel, Lawrence J.; Porto, Vincent W.; Alexander, Steven M.

    2001-09-01

    To be fully effective, combat simulation must include an intelligently interactive enemy... one that can be calibrated. But human operated combat simulations are uncalibratable, for we learn during the engagement, there's no average enemy, and we cannot replicate their culture/personality. Rule-based combat simulations (expert systems) are not interactive. They do not take advantage of unexpected mistakes, learn, innovate, and reflect the changing mission/situation. And it is presumed that the enemy does not have a copy of the rules, that the available experts are good enough, that they know why they did what they did, that their combat experience provides a sufficient sample and that we know how to combine the rules offered by differing experts. Indeed, expert systems become increasingly complex, costly to develop, and brittle. They have face validity but may be misleading. In contrast, intelligently interactive combat simulation is purpose- driven. Each player is given a well-defined mission, reference to the available weapons/platforms, their dynamics, and the sensed environment. Optimal tactics are discovered online and in real-time by simulating phenotypic evolution in fast time. The initial behaviors are generated randomly or include hints. The process then learns without instruction. The Valuated State Space Approach provides a convenient way to represent any purpose/mission. Evolutionary programming searches the domain of possible tactics in a highly efficient manner. Coupled together, these provide a basis for cruise missile mission planning, and for driving tank warfare simulation. This approach is now being explored to benefit Air Force simulations by a shell that can enhance the original simulation.

  17. Molecular Theory and Simulation of Water-Oil Contacts

    Science.gov (United States)

    Tan, Liang

    The statistical mechanical theory of hydrophobic interactions was initiated decades ago for purely repulsive hydrophobic species, in fact, originally for hard-sphere solutes in liquid water. Systems which treat only repulsive solute-water interactions obviously differ from the real world situation. The issue of the changes to be expected from inclusion of realistic attractive solute-water interactions has been of specific interest also for decades. We consider the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions. The principal result of LMF theory is outlined, then tested by obtaining radial distribution functions (rdfs) for Ar atoms in water, with and without attractive interactions distinguished by the Weeks-Chandler-Andersen (WCA) separation. Change from purely repulsive atomic solute interactions to include realistic attractive interactions substantially diminishes the strength of hydrophobic bonds. Since attractions make a big contribution to hydrophobic interactions, Pratt-Chandler theory, which did not include attractions, should not be naively compared to computer simulation results with general physical interactions, including attractions. Lack of general appreciation of this point has lead to mistaken comparisons throughout the history of this subject. The rdfs permit evaluation of osmotic second virial coefficients B2. Those B 2 are consistent with the conclusion that incorporation of attractive interactions leads to more positive (repulsive) values. In all cases here, B2 becomes more attractive with increasing temperature below T = 360K, the so-call inverse temperature behavior. In 2010, the Gulf of Mexico Macondo well (Deepwater Horizon) oil spill focused the attention of the world on water-oil phase equilibrium. In response to the disaster, chemical dispersants were applied to break oil slicks into droplets and thus to avoid large-scale fouling of beaches and to speed up biodegradation

  18. On the inclusion of macroscopic theory in Monte Carlo simulation using game theory

    International Nuclear Information System (INIS)

    Tatarkiewicz, J.

    1980-01-01

    This paper presents the inclusion of macroscopic damage theory into Monte Carlo particle-range simulation using game theory. A new computer code called RADDI was developed on the basis of this inclusion. Results of Monte Carlo damage simulation after 6.3 MeV proton bombardment of silicon are compared with experimental data of Bulgakov et al. (orig.)

  19. Dual field theory of strong interactions

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137

  20. A theory of strong interactions ''from'' general relativity

    International Nuclear Information System (INIS)

    Caldirola, P.; Recami, E.

    1979-01-01

    In this paper a previous letter (where, among other things, a classical ''quark confinement'' was derived from general relativity plus dilatation-covariance), is completed by showing that the theory is compatible also with quarks ''asymptotic freedom''. Then -within a bi-scale theory of gravitational and strong interactions- a classical field theory is proposed for the (strong) interactions between hadrons. Various consequences are briefly analysed

  1. Quantum Link Models and Quantum Simulation of Gauge Theories

    International Nuclear Information System (INIS)

    Wiese, U.J.

    2015-01-01

    This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)

  2. Photon-Graviton Interaction and CPH Theory

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    , and the weak interaction by the W and Z bosons. The hypothesis is that the gravitational interaction is likewise mediated by a – yet undiscovered – elementary particle, dubbed the graviton. In the classical limit, the theory would reduce to general relativity and conform to Newton's law of gravitation......-renormalizable). Since classical general relativity and quantum mechanics are incompatible at such energies, from a theoretical point of view the present situation is not tenable. Some proposed models of quantum gravity attempt to address these issues, but these are speculative theories. Does a new definition...

  3. Radiation interaction with substance and simulation of the nuclear geophysical problems

    International Nuclear Information System (INIS)

    Pshenichnyj, G.A.

    1982-01-01

    Main processes of interaction of various types of nuclear radiation (NR) with substance, NR transport theory and physical- mathematical simulation of basic problems of nuclear geophysics (NG) are considered. General classification of NG methods according to the type of the detected radiation with a more detailed division according to the physical essence of the interaction process employed is given. Direct NG problems are related to the study of space- energy radiation distribution in substance under certain cross sections of elementary interaction processes, substance properties and specified geometric conditions. The theoretical solution of the direct problems is based on using mathematical models of radiation transport in specified media. The NG inverse problems consist in determining element composition and other medium properties by data of integral or spectral characteristics of NR fields measurements. The NR in the course of its transport in substance can experience dozens of elementary interaction processes, the predominance of this or that process depending on NR energy, medium properties and geometric measurement conditions. This explains a wide NG method diversity. The Monte Carlo method application in the NR transport theory and various methods of decreasing calculations labour input are considered [ru

  4. Lectures on interacting string field theory

    International Nuclear Information System (INIS)

    Jevicki, A.

    1986-09-01

    We give a detailed review of the current formulations of interacting string field theory. The historical development of the subject is taken beginning with the old dual resonance model theory. The light cone approach is reviewed in some detail with emphasis on conformal mapping techniques. Witten's covariant approach is presented. The main body of the lectures concentrates on developing the operator formulation of Witten's theory. 38 refs., 22 figs., 5 tabs

  5. Nonlattice Simulation for Supersymmetric Gauge Theories in One Dimension

    International Nuclear Information System (INIS)

    Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo

    2007-01-01

    Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture

  6. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  7. Theory and Simulation of Multicomponent Osmotic Systems.

    Science.gov (United States)

    Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E

    2012-05-28

    Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly(2) and Gly(3) in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems.

  8. Diatomic interaction potential theory applications

    CERN Document Server

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des

  9. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 (United States)

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  10. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    Science.gov (United States)

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  11. Three-dimensional theory for light-matter interaction

    DEFF Research Database (Denmark)

    Sørensen, Martin Westring; Sørensen, Anders Søndberg

    2008-01-01

    We present a full quantum mechanical three dimensional theory describing an electromagnetic field interacting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments on light-matter quantum interfaces, where the quantum fluctuations of light...... to a dressed state picture, where the light modes are solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we show how the quantum...... fluctuations are mapped between atoms and light while the random positioning of the atoms give rise to decay due to spontaneous emission. Furthermore we identify limits, where the full three dimensional theory reduce to the one dimensional theory typically used to describe the interaction....

  12. Topological symmetry breaking of self-interacting fractional Klein-Gordon field theories on toroidal spacetime

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2008-01-01

    Quartic self-interacting fractional Klein-Gordon scalar massive and massless field theories on toroidal spacetime are studied. The effective potential and topologically generated mass are determined using zeta-function regularization technique. Renormalization of these quantities are derived. Conditions for symmetry breaking are obtained analytically. Simulations are carried out to illustrate regions or values of compactified dimensions where symmetry-breaking mechanisms appear

  13. In search for the unified theory of fundamental interactions

    International Nuclear Information System (INIS)

    Ansel'm, A.A.

    1980-01-01

    The problem of developing the unified theory of fundamental interactions is considered in a popular form. The fundamental interactions include interactions between really elementary particles (quarks and leptons) which are performed by strong, weak, electromagnetic and gravitational forces. The unified theory is based on the requirement of ''Local symmetry''. The problem on invariance of strong interaction theory to local isotopic transformation was proposed for the first time by Yang and Mills, who introduced fields, called compensating (they compensate additional members in the theory equations, appearing during local transformations) Quanta of these fields (calibrating bosons) are massless particles with a spin, equal to one. The bosons should have the mass different from zero in order to be the carriers of real strong and weak interactions. At present there exist two mechanisms, due to which the mentioned controdiction can be overcome. One of these mechanisms - spontaneous symmetry distortion, the other mechanism - ''non-escape'', or ''captivity'' of the particles. The main ideas of building the realistic model of strong interaction are briefly presented

  14. Effective field theory of interactions on the lattice

    DEFF Research Database (Denmark)

    Valiente, Manuel; Zinner, Nikolaj T.

    2015-01-01

    We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling consta...... constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.......We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling...

  15. Renormalization and Interaction in Quantum Field Theory

    International Nuclear Information System (INIS)

    RATSIMBARISON, H.M.

    2008-01-01

    This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr

  16. Weak turbulence theory for beam-plasma interaction

    Science.gov (United States)

    Yoon, Peter H.

    2018-01-01

    The kinetic theory of weak plasma turbulence, of which Ronald C. Davidson was an important early pioneer [R. C. Davidson, Methods in Nonlinear Plasma Theory, (Academic Press, New York, 1972)], is a venerable and valid theory that may be applicable to a large number of problems in both laboratory and space plasmas. This paper applies the weak turbulence theory to the problem of gentle beam-plasma interaction and Langmuir turbulence. It is shown that the beam-plasma interaction undergoes various stages of physical processes starting from linear instability, to quasilinear saturation, to mode coupling that takes place after the quasilinear stage, followed by a state of quasi-static "turbulent equilibrium." The long term quasi-equilibrium stage is eventually perturbed by binary collisional effects in order to bring the plasma to a thermodynamic equilibrium with increased entropy.

  17. Electrodynamics as a theory of interacting complex charges

    International Nuclear Information System (INIS)

    Akeyo Omolo, Joseph

    2003-04-01

    In this paper, we formulate a general theory of electrodynamics which incorporates both electric and magnetic charges. The mathematical origin of a second vector potential and magnetic charge is established. Electrodynamics is then reformulated in complex form as a theory of complex charges moving in a complex force field. This provides the framework for complex charged particle interactions as a generalization of Schwinger's theory of dyon-dyon interactions. The concept of duality transformation relating electric and magnetic charge spaces is developed within the general framework of electrodynamics in complex form. (author)

  18. Singular perturbation theory for interacting fermions in two dimensions

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.

    2004-11-01

    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T 2 . It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)

  19. Interactive simulation of technology management foresight

    DEFF Research Database (Denmark)

    Hansen, Mette Sanne; Rasmussen, Lauge Baungaard; Jacobsen, Peter

    2013-01-01

    of either qualitative or quantitative processes due to the complexity and uncertainty of the more or less interrelated technology tracks. Accordingly, the foresight approach must allow for interaction between the real-world system and the model builders, for example by using an interacting narrative...... is often occurring in companies. The use of CSA makes it possible for management to close the often experienced knowledge and activity gaps between the strategic, tactical and operational levels in a company. The outcome of developing and using CSA is a generic approach that enables the interaction between...... narrative simulation (scenarios) and numerical simulation. These interactive processes can take place on the strategic, tactical and operational levels of an organization and thus contribute to close the gaps that often exist between these levels. The combined foresight simulation approach is, however...

  20. Backward wave oscillators with rippled wall resonators: Analytic theory and numerical simulation

    International Nuclear Information System (INIS)

    Swegle, J.A.; Poukey, J.W.

    1985-01-01

    The 3-D analytic theory is based on the approximation that the device is infinitely long. In the absence of an electron beam, the theory is exact and allows us to compute the dispersion characteristics of the cold structure. With the inclusion of a thin electron beam, we can compute the growth rates resulting from the interaction between a waveguide mode of the structure and the slower space charge wave on the beam. In the limit of low beam currents, the full dispersion relation based on an electromagnetic analysis can be placed in correspondence with the circuit theory of Pierce. Numerical simulations permit us to explore the saturated, large amplitude operating regime for TM axisymmetric modes. The scaling of operating frequency, peak power, and operating efficiency with beam and resonator parameters is examined. The analytic theory indicates that growth rates are largest for the TM 01 modes and decrease with both the radial and azimuthal mode numbers. Another interesting trend is that for a fixed cathode voltage and slow wave structure, growth rates peak for a beam current below the space charge limiting value and decrease for both larger and smaller currents. The simulations show waves that grow from noise without any input signal, so that the system functions as an oscillator. The TM 01 mode predominates in all simulations. While a minimum device length is required for the start of oscillations, it appears that if the slow wave structure is too long, output power is decreased by a transfer of wave energy back to the electrons. Comparisons have been made between the analytical and numerical results, as well as with experimental data obtained at Sandia National Laboratories

  1. Game theory decisions, interaction and evolution

    CERN Document Server

    Webb, James N

    2007-01-01

    This introduction to game theory is written from a mathematical perspective. Its primary purpose is to be a first course for undergraduate students of mathematics, but it also contains material which will be of interest to advanced students or researchers in biology and economics. The outstanding feature of the book is that it provides a unified account of three types of decision problem: Situations involving a single decision-maker: in which a sequence of choices is to be made in "a game against nature". This introduces the basic ideas of optimality and decision processes. Classical game theory: in which the interactions of two or more decision-makers are considered. This leads to the concept of the Nash equilibrium. Evolutionary game theory: in which the changing structure of a population of interacting decision makers is considered. This leads to the ideas of evolutionarily stable strategies and replicator dynamics. An understanding of basic calculus and probability is assumed but no prior knowledge of gam...

  2. Interactive Simulations of Biohybrid Systems

    Directory of Open Access Journals (Sweden)

    Sebastian Albrecht von Mammen

    2017-10-01

    Full Text Available In this article, we present approaches to interactive simulations of biohybrid systems. These simulations are comprised of two major computational components: (1 agent-based developmental models that retrace organismal growth and unfolding of technical scaffoldings and (2 interfaces to explore these models interactively. Simulations of biohybrid systems allow us to fast forward and experience their evolution over time based on our design decisions involving the choice, configuration and initial states of the deployed biological and robotic actors as well as their interplay with the environment. We briefly introduce the concept of swarm grammars, an agent-based extension of L-systems for retracing growth processes and structural artifacts. Next, we review an early augmented reality prototype for designing and projecting biohybrid system simulations into real space. In addition to models that retrace plant behaviors, we specify swarm grammar agents to braid structures in a self-organizing manner. Based on this model, both robotic and plant-driven braiding processes can be experienced and explored in virtual worlds. We present an according user interface for use in virtual reality. As we present interactive models concerning rather diverse description levels, we only ensured their principal capacity for interaction but did not consider efficiency analyzes beyond prototypic operation. We conclude this article with an outlook on future works on melding reality and virtuality to drive the design and deployment of biohybrid systems.

  3. Developing a Theory-Based Simulation Educator Resource.

    Science.gov (United States)

    Thomas, Christine M; Sievers, Lisa D; Kellgren, Molly; Manning, Sara J; Rojas, Deborah E; Gamblian, Vivian C

    2015-01-01

    The NLN Leadership Development Program for Simulation Educators 2014 faculty development group identified a lack of a common language/terminology to outline the progression of expertise of simulation educators. The group analyzed Benner's novice-to-expert model and applied its levels of experience to simulation educator growth. It established common operational categories of faculty development and used them to organize resources that support progression toward expertise. The resulting theory-based Simulator Educator Toolkit outlines levels of ability and provides quality resources to meet the diverse needs of simulation educators and team members.

  4. Modelling and simulation of dynamic wheel-rail interaction using a roller rig

    International Nuclear Information System (INIS)

    Anyakwo, A; Pislaru, C; Ball, A; Gu, F

    2012-01-01

    The interaction between the wheel and rail greatly influences the dynamic response of railway vehicles on the track. A roller rig facility can be used to study and monitor real time parameters that influence wheel-rail interaction such as wear, adhesion, friction and corrugation without actual field tests being carried out. This paper presents the development of the mathematical models for full scale roller rig and 1/5 scale roller rig and the wear prediction model based on KTH wear function. The simulated critical speed for the 1/5 scale roller rig is about one-fifth of the critical speed for the full scale model so the simulated results compare well with the theory related to wheel-rail contact and dynamics. Also the differences between the simulated rolling radii for the full scale model with and without wear function are analysed. This paper presents the initial stage of a large scale research project where the influence of wear on the wheel-rail performance will be studied in more depth.

  5. Numerical simulation of ion-surface interactions

    International Nuclear Information System (INIS)

    Hou, M.

    1994-01-01

    This paper, based on examples from the author's contribution, aims to illustrate the role of ballistic simulations of the interaction between an ion beam and a surface in the characterization of surface properties. Several aspects of the ion-surface interaction have been modelled to various levels of sophistication by computer simulation. Particular emphasis is given to the ion scattering in the impact mode, in the multiple scattering regime and at grazing incidence, as well as to the Auger emission resulting from electronic excitation. Some examples are then given in order to illustrate the use of the combination between simulation and experiment to study the ion-surface interaction and surface properties. Ion-induced Auger emission, the determination of potentials and of overlay structures are discusse. The possibility to tackle dynamical surface properties by menas of a combination between molecular dynamics, ballistic simulations and ion scattering measurements in then briefly discussed. (orig.)

  6. Simulation of mode converted ion Bernstein wave - beam deuteron interactions on TFTR

    Science.gov (United States)

    Herrmann, Mark; Fisch, Nathaniel

    1998-11-01

    Experiments on TFTR have documented strong interactions between mode converted ion Bernstein waves (MCIBW) and beam deuterons(D. S. Darrow et al.), Nucl. Fusion 36, 509 (1996).^,(N. J. Fisch et al.), IAEA, Vol. 1, p. 271 (1996). This is of particular interest in the study of α channelling, since the most promising scenarios(M. C. Herrmann and N. J. Fisch, Phys. Rev. Lett. 79), 1495 (1997). rely on a suitable combination of MCIBW and Alfvén eigenmodes to achieve the cooling of the α particles. Collisional effects, realistic wave fields, and a detailed model of the wave-particle interaction have been added to the Monte Carlo simulations which are used to simulate α channelling in order to model TFTR experiments(M. C. Herrmann, Ph.D. thesis, Princeton University, 1998.). The results are found to be in qualitative agreement with the data. In addition, the simulation is used, in conjunction with the data, to demonstrate the existence of the k_\\|-flip of the MCIBW, and to infer a diffusion coefficient for the beam deuterons interacting with the wave. This diffusion coefficient significantly exceeds what would be expected on the basis of quasilinear theory with the fields specified by 1 D ray tracing of the MCIBW.

  7. Instabilities of collisionless current sheets: Theory and simulations

    International Nuclear Information System (INIS)

    Silin, I.; Buechner, J.; Zelenyi, L.

    2002-01-01

    The problem of Harris current sheet stability is investigated. A linear dispersion relation in the long-wavelength limit is derived for instabilities, propagating in the neutral plane at an arbitrary angle to the magnetic field but symmetric across the sheet. The role of electrostatic perturbations is especially investigated. It appears, that for the tearing-mode instability electrostatic effects are negligible. However, for obliquely propagating modes the modulation of the electrostatic potential φ is essential. In order to verify the theoretical results, the limiting cases of tearing and sausage instabilities are compared to the two-dimensional (2D) Vlasov code simulations. For tearing the agreement between theory and simulations is good for all mass ratios. For sausage-modes, the theory predicts fast stabilization for mass ratios m i /m e ≥10. This is not observed in simulations due to the diminishing of the wavelength for higher mass ratios, which leads beyond the limit of applicability of the theory developed here

  8. Theory and simulation of DNA-coated colloids: a guide for rational design.

    Science.gov (United States)

    Angioletti-Uberti, Stefano; Mognetti, Bortolo M; Frenkel, Daan

    2016-03-07

    By exploiting the exquisite selectivity of DNA hybridization, DNA-coated colloids (DNACCs) can be made to self-assemble in a wide variety of structures. The beauty of this system stems largely from its exceptional versatility and from the fact that a proper choice of the grafted DNA sequences yields fine control over the colloidal interactions. Theory and simulations have an important role to play in the optimal design of self assembling DNACCs. At present, the powerful model-based design tools are not widely used, because the theoretical literature is fragmented and the connection between different theories is often not evident. In this Perspective, we aim to discuss the similarities and differences between the different models that have been described in the literature, their underlying assumptions, their strengths and their weaknesses. Using the tools described in the present Review, it should be possible to move towards a more rational design of novel self-assembling structures of DNACCs and, more generally, of systems where ligand-receptor are used to control interactions.

  9. Diffusive epidemic process: theory and simulation

    International Nuclear Information System (INIS)

    Maia, Daniel Souza; Dickman, Ronald

    2007-01-01

    We study the continuous absorbing-state phase transition in the one-dimensional diffusive epidemic process via mean-field theory and Monte Carlo simulation. In this model, particles of two species (A and B) hop on a lattice and undergo reactions B → A and A+B → 2B; the total particle number is conserved. We formulate the model as a continuous-time Markov process described by a master equation. A phase transition between the (absorbing) B-free state and an active state is observed as the parameters (reaction and diffusion rates, and total particle density) are varied. Mean-field theory reveals a surprising, nonmonotonic dependence of the critical recovery rate on the diffusion rate of B particles. A computational realization of the process that is faithful to the transition rates defining the model is devised, allowing for direct comparison with theory. Using the quasi-stationary simulation method we determine the order parameter and the survival time in systems of up to 4000 sites. Due to strong finite-size effects, the results converge only for large system sizes. We find no evidence for a discontinuous transition. Our results are consistent with the existence of three distinct universality classes, depending on whether A particles diffusive more rapidly, less rapidly or at the same rate as B particles. We also perform quasi-stationary simulations of the triplet creation model, which yield results consistent with a discontinuous transition at high diffusion rates

  10. Simulations of dimensionally reduced effective theories of high temperature QCD

    CERN Document Server

    Hietanen, Ari

    Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by perf...

  11. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.

    Science.gov (United States)

    Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David

    2015-07-14

    In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http

  12. Situational simulations in interactive video

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.J.

    1991-07-01

    The Westinghouse Hanford Company Advanced Training Technologies section is using situational simulations in several Interactive Video training courses. Two applications of situational simulations will be discussed. In the first, used in the Hanford General Employee Training course, the student evaluates employee's actions in simulations of possible workplace situations. In the second, used in the Criticality Safety course, students must follow well-defined procedures to complete tasks. Design and incorporation of situational simulations will be discussed. 3 refs.

  13. Situational simulations in interactive video

    International Nuclear Information System (INIS)

    Smith, L.J.

    1991-07-01

    The Westinghouse Hanford Company Advanced Training Technologies section is using situational simulations in several Interactive Video training courses. Two applications of situational simulations will be discussed. In the first, used in the Hanford General Employee Training course, the student evaluates employee's actions in simulations of possible workplace situations. In the second, used in the Criticality Safety course, students must follow well-defined procedures to complete tasks. Design and incorporation of situational simulations will be discussed. 3 refs

  14. Multiparton interactions. Theory and experimental findings

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus

    2013-06-15

    I give an introduction to multiparton interactions in proton-proton collisions, with a focus on the perturbative regime. Recent experimental results are discussed, as well as progress and open questions in theory.

  15. Left--right symmetric gauge theories of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Sidhu, D.P.

    1978-01-01

    We review the recent progress in spontaneously broken left-right symmetric gauge theories of weak and electromagnetic interactions. Recently gauge theories based on the group SU(2)/Sub L/ x SU(2)/sub R/ x U(1) have been proposed as serious candidates for a unified description of the weak and electromagnetic interactions. Such theories have a number of attractive features which are not shared by the standard SU(2) x U(1) theories. Parity violation as well as CP-violation are spontaneous in origin and, therefore, theories are parity conserving before spontaneous breakdown of the symmetry and also afterwards at asymptotic energies. The asymmetry in low energy charged current weak interaction, i.e., predominance of left-handed charged current interactions over the right-handed ones, is a consequence of the symmetry breaking thus leading to a conceptually different picture of weak interaction at low energies. Another appealing feature of these theories is the beauty and richness of the structure of weak neutral current interactions. One can have a parity conserving structure of the neutral currents (one neutral boson (Z/sub V/) has pure vector and the other (Z/sub A/) pure axial vector coupling to quarks and leptons) which is natural in the technical sense of the word. Models of this type provide the most elegant explanation of the failure to find parity violation in atoms at the level predicted on the basis of the Weinberg-Salam model. In spite of manifestly parity conserving neutral current interactions, ν/sub μ/N and anti ν/sub μ/N (also ν/sub μ/e and anti ν/sub μ/e) neutral current cross-sections have to be unequal in these theories because of the definite parity and charge conjugation of the Z-bosons

  16. Nuclear Lattice Simulations with Chiral Effective Field Theory

    OpenAIRE

    Lee, Dean

    2008-01-01

    We present recent results on lattice simulations using chiral effective field theory. In particular we discuss lattice simulations for dilute neutron matter at next-to-leading order and three-body forces in light nuclei at next-to-next-to-leading order.

  17. Web-based Interactive Simulator for Rotating Machinery.

    Science.gov (United States)

    Sirohi, Vijayalaxmi

    1999-01-01

    Baroma (Balance of Rotating Machinery), the Web-based educational engineering interactive software for teaching/learning combines didactical and software ergonomical approaches. The software in tutorial form simulates a problem using Visual Interactive Simulation in graphic display, and animation is brought about through graphical user interface…

  18. Theory and simulation of an inverse free-electron laser experiment

    Science.gov (United States)

    Gou, S. K.; Bhattacharjee, A.; Fang, J.-M.; Marshall, T. C.

    1997-03-01

    An experimental demonstration of the acceleration of electrons using a high-power CO2 laser interacting with a relativistic electron beam moving along a wiggler has been carried out at the Accelerator Test Facility of the Brookhaven National Laboratory [Phys. Rev. Lett. 77, 2690 (1996)]. The data generated by this inverse free-electron-laser (IFEL) experiment are studied by means of theory and simulation. Included in the simulations are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge; energy spread of the electrons; and arbitrary wiggler-field profile. Two types of wiggler profile are considered: a linear taper of the period, and a step-taper of the period. (The period of the wiggler is ˜3 cm, its magnetic field is ˜1 T, and the wiggler length is 0.47 m.) The energy increment of the electrons (˜1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (˜40 MeV). At a laser power level ˜0.5 Gw, the simulation results on energy gain are in reasonable agreement with the experimental results. Preliminary results on the electron energy distribution at the end of the IFEL are presented. Whereas the experiment produces a near-monotone distribution of electron energies with the peak shifted to higher energy, the simulation shows a more structured and non-monotonic distribution at the end of the wiggler. Effects that may help reconcile these differences are considered.

  19. Atomic Quantum Simulations of Abelian and non-Abelian Gauge Theories

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, in a collaboration of atomic and particle physicists, we have constructed a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum link models which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows investigations of string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. Similarly, using ultracold alkaline-earth atoms in optical lattices, we have constructed a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum ...

  20. Discrete and continuous simulation theory and practice

    CERN Document Server

    Bandyopadhyay, Susmita

    2014-01-01

    When it comes to discovering glitches inherent in complex systems-be it a railway or banking, chemical production, medical, manufacturing, or inventory control system-developing a simulation of a system can identify problems with less time, effort, and disruption than it would take to employ the original. Advantageous to both academic and industrial practitioners, Discrete and Continuous Simulation: Theory and Practice offers a detailed view of simulation that is useful in several fields of study.This text concentrates on the simulation of complex systems, covering the basics in detail and exploring the diverse aspects, including continuous event simulation and optimization with simulation. It explores the connections between discrete and continuous simulation, and applies a specific focus to simulation in the supply chain and manufacturing field. It discusses the Monte Carlo simulation, which is the basic and traditional form of simulation. It addresses future trends and technologies for simulation, with par...

  1. Theory and simulation of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1979-01-01

    The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results

  2. A Dynamic Interactive Theory of Person Construal

    Science.gov (United States)

    Freeman, Jonathan B.; Ambady, Nalini

    2011-01-01

    A dynamic interactive theory of person construal is proposed. It assumes that the perception of other people is accomplished by a dynamical system involving continuous interaction between social categories, stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and bodily cues. This system permits lower-level…

  3. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    Science.gov (United States)

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  5. The mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    International Nuclear Information System (INIS)

    Kim, Bongsoo; Kawasaki, Kyozi

    2007-01-01

    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory. (fast track communication)

  6. Interacting open Wilson lines from noncommutative field theories

    International Nuclear Information System (INIS)

    Kiem, Youngjai; Lee, Sangmin; Rey, Soo-Jong; Sato, Haru-Tada

    2002-01-01

    In noncommutative field theories, it is known that the one-loop effective action describes the propagation of noninteracting open Wilson lines, obeying the flying dipole's relation. We show that the two-loop effective action describes the cubic interaction among 'closed string' states created by open Wilson line operators. Taking d-dimensional λ[Φ 3 ] * theory as the simplest setup, we compute the nonplanar contribution at a low-energy and large noncommutativity limit. We find that the contribution is expressible in a remarkably simple cubic interaction involving scalar open Wilson lines only and nothing else. We show that the interaction is purely geometrical and noncommutative in nature, depending only on the size of each open Wilson line

  7. Defects and diffusion, theory & simulation II

    CERN Document Server

    Fisher, David J

    2010-01-01

    This second volume in a new series covering entirely general results in the fields of defects and diffusion includes 356 abstracts of papers which appeared between the end of 2009 and the end of 2010. As well as the abstracts, the volume includes original papers on theory/simulation, semiconductors and metals: ""Predicting Diffusion Coefficients from First Principles ..."" (Mantina, Chen & Liu), ""Gouge Assessment for Pipes ..."" (Meliani, Pluvinage & Capelle), ""Simulation of the Impact Behaviour of ... Hollow Sphere Structures"" (Ferrano, Speich, Rimkus, Merkel & Öchsner), ""Elastic-Plastic

  8. Classical density functional theory & simulations on a coarse-grained model of aromatic ionic liquids.

    Science.gov (United States)

    Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan

    2014-05-14

    A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented.

  9. Random Process Theory Approach to Geometric Heterogeneous Surfaces: Effective Fluid-Solid Interaction

    Science.gov (United States)

    Khlyupin, Aleksey; Aslyamov, Timur

    2017-06-01

    Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.

  10. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  11. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Railsback, Steven F; Harvey, Bret C

    2013-02-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can address feedbacks but does not provide foraging theory for unique individuals in variable environments. 'State- and prediction-based theory' (SPT) is a new approach that combines existing trade-off methods with routine updating: individuals regularly predict future food availability and risk from current conditions to optimize a fitness measure. SPT can reproduce a variety of realistic foraging behaviors and trait-mediated trophic interactions with feedbacks, even when the environment is unpredictable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A biased competition theory of cytotoxic T lymphocyte interaction with tumor nodules.

    Directory of Open Access Journals (Sweden)

    Claire Christophe

    Full Text Available The dynamics of the interaction between Cytotoxic T Lymphocytes (CTL and tumor cells has been addressed in depth, in particular using numerical simulations. However, stochastic mathematical models that take into account the competitive interaction between CTL and tumors undergoing immunoediting, a process of tumor cell escape from immunesurveillance, are presently missing. Here, we introduce a stochastic dynamical particle interaction model based on experimentally measured parameters that allows to describe CTL function during immunoediting. The model describes the competitive interaction between CTL and melanoma cell nodules and allows temporal and two-dimensional spatial progression. The model is designed to provide probabilistic estimates of tumor eradication through numerical simulations in which tunable parameters influencing CTL efficacy against a tumor nodule undergoing immunoediting are tested. Our model shows that the rate of CTL/tumor nodule productive collisions during the initial time of interaction determines the success of CTL in tumor eradication. It allows efficient cytotoxic function before the tumor cells acquire a substantial resistance to CTL attack, due to mutations stochastically occurring during cell division. Interestingly, a bias in CTL motility inducing a progressive attraction towards a few scout CTL, which have detected the nodule enhances early productive collisions and tumor eradication. Taken together, our results are compatible with a biased competition theory of CTL function in which CTL efficacy against a tumor nodule undergoing immunoediting is strongly dependent on guidance of CTL trajectories by scout siblings. They highlight unprecedented aspects of immune cell behavior that might inspire new CTL-based therapeutic strategies against tumors.

  13. Linear response theory of activated surface diffusion with interacting adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)

    2010-05-12

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  14. Interaction vertices in reduced string field theories

    International Nuclear Information System (INIS)

    Embacher, F.

    1989-01-01

    In contrast to previous expectations, covariant overlap vertices are not always suitable for gauge-covariant formulations of bosonic string field theory with a reduced supplementary field content. This is demonstrated for the version of the theory suggested by Neveu, Schwarz and West. The method to construct the interaction, as formulated by Neveu and West, fails at one level higher than these authors have considered. The condition for a general vertex to describe formally a local gauge-invariant interaction is derived. The solution for the action functional and the gauge transformation law is exhibited for all fields at once, to the first order in the coupling constant. However, all these vertices seem to be unphysical. 21 refs. (Author)

  15. Toward an Ontology of Simulated Social Interaction

    DEFF Research Database (Denmark)

    Seibt, Johanna

    2017-01-01

    and asymmetric modes of realizing Á, called the ‘simulatory expansion’ of interaction type Á. Simulatory expansions of social interactions can be used to map out different kinds and degrees of sociality in human-human and human-robot interaction, relative to current notions of sociality in philosophy......, anthropology, and linguistics. The classificatory framework developed (SISI) thus represents the field of possible simulated social interactions. SISI can be used to clarify which conceptual and empirical grounds we can draw on to evaluate capacities and affordances of robots for social interaction......The paper develops a general conceptual framework for the ontological classification of human-robot interaction. After arguing against fictionalist interpretations of human-robot interactions, I present five notions of simulation or partial realization, formally defined in terms of relationships...

  16. Lattice gauge theories and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Rebbi, C.

    1981-11-01

    After some preliminary considerations, the discussion of quantum gauge theories on a Euclidean lattice takes up the definition of Euclidean quantum theory and treatment of the continuum limit; analogy is made with statistical mechanics. Perturbative methods can produce useful results for strong or weak coupling. In the attempts to investigate the properties of the systems for intermediate coupling, numerical methods known as Monte Carlo simulations have proved valuable. The bulk of this paper illustrates the basic ideas underlying the Monte Carlo numerical techniques and the major results achieved with them according to the following program: Monte Carlo simulations (general theory, practical considerations), phase structure of Abelian and non-Abelian models, the observables (coefficient of the linear term in the potential between two static sources at large separation, mass of the lowest excited state with the quantum numbers of the vacuum (the so-called glueball), the potential between two static sources at very small distance, the critical temperature at which sources become deconfined), gauge fields coupled to basonic matter (Higgs) fields, and systems with fermions

  17. Interactive visualization to advance earthquake simulation

    Science.gov (United States)

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  18. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    Science.gov (United States)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  19. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    Science.gov (United States)

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Quasilinear theory and simulation of Buneman instability

    International Nuclear Information System (INIS)

    Pavan, J.; Yoon, P. H.; Umeda, T.

    2011-01-01

    In a recently developed nonlinear theory of Buneman instability, a simplifying assumption of self-similarity was imposed for the electron distribution function, based upon which, a set of moment kinetic equations was derived and solved together with nonlinear wave kinetic equation [P. H. Yoon and T. Umeda, Phys. Plasmas 17, 112317 (2010)]. It was found that the theoretical result compared reasonably against one-dimensional electrostatic Vlasov simulation. In spite of this success, however, the simulated distribution deviated appreciably from the assumed self-similar form during the late stages of nonlinear evolution. In order to rectify this shortcoming, in this paper, the distribution function is computed on the basis of rigorous velocity space diffusion equation. A novel theoretical scheme is developed so that both the quasilinear particle diffusion equation and the adiabatic dispersion relation can be solved for an arbitrary particle distribution function. Comparison with Vlasov simulation over relatively early quasilinear phase of the instability shows a reasonable agreement, despite the fact that quasilinear theory lacks coherent nonlinear effects as well as mode-mode coupling effects.

  1. Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA

    International Nuclear Information System (INIS)

    Sheshadri, K.; Pandit, R.; Krishnamurthy, H.R.; Ramakrishnan, T.V.

    1993-01-01

    The bosonic Hubbard model is studied via a simple mean-field theory. At zero temperature, in addition to yielding a phase diagram that is qualitatively correct, namely a superfluid phase for non-integer fillings and a Mott transition from a superfluid to an insulating phase for integer fillings, this theory gives results that are in good agreement with Monte Carlo simulations. In particular, the superfluid fraction obtained as a function of the interaction strength U for both integer and non-integer fillings is close to the simulation results. In all phases the excitation spectra are obtained by using the random phase approximation (RPA): the spectrum has a gap in the insulating phase and is gapless (and linear at small wave vectors) in the superfluid phase. Analytic results are presented in the limits of large U and small superfluid density. Finite-temperature phase diagrams and the Mott-insulator-normal-phase crossover are also described. (orig.)

  2. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  3. Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations

    Science.gov (United States)

    Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul

    2018-01-01

    We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.

  4. Nonlinear theory of electroelastic and magnetoelastic interactions

    CERN Document Server

    Dorfmann, Luis

    2014-01-01

    This book provides a unified theory of nonlinear electro-magnetomechanical interactions of soft materials capable of large elastic deformations. The authors include an overview of the basic principles of the classical theory of electromagnetism from the fundamental notions of point charges and magnetic dipoles through to distributions of charge and current in a non-deformable continuum, time-dependent electromagnetic fields and Maxwell’s equations. They summarize the basic ingredients of continuum mechanics that are required to account for the deformability of material and present nonlinear constitutive frameworks for electroelastic and magnetoelastic interactions in a highly deformable material. The equations contained in the book are used to formulate and solve a variety of representative boundary-value problems for both nonlinear electroelasticity and magnetoelasticity.

  5. Study of X(3872) from effective field theory with pion-exchange interaction.

    Science.gov (United States)

    Wang, P; Wang, X G

    2013-07-26

    We study DD[over ¯]* (D*D[over ¯]) scattering in the framework of unitarized heavy meson chiral perturbation theory with pion exchange and a contact interaction. 3S1-3D1 mixing effects are taken into account. A loosely bound state X(3872), with the pole position being Mpole}=(3871.70-i0.39)  MeV, is found. The result is not sensitive to the strength of the contact interaction. Our calculation provides a theoretical confirmation of the existence of the 1++ state X(3872). The light quark mass dependence of the pole position indicates it has a predominately DD[over ¯]* (D*D[over ¯]) molecular nature. When the π mass is larger than 142 MeV, the pole disappears, which makes impossible the lattice simulation of this state at large quark mass.

  6. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory

    Science.gov (United States)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-10-01

    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  7. Organisational learning via Interactive Process Simulation in AGE

    NARCIS (Netherlands)

    Szirbik, N. B.; Roest, G. B.; Sklenar, J; Tanguy, A; Bertelle, C; Fortino, G

    2007-01-01

    In this paper, the concept of Interactive Process Simulation is introduced as a specialisation of Business Gaming. A specific gaming and agent development framework, based oil interactive simulation and a specific modelling langauge, is shortly presented. The concepts of the language are explained

  8. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions

    Science.gov (United States)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2005-01-01

    Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.

  9. Towards a natural theory of electroweak interactions

    Science.gov (United States)

    Dobrescu, Bogdan A.

    1998-01-01

    I study theories of electroweak symmetry breaking that may describe naturally the electromagnetic and weak interactions of the elementary particles observed so far (quarks, leptons and gauge bosons). These theories should explain why the energy scale at which the electroweak symmetry is spontaneously broken (246 GeV), called the 'electroweak scale', is seventeen orders of magnitude smaller than the 'Planck scale', which is associated with the quantum origin of gravity. I discuss first theories where the electroweak symmetry is broken by the dynamics of new strong interactions, naturally producing the hierarchy between the Planck scale and the electroweak scale. I show that in a realistic class of models of this type, the new gauge bosons needed for generating the mass of the heaviest quark have couplings which require a careful adjustment in order to be compatible with experimental data. In the case where the strong dynamics produces a composite spinless particle ('Higgs boson') whose interactions break the electroweak symmetry, I derive an upper bound of 460 GeV on the Higgs boson mass from experimental constraints on processes sensitive to new physics. I also discuss a different type of theory that explains the hierarchy of energy scales, based on a special symmetry, called supersymmetry, which requires the existence of new particles ('superpartners'). No superpartners have been seen in experiments. Therefore, if they exist, they must have masses larger than the particles known so far, implying that supersymmetry is not exact. In the simplest models, supersymmetry breaking is transmitted to the superpartners by standard gauge interactions. I show that all known models of this type are likely to be unacceptable because they do not admit a stable and phenomenologically viable ground state of the universe ('vacuum'). I then construct modified versions of these models that permit viable stable vacua. Also, I present a new model in which supersymmetry breaking is

  10. Trait-mediated trophic interactions: is foraging theory keeping up?

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey

    2013-01-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can...

  11. Simulated galaxy interactions as probes of merger spectral energy distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Brassington, Nicola, E-mail: llanz@ipac.caltech.edu [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)

    2014-04-10

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.

  12. Quasiconfigurations and the theory of effective interactions

    International Nuclear Information System (INIS)

    Poves, A.; Zuker, A.

    1980-01-01

    Perturbation theory is reformulated. Schroedinger's equation is recast as a non linear integral equation which yields by Neumann expansion a linked cluster series for the degenerate, quasi degenerate or non degenerate problem. An effective interaction theory emerges that can be formulated in a biorthogonal basis leading to a non Hermitian secular problem. Hermiticity can be recovered in a clear and rigorous way. As the mathematical form of the theory is dictated by the request of physical clarity the latter is obtained naturally. When written in diagrammatic many body language, the integral equation produces a set of linked coupled equations for the degenerate case. The classic summations (Brueckner, Bethe-Faddeev and RPA) emerge naturally. Possible extensions of nuclear matter theory are suggested

  13. New logistics protocols for distributed interactive simulation

    Science.gov (United States)

    Taylor, Darrin; Morrison, John; Katz, Warren; Felton, Erik; Herman, Deborah A.

    1995-06-01

    In today's environment, the transportation and maintenance of military forces is nearly as important as combat operations. Rapid deployment to regions of low-intensity conflict will become a very common training scenario for the U.S. military. Thus it is desirable to apply distributed simulation technology to train logistics personnel in their combat support roles. Currently, distributed interactive simulation (DIS) only contains rudimentary logistics protocols. This paper introduces new protocols designed to handle the logistics problem. The Newtonian protocol takes a physics-based approach to modeling interactions on the simulation network. This protocol consists of a family of protocol data units (PDUs) which are used to communicate forces in different circumstances. The protocol implements a small set of physical relations. This represents a flexible and general mechanism to describe battlefield interactions between network entities. The migratory object protocol (MOP) family addresses the transfer of control. General mechanisms provide the means to simulate resupply, repair, and maintenance of entities at any level of abstraction (individual soldier to division). It can also increase the fidelity of mine laying, enable handover of weapons for terminal guidance, allow for the distribution of aggregate-level simulation entities, provide capabilities for the simulation of personnel, etc.

  14. Euclidean Monte Carlo simulation of nuclear interactions

    International Nuclear Information System (INIS)

    Montvay, Istvan; Bonn Univ.; Urbach, Carsten

    2011-05-01

    We present an exploratory study of chiral effective theories of nuclei with methods adopted from lattice quantum chromodynamics (QCD). We show that the simulations in the Euclidean path integral approach are feasible and that we can determine the energy of the two nucleon state. By varying the parameters and the simulated volumes phase shifts can be determined in principle and hopefully tuned to their physical values in the future. The physical cut-off of the theory is realised by blocking of the lattice fields. By keeping this physical cut-off fixed in physical units the lattice cut-off can be changed and in this way the lattice artefacts can be eliminated. (orig.)

  15. Gauge theories of the weak interactions

    International Nuclear Information System (INIS)

    Quinn, H.

    1978-08-01

    Two lectures are presented on the Weinberg--Salam--Glashow--Iliopoulos--Maiani gauge theory for weak interactions. An attempt is made to give some impressions of the generality of this model, how it was developed, variations found in the literature, and the status of the standard model. 21 references

  16. Crossover from equilibration to aging: Nonequilibrium theory versus simulations.

    Science.gov (United States)

    Mendoza-Méndez, P; Lázaro-Lázaro, E; Sánchez-Díaz, L E; Ramírez-González, P E; Pérez-Ángel, G; Medina-Noyola, M

    2017-08-01

    Understanding glasses and the glass transition requires comprehending the nature of the crossover from the ergodic (or equilibrium) regime, in which the stationary properties of the system have no history dependence, to the mysterious glass transition region, where the measured properties are nonstationary and depend on the protocol of preparation. In this work we use nonequilibrium molecular dynamics simulations to test the main features of the crossover predicted by the molecular version of the recently developed multicomponent nonequilibrium self-consistent generalized Langevin equation theory. According to this theory, the glass transition involves the abrupt passage from the ordinary pattern of full equilibration to the aging scenario characteristic of glass-forming liquids. The same theory explains that this abrupt transition will always be observed as a blurred crossover due to the unavoidable finiteness of the time window of any experimental observation. We find that within their finite waiting-time window, the simulations confirm the general trends predicted by the theory.

  17. Fluctuation Solution Theory Properties from Molecular Simulation

    DEFF Research Database (Denmark)

    Abildskov, Jens; Wedberg, R.; O’Connell, John P.

    2013-01-01

    The thermodynamic properties obtained in the Fluctuation Solution Theory are based on spatial integrals of molecular TCFs between component pairs in the mixture. Molecular simulation, via either MD or MC calculations, can yield these correlation functions for model inter- and intramolecular...

  18. Preparation of Curcumin-Piperazine Coamorphous Phase and Fluorescence Spectroscopic and Density Functional Theory Simulation Studies on the Interaction with Bovine Serum Albumin.

    Science.gov (United States)

    Pang, Wenzhe; Lv, Jie; Du, Shuang; Wang, Jiaojiao; Wang, Jing; Zeng, Yanli

    2017-09-05

    In the present study, a new coamorphous phase (CAP) of bioactive herbal ingredient curcumin (CUR) with high solubilitythe was screened with pharmaceutically acceptable coformers. Besides, to provide basic information for the best practice of physiological and pharmaceutical preparations of CUR-based CAP, the interaction between CUR-based CAP and bovine serum albumin (BSA) was studied at the molecular level in this paper. CAP of CUR and piperazine with molar ratio of 1:2 was prepared by EtOH-assisted grinding. The as-prepared CAP was characterized by powder X-ray diffraction, modulated temperature differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared, and solid-state 13 C nuclear magnetic resonance. The 1:2 CAP stoichioimetry was sustained by C═O···H hydrogen bonds between the N-H group of the piperazine and the C═O group of CUR; piperazine stabilized the diketo structure of CUR in CAP. The dissolution rate of CUR-piperazine CAP in 30% ethanol-water was faster than that of CUR; the t 50 values were 243.1 min for CUR and 4.378 min for CAP. Furthermore, interactions of CUR and CUR-piperazine CAP with BSA were investigated by fluorescence spectroscopy and density functional theory (DFT) calculation. The binding constants (K b ) of CUR and CUR-piperazine CAP with BSA were 10.0 and 9.1 × 10 3 L mol -1 at 298 K, respectively. Moreover, DFT simulation indicated that the interaction energy values of hydrogen-bonded interaction in the tryptophan-CUR and tryptophan-CUR-piperazine complex were -26.1 and -17.9 kJ mol -1 , respectively. In a conclusion, after formation of CUR-piperazine CAP, the interaction forces between CUR and BSA became weaker.

  19. Interactive physically-based sound simulation

    Science.gov (United States)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation

  20. Towards socio-material approaches in simulation-based education: lessons from complexity theory.

    Science.gov (United States)

    Fenwick, Tara; Dahlgren, Madeleine Abrandt

    2015-04-01

    Review studies of simulation-based education (SBE) consistently point out that theory-driven research is lacking. The literature to date is dominated by discourses of fidelity and authenticity - creating the 'real' - with a strong focus on the developing of clinical procedural skills. Little of this writing incorporates the theory and research proliferating in professional studies more broadly, which show how professional learning is embodied, relational and situated in social - material relations. A key concern for medical educators concerns how to better prepare students for the unpredictable and dynamic ambiguity of professional practice; this has stimulated the movement towards socio-material theories in education that address precisely this question. Among the various socio-material theories that are informing new developments in professional education, complexity theory has been of particular importance for medical educators interested in updating current practices. This paper outlines key elements of complexity theory, illustrated with examples from empirical study, to argue its particular relevance for improving SBE. Complexity theory can make visible important material dynamics, and their problematic consequences, that are not often noticed in simulated experiences in medical training. It also offers conceptual tools that can be put to practical use. This paper focuses on concepts of emergence, attunement, disturbance and experimentation. These suggest useful new approaches for designing simulated settings and scenarios, and for effective pedagogies before, during and following simulation sessions. Socio-material approaches such as complexity theory are spreading through research and practice in many aspects of professional education across disciplines. Here, we argue for the transformative potential of complexity theory in medical education using simulation as our focus. Complexity tools open questions about the socio-material contradictions inherent in

  1. Interacting electrons theory and computational approaches

    CERN Document Server

    Martin, Richard M; Ceperley, David M

    2016-01-01

    Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.

  2. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  3. Positioning Theory and Discourse Analysis: Some Tools for Social Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Francisco Tirado

    2007-05-01

    Full Text Available This article outlines positioning theory as a discursive analysis of interaction, focusing on the topic of conflict. Moreover, said theory is applied to a new work environment for the social sciences: virtual spaces. The analysis is organized in the following way. First, the major key psychosocial issues which define the topic of conflict are reviewed. Then, virtual environments are presented as a new work space for the social sciences. Thirdly, a synthesis of positioning theory and its FOUCAULTian legacy is conducted, while appreciating its particular appropriateness for analyzing conflictive interaction in virtual environments. An empiric case is then presented. This consists of an analysis of interactive sequences within a specific virtual environment: the Universitat Oberta de Catalunya (UOC Humanitats i Filologia Catalana studies forum. Through positioning theory, the production and effects that a conflictive interaction sequence has on the community in which it is produced are understood and explained. URN: urn:nbn:de:0114-fqs0702317

  4. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    Science.gov (United States)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  5. Learning Theory Foundations of Simulation-Based Mastery Learning.

    Science.gov (United States)

    McGaghie, William C; Harris, Ilene B

    2018-06-01

    Simulation-based mastery learning (SBML), like all education interventions, has learning theory foundations. Recognition and comprehension of SBML learning theory foundations are essential for thoughtful education program development, research, and scholarship. We begin with a description of SBML followed by a section on the importance of learning theory foundations to shape and direct SBML education and research. We then discuss three principal learning theory conceptual frameworks that are associated with SBML-behavioral, constructivist, social cognitive-and their contributions to SBML thought and practice. We then discuss how the three learning theory frameworks converge in the course of planning, conducting, and evaluating SBML education programs in the health professions. Convergence of these learning theory frameworks is illustrated by a description of an SBML education and research program in advanced cardiac life support. We conclude with a brief coda.

  6. Problems of the π meson-nucleus interaction theory

    International Nuclear Information System (INIS)

    Kopaleishvili, T.I.

    1984-01-01

    The theory of multiple scattering as applied to PI-meson scattering on nuclei is outlined on the base of optical potential method: first in neglecting the real absorption of a pion by a nucleus and then for the case when this effect is taken into account. The pion interaction with a deuteron is considered both neglecting the pion absorption channel (the relativisitic problem of three bodies) and with account of the absorption channels and pion emission (in this case the problem is solved within the frames of the channel coupling theory for the pion-two nucleus system and the system of two nucleons). Approximate or model solutions to the problem of elastic pion-nuclear scattering primarily in the range of (3.3)-resonance are presented. The formulated theory permits to uniquely describe the observed processes caused by the strong pion interaction with a two-nucleon system

  7. The quest of a unified theory of interactions

    International Nuclear Information System (INIS)

    Weingerg, St.; Hawking, St.; Mlodinow, L.; Lisi, G.; Weatherall, J.

    2011-01-01

    The unification of the 4 basic interactions is far from being achieved despite all the efforts made during decades. One theory states that unification is not possible unless to have the point of view of an observer outside the universe...This document is composed of 3 articles. In the first article, stakes, difficulties and the existing research axis of unification are presented. The second article is dedicated to the string theory that is the most promising according to scientists. In fact there are 5 string theories, each one explaining a limited range of phenomena. Nevertheless, string theories share common concepts called dualities, which made physicists think of a unique theory: the M theory that might lie behind the string theories. The third article presents a recent attempt of unification based on the E8 Lie group. Even if this E8 theory appears to be wrong, it will have shed light on deep geometrical relationships between particles that the real theory will have to explain. (A.C.)

  8. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    Science.gov (United States)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  9. Weak interactions and gauge theories

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and √(5/3)g' of SU(3)/sub c/ x SU(2) 2 x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and it takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures

  10. Fermi and the Theory of Weak Interactions

    Indian Academy of Sciences (India)

    IAS Admin

    Quantum Field Theory created by Dirac and used by Fermi to describe weak ... of classical electrodynamics (from which the electric field and magnetic field can be obtained .... Universe. However, thanks to weak interactions, this can be done.

  11. Computational physics an introduction to Monte Carlo simulations of matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    This book is divided into two parts. In the first part we give an elementary introduction to computational physics consisting of 21 simulations which originated from a formal course of lectures and laboratory simulations delivered since 2010 to physics students at Annaba University. The second part is much more advanced and deals with the problem of how to set up working Monte Carlo simulations of matrix field theories which involve finite dimensional matrix regularizations of noncommutative and fuzzy field theories, fuzzy spaces and matrix geometry. The study of matrix field theory in its own right has also become very important to the proper understanding of all noncommutative, fuzzy and matrix phenomena. The second part, which consists of 9 simulations, was delivered informally to doctoral students who are working on various problems in matrix field theory. Sample codes as well as sample key solutions are also provided for convenience and completness. An appendix containing an executive arabic summary of t...

  12. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tong Huifeng; Yuan Hong [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-101, Mianyang, Sichuan 621900 (China); Tang Zhiping [CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  13. Screening of Coulomb interaction and many-body perturbation theory in atoms

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.

    1988-01-01

    Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example

  14. Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores

    International Nuclear Information System (INIS)

    Neimark, Alexander V; Ravikovitch, Peter I; Vishnyakov, Aleksey

    2003-01-01

    With the example of the capillary condensation of Lennard-Jones fluid in nanopores ranging from 1 to 10 nm, we show that the non-local density functional theory (NLDFT) with properly chosen parameters of intermolecular interactions bridges the scale gap from molecular simulations to macroscopic thermodynamics. On the one hand, NLDFT correctly approximates the results of Monte Carlo simulations (shift of vapour-liquid equilibrium, spinodals, density profiles, adsorption isotherms) for pores wider than about 2 nm. On the other hand, NLDFT smoothly merges (above 7-10 nm) with the Derjaguin-Broekhoff-de Boer equations which represent augmented Laplace-Kelvin equations of capillary condensation and desorption

  15. Salesperson Ethics: An Interactive Computer Simulation

    Science.gov (United States)

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  16. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    International Nuclear Information System (INIS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-01-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH 2 and CH 3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces

  17. Structure-Interaction Theory: Conceptual, Contextual and Strategic Influences on Human Communication

    Directory of Open Access Journals (Sweden)

    Стивен А Биби

    2015-12-01

    Full Text Available This paper addresses Structure-Interaction Theory (SIT, a theoretical framework that both describes communication messages as well as assists in making predictions about how human communication can be improved based on listener preferences for message structure or interaction. Communication messages may be characterized as existing on a continuum of structure-interaction. Communication structure is the inherent way information in a message is organized. A highly structured message is one in which the message is strategically organized using a planned arrangement of symbols to create meaning. Communication interaction is a way of viewing a message with give-and-take, less sustained “notes,” more change in note sequence and briefer notes. SIT seeks to provide a framework to assist communicators in appropriately adapting a message for maximum effectiveness. Although Structure-Interaction Theory newly articulated here, it is anchored in both classic ways of describing communication, such as rhetoric and dialectic (Aristotle, 1959, as well as more contemporary communication theories (Salem, 2012; Littlejohn & Foss, 2008. Specifically, the paper provides an overview of the theory and its conceptual assumptions, identifies how the theory can help explain and predict communication in several communication contexts (interpersonal, group, public communication, and suggests how SIT may help identify strategies to enhance human development. Structure-Interaction Theory is based on an assumption that a human communication message which is understood, achieves the intended effect of the communicator, and is ethical, requires an appropriate balance of two things: structure and interaction. Communication structure is the inherent way a message is constructed to provide a sustained direction to present information to another person. In linking structure and interaction to Aristotle’s description of messages, rhetoric is a more structured, sustained speech

  18. The simulation approach to lipid-protein interactions.

    Science.gov (United States)

    Paramo, Teresa; Garzón, Diana; Holdbrook, Daniel A; Khalid, Syma; Bond, Peter J

    2013-01-01

    The interactions between lipids and proteins are crucial for a range of biological processes, from the folding and stability of membrane proteins to signaling and metabolism facilitated by lipid-binding proteins. However, high-resolution structural details concerning functional lipid/protein interactions are scarce due to barriers in both experimental isolation of native lipid-bound complexes and subsequent biophysical characterization. The molecular dynamics (MD) simulation approach provides a means to complement available structural data, yielding dynamic, structural, and thermodynamic data for a protein embedded within a physiologically realistic, modelled lipid environment. In this chapter, we provide a guide to current methods for setting up and running simulations of membrane proteins and soluble, lipid-binding proteins, using standard atomistically detailed representations, as well as simplified, coarse-grained models. In addition, we outline recent studies that illustrate the power of the simulation approach in the context of biologically relevant lipid/protein interactions.

  19. Theory, Modeling and Simulation: Research progress report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, B.C.; Dixon, D.A.; Dunning, T.H.

    1997-01-01

    The Pacific Northwest National Laboratory (PNNL) has established the Environmental Molecular Sciences Laboratory (EMSL). In April 1994, construction began on the new EMSL, a collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation (TM and S) program will play a critical role in understanding molecular processes important in restoring DOE`s research, development, and production sites, including understanding the migration and reactions of contaminants in soils and ground water, developing processes for isolation and processing of pollutants, developing improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TM and S program are fivefold: to apply available electronic structure and dynamics techniques to study fundamental molecular processes involved in the chemistry of natural and contaminated systems; to extend current electronic structure and dynamics techniques to treat molecular systems of future importance and to develop new techniques for addressing problems that are computationally intractable at present; to apply available molecular modeling techniques to simulate molecular processes occurring in the multi-species, multi-phase systems characteristic of natural and polluted environments; to extend current molecular modeling techniques to treat ever more complex molecular systems and to improve the reliability and accuracy of such simulations; and to develop technologies for advanced parallel architectural computer systems. Research highlights of 82 projects are given.

  20. Self-interaction corrections in density functional theory

    International Nuclear Information System (INIS)

    Tsuneda, Takao; Hirao, Kimihiko

    2014-01-01

    Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds

  1. Charging of the Van Allen Probes: Theory and Simulations

    Science.gov (United States)

    Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Denton, M.

    2017-12-01

    The electrical charging of spacecraft has been a known problem since the beginning of the space age. Its consequences can vary from moderate (single event upsets) to catastrophic (total loss of the spacecraft) depending on a variety of causes, some of which could be related to the surrounding plasma environment, including emission processes from the spacecraft surface. Because of its complexity and cost, this problem is typically studied using numerical simulations. However, inherent unknowns in both plasma parameters and spacecraft material properties can lead to inaccurate predictions of overall spacecraft charging levels. The goal of this work is to identify and study the driving causes and necessary parameters for particular spacecraft charging events on the Van Allen Probes (VAP) spacecraft. This is achieved by making use of plasma theory, numerical simulations, and on-board data. First, we present a simple theoretical spacecraft charging model, which assumes a spherical spacecraft geometry and is based upon the classical orbital-motion-limited approximation. Some input parameters to the model (such as the warm plasma distribution function) are taken directly from on-board VAP data, while other parameters are either varied parametrically to assess their impact on the spacecraft potential, or constrained through spacecraft charging data and statistical techniques. Second, a fully self-consistent numerical simulation is performed by supplying these parameters to CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC simulations remove some of the assumptions of the theoretical model and also capture the influence of the full geometry of the spacecraft. The CPIC numerical simulation results will be presented and compared with on-board VAP data. This work will set the foundation for our eventual goal of importing the full plasma environment from the LANL-developed SHIELDS framework into CPIC, in order to more accurately

  2. Constructing International Relations Simulations: Examining the Pedagogy of IR Simulations through a Constructivist Learning Theory Lens

    Science.gov (United States)

    Asal, Victor; Kratoville, Jayson

    2013-01-01

    Simulations are being used more and more in political science generally and in international relations specifically. While there is a growing body of literature describing different simulations and a small amount of literature that empirically tests the impact of simulations, scholars have written very little linking the pedagogic theory behind…

  3. Spectator interactions in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Hill, Richard J.; Neubert, Matthias

    2003-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  4. Spectator Interactions in Soft-Collinear Effective Theory

    International Nuclear Information System (INIS)

    Hill, Richard J

    2002-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  5. Game theory in communication networks cooperative resolution of interactive networking scenarios

    CERN Document Server

    Antoniou, Josephina

    2012-01-01

    A mathematical tool for scientists and researchers who work with computer and communication networks, Game Theory in Communication Networks: Cooperative Resolution of Interactive Networking Scenarios addresses the question of how to promote cooperative behavior in interactive situations between heterogeneous entities in communication networking scenarios. It explores network design and management from a theoretical perspective, using game theory and graph theory to analyze strategic situations and demonstrate profitable behaviors of the cooperative entities. The book promotes the use of Game T

  6. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction

    Science.gov (United States)

    Hoda, Nazish; Kumar, Satish

    2007-12-01

    The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N1/3Wi2/3 at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N-1/2κ-3(lB∣σq∣)3/2, where κ is the inverse screening length, lB is the Bjerrum length, σ is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.

  7. Interactive Theory of Breastfeeding: creation and application of a middle-range theory

    Directory of Open Access Journals (Sweden)

    Cândida Caniçali Primo

    Full Text Available ABSTRACT Objective: To describe a breastfeeding theory based on King's Conceptual System. Method: Theoretical study that used analysis of concept, assertion synthesis, and derivation of theory for the creation of a new theory. Results: King's system components were associated with elements of the breastfeeding process and a middle-range theory was created, which describes, explains, predicts, and prescribes breastfeeding by analyzing factors that precede and affect it, as well as their consequences on the breastfeeding process. Conclusion: The Breastfeeding Interactive Model is abstract enough to be applied in different social, cultural, political, and economic contexts, because it conceptualizes breastfeeding in systemic, dynamic, and procedural aspects. Based on a conceptual model of nursing, it contributes to the scientific construction of the subject; however it can also potentially be applied by other professionals involved in breastfeeding assistance.

  8. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2016-02-15

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.

  9. Nucleic acid polymeric properties and electrostatics: Directly comparing theory and simulation with experiment.

    Science.gov (United States)

    Sim, Adelene Y L

    2016-06-01

    Nucleic acids are biopolymers that carry genetic information and are also involved in various gene regulation functions such as gene silencing and protein translation. Because of their negatively charged backbones, nucleic acids are polyelectrolytes. To adequately understand nucleic acid folding and function, we need to properly describe its i) polymer/polyelectrolyte properties and ii) associating ion atmosphere. While various theories and simulation models have been developed to describe nucleic acids and the ions around them, many of these theories/simulations have not been well evaluated due to complexities in comparison with experiment. In this review, I discuss some recent experiments that have been strategically designed for straightforward comparison with theories and simulation models. Such data serve as excellent benchmarks to identify limitations in prevailing theories and simulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Theories of the eta-meson-nucleus interaction

    International Nuclear Information System (INIS)

    Liu, L.C.

    1994-01-01

    It is sown that the pion-nucleon elastic scattering, eta-nucleon scattering length and the cross sections for pion-induced eta production on a nucleon satisfy a set of consistency relations. These relations are used to examine the ηN scattering lengths given by the various models. The nature of the threshold ηN interaction is discussed and recent advancements in ηN interaction is discussed and recent advancements in η-nucleus reaction theory are reviewed

  11. Characterizing representational learning: A combined simulation and tutorial on perturbation theory

    Directory of Open Access Journals (Sweden)

    Antje Kohnle

    2017-11-01

    Full Text Available Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them (“representational competence” is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students’ spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.

  12. Characterizing representational learning: A combined simulation and tutorial on perturbation theory

    Science.gov (United States)

    Kohnle, Antje; Passante, Gina

    2017-12-01

    Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.

  13. State of Theory and Computer Simulations of Radiation Effects in Ceramics

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Weber, William J.

    2003-01-01

    This article presents opinions based on the presentations and discussions at a Workshop on Theory and Computer Simulations of Radiation Effects in Ceramics held in August 2002 at Pacific Northwest National Laboratory in Richland, WA, USA. The workshop was focused on the current state-of-the-art of theory, modeling and simulation of radiation effects in oxide ceramics, directions for future breakthroughs, and creating a close integration with experiment

  14. Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-01-01

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. A meaningful adaption will result in high-fidelity and robust adapted core simulator models. To perform adaption, we propose an inverse theory approach in which the multitudes of input data to core simulators, i.e., reactor physics and thermal-hydraulic data, are to be adjusted to improve agreement with measured observables while keeping core simulator models unadapted. At first glance, devising such adaption for typical core simulators with millions of input and observables data would spawn not only several prohibitive challenges but also numerous disparaging concerns. The challenges include the computational burdens of the sensitivity-type calculations required to construct Jacobian operators for the core simulator models. Also, the computational burdens of the uncertainty-type calculations required to estimate the uncertainty information of core simulator input data present a demanding challenge. The concerns however are mainly related to the reliability of the adjusted input data. The methodologies of adaptive simulation are well established in the literature of data adjustment. We adopt the same general framework for data adjustment; however, we refrain from solving the fundamental adjustment equations in a conventional manner. We demonstrate the use of our so-called Efficient Subspace Methods (ESMs) to overcome the computational and storage burdens associated with the core adaption problem. We illustrate the successful use of ESM-based adaptive techniques for a typical boiling water reactor core simulator adaption problem

  15. INTERACTIVE MOTION PLATFORMS AND VIRTUAL REALITY FOR VEHICLE SIMULATORS

    Directory of Open Access Journals (Sweden)

    Evžen Thöndel

    2017-12-01

    Full Text Available Interactive motion platforms are intended for vehicle simulators, where the direct interaction of the human body is used for controlling the simulated vehicle (e.g. bicycle, motorbike or other sports vehicles. The second use of interactive motion platforms is for entertainment purposes or fitness. The development of interactive motion platforms reacts to recent calls in the simulation industry to provide a device, which further enhances the virtual reality experience, especially with connection to the new and very fast growing business in virtual reality glasses. The paper looks at the design and control of an interactive motion platform with two degrees of freedom to be used in virtual reality applications. The paper provides the description of the control methods and new problems related to the virtual reality sickness are discussed here.

  16. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    Science.gov (United States)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess

  17. Interactions from diffraction data: historical and comprehensive overview of simulation assisted methods

    International Nuclear Information System (INIS)

    Toth, Gergely

    2007-01-01

    A large part of statistical mechanics is concerned with the determination of condensed matter structure on the basis of known microscopic interactions. An increasing emphasis has been put on the opposite situation in the last decades as well, where structural data, e.g. pair-distance statistics, are known from diffraction experiments, and one looks for the corresponding interaction functions. The solution of this inverse problem was searched for within the integral equation theories of condensed matter in the early investigations, but before long computer simulation assisted methods were suggested. The interest in this field showed an increasing trend after some attempts appeared in the late 1980s. Several methods were published in the 1990s, and one-two methods appear annually nowadays. In this paper a comprehensive and historical overview is given on the solution of the inverse problem with simulation assisted methods. Emphasis is put on the theoretical grounds of the methods, on the choice of possible input structural functions, on the numerically local or global schemes of the potential modifications, on some advantages and limits of the different methods and on the scientific impact of the methods

  18. Toward a Theory of Entrepreneurial Rents: a Simulation of the Market Process

    NARCIS (Netherlands)

    Keyhani, M; Levesque, M.; Madhok, A.

    2015-01-01

    While strategy theory relies heavily on equilibrium theories of economic rents such as Ricardian and monopoly rents, we do not yet have a comprehensive theory of disequilibrium or entrepreneurial rents. We use cooperative game theory to structure computer simulations of the market process in which

  19. Building Interactive Simulations in Web Pages without Programming.

    Science.gov (United States)

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  20. Density-functional theory in one dimension for contact-interacting fermions

    International Nuclear Information System (INIS)

    Magyar, R.J.; Burke, K.

    2004-01-01

    A density-functional theory is developed for fermions in one dimension, interacting via a δ function. Such systems provide a natural testing ground for questions of principle, as the local-density approximation should be highly accurate since for this interaction type the exchange contribution to the local-density approximation is intrinsically self-interaction-free. The exact-exchange contribution to the total energy is a local functional of the density. A local-density approximation for correlation is obtained using perturbation theory and Bethe ansatz results for the one-dimensional contact-interacting uniform Fermi gas. The ground-state energies are calculated for two finite systems, the analogs of helium and of Hooke's atom. The local-density approximation is shown to be excellent as expected

  1. Interactive methods for exploring particle simulation data

    Energy Technology Data Exchange (ETDEWEB)

    Co, Christopher S.; Friedman, Alex; Grote, David P.; Vay, Jean-Luc; Bethel, E. Wes; Joy, Kenneth I.

    2004-05-01

    In this work, we visualize high-dimensional particle simulation data using a suite of scatter plot-based visualizations coupled with interactive selection tools. We use traditional 2D and 3D projection scatter plots as well as a novel oriented disk rendering style to convey various information about the data. Interactive selection tools allow physicists to manually classify ''interesting'' sets of particles that are highlighted across multiple, linked views of the data. The power of our application is the ability to correspond new visual representations of the simulation data with traditional, well understood visualizations. This approach supports the interactive exploration of the high-dimensional space while promoting discovery of new particle behavior.

  2. Evaluating clinical simulations for learning procedural skills: a theory-based approach.

    Science.gov (United States)

    Kneebone, Roger

    2005-06-01

    Simulation-based learning is becoming widely established within medical education. It offers obvious benefits to novices learning invasive procedural skills, especially in a climate of decreasing clinical exposure. However, simulations are often accepted uncritically, with undue emphasis being placed on technological sophistication at the expense of theory-based design. The author proposes four key areas that underpin simulation-based learning, and summarizes the theoretical grounding for each. These are (1) gaining technical proficiency (psychomotor skills and learning theory, the importance of repeated practice and regular reinforcement), (2) the place of expert assistance (a Vygotskian interpretation of tutor support, where assistance is tailored to each learner's needs), (3) learning within a professional context (situated learning and contemporary apprenticeship theory), and (4) the affective component of learning (the effect of emotion on learning). The author then offers four criteria for critically evaluating new or existing simulations, based on the theoretical framework outlined above. These are: (1) Simulations should allow for sustained, deliberate practice within a safe environment, ensuring that recently-acquired skills are consolidated within a defined curriculum which assures regular reinforcement; (2) simulations should provide access to expert tutors when appropriate, ensuring that such support fades when no longer needed; (3) simulations should map onto real-life clinical experience, ensuring that learning supports the experience gained within communities of actual practice; and (4) simulation-based learning environments should provide a supportive, motivational, and learner-centered milieu which is conducive to learning.

  3. Combining Interactive Thermodynamics Simulations with Screencasts and Conceptests

    Science.gov (United States)

    Falconer, John L.

    2016-01-01

    More than 40 interactive "Mathematica" simulations were prepared for chemical engineering thermodynamics, screencasts were prepared that explain how to use each simulation, and more than 100 ConcepTests were prepared that utilize the simulations. They are located on www.LearnChemE.com. The purposes of these simulations are to clarify…

  4. Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

    Science.gov (United States)

    Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.

    2017-10-01

    We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.

  5. Search of unified theory of basic types of elementary particle interactions

    International Nuclear Information System (INIS)

    Anselm, A.

    1981-01-01

    Four types of forces are described (strong, weak, electromagnetic and gravitational) mediating the basic interactions of quarks and leptons, and attempts are reported of forming a unified theory of all basic interactions. The concepts are discussed, such as the theory symmetry (eg., invariance in relation to the Lorentz transformations) and isotopic symmetry (based on the interchangeability of particles in a given isotopic multiplet). Described are the gauge character of electromagnetic and gravitational interactions, the violation of the gauge symmetry and the mechanism of particle confinement. (H.S.)

  6. Microcanonical simulations in classical and quantum field theory

    International Nuclear Information System (INIS)

    Olson, D.P.

    1988-01-01

    In the first part of this thesis, a stochastic adaptation of the microcanonical simulation method is applied to the numerical simulation of the Su-Schrieffer-Heeger Hamiltonian for polyacetylene, a one-dimensional polymer were fermion-boson interactions play a dominant role in the dynamics of the system. The pure microcanonical simulation method fails in the marginally ergodic case and a stochastic adaptation, the hybrid microcanonical method, is employed to resolve problems with ergodicity. The hybrid method is shown to be an efficient method for higher dimensional fermionic quantum systems. In the second part of this thesis, a numerical simulation of the evolution of a network of global cosmic strings is an expanding Robertson-Walker universe is carried out. The system is quenched through an order-disorder phase transition and the nature of the string distribution is examined. While the string distribution observed at the phase transition is in good agreement with earlier estimates, the simulation reveals that the dynamics of the strings are suppressed by interactions with the Goldstone field. The network decays by topological annihilation and no spatial correlations are observed at any point in the simulation

  7. Neoclassical theory of electromagnetic interactions a single theory for macroscopic and microscopic scales

    CERN Document Server

    Babin, Anatoli

    2016-01-01

    In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...

  8. Theory of mind in Alzheimer disease: Evidence of authentic impairment during social interaction.

    Science.gov (United States)

    Moreau, Noémie; Rauzy, Stéphane; Viallet, François; Champagne-Lavau, Maud

    2016-03-01

    The present study aimed to investigate theory of mind (the ability to infer others' mental states) deficit in 20 patients with mild Alzheimer's disease and 20 healthy controls, with 2 theory of mind tasks, 1 of them being a real interactive task. Previous results concerning preserved or altered theory of mind abilities in Alzheimer's disease have been inconsistent and relationships with other cognitive dysfunctions (notably episodic memory and executive functions) are still unclear. The first task we used was a false belief paradigm as frequently used in literature whereas the second task, a referential communication task, assessed theory of mind in a real situation of interaction. Participants also underwent neuropsychological evaluation to investigate potential relationships between theory of mind and memory deficits. The results showed that Alzheimer patients presented a genuine and significant theory of mind deficit compared to control participants characterized notably by difficulties to attribute knowledge to an interlocutor in a real social interaction. These results further confirm that theory of mind is altered in early stages of Alzheimer dementia which is consistent with previous works. More specifically, this study is the first to objectivize this impairment in social interaction. (c) 2016 APA, all rights reserved).

  9. Frequency-dependent hydrodynamic interaction between two solid spheres

    Science.gov (United States)

    Jung, Gerhard; Schmid, Friederike

    2017-12-01

    Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions between finite-sized particles in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that at high frequencies, the compressibility of the fluid has a significant impact on the frequency-dependent pair interactions. The predictions of hydrodynamic theory are compared to molecular dynamics simulations of two nanocolloids in a Lennard-Jones fluid. For this system, we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.

  10. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  11. Encoding Theory of Mind in Character Design for Pedagogical Interactive Narrative

    Directory of Open Access Journals (Sweden)

    Mei Si

    2014-01-01

    Full Text Available Computer aided interactive narrative allows people to participate actively in a dynamically unfolding story, by playing a character or by exerting directorial control. Because of its potential for providing interesting stories as well as allowing user interaction, interactive narrative has been recognized as a promising tool for providing both education and entertainment. This paper discusses the challenges in creating interactive narratives for pedagogical applications and how the challenges can be addressed by using agent-based technologies. We argue that a rich model of characters and in particular a Theory of Mind capacity are needed. The character architect in the Thespian framework for interactive narrative is presented as an example of how decision-theoretic agents can be used for encoding Theory of Mind and for creating pedagogical interactive narratives.

  12. Interaction theory of mammalian mitochondria.

    Science.gov (United States)

    Nakada, K; Inoue, K; Hayashi, J

    2001-11-09

    We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit. Copyright 2001 Academic Press.

  13. Computer simulations and theoretical aspects of the depletion interaction in protein-oligomer mixtures.

    Science.gov (United States)

    Boncina, M; Rescic, J; Kalyuzhnyi, Yu V; Vlachy, V

    2007-07-21

    The depletion interaction between proteins caused by addition of either uncharged or partially charged oligomers was studied using the canonical Monte Carlo simulation technique and the integral equation theory. A protein molecule was modeled in two different ways: either as (i) a hard sphere of diameter 30.0 A with net charge 0, or +5, or (ii) as a hard sphere with discrete charges (depending on the pH of solution) of diameter 45.4 A. The oligomers were pictured as tangentially jointed, uncharged, or partially charged, hard spheres. The ions of a simple electrolyte present in solution were represented by charged hard spheres distributed in the dielectric continuum. In this study we were particularly interested in changes of the protein-protein pair-distribution function, caused by addition of the oligomer component. In agreement with previous studies we found that addition of a nonadsorbing oligomer reduces the phase stability of solution, which is reflected in the shape of the protein-protein pair-distribution function. The value of this function in protein-protein contact increases with increasing oligomer concentration, and is larger for charged oligomers. The range of the depletion interaction and its strength also depend on the length (number of monomer units) of the oligomer chain. The integral equation theory, based on the Wertheim Ornstein-Zernike approach applied in this study, was found to be in fair agreement with Monte Carlo results only for very short oligomers. The computer simulations for a model mimicking the lysozyme molecule (ii) are in qualitative agreement with small-angle neutron experiments for lysozyme-dextran mixtures.

  14. QCD : the theory of strong interactions Conference MT17

    CERN Multimedia

    2001-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD), predicts that the strong interaction is transmitted by the exchange of particles called gluons. Unlike the messengers of electromagnetism photons, which are electrically neutral - gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies. LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  15. Learning theories and tools for the assessment of core nursing competencies in simulation: A theoretical review.

    Science.gov (United States)

    Lavoie, Patrick; Michaud, Cécile; Bélisle, Marilou; Boyer, Louise; Gosselin, Émilie; Grondin, Myrian; Larue, Caroline; Lavoie, Stéphan; Pepin, Jacinthe

    2018-02-01

    To identify the theories used to explain learning in simulation and to examine how these theories guided the assessment of learning outcomes related to core competencies in undergraduate nursing students. Nurse educators face the challenge of making explicit the outcomes of competency-based education, especially when competencies are conceptualized as holistic and context dependent. Theoretical review. Research papers (N = 182) published between 1999-2015 describing simulation in nursing education. Two members of the research team extracted data from the papers, including theories used to explain how simulation could engender learning and tools used to assess simulation outcomes. Contingency tables were created to examine the associations between theories, outcomes and tools. Some papers (N = 79) did not provide an explicit theory. The 103 remaining papers identified one or more learning or teaching theories; the most frequent were the National League for Nursing/Jeffries Simulation Framework, Kolb's theory of experiential learning and Bandura's social cognitive theory and concept of self-efficacy. Students' perceptions of simulation, knowledge and self-confidence were the most frequently assessed, mainly via scales designed for the study where they were used. Core competencies were mostly assessed with an observational approach. This review highlighted the fact that few studies examined the use of simulation in nursing education through learning theories and via assessment of core competencies. It also identified observational tools used to assess competencies in action, as holistic and context-dependent constructs. © 2017 John Wiley & Sons Ltd.

  16. Galaxy Alignments: Theory, Modelling & Simulations

    Science.gov (United States)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  17. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  18. Capstone Renaissance = Simulation + Interaction + DSS.

    Science.gov (United States)

    Jauch, Lawrence R.; And Others

    1989-01-01

    Reviews the development of integrated business policy and strategic management courses, or capstone courses, in business school curricula. A simulation game is described that incorporates the need for computer literacy, decision support systems (DSS), and interaction to effectively meet the needs for a capstone course. (14 references) (LRW)

  19. Dimensional analysis, similarity, analogy, and the simulation theory

    International Nuclear Information System (INIS)

    Davis, A.A.

    1978-01-01

    Dimensional analysis, similarity, analogy, and cybernetics are shown to be four consecutive steps in application of the simulation theory. This paper introduces the classes of phenomena which follow the same formal mathematical equations as models of the natural laws and the interior sphere of restraints groups of phenomena in which one can introduce simplfied nondimensional mathematical equations. The simulation by similarity in a specific field of physics, by analogy in two or more different fields of physics, and by cybernetics in nature in two or more fields of mathematics, physics, biology, economics, politics, sociology, etc., appears as a unique theory which permits one to transport the results of experiments from the models, convenably selected to meet the conditions of researches, constructions, and measurements in the laboratories to the originals which are the primary objectives of the researches. Some interesting conclusions which cannot be avoided in the use of simplified nondimensional mathematical equations as models of natural laws are presented. Interesting limitations on the use of simulation theory based on assumed simplifications are recognized. This paper shows as necessary, in scientific research, that one write mathematical models of general laws which will be applied to nature in its entirety. The paper proposes the extent of the second law of thermodynamics as the generalized law of entropy to model life and its activities. This paper shows that the physical studies and philosophical interpretations of phenomena and natural laws cannot be separated in scientific work; they are interconnected and one cannot be put above the others

  20. Quantum theory of acoustoelectric interaction

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    1974-01-01

    term, significant in the classical-collision-dominated regime only, the dielectric response function and the acoustic gain factor for a piezoelectrically active sound wave are obtained for the quantum and semiclassical-microscopic regimes. The manner in which the theory can be extended to the collision......-dominated regime is discussed. For a collision-free electron gas, the requirements of energy and momentum conservation in individual electron-phonon interactions lead to a cutoff in the acoustoelectric coupling when the acoustic wave number exceeds the characteristic electron wave number. The broadening...

  1. A horizontal vane radiometer: Experiment, theory, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, David; Larraza, Andres, E-mail: larraza@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, California 93940 (United States); Garcia, Alejandro [Department of Physics and Astronomy, San Jose State University, San Jose, California 95152 (United States)

    2016-03-15

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  2. A horizontal vane radiometer: Experiment, theory, and simulation

    International Nuclear Information System (INIS)

    Wolfe, David; Larraza, Andres; Garcia, Alejandro

    2016-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  3. Early history of gauge theories and weak interactions

    International Nuclear Information System (INIS)

    Straumann, N.

    1996-01-01

    The paper deals with Weyl's attempt to unify gravitation and electromagnetism, Weyl's 1929 classic 'Electron and gravitation', Yang-Mills theory, parity violation and 2-component neutrino, chiral invariance and universal V-A interaction. 3 figs., 38 refs

  4. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  5. Algebraic construction of interacting higher spin field theories

    International Nuclear Information System (INIS)

    Fougere, F.

    1991-10-01

    We develop a general framework which we believe may provide some insights into the structure of interacting 'high spin' field theories. A finite or infinite set of classical spin fields is described by means of a field defined on an enlarged spacetime manifold. The free action and its gauge symmetries are gathered into a nilpotent differential operator on this manifold. In particular, the choice of Grassmann-valued extra coordinates leads to theories involving only a finite set of fields, the possible contents (spin multiplicities, degree of reducibility, etc.) of which are classified according to the representations of a unitary algebra. The interacting theory is characterized by a functional of the field on the enlarged manifold. We show that there is among these functionals a natural graded Lie algebra structure allowing one to rewrite the gauge invariance condition of the action in a concise form which is a nonlinear generalization of the nilpotency condition of the free theory. We obtain the general solution of this 'classical master equation' , which can be built recurrently starting form the cubic vertex, and we study its symmetries. Our formalism lends itself to a systematic introduction of additional conditions, such as locality, polynomiality, etc. We write down the general form of the solutions exhibiting a scale invariance. The case of a spin 1 field yields, as a unique solution, Yang-Mills theory. In view of quantization, we show that the solution of the classical master equation straightforwardly provides a solution of the (quantum) Batalin-Vilkoviski master equation. One may then obtain a gauge fixed action in the usual way

  6. Academic Training: An Introduction to the Standard Theory of Electroweak Interactions

    CERN Multimedia

    PH Department

    2011-01-01

    27, 28 and 29 April 2011 An introduction to the standard theory of electroweak interactions by Giovanni Ridolfi (INFN, Genova) 27, 28 and 29 April from 11:00 to 12:00, 28 April from 14:30 to 15:30 at CERN ( 222-R-001 - Filtration Plant )  The construction and experimental foundations of the unified theory of weak and electromagnetic interactions will be reviewed. Special attention will be given to the Standard Model symmetry properties and how symmetries must be broken in order to obtain a realistic theory for the observed pattern of masses and mixing among generations and to accommodate longitudinal degrees of freedom for the vector bosons. A careful discussion of the Higgs sector, both in the perturbative and in the strongly interacting regime, will be presented. Finally, the motivations towards extensions of the standard model will be discussed.

  7. Simulating plasma instabilities in SU(3) gauge theory

    International Nuclear Information System (INIS)

    Berges, Juergen; Gelfand, Daniil; Scheffler, Sebastian; Sexty, Denes

    2009-01-01

    We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25% lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.

  8. Role of electron-electron interactions in the RKKY theory of magnetism

    International Nuclear Information System (INIS)

    Cooke, J.F.

    1978-10-01

    The theory of magnetism in heavy rare earth metals is based on the RKKY theory. In this formalism the indirect exchange interaction between the local 4f spins is mediated by the conduction electrons. When carried to second order in the 4f-conduction electron interaction, traditional perturbation theory leads to a Heisenberg-like interaction between the local spins which depends on the electronic energy bands and 4f-conduction electron exchange matrix elements. This derivation neglects the detailed behavior of electron-electron interaction within the conduction band, which is known to be important in metallic systems. By using an equation of motion method, an expression for the inelastic neutron scattering cross-section has been derived which includes, in an approximate way, this electron-electron interaction. The results of this calculation indicate that spin-wave peaks can be broadened and shifted if the spin-wave band lies near the conduction electron Stoner continuum. The origin of this effect is similar to that found in itinerant electron systems where the spin-wave band actually intersects the Stoner continuum, resulting in the disappearance of the spin-wave mode

  9. Role of electron-electron interactions in the RKKY theory of magnetism

    International Nuclear Information System (INIS)

    Cooke, J.F.

    1979-01-01

    The theory of magnetism in heavy rare earth metals is based on the RKKY theory. In this formalism the indirect exchange interaction between the local 4f spins is mediated by the conduction electrons. When carried to second order in the 4f-conduction electron interaction, traditional pertubation theory leads to a Heisenberg-like interaction between the local spins which depends on the electronic energy bands and 4f-conduction electron exchange matrix elements. This derivation neglects the detailed behavior of electron-electron interaction within the conduction band, which is known to be important in metallic systems. By using an equation of motion method, an expression for the inelastic neutron scattering cross-section has been derived which includes, in an approximate way, this electron-electron interaction. The results of this calculation indicate that spin-wave peaks can be broadened and shifted if the spin-wave band lies near the conduction electron Stoner continuum. The origin of this effect is similar to that found in itinerant electron systems where the spin-wave band actually intersects the Stoner continuum, resulting in the disappearance of the spin-wave mode

  10. A covariant open bosonic string field theory including the endpoint and middlepoint interaction

    International Nuclear Information System (INIS)

    Liu, B.G.; Northwest Univ., Xian; Chen, Y.X.

    1988-01-01

    Extending the usual endpoint and midpoint interactions, we introduce numerous kinds of interactions, labelled by a parameter λ and obtain a non-commutative and associative string field algebra by adding up all interactions. With this algebra we develop a covariant open bosonic string field theory, which reduces to Witten's open bosonic string field theory under a special string length choice. (orig.)

  11. Supercomputers and quantum field theory

    International Nuclear Information System (INIS)

    Creutz, M.

    1985-01-01

    A review is given of why recent simulations of lattice gauge theories have resulted in substantial demands from particle theorists for supercomputer time. These calculations have yielded first principle results on non-perturbative aspects of the strong interactions. An algorithm for simulating dynamical quark fields is discussed. 14 refs

  12. Towards an understanding of the attributes of simulation that enable learning in undergraduate nurse education: A grounded theory study.

    Science.gov (United States)

    Bland, Andrew J; Tobbell, Jane

    2016-09-01

    Simulation has become an established feature of nurse education yet little is understood about the mechanisms that lead to learning. To explore the attributes of simulation-based education that enable student learning in undergraduate nurse education. Final year students drawn from one UK University (n=46) participated in a grounded theory study. First, nonparticipant observation and video recording of student activity was undertaken. Following initial analysis, recordings and observations were deconstructed during focus group interviews that enabled both the researcher and participants to unpack meaning. Lastly emergent findings were verified with final year students drawn from a second UK University (n=6). A staged approach to learning emerged from engagement in simulation. This began with initial hesitation as students moved through nonlinear stages to making connections and thinking like a nurse. Core findings suggest that simulation enables curiosity and intellect (main concern) through doing (core category) and interaction with others identified as social collaboration (category). This study offers a theoretical basis for understanding simulation-based education and integration of strategies that maximise the potential for learning. Additionally it offers direction for further research, particularly with regards to how the application of theory to practice is accelerated through learning by doing and working collaboratively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Early history of gauge theories and weak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Straumann, N [Zurich Univ. (Switzerland). Inst. fuer Theoretische Physik

    1996-11-01

    The paper deals with Weyl`s attempt to unify gravitation and electromagnetism, Weyl`s 1929 classic `Electron and gravitation`, Yang-Mills theory, parity violation and 2-component neutrino, chiral invariance and universal V-A interaction. 3 figs., 38 refs.

  14. Statistical thermodynamics of aligned rigid rods with attractive lateral interactions: Theory and Monte Carlo simulations

    Science.gov (United States)

    dos Santos, G. J.; Linares, D. H.; Ramirez-Pastor, A. J.

    2018-04-01

    The phase behaviour of aligned rigid rods of length k (k-mers) adsorbed on two-dimensional square lattices has been studied by Monte Carlo (MC) simulations and histogram reweighting technique. The k-mers, containing k identical units (each one occupying a lattice site) were deposited along one of the directions of the lattice. In addition, attractive lateral interactions were considered. The methodology was applied, particularly, to the study of the critical point of the condensation transition occurring in the system. The process was monitored by following the fourth order Binder cumulant as a function of temperature for different lattice sizes. The results, obtained for k ranging from 2 to 7, show that: (i) the transition coverage exhibits a decreasing behaviour when it is plotted as a function of the k-mer size and (ii) the transition temperature, Tc, exhibits a power law dependence on k, Tc ∼k 0 , 4, shifting to higher values as k increases. Comparisons with an analytical model based on a generalization of the Bragg-Williams approximation (BWA) were performed in order to support the simulation technique. A significant qualitative agreement was obtained between BWA and MC results.

  15. Theory and Simulation of an Inverse Free Electron Laser Experiment

    Science.gov (United States)

    Guo, S. K.; Bhattacharjee, A.; Fang, J. M.; Marshall, T. C.

    1996-11-01

    An experimental demonstration of the acceleration of electrons using a high power CO2 laser in an inverse free electron laser (IFEL) is underway at the Brookhaven National Laboratory. This experiment has generated data, which we are attempting to simulate. Included in our studies are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge (which is significant at lower laser power); energy-spread of the electrons; arbitrary wiggler field profile; and slippage. Two types of wiggler profile have been considered: a linear taper of the period, and a step-taper of the period (the period is ~ 3cm, the field is ~ 1T, and the wiggler length is 47cm). The energy increment of the electrons ( ~ 1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (40MeV). For laser power ~ 0.5GW, the predictions of the simulations are in good accord with experimental results. A matter currently under study is the discrepancy between theory and observations for the electron energy distribution observed at the end of the IFEL. This work is supported by the Department of Energy.

  16. i3Drive, a 3D interactive driving simulator.

    Science.gov (United States)

    Ambroz, Miha; Prebil, Ivan

    2010-01-01

    i3Drive, a wheeled-vehicle simulator, can accurately simulate vehicles of various configurations with up to eight wheels in real time on a desktop PC. It presents the vehicle dynamics as an interactive animation in a virtual 3D environment. The application is fully GUI-controlled, giving users an easy overview of the simulation parameters and letting them adjust those parameters interactively. It models all relevant vehicle systems, including the mechanical models of the suspension, power train, and braking and steering systems. The simulation results generally correspond well with actual measurements, making the system useful for studying vehicle performance in various driving scenarios. i3Drive is thus a worthy complement to other, more complex tools for vehicle-dynamics simulation and analysis.

  17. Application of London-type dispersion corrections to the solid-state density functional theory simulation of the terahertz spectra of crystalline pharmaceuticals.

    Science.gov (United States)

    King, Matthew D; Buchanan, William D; Korter, Timothy M

    2011-03-14

    The effects of applying an empirical dispersion correction to solid-state density functional theory methods were evaluated in the simulation of the crystal structure and low-frequency (10 to 90 cm(-1)) terahertz spectrum of the non-steroidal anti-inflammatory drug, naproxen. The naproxen molecular crystal is bound largely by weak London force interactions, as well as by more prominent interactions such as hydrogen bonding, and thus serves as a good model for the assessment of the pair-wise dispersion correction term in systems influenced by intermolecular interactions of various strengths. Modifications to the dispersion parameters were tested in both fully optimized unit cell dimensions and those determined by X-ray crystallography, with subsequent simulations of the THz spectrum being performed. Use of the unmodified PBE density functional leads to an unrealistic expansion of the unit cell volume and the poor representation of the THz spectrum. Inclusion of a modified dispersion correction enabled a high-quality simulation of the THz spectrum and crystal structure of naproxen to be achieved without the need for artificially constraining the unit cell dimensions.

  18. Mathematical simulation of point defect interaction with grain boundaries

    International Nuclear Information System (INIS)

    Bojko, V.S.

    1987-01-01

    Published works, where the interaction of point defects and grain boundaries was studied by mathematical simulation methods, have been analysed. Energetics of the vacancy formation both in nuclei of large-angle special grain boundaries and in lattice regions adjoining them has been considered. The data obtained permit to explain specific features of grain-boundary diffusion processes. Results of mathematical simulation of the interaction of impurity atoms and boundaries have been considered. Specific features of the helium atom interaction with large-angle grain boundaries are analysed as well

  19. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  20. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.

    Science.gov (United States)

    Neilson, Peter D; Neilson, Megan D

    2005-09-01

    Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.

  1. A Graphical Interactive Simulation Environment for Production Planning in Bacon Factories

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1994-01-01

    The paper describes a graphical interactive simulation tool for production planning in bacon factories........The paper describes a graphical interactive simulation tool for production planning in bacon factories.....

  2. Mapping Cultural Frame Shifting in Interaction Design with Blending Theory

    DEFF Research Database (Denmark)

    Markussen, Thomas; Krogh, Peter Gall

    2008-01-01

    In this paper, we introduce Gilles Fauconnier & Mark Turner's blending theory as a new conceptual framework for explaining ‘cultural frame shifting' in interaction design. Cultural frame shifting is when people, through their explorative use of technology, are required imaginatively to reorganize...... their cultural background knowledge and expectations. In current HCI research it has occasionally been pointed out that a proper understanding of this phenomenon hinges on addressing the relationship between embodied interaction and cultural meaning construction as part of a larger interactive system. However...... the network model of mental spaces from Fauconnier & Turner's blending theory onto video material and interviews from initial qualitative use studies of a design case. In so doing we explore and argue for how meaning formation and embodied cognition coalesce in cultural frame shifting and provide a tool...

  3. Quantum field theory of photon—Dirac fermion interacting system in graphene monolayer

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha; Nguyen, Van Hieu

    2016-01-01

    The purpose of the present work is to elaborate quantum field theory of interacting systems comprising Dirac fermion fields in a graphene monolayer and the electromagnetic field. Since the Dirac fermions are confined in a two-dimensional plane, the interaction Hamiltonian of this system contains the projection of the electromagnetic field operator onto the plane of a graphene monolayer. Following the quantization procedure in traditional quantum electrodynamics we chose to work in the gauge determined by the weak Lorentz condition imposed on the state vectors of all physical states of the system. The explicit expression of the two-point Green function of the projection onto a graphene monolayer of a free electromagnetic field is derived. This two-point Green function and the expression of the interaction Hamiltonian together with the two-point Green functions of free Dirac fermion fields established in our previous work form the basics of the perturbation theory of the above-mentioned interacting field system. As an example, the perturbation theory is applied to the study of two-point Green functions of this interacting system of quantum fields. (paper)

  4. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  5. Intercorporeality as a theory of social cognition.

    Science.gov (United States)

    Tanaka, Shogo

    2015-08-01

    The main aim of this article is to revisit Merleau-Ponty's notion of intercorporeality (intercorporéité) and elaborate it as a new theory of social cognition. As is well known, theory of mind has been the central issue in the field of social cognition for more than two decades. In reviewing the basic concepts involved in two major theories (theory theory and simulation theory), I make clear that both theories have been missing the embodied dimension because of their mind-body dualistic supposition. The notion of intercorporeality, in accordance with the recent interaction theory, stresses the role of embodied interactions between the self and the other in the process of social understanding. I develop this notion into two directions and describe the related process of social cognition: one is behavior matching and primordial empathy, the other is interactional synchrony and the sense of mutual understanding. Through these embodied interactions, intersubjective meanings are created and directly shared between the self and the other, without being mediated by mental representations.

  6. Coherent Smith-Purcell radiation: Theories and simulations

    International Nuclear Information System (INIS)

    Donohue, J.T.; Gardelle, J.

    2008-01-01

    Smith-Purcell (SP) radiation has been observed many times over the past fifty years, and several theories have been proposed to explain it. However, it is only quite recently that Andrews, Brau and collaborators made a considerable advance in understanding how coherent SP radiation may be produced from an initially continuous beam. Their work received support from 2-D simulations which were performed using the Particle-in-Cell (PIC) code 'MAGIC'. Here we present a review of our 2-D simulations of coherent SP and discuss how they relate to the model of Andrews and Brau. We also describe briefly a SP experiment in the microwave domain using a sheet beam that is planned for 2008

  7. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    Science.gov (United States)

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  8. A novel approach to simulate gene-environment interactions in complex diseases

    Directory of Open Access Journals (Sweden)

    Nicodemi Mario

    2010-01-01

    Full Text Available Abstract Background Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.. Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS, a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte

  9. Density functional theory versus quantum Monte Carlo simulations of Fermi gases in the optical-lattice arena★

    Science.gov (United States)

    Pilati, Sebastiano; Zintchenko, Ilia; Troyer, Matthias; Ancilotto, Francesco

    2018-04-01

    We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices (OLs) computed via density functional theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional OLs, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep OLs. We also consider a three-dimensional OL at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2018-90021-1.

  10. EVALUATING AUSTRALIAN FOOTBALL LEAGUE PLAYER CONTRIBUTIONS USING INTERACTIVE NETWORK SIMULATION

    Directory of Open Access Journals (Sweden)

    Jonathan Sargent

    2013-03-01

    Full Text Available This paper focuses on the contribution of Australian Football League (AFL players to their team's on-field network by simulating player interactions within a chosen team list and estimating the net effect on final score margin. A Visual Basic computer program was written, firstly, to isolate the effective interactions between players from a particular team in all 2011 season matches and, secondly, to generate a symmetric interaction matrix for each match. Negative binomial distributions were fitted to each player pairing in the Geelong Football Club for the 2011 season, enabling an interactive match simulation model given the 22 chosen players. Dynamic player ratings were calculated from the simulated network using eigenvector centrality, a method that recognises and rewards interactions with more prominent players in the team network. The centrality ratings were recorded after every network simulation and then applied in final score margin predictions so that each player's match contribution-and, hence, an optimal team-could be estimated. The paper ultimately demonstrates that the presence of highly rated players, such as Geelong's Jimmy Bartel, provides the most utility within a simulated team network. It is anticipated that these findings will facilitate optimal AFL team selection and player substitutions, which are key areas of interest to coaches. Network simulations are also attractive for use within betting markets, specifically to provide information on the likelihood of a chosen AFL team list "covering the line".

  11. Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode

    Science.gov (United States)

    Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta

    2017-07-01

    We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the

  12. QCD : the theory of strong interactions Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD),predicts that the strong interac- tion is transmitted by the exchange of particles called glu- ons.Unlike the messengers of electromagnetism -pho- tons,which are electrically neutral -gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies.LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  13. Lagrangian model of conformal invariant interacting quantum field theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1976-01-01

    A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3

  14. Polarization asymmetries and gauge theory interactions at short distances

    International Nuclear Information System (INIS)

    Craigie, N.S.

    1983-01-01

    In this talk, we give the arguments as to why spin asymmetries test fundamental properties of the underlying gauge theories of elementary particles, concentrating mainly on electro-weak and QCD interactions, but also looking at the future and possible signatures for supersymmetric strong interactions. We also mention briefly the role helicity asymmetry measurements can play as regards higher order corrections, including higher twist, in QCD. (orig./HSI)

  15. Human sensorimotor communication: a theory of signaling in online social interactions.

    Science.gov (United States)

    Pezzulo, Giovanni; Donnarumma, Francesco; Dindo, Haris

    2013-01-01

    Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right) or to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain direction to signal where and when he intends to place it. Other examples of "signaling" are over-articulating in noisy environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast signaling within a "joint action optimization" framework in which co-actors optimize the success of their interaction and joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a trade-off between the costs of modifying one's behavior and the benefits in terms of interaction success. Signaling is thus an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance, prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our theory suggests that communication dynamics should be studied within theories of coordination and interaction rather than only in terms of the maximization of information

  16. Human sensorimotor communication: a theory of signaling in online social interactions.

    Directory of Open Access Journals (Sweden)

    Giovanni Pezzulo

    Full Text Available Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right or to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain direction to signal where and when he intends to place it. Other examples of "signaling" are over-articulating in noisy environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast signaling within a "joint action optimization" framework in which co-actors optimize the success of their interaction and joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a trade-off between the costs of modifying one's behavior and the benefits in terms of interaction success. Signaling is thus an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance, prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our theory suggests that communication dynamics should be studied within theories of coordination and interaction rather than only in terms of the

  17. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    Science.gov (United States)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  18. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    KAUST Repository

    Cao, Siqin

    2017-12-22

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  19. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    KAUST Repository

    Cao, Siqin; Zhu, Lizhe; Huang, Xuhui

    2017-01-01

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  20. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    Science.gov (United States)

    Cao, Siqin; Zhu, Lizhe; Huang, Xuhui

    2018-04-01

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  1. Simulations of light antinucleus-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Galoyan, A., E-mail: galoyan@lxmx00.jinr.ru [JINR, LHEP (Russian Federation); Uzhinsky, V. [JINR, LIT (Russian Federation)

    2013-03-15

    Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-{sup 3}He and anti-{sup 4}He) are observed by collaborations at the LHC and RHIC accelerators. Some cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To support the experimental studies of anti-nuclei a Monte Carlo simulation of anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The implementation combines practically all known theoretical approaches to the problem of antinucleon-nucleon interactions.

  2. Simulation of Light Antinucleus-Nucleus Interactions

    CERN Document Server

    Galoyan, A.

    2013-01-01

    Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To support the experimental studies of the anti-nuclei a Monte Carlo simulation of anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The implementation combines practically all known theoretical approaches to the problem of antinucleon-nucleon interactions.

  3. A molecular dynamics algorithm for simulation of field theories in the canonical ensemble

    International Nuclear Information System (INIS)

    Kogut, J.B.; Sinclair, D.K.

    1986-01-01

    We add a single scalar degree of freedom (''demon'') to the microcanonical ensemble which converts its molecular dynamics into a simulation method for the canonical ensemble (euclidean path integral) of the underlying field theory. This generalization of the microcanonical molecular dynamics algorithm simulates the field theory at fixed coupling with a completely deterministic procedure. We discuss the finite size effects of the method, the equipartition theorem and ergodicity. The method is applied to the planar model in two dimensions and SU(3) lattice gauge theory with four species of light, dynamical quarks in four dimensions. The method is much less sensitive to its discrete time step than conventional Langevin equation simulations of the canonical ensemble. The method is a straightforward generalization of a procedure introduced by S. Nose for molecular physics. (orig.)

  4. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    Science.gov (United States)

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  5. Interactions and scattering in d = 1 string theory

    International Nuclear Information System (INIS)

    Sengupta, A.M.; Mandal, G.; Wadia, S.R.

    1991-01-01

    This paper discusses two results: the authors calculate the two-point function of the density fluctuations to o(g st 2 ) in the fermionic formulation of the d = 1 string theory and compare with the o(g st 2 ) result from the candidate collective field Hamiltonian. The latter result is divergent, showing the inequivalence of the two theories. The authors find out the corrections to the collective field Hamiltonian (both in the form of infinite counterterms and additional finite pieces) needed to match with the fermion theory. The authors study tree-level scattering processes between bosons due to the localized interaction near the boundary (in a region of order √ α'). The reflection problem at the boundary is treated by an analytic continuation of the time-of-flight variable

  6. An Introduction to the Standard Theory of Electroweak Interactions (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The construction and experimental foundations of the unified theory of weak and electromagnetic interactions will be reviewed. Special attention will be given to the Standard Model symmetry properties and how symmetries must be broken in order to obtain a realistic theory for the observed pattern of masses and mixing among generations and to accommodate longitudinal degrees of freedom for the vector bosons. A careful discussion of the Higgs sector, both in the perturbative and in the strongly interacting regime, will be presented. Finally, the motivations towards extensions of the standard model will be discussed.

  7. Mars Tumbleweed Simulation Using Singular Perturbation Theory

    Science.gov (United States)

    Raiszadeh, Behzad; Calhoun, Phillip

    2005-01-01

    The Mars Tumbleweed is a new surface rover concept that utilizes Martian winds as the primary source of mobility. Several designs have been proposed for the Mars Tumbleweed, all using aerodynamic drag to generate force for traveling about the surface. The Mars Tumbleweed, in its deployed configuration, must be large and lightweight to provide the ratio of drag force to rolling resistance necessary to initiate motion from the Martian surface. This paper discusses the dynamic simulation details of a candidate Tumbleweed design. The dynamic simulation model must properly evaluate and characterize the motion of the tumbleweed rover to support proper selection of system design parameters. Several factors, such as model flexibility, simulation run times, and model accuracy needed to be considered in modeling assumptions. The simulation was required to address the flexibility of the rover and its interaction with the ground, and properly evaluate its mobility. Proper assumptions needed to be made such that the simulated dynamic motion is accurate and realistic while not overly burdened by long simulation run times. This paper also shows results that provided reasonable correlation between the simulation and a drop/roll test of a tumbleweed prototype.

  8. On multiscale moving contact line theory.

    Science.gov (United States)

    Li, Shaofan; Fan, Houfu

    2015-07-08

    In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.

  9. Thermodynamical analyses of molecular simulations of dislocation-defect interactions: simulations at 0 K

    International Nuclear Information System (INIS)

    Monnet, G.

    2008-01-01

    Full text of publication follows. Static molecular (SM) simulations of dislocation-defect interaction are analysed through a framework of different interaction regimes, in which the applied work has different roles. In most regimes, the applied work is transformed into elastic energy, a dissipative energy resulting from the lattice friction and a large quantity of energy needed to enable the dislocation to bow out when it is pinned by the defect. While the dissipative work is entirely evacuated in SM simulations, the elastic and curvature energies contribute to a large increase of the internal energy of the system. A method is presented in this work to evaluate the curvature energy and the result is compared to prediction of the line tension model. These analyses allow the determination of the dislocation-defect interaction energy. (author)

  10. Simulation of random walks in field theory

    International Nuclear Information System (INIS)

    Rensburg, E.J.J. van

    1988-01-01

    The numerical simulation of random walks is considered using the Monte Carlo method previously proposed. The algorithm is tested and then generalised to generate Edwards random walks. The renormalised masses of the Edwards model are calculated and the results are compared with those obtained from a simple perturbation theory calculation for small values of the bare coupling constant. The efficiency of this algorithm is discussed and compared with an alternative approach. (author)

  11. New techniques and results for worldline simulations of lattice field theories

    Science.gov (United States)

    Giuliani, Mario; Orasch, Oliver; Gattringer, Christof

    2018-03-01

    We use the complex ø4 field at finite density as a model system for developing further techniques based on worldline formulations of lattice field theories. More specifically we: 1) Discuss new variants of the worm algorithm for updating the ø4 theory and related systems with site weights. 2) Explore the possibility of canonical simulations in the worldline formulation. 3) Study the connection of 2-particle condensation at low temperature to scattering parameters of the theory.

  12. Interactive Heat Transfer Simulations for Everyone

    Science.gov (United States)

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  13. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are considered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interaction between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deepens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  14. Simulation of AntiMatter–Matter Interactions in Geant4

    Directory of Open Access Journals (Sweden)

    Galoyan Aida

    2018-01-01

    Full Text Available Cross sections of antiproton and antinucleus interactions with nuclei are calculated using stochastic averaging method. A new implementation of the Quark-Gluon-String Model (QGSM is proposed for simulation of multi-particle production in antinucleus-nucleus collisions. A combination of the cross sections and the new implementation of QGSM allows experimental data on antiproton and antinucleus interactions with nuclei to be described. The combination is included in the well-known Geant4 simulation toolkit.

  15. Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-01-01

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intent is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application

  16. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    Science.gov (United States)

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. An interactive beam position monitor system simulator

    International Nuclear Information System (INIS)

    Ryan, W.A.; Shea, T.J.

    1993-03-01

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well

  18. A general sensitivity theory for simulations of nonlinear systems

    International Nuclear Information System (INIS)

    Kenton, M.A.

    1981-01-01

    A general sensitivity theory is developed for nonlinear lumped-parameter system simulations. The point-of-departure is general perturbation theory, which has long been used for linear systems in nuclear engineering and reactor physics. The theory allows the sensitivity of particular figures-of-merit of the system behavior to be calculated with respect to any parameter.An explicit procedure is derived for applying the theory to physical systems undergoing sudden events (e.g., reactor scrams, tank ruptures). A related problem, treating figures-of-merit defined as functions of extremal values of system variables occurring at sudden events, is handled by the same procedure. The general calculational scheme for applying the theory to numerical codes is discussed. It is shown that codes which use pre-packaged implicit integration subroutines can be augmented to include sensitivity theory: a companion set of subroutines to solve the sensitivity problem is listed. This combined system analysis code is applied to a simple model for loss of post-accident heat removal in a liquid metal-cooled fast breeder reactor. The uses of the theory for answering more general sensitivity questions are discussed. One application of the theory is to systematically determine whether specific physical processes in a model contribute significantly to the figures-of-merit. Another application of the theory is for selecting parameter values which enable a model to match experimentally observed behavior

  19. Nucleic acids: theory and computer simulation, Y2K.

    Science.gov (United States)

    Beveridge, D L; McConnell, K J

    2000-04-01

    Molecular dynamics simulations on DNA and RNA that include solvent are now being performed under realistic environmental conditions of water activity and salt. Improvements to force-fields and treatments of long-range interactions have significantly increased the reliability of simulations. New studies of sequence effects, axis bending, solvation and conformational transitions have appeared.

  20. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are con- sidered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interac- tion between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation- color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deep- ens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  1. Local simulation algorithms for Coulombic interactions

    Indian Academy of Sciences (India)

    We consider a problem in dynamically constrained Monte Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation.

  2. Network theory-based analysis of risk interactions in large engineering projects

    International Nuclear Information System (INIS)

    Fang, Chao; Marle, Franck; Zio, Enrico; Bocquet, Jean-Claude

    2012-01-01

    This paper presents an approach based on network theory to deal with risk interactions in large engineering projects. Indeed, such projects are exposed to numerous and interdependent risks of various nature, which makes their management more difficult. In this paper, a topological analysis based on network theory is presented, which aims at identifying key elements in the structure of interrelated risks potentially affecting a large engineering project. This analysis serves as a powerful complement to classical project risk analysis. Its originality lies in the application of some network theory indicators to the project risk management field. The construction of the risk network requires the involvement of the project manager and other team members assigned to the risk management process. Its interpretation improves their understanding of risks and their potential interactions. The outcomes of the analysis provide a support for decision-making regarding project risk management. An example of application to a real large engineering project is presented. The conclusion is that some new insights can be found about risks, about their interactions and about the global potential behavior of the project. - Highlights: ► The method addresses the modeling of complexity in project risk analysis. ► Network theory indicators enable other risks than classical criticality analysis to be highlighted. ► This topological analysis improves project manager's understanding of risks and risk interactions. ► This helps project manager to make decisions considering the position in the risk network. ► An application to a real tramway implementation project in a city is provided.

  3. Implementation of quantum game theory simulations using Python

    Science.gov (United States)

    Madrid S., A.

    2013-05-01

    This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.

  4. Towards Real Time Simulation of Ship-Ship Interaction

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    We present recent and preliminary work directed towards the development of a simplified, physics-based model for improved simulation of ship-ship interaction that can be used for both analysis and real-time computing (i.e. with real-time constraints due to visualization). The goal is to implement...... accurate (realistic) and much faster ship-wave and ship-ship simulations than are currently possible. The coupling of simulation with visualization should improve the visual experience such that it can be perceived as more realistic in training. Today the state-of-art in real-time ship-ship interaction...... is for efficiency reasons and time-constraints in visualization based on model experiments in towing tanks and precomputed force tables. We anticipate that the fast, and highly parallel, algorithm described by Engsig-Karup et al. [2011] for execution on affordable modern high-throughput Graphics Processing Units...

  5. A New Finslerian Unified Field Theory of Physical Interactions

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2009-10-01

    Full Text Available In this work, we shall present the foundational structure of a new unified field theory of physical interactions in a geometric world-space endowed with a new kind of Finslerian metric. The intrinsic non-metricity in the structure of our world-geometry may have direct, genuine connection with quantum mechanics, which is yet to be fully explored at present. Building upon some of the previous works of the Author, our ultimate aim here is yet another quantum theory of gravity (in just four space-time dimensions. Our resulting new theory appears to present us with a novel Eulerian (intrinsically motion-dependent world-geometry in which the physical fields originate.

  6. Visualization of acoustic particle interaction and agglomeration: Theory evaluation

    International Nuclear Information System (INIS)

    Hoffmann, T.L.; Koopmann, G.H.

    1997-01-01

    In this paper experimentally observed trajectories of particles undergoing acoustically induced interaction and agglomeration processes are compared to and validated with numerically generated trajectories based on existing agglomeration theories. Models for orthokinetic, scattering, mutual radiation pressure, and hydrodynamic particle interaction are considered in the analysis. The characteristic features of the classical orthokinetic agglomeration hypothesis, such as collision processes and agglomerations due to the relative entrainment motion, are not observed in the digital images. The measured entrainment rates of the particles are found to be consistently lower than the theoretically predicted values. Some of the experiments reveal certain characteristics which may possibly be related to mutual scattering interaction. The study's most significant discovery is the so-called tuning fork agglomeration [T. L. Hoffmann and G. H. Koopmann, J. Acoust. Soc. Am. 99, 2130 endash 2141 (1996)]. It is shown that this phenomenon contradicts the theories for mutual scattering interaction and mutual radiation pressure interaction, but agrees with the acoustic wake effect model in its intrinsic feature of attraction between particles aligned along the acoustic axis. A model by Dianov et al. [Sov. Phys. Acoust. 13 (3), 314 endash 319 (1968)] is used to describe this effect based on asymmetric flow fields around particles under Oseen flow conditions. It is concluded that this model is consistent with the general characteristics of the tuning fork agglomerations, but lacks certain refinements with respect to accurate quantification of the effect. copyright 1997 Acoustical Society of America

  7. Conserving gapless mean-field theory for weakly interacting Bose gases

    International Nuclear Information System (INIS)

    Kita, Takafumi

    2006-01-01

    This paper presents a conserving gapless mean-field theory for weakly interacting Bose gases. We first construct a mean-field Luttinger-Ward thermodynamic functional in terms of the condensate wave function Ψ and the Nambu Green's function G for the quasiparticle field. Imposing its stationarity respect to Ψ and G yields a set of equations to determine the equilibrium for general non-uniform systems. They have a plausible property of satisfying the Hugenholtz-Pines theorem to provide a gapless excitation spectrum. Also, the corresponding dynamical equations of motion obey various conservation laws. Thus, the present mean-field theory shares two important properties with the exact theory: 'conserving' and 'gapless'. The theory is then applied to a homogeneous weakly interacting Bose gas with s-wave scattering length a and particle mass m to clarify its basic thermodynamic properties under two complementary conditions of constant density n and constant pressure p. The superfluid transition is predicted to be first-order because of the non-analytic nature of the order-parameter expansion near T c inherent in Bose systems, i.e., the Landau-Ginzburg expansion is not possible here. The transition temperature T c shows quite a different interaction dependence between the n-fixed and p-fixed cases. In the former case T c increases from the ideal gas value T 0 as T c /T 0 =1+2.33an 1/3 , whereas it decreases in the latter as T c /T 0 =1-3.84a(mp/2πℎ 2 ) 1/5 . Temperature dependences of basic thermodynamic quantities are clarified explicitly. (author)

  8. Refinement of Monte Carlo simulations of electron-specimen interaction in low-voltage SEM

    International Nuclear Information System (INIS)

    Kieft, Erik; Bosch, Eric

    2008-01-01

    A Monte Carlo tool is presented for the simulation of secondary electron (SE) emission in a scanning electron microscope (SEM). The tool is based on the Geant4 platform of CERN. The modularity of this platform makes it comparatively easy to add and test individual physical models. Our aim has been to develop a flexible and generally applicable tool, while at the same time including a good description of low-energy (<50 eV) interactions of electrons with matter. To this end we have combined Mott cross-sections with phonon-scattering based cross-sections for the elastic scattering of electrons, and we have adopted a dielectric function theory approach for inelastic scattering and generation of SEs. A detailed model of the electromagnetic fields from an actual SEM column has been included in the tool for ray tracing of secondary and backscattered electrons. Our models have been validated against experimental results through comparison of the simulation results with experimental yields, SE spectra and SEM images. It is demonstrated that the resulting simulation package is capable of quantitatively predicting experimental SEM images and is an important tool in building a deeper understanding of SEM imaging.

  9. Testing advanced driver assistance systems with the interactive driving simulator; Erprobung von Fahrerassistenzsystemen mit dem Interactive Driving Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichs, A.; Grosse-Kappenberg, S.; Happe, J. [Zentrum fuer Lern- und Wissensmanagement und Lehrstuhl Informatik im Maschinenbau ZLW/IMA der RWTH Aachen (Germany)

    2005-07-01

    The Centre for Learning and Knowledge Management and Department of Computer Science in Engineering of the Technical University Aachen has developed a truck driving simulator which combines a driving simulation as well as traffic flow calculations to the interactive Driving Simulator (InDriveS). In real-time the effects of the driver's behaviour on the surrounding traffic are considered and vice versa. The integrative part of InDriveS is a software-in-the-loop and hardware-in-the-loop development environment. By means of this tool, all phases of development (Analysis, Design, Modelling, Simulation, Implementation as well as Testing and Evaluation) of new vehicle technologies, e.g. Information and Assistance Systems, can be realised in consideration of the road traffic and the driver's behaviour. (orig.)

  10. A multi-species exchange model for fully fluctuating polymer field theory simulations.

    Science.gov (United States)

    Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H

    2014-11-07

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.

  11. Plasma theory and simulation. Quarterly progress report I, II, January 1-June 30, 1984

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1984-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of instabilities, heating, transport, and other phenomena in plasmas. We also work on the improvement of simulation both theoretically and practically. Research in plasma theory and simulation has centered on the following: (1) electron Bernstein wave investigations; (2) simulation of plasma-sheath region, including ion reflection; (3) single ended plasma device, general behavior dc or ac; (4) single ended plasma device, unstable states; (5) corrections to time-independent Q-machine equilibria; (6) multifluid derivation of the Alfven ion-cyclotron linear dispersion relation; and (7) potential barrier between hot and cool plasmas

  12. A non-linear theory of strong interactions

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A non-linear theory of mesons, nucleons and hyperons is proposed. The three independent fields of the usual symmetrical pseudo-scalar pion field are replaced by the three directions of a four-component field vector of constant length, conceived in an Euclidean four-dimensional isotopic spin space. This length provides the universal scaling factor, all other constants being dimensionless; the mass of the meson field is generated by a φ 4 term; this destroys the continuous rotation group in the iso-space, leaving a 'cubic' symmetry group. Classification of states by this group introduces quantum numbers corresponding to isotopic spin and to 'strangeness'; one consequences is that, at least in elementary interactions, charge is only conserved module 4. Furthermore, particle states have not a well-defined parity, but parity is effectively conserved for meson-nucleon interactions. A simplified model, using only two dimensions of space and iso-space, is considered further; the non-linear meson field has solutions with particle character, and an indication is given of the way in which the particle field variables might be introduced as collective co-ordinates describing the dynamics of these particular solutions of the meson field equations, suggesting a unified theory based on the meson field alone. (author). 7 refs

  13. Computational simulations of the interaction of water waves with pitching flap-type ocean wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.

  14. Reconsidering Schumpeterian opportunities: The contribution of interaction ritual chain theory

    OpenAIRE

    Goss, David

    2007-01-01

    Purpose The purpose of this article is to develop a conceptual framework that recognises the significance of emotional and interactional factors in shaping the development and enactment of entrepreneurial opportunities. Design/methodology/approach Provides a theory development illustrated through a case study based on secondary sources. Findings Demonstrates how emotion and interaction ritual chains can extend the scope of entrepreneurial theorising. Research limitations/...

  15. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    Science.gov (United States)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  16. Langevin equation in effective theory of interacting QCD pomerons in the limit of large Nc

    International Nuclear Information System (INIS)

    Bondarenko, S.

    2007-01-01

    Effective field theory of interacting BFKL pomerons is investigated and Langevin equation for the theory, which arises after the introduction of additional auxiliary field, is obtained. The Langevin equations are considered for the case of interacting BFKL pomerons with both splitting and merging vertexes and for the interaction which includes additional 'toy' four pomeron interaction vertex. In the latest case an analogy with the Regge field theory in zero dimensions (RFT-0) was used in order to obtain this 'toy' vertex, which coincided with the four point function of two-dimensional conformal field theory obtained in [G.P. Korchemsky, Nucl. Phys. B 550 (1999) 397]. The comparison between the Langevin equations obtained in the frameworks of dipole and RFT approaches is performed, the interpretation of results is given and possible application of obtained equations is discussed

  17. SU(2) gauge theory in the maximally Abelian gauge without monopoles

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Zadorozhnyj, A.M.

    1995-01-01

    We present an algorithm for simulation of SU(2) lattice gauge theory under the maximally Abelian (MA) gauge and first numerical results for the theory without Abelian monopoles. The results support the idea that nonperturbative interaction arises between monopoles and residual Abelian field and the other interactions are perturbative. It is shown that the Gribov region for the theory with the MA gauge fixed is non-connected. 12 refs., 1 tab

  18. Games as Actors - Interaction, Play, Design, and Actor Network Theory

    DEFF Research Database (Denmark)

    Jessen, Jari Due; Jessen, Carsten

    2014-01-01

    When interacting with computer games, users are forced to follow the rules of the game in return for the excitement, joy, fun, or other pursued experiences. In this paper, we investigate how games a chieve these experiences in the perspective of Actor Network Theory (ANT). Based on a qualitative......, and by doing so they create in humans what in modern play theory is known as a “state of play”...

  19. Numerical Simulations of Marine Hydrokinetic (MHK) Turbines Using the Blade Element Momentum Theory

    Science.gov (United States)

    Javaherchi, Teymour; Thulin, Oskar; Aliseda, Alberto

    2011-11-01

    Energy extraction from the available kinetic energy in tidal currents via Marine Hydrokinetic (MHK) turbines has recently attracted scientists' attention as a highly predictable source of renewable energy. The strongest tidal resources have a concentrated nature that require close turbine spacing in a farm of MHK turbines. This tight spacing, however, will lead to interaction of the downstream turbines with the turbulent wake generated by upstream turbines. This interaction can significantly reduce the power generated and possibly result in structural failure before the expected service life is completed. Development of a numerical methodology to study the turbine-wake interaction can provide a tool for optimization of turbine spacing to maximize the power generated in turbine arrays. In this work, we will present numerical simulations of the flow field in a farm of horizontal axis MHK turbines using the Blade Element Momentum Theory (BEMT). We compare the value of integral variables (i.e. efficiency, power, torque and etc.) calculated for each turbine in the farm for different arrangements with varying streamwise and lateral offsets between turbines. We find that BEMT provides accurate estimates of turbine efficiency under uniform flow conditions, but overpredicts the efficiency of downstream turbines when they are strongly affected by the wakes. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  20. Simulation of interactions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Duckeck, Guenter [Munich Univ. (Germany). Physics Faculty

    2016-11-01

    The LHC Run-2 is planned to continue until end of 2018 and should increase the data volume by at least a factor 5 compared to Run-1. A corresponding increase of the simulated data volume is required in order to analyze and interpret the recorded data. This will allow us to determine with much better precision the properties of the Higgs Boson and either find new particles as predicted by 'New Physics' theories or further increase the constraints on these models. Using SuperMUC to simulate events will be a crucial component to reach these goals. Active development of the simulation software is ongoing in order to make the workflow more flexible and better parallelizable for smaller work-units. Adapting the software for Intel/Mic architectures is an important goal, though presumably more in the long-term after LHC Run-2 (Run-3 is planned to start in 2021). We would hope that ''SuperMUC Next Generation'' provides Intel/Mic architecture extensions.

  1. Deriving the four-string and open-closed string interactions from geometric string field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1990-01-01

    One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included

  2. Lattice cluster theory for polymer melts with specific interactions

    International Nuclear Information System (INIS)

    Xu, Wen-Sheng; Freed, Karl F.

    2014-01-01

    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly(n-α-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions

  3. Comments on the interaction between theory and experiment in high energy physics

    International Nuclear Information System (INIS)

    Derrick, M.

    1990-01-01

    This paper discusses work being conducted in High Energy Physics and Nuclear Physics where theory and experiment go hand in hand. Pion capture, proton-antiproton interactions, kaon-pion interactions and hypernuclei decay are discussed as examples

  4. Interacting fermions in two dimensions: Beyond the perturbation theory

    International Nuclear Information System (INIS)

    Gangadharaiah, S.; Maslov, D.L.; Chubukov, A.V.; Glazman, L.I.

    2005-05-01

    We consider a system of 2D fermions with short-range interaction. A straightforward perturbation theory is shown to be ill-defined even for an infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. We show that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the most divergent diagrams, we obtain a closed form of the self-energy near the mass shell. The spectral function exhibits a threshold feature at the onset of the emission of the zero-sound waves. We also show that the interaction with the zero sound does not affect a non- analytic, T 2 -part of the specific heat. (author)

  5. A Quintessence Problem in Self-interacting Brans-Dicke Theory

    OpenAIRE

    Chakraborty, Subenoy; Chakraborty, N. C.; Debnath, Ujjal

    2003-01-01

    A quintessence scalar field in self-interacting Brans-Dicke theory is shown to give rise to a non-decelerated expansion of the present universe for open, flat and closed models. Along with providing a non-decelerating solution, it can potentially solve the flatness problem too.

  6. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  7. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    Science.gov (United States)

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  8. Interacting complex systems: Theory and application to real-world situations

    Science.gov (United States)

    Piccinini, Nicola

    The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.

  9. An Interactive Simulation Tool for Production Planning in Bacon Factories

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Nielsen, Kirsten Mølgaard

    1994-01-01

    The paper describes an interactive simulation tool for production planning in bacon factories. The main aim of the tool is to make it possible to combine the production plans of all parts of the factory......The paper describes an interactive simulation tool for production planning in bacon factories. The main aim of the tool is to make it possible to combine the production plans of all parts of the factory...

  10. Investigating dislocation motion through a field of solutes with atomistic simulations and reaction rate theory

    International Nuclear Information System (INIS)

    Saroukhani, S.; Warner, D.H.

    2017-01-01

    The rate of thermally activated dislocation motion across a field of solutes is studied using traditional and modern atomistically informed rate theories. First, the accuracy of popular variants of the Harmonic Transition State Theory, as the most common approach, is examined by comparing predictions to direct MD simulations. It is shown that HTST predictions are grossly inaccurate due to the anharmonic effect of thermal softening. Next, the utility of the Transition Interface Sampling was examined as the method was recently shown to be effective for predicting the rate of dislocation-precipitate interactions. For dislocation-solute interactions studied here, TIS is found to be accurate only when the dislocation overcomes multiple obstacles at a time, i.e. jerky motion, and it is inaccurate in the unpinning regime where the energy barrier is of diffusive nature. It is then shown that the Partial Path TIS method - designed for diffusive barriers - provides accurate predictions in the unpinning regime. The two methods are then used to study the temperature and load dependence of the rate. It is shown that Meyer-Neldel (MN) rule prediction of the entropy barrier is not as accurate as it is in the case of dislocation-precipitate interactions. In response, an alternative model is proposed that provides an accurate prediction of the entropy barrier. This model can be combined with TST to offer an attractively simple rate prediction approach. Lastly, (PP)TIS is used to predict the Strain Rate Sensitivity (SRS) factor at experimental strain rates and the predictions are compared to experimental values.

  11. Interactions In Online Education Implications For Theory & Practice

    Directory of Open Access Journals (Sweden)

    Askim KURT

    2007-04-01

    Full Text Available This book was edited by, Charles Juwah, Senior EducationDevelopment Officer at Robert Gordon University, where heruns the postgraduate learning and teaching qualificationcourse. It was published by Routledge in 2006.Interaction is very important in open and flexible learning,and apparent at all levels of engagement, whether betweenstudents, students and tutors, online learning materials orinterfacing with the learning environment. A student whoactively engages with learning materials, interactions helpto improve learning by fortifying knowledge and providingcontext, encouraging reflection, questioning and deeplyunderstanding of a subject.This book provides international perspectives on key topics including analyzing and designing e-learning interactions, social and conceptual dimensions of learning, interactions in online discussions, interactions in pair learning, and professional development of online facilitators. In this book a collection of research and innovative case material drawn from practitioners and academicians and it covers the theory and the practical implications of related issues. It is essential reading for all those involved in the design,implementation, management and use of open and flexible learning.

  12. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective

    Science.gov (United States)

    Angioletti-Uberti, Stefano

    2017-11-01

    Functionalised nanoparticles for biomedical applications represents an incredibly exciting and rapidly growing field of research. Considering the complexity of the nano-bio interface, an important question is to what extent can theory and simulations be used to study these systems in a realistic, meaningful way. In this review, we will argue for a positive answer to this question. Approaching the issue from a "Soft Matter" perspective, we will consider those properties of functionalised nanoparticles that can be captured within a classical description. We will thus not concentrate on optical and electronic properties, but rather on the way nanoparticles' interactions with the biological environment can be tuned by functionalising their surface and exploited in different contexts relevant to applications. In particular, we wish to provide a critical overview of theoretical and computational coarse-grained models, developed to describe these interactions and present to the readers some of the latest results in this fascinating area of research.

  13. Cosmological simulations using a static scalar-tensor theory

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-Meza, M A [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Gonzalez-Morales, A X [Departamento Ingenierias, Universidad Iberoamericana, Prol. Paseo de la Reforma 880 Lomas de Santa Fe, Mexico D.F. Mexico (Mexico); Gabbasov, R F [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Cervantes-Cota, Jorge L [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico)

    2007-11-15

    We present {lambda}CDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group.

  14. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  15. RadSim: a program to simulate individual particle interactions for educational purposes

    International Nuclear Information System (INIS)

    Verhaegen, Frank; Palefsky, Steven; DeBlois, Francois

    2006-01-01

    A program was developed, RadSim, which can be used to simulate certain individual interactions of photons, electrons, positrons and alpha particles with a single atom for educational purposes. The program can be run in two modes: manual and simulated. In the manual mode, an individual particle undergoing a specified interaction with a target atom can be simulated, which essentially comes down to a graphical evaluation of kinematic equations. In the simulated mode, a preset number of identical particles are allowed to undergo a specified interaction type with a target atom. The exit channel of the interaction is sampled from probability distributions using Monte Carlo methods. The incoming and outgoing particles are visualized and the frequency distribution of the kinematic variables of the exit channel is displayed graphically. It has to be emphasized that RadSim was mainly developed for educational purposes. (note)

  16. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.

  17. Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing

    2007-01-01

    Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...

  18. Three-body interactions in many-body effective field theory

    International Nuclear Information System (INIS)

    Furnstahl, R.J.

    2004-01-01

    This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful

  19. Canonical simulations with worldlines: An exploratory study in ϕ24 lattice field theory

    Science.gov (United States)

    Orasch, Oliver; Gattringer, Christof

    2018-01-01

    In this paper, we explore the perspectives for canonical simulations in the worldline formulation of a lattice field theory. Using the charged ϕ4 field in two dimensions as an example, we present the details of the canonical formulation based on worldlines and outline the algorithmic strategies for canonical worldline simulations. We discuss the steps for converting the data from the canonical approach to the grand canonical picture which we use for cross-checking our results. The canonical approach presented here can easily be generalized to other lattice field theories with a worldline representation.

  20. Formulate, Formalize and Run! How Narrative Theories shape and are shaped by Interactive Digital Narrative

    OpenAIRE

    Szilas, Nicolas

    2016-01-01

    What are the links between narrative theories and computing? Narrative works are countless in the digital world: narrative hypertext and hypermedia, interactive fiction, video games, blogs, location-based narrative, etc. They not only form new analytical objects for narrative theories, but also may extend existing narrative theories. One specific type of digital narratives, AI-based Interactive Digital Narrative (IDN), plays a special role in this landscape because it makes use of narrative t...

  1. Asthma management simulation for children: translating theory, methods, and strategies to effect behavior change.

    Science.gov (United States)

    Shegog, Ross; Bartholomew, L Kay; Gold, Robert S; Pierrel, Elaine; Parcel, Guy S; Sockrider, Marianna M; Czyzewski, Danita I; Fernandez, Maria E; Berlin, Nina J; Abramson, Stuart

    2006-01-01

    Translating behavioral theories, models, and strategies to guide the development and structure of computer-based health applications is well recognized, although a continued challenge for program developers. A stepped approach to translate behavioral theory in the design of simulations to teach chronic disease management to children is described. This includes the translation steps to: 1) define target behaviors and their determinants, 2) identify theoretical methods to optimize behavioral change, and 3) choose educational strategies to effectively apply these methods and combine these into a cohesive computer-based simulation for health education. Asthma is used to exemplify a chronic health management problem and a computer-based asthma management simulation (Watch, Discover, Think and Act) that has been evaluated and shown to effect asthma self-management in children is used to exemplify the application of theory to practice. Impact and outcome evaluation studies have indicated the effectiveness of these steps in providing increased rigor and accountability, suggesting their utility for educators and developers seeking to apply simulations to enhance self-management behaviors in patients.

  2. Atomistic simulations of screw dislocations in bcc tungsten: From core structures and static properties to interaction with vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ke [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Niu, Liang-Liang [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI 48109 (United States); Jin, Shuo, E-mail: jinshuo@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Shu, Xiaolin [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China); Xie, Hongxian [School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132 (China); Wang, Lifang; Lu, Guang-Hong [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191 (China)

    2017-02-15

    Atomistic simulations have been used to investigate the core structures, static properties of isolated 1/2 <1 1 1> screw dislocations, and their interaction with vacancies in bcc tungsten (W) based on three empirical interatomic potentials. Differential displacement maps show that only one embedded atom method potential is able to reproduce the compact non-degenerate core as evidenced by ab initio calculations. The obtained strain energy and stress distribution from atomistic simulations are, in general, consistent with elasticity theory predictions. In particular, one component of the calculated shear stress, which is not present according to elasticity theory, is non-negligible in the core region of our dislocation model. The differences between the results calculated from three interatomic potentials are in details, such as the specific value and the symmetry, but the trend of spatial distributions of static properties in the long range are close to each other. By calculating the binding energies between the dislocations and vacancies, we demonstrate that the dislocations act as vacancy sinks, which may be important for the nucleation and growth of hydrogen bubbles in W under irradiation.

  3. Interacting ghost dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Ebrahimi, Esmaeil; Sheykhi, Ahmad

    2011-01-01

    We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (w D =-1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of w D to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.

  4. Geometric theory of fundamental interactions. Foundations of unified physics

    International Nuclear Information System (INIS)

    Pestov, A.B.

    2012-01-01

    We put forward an idea that regularities of unified physics are in a simple relation: everything in the concept of space and the concept of space in everything. With this hypothesis as a ground, a conceptual structure of a unified geometrical theory of fundamental interactions is created and deductive derivation of its main equations is produced. The formulated theory gives solution of the actual problems, provides opportunity to understand the origin and nature of physical fields, local internal symmetry, time, energy, spin, charge, confinement, dark energy and dark matter, thus conforming the existence of new physics in its unity

  5. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of F 2 (x,Q 2 ) dx eliminate already all strong interaction field theories which do not include colored quarks as well as colored vector gluons. Detailed studies of scaling violations in F 2 (x,Q 2 ) cannot discriminate between a local gauge invariant theory (QCD) and one which has no local color gauge invariance, i.e. no triple-gluon coupling. This implies that all calculations on scaling violations done so far are insensitive to the gluon self-coupling, the latter might perhaps be delineated with future ep colliding beam facilities. (orig.) [de

  6. Cooperation, psychological game theory, and limitations of rationality in social interaction.

    Science.gov (United States)

    Colman, Andrew M

    2003-04-01

    Rational choice theory enjoys unprecedented popularity and influence in the behavioral and social sciences, but it generates intractable problems when applied to socially interactive decisions. In individual decisions, instrumental rationality is defined in terms of expected utility maximization. This becomes problematic in interactive decisions, when individuals have only partial control over the outcomes, because expected utility maximization is undefined in the absence of assumptions about how the other participants will behave. Game theory therefore incorporates not only rationality but also common knowledge assumptions, enabling players to anticipate their co-players' strategies. Under these assumptions, disparate anomalies emerge. Instrumental rationality, conventionally interpreted, fails to explain intuitively obvious features of human interaction, yields predictions starkly at variance with experimental findings, and breaks down completely in certain cases. In particular, focal point selection in pure coordination games is inexplicable, though it is easily achieved in practice; the intuitively compelling payoff-dominance principle lacks rational justification; rationality in social dilemmas is self-defeating; a key solution concept for cooperative coalition games is frequently inapplicable; and rational choice in certain sequential games generates contradictions. In experiments, human players behave more cooperatively and receive higher payoffs than strict rationality would permit. Orthodox conceptions of rationality are evidently internally deficient and inadequate for explaining human interaction. Psychological game theory, based on nonstandard assumptions, is required to solve these problems, and some suggestions along these lines have already been put forward.

  7. Simulation and theory of island growth on stepped substrates

    International Nuclear Information System (INIS)

    Pownall, C.D.

    1999-10-01

    The nucleation, growth and coalescence of islands on stepped substrates is investigated by Monte Carlo simulations and analytical theories. Substrate steps provide a preferential site for the nucleation of islands, making many of the important processes one-dimensional in nature, and are of potentially major importance in the development of low-dimensional structures as a means of growing highly ordered chains of 'quantum dots' or continuous 'quantum wires'. A model is developed in which island nucleation is entirely restricted to the step edge, islands grow in compact morphologies by monomer capture, and eventually coalesce with one another until a single continuous cluster of islands covers the entire step. A series of analytical theories is developed to describe the dynamics of the whole evolution. The initial nucleation and aggregation regimes are modeled using the traditional approach of rate equations, rooted in mean field theory, but incorporating corrections to account for correlations in the nucleation and capture processes. This approach is found to break down close to the point at which the island density saturates and a new approach is developed based upon geometric and probabilistic arguments to describe the saturation behaviour, including the characteristic dynamic scaling which is found to persist through the coalescence regime as well. A further new theory, incorporating arguments based on the geometry of Capture Zones, is presented which reproduces the dynamics of the coalescence regime. The, latter part of the. thesis considers the spatial properties of the system, in particular the spacing of the islands along the step. An expression is derived which describes the distribution of gap sizes, and this is solved using a recently-developed relaxation method. An important result is the discovery that larger critical island sizes tend to yield more evenly spaced arrays of islands. The extent of this effect is analysed by solving for critical island

  8. Theories and simulations of complex social systems

    CERN Document Server

    Mago, Vijay

    2014-01-01

    Research into social systems is challenging due to their complex nature. Traditional methods of analysis are often difficult to apply effectively as theories evolve over time. This can be due to a lack of appropriate data, or too much uncertainty. It can also be the result of problems which are not yet understood well enough in the general sense so that they can be classified, and an appropriate solution quickly identified. Simulation is one tool that deals well with these challenges, fits in well with the deductive process, and is useful for testing theory. This field is still relatively new, and much of the work is necessarily innovative, although it builds upon a rich and varied foundation. There are a number of existing modelling paradigms being applied to complex social systems research. Additionally, new methods and measures are being devised through the process of conducting research. We expect that readers will enjoy the collection of high quality research works from new and accomplished researchers. ...

  9. Dynamics simulations for engineering macromolecular interactions

    Science.gov (United States)

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-01-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could

  10. First-principles density functional theory (DFT) study of gold nanorod and its interaction with alkanethiol ligands.

    Science.gov (United States)

    Hu, Hang; Reven, Linda; Rey, Alejandro

    2013-10-17

    The structure and mechanical properties of gold nanorods and their interactions with alkenthiolate self-assembled monolayers have been determined using a novel first-principle density functional theory simulation approach. The multifaceted, 1-dimensional, octagonal nanorod has alternate Au100 and Au110 surfaces. The structural optimization of the gold nanorods was performed with a mixed basis: the outermost layer of gold atoms used double-ζ plus polarization (DZP), the layer below used double-ζ (DZ), and the inner layers used single-ζ (SZ). The final structure compares favorably with simulations using DZP for all atoms. Phonon dispersion calculations and ab initio molecular dynamics (AIMD) were used to establish the dynamic and thermal stability of the system. From the AIMD simulations it was found that the nanorod system will undergo significant surface reconstruction at 300 K. In addition, when subjected to mechanical stress in the axial direction, the nanorod responds as an orthotropic material, with uniform expansion along the radial direction. The Young's moduli are 207 kbar in the axial direction and 631 kbar in the radial direction. The binding of alkanethiolates, ranging from methanethiol to pentanethiol, caused formation of surface point defects on the Au110 surfaces. On the Au100 surfaces, the defects occurred in the inner layer, creating a small surface island. These defects make positive and negative concavities on the gold nanorod surface, which helps the ligand to achieve a more stable state. The simulation results narrowed significant knowledge gaps on the alkanethiolate adsorption process and on their mutual interactions on gold nanorods. The mechanical characterization offers a new dimension to understand the physical chemistry of these complex nanoparticles.

  11. Making Decisions about an Educational Game, Simulation or Workshop: A 'Game Theory' Perspective.

    Science.gov (United States)

    Cryer, Patricia

    1988-01-01

    Uses game theory to help practitioners make decisions about educational games, simulations, or workshops whose outcomes depend to some extent on chance. Highlights include principles for making decisions involving risk; elementary laws of probability; utility theory; and principles for making decisions involving uncertainty. (eight references)…

  12. A general mixture theory. I. Mixtures of spherical molecules

    Science.gov (United States)

    Hamad, Esam Z.

    1996-08-01

    We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.

  13. Machines for lattice gauge theory

    International Nuclear Information System (INIS)

    Mackenzie, P.B.

    1989-05-01

    The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig

  14. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  15. Using interactive model simulations in co-design : An experiment in urban design

    NARCIS (Netherlands)

    Steen, M.G.D.; Arendsen, J.; Cremers, A.H.M.; Vries, A. de; Jong, J.M.G. de; Koning, N.M. de

    2013-01-01

    This paper presents an experiment in which people performed a co-design task in urban design, using a multi-user touch table application with or without interactive model simulations. We hypothesised that using the interactive model simulations would improve communication and co-operation between

  16. Hot interstellar tunnels. I. Simulation of interacting supernova remnants

    International Nuclear Information System (INIS)

    Smith, B.W.

    1977-01-01

    Reexamining a suggestion of Cox and Smith, we find that intersecting supernova remnants can indeed generate and maintain hot interstellar regions with napproximately-less-than10 -2 cm -3 and Tapprox.10 6 K. These regions are likely to occupy at least 30% of the volume of a spiral arm near the midplane of the gaseous disk if the local supernova rate there is greater than 1.5 x 10 -7 Myr -1 pc -3 . Their presence in the interstellar medium is supported by observations of the soft X-ray background. The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected for a variety of assumed conditions in the outer shells of old remnants. Extensive hot cavity regions or tunnels are built and enlarged by supernovae occurring in relatively dense gas which produce connections, but tunnels are kept hot primarily by supernovae occurring within the tunnels. The latter supernovae initiate fast shock waves which apparently reheat tunnels faster than they are destroyed by thermal conduction in a galactic magnetic field or by radiative cooling. However, the dispersal of these rejuvenating shocks over a wide volume is inhibited by motions of cooler interstellar gas in the interval between shocks. These motions disrupt the contiguity of the component cavities of a tunnel and may cause its death.The Monte Carlo simulations indicate that a quasi-equilibrium is reached within 10 7 years of the first supernova in a spiral arm. This equilibrium is characterized by a constant average filling fraction for cavities in the interstellar volume. Aspects of the equilibrium are discussed for a range of supernova rates. Two predictions of Cox and Smith are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities

  17. Classic theory for chromosome rearrangements with spatially restricted volume for broken ends interaction

    International Nuclear Information System (INIS)

    Omel'yanchuk, L.V.

    1997-01-01

    D. Lea classic theory for chromosomal rearrangements formation was modified to account for local interaction of broken chromosome ends. This assumption makes it possible to drastically improve coincidence of the theory and experiment in the case of complex rearrangements

  18. Dynamic Interactions for Network Visualization and Simulation

    Science.gov (United States)

    2009-03-01

    projects.htm, Site accessed January 5, 2009. 12. John S. Weir, Major, USAF, Mediated User-Simulator Interactive Command with Visualization ( MUSIC -V). Master’s...Computing Sciences in Colleges, December 2005). 14. Enrique Campos -Nanez, “nscript user manual,” Department of System Engineer- ing University of

  19. Neurosurgical simulation by interactive computer graphics on iPad.

    Science.gov (United States)

    Maruyama, Keisuke; Kin, Taichi; Saito, Toki; Suematsu, Shinya; Gomyo, Miho; Noguchi, Akio; Nagane, Motoo; Shiokawa, Yoshiaki

    2014-11-01

    Presurgical simulation before complicated neurosurgery is a state-of-the-art technique, and its usefulness has recently become well known. However, simulation requires complex image processing, which hinders its widespread application. We explored handling the results of interactive computer graphics on the iPad tablet, which can easily be controlled anywhere. Data from preneurosurgical simulations from 12 patients (4 men, 8 women) who underwent complex brain surgery were loaded onto an iPad. First, DICOM data were loaded using Amira visualization software to create interactive computer graphics, and ParaView, another free visualization software package, was used to convert the results of the simulation to be loaded using the free iPad software KiwiViewer. The interactive computer graphics created prior to neurosurgery were successfully displayed and smoothly controlled on the iPad in all patients. The number of elements ranged from 3 to 13 (mean 7). The mean original data size was 233 MB, which was reduced to 10.4 MB (4.4% of original size) after image processing by ParaView. This was increased to 46.6 MB (19.9%) after decompression in KiwiViewer. Controlling the magnification, transfer, rotation, and selection of translucence in 10 levels of each element were smoothly and easily performed using one or two fingers. The requisite skill to smoothly control the iPad software was acquired within 1.8 trials on average in 12 medical students and 6 neurosurgical residents. Using an iPad to handle the result of preneurosurgical simulation was extremely useful because it could easily be handled anywhere.

  20. Non-Gaussian path integration in self-interacting scalar field theories

    International Nuclear Information System (INIS)

    Kaya, Ali

    2004-01-01

    In self-interacting scalar field theories kinetic expansion is an alternative way of calculating the generating functional for Green's functions where the zeroth order non-Gaussian path integral becomes diagonal in x-space and reduces to the product of an ordinary integral at each point which can be evaluated exactly. We discuss how to deal with such functional integrals and propose a new perturbative expansion scheme which combines the elements of the kinetic expansion with the usual perturbation theory techniques. It is then shown that, when the cutoff dependences of the bare parameters in the potential are chosen to have a well defined non-Gaussian path integral without the kinetic term, the theory becomes trivial in the continuum limit

  1. An object oriented code for simulating supersymmetric Yang-Mills theories

    Science.gov (United States)

    Catterall, Simon; Joseph, Anosh

    2012-06-01

    We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program

  2. Stand, Harvest, and Equipment Interactions in Simulated Harvesting Prescriptions

    Science.gov (United States)

    Jingxin Wang; W. Dale Greene; Bryce J. Stokes

    1998-01-01

    We evaluated potential interactions of stand type, harvesting method, and equipment in an experiment using interactive simulation. We examined three felling methods (chain saw, feller-buncher, harvester) and two extraction methods (grapple skidder and forwarder) performing clearcuts, sheltenvood cuts, and single-tree selection cuts in both an uneven-aged natural stand...

  3. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    Science.gov (United States)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  4. The role of oxytocin in mothers' theory of mind and interactive behavior during the perinatal period.

    Science.gov (United States)

    MacKinnon, Anna L; Gold, Ian; Feeley, Nancy; Hayton, Barbara; Carter, C Sue; Zelkowitz, Phyllis

    2014-10-01

    The present longitudinal study examined the relations between plasma oxytocin, theory of mind, and maternal interactive behavior during the perinatal period. A community sample of women was assessed at 12-14 weeks gestation, 32-34 weeks gestation, and 7-9 weeks postpartum. Oxytocin during late pregnancy was significantly positively correlated with a measure of theory of mind, and predicted theory of mind ability after controlling for parity, maternal education, prenatal psychosocial risk, and general anxiety, measured during the first trimester. Theory of mind was associated with less remote and less depressive maternal interactive behavior. Oxytocin, across all time points, was not directly related to maternal interactive behavior. However, there was a significant indirect effect of oxytocin during late pregnancy on depressive maternal behavior via theory of mind ability. These preliminary findings suggest that changes in the oxytocinergic system during the perinatal period may contribute to the awareness of social cues, which in turn plays a role in maternal interactive behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Digital lattice gauge theories

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  6. Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations

    Science.gov (United States)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang

    2018-02-01

    We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.

  7. Electronics Research Laboratory, Plasma Theory and Simulation Group annual progress report, January 1, 1989--December 31, 1989

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1989-01-01

    This is a brief progress report, covering our research in general plasma theory and simulation, plasma-wall physics theory and simulation, and code development. Reports written in this period are included with this mailing. A publications list plus abstracts for two major meetings are included

  8. Theory, Modeling and Simulation Annual Report 2000; FINAL

    International Nuclear Information System (INIS)

    Dixon, David A; Garrett, Bruce C; Straatsma, TP; Jones, Donald R; Studham, Scott; Harrison, Robert J; Nichols, Jeffrey A

    2001-01-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM and S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems

  9. A horizontal vane radiometer: experiment, theory and simulation

    OpenAIRE

    Wolfe, David; Lazarra, Andres; Garcia, Alejandro

    2015-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte C...

  10. Aspects of statistical spectroscopy relevant to effective-interaction theory

    International Nuclear Information System (INIS)

    French, J.B.

    1975-01-01

    The three aspects of statistical spectroscopy discussed in this paper are the information content of complex spectra: procedures for spectroscopy in huge model spaces, useful in effective-interaction theory; and practical ways of identifying and calculating measurable parameters of the effective Hamiltonian and other operators, and of comparing different effective Hamiltonians. (4 figures) (U.S.)

  11. Theory and Monte-Carlo simulation of adsorbates on corrugated surfaces

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    -phase between the commensurate and incommensurate phase stabilized by defects. Special attention has been given to the study of the epitaxial rotation angles of the different phases. Available experimental data is in agreement with the simulations and with a general theory for the epitaxial rotation which takes......Phase transitions in systems of adsorbed molecules on corrugated surfaces are studied by means of Monte Carlo simulation. Particularly, we have studied the phase diagram of D2 on graphite as a function of coverage and temperature. We have demonstrated the existence of an intermediate gamma...

  12. Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

    Directory of Open Access Journals (Sweden)

    Florin-Catalin ENACHE

    2015-10-01

    Full Text Available The growing character of the cloud business has manifested exponentially in the last 5 years. The capacity managers need to concentrate on a practical way to simulate the random demands a cloud infrastructure could face, even if there are not too many mathematical tools to simulate such demands.This paper presents an introduction into the most important stochastic processes and queueing theory concepts used for modeling computer performance. Moreover, it shows the cases where such concepts are applicable and when not, using clear programming examples on how to simulate a queue, and how to use and validate a simulation, when there are no mathematical concepts to back it up.

  13. Quasilinear theory of laser-plasma interactions

    International Nuclear Information System (INIS)

    Neil, A.J.

    1992-01-01

    The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by pondermotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result-the beam is broken up into a filamentary structure. Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern are small enough that thermal diffusion is then responsible for smoothing the illumination. In the Induced Spatial Incoherence (ISI) approach the beam is broken up into a larger scale but non-time-stationary interference pattern. In this dissertation the author proposes that the photons in an ISI beam resonantly interact with the sound waves in the wake of the beam. Such a resonant interaction induces diffusion in the velocity space of the photons. The diffusion will tend to spread the distribution of photons, thus if the diffusion time is much shorter than the e-folding time of the filamentation instability, the instability will be suppressed. Using a wave-kinetic description of laser-plasma interactions the author has applied quasilinear theory to model the resonant interactions of the photons in an ISI beam with the beam's wake field. An analytic expression is derived for the transverse diffusion coefficient. The quasilinear hypothesis was tested numerically and shown to yield an underestimate of the diffusion rate. By comparing the quasilinear diffusion rate with the maximum growth rate for the ponderomotive filamentation of a uniform beam, the author derived a worst case criterion for stability against ponderomotive filamentation

  14. Becoming who you are: An integrative review of self-determination theory and personality systems interactions theory.

    Science.gov (United States)

    Koole, Sander L; Schlinkert, Caroline; Maldei, Tobias; Baumann, Nicola

    2018-03-10

    One of the enduring missions of personality science is to unravel what it takes to become a fully functioning person. In the present article, the authors address this matter from the perspectives of self-determination theory (SDT) and personality systems interactions (PSI) theory. SDT (a) is rooted in humanistic psychology; (b) has emphasized a first-person perspective on motivation and personality; (c) posits that the person, supported by the social environment, naturally moves toward growth through the satisfaction of basic psychological needs for autonomy, competence, and relatedness. PSI theory (a) is rooted in German volition psychology; (b) has emphasized a third-person perspective on motivation and personality; and (c) posits that a fully functioning person can form and enact difficult intentions and integrate new experiences, and that such competencies are facilitated by affect regulation. The authors review empirical support for SDT and PSI theory, their convergences and divergences, and how the theories bear on recent empirical research on internalization, vitality, and achievement flow. The authors conclude that SDT and PSI theory offer complementary insights into developing a person's full potential. © 2018 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.

  15. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    Science.gov (United States)

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  16. Interactive monitoring portal for fusion simulations

    International Nuclear Information System (INIS)

    Abla, G.; Schissel, D.P.; Kim, E.N.; Flanagan, S.M.; Lee, X.

    2012-01-01

    Highlights: ► We designed a web-based monitoring system that tracks the status of fusion simulations. ► Our system is scalable to monitor the simulations running on distributed supercomputers and clusters located at multiple geographical locations. ► The monitoring portal provides a web-based interface for post-run analysis, such as visualizing the results, logging the user comments, and rating the simulation quality. ► Our system utilizes the open source software, such as Python, Django, MySQL, Apache, and MDSplus. - Abstract: The Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM) Project is a proto-Fusion Simulation Program (FSP) whose goal is to study high-performance fusion plasmas and perform comprehensive simulations that are essential to the development of fusion. SWIM team members are geographically distributed and utilize distributed supercomputers for computational simulations. Due to the highly distributed computational work environment, the SWIM team has the difficulty of monitoring code runs and discovering historical runs. To alleviate this difficulty a web-based monitoring portal has been developed and deployed. The monitoring portal tracks the progress of simulations and automatically collects metadata in real-time. This capability helps scientists to effectively utilize precious computer resources. Furthermore, the portal provides a web-based interface for post-run analysis, such as visualizing the results, logging the user comments, and rating the simulation quality. The user interface provides rapid discovery capability via multi-field searching and sorting. The development of the monitoring portal used open source software, such as Python, Django, MySQL, and Apache. It uses MDSplus for data management, Memcached for data caches, and OpenID for single sign-on security. This paper describes the software architecture, related technologies and deployment experiences of the monitoring portal.

  17. Many-Body Theory for Positronium-Atom Interactions

    Science.gov (United States)

    Green, D. G.; Swann, A. R.; Gribakin, G. F.

    2018-05-01

    A many-body-theory approach has been developed to study positronium-atom interactions. As first applications, we calculate the elastic scattering and momentum-transfer cross sections and the pickoff annihilation rate 1Zeff for Ps collisions with He and Ne. For He the cross section is in agreement with previous coupled-state calculations, while comparison with experiment for both atoms highlights discrepancies between various sets of measured data. In contrast, the calculated 1Zeff (0.13 and 0.26 for He and Ne, respectively) are in excellent agreement with the measured values.

  18. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming Analysis, Simulation and Engineering Applications

    CERN Document Server

    Hu, Ping; Liu, Li-zhong; Zhu, Yi-guo

    2013-01-01

    Over the last 15 years, the application of innovative steel concepts in the automotive industry has increased steadily. Numerical simulation technology of hot forming of high-strength steel allows engineers to modify the formability of hot forming steel metals and to optimize die design schemes. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming focuses on hot and cold forming theories, numerical methods, relative simulation and experiment techniques for high-strength steel forming and die design in the automobile industry. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming introduces the general theories of cold forming, then expands upon advanced hot forming theories and simulation methods, including: • the forming process, • constitutive equations, • hot boundary constraint treatment, and • hot forming equipment and experiments. Various calculation methods of cold and hot forming, based on the authors’ experience in commercial CAE software f...

  19. Interactive Mathematica Simulations in Chemical Engineering Courses

    Science.gov (United States)

    Falconer, John L.; Nicodemus, Garret D.

    2014-01-01

    Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…

  20. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de

  1. Methodology for the interactive graphic simulator construction

    International Nuclear Information System (INIS)

    Milian S, Idalmis; Rodriguez M, Lazaro; Lopez V, Miguel A.

    1997-01-01

    The PC-supported Interactive Graphic Simulators (IGS) have successfully been used for industrial training programs in many countries. This paper is intended to illustrate the general methodology applied by our research team for the construction of this kind of conceptual or small scale simulators. The information and tools available to achieve this goal are also described. The applicability of the present methodology was confirmed with the construction of a set of IGS for nuclear power plants operators training programs in Cuba. One of them, relating reactor kinetics, is shown and briefly described in this paper. (author). 11 refs., 3 figs

  2. A reciprocal theorem for a mixture theory. [development of linearized theory of interacting media

    Science.gov (United States)

    Martin, C. J.; Lee, Y. M.

    1972-01-01

    A dynamic reciprocal theorem for a linearized theory of interacting media is developed. The constituents of the mixture are a linear elastic solid and a linearly viscous fluid. In addition to Steel's field equations, boundary conditions and inequalities on the material constants that have been shown by Atkin, Chadwick and Steel to be sufficient to guarantee uniqueness of solution to initial-boundary value problems are used. The elements of the theory are given and two different boundary value problems are considered. The reciprocal theorem is derived with the aid of the Laplace transform and the divergence theorem and this section is concluded with a discussion of the special cases which arise when one of the constituents of the mixture is absent.

  3. Conformal window of gauge theories with four-fermion interactions and ideal walking technicolor

    DEFF Research Database (Denmark)

    Sannino, Francesco; Sakuma, Hidenori

    2010-01-01

    We investigate the effects of four-fermion interactions on the phase diagram of strongly interacting theories for any representation as function of the number of colors and flavors. We show that the conformal window, for any representation, shrinks with respect to the case in which the four...... discover that when the extended technicolor sector, responsible for giving masses to the standard model fermions, is sufficiently strongly coupled the technicolor theory, in isolation, must have an infrared fixed point for the full model to be phenomenologically viable. Using the new phase diagram we show...

  4. Introduction to unified theories of weak, electromagnetic and strong interactions - SU(5)

    International Nuclear Information System (INIS)

    Billoire, Alain; Morel, Andre.

    1980-11-01

    These notes correspond to a series of lectures given at Salay during winter 1979-1980. They are meant to be an introduction to the so-called grand unified theories of weak, electromagnetic and strong interactions. In a first part, we recall in a very elementary way the standard SU(2) model of electroweak interactions, putting the emphasis on the questions which are left open by this model and which unified theories help to answer. In part II, we explain in a systematic way how unified theories can be constructed, and develop the SU(5) model in great detail. Other models, like SO(10) and E 6 , are not presented, because SU(5) is the simplest one and has been subject to the deepest investigations up to now. Also it appears that most concepts and general results are not specific to any particular symmetry group [fr

  5. Molecular dynamics simulations of lipid bilayers : major artifacts due to truncating electrostatic interactions

    NARCIS (Netherlands)

    Patra, M.; Karttunen, M.E.J.; Hyvönen, M.T.; Falck, E.; Lindqvist, P.; Vattulainen, I.

    2003-01-01

    We study the influence of truncating the electrostatic interactions in a fully hydrated pure dipalmitoylphosphatidylcholine (DPPC) bilayer through 20 ns molecular dynamics simulations. The computations in which the electrostatic interactions were truncated are compared to similar simulations using

  6. Interactive simulations for quantum key distribution

    Science.gov (United States)

    Kohnle, Antje; Rizzoli, Aluna

    2017-05-01

    Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.

  7. Interactive simulations for quantum key distribution

    International Nuclear Information System (INIS)

    Kohnle, Antje; Rizzoli, Aluna

    2017-01-01

    Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels. (paper)

  8. Simulation Architecture for Modelling Interaction Between User and Elbow-articulated Exoskeleton

    NARCIS (Netherlands)

    Kruif, B.J. de; Schmidhauser, E.; Stadler, K.S.; O'Sullivan, L.W.

    2017-01-01

    The aim of our work is to improve the existing user-exoskeleton models by introducing a simulation architecture that can simulate its dynamic interaction, thereby altering the initial motion of the user. A simulation architecture is developed that uses the musculoskeletal models from OpenSim, and

  9. Postcards And Supasigns: Extending Integrationist Theory Through The Creation Of Interactive Digital Artworks

    Directory of Open Access Journals (Sweden)

    Sally Pryor

    2007-01-01

    Full Text Available Integrationism is a post-structuralist theory of language and communication. The theory has been applied to a groundbreaking analysis of writing as a form of communication where writing is teased apart from speech and realigned with spatial configurations in general. Although it has many practical applications, this view can be extremely difficult to comprehend when expressed as a very specific form of writing, that is, as written words on paper. A solution to this problem is offered by the creative interaction design of two digital artworks, Postcard From Tunis and Postcards From Writing. The works are interactive multimedia pieces that creatively express the integrationist theory of writing and extend it into the transformations of writing that are possible in the human-computer interface. More generally, the unique rollover-based interfaces of these works both express the integrationist theory of communication and suggest that it is necessary in order to explain the creation of communicative signs that they demonstrate are possible.

  10. Interactive exploration of tokamak turbulence simulations in virtual reality

    International Nuclear Information System (INIS)

    Kerbel, G.D.; Pierce, T.; Milovich, J.L.; Shumaker, D.E.

    1996-01-01

    We have developed an immersive visualization system designed for interactive data exploration as an integral part of our computing environment for studying tokamak turbulence. This system of codes can reproduce the results of simulations visually for scrutiny in real time, interactively and with more realism than ever before. At peak performance, the VR system can present for view some 400 coordinated images per second. The long term vision this approach targets is a open-quote holodeck-like close-quote virtual-reality environment in which one can explore gyrofluid or gyrokinetic plasma simulations interactively and in real time, visually, with concurrent simulations of experimental diagnostic devices. In principle, such a open-quote virtual tokamak close-quote computed environment could be as all encompassing or as focussed as one likes, in terms of the physics involved. The computing framework in one within which a group of researchers can work together to produce a real and identifiable product with easy access to all contributions. This could be our version of NASA's next generation Numerical Wind Tunnel. The principal purpose of this VR capability for Numerical Tokamak simulation is to provide interactive visual experience to help create new ways of understanding aspects of the convective transport processes operating in tokamak fusion experiments. The effectiveness of the visualization method is strongly dependent on the density of frame-to-frame correlation. Below a threshold of this quantity, short term visual memory does not bridge the gap between frames well enough for there to exist a strong visual connection. Above the threshold, evolving structures appear clearly. The visualizations show the 3D structure of vortex evolution and the gyrofluid motion associated with it. We discovered that it was very helpful for visualizing the cross field flows to compress the virtual world in the toroidal angle

  11. DataSpaces: An Interaction and Coordination Framework for Coupled Simulation Workflows

    International Nuclear Information System (INIS)

    Docan, Ciprian; Klasky, Scott A.; Parashar, Manish

    2010-01-01

    Emerging high-performance distributed computing environments are enabling new end-to-end formulations in science and engineering that involve multiple interacting processes and data-intensive application workflows. For example, current fusion simulation efforts are exploring coupled models and codes that simultaneously simulate separate application processes, such as the core and the edge turbulence, and run on different high performance computing resources. These components need to interact, at runtime, with each other and with services for data monitoring, data analysis and visualization, and data archiving. As a result, they require efficient support for dynamic and flexible couplings and interactions, which remains a challenge. This paper presents Data-Spaces, a flexible interaction and coordination substrate that addresses this challenge. DataSpaces essentially implements a semantically specialized virtual shared space abstraction that can be associatively accessed by all components and services in the application workflow. It enables live data to be extracted from running simulation components, indexes this data online, and then allows it to be monitored, queried and accessed by other components and services via the space using semantically meaningful operators. The underlying data transport is asynchronous, low-overhead and largely memory-to-memory. The design, implementation, and experimental evaluation of DataSpaces using a coupled fusion simulation workflow is presented.

  12. Progress of laser-plasma interaction simulations with the particle-in-cell code

    International Nuclear Information System (INIS)

    Sakagami, Hitoshi; Kishimoto, Yasuaki; Sentoku, Yasuhiko; Taguchi, Toshihiro

    2005-01-01

    As the laser-plasma interaction is a non-equilibrium, non-linear and relativistic phenomenon, we must introduce a microscopic method, namely, the relativistic electromagnetic PIC (Particle-In-Cell) simulation code. The PIC code requires a huge number of particles to validate simulation results, and its task is very computation-intensive. Thus simulation researches by the PIC code have been progressing along with advances in computer technology. Recently, parallel computers with tremendous computational power have become available, and thus we can perform three-dimensional PIC simulations for the laser-plasma interaction to investigate laser fusion. Some simulation results are shown with figures. We discuss a recent trend of large-scale PIC simulations that enable direct comparison between experimental facts and computational results. We also discharge/lightning simulations by the extended PIC code, which include various atomic and relaxation processes. (author)

  13. The neutron electric dipole moments as a test of the superweak interaction theory

    CERN Document Server

    Wolfenstein, Lincoln

    1974-01-01

    Theoretical calculations of the neutron electric dipole moment D/sub n / are reviewed for various theories of CP violation. It is shown that for the superweak interaction theory D/sub n/ is less than 10/sup -29/ e.cm in contrast to values of 10/sup -23/ to 10/sup -24/ predicted by many but not all milliweak theories. It is concluded that prospective measurements of D/sub n/ may provide decisive evidence against or significant evidence in favour of the superweak theory. (26 refs).

  14. A computer code package for Monte Carlo photon-electron transport simulation Comparisons with experimental benchmarks

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    2000-01-01

    A computer code package (PTSIM) for particle transport Monte Carlo simulation was developed using object oriented techniques of design and programming. A flexible system for simulation of coupled photon, electron transport, facilitating development of efficient simulation applications, was obtained. For photons: Compton and photo-electric effects, pair production and Rayleigh interactions are simulated, while for electrons, a class II condensed history scheme was considered, in which catastrophic interactions (Moeller electron-electron interaction, bremsstrahlung, etc.) are treated in detail and all other interactions with reduced individual effect on electron history are grouped together using continuous slowing down approximation and energy straggling theories. Electron angular straggling is simulated using Moliere theory or a mixed model in which scatters at large angles are treated as distinct events. Comparisons with experimentally benchmarks for electron transmission and bremsstrahlung emissions energy and angular spectra, and for dose calculations are presented

  15. Optimization Model for Web Based Multimodal Interactive Simulations.

    Science.gov (United States)

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  16. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Chen Song

    Full Text Available The macroscopic Nernst-Planck (NP theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  17. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.

    Science.gov (United States)

    Song, Chen; Corry, Ben

    2011-01-01

    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  18. Monitoring peptide-surface interaction by means of molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nonella, Marco, E-mail: mnonella@pci.uzh.ch [Physikalisch-Chemisches Institut, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Seeger, Stefan, E-mail: sseeger@pci.uzh.ch [Physikalisch-Chemisches Institut, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland)

    2010-12-09

    Graphical abstract: Protein-surface interactions play a crucial role in a wide field of research areas like biology, biotechnology, or pharmacology. Only recently, it has been shown that not only peptide adsorption represents an important process but also spreading and clustering of adsorbed proteins. By means of classical molecular dynamics, peptide adsorption as well as the dynamics of adsorbed peptides have been investigated in order to gain deeper insight into such processes. The picture shows a snapshot of an adsorbed peptide on a silica surface showing strong direct hydrogen bonding. Research highlights: {yields} Simulation of peptide surface interaction. {yields} Dynamics of hydrogen bond formation and destruction. {yields} Internal flexibility of adsorbed peptides. - Abstract: Protein adsorption and protein surface interactions have become an important research topic in recent years. Very recently, for example, it has been shown that protein clusters can undergo a surface-induced spreading after adsorption. Such phenomena emphasize the need of a more detailed insight into protein-silica interaction at an atomic level. Therefore, we have studied a model system consisting of a short peptide, a silica slab, and water molecules by means of classical molecular dynamics simulations. The study reveals that, besides of electrostatic interactions caused by the chosen charge distribution, the peptide interacts with the silica surface through formation of direct peptide-surface hydrogen bonds as well as indirect peptide-water-surface hydrogen bonds. The number of created hydrogen bonds varies considerably among the simulated structures. The strength of hydrogen bonding determines the mobility of the peptide on the surface and the internal flexibility of the adsorbed peptide.

  19. Stochastic simulation of ecohydrological interactions between vegetation and groundwater

    Science.gov (United States)

    Dwelle, M. C.; Ivanov, V. Y.; Sargsyan, K.

    2017-12-01

    The complex interactions between groundwater and vegetation in the Amazon rainforest may yield vital ecophysiological interactions in specific landscape niches such as buffering plant water stress during dry season or suppression of water uptake due to anoxic conditions. Representation of such processes is greatly impacted by both external and internal sources of uncertainty: inaccurate data and subjective choice of model representation. The models that can simulate these processes are complex and computationally expensive, and therefore make it difficult to address uncertainty using traditional methods. We use the ecohydrologic model tRIBS+VEGGIE and a novel uncertainty quantification framework applied to the ZF2 watershed near Manaus, Brazil. We showcase the capability of this framework for stochastic simulation of vegetation-hydrology dynamics. This framework is useful for simulation with internal and external stochasticity, but this work will focus on internal variability of groundwater depth distribution and model parameterizations. We demonstrate the capability of this framework to make inferences on uncertain states of groundwater depth from limited in situ data, and how the realizations of these inferences affect the ecohydrological interactions between groundwater dynamics and vegetation function. We place an emphasis on the probabilistic representation of quantities of interest and how this impacts the understanding and interpretation of the dynamics at the groundwater-vegetation interface.

  20. Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2009-01-01

    Interactions between two populations are often defined by their interaction outcomes; that is, the positive, neutral, or negative effects of species on one another. Yet, signs of outcomes are not absolute, but vary with the biotic and abiotic contexts of interactions. Here, we develop a general theory for transitions between outcomes based on consumer-resource (C-R) interactions in which one or both species exploit the other as a resource. Simple models of C-R interactions revealed multiple equilibria, including one for species coexistence and others for extinction of one or both species, indicating that species densities alone could determine the fate of interactions. All possible outcomes (+ +), (+ -), (- -), (+ 0), (- 0), (0 0) of species coexistence emerged merely through changes in parameter values of C-R interactions, indicating that variation in C-R interactions resulting from biotic and abiotic conditions could determine shifts in outcomes. These results suggest that C-R interactions can provide a broad mechanism for understanding context- and density-dependent transitions between interaction outcomes.

  1. The elastic theory of a single DNA molecule

    Indian Academy of Sciences (India)

    methods and Monte Carlo simulations to understand the entropic elasticity, ... DNA; elastic theory; stacking interaction; supercoiling; hairpin-coil transition. .... the probability distribution of t and ϕ along the DNA chain [14,15], is governed by.

  2. Depletion interactions in two-dimensional colloid-polymer mixtures: molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kim, Soon-Chul; Seong, Baek-Seok; Suh, Soong-Hyuck

    2009-01-01

    The depletion interactions acting between two hard colloids immersed in a bath of polymers, in which the interaction potentials include the soft repulsion/attraction, are extensively studied by using the molecular dynamics simulations. The collision frequencies and collision angle distributions for both incidental and reflection conditions are computed to study the dynamic properties of the colloidal mixtures. The depletion effect induced by the polymer-polymer and colloid-polymer interactions are investigated as well as the size ratio of the colloid and polymer. The simulated results show that the strong depletion interaction between two hard colloids appears for the highly asymmetric hard-disc mixtures. The attractive depletion force at contact becomes deeper and the repulsive barrier becomes wider as the asymmetry in size ratio increases. The strong polymer-polymer attraction leads to the purely attractive depletion interaction between two hard colloids, whereas the purely repulsive depletion interaction is induced by the strong colloid-polymer attraction.

  3. Modeling and Simulation for Exploring Human-Robot Team Interaction Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean; Bruemmer, David Jonathon; Davis, Midge Lee

    2001-12-01

    Small-sized and micro-robots will soon be available for deployment in large-scale forces. Consequently, the ability of a human operator to coordinate and interact with largescale robotic forces is of great interest. This paper describes the ways in which modeling and simulation have been used to explore new possibilities for human-robot interaction. The paper also discusses how these explorations have fed implementation of a unified set of command and control concepts for robotic force deployment. Modeling and simulation can play a major role in fielding robot teams in actual missions. While live testing is preferred, limitations in terms of technology, cost, and time often prohibit extensive experimentation with physical multi-robot systems. Simulation provides insight, focuses efforts, eliminates large areas of the possible solution space, and increases the quality of actual testing.

  4. Application of the RISM theory to Lennard-Jones interaction site molecular fluids

    International Nuclear Information System (INIS)

    Johnson, E.; Hazoume, R.P.

    1979-01-01

    It seems that reference interaction site model (RISM) theory atom--atom distribution functions have been obtained directly from the RISM equations only for fused hard sphere molecular fluids. RISM distribution functions for Lennard-Jones interaction site fluids are presented. Results presented suggest that these distribution functions are as accurate as RISM distribution functions for fused hard sphere molecular fluids

  5. The importance of symbolic interaction in grounded theory research on women's health.

    Science.gov (United States)

    Crooks, D L

    2001-01-01

    A variety of grounded theory studies are presented in this issue of Health Care for Women International that attend to different factors and situations impacting women's health. In this paper I will provide the basic principles of symbolic interactionism (SI) for the reader unfamiliar with the conceptual underpinnings of the grounded theory research method. I will discuss why SI is a fitting perspective for use in the study of women, women's perspectives, and women's health. I will conclude with a brief discussion of challenges to researchers maintaining the symbolic interaction perspective in grounded theory research.

  6. Uncertainty quantification in ion–solid interaction simulations

    Energy Technology Data Exchange (ETDEWEB)

    Preuss, R., E-mail: preuss@ipp.mpg.de; Toussaint, U. von

    2017-02-15

    Within the framework of Bayesian uncertainty quantification we propose a non-intrusive reduced-order spectral approach (polynomial chaos expansion) to the simulation of ion–solid interactions. The method not only reduces the number of function evaluations but provides simultaneously a quantitative measure for which combinations of inputs have the most important impact on the result. It is applied to SDTRIM-simulations (Möller et al., 1988) with several uncertain and Gaussian distributed input parameters (i.e. angle, projectile energy, surface binding energy, target composition) and the results are compared to full-grid based approaches and sampling based methods with respect to reliability, efficiency and scalability.

  7. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    Science.gov (United States)

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  8. Strong dynamics and lattice gauge theory

    Science.gov (United States)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses

  9. A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles

    Science.gov (United States)

    Finster, Felix

    2011-08-01

    In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.

  10. Simulation of flame-vortex interaction using detailed and reduced

    Energy Technology Data Exchange (ETDEWEB)

    Hilka, M. [Gaz de France (GDF), 75 - Paris (France); Veynante, D. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Baum, M. [CERFACS (France); Poinsot, T.J. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France). Institut de Mecanique des Fluides de Toulouse

    1996-12-31

    The interaction between a pair of counter-rotating vortices and a lean premixed CH{sub 4}/O{sub 2}/N{sub 2} flame ({Phi} = + 0.55) has been studied by direct numerical simulations using detailed and reduced chemical reaction schemes. Results from the complex chemistry simulation are discussed with respect to earlier experiments and differences in the simulations using detailed and reduces chemistry are investigated. Transient evolutions of the flame surface and the total heat release rate are compared and modifications in the evolution of the local flame structure are displayed. (authors) 22 refs.

  11. Simulator: A Pilot Interactive Simulation Program for Use in Teaching Public Relations.

    Science.gov (United States)

    Pavlik, John V.

    An interactive simulation program was developed for use in teaching students how to handle public relations problems. The program user is placed in the role of assistant newsletter editor, facing a series of decision-making situations. Each choice the user makes affects the subsequent reality created by the program, which is designed to provide…

  12. Perturbation theory of intermolecular interactions: What is the problem, are there solutions?

    International Nuclear Information System (INIS)

    Adams, W.H.

    1990-01-01

    We review the nature of the problem in the framework of Rayleigh-Schroedinger perturbation theory (the polarization approximation) considering explicitly two examples: the interaction of two hydrogen atoms and the interaction of Li with H. We show, in agreement with the work of Claverie and of Morgan and Simon, that the LiH problem is dramatically different from the H 2 problem. In particular, the physical states of LiH are higher in energy than an infinite number of discrete, unphysical states and they are buried in a continuum of unbound, unphysical states, which starts well below the lowest physical state. Clavrie has shown that the perturbation expansion, under these circumstances, is likely to converge to an unphysical state of lower energy than the physical ground state, if it converges at all. We review, also, the application of two classes of exchange perturbation theory to LiH and larger systems. We show that the spectra of three Eisenschitz-London (EL) class, exchange perturbation theories have no continuum of unphysical states overlaying the physical states and no discrete, unphysical states below the lowest physical state. In contrast, the spectra of two Hirschfelder-Silbey class theories differ hardly at all from that found with the polarization approximation. Not one of the EL class of perturbation theories, however, eliminates all of the discrete unphysical states

  13. Simulation study of the beam-beam interaction at SPEAR

    International Nuclear Information System (INIS)

    Tennyson, J.

    1980-01-01

    A two dimensional simulation study of the beam-beam interaction at SPEAR indicates that quantum fluctuations affecting the horizontal betatron oscillation play a critical role in the vertical beam blowup

  14. Interactive Simulations to Support Quantum Mechanics Instruction for Chemistry Students

    Science.gov (United States)

    Kohnle, Antje; Benfield, Cory; Hahner, Georg; Paetkau, Mark

    2017-01-01

    The QuVis Quantum Mechanics Visualization Project provides freely available research-based interactive simulations with accompanying activities for the teaching and learning of quantum mechanics across a wide range of topics and levels. This article gives an overview of some of the simulations and describes their use in an introductory physical…

  15. Asymptotic freedom in the theory of the strong interaction. Comment on the nobel prize in physics 2004

    International Nuclear Information System (INIS)

    Zhang Zhaoxi

    2005-01-01

    The 2004 Nobel Prize in Physics was awarded to David J. Gross, Frank Wilczek and H. David Politzer for their decisive contributions to the theory of the asymptotic freedom of the strong interaction (a fundamental interaction). The fundamental elements of quantum chromodynamics (QCD) and the theory of the strong interaction are briefly reviewed in their historical context. How to achieve asymptotic freedom is introduced and its physical meaning explained. The latest experimental tests of asymptotic freedom are presented, and it is shown that the theoretical prediction agrees excellently with the experimental measurements. Perturbative QCD which is based on the asymptotic freedom is outlined. It is pointed out that the theoretical discovery and experimental proof of the asymptotic freedom are crucial for QCD to be the correct theory of strong interaction. Certain frontier research areas of QCD, such as 'color confinement', are mentioned. The discovery and confirmation of asymptotic freedom has indeed deeply affected particle physics, and has led to QCD becoming a main content of the standard model, and to further development of the so-called grand unification theories of interactions. (author)

  16. VASA: Interactive Computational Steering of Large Asynchronous Simulation Pipelines for Societal Infrastructure.

    Science.gov (United States)

    Ko, Sungahn; Zhao, Jieqiong; Xia, Jing; Afzal, Shehzad; Wang, Xiaoyu; Abram, Greg; Elmqvist, Niklas; Kne, Len; Van Riper, David; Gaither, Kelly; Kennedy, Shaun; Tolone, William; Ribarsky, William; Ebert, David S

    2014-12-01

    We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.

  17. Coherent states field theory in supramolecular polymer physics

    Science.gov (United States)

    Fredrickson, Glenn H.; Delaney, Kris T.

    2018-05-01

    In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.

  18. Interactive real-time nuclear plant simulations on a UNIX based supercomputer

    International Nuclear Information System (INIS)

    Behling, S.R.

    1990-01-01

    Interactive real-time nuclear plant simulations are critically important to train nuclear power plant engineers and operators. In addition, real-time simulations can be used to test the validity and timing of plant technical specifications and operational procedures. To accurately and confidently simulate a nuclear power plant transient in real-time, sufficient computer resources must be available. Since some important transients cannot be simulated using preprogrammed responses or non-physical models, commonly used simulation techniques may not be adequate. However, the power of a supercomputer allows one to accurately calculate the behavior of nuclear power plants even during very complex transients. Many of these transients can be calculated in real-time or quicker on the fastest supercomputers. The concept of running interactive real-time nuclear power plant transients on a supercomputer has been tested. This paper describes the architecture of the simulation program, the techniques used to establish real-time synchronization, and other issues related to the use of supercomputers in a new and potentially very important area. (author)

  19. Theory of interacting quantum fields

    International Nuclear Information System (INIS)

    Rebenko, Alexei L.

    2012-01-01

    This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.

  20. Ab Initio Density Functional Theory Investigation of the Interaction between Carbon Nanotubes and Water Molecules during Water Desalination Process

    Directory of Open Access Journals (Sweden)

    Loay A. Elalfy

    2013-01-01

    Full Text Available Density functional theory calculations using B3LYP/3-21G level of theory have been implemented on 6 carbon nanotubes (CNTs structures (3 zigzag and 3 armchair CNTs to study the energetics of the reverse osmosis during water desalination process. Calculations of the band gap, interaction energy, highest occupied molecular orbital, lowest unoccupied molecular orbital, electronegativity, hardness, and pressure of the system are discussed. The calculations showed that the water molecule that exists inside the CNT is about 2-3 Å away from its wall. The calculations have proven that the zigzag CNTs are more efficient for reverse osmosis water desalination process than armchair CNTs as the reverse osmosis process requires pressure of approximately 200 MPa for armchair CNTs, which is consistent with the values used in molecular dynamics simulations, while that needed when using zigzag CNTs was in the order of 60 MPa.

  1. Interaction of Caffeine Molecular Associates with Water: Theory and Experiment

    OpenAIRE

    Shestopalova, Anna V.

    1990-01-01

    Results of a Monte Carlo simulation of the association process of caffeine (1,3,7-trimethyl-2,6-dioxipurine) in water are presented. Simulation was performed in a cluster approximation ; the system contained 200 water molecules. The nature of the stabilization of caffeine stacking associates in water was considered. Hydrophobic behaviour of methyl group s during association of caffeine molecules in water is shown. The peculiarity of interaction of caffeine associates with wa...

  2. SLiM 2: Flexible, Interactive Forward Genetic Simulations.

    Science.gov (United States)

    Haller, Benjamin C; Messer, Philipp W

    2017-01-01

    Modern population genomic datasets hold immense promise for revealing the evolutionary processes operating in natural populations, but a crucial prerequisite for this goal is the ability to model realistic evolutionary scenarios and predict their expected patterns in genomic data. To that end, we present SLiM 2: an evolutionary simulation framework that combines a powerful, fast engine for forward population genetic simulations with the capability of modeling a wide variety of complex evolutionary scenarios. SLiM achieves this flexibility through scriptability, which provides control over most aspects of the simulated evolutionary scenarios with a simple R-like scripting language called Eidos. An example SLiM simulation is presented to illustrate the power of this approach. SLiM 2 also includes a graphical user interface for simulation construction, interactive runtime control, and dynamic visualization of simulation output, facilitating easy and fast model development with quick prototyping and visual debugging. We conclude with a performance comparison between SLiM and two other popular forward genetic simulation packages. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    Science.gov (United States)

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  4. Uni-directional consumer-resource theory characterizing transitions of interaction outcomes

    Science.gov (United States)

    Wang, Y.; DeAngelis, D.L.; Holland, J.N.

    2011-01-01

    A resource is considered here to be a biotic population that helps to maintain the population growth of its consumers, whereas a consumer utilizes a resource and in turn decreases its growth rate. Bi-directional consumer-resource (C-R) interactions have been the object of recent theory. In these interactions, each species acts, in some respects, as both a consumer and a resource of the other, which is the basis of many mutualisms. In uni-directional C-R interactions between two species, one acts as a consumer and the other as a material and/or energy resource, while neither acts as both. The relationship between insect pollinator/seed parasites and the host plant is an example of the latter interaction type of C-R, as the insect provides no material resource to the plant (though it provides a pollination service). In this paper we consider a different variation of the uni-directional C-R interaction, in which the resource species has both positive and negative effects on the consumer species, while the consumer has only a negative effect on the resource. A predator-prey system in which the prey is able to kill or consume predator eggs or larvae is an example. Our aim is to demonstrate mechanisms by which interaction outcomes of this system vary with different conditions, and thus to extend the uni-directional C-R theory established by Holland and DeAngelis (2009). By the analysis of a specific two-species system, it is shown that there is no periodic solution of the system, and the parameter (factor) space can be divided into six regions, which correspond to predation/parasitism, amensalism, and competition. The interaction outcomes of the system transition smoothly when the parameters are changed continuously in the six regions and/or initial densities of the species vary in a smooth fashion. Varying a pair of parameters can also result in the transitions. The analysis leads to both conditions under which the species approach their maximal densities, and

  5. A treecode to simulate dust-plasma interactions

    Science.gov (United States)

    Thomas, D. M.; Holgate, J. T.

    2017-02-01

    The interaction of a small object with surrounding plasma is an area of plasma-physics research with a multitude of applications. This paper introduces the plasma octree code pot, a microscopic simulator of a spheroidal dust grain in a plasma. pot uses the Barnes-Hut treecode algorithm to perform N-body simulations of electrons and ions in the vicinity of a chargeable spheroid, employing also the Boris particle-motion integrator and Hutchinson’s reinjection algorithm from SCEPTIC; a description of the implementation of all three algorithms is provided. We present results from pot simulations of the charging of spheres in magnetised plasmas, and of spheroids in unmagnetized plasmas. The results call into question the validity of using the Boltzmann relation in hybrid PIC codes. Substantial portions of this paper are adapted from chapters 4 and 5 of the first author’s recent PhD dissertation.

  6. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  7. Interactive simulations as teaching tools for engineering mechanics courses

    Science.gov (United States)

    Carbonell, Victoria; Romero, Carlos; Martínez, Elvira; Flórez, Mercedes

    2013-07-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills.

  8. QuVis interactive simulations: tools to support quantum mechanics instruction

    Science.gov (United States)

    Kohnle, Antje

    2015-04-01

    Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.

  9. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  10. Demonstration for novel self-organization theory by three-dimensional magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Hosaka, Yasuo; Liang, Jia-Ling.

    1993-03-01

    It is demonstrated by three-dimensional simulations for resistive magnetohydrodynamic (MHD) plasmas with both 'spatially nonuniform resistivity η' and 'uniformη' that the attractor of the dissipative structure in the resistive MHD plasmas is given by ∇ x (ηj) = (α/2)B which is derived from a novel self-organization theory based on the minimum dissipation rate profile. It is shown by the simulations that the attractor is reduced to ∇ x B = λB in the special case with the 'uniformη' and no pressure gradient. (author)

  11. SIMUL - a program for the simulation of interactions in the streamer chamber RISK

    International Nuclear Information System (INIS)

    Friebel, W.; Gajewski, J.; Halm, I.

    1976-08-01

    A program for the simulation of interactions in the streamer chamber RISK is described. This program allows first investigations and tests for planning and preparing experiments. In the program the trajectories of all particles taking part in the interaction are computed. Selected points are projected onto film planes serving as measurement points for the use in the geometrical reconstruction. The program is used for testing a geometry program. But it also seems to be very helpful in investigating counter and trigger constellations and in the calculation of counting rates and trigger effectivities. (author)

  12. Integration of multiple theories for the simulation of laser interference lithography processes.

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-24

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  13. Integration of multiple theories for the simulation of laser interference lithography processes

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-01

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  14. Simulation of Guided Wave Interaction with In-Plane Fiber Waviness

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  15. Hybrid Simulations of Plasma-Neutral-Dust Interactions at Enceladus

    International Nuclear Information System (INIS)

    Omidi, N.; Russell, C. T.; Jia, Y. D.; Tokar, R. L.; Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Leisner, J. S.

    2010-01-01

    Through ejection from its southern hemisphere, Enceladus is a dominant source of neutral gas and dust in Saturn's inner magnetosphere. The interaction of the corotating plasma with the gas and dust modifies the plasma environment around Enceladus. We use 3-D hybrid (kinetic ions, fluid electrons) simulations to examine the effects of gas and dust on the nature of the interaction region and use Cassini observations to constrain their properties.

  16. Theory and simulation of charge transfer through DNA - nanotube contacts

    International Nuclear Information System (INIS)

    Rink, Gunda; Kong Yong; Koslowski, Thorsten

    2006-01-01

    We address the problem of charge transfer between a single-stranded adenine oligomer and semiconducting boron nitride nanotubes from a theoretical and numerical perspective. The model structures have been motivated by computer simulations; sample geometries are used as the input of an electronic structure theory that is based upon an extended Su-Schrieffer-Heeger Hamiltonian. By analyzing the emerging potential energy surfaces, we obtain hole transfer rates via Marcus' theory of charge transfer. In the presence of nanotubes, these rates exceed those of isolated DNA single strands by a factor of up to 10 4 . This enhancement can be rationalized and quantified as a combination of a template effect and the participation of the tube within a superexchange mechanism

  17. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  18. A Framework for the Interactive Handling of High-Dimensional Simulation Data in Complex Geometries

    KAUST Repository

    Benzina, Amal; Buse, Gerrit; Butnaru, Daniel; Murarasu, Alin; Treib, Marc; Varduhn, Vasco; Mundani, Ralf-Peter

    2013-01-01

    Flow simulations around building infrastructure models involve large scale complex geometries, which when discretized in adequate detail entail high computational cost. Moreover, tasks such as simulation insight by steering or optimization require many such costly simulations. In this paper, we illustrate the whole pipeline of an integrated solution for interactive computational steering, developed for complex flow simulation scenarios that depend on a moderate number of both geometric and physical parameters. A mesh generator takes building information model input data and outputs a valid cartesian discretization. A sparse-grids-based surrogate model—a less costly substitute for the parameterized simulation—uses precomputed data to deliver approximated simulation results at interactive rates. Furthermore, a distributed multi-display visualization environment shows building infrastructure together with flow data. The focus is set on scalability and intuitive user interaction.

  19. Financial Markets Interactions between Economic Theory and Practice

    Directory of Open Access Journals (Sweden)

    Mihaela NICOLAU

    2010-12-01

    Full Text Available During the last decades many financial analysts, either theorists or practitioners, have dedicated their studies to the interactions between different financial sectors. The results of these researches confirm that commodities, bonds and stock markets are closely related, therefore a thorough analysis of one should includes considerations of the other two. The aim of this article is to demonstrate that, even if from the theoretical point of view financial markets present typical and strong correlations between them, under economic turmoil the correlations change their signs. Both elementary rules of economic theory and examples with real time series are used in the demonstration. The results of our research emphasize that a simple theoretical analysis of financial markets’ behaviour through inflation and interest rates cannot define the real interactions of the markets and more robust research approaches are required.

  20. Agent-based modeling: a new approach for theory building in social psychology.

    Science.gov (United States)

    Smith, Eliot R; Conrey, Frederica R

    2007-02-01

    Most social and psychological phenomena occur not as the result of isolated decisions by individuals but rather as the result of repeated interactions between multiple individuals over time. Yet the theory-building and modeling techniques most commonly used in social psychology are less than ideal for understanding such dynamic and interactive processes. This article describes an alternative approach to theory building, agent-based modeling (ABM), which involves simulation of large numbers of autonomous agents that interact with each other and with a simulated environment and the observation of emergent patterns from their interactions. The authors believe that the ABM approach is better able than prevailing approaches in the field, variable-based modeling (VBM) techniques such as causal modeling, to capture types of complex, dynamic, interactive processes so important in the social world. The article elaborates several important contrasts between ABM and VBM and offers specific recommendations for learning more and applying the ABM approach.

  1. Simulation of the interaction of positively charged beams and electron clouds

    International Nuclear Information System (INIS)

    Markovik, Aleksandar

    2013-01-01

    The incoherent (head-tail) effect on the bunch due to the interaction with electron clouds (e-clouds) leads to a blow up of the transverse beam size in storage rings operating with positively charged beams. Even more the e-cloud effects are considered to be the main limiting factor for high current, high-brightness or high-luminosity operation of future machines. Therefore the simulation of e-cloud phenomena is a highly active field of research. The main focus in this work was set to a development of a tool for simulation of the interaction of relativistic bunches with non-relativistic parasitic charged particles. The result is the Particle-In-Cell Program MOEVE PIC Tracking which can track a 3D bunch under the influence of its own and external electromagnetic fields but first and foremost it simulates the interaction of relativistic positively charged bunches and initially static electrons. In MOEVE PIC Tracking the conducting beam pipe can be modeled with an arbitrary elliptical cross-section to achieve more accurate space charge field computations for both the bunch and the e-cloud. The simulation of the interaction between positron bunches and electron clouds in this work gave a detailed insight of the behavior of both particle species during and after the interaction. Further and ultimate goal of this work was a fast estimation of the beam stability under the influence of e-clouds in the storage ring. The standard approach to simulate the stability of a single bunch is to track the bunch particles through the linear optics of the machine by multiplying the 6D vector of each particle with the transformation matrices describing the lattice. Thereby the action of the e-cloud on the bunch is approximated by a pre-computed wake kick which is applied on one or more points in the lattice. Following the idea of K.Ohmi the wake kick was pre-computed as a two variable function of the bunch part exiting the e-cloud and the subsequent parts of a bunch which receive a

  2. Theory of thermoluminescence gamma dose response: The unified interaction model

    International Nuclear Information System (INIS)

    Horowitz, Y.S.

    2001-01-01

    We describe the development of a comprehensive theory of thermoluminescence (TL) dose response, the unified interaction model (UNIM). The UNIM is based on both radiation absorption stage and recombination stage mechanisms and can describe dose response for heavy charged particles (in the framework of the extended track interaction model - ETIM) as well as for isotropically ionising gamma rays and electrons (in the framework of the TC/LC geminate recombination model) in a unified and self-consistent conceptual and mathematical formalism. A theory of optical absorption dose response is also incorporated in the UNIM to describe the radiation absorption stage. The UNIM is applied to the dose response supralinearity characteristics of LiF:Mg,Ti and is especially and uniquely successful in explaining the ionisation density dependence of the supralinearity of composite peak 5 in TLD-100. The UNIM is demonstrated to be capable of explaining either qualitatively or quantitatively all of the major features of TL dose response with many of the variable parameters of the model strongly constrained by ancilliary optical absorption and sensitisation measurements

  3. Four-body interaction energy for compressed solid krypton from quantum theory.

    Science.gov (United States)

    Tian, Chunling; Wu, Na; Liu, Fusheng; Saxena, Surendra K; Zheng, Xingrong

    2012-07-28

    The importance of the four-body contribution in compressed solid krypton was first evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples. All different four-atom clusters existing in the first- and second-nearest neighbor shells of face-centered cubic krypton were considered, and both self-consistent-field Hartree-Fock and correlation parts of the four-body interaction were accurately determined from the ambient conditions up to eightfold volume compression. We find that the four-body interaction energy is negative at compression ratio lower than 2, where the dispersive forces play a dominant role. With increasing the compression, the four-body contribution becomes repulsive and significantly cancels the over-softening effects of the three-body potential. The obtained equation of state (EOS) was compared with the experiments and the density-functional theory calculations. It shows that combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with EOS measurements throughout the whole experimental range 0-130 GPa, and extends the prediction to 300 GPa.

  4. Compact toroidal plasmas: Simulations and theory

    International Nuclear Information System (INIS)

    Harned, D.S.; Hewett, D.W.; Lilliequist, C.G.

    1983-01-01

    Realistic FRC equilibria are calculated and their stability to the n=1 tilting mode is studied. Excluding kinetic effects, configurations ranging from elliptical to racetrack are unstable. Particle simulations of FRCs show that particle loss on open field lines can cause sufficient plasma rotation to drive the n=2 rotational instability. The allowed frequencies of the shear Alfven wave are calculated for use in heating of spheromaks. An expanded spheromak is introduced and its stability properties are studied. Transport calculations of CTs are described. A power balance model shows that many features of gun-generated CT plasmas can be explained by the dominance of impurity radiation. It is shown how the Taylor relaxation theory, applied to gun-generated CT plasmas, leads to the possibility of steady-state current drive. Lastly, applications of accelerated CTs are considered. (author)

  5. Simulation of Fuzzy Adaptive PI Controlled Grid Interactive Inverter

    Directory of Open Access Journals (Sweden)

    Necmi ALTIN

    2009-03-01

    Full Text Available In this study, a voltage source grid interactive inverter is modeled and simulated in MATLAB/Simulink. Inverter is designed as current controlled and a fuzzy-PI current controller used for the generation of switching pattern to shape the inverter output current. The grid interactive inverter consists of a line frequency transformer and a LC type filter. Galvanic isolation between the grid and renewable energy source is obtained by the line frequency transformer and LC filter is employed to filter the high frequency harmonic components in current waveform due to PWM switching and to reduce the output current THD. Results of the MATLAB/Simulink simulation show that inverter output current is in sinusoidal waveform and in phase with line voltage, and current harmonics are in the limits of international standards (

  6. Overview of lattice gauge theory at the CSSM

    International Nuclear Information System (INIS)

    Williams, A.G.

    2002-01-01

    Full text: I present an overview of the lattice gauge theory effort at the Special Research Centre for the Subatomic Structure of Matter (CSSM). The CSSM specializes in research into the strong interactions and into quantum chromodynamics (QCD), which is the fundamental quantum gauge field theory of the strong interactions. The primary mission of the CSSM is to attempt to solve QCD and hence test the implications of the theory against experimental evidence. The difficulty lies in the fact that the QCD is a highly nonlinear, strongly coupled theory. The only known first-principles means to solve it is to approximate space-time by a four-dimensional 'grid' or 'lattice' and to simulate this 'lattice QCD' on massively parallel supercomputers. A discussion of the Orion supercomputer of the National Computing Facility for Lattice Gauge Theory (NFCLGT) and the latest QCD predictions obtained from Orion by CSSM researchers will be presented

  7. An activity theory perspective of how scenario-based simulations support learning: a descriptive analysis.

    Science.gov (United States)

    Battista, Alexis

    2017-01-01

    The dominant frameworks for describing how simulations support learning emphasize increasing access to structured practice and the provision of feedback which are commonly associated with skills-based simulations. By contrast, studies examining student participants' experiences during scenario-based simulations suggest that learning may also occur through participation. However, studies directly examining student participation during scenario-based simulations are limited. This study examined the types of activities student participants engaged in during scenario-based simulations and then analyzed their patterns of activity to consider how participation may support learning. Drawing from Engeström's first-, second-, and third-generation activity systems analysis, an in-depth descriptive analysis was conducted. The study drew from multiple qualitative methods, namely narrative, video, and activity systems analysis, to examine student participants' activities and interaction patterns across four video-recorded simulations depicting common motivations for using scenario-based simulations (e.g., communication, critical patient management). The activity systems analysis revealed that student participants' activities encompassed three clinically relevant categories, including (a) use of physical clinical tools and artifacts, (b) social interactions, and (c) performance of structured interventions. Role assignment influenced participants' activities and the complexity of their engagement. Importantly, participants made sense of the clinical situation presented in the scenario by reflexively linking these three activities together. Specifically, student participants performed structured interventions, relying upon the use of physical tools, clinical artifacts, and social interactions together with interactions between students, standardized patients, and other simulated participants to achieve their goals. When multiple student participants were present, such as in a

  8. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    Science.gov (United States)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  9. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  10. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  11. The correlation functions of hard-sphere chain fluids: Comparison of the Wertheim integral equation theory with the Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chang, J.; Sandler, S.I.

    1995-01-01

    The correlation functions of homonuclear hard-sphere chain fluids are studied using the Wertheim integral equation theory for associating fluids and the Monte Carlo simulation method. The molecular model used in the simulations is the freely jointed hard-sphere chain with spheres that are tangentially connected. In the Wertheim theory, such a chain molecule is described by sticky hard spheres with two independent attraction sites on the surface of each sphere. The OZ-like equation for this associating fluid is analytically solved using the polymer-PY closure and by imposing a single bonding condition. By equating the mean chain length of this associating hard sphere fluid to the fixed length of the hard-sphere chains used in simulation, we find that the correlation functions for the chain fluids are accurately predicted. From the Wertheim theory we also obtain predictions for the overall correlation functions that include intramolecular correlations. In addition, the results for the average intermolecular correlation functions from the Wertheim theory and from the Chiew theory are compared with simulation results, and the differences between these theories are discussed

  12. Sound propagation in dry granular materials : discrete element simulations, theory, and experiments

    NARCIS (Netherlands)

    Mouraille, O.J.P.

    2009-01-01

    In this study sound wave propagation through different types of dry confined granular systems is studied. With three-dimensional discrete element simulations, theory and experiments, the influence of several micro-scale properties: friction, dissipation, particle rotation, and contact disorder, on

  13. Self-Interaction Error in Density Functional Theory: An Appraisal.

    Science.gov (United States)

    Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G

    2018-05-03

    Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.

  14. Analysis of interacting quantum field theory in curved spacetime

    International Nuclear Information System (INIS)

    Birrell, N.D.; Taylor, J.G.

    1980-01-01

    A detailed analysis of interacting quantized fields propagating in a curved background spacetime is given. Reduction formulas for S-matrix elements in terms of vacuum Green's functions are derived, special attention being paid to the possibility that the ''in'' and ''out'' vacuum states may not be equivalent. Green's functions equations are obtained and a diagrammatic representation for them given, allowing a formal, diagrammatic renormalization to be effected. Coordinate space techniques for showing renormalizability are developed in Minkowski space, for lambdaphi 3 /sub() 4,6/ field theories. The extension of these techniques to curved spacetimes is considered. It is shown that the possibility of field theories becoming nonrenormalizable there cannot be ruled out, although, allowing certain modifications to the theory, phi 3 /sub( 4 ) is proven renormalizable in a large class of spacetimes. Finally particle production from the vacuum by the gravitational field is discussed with particular reference to Schwarzschild spacetime. We shed some light on the nonlocalizability of the production process and on the definition of the S matrix for such processes

  15. Unitarity, Feedback, Interactions - Dynamics Emergent from Repeated Measurements

    Science.gov (United States)

    Corona Ugalde, Paulina; Altamirano, Natacha; Mann, Robert; Zych, Magdalena

    Modern measurement theory dispenses with the description of a measurement as a projection. Rather, the measurement is understood as an operation, whereby the system's final state is determined by an action of a completely positive trace non-increasing map and the outcomes are described by linear operators on the system, distributed according to a positive-operator valued measure (POVM). The POVM approach unifies the theory of measurements with a general description of dynamics, the theory of open quantum systems. Engineering a particular measurement and engineering a particular dynamics for the system are thus two complementary aspects of the same conceptual framework. This correspondence is directly applied in quantum simulations and quantum control theory . With this motivation, we study what types of dynamics can emerge from a model of repeated short interactions of a system with a set of ancillae. We show that contingent on the model parameters the resulting dynamics ranges from exact unitarity to arbitrary fast decoherence. For a series of measurements the effective dynamics includes feedback-control, which for a composite system yields effective interactions between the subsystems. We quantify the amount of decoherence accompanying such induced interactions. The simple framework used in the present study can find applications in devising novel quantum control protocols, or quantum simulations.

  16. A Turing Machine Simulator.

    Science.gov (United States)

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  17. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.

    Science.gov (United States)

    Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko

    2012-09-01

    The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery. The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings. In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

  18. DSMC simulation and experimental validation of shock interaction in hypersonic low density flow.

    Science.gov (United States)

    Xiao, Hong; Shang, Yuhe; Wu, Di

    2014-01-01

    Direct simulation Monte Carlo (DSMC) of shock interaction in hypersonic low density flow is developed. Three collision molecular models, including hard sphere (HS), variable hard sphere (VHS), and variable soft sphere (VSS), are employed in the DSMC study. The simulations of double-cone and Edney's type IV hypersonic shock interactions in low density flow are performed. Comparisons between DSMC and experimental data are conducted. Investigation of the double-cone hypersonic flow shows that three collision molecular models can predict the trend of pressure coefficient and the Stanton number. HS model shows the best agreement between DSMC simulation and experiment among three collision molecular models. Also, it shows that the agreement between DSMC and experiment is generally good for HS and VHS models in Edney's type IV shock interaction. However, it fails in the VSS model. Both double-cone and Edney's type IV shock interaction simulations show that the DSMC errors depend on the Knudsen number and the models employed for intermolecular interaction. With the increase in the Knudsen number, the DSMC error is decreased. The error is the smallest in HS compared with those in the VHS and VSS models. When the Knudsen number is in the level of 10(-4), the DSMC errors, for pressure coefficient, the Stanton number, and the scale of interaction region, are controlled within 10%.

  19. Impact simulation of liquid-filled containers including fluid-structure interaction--Part 1: Theory

    International Nuclear Information System (INIS)

    Sauve, R.G.; Morandin, G.D.; Nadeau, E.

    1993-01-01

    In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validations of the theoretical approach. Excellent correlation between predicted and experimental results is obtained

  20. Plasma confinement theory and transport simulation

    International Nuclear Information System (INIS)

    Ross, D.W.

    1989-06-01

    An overview of the program has been given in the contract proposal. The principal objectives are: to provide theoretical interpretation and computer modelling for the TEXT tokamak, and to advance the simulation studies of tokamaks generally, functioning as a National Transport Center. We also carry out equilibrium and stability studies in support of the TEXT upgrade, and work has continued on Alfven waves and MFENET software development. The focus of the program is to lay the groundwork for detailed comparison with experiment of the various transport theories to improve physics understanding and confidence in predictions of future machine behavior. This involves: to collect, in retrievable form, the data from TEXT and other tokamaks; to make the data available through easy-to-use interfaces; to develop criteria for success in fitting models to the data; to maintain the Texas transport code CHAPO and make it available to users; to collect theoretical models and implement them in the transport code; and to carry out simulation studies and evaluate fits to the data. In the following we outline the progress made in fiscal year 1989. Of special note are the proposed participation of our data base project in the ITER program, and a proposed q-profile diagnostic based on our neutral transport studies. We have emphasized collaboration with the TEXT experimentalists, making as much use as possible of the measured fluctuation spectra. 52 refs

  1. The TEACH Method: An Interactive Approach for Teaching the Needs-Based Theories Of Motivation

    Science.gov (United States)

    Moorer, Cleamon, Jr.

    2014-01-01

    This paper describes an interactive approach for explaining and teaching the Needs-Based Theories of Motivation. The acronym TEACH stands for Theory, Example, Application, Collaboration, and Having Discussion. This method can help business students to better understand and distinguish the implications of Maslow's Hierarchy of Needs,…

  2. Photonic-Doppler-Velocimetry, Paraxial-Scalar Diffraction Theory and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, W. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-20

    In this report I describe current progress on a paraxial, scalar-field theory suitable for simulating what is measured in Photonic Doppler Velocimetry (PDV) experiments in three dimensions. I have introduced a number of approximations in this work in order to bring the total computation time for one experiment down to around 20 hours. My goals were: to develop an approximate method of calculating the peak frequency in a spectral sideband at an instant of time based on an optical diffraction theory for a moving target, to compare the ‘measured’ velocity to the ‘input’ velocity to gain insights into how and to what precision PDV measures the component of the mass velocity along the optical axis, and to investigate the effects of small amounts of roughness on the measured velocity. This report illustrates the progress I have made in describing how to perform such calculations with a full three dimensional picture including tilted target, tilted mass velocity (not necessarily in the same direction), and small amounts of surface roughness. With the method established for a calculation at one instant of time, measured velocities can be simulated for a sequence of times, similar to the process of sampling velocities in experiments. Improvements in these methods are certainly possible at hugely increased computational cost. I am hopeful that readers appreciate the insights possible at the current level of approximation.

  3. The Density Functional Theory of Flies: Predicting distributions of interacting active organisms

    Science.gov (United States)

    Kinkhabwala, Yunus; Valderrama, Juan; Cohen, Itai; Arias, Tomas

    On October 2nd, 2016, 52 people were crushed in a stampede when a crowd panicked at a religious gathering in Ethiopia. The ability to predict the state of a crowd and whether it is susceptible to such transitions could help prevent such catastrophes. While current techniques such as agent based models can predict transitions in emergent behaviors of crowds, the assumptions used to describe the agents are often ad hoc and the simulations are computationally expensive making their application to real-time crowd prediction challenging. Here, we pursue an orthogonal approach and ask whether a reduced set of variables, such as the local densities, are sufficient to describe the state of a crowd. Inspired by the theoretical framework of Density Functional Theory, we have developed a system that uses only measurements of local densities to extract two independent crowd behavior functions: (1) preferences for locations and (2) interactions between individuals. With these two functions, we have accurately predicted how a model system of walking Drosophila melanogaster distributes itself in an arbitrary 2D environment. In addition, this density-based approach measures properties of the crowd from only observations of the crowd itself without any knowledge of the detailed interactions and thus it can make predictions about the resulting distributions of these flies in arbitrary environments, in real-time. This research was supported in part by ARO W911NF-16-1-0433.

  4. Interaction of single-walled carbon nanotubes and saxitoxin: Ab initio simulations and biological responses in hippocampal cell line HT-22.

    Science.gov (United States)

    Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José

    2017-07-01

    Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4  cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.

  5. Introducing simulation-based education to healthcare professionals: exploring the challenge of integrating theory into educational practice.

    Science.gov (United States)

    Katoue, Maram G; Iblagh, Nadia; Somerville, Susan; Ker, Jean

    2015-11-01

    Introducing simulation-based education to the curricular programme of healthcare professionals can be challenging. This study explored the early experiences of healthcare professionals in the use of simulation. This was in the context of the Kuwait-Scotland transformational health innovation network programme. Two cohorts of healthcare professionals undertook a simulation module as part of faculty development programme in Kuwait. Participants' initial perceptions of simulators were gathered using a structured questionnaire in the clinical skills centre. Their subsequent ability to demonstrate the application of simulation was evaluated through analyses of the video-recordings of teaching sessions they undertook and written reflections of their experiences of using simulation. In theory, participants were able to identify simulators' classification and fidelity. They also recognised some of the challenges of using simulators. In their teaching sessions, most participants focused on using part-task trainers to teach procedural skills. In their written reflections, they did not articulate a justification for their choice of simulator or its limitations. This study demonstrated a theory-to-practice gap in the early use of simulation by healthcare educators. The findings highlight the need for deliberate practice and adequate mentorship for educators to develop confidence and competence in the use of simulation as part of their educational practice. © The Author(s) 2015.

  6. Strangeness S = -2 baryon-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2007-01-01

    We derive the leading order strangeness S =−2 baryon–baryon interactions in chiral effective field theory. The potential consists of contact terms without derivatives and of one-pseudoscalar-meson exchanges. The contact terms and the couplings of the pseudoscalar mesons to the baryons are related

  7. Theory of pairwise lesion interaction

    International Nuclear Information System (INIS)

    Harder, Dietrich; Virsik-Peuckert, Patricia; Bartels, Ernst

    1992-01-01

    A comparison between repair time constants measured both at the molecular and cellular levels has shown that the DNA double strand break is the molecular change of key importance in the causation of cellular effects such as chromosome aberrations and cell inactivation. Cell fusion experiments provided the evidence that it needs the pairwise interaction between two double strand breaks - or more exactly between the two ''repair sites'' arising from them in the course of enzymatic repair - to provide the faulty chromatin crosslink which leads to cytogenetic and cytolethal effects. These modern experiments have confirmed the classical assumption of pairwise lesion interaction (PLI) on which the models of Lea and Neary were based. It seems worthwhile to continue and complete the mathematical treatment of their proposed mechanism in order to show in quantitative terms that the well-known fractionation, protraction and linear energy transfer (LET) irradiation effects are consequences of or can at least be partly attributed to PLI. Arithmetic treatment of PLI - a second order reaction - has also the advantage of providing a prerequisite for further investigations into the stages of development of misrepair products such as chromatin crosslinks. It has been possible to formulate a completely arithmetic theory of PLI by consequently applying three biophysically permitted approximations - pure first order lesion repair kinetics, dose-independent repair time constants and low yield of the ionization/lesion conversion. The mathematical approach will be summarized here, including several formulae not elaborated at the time of previous publications. We will also study an application which sheds light on the chain of events involved in PLI. (author)

  8. Interactive simulations as teaching tools for engineering mechanics courses

    International Nuclear Information System (INIS)

    Carbonell, Victoria; Martínez, Elvira; Flórez, Mercedes; Romero, Carlos

    2013-01-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills. (paper)

  9. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.

    Science.gov (United States)

    Ramya, L; Ramakrishnan, Vigneshwar

    2016-07-01

    Antifreeze proteins (AFP) observed in cold-adapting organisms bind to ice crystals and prevent further ice growth. However, the molecular mechanism of AFP-ice binding and AFP-inhibited ice growth remains unclear. Here we report the interaction of the insect antifreeze protein (Tenebrio molitor, TmAFP) with ice crystal by molecular dynamics simulation studies. Two sets of simulations were carried out at 263 K by placing the protein near the primary prism plane (PP) and basal plane (BL) of the ice crystal. To delineate the effect of temperatures, both the PP and BL simulations were carried out at 253 K as well. The analyses revealed that the protein interacts strongly with the ice crystal in BL simulation than in PP simulation both at 263 K and 253 K. Further, it was observed that the interactions are primarily mediated through the interface waters. We also observed that as the temperature decreases, the interaction between the protein and the ice increases which can be attributed to the decreased flexibility and the increased structuring of the protein at low temperature. In essence, our study has shed light on the interaction mechanism between the TmAFP antifreeze protein and the ice crystal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An Interactive Teaching System for Bond Graph Modeling and Simulation in Bioengineering

    Science.gov (United States)

    Roman, Monica; Popescu, Dorin; Selisteanu, Dan

    2013-01-01

    The objective of the present work was to implement a teaching system useful in modeling and simulation of biotechnological processes. The interactive system is based on applications developed using 20-sim modeling and simulation software environment. A procedure for the simulation of bioprocesses modeled by bond graphs is proposed and simulators…

  11. Theory and simulation of discrete kinetic beta induced Alfven eigenmode in tokamak plasmas

    International Nuclear Information System (INIS)

    Wang, X; Zonca, F; Chen, L

    2010-01-01

    It is shown, both analytically and by numerical simulations, that, in the presence of thermal ion kinetic effects, the beta induced Alfven eigenmode (BAE)-shear Alfven wave continuous spectrum can be discretized into radially trapped eigenstates known as kinetic BAE (KBAE). While thermal ion compressibility gives rise to finite BAE accumulation point frequency, the discretization occurs via the finite Larmor radius and finite orbit width effects. Simulations and analytical theories agree both qualitatively and quantitatively. Simulations also demonstrate that KBAE can be readily excited by the finite radial gradients of energetic particles.

  12. 60th Scottish Universities Summer School in Physics: 6th Laser-plasma interactions

    CERN Document Server

    Cairns, R A; Jaroszinski, D A

    2009-01-01

    Presents diagnostic methods, experimental techniques, and simulation tools used to study and model laser-plasma interactions. This book discusses the basic theory of the interaction of intense electromagnetic radiation fields with matter.

  13. Track-structure simulations for charged particles.

    Science.gov (United States)

    Dingfelder, Michael

    2012-11-01

    Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.

  14. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.

    Science.gov (United States)

    Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  15. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations

    Science.gov (United States)

    2015-05-01

    vapor bubbles may generate near blades [40]. This is the phenomenon of cavitation and it is still a limiting factor for ship propeller design. Phase...van der Waals theory with hydrodynamics [39]. The fluid equations based on the van der Waals theory are called the Navier-Stokes-Korteweg equations... cavitating flows, the liquid- vapor phase transition induced by pressure variations. A potential challenge for such a simulation is a proper design of open

  16. A density functional theory study on the interactions between dibenzothiophene and tetrafluoroborate-based ionic liquids.

    Science.gov (United States)

    Lin, Jin; Lü, Renqing; Wu, Chongchong; Xiao, Ye; Liang, Fei; Famakinwa, Temilola

    2017-04-01

    The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF 4 ]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF 4 ]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF 4 ]), and N-butylpyridinium tetrafluoroborate ([BPY][BF 4 ]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π + -π interactions are only found in the [BMIM][BF 4 ]-DBT and [BPY][BF 4 ]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF 4 ]-DBT > [BMPiper][BF 4 ]-DBT > [BMPyrro][BF 4 ]-DBT > [BMmorpholinum][BF 4 ]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.

  17. Two dimensional simulation of high power laser-surface interaction

    International Nuclear Information System (INIS)

    Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P.; Busch, G.E.

    1998-01-01

    For laser intensities in the range of 10 8 --10 9 W/cm 2 , and pulse lengths of order 10 microsec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing

  18. Quantum consistency of a gauge-invariant theory of a massive spin-3/2 particle interacting with external fields

    International Nuclear Information System (INIS)

    Rindani, S.D.

    1989-03-01

    A gauge-invariant theory of a massive spin-3/2 particle interaction with external electromagnetic and gravitational fields, obtained earlier by Kaluza-Klein reduction of a massless Rarita-Schwinger theory, is quantized using Dirac's procedure. The field anticommutators are found to be positive definite. The theory, which was earlier shown to be free from the classical Velo-Zwanziger problem of noncausal propagation modes, is thus also free from the problem of negative-norm states, a long-standing problem associated with massive spin-3/2 theories with external interaction. (author). 19 refs

  19. Field theory of interacting open superstrings of fermionic ghost representation

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Medvedev, P.V.

    1987-01-01

    Field theory of interacting open superstring in fermionic ghost representation based on anticommuting and commuting ghosts corresponding respectively to world sheet bosonic x μ and fermionic φ μ coordinates is presented. The author have to revise once more the field theory of the free Ramond (R) string and starting from general algebraic point of view they obtain that the number of degrees of freedom in the R and NS (Neveu-Schwartz) sectors equalise themselves permitting to construct a supersymmetric operator. It is proposed to solve a specific equation guaranteeing superinvariance in order to find the R-R-NS and NS-R-R vertices in the term of the NS-NS-NS vertex

  20. Statistical analysis of simulation calculation of sputtering for two interaction potentials

    International Nuclear Information System (INIS)

    Shao Qiyun

    1992-01-01

    The effects of the interaction potentials (Moliere potential and Universal potential) are presented on computer simulation results of sputtering via Monte Carlo simulation based on the binary collision approximation. By means of Wilcoxon two-Sample paired sign rank test, the statistically significant difference for the above results is obtained

  1. Long-range interactions and parallel scalability in molecular simulations

    NARCIS (Netherlands)

    Patra, M.; Hyvönen, M.T.; Falck, E.; Sabouri-Ghomi, M.; Vattulainen, I.; Karttunen, M.E.J.

    2007-01-01

    Typical biomolecular systems such as cellular membranes, DNA, and protein complexes are highly charged. Thus, efficient and accurate treatment of electrostatic interactions is of great importance in computational modeling of such systems. We have employed the GROMACS simulation package to perform

  2. Simulations of Shock Wave Interaction with a Particle Cloud

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  3. Computer Networks E-learning Based on Interactive Simulations and SCORM

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Candelas

    2011-05-01

    Full Text Available This paper introduces a new set of compact interactive simulations developed for the constructive learning of computer networks concepts. These simulations, which compose a virtual laboratory implemented as portable Java applets, have been created by combining EJS (Easy Java Simulations with the KivaNS API. Furthermore, in this work, the skills and motivation level acquired by the students are evaluated and measured when these simulations are combined with Moodle and SCORM (Sharable Content Object Reference Model documents. This study has been developed to improve and stimulate the autonomous constructive learning in addition to provide timetable flexibility for a Computer Networks subject.

  4. Simulation of semi-artificial interaction events of cosmic radiation in the atmosphere

    International Nuclear Information System (INIS)

    Ferreira, L.C.A.

    1986-01-01

    A simulation of artifitial A-jets was performed, using the data of observed C-jets, aiming to study the atmospheric interactions. A comparative study on artifitial A-jets with observed A-jets, considering initially, only one interaction and then, introducing the possibility of successive interactions, is presented. A process denominated ''descascatizacao'' for one interaction stage is evaluated. (M.C.K.) [pt

  5. Parallel Beam-Beam Simulation Incorporating Multiple Bunches and Multiple Interaction Regions

    CERN Document Server

    Jones, F W; Pieloni, T

    2007-01-01

    The simulation code COMBI has been developed to enable the study of coherent beam-beam effects in the full collision scenario of the LHC, with multiple bunches interacting at multiple crossing points over many turns. The program structure and input are conceived in a general way which allows arbitrary numbers and placements of bunches and interaction points (IP's), together with procedural options for head-on and parasitic collisions (in the strong-strong sense), beam transport, statistics gathering, harmonic analysis, and periodic output of simulation data. The scale of this problem, once we go beyond the simplest case of a pair of bunches interacting once per turn, quickly escalates into the parallel computing arena, and herein we will describe the construction of an MPI-based version of COMBI able to utilize arbitrary numbers of processors to support efficient calculation of multi-bunch multi-IP interactions and transport. Implementing the parallel version did not require extensive disruption of the basic ...

  6. Fluid of Hard Spheres with a Modified Dipole: Simulation and Theory

    Czech Academy of Sciences Publication Activity Database

    Jirsák, Jan; Nezbeda, Ivo

    2008-01-01

    Roč. 73, č. 4 (2008), s. 541-557 ISSN 0010-0765 R&D Projects: GA AV ČR 1ET400720409; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : molecular simulation * monte carlo method * perturbation theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  7. Interactional nursing--a practice-theory in the dynamic field between the natural, human and social sciences.

    Science.gov (United States)

    Scheel, Merry Elisabeth; Pedersen, Birthe D; Rosenkrands, Vibeke

    2008-12-01

    Nursing is often described from the point of view of either the natural or the human sciences. In contrast to this, the value foundation in Interactional nursing practice is understood from the point of view of the natural sciences as well as that of the human and social sciences. This article presents many-faceted practice-theory of nursing, which is situated in the dynamic field between these three sciences. The focus of the theory is on interaction and practice resulting in a caring practice. Here practice is based on Taylor's and MacIntyre's interpretation of this concept. Action in nursing is based on Habermas' three varied modes of action seen in the light of an understanding of the world as a system world and a life world. Nursing as an interactional practice-theory is presented with examples of interpretative nursing science, seen in the ethical action-oriented, socio-cultural framework of Taylor and Habermas. It is concluded that phenomenologic and socio-cultural research into caring practice as well as an in-depth, comprehensive interpretation of nursing practice are both highly suited to forming the fundamental theoretical framework in nursing, here seen as an interpretative nursing science. Finally, a comparison is drawn between Interactional nursing practice and Benner's theory of nursing practice.

  8. Using King's interacting systems theory to link emotional intelligence and nursing practice.

    Science.gov (United States)

    Shanta, Linda L; Connolly, Maria

    2013-01-01

    King's theory is a broad theory designed to provide a framework for nursing (I.M. King, 1981), whereas emotional intelligence (EI; J.D. Mayer & P. Salovey, 2004) is a theory that is specific for addressing potential competency in dealing with emotions and emotional information. J.D. Mayer, P. Salovey, D.R. Caruso, and G. Sitarenios (2001) defined EI as the "ability to recognize the meaning of emotions and their relationships and to use them as a basis for reasoning and problem solving" (p. 234). These researchers believed that EI is related to cognitive intellect through the ability to use reasoning by way of information to find meaning. J.D. Mayer and P. Salovey (2004) argued that the skills that comprise EI were likely enhanced through obtaining a liberal education infused with values exploration. J.D. Mayer, P. Salovey, D.R. Caruso, and G. Sitarenios (2001) contended that there are 4 branches of abilities that create EI: (a) the skill of perceiving emotion within oneself and others, (b) assimilation of an emotion to facilitate thinking, (c) understanding and knowledge of emotion, and (d) conscious regulation of emotion. Each level or branch builds upon the previous one, and awareness of what each branch offers the individual in enhancing relationships with others is a key component of healthy emotional interactions. This article will provide a theoretic foundation based upon King's interacting systems theory (IST; 1981) that embraces EI as a crucial component in the nurse's ability to provide holistic care for patients, peers, and themselves. King's IST underscores the necessity of nurses possessing abilities of EI as they care for others but does not fully describe a mechanism to understand and incorporate emotions within the complex nurse-patient interactions and communications that are part of the nursing process. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. An interactive beam line simulator module for RHIC

    International Nuclear Information System (INIS)

    MacKay, W.W.

    1997-01-01

    This paper describes the interactive simulation engine, bl, designed for the RHIC project. The program tracks as output to shared memory the central orbit, Twiss and dispersion functions, as well as the 6 x 6 beam hyperellipsoid. Transfer matrices between elements are available via interactive requests. Using a 6-d model, optical elements are modeled with a linear transfer matrix and a vector. The vector allows simulation of misalignments, shifts in field strengths, and beam rigidity. Currently only a linear model is used for elements. In addition to the usual magnets, a foil element is included which can shift the beam's rigidity (resulting from a change of charge and energy loss), as well as increase the momentum spread and emittance. Running as a Glish client, bl can be interfaced to other programs, such as an orbit plotter and a power supply application to give a quick prediction of the beam orbit from actual operating currents in the accelerator. Various strengths and offsets may be changed by sending Glish events to bl

  10. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    Science.gov (United States)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  11. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo

    2012-01-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations

  12. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    Science.gov (United States)

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  13. Interatomic interactions in the effective medium theory

    International Nuclear Information System (INIS)

    Jacobsen, K.W.; Puska, M.J.

    1986-08-01

    An expression is derived for the total energy of a system of interacting atoms based on an ansatz for the total electron density of the system as a superposition of atom densities taken from calculations for the atoms embedded in a homogeneous electron gas. This leads to an expression for the interaction energy in terms of the embedding energy of the atoms in a homogeneous electron gas, and corrections accounting for instance for the d-d hybridization in the transition metals. The density of the homogeneous electron gas is chosen as the average of the density from the surrounding atoms. Due to the variational property of the total energy functional the errors in the interaction energy is second order in the deviation of the ansatz density from the true ground state values. The applicability of the approach is illustrated by calculations of the chohesive properties of some simple metals and all the 3d transition metals. The interaction energy can be expressed in a form simple enough to allow calculations for low symmetry systems and will be very well suited for simulations of time dependent and finite temperature problems. Preliminary results for the phonon dispersion relations and the surface energies and relaxations for Al are used to illustrate the versatility of the approach. The division of the total energy into a density dependent part, an electrostatic 'pair potential' part, and a hybridization part provides a very simple way of understanding a number of these phenomena. (orig.)

  14. Interactive use of simulation models for collaborative knowledge construction: the case of flood policy decision-making

    NARCIS (Netherlands)

    Leskens, Anne

    2015-01-01

    There is an increasing use of interactive flood simulation models in work sessions with practitioners, which is supposed to be more effective than feeding static model results from conventional simulation models into the decision-making process. These interactive simulation models rely on fast and

  15. Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)

    2017-04-20

    In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to small Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.

  16. Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence

    International Nuclear Information System (INIS)

    Heusen, M.; Shalchi, A.

    2017-01-01

    In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to small Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.

  17. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Science.gov (United States)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  18. Multi-scale simulation of droplet-droplet interactions and coalescence

    CSIR Research Space (South Africa)

    Musehane, Ndivhuwo M

    2016-10-01

    Full Text Available Conference on Computational and Applied Mechanics Potchefstroom 3–5 October 2016 Multi-scale simulation of droplet-droplet interactions and coalescence 1,2Ndivhuwo M. Musehane?, 1Oliver F. Oxtoby and 2Daya B. Reddy 1. Aeronautic Systems, Council... topology changes that result when droplets interact. This work endeavours to eliminate the need to use empirical correlations based on phenomenological models by developing a multi-scale model that predicts the outcome of a collision between droplets from...

  19. Coulomb interaction in multiple scattering theory

    International Nuclear Information System (INIS)

    Ray, L.; Hoffmann, G.W.; Thaler, R.M.

    1980-01-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+ 208 Pb elastic scattering and compared with experimental data

  20. Theory and computer simulation of structure, transport, and flow of fluid in micropores

    International Nuclear Information System (INIS)

    Davis, H.T.; Bitsanis, I.; Vanderlick, T.K.; Tirrell, M.V.

    1987-01-01

    An overview is given of recent progress made in our laboratory on this topic. The density profiles of fluid in micropores are found by solving numerically an approximate Yvon-Born-Green equation. A related local average density model (LADM) allows prediction of transport and flow in inhomogeneous fluids from density profiles. A rigorous extension of the Enskog theory of transport is also outlined. Simple results of this general approach for the tracer diffusion and Couette flow between planar micropore walls are presented. Equilibrium and flow (molecular dynamics) simulations are compared with the theoretical predictions. Simulated density profiles of the micropore fluid exhibit substantial fluid layering. The number and sharpness of fluid layers depend sensitively on the pore width. The solvation force and the pore average density and diffusivity are oscillating functions of the pore width. The theoretical predictions for these quantities agree qualitatively with the simulation results. The flow simulations indicate that the flow does not affect the fluid structure and diffusivity even at extremely high shear rates (10/sup 10/s/sup -1/). The fluid structure induces large deviations of the shear stress and the effective viscosity from the bulk fluid values. The flow velocity profiles are correlated with the density profiles and differ from those of a bulk fluid. The LADM and extended Enskog theory predictions for the velocity profiles and the pore average diffusivity agree very well with each other and with the simulation results. The LADM predictions for the shear stress and the effective viscosity agrees fairly well with the simulation results

  1. Modeling of hydrogen Stark line shapes with kinetic theory methods

    Science.gov (United States)

    Rosato, J.; Capes, H.; Stamm, R.

    2012-12-01

    The unified formalism for Stark line shapes is revisited and extended to non-binary interactions between an emitter and the surrounding perturbers. The accuracy of this theory is examined through comparisons with ab initio numerical simulations.

  2. Monte Carlo simulations of interacting particle mixtures in ratchet potentials

    International Nuclear Information System (INIS)

    Fendrik, A J; Romanelli, L

    2012-01-01

    There are different models of devices for achieving a separation of mixtures of particles by using the ratchet effect. On the other hand, it has been proposed that one could also control the separation by means of appropriate interactions. Through Monte Carlo simulations, we show that inclusion of simple interactions leads to a decrease of the ratchet effect and therefore also a separation of the mixtures.

  3. Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations

    Science.gov (United States)

    Clayton, J. D.; Knap, J.

    2018-03-01

    A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.

  4. A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction

    Science.gov (United States)

    Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab

    2015-01-01

    The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.

  5. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.; Escobedo, Fernando A.

    2009-01-01

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD

  6. Asymptotic analysis, direct numerical simulation and modeling of premixed turbulent flame-wall interaction; Etude asymptotique, simulation numerique directe et modelisation de l`interaction flamme turbulente premelangee-paroi

    Energy Technology Data Exchange (ETDEWEB)

    Bruneaux, G.

    1996-05-20

    Premixed turbulent flame-wall interaction is studied using theoretical and numerical analysis. Laminar interactions are first investigated through a literature review. This gives a characterization of the different configurations of interaction and justifies the use of simplified kinetic schemes to study the interaction. Calculations are then performed using Direct Numerical Simulation with a one-step chemistry model, and are compared with good agreements to asymptotic analysis. Flame-wall distances and wall heat fluxes obtained are compared successfully with those of the literature. Heat losses decrease the consumption rate, leading to extinction at the maximum of wall heat flux. It is followed by a flame retreat, when the fuel diffuses into the reaction zone, resulting in low unburnt hydrocarbon levels. Then, turbulent regime is investigated, using two types of Direct Numerical Simulations: 2D variable density and 3D constant density. Similar results are obtained: the local turbulent flame behavior is identical to a laminar interaction, and tongues of fresh gases are expelled from the wall region, near zones of quenching. In the 2D simulations, minimal flame-wall distances and maximum wall heat fluxes are similar to laminar values. However, the structure of the turbulence in the 3D calculations induces smaller flame-wall distances and higher wall heat fluxes. Finally, a flame-wall interaction model is built and validated. It uses the flamelet approach, where the flame is described in terms of consumption speed and flame surface density. This model is simplified to produce a law of the wall, which is then included in a averaged CFD code (Kiva2-MB). It is validated in an engine calculation. (author) 36 refs.

  7. Bose-Einstein condensation for a self-interacting theory in curved spacetime

    OpenAIRE

    Lee, Min-Ho; Kim, Hyeong-Chan; Kim, Jae Kwan

    1993-01-01

    The effective action is derived for a self-interacting theory with a finite fixed $O(2)$ charge at finite temperature in curved spacetime. We obtain the high temperature expansion of the effective action in the weak coupling limit. In the relativistic temperature, we discuss about the phase transition in a homogeneous spacetime.

  8. Introduction to the gauge theories unifying the electromagnetic and weak interactions

    International Nuclear Information System (INIS)

    Pham Xuan-Yem.

    An elementary introduction to unified gauge theories of electromagnetic and weak interactions is presented. The Goldstone theorem and the Higgs mechanism are discussed. The Weinberg-Salam model as well as the Georgi-Glashow ones are explained in details. One emphasizes on the experimental consequences of the Weinberg-Salam model (neutral current) [fr

  9. Non-equilibrium magnetic interactions in strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands); Brener, S.; Lichtenstein, A.I. [Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)

    2013-06-15

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.

  10. Methods for simulation-based analysis of fluid-structure interaction.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.

  11. Full-band quantum simulation of electron devices with the pseudopotential method: Theory, implementation, and applications

    Science.gov (United States)

    Pala, M. G.; Esseni, D.

    2018-03-01

    This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.

  12. One-dimensional model of interacting-step fluctuations on vicinal surfaces: Analytical formulas and kinetic Monte Carlo simulations

    Science.gov (United States)

    Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios

    2010-12-01

    We study analytically and numerically a one-dimensional model of interacting line defects (steps) fluctuating on a vicinal crystal. Our goal is to formulate and validate analytical techniques for approximately solving systems of coupled nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. In our analytical approach, the starting point is the Burton-Cabrera-Frank (BCF) model by which step motion is driven by diffusion of adsorbed atoms on terraces and atom attachment-detachment at steps. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. By including Gaussian white noise to the equations of motion for terrace widths, we formulate large systems of SDEs under different choices of diffusion coefficients for the noise. We simplify this description via (i) perturbation theory and linearization of the step interactions and, alternatively, (ii) a mean-field (MF) approximation whereby widths of adjacent terraces are replaced by a self-consistent field but nonlinearities in step interactions are retained. We derive simplified formulas for the time-dependent terrace-width distribution (TWD) and its steady-state limit. Our MF analytical predictions for the TWD compare favorably with kinetic Monte Carlo simulations under the addition of a suitably conservative white noise in the BCF equations.

  13. Electrostatic interactions in finite systems treated with periodic boundary conditions: application to linear-scaling density functional theory.

    Science.gov (United States)

    Hine, Nicholas D M; Dziedzic, Jacek; Haynes, Peter D; Skylaris, Chris-Kriton

    2011-11-28

    We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.

  14. Negative Emotional Energy: A Theory of the “Dark-Side” of Interaction Ritual Chains

    Directory of Open Access Journals (Sweden)

    David Boyns

    2015-02-01

    Full Text Available Randall Collins’ theory of interaction ritual chains is widely cited, but has been subject to little theoretical elaboration. One reason for the modest expansion of the theory is the underdevelopment of the concept of emotional energy. This paper examines emotional energy, related particularly to the dynamics of negative experiences. It asks whether or not negative emotions produce emotional energies that are qualitatively distinct from their positive counterparts. The analysis begins by tracing the development of Interaction Ritual Theory, and summarizes its core propositions. Next, it moves to a conceptualization of a “valenced” emotional energy and describes both “positive” and “negative” dimensions. Six propositions outline the central dynamics of negative emotional energy. The role of groups in the formation of positive and negative emotional energy are considered, as well as how these energies are significant sources of sociological motivation.

  15. Interactional nursing - a practice-theory in the dynamic field between the natural, human and social sciences

    DEFF Research Database (Denmark)

    Scheel, Merry Elisabeth; Pedersen, Birthe D.; Rosenkrands, Vibeke

    2008-01-01

    Nursing is often described from the point of view of either the natural or the human sciences. In contrast to this, the value foundation in Interactional nursing practice is understood from the point of view of the natural sciences as well as that of the human and social sciences. This article...... presents many-faceted practice-theory of nursing, which is situated in the dynamic field between these three sciences. The focus of the theory is on interaction and practice resulting in a caring practice. Here practice is based on Taylor's and MacIntyre's interpretation of this concept. Action in nursing...... is based on Habermas' three varied modes of action seen in the light of an understanding of the world as a system world and a life world. Nursing as an interactional practice-theory is presented with examples of interpretative nursing science, seen in the ethical action-oriented, socio-cultural framework...

  16. WinGraphics: An optimized windowing environment for interactive real-time simulations

    International Nuclear Information System (INIS)

    Verboncoeur, J.P.; Vahedi, V.

    1989-01-01

    We have developed a customized windowing environment, Win Graphics, which provides particle simulation codes with an interactive user interface. The environment supports real-time animation of the simulation, displaying multiple diagnostics as they evolve in time. In addition, keyboard and printer (PostScript and dot matrix) support is provided. This paper describes this environment

  17. Effective Field Theories and Strong Interactions. Final Technical Report

    International Nuclear Information System (INIS)

    Fleming, Sean

    2011-01-01

    The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can

  18. Prospects for direct detection of dark matter in an effective theory approach

    International Nuclear Information System (INIS)

    Catena, Riccardo

    2014-01-01

    We perform the first comprehensive analysis of the prospects for direct detection of dark matter with future ton-scale detectors in the general 11-dimensional effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. The theory includes 8 momentum and velocity dependent dark matter-nucleon interaction operators, besides the familiar spin-independent and spin-dependent operators. From a variegated sample of 27 benchmark points selected in the parameter space of the theory, we simulate independent sets of synthetic data for ton-scale Germanium and Xenon detectors. From the synthetic data, we then extract the marginal posterior probability density functions and the profile likelihoods of the model parameters. The associated Bayesian credible regions and frequentist confidence intervals allow us to assess the prospects for direct detection of dark matter at the 27 benchmark points. First, we analyze the data assuming the knowledge of the correct dark matter nucleon-interaction type, as it is commonly done for the familiar spin-independent and spin-dependent interactions. Then, we analyze the simulations extracting the dark matter-nucleon interaction type from the data directly, in contrast to standard analyses. This second approach requires an extensive exploration of the full 11-dimensional parameter space of the dark matter-nucleon effective theory. Interestingly, we identify 5 scenarios where the dark matter mass and the dark matter-nucleon interaction type can be reconstructed from the data simultaneously. We stress the importance of extracting the dark matter nucleon-interaction type from the data directly, discussing the main challenges found addressing this complex 11-dimensional problem

  19. Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gou, W.; Zhang, S.; Zheng, Y. [Zhejiang Univ., Hangzhou (China). Center for Engineering and Scientific Computation

    2016-07-15

    The energetic fuel-coolant interaction (FCI) has been one of the primary safety concerns in nuclear power plants. Graphical processing unit (GPU) implementation of the moving particle semi-implicit (MPS) method is presented and used to simulate the fuel coolant interaction problem. The governing equations are discretized with the particle interaction model of MPS. Detailed implementation on single-GPU is introduced. The three-dimensional broken dam is simulated to verify the developed GPU acceleration MPS method. The proposed GPU acceleration algorithm and developed code are then used to simulate the FCI problem. As a summary of results, the developed GPU-MPS method showed a good agreement with the experimental observation and theoretical prediction.

  20. Three-dimensional theory for interaction between atomic ensembles and free-space light

    International Nuclear Information System (INIS)

    Duan, L.-M.; Cirac, J.I.; Zoller, P.

    2002-01-01

    Atomic ensembles have shown to be a promising candidate for implementations of quantum information processing by many recently discovered schemes. All these schemes are based on the interaction between optical beams and atomic ensembles. For description of these interactions, one assumed either a cavity-QED model or a one-dimensional light propagation model, which is still inadequate for a full prediction and understanding of most of the current experimental efforts that are actually taken in the three-dimensional free space. Here, we propose a perturbative theory to describe the three-dimensional effects in interaction between atomic ensembles and free-space light with a level configuration important for several applications. The calculations reveal some significant effects that were not known before from the other approaches, such as the inherent mode-mismatching noise and the optimal mode-matching conditions. The three-dimensional theory confirms the collective enhancement of the signal-to-noise ratio which is believed to be one of the main advantages of the ensemble-based quantum information processing schemes, however, it also shows that this enhancement needs to be understood in a more subtle way with an appropriate mode-matching method

  1. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  2. Building interactive simulations in a Web page design program.

    Science.gov (United States)

    Kootsey, J Mailen; Siriphongs, Daniel; McAuley, Grant

    2004-01-01

    A new Web software architecture, NumberLinX (NLX), has been integrated into a commercial Web design program to produce a drag-and-drop environment for building interactive simulations. NLX is a library of reusable objects written in Java, including input, output, calculation, and control objects. The NLX objects were added to the palette of available objects in the Web design program to be selected and dropped on a page. Inserting an object in a Web page is accomplished by adding a template block of HTML code to the page file. HTML parameters in the block must be set to user-supplied values, so the HTML code is generated dynamically, based on user entries in a popup form. Implementing the object inspector for each object permits the user to edit object attributes in a form window. Except for model definition, the combination of the NLX architecture and the Web design program permits construction of interactive simulation pages without writing or inspecting code.

  3. Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes

    Science.gov (United States)

    Cukras, Janusz; Sadlej, Joanna

    2008-06-01

    This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.

  4. Simulating the Interactions Among Land Use, Transportation ...

    Science.gov (United States)

    In most transportation studies, computer models that forecast travel behavior statistics for a future year use static projections of the spatial distribution of future population and employment growth as inputs. As a result, they are unable to account for the temporally dynamic and non-linear interactions among transportation, land use, and socioeconomic systems. System dynamics (SD) provides a common framework for modeling the complex interactions among transportation and other related systems. This study uses a SD model to simulate the cascading impacts of a proposed light rail transit (LRT) system in central North Carolina, USA. The Durham-Orange Light Rail Project (D-O LRP) SD model incorporates relationships among the land use, transportation, and economy sectors to simulate the complex feedbacks that give rise to the travel behavior changes forecasted by the region’s transportation model. This paper demonstrates the sensitivity of changes in travel behavior to the proposed LRT system and the assumptions that went into the transportation modeling, and compares those results to the impacts of an alternative fare-free transit system. SD models such as the D-O LRP SD model can complement transportation studies by providing valuable insight into the interdependent community systems that collectively contribute to travel behavior changes. Presented at the 35th International Conference of the System Dynamics Society in Cambridge, MA, July 18th, 2017

  5. Neurosurgery simulation using non-linear finite element modeling and haptic interaction

    Science.gov (United States)

    Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet

    2012-02-01

    Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.

  6. Theory of Mind: Mechanisms, Methods, and New Directions

    Directory of Open Access Journals (Sweden)

    Lindsey Jacquelyn Byom

    2013-08-01

    Full Text Available Theory of Mind (ToM has received significant research attention. Traditional ToM research has provided important understanding of how humans reason about mental states by utilizing shared world knowledge, social cues, and the interpretation of actions, however many current behavioral paradigms are limited to static, third-person protocols. Emerging experimental approaches such as cognitive simulation and simulated social interaction offer opportunities to investigate ToM in interactive, first-person and second-person scenarios while affording greater experimental control. The advantages and limitations of traditional and emerging ToM methodologies are discussed with the intent of advancing the understanding of ToM in socially mediated situations.

  7. Application of the fuzzy theory to simulation of batch fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Filev, D P; Kishimoto, M; Sengupta, S; Yoshida, T; Taguchi, H

    1985-12-01

    A new approach for system identification with a linguistic model of batch fermentation processes is proposed. The fuzzy theory was applied in order to reduce the uncertainty of quantitative description of the processes by use of qualitative characteristics. An example of fuzzy modeling was illustrated in the simulation of batch ethanol production from molasses after interpretation of the new method, and extension of the fuzzy model was also discussed for several cases of different measurable variables.

  8. Understanding the electron-phonon interaction in polar crystals: Perspective presented by the vibronic theory

    Science.gov (United States)

    Pishtshev, A.; Kristoffel, N.

    2017-05-01

    We outline our novel results relating to the physics of the electron-TO-phonon (el-TO-ph) interaction in a polar crystal. We explained why the el-TO-ph interaction becomes effectively strong in a ferroelectric, and showed how the electron density redistribution establishes favorable conditions for soft-behavior of the long-wavelength branch of the active TO vibration. In the context of the vibronic theory it has been demonstrated that at the macroscopic level the interaction of electrons with the polar zone-centre TO phonons can be associated with the internal long-range dipole forces. Also we elucidated a methodological issue of how local field effects are incorporated within the vibronic theory. These result provided not only substantial support for the vibronic mechanism of ferroelectricity but also presented direct evidence of equivalence between vibronic and the other lattice dynamics models. The corresponding comparison allowed us to introduce the original parametrization for constants of the vibronic interaction in terms of key material constants. The applicability of the suggested formula has been tested for a wide class of polar materials.

  9. PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations.

    Science.gov (United States)

    Scheurer, Maximilian; Rodenkirch, Peter; Siggel, Marc; Bernardi, Rafael C; Schulten, Klaus; Tajkhorshid, Emad; Rudack, Till

    2018-02-06

    Molecular dynamics (MD) simulations have become ubiquitous in all areas of life sciences. The size and model complexity of MD simulations are rapidly growing along with increasing computing power and improved algorithms. This growth has led to the production of a large amount of simulation data that need to be filtered for relevant information to address specific biomedical and biochemical questions. One of the most relevant molecular properties that can be investigated by all-atom MD simulations is the time-dependent evolution of the complex noncovalent interaction networks governing such fundamental aspects as molecular recognition, binding strength, and mechanical and structural stability. Extracting, evaluating, and visualizing noncovalent interactions is a key task in the daily work of structural biologists. We have developed PyContact, an easy-to-use, highly flexible, and intuitive graphical user interface-based application, designed to provide a toolkit to investigate biomolecular interactions in MD trajectories. PyContact is designed to facilitate this task by enabling identification of relevant noncovalent interactions in a comprehensible manner. The implementation of PyContact as a standalone application enables rapid analysis and data visualization without any additional programming requirements, and also preserves full in-program customization and extension capabilities for advanced users. The statistical analysis representation is interactively combined with full mapping of the results on the molecular system through the synergistic connection between PyContact and VMD. We showcase the capabilities and scientific significance of PyContact by analyzing and visualizing in great detail the noncovalent interactions underlying the ion permeation pathway of the human P2X 3 receptor. As a second application, we examine the protein-protein interaction network of the mechanically ultrastable cohesin-dockering complex. Copyright © 2017 Biophysical Society

  10. Ab initio van der waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like

    DEFF Research Database (Denmark)

    Møgelhøj, Andreas; Kelkkanen, Kari André; Wikfeldt, K Thor

    2011-01-01

    The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations in the NVE ensemble using van der Waals (vdW) density-functional theory, i.e., using the new exchange-correlation functionals optPBE-vdW and vdW-DF2, where the latter has softer nonlocal...... protocol could cause the deviation. An O-O PCF consisting of a linear combination of 70% from vdW-DF2 and 30% from low-density liquid water, as extrapolated from experiments, reproduces near-quantitatively the experimental O-O PCF for ambient water. This suggests the possibility that the new functionals...... shows some resemblance with experiment for high-density water ( Soper , A. K. and Ricci , M. A. Phys. Rev. Lett. 2000 , 84 , 2881 ), but not directly with experiment for ambient water. Considering the accuracy of the new functionals for interaction energies, we investigate whether the simulation...

  11. N=1 supersymmetric Yang-Mills theory on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Stefano

    2015-04-08

    Supersymmetry (SUSY) relates two classes of particles of our universe, bosons and fermions. SUSY is considered nowadays a fundamental development to explain many open questions about high energy physics. The N=1 super Yang-Mills (SYM) theory is a SUSY model that describes the interaction between gluons and their fermion superpartners called ''gluinos''. Monte Carlo simulations on the lattice are a powerful tool to explore the non-perturbative dynamics of this theory and to understand how supersymmetry emerges at low energy. This thesis presents new results and new simulations about the properties of N=1 SYM, in particular about the phase diagram at finite temperature.

  12. THIEF: An interactive simulation of nuclear materials safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Stanbro, W. D.

    1990-01-01

    The safeguards community is facing an era in which it will be called upon to tighten protection of nuclear material. At the same time, it is probable that safeguards will face more competition for available resources from other activities such as environmental cleanup. To exist in this era, it will be necessary to understand and coordinate all aspects of the safeguards system. Because of the complexity of the interactions involved, this process puts a severe burden on designers and operators of safeguards systems. This paper presents a simulation tool developed at the Los Alamos National Laboratory to allow users to examine the interactions among safeguards elements as they apply to combating the insider threat. The tool consists of a microcomputer-based simulation in which the user takes the role of the insider trying to remove nuclear material from a facility. The safeguards system is run by the computer and consists of both physical protection and MC A computer elements. All data elements describing a scenario can be altered by the user. The program can aid in training, as well as in developing threat scenarios. 4 refs.

  13. DSMC simulations of shock interactions about sharp double cones

    Science.gov (United States)

    Moss, James N.

    2001-08-01

    This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.

  14. Developing Models for Embodied Learning with Live Interactive Simulations

    DEFF Research Database (Denmark)

    Gjedde, Lisa

    2014-01-01

    Live simulations may offer a natural form of multimodal learning through embodied action, which can be engaging to a variety of learners and provide a platform for inclusion of special needs learners across the classroom. In this approach to interactive learning, the subject matter is embedded...... learning design is available that provides for interactive and embodied learning, which appeals to the segment of boys that are often difficult to motivate with ordinary uni-modal teaching methods. The paper will present preliminary results from an action research project carried out in collaboration...

  15. Oscillations of neutral K mesons in the theory of dynamical expansion of the weak interaction theory or in the theory of dynamical analogy of the Cabibbo-Kobayashi-Maskawa matrices

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1998-01-01

    The elements of the theory of dynamical expansion of the weak interaction theory working on the tree level, i.e., the theory of dynamical analogy of Cabibbo-Kobayashi-Maskawa matrices, are given. The equation for mass difference of K 1 0 , K 2 0 mesons or the length of K 0 -, K bar 0 - meson oscillations is calculated. In the framework of this theory the oscillations of K 0 , K 0 mesons which arise at violation of strangeness by B bosons are considered. The general conclusion is: the length of K 0 -, K 0 -meson oscillations is proportional to the mass of B boson (which changes strangeness) in the fourth degree

  16. Deducing T, C, and P invariance for strong interactions in topological particle theory

    International Nuclear Information System (INIS)

    Jones, C.E.

    1985-01-01

    It is shown here how the separate discrete invariances [time reversal (T), charge conjugation (C), and parity (P)] in strong interactions can be deduced as consequences of other S-matrix requirements in topological particle theory

  17. Modeling polymer-induced interactions between two grafted surfaces: comparison between interfacial statistical associating fluid theory and self-consistent field theory.

    Science.gov (United States)

    Jain, Shekhar; Ginzburg, Valeriy V; Jog, Prasanna; Weinhold, Jeffrey; Srivastava, Rakesh; Chapman, Walter G

    2009-07-28

    The interaction between two polymer grafted surfaces is important in many applications, such as nanocomposites, colloid stabilization, and polymer alloys. In our previous work [Jain et al., J. Chem. Phys. 128, 154910 (2008)], we showed that interfacial statistical associating fluid density theory (iSAFT) successfully calculates the structure of grafted polymer chains in the absence/presence of a free polymer. In the current work, we have applied this density functional theory to calculate the force of interaction between two such grafted monolayers in implicit good solvent conditions. In particular, we have considered the case where the segment sizes of the free (sigma(f)) and grafted (sigma(g)) polymers are different. The interactions between the two monolayers in the absence of the free polymer are always repulsive. However, in the presence of the free polymer, the force either can be purely repulsive or can have an attractive minimum depending upon the relative chain lengths of the free (N(f)) and grafted polymers (N(g)). The attractive minimum is observed only when the ratio alpha = N(f)/N(g) is greater than a critical value. We find that these critical values of alpha satisfy the following scaling relation: rho(g) square root(N(g)) beta(3) proportional to alpha(-lambda), where beta = sigma(f)/sigma(g) and lambda is the scaling exponent. For beta = 1 or the same segment sizes of the free and grafted polymers, this scaling relation is in agreement with those from previous theoretical studies using self-consistent field theory (SCFT). Detailed comparisons between iSAFT and SCFT are made for the structures of the monolayers and their forces of interaction. These comparisons lead to interesting implications for the modeling of nanocomposite thermodynamics.

  18. PPC - an interactive preprocessor/compiler for the DSNP simulation language

    International Nuclear Information System (INIS)

    Mahannah, J.A.; Schor, A.L.

    1986-01-01

    The PPC preprocessor/compiler was developed for the dynamic simulator for nuclear power plant DSNP simulation language. The goal of PPC is to provide an easy-to-use, interactive programming environment that will aid both the beginner and well-seasoned DSNP programmer. PPC simplifies the steps of the simulation development process for any user. All will benefit from the on-line help facilities, easy manipulation of modules, the elimination of syntax errors, and the general systematic approach. PPC is a very structured and modular program that allows for easy expansion and modification. Written entirely in C, it is fast, compact, and portable. Used as a front end, it greatly enhances the DSNP desirability as a simulation tool for education and research

  19. Fluid-structure interaction modeling of wind turbines: simulating the full machine

    Science.gov (United States)

    Hsu, Ming-Chen; Bazilevs, Yuri

    2012-12-01

    In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.

  20. Applicability of mode-coupling theory to polyisobutylene: a molecular dynamics simulation study.

    Science.gov (United States)

    Khairy, Y; Alvarez, F; Arbe, A; Colmenero, J

    2013-10-01

    The applicability of Mode Coupling Theory (MCT) to the glass-forming polymer polyisobutylene (PIB) has been explored by using fully atomistic molecular dynamics simulations. MCT predictions for the so-called asymptotic regime have been successfully tested on the dynamic structure factor and the self-correlation function of PIB main-chain carbons calculated from the simulated cell. The factorization theorem and the time-temperature superposition principle are satisfied. A consistent fitting procedure of the simulation data to the MCT asymptotic power-laws predicted for the α-relaxation regime has delivered the dynamic exponents of the theory-in particular, the exponent parameter λ-the critical non-ergodicity parameters, and the critical temperature T(c). The obtained values of λ and T(c) agree, within the uncertainties involved in both studies, with those deduced from depolarized light scattering experiments [A. Kisliuk et al., J. Polym. Sci. Part B: Polym. Phys. 38, 2785 (2000)]. Both, λ and T(c)/T(g) values found for PIB are unusually large with respect to those commonly obtained in low molecular weight systems. Moreover, the high T(c)/T(g) value is compatible with a certain correlation of this parameter with the fragility in Angell's classification. Conversely, the value of λ is close to that reported for real polymers, simulated "realistic" polymers and simple polymer models with intramolecular barriers. In the framework of the MCT, such finding should be the signature of two different mechanisms for the glass-transition in real polymers: intermolecular packing and intramolecular barriers combined with chain connectivity.