WorldWideScience

Sample records for interaction region quadrupole

  1. LHC interaction region quadrupole cryostat design

    International Nuclear Information System (INIS)

    Nicol, T.H.; Darve, Ch.; Huang, Y.; Page, T.M.

    2002-01-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems

  2. Quadrupole beam-based alignment in the RHIC interaction regions

    International Nuclear Information System (INIS)

    Ziegler, J.; Satogata, T.

    2011-01-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  3. Design of the PEP-II Interaction Region Septum Quadrupole

    Science.gov (United States)

    Osborn, J.; Tanabe, J.; Yee, D.; Younger, F.

    1997-05-01

    The PEP-II QF2 magnet is one of the final focus quadrupoles for the Low-Energy Ring (LER) and utilizes a septum aperture to accommodate the adjacent High-Energy Ring (HER) beamline. The LER lattice design specification calls for an extremely high field quality for this magnet. A conventional water-cooled copper coil and laminated steel core design was selected to allow adjustment in the excitation. The close proximity between the LER and HER beamlines and the required integrated quadrupole strength result in a moderately high current density septum design. The QF2 magnets are imbedded in a confined region at each end of the BaBar detector, thus requiring a small magnet core cross section. Pole face windings are included in the QF2 design to buck the skew octupole term induced by the solenoidal fringe field that leaks out of the detector. Back-leg windings are included to buck a small dipole component induced by the lack of perfect quadrupole symmetry in this septum design. 2D pole contour optimization and 3D end chamfers are used to minimize harmonic errors; a separate permanent-magnet Harmonic Corrector Ring compensates for remaining field errors. The design methods and approach, 2D and 3D analyses, and the resulting expected magnet performance are described in this paper.

  4. Design and field measurement of the BEPC-II interaction region dual-aperture quadrupoles

    International Nuclear Information System (INIS)

    Yin, Z.S.; Wu, Y.Z.; Zhang, J.F.; Chen, W.; Li, Y.J.; Li, L.; Hou, R.; Yin, B.G.; Sun, X.J.; Ren, F.L.; Wang, F.A.; Chen, F.S.; Yu, C.H.; Chen, C.

    2007-01-01

    With the Beijing Electron Positron Collider upgrade project (BEPC-II), two dual-aperture septum-style quadrupole magnets are used in the interaction region for the final focusing of the electron and positron beams. The BEPC-II lattice design calls for the same high quality integral quadrupole field and large good field region in both apertures for each magnet. Two-dimensional contour optimization and pole-end chamfer iteration are used to minimize the systematic harmonic errors. Unexpected non-systematic errors induced by the unsymmetrical structure and the manufacturing errors are compensated with the pole-end shimming. Magnet measurements with rotating coils are performed to guide and confirm the magnet design. This paper discusses the design consideration, optimizing procedure and measurement results of these dual-aperture magnets

  5. Design of a High Gradient Quadrupole for the LHC Interaction Regions

    International Nuclear Information System (INIS)

    Bossert, R.; Gourlay, S.A.; Heger, T.; Huang, Y.; Kerby, J.; Lamm, M.J.; Limon, P.J.; Mazur, P.O.; Nobrega, F.; Ozelis, J.P.; Sabbi, G.; Strait, J.; Zlobin, A.V.; Caspi, S.; Dell'orco, D.; McInturff, A.D.; Scanlan, R.M.; Van Oort, J.M.; Gupta, R.C.

    1997-03-01

    A collaboration of Fermilab, Lawrence Berkeley National Laboratory and Brookhaven National Laboratory is currently engaged in the design of a high gradient quadrupole suitable for use in the LHC interaction regions. The cold iron design incorporates a two-shell, cos2θ coil geometry with a 70 mm aperture. This paper summarizes the progress on a magnetic and mechanical design that meets the requirements of maximum gradient ≥250 T/m, operation at 1.8K, high field quality and provision for adequate cooling in a high radiation environment

  6. Development of a high gradient quadrupole for the LHC Interaction Regions

    International Nuclear Information System (INIS)

    Bossert, R.; Feher, S.; Gourlay, S.A.

    1997-04-01

    A collaboration of Fermilab, Lawrence Berkeley National Laboratory and Brookhaven National Laboratory is engaged in the design of a high gradient quadrupole suitable for use in the LHC interaction regions. The cold iron design incorporates a two-layer, cos(2θ) coil geometry with a 70 mm aperture operating in superfluid helium. This paper summarizes the progress on a magnetic, mechanical and thermal design that meets the requirements of maximum gradient above 250 T/m, high field quality and provision for adequate cooling in a high radiation environment

  7. Influence of mechanical vibrations on the field quality measurements of LHC interaction region quadrupole magnets

    CERN Document Server

    Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J

    2000-01-01

    The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).

  8. Development and manufacturing of a Nb$_{3}$Sn quadrupole magnet Model at CEA/Saclay for TESLA Interaction Region

    CERN Document Server

    Durante, Maria; Fratini, M; Leboeuf, D; Segreti, M; Védrine, Pierre; 10.1109/TASC.2004.829129

    2004-01-01

    One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the interaction regions of large particle accelerators. In some projects, as in the future linear collider TESLA, the quadrupole magnets are inside the detector solenoid and must operate in its background field. This situation gives singular Lorentz force distribution in the ends of the magnet. To learn about Nb/sub 3/Sn technology, evaluate fabrication techniques and test the interaction with a solenoidal field, DAPNIA /SACM at CEA/Saclay has started the manufacturing of a 1-m-long, 56- mm-single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It will produce a nominal field gradient of 211 T/m at 11,870 A. The coils are wound from Rutherford-type cables insulated with glass fiber tape, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated,...

  9. Field measurement of a Fermilab-built full scale prototype quadrupole magnet for the LHC interaction regions

    CERN Document Server

    Bossert, R; Di Marco, J; Fehér, S; Glass, H; Kerby, J S; Lamm, M J; Nobrega, A; Nicol, T H; Ogitsu, T; Orris, D; Page, T; Rabehl, Roger Jon; Sabbi, G L; Schlabach, P; Strait, J B; Sylvester, C D; Tartaglia, M; Tompkins, J C; Velev, G V; Zlobin, A V

    2002-01-01

    Superconducting low-beta quadrupole magnets for the interaction regions of the Large Hadron Collider have been developed by the US- LHC Accelerator Project. These 70 mm bore 5.5 m long quadrupoles are intended to operate in superfluid helium at 1.9 K with a nominal field gradient of 215 T/m. Following a series of 2 m long models, a full scale cryostated cold mass has been fabricated and cold tested at Fermilab. Magnetic field measurements of the prototype, including determination of the field axis using a single stretched wire, have been performed. These measurements and comparisons with results from the model magnets as well as field quality and alignment requirements are reported in this paper. (8 refs).

  10. Quadrupole interaction in zinc metal

    International Nuclear Information System (INIS)

    Vetterling, W.T.; Pound, R.V.

    1977-01-01

    To allow measurement of the quadrupole interaction in zinc metal, the enriched ZnO was reduced to zinc metal powder and compressed into a pill of thickness 1.4 gm/cm 2 . Sources were made by diffusing 20 mCi of 67 Ga into sintered copper pills. The transducer was based on a cylinder of PZT-4 with 1 / 2 -inch length and could cover linearly a velocity range of +-100 μ/s at 200 Hz. The multiscalar was a modified Northern model NS600, with a minimum dwell time of 20 μs, and with a 10-count buffer at the input to eliminate deadtime from memory cycling

  11. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  12. Quadrupole interaction studies of Hg in Sb

    International Nuclear Information System (INIS)

    Soares, J.C.; Krien, K.; Herzog, P.; Folle, H.R.; Freitag, K.; Reuschenbach, F.; Reuschenbach, M.; Trzcinski, R.

    1978-01-01

    Time differential perturbed angular correlation and nuclear orientation studies of the electric quadrupole interaction for Hg in Sb have been performed. The effective field gradients at room temperature and below 0.05K have been derived. These two values are no indication for an anomalous temperature dependence of the effective field gradient for Hg in Sb. The value of the electric field gradient fits well into the systematics for Hg in other hosts. It is shown that the electronic enhancements of the field gradients are correlated to the valence of the impurities and are rather insensitive to the host properties. (orig./HPOE) [de

  13. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)

    2016-12-15

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  14. Interaction region

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Interaction Region Group addressed the basic questions of how to collide the SLC beams, how to maximize and monitor the luminosity, and how to minimize the detector backgrounds at the interaction region. In practice, five subgroups evolved to study these questions. The final focus group provided three alternative designs to acheive the 1 to 2 micron beam spot size required by the SLC, as well as studying other problems including: eta, eta' matching from the collider arcs, the implementation of soft bends near the interaction region, beam emittance growth, and magnet tolerances in the final focus. The beam position monitor group proposed two devices, a strip line monitor, and a beamstrahlung monitor, to bring the beams into collision. The luminosity monitor group reviewed the possible QED processes that would be insensitive to weak interaction (Z 0 ) effects. The beam dumping group proposed locations for kicker and septum magnets in the final focus that would achieve a high dumping efficiency and would meet the desired beam tolerances at the Moller scattering target in the beam dump line. Working with the Polarization Group, the Moller experiment was designed into the beam dump beam line. A beam dump was proposed that would maintain radiation backgrounds (penetrating muons) at acceptible levels. The detector backgrounds group proposed soft-bend and masking configurations to shield the detector from synchrotron radiation from the hard/soft bends and from the final focus quadrupoles and evaluated the effectiveness of these designs for the three final focus optics designs. Backgrounds were also estimated from: large angle synchrotron radiation, local and distant beam-gas interactions, 2-photon interactions, and from neutrons and backscattered photons from the beamstrahlung dump

  15. Fe/sup 57/ polarimetry based on quadrupole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gonser, U; Sakai, H; Keune, W [Universitaet des Saarlandes, Saarbruecken (F.R. Germany). Fachbereich Angewandte Physik

    1976-01-01

    A quadrupole Fe/sup 57/ polarimeter consisting of single crystals of LiNbO/sub 3/:Co/sup 57/ as source (polarizer) and of FeCO/sub 3/ (siderite) as absorber (analyzer) is described. The quadrupole interactions of the two materials are nearly equal in magnitude but opposite in sign and in addition the asymmetry parameter eta equal approximately 0.

  16. Nuclear quadrupole interactions in ferroelectric compounds of HF181

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO 3 , SnhfO 3 , CaHfO 3 e SrHfO 3 have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians persecond was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory

  17. US Department of Energy Secretary Bill Richardson (centre) at an LHC interaction region quadrupole test cryostat. part of the US contribution to LHC construction and built by the US-LHC collaboration (hence the Fermilab logo)

    CERN Multimedia

    Barbara Warmbein

    2000-01-01

    Photo 01 : September 2000 - Mr Bill Richardson, Secretary of Energy, United States of America (centre) at an LHC interaction region quadrupole test cryostat, part of the US contribution to LHC construction and built by the US-LHC collaboration (hence the Fermilab logo); with l. to r. Dr Mildred Dresselhaus, Dr Carlo Wyss, CERN Director General, Profesor Luciano Maiani, Professor Roger Cashmore, Ambassador George Moose, Dr Peter Rosen, Dr John Ellis. Photo 02 : Mr. Bill Richardson (right), Secretary of Energy United States of America with Prof. Luciano Maiani leaning over one of the LHC magnets produced at Fermilab during his visit to CERN on 16th September 2000.

  18. Quadrupole interactions of Au in Be and lattice location studies

    International Nuclear Information System (INIS)

    Perscheid, B.; Gayer, H.W.; Krien, K.; Freitag, K.

    1978-01-01

    The Moessbauer nucleus 197 Au is used as probe for quadrupole interaction (QI) studies in Be metal. The 77 keV Moessbauer level is populated by the β - decay of 197 Pt and the EC decay of 197 Hg. This fact enabled samples prepared in different ways to be studied. (Auth.)

  19. Quadrupole interactions in pionic and muonic tantalum and rhenium

    International Nuclear Information System (INIS)

    Konijn, J.; Doesburg, W. van; Ewan, G.T; Johansson, T.; Tibell, G.

    1981-01-01

    The hyperfine splitting of pionic and muonic X-rays in natural Re has been studied using the known ratio (accurate to 1.6 parts in 10 5 ) of the quadrupole moments of the two naturally occurring 185 Re and 187 Re isotopes. From the hyperfine splitting of the 5g → 4f and 4f → 3d pionic X-rays the effective quadrupole hyperfine constants were determined to be 187 A 2 sup(e)sup(f)sup(f) (4f) = 1.163 +- 0.010 keV and 187 A 2 sup(e)sup(f)sup(f) (3d) = 5.39 +- 0.63 keV, giving strong interaction quadrupole shifts epsilon 2 (4f) = 46 +- 10 eV and epsilon 2 (3d) = 1.3 +- 0.6 keV. The strong interaction monopole shifts epsilon 0 and widths GAMMA 0 of the 5g, 4f and 3d levels have also been measured. For the two higher orbits, standard optical-potential calculations fit the measured shifts and widths quite well. The observed deeper-lying 3d state, however, has shifts and widths that differ by a factor of 2 or more from the predictions. From the measured quadrupole hyperfine constants of the 4f level we calculate the spectroscopic quadrupole moments to be 187 Qsup(μ) = 2.09 +- 0.04 b, 187 Qsup(π) = 2.07 +- 0.02 b, 185 Qsup(μ) = 2.21 +- 0.04 b, and 185 Qsup(π) = 2.18 +- 0.02 b. In addition, muonic X-rays from 181 Ta were observed; using the same methods for determining the quadrupole moments as above, a value of 181 Qsup(μ) = 3.28 +- 0.06 b was obtained, in good agreement with earlier published data. (orig.)

  20. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    Science.gov (United States)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  1. General quadrupole shapes in the Interacting Boson Model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs

  2. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Hart, T. L. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittance is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.

  3. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  4. Theory of nuclear quadrupole interactions in solid hydrogen fluoride

    International Nuclear Information System (INIS)

    Mohamed, N.S.; Sahoo, N.; Das, T.P.; Kelires, P.C.

    1990-01-01

    The nuclear quadrupole interaction of 19 F * (I=5/2) nucleus in solid hydrogen fluoride has been studied using the Hartree Fock cluster technique to understand the influence of both intrachain hydrogen bonding effects and the weak interchain interaction. On the basis of our investigations, the 34.04 MHz coupling constant observed by TDPAD measurements has been ascribed to the bulk solid while the observed 40.13 MHz coupling constant is suggested as arising from a small two- or three-molecule cluster produced during the proton irradiation process. Two alternate explanations are offered for the origin of coupling constants close to 40 MHz in a number of solid hydrocarbons containing hydrogen and fluorine ligands. (orig.)

  5. Measurement of the quadrupole moments of the strongly deformed nuclei 18173Ta108 and 18375Re108 by hyperfine interaction in metals

    International Nuclear Information System (INIS)

    Netz, G.

    1974-01-01

    The quadrupole moments of two single particle proton states were measured in the strongly deformed nuclei region. Both measurements are independent of model because the field gradient is known in a rhenium lattice as well as at the nucleus site of a rhenium atom and also at the nucleus site of an incorporated tantalum atom. The quadrupole moments could thus be directly extracted from the quadrupole interaction frequency, the product of quadrupole moment and field gradient. For the 482 keV state (I = 5/2 + ) in 181 73 Ta 108 one obtains a quadrupole moment of: Q (5/2) = 2.5 +- 0.2 barn. For the 496 keV state (I = 9/2 - ) in 183 75 Re 108 , a quadrupole moment of: Q (0/2) = 3.6 +- 0.4 barn is found. This value agrees well with other experimental data within the framework of the collective model. (orig./LH) [de

  6. Stability of the coherent quadrupole oscillations excited by the beam-beam interaction

    International Nuclear Information System (INIS)

    Kamiya, Y.; Chao, A.W.

    1983-10-01

    We study the coherent quadrupole motion in the presence of beam-beam interaction, using a linear approximation to the beam-beam force. The corresponding beam-beam limit is determined by evaluating the eigenvalues of a system of linear equations describing the coherent quadrupole motion. We find that the stability of the quadrupole motions imposes severe limits on the beam current, as is the case for the dipole instability. Preliminary results of this study have appeared elsewhere

  7. Electric quadrupole interaction in cubic BCC α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)

    2016-07-15

    Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge

  8. Electric quadrupole interaction in cubic BCC α-Fe

    International Nuclear Information System (INIS)

    Błachowski, A.; Komędera, K.; Ruebenbauer, K.; Cios, G.; Żukrowski, J.; Górnicki, R.

    2016-01-01

    Mössbauer transmission spectra for the 14.41-keV resonant line in "5"7Fe have been collected at room temperature by using "5"7Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V_z_z = +1.61(4) × 10"1"9 Vm"−"2 for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the "5"7Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the "5"7Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V_z_z = +1.92(4) × 10"1"9 Vm"−"2. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge for ab initio calculations

  9. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  10. Nuclear quadrupole interactions in ferroelectric compounds of HF/sup 181/

    Energy Technology Data Exchange (ETDEWEB)

    Kunzler, J V

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO/sub 3/, SnhfO/sub 3/, CaHfO/sub 3/ e SrHfO/sub 3/ have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians per second was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory.

  11. Magnetic field in the end region of the SSC quadrupole magnet

    International Nuclear Information System (INIS)

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-06-01

    Recent advances in methods of computing magnetic fields have made it possible to study the field in the end region of the SS quadrupole magnet in detail. The placement of conductor in the straight section, away from the ends, was designed to produce a practically pure quadrupole field in the two-dimensional sense. The ends of the coils were designed to produce a practically pure quadrupole field in the integral sense using a method that ignores the presence of the iron yoke. Subsequently, the effect of presence of the yoke on the field was analyzed. The paper presents the end configuration together with the computed integrated multipole components, local multipole components, and local field components. A comparison with measurements is included. 5 refs., 5 figs., 1 tab

  12. Measurements of quadrupole interaction frequencies of long-lived isomers with the level mixing spectroscopy (LEMS) method

    International Nuclear Information System (INIS)

    Neyens, G.; Nouwen, R.; S'heeren, G.; Bergh, M. van den; Coussement, R.

    1993-01-01

    The level mixing spectroscopy (LEMS) method has proven to be a very useful method to determine the quadrupole interaction frequency of an isomer in a solid host. Especially in the 'difficult' cases, e.g. when the isomeric lifetime is very long or its spin is very high, the method yields valuable information which is not accessible with other methods (such as TDPAD). Since the development of the method some years ago, many experiments have been performed on high spin isomers in the lead region. The static quadrupole moment of isomers with lifetimes ranging from 20 ns up to 13 ms and spins up to 65/2h have been determined in neutron deficient isotopes of Bi, At, Fr and Ra. (orig.)

  13. Implementation of $ab$ $initio$ perturbed angular correlation observables for analysis of fluctuating quadrupole interactions

    CERN Document Server

    Barbosa, Marcelo

    A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...

  14. Nuclear quadrupole interaction measurements of 19F* and 22Na* on Graphite

    International Nuclear Information System (INIS)

    Djoko-Surono, Th; Martin, Peter W

    1996-01-01

    Time differential perturbed angular distribution (TDPAD) technique has been used to investigate nuclear quadrupole interactions of 19 F * and 22 Na * in graphite. We concentrated the measurements on pseudo single crystal graphite called Highly Oriented Pyrolytic Graphite for it has an ordered structure in which the c-axes of the microcrystals aligned in a certain direction with the mosaic spread less than 1 o , while the a- and b-axes randomly oriented on a plane perpendicular to the c-axes. Interactions between quadrupole moment of 19 F * and 22 Na * with its surroundings electric field gradient were studied by detecting the γ-rays distribution, W(Θ,t). For 1 9F * we found one static interaction. The corresponding electric field gradient was V zz =3.24(19)x10 22 V/m 2 . In the case of 22 Na * we found no evidence of nuclear quadrupole interaction, however, we were able to conclude that |QV 22 | 19 bV/m 2 . Using theoretical calculation Q=0.06 barn, we find that |V zz | 20 V/m 2 . These results indicate that the value efg depend on two factors, the host crystal and the core electrons. The core electrons contribution to the total efg is considerably large

  15. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    International Nuclear Information System (INIS)

    Kluepfel, Peter

    2008-01-01

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  16. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  17. DNMR theory for ND+4ion. Pt. 1. Tunneling effects and first order approximations in quadrupole interaction

    International Nuclear Information System (INIS)

    Blicharski, J.S.; Lalowicz, Z.T.; Sobol, W.

    1978-01-01

    This work presents results of the calculations of shape of deuteron nuclear magnetic resonance for ND + 4 ion. Tunneling effect and quadrupole interaction influence considerably the line shape. (S.B.)

  18. NMR study of electric quadrupole interactions in GdCo2

    International Nuclear Information System (INIS)

    Barata, A.C.; Guimaraes, A.P.

    1984-01-01

    Quadrupole oscillations have been observed with 59 Co pulsed NMR in the intermetallic compound GdCo 2 . From theses oscillations the nuclear electric quadrupoles interaction (EQI) has been studied as a function of temperature in the range 4K-312K. The value measured at 4K, ν sub(Q)=672 +-3 KHz, is the largest so far reported for the cobalt EQI in the RCo 2 intermetallics. The EQI decreases with increasing temperature, reaching 432 +- 10 KHz at 312K. The amplitude of the oscillations tends to decrease with temperature, being also dependent on the easy direction of magnetization of the compound. Thus, above 200K, as the direction of magnetization changes, large oscillations are again visible in the satellite line; the main line shows no oscillations in this range. The observed temperature dependence of the EQI is roughly linear, as found in other transition metal systems. (Author) [pt

  19. Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

    International Nuclear Information System (INIS)

    Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.

    2011-01-01

    Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196 Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ-vibration bands are compared to the corresponding sequences of experimental states.

  20. pp Interaction Regions. [Superconducting super collider

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, R.; Johnson, D.E.

    1984-01-01

    This group served as the interface between experimenters and accelerator physicists. A start was made on a portfolio of IR's, building on previous studies including the Reference Designs Study (RDS). The group also looked at limits on time structure and luminosity, the clustering of IR's, external beams of secondary particles from the IR's, and various operational issues connected with the IR's. Designs were developed for interaction regions for RDS-B (individual cryostats for two 5-T rings, separated by 60 cm vertically). For a fixed geometry, the quadrupoles have been tuned over a range to give a factor of 100 variation in ..beta..* (1 to 100 m) and thus in luminosity; an even larger variation may well be possible. Variation of the minimum ..beta..* with free space between the quadrupole triplets, for a quad strength of 280 T/m and under the constraint of fixed chromaticity, showed a factor of five decrease in maximum luminosity in going from a high luminosity region with +-20 m free space to a small-angle region with +-100 m. Similar variants of the RDS-A IR were also found.

  1. ISABELLE insertion quadrupoles

    International Nuclear Information System (INIS)

    Kaugerts, J.; Polk, I.; Sampson, W.; Dahl, P.F.

    1979-01-01

    Beam focussing and control at the beam intersection regions of ISABELLE is accomplished by a number of superconducting insertion quadrupoles. These magnets differ from the standard ISABELLE quadrupoles in various ways. In particular, the requirements of limited space near the intersections and aperture for beam extraction impose constraints on their configuration. To achieve optimum beam focussing and provide tuning flexibility calls for stronger quadrupole trim windings than those in the standard quadrupoles. The magnetic and mechanical design of the insertion quadrupoles and their associated correction and steering windings to accomplish the above tasks is presented

  2. On the equivalence of quadrupole phonon model and interacting boson model

    International Nuclear Information System (INIS)

    Kyrchev, G.

    1980-01-01

    A rigorous proof of the quadrupole phonon model (QPM) and the interacting boson model (IBM) equivalence (the Hamiltonians and the relevant operators of both models are identical) is presented. Within the theory of classical Lie algebras the Schwinger representation (SR) construction of SU(6)-algebra, generated by QPM collective coordinates, conjugated momenta and their commutators, is given. Having the explicit form of SU(6) generators in SR, we get the QPM collective Hamiltonian in SR (previously Holstein-Primakoff infinite Boson expansion has been applied for this Hamiltonian). The Hamiltonian of QPM thus obtained contains all Boson structures, which are present in the Hamiltonian of IBM and under definite relations between their parameters, both Hamiltonians coincide identically. The relevant operators are identical too. Thus, though QPM and IBM, being advanced independently, have been developed in a different fashion, they are essentially equivalent

  3. 14N nuclear quadrupole interaction in Cu(II) doped L-alanine

    International Nuclear Information System (INIS)

    Murgich, J.; Calvo, R.; Oseroff, S.B.; Instituto Venezolano de Investigaciones Cientificas, Caracas. Dept. de Quimica)

    1980-01-01

    The 14 N nuclear quadrupole interaction tensor Psub(N) measured by ENDOR in Cu(II) doped L-alanine is analyzed in terms of the Townes and Daily theory assuming a tetra-hedrally bonded N atom. The results of this analysis are compared with those for the 14 N in pure L-alanine and it is found that the principal directions of the Psub(N) tensor are drastically changed upon metal complexation as a consequence of the higher electron affinity of Cu(II) with respect to C and H. Comparison of the corresponding bond populations in pure and Cu(II) doped L-alanine indicates that the Cu draws 0.11 more electron from the N than the substituted H atom. (orig.)

  4. Theoretical investigation of nuclear quadrupole interactions in DNA at first-principles level

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dip N. [State University of New York at Albany, Department of Physics (United States); Dubey, Archana [University of Central Florida, Department of Physics (United States); Pink, R. H. [State University of New York at Albany, Department of Physics (United States); Scheicher, R. H. [Uppsala University, Condensed Matter Theory Group, Department of Physics and Materials Science (Sweden); Badu, S. R. [State University of New York at Albany, Department of Physics (United States); Nagamine, K. [University of California at Riverside, Department of Physics (United States); Torikai, E. [Yamanashi University, Department of Electrical Engineering (Japan); Saha, H. P.; Chow, Lee [University of Central Florida, Department of Physics (United States); Huang, M. B. [State University of New York at Albany, College of Nanoscale Science and Engineering (United States); Das, T. P., E-mail: tpd56@albany.edu [State University of New York at Albany, Department of Physics (United States)

    2008-01-15

    We have studied the nuclear quadrupole interactions (NQI) of the {sup 14}N, {sup 17}O and {sup 2}H nuclei in the nucleobases cytosine, adenine, guanine and thymine in the free state as well as when they are bonded to the sugar ring in DNA, simulated through a CH{sub 3} group attached to the nucleobases. The nucleobase uracil, which replaces thymine in RNA, has also been studied. Our results show that there are substantial indirect effects of the bonding with the sugar group in the nucleic acids on the NQI parameters e{sup 2}qQ/h and {eta}. It is hoped that measurements of these NQI parameters in DNA will be available in the future to compare with our predictions. Our results provide the conclusion that for any property dependent on the electronic structures of the nucleic acids, the effects of the bonding between the nucleobases and the nucleic acid backbones have to be included.

  5. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jose V., E-mail: josev.mathew@gmail.com; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  6. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  7. The effect of quadrupole force to the spectra of nuclei in the f7/2 shell

    International Nuclear Information System (INIS)

    Zhang Qingying

    1992-01-01

    The effect of quadrupole force on the spectra of nuclei in the f 7/2 shell is tested. The nuclear spectra are calculated by using the surface delta interaction plus quadrupole interaction and the modified surface delta interaction respectively. The results calculated with the former are much better than those with the latter, the role of the isospin modified term in the modified surface delta interaction can be substituted by the quadrupole interaction term. It is also shown that the effect of quadrupole interaction in the f 7/2 shell is important although the quadrupole deformations of nuclei in this region are not large

  8. The FCC-ee Interaction Region Magnet Design

    CERN Document Server

    Koratzinos, Michael; Blondel, Alain; Bogomyagkov, Anton; Holzer, Bernhard; Oide, Katsunobu; Sinyatkin, Sergey; Zimmermann, Frank; van Nugteren, Jeroen

    2016-01-01

    The design of the region close to the interaction point of the FCC-ee experiments is especially challenging. The beams collide at an angle (+-15 mrad) in the high-field region of the detector solenoid. Moreover, the very low vertical beta_y* of the machine necessitates that the final focusing quadrupoles have a distance from the IP (L*) of around 2 m and therefore are inside the main detector solenoid. The beams should be screened from the effect of the detector magnetic field, and the emittance blow-up due to vertical dispersion in the interaction region should be minimized, while leaving enough space for detector components. Crosstalk between the two final focus quadrupoles, only about 6 cm apart at the tip, should also be minimized.

  9. Large permanent magnet quadrupoles for an electron storage ring

    International Nuclear Information System (INIS)

    Herb, S.W.

    1987-01-01

    We have built large high quality permanent magnet quadrupoles for use as interaction region quadrupoles in the Cornell Electron Storage Ring where they must operate in the 10 kG axial field of the CLEO experimental detector. We describe the construction and the magnetic measurement and tuning procedures used to achieve the required field quality and stability. (orig.)

  10. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  11. PROCEEDINGS OF THE WORKSHOP ON LHC INTERACTION REGION CORRECTION SYSTEMS

    International Nuclear Information System (INIS)

    FISCHER, W.; WEI, J.

    1999-01-01

    The Workshop on LHC Interaction Region Correction Systems was held at Brookhaven National Laboratory, Upton, New York, on 6 and 7 May 1999. It was attended by 25 participants from 5 institutions. The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region quadrupoles and dipoles. In three sessions the workshop addressed the field quality of the these magnets, reviewed the principles and efficiency of global and local correction schemes and finalized a corrector layout. The session on Field Quality Issues, chaired by J. Strait (FNAL), discussed the progress made by KEK and FNAL in achieving the best possible field quality in the interaction region quadrupoles. Results of simulation studies were presented that assess the effects of magnetic field errors with simulation studies. Attention was given to the uncertainties in predicting and measuring field errors. The session on Global Correction, chaired by J.-P. Koutchouk (CERN), considered methods of reducing the nonlinear detuning or resonance driving terms in the accelerator one-turn map by either sorting or correcting. The session also discussed the crossing angle dependence of the dynamic aperture and operational experience from LEP. The session on Local Correction, chaired by T. Taylor (CERN), discussed the location, strength and effectiveness of multipole correctors in the interaction regions for both proton and heavy ion operation. Discussions were based on technical feasibility considerations and dynamic aperture requirements. The work on linear corrections in the interaction regions was reviewed

  12. Effect of large neutron excess in the region of the Giant Dipole and Quadrupole Resonance

    CERN Document Server

    Lanza, E G

    1999-01-01

    We study the dipole and quadrupole modes of neutron rich nuclei within the selfconsistent HF + RPA. The presence of neutron skin enhances the mixing of isoscalar and isovector modes. Then it is possible to excite modes of isovector character by an isoscalar probe. In particular we analize the excitation of dipole modes by alpha scattering. The excitation of compressional isoscalar mode is also studied.

  13. Superconducting magnets, cryostats, and cryogenics for the interaction region of the SSC

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Abramovich, S.; Zhmad, A.

    1993-10-01

    The Superconducting Super Collider (SSC) has two counterrotating 20-TeV proton beams that will be made to collide at specific interaction points to carry out high energy physics experiments. The Collider ring has two sites, West and East, for such Interaction Regions (IRs), and the conceptual design of the East Interaction Region is underway. The East IR, in the present stage of design, has two interaction points, the requirements for which have been specified in terms of distance L* to the nearest magnet and the beam luminosity. Based on these requirements, the optics for transition from arc regions or utility regions to the IR and for focusing the beams have been obtained. The optical arrangement consists of a tuning section of quadrupoles, the strength of which is adjusted to obtain the required beta squeeze; a pair of bending dipoles to reduce the beam separation from the nominal 900 mm to 450 mm; an achromat section of quadrupoles, which consist of two cold masses in one cryostnother pair of dipoles to bring the beams together at the required crossing angle; and a set of final focus quads facing the interaction point. The optics is symmetric about the interaction point, and the two interaction points are separated by a hinge region consisting of superconducting dipoles and quadrupoles similar to the arc region. In the regions where the beams are vertically bent and straightened out by dipoles, the beam traverses warm regions provided for placing beam collimators. The superconducting magnets, including the final focus quadrupoles, operate with supercritical He at 4 atm and a nominal temperature of 4.15 K. In this paper, descriptions of the magnets, the cryostats, and cryo bypasses around the warm region and interaction points are provided. Also discussed are the cooling requirements and design for the final focus quadrupole, which receives significant heat load from beam radiation

  14. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry.

    Science.gov (United States)

    Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I

    2016-01-08

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. HTS power leads for the BTEV interaction region

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Carcagno, R.; Orris, D.; Page, T.; Pischalnikov, Y.; Rabehl, R.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2005-05-01

    A new Interaction Region (IR) for the BTEV experiment was planned to be built at Fermilab. This IR would have required new superconducting quadrupole magnets and many additional power circuits for their operation. The new ''low beta'' quadrupole magnet design was based upon the Fermilab LHC quadrupole design, and would have operated at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would have required substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads was necessary. In developing specifications for HTS leads for the BTEV interaction region, several 6 kA HTS leads produced by American Superconductor Corporation (ASC) have been tested at over-current conditions. Final design requirements were to be based on these test results. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads.

  16. HTS power leads for the BTEV interaction region

    International Nuclear Information System (INIS)

    Feher, S.; Carcagno, R.; Orris, D.; Page, T.; Pischalnikov, Y.; Rabehl, R.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.

    2005-01-01

    A new Interaction Region (IR) for the BTEV experiment was planned to be built at Fermilab. This IR would have required new superconducting quadrupole magnets and many additional power circuits for their operation. The new ''low beta'' quadrupole magnet design was based upon the Fermilab LHC quadrupole design, and would have operated at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would have required substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads was necessary. In developing specifications for HTS leads for the BTEV interaction region, several 6 kA HTS leads produced by American Superconductor Corporation (ASC) have been tested at over-current conditions. Final design requirements were to be based on these test results. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads

  17. The nuclear quadrupole interaction of {sup 181}Ta in the intermetallic compound Hf{sub 2}Rh

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovic, N.; Koicki, S.; Cekic, B.; Manasijevic, M.; Koteski, V.; Marjanovic, D. [Institute of Nuclear Sciences VINCA, Laboratory for Nuclear and Plasma Physics, PO Box 522, Belgrade (Yugoslavia)

    1999-01-11

    The time differential perturbed angular correlation technique has been used to measure the electric field gradient at {sup 181}Ta impurities in the intermetallic compound Hf{sub 2}Rh. The results of the measurements show the presence of two independent quadrupole interactions. At room temperature the interaction frequencies are {omega}{sub Q1} = 58 Mrad s{sup -1} and {omega}{sub Q2} = 239 Mrad s{sup -1}. The electric field gradient V{sub 22}, the corresponding asymmetry parameter {eta} and the distribution parameter {delta} exhibit a pronounced temperature dependence from 78 to 1223 K. (author)

  18. Quadrupole moments of high spin states in the trans lead region

    International Nuclear Information System (INIS)

    Neyens, G.; Hardeman, F.; Nouwen, R.; S'heeren, G.; Van Den Bergh, M.; Cousement, R.

    1990-01-01

    The last few years, a lot of attention has been paid to the trans lead region. A reason for this has to be found in the fact that 208 Pb is a double magic core: both its proton and neutron shell are closed. This means that all nuclei in the lead region can be described well by the shell model, using a spherical 208 Pb core (spherical symmetric potential) and some valence particles or holes around it. The question is whether this model is also correct for high spin states. In this region, isomers with high angular momenta can only be created by alignment of all the spins of the valence particles and holes. And in some cases, alignment is not enough: core excitations are necessary to build up the large spin value of the isomeric state (e.g. the 63/2-isomer in 211 Rn. This means that a neutron pair from the closed N = 126 shell is broken up and one or both neutrons are excited to a level with higher energy and spin. The alignment of the valence-particle-spins causes an increase of the interactions between the valence particles (holes) on one hand, and between the valence particles (holes) and the hard core on the other hand. The latter interaction can cause a deformation of the core. The two interactions are taken into account in two different models: The SERI model (Spherical shell model with Empirical Residual Interactions) and the DIPM (Deformed Independent Particle Model). This paper reports that the effect of alignment of the spins of the valence particles in an isomeric state has been taken into account in the shell model by using residual interactions between the valence particles. These interactions are introduced in the theory in an empirical way or are calculated. Another model, the DIPM, takes into account the effect of alignment in a natural way: it starts from a deformed core (e.g. an axial symmetric potential) in which the valence particles are moving independently from each other)

  19. The quadrupole moment and strong interaction parameters from muonic and pionic X-ray studies of 237Np

    International Nuclear Information System (INIS)

    Laat, C.T.A.M. de; Taal, A.; Duinker, W.; Konijn, J.; Petitjean, C.; Reist, H.W.; Mueller, W.; Commission of the European Communities, Geel

    1987-01-01

    The X-ray spectrum of muonic and pionic 237 Np has been investigated with muons and pions stopped in a NpO 2 target. The nuclear spectroscopic quadrupole moment was determined to be Q=3.886±0.006 b from the splittings of the muonic 5g→4f hyperfine complexes. The B(E2)↓-values for the first and second excited states were evaluated as 3.17±0.08 and 2.77±0.10 e 2 b 2 , respectively. A comparison between the muonic and pionic 5g→4f hyperfine complexes yields the strong interaction parameter for the pionic 4f state. For the first time a change of sign as function of Z for the strong interaction quadrupole shift ε 2 (4f) has been observed. The standard optical model predictions agree reasonably well with the measured strong interaction monopole shift, ε 0 (4f), and width, Γ 0 (4f), while they disagree with the experimental value for ε 2 . A stronger s-wave repulsion in the optical potential could explain this effect. (orig.)

  20. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  1. Strong quadrupole interaction in electron paramagnetic resonance. Study of the indium hexacyanide (III) in KCl irradiated with electrons

    International Nuclear Information System (INIS)

    Vugman, N.V.

    1973-08-01

    The radiation effects in ]Ir III (CN) 6 ] 3- diamagnetic complexe inserted in the KCl lattice and irradiated with electrons of 2MeV by electron spin resonance (ESR) are analysed. Formulas for g and A tensors in the ligand field approximation, are derivated to calculate non coupling electron density in the metal. The X polarization field of inner shells is positive, indicating a 6s function mixture in the non coupling electron molecular orbital. The observed hyperfine structure is assigned to 4 equivalent nitrogen and one non equivalent nitrogen. This hypothesis is verified by experience of isotope substitution with 15 N. The s and p spin density in ligands are calculated and discussed in terms of molecular obitals. The effects of strong quadrupole interaction into the EPR spectra of ]Ir II (CN) 5 ] 3- complex are analysed by MAGNSPEC computer program to diagonalize the Spin Hamiltonian of the system. Empiric rules for EPR espectrum interpretation with strong quadrupole interaction. A review of EPR technique and a review of main concepts of crystal-field and ligand field theories, are also presented. (M.C.K.) [pt

  2. Super magnets for interaction regions

    International Nuclear Information System (INIS)

    Biallas, G.; Fowler, W.; Diebold, R.

    1977-01-01

    The feasibility of using superconducting magnets in the beam interaction regions of particle accelerators is discussed. These higher field magnets can be shorter, leaving more room for detectors, but also must have a large aperture and magnetic shielding. The ''kissing geometry'' was investigated, and design and scaling considerations are given. A rough estimate of the cost of such superconducting magnets is given as an aid to the selection of interaction geometry

  3. HTS Power Leads for the BTeV Interaction Region

    CERN Document Server

    Feher, Sandor; Orris, Darryl; Pishchalnikov, Yu M; Rabehl, Roger Jon; Sylvester, C D; Tartaglia, M; Tompkins, John

    2005-01-01

    A new Interaction Region for the BTEV experiment is planned to be built soon at Fermilab. This IR will require new superconducting quadrupole magnets and many additional power circuits for their operation. The new "low beta" quadupole magnet design is based upon the Fermilab LHC quadrupole design, and will operate at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would require substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads is necessary. Fermilab is in the process of procuring HTS leads for this new interaction region. Several 6 kA HTS leads produced by American Superconductor Corporation have been tested at over-current conditions. Based on the test results, design requirements are being developed for procuring the HTS current leads. This paper summarizes the test results and describes the design requirements ...

  4. Effect of ion entry acceptance conditions on the performance of a quadrupole mass spectrometer operated in upper and lower stability regions

    International Nuclear Information System (INIS)

    Turner, P.; Taylor, S.; Gibson, J.R.

    2005-01-01

    Computer simulation of ion motion in a quadrupole mass spectrometer has been used to examine the effect of initial ion conditions on performance when operated in the first and third zones of the Mathieu stability diagram. Commercial instruments frequently use round electrodes instead of the better-performing hyperbolic electrodes because the cost of manufacturing is lower. However, adverse features are seen when using round electrodes. Here further insight is provided and a possible method of correction is suggested. For the first time, ion origin for the first stability region for a round electrode quadrupole has been reported

  5. Electric quadrupole interactions on /sup 12/B and /sup 12/N implanted in Mg studied by nuclear depolarization due to level mixing

    Energy Technology Data Exchange (ETDEWEB)

    Tanihata, I; Kogo, S; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies

    1977-04-25

    Electric quadrupole interactions on polarized /sup 12/B and /sup 12/N implanted in a Mg single crystal have been studied by a new method in which the nuclear depolarization due to level mixing caused by an external magnetic field is detected.

  6. Quadrupole boson densities in the germanium region by inelastic electron scattering

    International Nuclear Information System (INIS)

    Goutte, D.

    1984-08-01

    The collective properties of four germanium isotopes have been explored through the measurement of the transition charge densities of the first two 2 + states. Their spatial features and their apparent anomalous behavior is readily explained in the frame of the Interacting Boson Model

  7. Quadrupole moments of highly deformed structures in the A ∼ 135 region: Probing the single-particle motion in a rotating potential

    International Nuclear Information System (INIS)

    Laird, R.W.; Riley, M.A.; Brown, T.B.; Pfohl, J.; Sheline, R.K.; Kondev, F.G.; Archer, D.E.; Clark, R.M.; Fallon, P.; Devlin, M.; LaFosse, D.R.; Sarantites, D.G.; Hartley, D.J.; Hibbert, I.M.; O'Brien, N.J.; Wadsworth, R.; Joss, D.T.; Nolan, P.J.; Paul, E.S.; Shepherd, S.L.

    2002-01-01

    The latest generation γ-ray detection system, GAMMASPHERE, coupled with the Microball charged-particle detector, has made possible a new class of nuclear lifetime measurement. For the first time differential lifetime measurements free from common systematic errors for over 15 different nuclei (>30 rotational bands in various isotopes of Ce, Pr, Nd, Pm, and Sm) have been extracted at high spin within a single experiment. This comprehensive study establishes the effective single-particle transition quadrupole moments in the A∼135 light rare-earth region. Detailed comparisons are made with theoretical calculations using the self-consistent cranked mean-field theory which convincingly demonstrates the validity of the additivity of single-particle quadrupole moments in this mass region

  8. [Determination of hydroxyproline in liver tissue by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry].

    Science.gov (United States)

    Liu, Wei; Qi, Shenglan; Xu, Ying; Xiao, Zhun; Fu, Yadong; Chen, Jiamei; Yang, Tao; Liu, Ping

    2017-12-08

    A method for the determination of hydroxyproline (Hyp) in liver tissue of mice by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (HILIC-HRMS) was developed. The liver tissue samples of normal mice and liver fibrosis mice induced by carbon tetrachloride were hydrolyzed by concentrated hydrochloric acid. After filtrated and diluted by solution, the diluent was separated on an Hypersil GOLD HILIC column (100 mm×2.1 mm, 3 μm). Water-acetonitrile (28:72, v/v)were used as the mobile phases with isocratic elution. Finally, the target analytes were detected in positive model by HRMS equipped with an electrospray ionization source. The linear range of hydroxyproline was from 0.78 to 100.00 μg/L with the correlation coefficient ( R 2 ) of 0.9983. The limit of quantification was 0.78 μg/L. By detecting the spiked samples, the recoveries were in the range of 97.4%-100.9% with the relative standard deviations (RSDs) between 1.4% and 2.0%. In addition, comparison of the measurement results by this method and the chloramine T method was proceeded. It was found that the linear correlation between the two methods was very good, and the Pearson correlation coefficient was 0.927. And this method had simpler operation procedure and higher accuracy than chloramine T method. This method can be used for the quick determination of hydroxyproline in liver tissue samples.

  9. Quadrupole modes in linearized beam-beam interaction in e+e- colliding rings

    International Nuclear Information System (INIS)

    Matsumoto, Shuji; Hirata, Kohji.

    1992-01-01

    The dynamic-beta model is extended, incorporating the synchrotron radiation effects. The model yields dynamic-emittance effect. The steady-state envelope matrix is explicitly obtained. Both equal-beam and flip-flop solutions are found. The stability of the steady-state solutions are investigated by numerical calculations. The model illustrates some characteristic features of the beam-beam interaction at e + e - colliding rings in spite of containing some qualitatively unrealistic points. (author)

  10. Muon collider interaction region design

    Directory of Open Access Journals (Sweden)

    Y. I. Alexahin

    2011-06-01

    Full Text Available Design of a muon collider interaction region (IR presents a number of challenges arising from low β^{*}<1  cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can provide an average luminosity of 10^{34}  cm^{-2} s^{-1} with an adequate protection of magnet and detector components.

  11. Perturbation of the γ angular distribution due to vacancy-induced quadrupole interaction in metals

    International Nuclear Information System (INIS)

    Abromeit, C.

    1976-01-01

    This paper presents an investigation of the influence of diffusing vacancies on the results of PAC/PAD experiments. The fluctuating hyperfine interaction process, caused by thermal hopping of the vacancies, is described by a stochastic model, and the mean value of the density matrix time development operator of the probe nucleus. First, the nuclear perturbation factors, containing all information about the interaction of the nuclear spin system with the environment, are defined. The stochastic process of vacancy diffusion in a discrete lattice is presented, and approximation methods are given leading to a significant simplification and in some cases even make possible an evaluation at all. The problem of vacancy preparation at the initial stage of the PAC/PAD-experiment is studied. For the electric field gradients produced by the vacancies at the position of the probe nucleus, an empirical ansatz is given. For different lattice structures, numerical results for integral and differential measurements with and without an applied external magnetic field are presentd. These results are discussed in view of the approximations made and compared with the experiment. Also, the influence of the initial vacancy distribution on the calculated perturbation factors is investigated. The results show good agreement with experimental data. (orig./HPOE) [de

  12. Electric quadrupole moments and strong interaction effects in pionic atoms of 165Ho, 175Lu, 176Lu, 179Hf and 181Ta

    International Nuclear Information System (INIS)

    Olaniyi, B.; Shor, A.; Cheng, S.C.; Dugan, G.; Wu, C.S.

    1981-05-01

    The effective quadrupole moments Q sub(eff) of the nuclei of 165 Ho, 175 Lu, 176 Lu, 179 Hf and 181 Ta were accurately measured by detecting the pionic atom 5g-4f x-rays of the elements. The spectroscopic quadrupole moments, Q sub(spec), were obtained by correcting Q sub(eff) for nuclear finite size effect, distortion of the pion wave function by the pion-nucleus strong interaction, and contribution to the energy level splittings by the strong interaction. The intrinsic quadrupole moments, Q 0 , were obtained by projecting Q sub(spec) into the frame of reference fixed on the nucleus. The shift, epsilon 0 , and broadening, GAMMA 0 , of the 4f energy level due to the strong interactions between the pion and the nucleons for all the elements were also measured. Theoretical values of epsilon 0 and GAMMA 0 were calculated and compared to the experimental values. The measured values of Q 0 were compared with the existing results in muonic and pionic atoms. The measured values of epsilon 0 and GAMMA 0 were also compared with existing values. (auth)

  13. Numerical calculation of spin echo amplitude in pulsed NMR: effects of quadrupole interaction

    International Nuclear Information System (INIS)

    Sobral, R.R.

    1986-01-01

    The spin echo obtained by nuclear magnetic resonance, in systems which atomic nuclei interact with magnetic fields and electric field gradients, present oscillations in function of the time interval between two excitations pulses. Using the density matrix formalism, the amplitudes of these echo is calculated, analytically. In this work, echo amplitudes obtained under different excitation conditions for nuclei of different nuclear spin values are calculated. The numerical results are compared with disposable analytical solutions. Applications of this method to the case of electric field gradient without axial symmetry were studied. Within the used approximation limits, an expression for attnuation of oscillatory behaviour of echo amplitude in function of the time interval between experimentally observed pulses was obtained. (M.C.K.) [pt

  14. All 36 exactly solvable solutions of eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor with expanded characteristic equation listing

    Energy Technology Data Exchange (ETDEWEB)

    Menke, Lorenz Harry, E-mail: lnz2004@mindspring.com [University of Pittsburgh (United States)

    2012-05-15

    This paper derives all 36 analytical solutions of the energy eigenvalues for nuclear electric quadrupole interaction Hamiltonian and equivalent rigid asymmetric rotor for polynomial degrees 1 through 4 using classical algebraic theory. By the use of double-parameterization the full general solution sets are illustrated in a compact, symmetric, structural, and usable form that is valid for asymmetry parameter {eta} is an element of (- {infinity}, + {infinity}). These results are useful for code developers in the area of Perturbed Angular Correlation (PAC), Nuclear Quadrupole Resonance (NQR) and rotational spectroscopy who want to offer exact solutions whenever possible, rather that resorting to numerical solutions. In addition, by using standard linear algebra methods, the characteristic equations of all integer and half-integer spins I from 0 to 15, inclusive are represented in a compact and naturally parameterized form that illustrates structure and symmetries. This extends Nielson's listing of characteristic equations for integer spins out to I = 15, inclusive.

  15. Design of the SSC medium-beta Interaction Regions

    International Nuclear Information System (INIS)

    Nosochkov, Y.M.

    1993-06-01

    In the SSC design the 87.12 km long collider lattice consists of two 35.28 km identical arcs located on the North and South sides of the machine and two 8.28 km clusters placed on the West and on the East. Each cluster contains two Interaction Regions (IRs), the Utility section and the interconnect sections between them. According to present plans the goal for the optics in the East IRs is to provide for a high value of the luminosity and, hence, for a low β at the Interaction Point (IP). The West IRs are aimed at providing for a large space for detector which can be achieved at the cost of higher value of the β and lower luminosity. The optics of each IR are based on the same optical configuration which gives an opportunity to use mostly identical quadrupoles and dipoles in four IRs. Trivial modification of the central region in this basic configuration allows for a wide range of values for detector free space from L = 20 m to L = 90 m, suitable for the experiments in both clusters. L denotes here the distance between the IP and the nearest magnetic element of the machine. In this paper we briefly review the current design of the so-called medium-β IR optics with a large free space for detector of L = 90 m, which could be used in the West cluster

  16. Design of the large hadron electron collider interaction region

    Science.gov (United States)

    Cruz-Alaniz, E.; Newton, D.; Tomás, R.; Korostelev, M.

    2015-11-01

    The large hadron electron collider (LHeC) is a proposed upgrade of the Large Hadron Collider (LHC) within the high luminosity LHC (HL-LHC) project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β*=10 cm in the LHeC interaction point to reach the desired luminosity of L =1033 cm-2 s-1 . This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L*=10 m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  17. Design of the large hadron electron collider interaction region

    Directory of Open Access Journals (Sweden)

    E. Cruz-Alaniz

    2015-11-01

    Full Text Available The large hadron electron collider (LHeC is a proposed upgrade of the Large Hadron Collider (LHC within the high luminosity LHC (HL-LHC project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β^{*}=10  cm in the LHeC interaction point to reach the desired luminosity of L=10^{33}  cm^{-2} s^{-1}. This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L^{*}=10  m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  18. Hyperfine interaction of {sup 25}Al in {alpha}-Al{sub 2}O{sub 3} and its quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Mihara, M. [Osaka University, Department of Physics (Japan); Nagatomo, T. [RIKEN (Japan); Matsumiya, R. [Osaka University, Department of Physics (Japan); Momota, S. [Kochi University of Technology (Japan); Ohtsubo, T. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Hirano, H.; Takahashi, S. [Niigata University, Department of Physics (Japan); Nishimura, D.; Komurasaki, J. [Osaka University, Department of Physics (Japan); Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S. [National Institute of Radiological Sciences (Japan); Fukuda, M. [Osaka University, Department of Physics (Japan); Minamisono, T. [Fukui University of Technology (Japan); Sumikama, T. [Tokyo University of Science (Japan); Tanaka, K.; Takechi, M. [RIKEN (Japan)

    2007-11-15

    The electric quadrupole (Q) moment of short-lived nucleus {sup 25}Al (I{sup {pi}} = 5/2{sup +}, T{sub 1/2} = 7.18 s) has been measured for the first time, by means of the {beta}-NQR technique. The spin polarization of {sup 25}Al was produced in heavy ion collisions and was kept in a {alpha}-Al{sub 2}O{sub 3} single crystal for as long as 2 s and the quadrupole coupling frequency was obtained as vertical bar eqQ / h({sup 25}Al in Al{sub 2}O{sub 3}) vertical bar = (4.05 {+-}0.30) MHz. From the result, the Q moment was determined as |Q({sup 25}Al)| = (240 {+-}20) mb. The present Q moment is larger by 30% than the shell model value of 184 mb, calculated by OXBASH code, which may show additional deformation of the nucleus.

  19. Electrodynamical forbiddance of a strong quadrupole interaction in surface enhanced optical processes. Experimental confirmation of the existence in fullerene C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Polubotko, A. M., E-mail: alex.marina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Chelibanov, V. P., E-mail: Chelibanov@gmail.com [State University of Information Technologies, Mechanics and Optics (Russian Federation)

    2017-02-15

    It is demonstrated that in the SERS and SEIRA spectra of the fullerene C{sub 60}, the lines, which are forbidden in usual Raman and IR spectra and allowed in SERS and SEIRA, are absent. In addition the enhancement SERS coefficient in a single molecule detection regime is ~10{sup 8} instead of the value 10{sup 14}–10{sup 15}, characteristic for this phenomenon. These results are explained by the existence of so-called electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which arises because of belonging of C{sup 60} to the icosahedral symmetry group and due to the electrodynamical law divE = 0.

  20. Cosmic ray modulation and merged interaction regions

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Goldstein, M.L.; Mcdonald, F.B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s

  1. Mechanical Design of a Second Generation LHC IR Quadrupole

    International Nuclear Information System (INIS)

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.; Scanlan, R.M.

    2003-01-01

    One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb 3 Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb 3 Sn dipoles built at LBNL, and it is for the first time applied to a cos(2(var t heta)) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS

  2. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  3. Electric quadrupole and magnetic dipole interactions at {sup 181}Ta impurity in Zr{sub 2}Ni{sub 7} intermetallic compound: Experiment and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dey, C.C., E-mail: chandicharan.dey@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Srivastava, S.K. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India)

    2013-10-15

    Electric quadrupole interactions at {sup 181}Ta impurity in the intermetallic compound Zr{sub 2}Ni{sub 7} have been studied by perturbed angular correlation technique. It has been found that there are two electric field gradients (EFG) at the {sup 181}Ta site due to two different crystalline configurations in Zr{sub 2}Ni{sub 7}, while contradictory results were reported from previous investigations. The values of EFG at room temperature have been found to be V{sub zz}=7.9×10{sup 17} V/cm{sup 2} and 7.1×10{sup 17} V/cm{sup 2} corresponding to present experimental values of quadrupole frequencies and asymmetry parameters for the two sites: ω{sub Q}{sup 1}=70.7(1) Mrad/s, η=0.28(1), δ=0.8(2)% (site fraction 84%) and ω{sub Q}{sup 2}=63(1) Mrad/s, η=0.35(5), δ∼0 (site fraction 9%). Electric field gradients and asymmetry parameters have been computed from the complementary first-principles density functional theory (DFT) to compare with present experimental results. Our calculated values of EFG are found to be in close agreement with the experimental results. No magnetic interactions in Zr{sub 2}Ni{sub 7} have been observed at 298 and 77 K which implies that there is no ferromagnetic ordering in this material down to 77 K. This observation is corroborated by theoretical calculations, wherein no magnetic moment or hyperfine field is found at any atomic site.

  4. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS

    International Nuclear Information System (INIS)

    CARDONA, J.; PEGGS, S.; PILAT, R.; PTITSYN, V.

    2004-01-01

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented [2]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model

  5. Radiation damage considerations in a high luminosity collider: The interaction region

    International Nuclear Information System (INIS)

    Lee, D.M.

    1992-01-01

    The interaction region in a high luminosity collider will be a source of radiation for all components in the vicinity and will place stringent requirements on their design. The major components in the vicinity and will place stingent requirements on their design. The major components in the vicinity of the interaction region are the physics detectors that surround the beam pipe and the focusing quadrupole magnets nearby. We will present the radiation levels in such a physics detector and the power in the forward direction that will be deposited in the forward calorimeters and quad magnets. The implications of the levels on a variety of detector components and electronics will be presented. The calculational techniques and limitation will be reviewed

  6. Network Interactions in the Great Altai Region

    Directory of Open Access Journals (Sweden)

    Lev Aleksandrovich Korshunov

    2017-12-01

    Full Text Available To improve the efficiency and competitiveness of the regional economy, an effective interaction between educational institutions in the Great Altai region is needed. The innovation growth can enhancing this interaction. The article explores the state of network structures in the economy and higher education in the border territories of the countries of Great Altai. The authors propose an updated approach to the three-level classification of network interaction. We analyze growing influence of the countries with emerging economies. We define the factors that impede the more stable and multifaceted regional development of these countries. Further, the authors determine indicators of the higher education systems and cooperation systems at the university level between the Shanghai Cooperation Organization countries (SCO and BRICS countries, showing the international rankings of the universities in these countries. The teaching language is important to overcome the obstacles in the interregional cooperation. The authors specify the problems of the development of the universities of the SCO and BRICS countries as global educational networks. The research applies basic scientific logical methods of analysis and synthesis, induction and deduction, as well as the SWOT analysis method. We have indentified and analyzed the existing economic and educational relations. To promote the economic innovation development of the border territories of the Great Altai, we propose a model of regional network university. Modern universities function in a new economic environment. Thus, in a great extent, they form the technological and social aspects of this environment. Innovative network structures contribute to the formation of a new network institutional environment of the regional economy, which impacts the macro- and microeconomic performance of the region as a whole. The results of the research can help to optimize the regional economies of the border

  7. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  8. Centering of quadrupole family

    International Nuclear Information System (INIS)

    Pinayev, Igor

    2007-01-01

    A procedure for finding the individual centers for a family of quadrupoles fed with a single power supply is described. The method is generalized for using the correctors adjacent to the quadrupoles. Theoretical background is presented as well as experimental data for the NSLS rings. The method accuracy is also discussed

  9. Hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry for highly rapid and sensitive analysis of underivatized amino acids in functional foods.

    Science.gov (United States)

    Zhou, Guisheng; Pang, Hanqing; Tang, Yuping; Yao, Xin; Mo, Xuan; Zhu, Shaoqing; Guo, Sheng; Qian, Dawei; Qian, Yefei; Su, Shulan; Zhang, Li; Jin, Chun; Qin, Yong; Duan, Jin-ao

    2013-05-01

    This work presented a new analytical methodology based on hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry in multiple-reaction monitoring mode for analysis of 24 underivatized free amino acids (FAAs) in functional foods. The proposed method was first reported and validated by assessing the matrix effects, linearity, limit of detections and limit of quantifications, precision, repeatability, stability and recovery of all target compounds, and it was used to determine the nutritional substances of FAAs in ginkgo seeds and further elucidate the nutritional value of this functional food. The result showed that ginkgo seed turned out to be a good source of FAAs with high levels of several essential FAAs and to have a good nutritional value. Furthermore, the principal component analysis was performed to classify the ginkgo seed samples on the basis of 24 FAAs. As a result, the samples could be mainly clustered into three groups, which were similar to areas classification. Overall, the presented method would be useful for the investigation of amino acids in edible plants and agricultural products.

  10. Hydrophilic interaction ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry for determination of nucleotides, nucleosides and nucleobases in Ziziphus plants.

    Science.gov (United States)

    Guo, Sheng; Duan, Jin-ao; Qian, Dawei; Wang, Hanqing; Tang, Yuping; Qian, Yefei; Wu, Dawei; Su, Shulan; Shang, Erxin

    2013-08-02

    In this study, a rapid and sensitive analytical method was developed for the determination of 20 nucleobases, nucleosides and nucleotides in Ziziphus plants at trace levels by using hydrophilic interaction ultra-high performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HILIC-UHPLC-TQ-MS/MS) in multiple-reaction monitoring (MRM) mode. Under the optimized chromatographic conditions, good separation for 20 target compounds were obtained on a UHPLC Amide column with sub-2μm particles within 10min. The overall LODs and LOQs were between 0.11-3.12ngmL(-1) and 0.29-12.48ngmL(-1) for the 20 analytes, respectively. It is the first report about simultaneous analysis of nucleobases, nucleosides and nucleotides in medicinal plants using HILIC-UHPLC-TQ-MS/MS method, which affords good linearity, precision, repeatability and accuracy. The developed method was successfully applied to Ziziphus plant (Z. jujuba, Z. jujuba var. spinosa and Z. mauritiana) samples. The analysis showed that the fruits and leaves of Ziziphus plants are rich in nucleosides and nucleobases as well as nucleotides, and could be selected as the healthy food resources. Our results in present study suggest that HILIC-UHPLC-TQ-MS/MS method could be employed as a useful tool for quality assessment of the samples from the Ziziphus plants as well as other medicinal plants or food samples using nucleotides, nucleosides and nucleobases as markers. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Rapid Quantification of Four Anthocyanins in Red Grape Wine by Hydrophilic Interaction Liquid Chromatography/Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    Science.gov (United States)

    Sun, Yongming; Xia, Biqi; Chen, Xiangzhun; Duanmu, Chuansong; Li, Denghao; Han, Chao

    2015-01-01

    The identification and quantification of four anthocyanins (cyanidin-3-O-glucoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, and malvidin-3-O-glucoside) in red grape wine were carried out by hydrophilic interaction liquid chromatography/triple quadrupole linear ion trap MS (HILIC/QTrap-MS/MS). Samples were diluted directly and separated on a Merck ZIC HILIC column with 20 mM ammonium acetate solution-acetonitrile mobile phase. Quantitative data acquisition was carried out in the multiple reaction monitoring mode. Additional identification and confirmation of target compounds were performed using the enhanced product ion mode of the linear ion trap. The LOQs were in the range 0.05-1.0 ng/mL. The average recoveries were in the range 94.6 to 104.5%. The HILIC/QTrap-MS/MS platform offers the best sensitivity and specificity for characterization and quantitative determination of the four anthocyanins in red grape wines and fulfills the quality criteria for routine laboratory application.

  12. AA, shims and washers on quadrupole ends

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Due to the fact that much of the field of the quadrupoles was outside the iron (in particular with the wide quadrupoles) and that thus the fields of quadrupoles and bending magnets interacted, the lattice properties of the AA could not be predicted with the required accuracy. After a first running period in 1980, during which detailed measurements were made with proton test beams, corrections to the quadrupoles were made in 1981, in the form of laminated shims at the ends of the poles, and with steel washers. With the latter ones, further refinements were made in an iterative procedure with measurements on the circulating beam. This eventually resulted, amongst other things, in a very low chromaticity, with the Q-values being constant to within +- 0.001 over the total momentum range of 6 %. Here we see the shims and washers on a narrow qudrupole (QFN, QDN). See also 8103203, 8103204, 8103205, 8103206.

  13. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  14. Mitigating radiation loads in Nb_{3}Sn quadrupoles for the CERN Large Hadron Collider upgrades

    Directory of Open Access Journals (Sweden)

    N. V. Mokhov

    2006-10-01

    Full Text Available Challenging beam-induced energy deposition issues are addressed for the next generation of the LHC high-luminosity interaction regions based on Nb_{3}Sn quadrupoles. Detailed mars15 Monte Carlo energy deposition calculations are performed for various coil diameters, thicknesses, and materials of the inner absorber at a field gradient of 200   T/m. It is shown that using the inner absorber made of tungsten-based materials can make the final focus superconducting quadrupoles compatible with a luminosity of 10^{35}   cm^{-2} s^{-1}.

  15. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  16. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  17. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    to do precision spectroscopic measurements on these ions. ... Bonn, investigated the non-magnetic quadrupole mass filter, .... the details of which will be discussed in the subse- ... the radial plane the ion undergoes a circular motion with the.

  18. SPS Quadrupole Magnets

    CERN Multimedia

    1974-01-01

    A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.

  19. Interaction region design driven by energy deposition

    Science.gov (United States)

    Martin, Roman; Besana, Maria Ilaria; Cerutti, Francesco; Langner, Andy; Tomás, Rogelio; Cruz-Alaniz, Emilia; Dalena, Barbara

    2017-08-01

    The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  20. Interaction region design driven by energy deposition

    Directory of Open Access Journals (Sweden)

    Roman Martin

    2017-08-01

    Full Text Available The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  1. LHC Interaction Region Upgrade Phase I

    CERN Document Server

    Ostojic, R

    2009-01-01

    The LHC is starting operation with beam in 2008. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently, maximizing its physics reach, and to achieve the nominal performance in the shortest term. Since several years the community has been discussing the directions for upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex. A well substantiated and coherent scenario for the first phase of the upgrade, which is foreseen in 2013, is now approved by CERN Council. In this paper, we present the goals and the proposed conceptual solution for the Phase-I upgrade of the LHC interaction regions. This phase relies on the mature Nb-Ti superconducting magnet technology, with the target of increasing the luminosity by a factor of 2-3 with respect to the nominal luminosity of 1034 cm-2s-1, while maximising the use of the existing infrastructure.

  2. Investigation of electric quadrupole interaction in TiO2 by means of perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Martucci, Thiago; Ramos, Juliana Marques; Carbonari, Artur Wilson; Silva, Andreia S.; Saxena, Rajendra Narain

    2011-01-01

    TiO 2 has called attention in both basic research and technological applications as an energy converter in solar cells, photo catalyst for water purification, sunscreen material, drug detection, and other applications. In addition TiO 2 is a candidate for use in medical devices, food preparation surfaces, air conditioning filters and sanitary ware surfaces.TiO 2 has two crystalline phases: anatase and rutile. The structural properties and hyperfine interactions in TiO 2 were investigated by perturbed gamma-gamma angular correlation (PAC) spectroscopy using 111 In and 181 Hf as probe nuclei. The PAC spectroscopy provides information on crystalline and electronic structure at an atomic scale. In the present work, PAC measurements on TiO 2 were focused on the development of a methodology to prepare bulk samples, which have been characterized by conventional techniques such as x-ray diffraction, (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The samples were prepared by the sol gel Pechini method. The resulting powders were annealed at different temperatures in a tubular furnace under nitrogen atmosphere. The PAC measurements were carried out at room temperature in air. The occupation fraction of the probe nuclei reached 50% when the sample was annealed at 1373K and after measured at room temperature.In this case the frequency measured in site 1 is in agreement with that found in literature for substitutional titanium site in rutile structure when 111 In were used as probe nuclei. It was measured a frequency more closely to that was found in literature[7] for the case in which 181 Hf were used as probe nuclei when the sample annealed at 1373 K and measured at 973 K. (author)

  3. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  4. Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab

    International Nuclear Information System (INIS)

    Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.

    2006-01-01

    Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest

  5. Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.; /Fermilab

    2006-08-01

    Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest.

  6. Radiation levels in the SSC interaction regions

    Energy Technology Data Exchange (ETDEWEB)

    Groom, D.E. [ed.

    1988-06-10

    The radiation environment in a typical SSC detector has been evaluated using the best available particle production models coupled with Monte Carlo simulations of hadronic and electromagnetic cascades. The problems studied include direct charged particle dose, dose inside a calorimeter from the cascades produced by incident photons and hadrons, the flux of neutrons and photons backscattered from the calorimeter into a central cavity, and neutron flux in the calorimeter. The luminosity lifetime at the SSC is dominated by collision losses in the interaction regions, where the luminosity is equivalent to losing an entire full-energy proton beam into the apparatus every six days. The result of an average p-p collision can be described quite simply. The mean charged multiplicity is about 110, and the particles are distributed nearly uniformly in pseudorapidity ({eta}) over all the angles of interest. The transverse momentum distribution is independent of angle, and for our purposes may be written as p{perpendicular}exp(-p{perpendicular}/{beta}). The mean value of p{perpendicular} may be as high as 0.6 GeV/c. Most of the radiation is produced by the very abundant low-p{perpendicular} particles. The dose or neutron fluence produced by individual particles in this energy region are simulated over a wide variety of conditions, and several measurements serve to confirm the simulation results. In general, the response (a dose, fluence, the number of backscattered neutrons, etc.) for an incident particle of momentum p can be parameterized in the form Np{sup {alpha}}, where 0.5 < {alpha}< 1.0. The authors believe most of their results to be accurate to within a factor of two or three, sufficiently precise to serve as the basis for detailed designs.

  7. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  8. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. Based on preliminary tests, it was seen that permanent quadrupole magnets can offer a low cost, reliable solution in applications requiring small, fixed-field focusing devices for use in ion or electron-beam transport systems. Permanent magnets do require special considerations in design, fabrication, handling, and service that are different than encountered in conventional quadrupole magnets. If these basic conditions are satisfied, the resulting beam-focusing device would be stable, maintenance free, with virtually an indefinite lifetime

  9. Low-frequency nuclear quadrupole resonance with a dc SQUID

    International Nuclear Information System (INIS)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs

  10. Torques on quadrupoles

    OpenAIRE

    Torres del Castillo, G.F; Méndez Garrido, A

    2006-01-01

    Making use of the fact that a 2l-pole can be represented by means of l vectors of the same magnitude, the torque on a quadrupole in an inhomogeneous external field is expressed in terms of the vectors that represent the quadrupole and the gradient of the external field. The conditions for rotational equilibrium are also expressed in terms of these vectors. Haciendo uso de que un multipolo de orden 2l puede representarse mediante l vectores de la misma magnitud, la torca sobre un cuadripolo...

  11. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  12. Double-photoionization of helium including quadrupole radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  13. Interaction for Innovation: Comparing Norwegian Regions

    Directory of Open Access Journals (Sweden)

    Marina Solesvik

    2014-01-01

    Full Text Available Building upon insights from earlier investigations of innovation collaboration from a regional perspective as well as the triple helix perspective, local/regional innovation systems and open innovation approaches, this study explores whether cooperation between firms, universities and government increases the intensity of innovation equally for the capital city and peripheral regions. We investigate whether firms located in the capital region benefit more from public support, cooperation with universities, and cooperation with different stakeholders than firms located in peripheral regions. Using logistic binary regressions, we find that capital region firms are generally not more innovative than those located elsewhere. We also find no effect on innovation from cooperation with universities, although public support is related to engagement in product and process innovations. Our results warn against simple applications of triple helix and open innovation approaches, as many forms of collaboration seem to have little impact on innovation, regardless of regional context.

  14. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  15. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  16. ISR "Terwilliger" Quadrupole

    CERN Multimedia

    1983-01-01

    There were 48 of these Quadrupoles in the ISR. They were distributed around the rings according to the so-called Terwilliger scheme. Their aperture was 184 mm, their core length 300 mm, their gradient 5 T/m. Due to their small length as compared to the aperture, the end fringe field errors had to be compensated by suitably shaping the poles.

  17. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High-Luminosity LHC upgrade

    CERN Document Server

    Chlachidze, G; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D; DiMarco, J; Felice, H; Ferracin, P; Ghosh, A; Grosclaude, P; Guinchard, M; Hafalia, A R; Holik, E; Izquierdo Bermudez, S; Krave, S; Marchevsky, M; Nobrega, F; Orris, D; Pan, H; Perez, J C; Prestemon, S; Ravaioli, E; Sabbi, G L; Salmi, T; Schmalzle, J; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Vallone, G; Velev, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb$_{3}$Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb$_{3}$Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb$_{3}$Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  18. Measurements of electric quadrupole moments of neutron-deficient Au, Pt, and Ir nuclei with NMR-ON in hcp-Co

    CERN Multimedia

    Smolic, E; Hagn, E; Zech, E; Seewald, G

    2002-01-01

    The aim of the experiments is the measurement of $\\,$i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei " QI-NMR-ON " and modulated adiabatic passage on oriented nuclei " MAPON " and $\\,$ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hcp-Co.\\\\ The measurements on Au isotopes have been finished successfully. The quadrupole moments of $^{186}$Au, $^{193m}$Au, $^{195}$Au, $^{195m}$Au, $^{197m}$Au, $^{198}$Au and $^{199}$Au were determined with high precision.\\\\ For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hcp-Co has been calibrated. Thus precise values for the spectroscopic quadrupole mo...

  19. Spinodal Theory: A Common Rupturing Mechanism in Spinodal Dewetting and Surface Directed Phase Separation (Some Technological Aspects: Spatial Correlations and the Significance of Dipole-Quadrupole Interaction in Spinodal Dewetting)

    International Nuclear Information System (INIS)

    Singh, S.P.; Singh, S.P.

    2011-01-01

    The emerging structures in spinodal dewetting of thin nano films and spinodal decomposition of binary mixtures are found to be similar with certain differences attributed to the nonlinearities inherent in the wetting forces. This paper deals with the technological aspects of the spinodal processes by giving a brief account of the theory and to correlate the two phenomena termed as spinodal dewetting of thin nano films and surface-directed phase separation. The MC simulation micrographs at early stage of spinodal dewetting of a (linear) polymer film confined between two hard walls (using FENE potential between the beads on same chain and Morse potential between inter and intra chain beads) show similarities with surface-directed phase separation (using metropolis algorithm) in creation of holes. The spinodal dewetting is also criticized on the basis of global minimization of free energy emerging from dipole-quadrupole interactions. A novel molecular scale-driving mechanism coming from asymmetric interface formation in spinodal processes is also proposed. It can be believed that the modeling done with the films under confinement of two walls works as a classical mathematical Ansatz to the dipole-quadrupole interaction coming from quantum origins and giving rise to lateral interactions in the process reflecting a colossal behavior in thin nano films though weak in nature

  20. Spinodal Theory: A Common Rupturing Mechanism in Spinodal Dewetting and Surface Directed Phase Separation (Some Technological Aspects: Spatial Correlations and the Significance of Dipole-Quadrupole Interaction in Spinodal Dewetting

    Directory of Open Access Journals (Sweden)

    Satya Pal Singh

    2011-01-01

    Full Text Available The emerging structures in spinodal dewetting of thin nano films and spinodal decomposition of binary mixtures are found to be similar with certain differences attributed to the nonlinearities inherent in the wetting forces. This paper deals with the technological aspects of the spinodal processes by giving a brief account of the theory and to correlate the two phenomena termed as spinodal dewetting of thin nanofilms and surface-directed phase separation. The MC simulation micrographs at early stage of spinodal dewetting of a (linear polymer film confined between two hard walls (using FENE potential between the beads on same chain and Morse potential between inter and intra chain beads show similarities with surface-directed phase separation (using metropolis algorithm in creation of holes. The spinodal dewetting is also criticized on the basis of global minimization of free energy emerging from dipole-quadrupole interactions. A novel molecular scale-driving mechanism coming from asymmetric interface formation in spinodal processes is also proposed. It can be believed that the modeling done with the films under confinement of two walls works as a classical mathematical ansatz to the dipole-quadrupole interaction coming from quantum origins and giving rise to lateral interactions in the process reflecting a colossal behavior in thin nano films though weak in nature.

  1. Stability considerations of permanent magnet quadrupoles for CESR phase-III upgrade

    Directory of Open Access Journals (Sweden)

    W. Lou

    1998-06-01

    Full Text Available The Cornell electron storage ring (CESR phase-III upgrade plan includes very strong permanent magnet quadrupoles in front of the cryostat for the superconducting quadrupoles and physically as close as possible to the interaction point. Together with the superconducting quadrupoles, they provide tighter vertical focusing at the interaction point. The quadrupoles are built with neodymium iron boron (NdFeB material and operate inside the 15 kG solenoid field. Requirements on the field quality and stability of these quadrupoles are discussed and test results are presented.

  2. Solar wind stream interaction regions throughout the heliosphere

    Science.gov (United States)

    Richardson, Ian G.

    2018-01-01

    This paper focuses on the interactions between the fast solar wind from coronal holes and the intervening slower solar wind, leading to the creation of stream interaction regions that corotate with the Sun and may persist for many solar rotations. Stream interaction regions have been observed near 1 AU, in the inner heliosphere (at ˜ 0.3-1 AU) by the Helios spacecraft, in the outer and distant heliosphere by the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, and out of the ecliptic by Ulysses, and these observations are reviewed. Stream interaction regions accelerate energetic particles, modulate the intensity of Galactic cosmic rays and generate enhanced geomagnetic activity. The remote detection of interaction regions using interplanetary scintillation and white-light imaging, and MHD modeling of interaction regions will also be discussed.

  3. Design of an interaction region with head-on collisions for the ILC

    CERN Document Server

    Appleby, R; Jackson, F; Alabau-Pons, M; Bambade, P; Brossard, J; Dadoun, O; Rimbault, C; Keller, L; Nosochkov, Y; Seryi, Andrei; Payet, J; Napoly, O; Rippon, C; Uriot, D

    2006-01-01

    An interaction region (IR) with head-on collisions is considered as an alternative to the baseline configuration of the International Linear Collider (ILC) which includes two IRs with finite crossing-angles (2 and 20 mrad). Although more challenging for the beam extraction, the head-on scheme is favoured by the experiments because it allows a more convenient detector configuration, particularly in the forward region. The optics of the head-on extraction is revisited by separating the e+ and e- beams horizontally, first by electrostatic separators operated at their LEP nominal field and then using a defocusing quadrupole of the final focus beam line. In this way the septum magnet is protected from the beamstrahlung power. Newly optimized final focus and extraction optics are presented, including a first look at post-collision diagnostics. The influence of parasitic collisions is shown to lead to a region of stable collision parameters. Disrupted beam and beamstrahlung photon losses are calculated along the ext...

  4. Variable Permanent Magnet Quadrupole

    International Nuclear Information System (INIS)

    Mihara, T.; Iwashita, Y.; Kyoto U.; Kumada, M.; NIRS, Chiba; Spencer, C.M.; SLAC

    2007-01-01

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments

  5. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. (author)

  6. On quantum quadrupole radiation

    International Nuclear Information System (INIS)

    Fonda, L.; Mankoc-Borstnik, N.

    1981-02-01

    In this paper it is shown that for the electromagnetic decay of a quantum system in a coherent rotational state the total quadrupole radiation is proportional to (d 5 Q/dt 5 )(dQ/dt)sup(*)+c.c. For the radiation flux out of a sphere of large radius a different quantity, closer to the classical expression (d 3 Q/dt 3 ) 2 , is found. (author)

  7. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described

  8. Measurements of quadrupole magnets

    International Nuclear Information System (INIS)

    Conradie, J.L.; Fourie, D.T.; Cornell, J.C.; Lloyd, G.C.W.

    1987-01-01

    Measurements carried out on quadrupole magnets using a long asymmetric rotating coil are described. Although the method itself is fairly well-known, the introduction of microprocessors has made this once-tedious technique into a useful and simple method of evaluating quadrupole magnets. The rotating-coil device and a variety of coil sizes are now commercially available. The coil contains a large number of extremely fine wires, embedded in a carefully balanced fibre-glass rotor, resulting in a reasonable induced voltage when the coil is rotated. A digital harmonic analyser is then used to obtain the integrated multipole content of the waveform, while the coil is rotating. By integrating over time, one can average out random noise and increase the reliability and repeatability of the measurements. Because the harmonic analysis is done in real time, the method is quick, easy and accurate, and has been extended to locate the precise magnetic centre of the quadrupole magnet by adjusting its position relative to the coil axis so as to minimize the dipole content of the output waveform. Results of these measurements are compared with those obtained with an optical method using a suspension of magnetite. The observed light pattern is explained analytically. (author)

  9. Interactions among resonances in the unresolved region

    International Nuclear Information System (INIS)

    Queiroz Bogado Leite, S. de.

    1982-11-01

    The theory on resonance absorption in the unresolved region is reviewed and a subroutine is presented, optional to UNRES in MC 2 code. Comparisons with the isolated resonance model suggest the necessity, in some cases, of considering interference and overlapping effects among resonances of the system. (Author) [pt

  10. Quadrupole hyperfine structure and splitting of Δ-levels in the microwave spectra of KOH, RbOH and CsOH in the 100 GHz region

    International Nuclear Information System (INIS)

    Kuijpers, P.; Dymanus, A.; Toerring, T.

    1977-01-01

    Hyperfine structure of rotational transitions of KOH, RbOH and CsOH in various v 2 - and l-states has been carefully measured in the 100 GHz range. From the observed splittings and broadenings information about quadrupole coupling constant (eqQ) of the K nucleus in KOH and about the spacing (Esub(Δ) - Esub(Σ)) between Σ and Δ levels in the vibrational spectrum of KOH, RbOH and CsOH has been derived. The measured value of the eqQ of KOH is close to that of KF. The separation between Σ and Δ levels is found to be rather similar for the group of the alkali hydroxides increasing gradually when progressing from LiOH to CsOH. (orig.) [de

  11. The first LHC insertion quadrupole

    CERN Multimedia

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  12. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  13. MQXFS1 Quadrupole Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2016-04-14

    This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.

  14. Rescuing the nonjet (NJ azimuth quadrupole from the flow narrative

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2017-01-01

    Full Text Available According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data “nonflow” depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication (“jet quenching” in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that “carry” the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions, and that in the boost frame a single universal quadrupole spectrum (Lévy distribution on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  15. Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative

    Science.gov (United States)

    Trainor, Thomas A.

    2017-04-01

    According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data "nonflow" depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt) data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that "carry" the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions), and that in the boost frame a single universal quadrupole spectrum (Lévy distribution) on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet) QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  16. The effect and correction of coupling generated by the RHIC triplet quadrupoles

    International Nuclear Information System (INIS)

    Pilat, F.; Peggs, S.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1995-01-01

    This study explores the possibility of operating the nominal RHIC coupling correction system in local decoupling mode, where a subset of skew quadrupoles are independently set by minimizing the coupling as locally measured by beam position monitors. The goal is to establish a correction procedure for the skew quadrupole errors in the interaction region triplets that does not rely on a priori knowledge of the individual errors. After a description of the present coupling correction scheme envisioned for RHIC, the basics of the local decoupling method will be briefly recalled in the context of its implementation in the TEAPOT simulation code as well as operationally. The method is then applied to the RHIC lattice: a series of simple tests establish that single triplet skew quadrupole errors can be corrected by local decoupling. More realistic correction schemes are then studied in order to correct distributed sources of skew quadrupole errors: the machine can be decoupled either by pure local decoupling or by a combination of global (minimum tune separation) and local decoupling. The different correction schemes are successively validated and evaluated by standard RHIC simulation runs with the complete set of errors and corrections. The different solutions and results are finally discussed together with their implications for the hardware

  17. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  18. Orbit correction system for the SSC interaction regions

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Pilat, F.; Ritson, D.M.

    1994-01-01

    In this paper we review our design of the orbit correction system for the SSC interaction regions, and discuss the principles of the local orbit correction at the IP. copyright 1994 American Institute of Physics

  19. Proteomic analysis of proteins expressing in regions of rat brain by a combination of SDS-PAGE with nano-liquid chromatography-quadrupole-time of flight tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Maekawa Tsuyoshi

    2010-07-01

    Full Text Available Abstract Background Most biological functions controlled by the brain and their related disorders are closely associated with activation in specific regions of the brain. Neuroproteomics has been applied to the analysis of whole brain, and the general pattern of protein expression in all regions has been elucidated. However, the comprehensive proteome of each brain region remains unclear. Results In this study, we carried out comparative proteomics of six regions of the adult rat brain: thalamus, hippocampus, frontal cortex, parietal cortex, occipital cortex, and amygdala using semi-quantitative analysis by Mascot Score of the identified proteins. In order to identify efficiently the proteins that are present in the brain, the proteins were separated by a combination of SDS-PAGE on a C18 column-equipped nano-liquid chromatograph, and analyzed by quadrupole-time of flight-tandem-mass spectrometry. The proteomic data show 2,909 peptides in the rat brain, with more than 200 identified as region-abundant proteins by semi-quantitative analysis. The regions containing the identified proteins are membrane (20.0%, cytoplasm (19.5%, mitochondrion (17.1%, cytoskeleton (8.2%, nucleus (4.7%, extracellular region (3.3%, and other (18.0%. Of the identified proteins, the expressions of glial fibrillary acidic protein, GABA transporter 3, Septin 5, heat shock protein 90, synaptotagmin, heat shock protein 70, and pyruvate kinase were confirmed by immunoblotting. We examined the distributions in rat brain of GABA transporter 3, glial fibrillary acidic protein, and heat shock protein 70 by immunohistochemistry, and found that the proteins are localized around the regions observed by proteomic analysis and immunoblotting. IPA analysis indicates that pathways closely related to the biological functions of each region may be activated in rat brain. Conclusions These observations indicate that proteomics in each region of adult rat brain may provide a novel way to

  20. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  1. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient supperconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  2. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  3. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.-D.

    1996-05-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole, and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors, and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model

  4. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.

    1997-01-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model. copyright 1997 American Institute of Physics

  5. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  6. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  7. Fused cerebral organoids model interactions between brain regions.

    Science.gov (United States)

    Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A

    2017-07-01

    Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.

  8. Colliding winds: Interaction regions with strong heat conduction

    International Nuclear Information System (INIS)

    Imamura, J.N.; Chevalier, R.A.

    1984-01-01

    The interaction of fast stellar wind with a slower wind from previous mass loss gives rise to a region of hot, shocked gas. We obtain self-similar solutions for the interaction region under the assumptions of constant mass loss rate and wind velocity for the two winds, conversion of energy in the shock region, and either isothermal electrons and adiabatic ions or isothermal electrons ad ions in the shocked region. The isothermal assumption is intended to show the effects of strog heat conduction. The solutions have no heat conduction through the shock waves and assume that the electron and ion temperatures are equilibriated in the shock waves. The one-temperature isothermal solutions have nearly constant density through the shocked region, while the two-temperature solutions are intermediate between the one-temperature adiabatic and isothermal solutions. In the two-temperature solutions, the ion temperature goes to zero at the point where the gas comoves with the shocked region and the density peaks at this point. The solution may qualitatively describe the effects of heat conduction on interaction regions in the solar wind. It will be important to determine whether the assumption of no thermal waves outside the shocked region applies to shock waves in the solar wind

  9. Quench protection of the LHC inner triplet quadrupoles built at Fermilab

    CERN Document Server

    Bauer, P; Chiesa, L; Di Marco, J; Fehér, S; Lamm, M J; McInturff, A D; Nobrega, A; Orris, D; Tartaglia, M; Tompkins, J C; Zlobin, A V

    2001-01-01

    High gradient quadrupoles are being developed by the US-LHC Accelerator project for the LHC interaction region inner triplets. These 5.5 m long magnets have a single 70 mm aperture and operate in superfluid helium at a peak gradient of 215 T/m. Through the construction and test of eight 2 meter long model quadrupoles, strip heaters of various geometries and insulation thicknesses have proven to be effective in protecting the magnets from excessively high coil temperatures and coil voltages to ground. This paper reports on the results of the model program to optimize the heater performance within the context of the LHC inner triplet electrical power and quench detection scheme. (6 refs).

  10. Field quality measurements of the LQXB inner triplet quadrupoles for LHC

    CERN Document Server

    Velev, G V; Carcagno, R; Di Marco, J; Fehér, S; Glass, H; Kashikhin, V V; Kerby, J; Lamm, M J; Makulski, A; Nobrega, A; Nogiec, J; Orris, D; Peterson, T; Rabehl, Roger Jon; Schlabach, P; Strait, J; Sylvester, C D; Tartaglia, M; Tompkins, J C; Zlobin, A V

    2005-01-01

    As a part of the USLHC program, Fermilab is building half of the inner triplet quadrupole magnets for the LHC. Two identical quadrupoles (MQXB) with a dipole corrector between them in a single cryogenic unit (LQXB) comprise the Q2 optical element of the final focus triplets in the interaction regions. The 5.5 m long MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. Manufacturing of the 18 magnets is in an advanced stage. A program of magnetic field quality measurements of the magnets is performed at room temperature during magnet fabrication as well as at superfluid helium temperature during the cold qualification of each magnet. Results of the measurements are summarized in this paper. (12 refs).

  11. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  12. HARMONIOUS INTERACTION AMONG ETHNICAL COMMUNITIES IN REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Sismudjito .

    2013-12-01

    Full Text Available This research was conducted in 13 villages of Secanggang district, North Sumatra Province-Indonesia. This study describes the capacity and condition of harmonious interaction among ethnical communities in regional development, which focuses on villager motivation as intervening variables. Motivation is a very important instrument in bridging the concepts of harmony among communities towards regional development. Development of a region is implemented through harmonious interaction among various ethnic communities that can serve motivation as an intervening variable. This study uses a combination of qualitative (exploratory and quantitative method.  There is one factor that plays a role as a determinant factor in causing successful development. The interaction, either directly or indirectly, generates assimilation between ethnical cultures.

  13. Global study of quadrupole correlation effects

    International Nuclear Information System (INIS)

    Bender, M.; Bertsch, G.F.; Heenen, P.-H.

    2006-01-01

    We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square charge radii for all even-even nuclei, from 16 O up to the superheavies, for which data are available. To that aim we calculate their correlated J=0 ground state by means of the angular-momentum and particle-number projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and self-consistent mean-field states restricted only by axial, parity, and time-reversal symmetries. The calculation is performed within the framework of a nonrelativistic self-consistent mean-field model by use of the same Skyrme interaction SLy4 and to a density-dependent pairing force to generate the mean-field configurations and to mix them. These are the main conclusions of our study: (i) The quadrupole correlation energy varies between a few 100 keV and about 5.5 MeV. It is affected by shell closures, but varies only slightly with mass and asymmetry. (ii) Projection on angular momentum J=0 provides the major part of the energy gain of up to about 4 MeV; all nuclei in the study, including doubly magic ones, gain energy by deformation. (iii) The mixing of projected states with different intrinsic axial deformations adds a few 100 keV up to 1.5 MeV to the correlation energy. (iv) Typically nuclei below mass A≤60 have a larger correlation energy than static deformation energy whereas the heavier deformed nuclei have larger static deformation energy than correlation energy. (v) Inclusion of the quadrupole correlation energy improves the description of mass systematics, particularly around shell closures, and of differential quantities, namely two-nucleon separation energies and two-nucleon gaps. The correlation energy provides an explanation of 'mutually enhanced magicity'. (vi) The correlation energy tends to decrease the shell effect on binding energies around magic numbers, but the magnitude of the suppression is not large enough to explain

  14. A Cryogenic Test Stand for LHC Quadrupole Magnets

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Huang, Y.; Orris, D.F.; Peterson, T.J.; Rabehl, R.J.

    2004-01-01

    A new test stand for testing LHC interaction region (IR) quadrupole magnets at the Fermilab Magnet Test Facility has been designed and operated. The test stand uses a double bath system with a lambda plate to provide the magnet with a stagnant bath of pressurized He II at 1.9 K and 0.13 MPa. A cryostated magnet 0.91 m in diameter and up to 13 m in length can be accommodated. This paper describes the system design and operation. Issues related to both 4.5 K and 1.9 K operations and magnet quenching are highlighted. An overview of the data acquisition and cryogenics controls systems is also included

  15. Design and alaysis of the PEP-II B-Factory HER QF5 quadrupole magnet

    International Nuclear Information System (INIS)

    Kendall, C.M.; Harvey, A.; Swan, J.; Yamamoto, R.; Yokota, T.; Tanabe, J.; Sullivan, M.; Wienands, U.

    1997-01-01

    The High Energy Ring (HER) in Stanford Linear Accelerator Center's PEP-II B-Factory employs two high field quality quadrupole magnets, labeled QF5, located in the Interaction Region (IR) symmetrically about the Interaction Point (IP), for final horizontal beam focusing. An asymmetric, septum, Collins quadrupole design is required for QF5 as a result of space constraints within the IR. Water cooled square hollow copper conductor is used in a two coil per pole configuration to develop the 61.7 kG/m and 82.2 kG/m gradients required for the HER 9 GeV and 12 GeV energy levels respectively. A 1.45 m long laminated iron core constructed in two halves with a 160 mm diameter aperture and pole tip shims shape the quadruple field. The QF5 field quality requirements include a multipole content of b n /b 2 ≤1 x 10 -4 for n = 3-15 at a radius of 78.1 mm. The QF5 quadrupole mechanical and magnetic design and analysis are presented

  16. Quadrupole magnetic lens

    International Nuclear Information System (INIS)

    Piskunov, V.A.

    1981-01-01

    The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors

  17. People, soil and manioc interactions in the upper Amazon region

    NARCIS (Netherlands)

    Peña Venegas, C.P.

    2015-01-01

    Abstract

    Clara Patricia Peña Venegas (2015). People, soil and manioc interactions in the upper Amazon region. PhD thesis, Wageningen University, The Netherlands, with summaries in English and Dutch, 210 pp.

    The presence of anthropogenic soils, or Amazonian Dark

  18. Machine constraints for experiments in an intermediate luminosity interaction region

    International Nuclear Information System (INIS)

    Groom, D.

    1989-05-01

    We summarize existing information about the luminosity as a function of clear space between the interaction point and the front of the final-focus triplet, and about the minimum beam pipe dimensions (stay-clear dimensions) in the region. 7 refs., 4 figs., 1 tab

  19. Excitation of giant monopole and quadrupole resonances

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Yamagata, T.; Tanaka, M. [and others; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Recent studies on the giant monopole resonance (GMR) and the giant quadrupole resonance (GQR) in /sup 144/Sm and /sup 208/Pb using the ..cap alpha..-scattering performed at RCNP are summarized. The observed angular range covered 1.6/sup 0/ -- 7/sup 0/ with a coupled system of a dipole and a triplet quadrupole magnet. The incident energy was changed from 84 to 119 MeV. The resonance shapes and energy-weighted sum-rule strengths of the GMR and the GQR were reliably deduced as a function of incident energy. The quadrupole strength of --20% was found in the GMR region. The observed excitation function of the GMR was compared with the DWBA calculation, in which the Satchler's Version I was used as a form factor representing the compressional motion of the nucleus. It was found that the experimental excitation function of the GMR shows steeper decrease as lowering the incident energy than the DWBA prediction whereas that of the GQR is successfully described by the DWBA. This suggests that examination of the model describing the GMR is necessary.

  20. LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    PILAT, F.; CAMERON, P.; PTITSYN, V.; KOUTCHOUK, J.P.

    2002-01-01

    A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analyzing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developed that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10 -5 resolution) determines the multipole content of an IR triplet

  1. Second order chromaticity of the interaction regions in the collider

    International Nuclear Information System (INIS)

    Sen, T.; Syphers, M.J.

    1993-01-01

    The collider in the SSC has large second order chromaticity (ξ 2 ) with the interaction regions (IRs) contributing substantially to it. The authors calculate the general expression for ξ 2 in a storage ring and find that it is driven by the first order chromatic beta wave. Specializing to the interaction regions, they show that ξ 2 is a minimum when the phase advance (Δμ IP -IP) between adjacent interaction points is an odd multiple of π/2 and both IRs are identical. In this case the first order chromatic beta wave is confined within the IRs. Conversely, ξ 2 is large either if δμ IP -IP = (2n + 1)π/2 and the two IRs are very far from equality or if the two IRs are equal but Δμ IP -IP = nπ

  2. Topology of the interactions pattern in pharmaceutically relevant polymorphs of methylxanthines (caffeine, theobromine, and theophiline): combined experimental (¹H-¹⁴N nuclear quadrupole double resonance) and computational (DFT and Hirshfeld-based) study.

    Science.gov (United States)

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Olejniczak, Grzegorz A; Seliger, Janez; Žagar, Veselko

    2014-09-22

    Three anhydrous methylxanthines: caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) and its two metabolites theophylline (1,3-dimethylxanthine; 1,3-dimethyl-7H-purine-2,6-dione) and theobromine (3,7-dimethyl-xanthine; 3,7-dimethyl-7H-purine-2,6-dione), which reveal multifaceted therapeutic potential, have been studied experimentally in solid state by (1)H-(14)N NMR-NQR (nuclear magnetic resonance-nuclear quadrupole resonance) double resonance (NQDR). For each compound the complete NQR spectrum consisting of 12 lines was recorded. The multiplicity of NQR lines indicates the presence of a stable β form of anhydrous caffeine at 233 K and stable form II of anhydrous theobromine at 213 K. The assignment of signals detected in NQR experiment to particular nitrogen atoms was made on the basis of quantum chemistry calculations performed for monomer, cluster, and solid at the DFT/GGA/BLYP/DPD level. The shifts due to crystal packing interactions were evaluated, and the multiplets detected by NQR were assigned to N(9) in theobromine and N(1) and N(9) in caffeine. The ordering theobromine > theophylline > caffeine site and theophylline theobromine theobromine) to π···π stacking (caffeine). Substantial differences in the intermolecular interactions in stable forms of methylxanthines differing in methylation (site or number) were analyzed within the Hirshfeld surface-based approach. The analysis of local environment of the nitrogen nucleus permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given methylxanthine to A1-A(2A) receptor (target for caffeine in the brain). Although the interactions responsible for linking neighboring methylxanthines molecules in crystals and methylxanthines with targets in the human organism can differ significantly, the knowledge of the topology of interactions provides reliable preliminary information about the nature of this binding.

  3. Using Spatial Semantics and Interactions to Identify Urban Functional Regions

    Directory of Open Access Journals (Sweden)

    Yandong Wang

    2018-03-01

    Full Text Available The spatial structures of cities have changed dramatically with rapid socio-economic development in ways that are not well understood. To support urban structural analysis and rational planning, we propose a framework to identify urban functional regions and quantitatively explore the intensity of the interactions between them, thus increasing the understanding of urban structures. A method for the identification of functional regions via spatial semantics is proposed, which involves two steps: (1 the study area is classified into three types of functional regions using taxi origin/destination (O/D flows; and (2 the spatial semantics for the three types of functional regions are demonstrated based on point-of-interest (POI categories. To validate the existence of urban functional regions, we explored the intensity of interactions quantitatively between them. A case study using POI data and taxi trajectory data from Beijing validates the proposed framework. The results show that the proposed framework can be used to identify urban functional regions and promotes an enhanced understanding of urban structures.

  4. Regional Analysis of Energy, Water, Land and Climate Interactions

    Science.gov (United States)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  6. Theoretical investigation of flute modes in a magnetic quadrupole

    International Nuclear Information System (INIS)

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L 0 for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described

  7. Automatic beam centering at the SSC interaction regions

    International Nuclear Information System (INIS)

    Joestlein, H.

    1984-01-01

    In the SSC interaction regions, the two colliding beams, each only a few microns in size, will have to be centered and maintained in good alignment over many hours, in order to provide the maximum possible luminosity and to minimize off-center beam-beam focussing effects. It is unlikely that sufficiently good alignment can be achieved without some kind of active feedback system, based on the beam-beam interaction rate. This memo describes such a system. In the proposed scheme, one of the beams is moved continuously and in a circular fashion about its mean transverse position. The radius of this motion is approximately 0.01 of the rms beam size at the interaction point. The motion is achieved with two sets of crossed high frequency dipole magnets, one on each side of the interaction region, suitably phased. As a consequence of this motion, the beam-beam interaction rate is modulated in synchronism with the beam motion when the beams are not centered on one another. The amplitude and phase of this modulation yields information on the magnitude and direction of the misalignment between the beams, allowing continuous display and automatic correction of any misalignment

  8. Precise calculations of the deuteron quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.

  9. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  10. Quadrupole moment in the excited 2Psub(1/2) state

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Yakhontov, V.L.

    1984-01-01

    Computation of the quadrupole moment values in the 2Psub(1/2) states of hydrogen and meso-hydrogen is carried out. It is shown that allowance for the hyperfine interaction of the electron with the proton in the first order of perturbation theory results in giant values of the quadrupole moment of the atoms. (author)

  11. Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Sang-ho Kim

    2010-07-01

    Full Text Available The Spallation Neutron Source (SNS radio-frequency quadrupole (RFQ had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation.

  12. Tactile interactions activate mirror system regions in the human brain.

    Science.gov (United States)

    McKyton, Ayelet

    2011-12-07

    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  13. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    International Nuclear Information System (INIS)

    Wang, L.

    2011-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism (2). Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the

  14. Static quadrupole moment of the Kπ = 14+ isomer in 176W

    International Nuclear Information System (INIS)

    Ionescu-Bujor, M.; Iordachescu, A.; Bucurescu, D.; Brandolini, F.; Lenzi, S. M.; Pavan, P.; Rossi Alvarez, C.; Marginean, N.; Medina, N.H.; Ribas, R.V.; De Poli, M.; Napoli, D. R.; Podolyak, Zs.; Ur, C. A.

    2001-01-01

    The investigation of high-K isomeric states in the deformed nuclei of the A∼180 region has found renewed interest in recent years. Much experimental and theoretical work was devoted to understand the mechanisms which govern their decay to lower-lying states, particularly the anomalous strong decays to low-K states. Other questions of great importance are the quenching of the pairing correlations and the shape polarization effects in the high-seniority multi-quasiparticle excitations. Our interest focused on the 41 ns K π =14 + 3746 keV isomeric state with anomalous decay in 176 W. On the basis of a precise g-factor measurement we assigned to this isomer a pure four-quasiparticle configuration, composed by two protons in the 7/2 + [404] and 9/2 - [514] orbitals and two neutrons in the 7/2 + [633] and 5/2 - [512] orbitals. In the present work the measurement of its static quadrupole moment has been performed. Prior to our experiment, static quadrupole moments have been measured only for three high-K isomeric states of seniority ≥ 4 in the A∼180 region: 16 + in 178 Hf, 35/2 - in 179 W and 25 + in 182 Os. A deformation very similar to that of the ground state has been deduced for the 16 + isomer in 178 Hf, while for the high-K isomers in 179 W and 182 Os significantly smaller deformations were reported. The quadrupole interaction of the 14 + isomeric state in 176 W has been investigated in the electric field gradient (EFG) of the polycrystalline lattice of metallic Tl by applying the time-differential perturbed angular distribution method. For W impurities in Tl host the EFG strength and its temperature dependence have been recently reported. The isomer was populated in the 164 Dy( 16 O,4n) 176 W reaction using a 83 MeV 16 O pulsed beam (pulse width 1.5 ns, repetition period 800 ns) delivered by the XTU-Tandem of Laboratori Nazionali di Legnaro. The target consisted of 0.5 mg/cm 2 metallic 164 Dy on thick Tl backing in which both the recoiling 176 W nuclei and

  15. Electromagnetic design of superconducting quadrupoles

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-10-01

    Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.

  16. Configuration interaction calculations for the region of 76Ge

    Science.gov (United States)

    Brown, Alex

    2017-09-01

    I will present a short history of the configuration interaction Hamiltonians that have been developed for the (0f5 / 2 , 1p3 / 2 , 1p1 / 2 , 0g9 / 2) (jj 44) model space. This model space is appropriate for the region of nuclei bounded by the nickel isotopes for Z = 28 and the isotones with N = 50 . I will discuss results for the double-beta decay of 76Ge that lies in the jj 44 region. I will show results for the structure of nuclei around 76Ge for some selected data from gamma decay, Gamow-Teller beta decay, charge-exchange reactions, one-nucleon transfer reactions, and two-nucleon transfer reactions. This work was supported by NSF Grant PHY-1404442.

  17. Quadrupole transport experiment with space charge dominated cesium ion beam

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel

  18. Field quality in low-β superconducting quadrupoles and impact on the beam dynamics for the Large Hadron Collider upgrade

    Directory of Open Access Journals (Sweden)

    Boris Bellesia

    2007-06-01

    Full Text Available A possible scenario for the luminosity upgrade of the Large Hadron Collider is based on large aperture quadrupoles to lower β^{*} in the interaction regions. Here we analyze the measurements relative to the field quality of the RHIC and LHC superconducting quadrupoles to find out the dependence of field errors on the size of the magnet aperture. Data are interpreted in the framework of a Monte Carlo analysis giving the reproducibility in the coil positioning reached in each production. We show that this precision is likely to be independent of the magnet aperture. Using this result, we can carry out an estimate of the impact of the field quality on the beam dynamics for the collision optics.

  19. Nuclear spin phonon relaxation by Raman process in Na{sub 3}H(SO{sub 4}){sub 2} single crystals with the electric-quadrupole-type interaction using {sup 1}H and {sup 23}Na NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ae Ran [Department of Science Education, Jeonju University, Jeonju 560-759, Chonbuk (Korea, Republic of)], E-mail: aeranlim@hanmail.net; Shin, Chang Woo [Solid State Analysis Team, Korea Basic Science Institute, Daegu 702-701 (Korea, Republic of)

    2008-11-30

    Successive phase transitions in a Na{sub 3}H(SO{sub 4}){sub 2} single crystal were found at 296, 513, and 533 K. To investigate the mechanism of the phase transition at 296 K, the {sup 1}H and {sup 23}Na spin-lattice relaxation time and the spin-spin relaxation time of Na{sub 3}H(SO{sub 4}){sub 2} were measured near the phase transition temperature using a FT NMR spectrometer. The spin-lattice relaxation time, T{sub 1}, for {sup 1}H in Na{sub 3}H(SO{sub 4}){sub 2} crystals exhibits a minimum below T{sub C1} (=296 K) indicating the presence of distinct molecular motion governed by the Bloembergen-Purcell-Pound (BPP) theory. Although the results for the {sup 1}H and {sup 23}Na relaxation times provide no evidence of the phase transition at T{sub C1}, the separation of the {sup 23}Na resonance lines changes abruptly at T{sub C1}. The phase transition at 296 K produces a change in the separation of the Na resonance line that is associated with a change in the atomic positions in the vicinity of the Na ions. Also, the nuclear spin-lattice relaxation process in Na{sub 3}H(SO{sub 4}){sub 2} crystals with the electric-quadrupole-type interaction proceed via Raman process. These results are compared with those obtained for other M{sub 3}H(SO{sub 4}){sub 2} (M=K, Rb, and Cs) crystals, which have similar hydrogen-bonded structures.

  20. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Interacting with Compatriots in Russian Regions: the Experience of Tatarstan

    Directory of Open Access Journals (Sweden)

    Radik R. Gimatdinov

    2015-01-01

    Full Text Available Work with compatriots promoting the cultural presence of Russia in the world becomes an important element of "soft power" Supporting the preservation and development among compatriots the cultural traditions of the Tatar people as components of ethnic and cultural diversity of Russia, Tatarstan participates in the implementation of the national foreign policy. The Republic of Tatarstan interacts constructively with the Russian Foreign Ministry, Rossotrudnichestvo, takes part in the activities of the Government Commission on Compatriots Abroad. Work with compatriots is carried out by the executive authorities of the republic within a number of regional government programs. The Coordination Council for the Affairs of Compatriots is created in Tatarstan .The sessions of the World Congress of Tatars (WCT are held every five years. The Executive Committee of the WCT is in contact with one and a half hundreds of Tatar organizations in about 40 countries. The most important event in the in the cultural life of Tatar diaspora is celebration of Sabantui. The Days of the Republic of Tatarstan are also held abroad with great success,and they are aimed at strengthening bilateral cooperation together with the promotion of Tatar culture in the world.A special place in the activities of all the Tatar communities takes the honoring and support of the WWII and labor veterans. Work with the young people is the part of interaction with compatriots: youth forums and camps with the study of the Tatar language are organized. Attracting of compatriots to Tatarstan universities is carried out within Russian government programs.The work of strengthening business ties in the framework of the Tatar diaspora is conducted systematically. The interaction with various target groups of compatriots (women, scientists, cultural figures is organized.The authors propose measures of uniting overseas communities of compatriots and exploiting their potential to promote the interests

  2. Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

    International Nuclear Information System (INIS)

    Usman, I.; Buthelezi, Z.; Carter, J.; Cooper, G.R.J.; Fearick, R.W.; Foertsch, S.V.; Fujita, H.; Fujita, Y.; Kalmykov, Y.; Neumann-Cosel, P. von; Neveling, R.; Papakonstantinou, P.; Richter, A.; Roth, R.; Shevchenko, A.; Sideras-Haddad, E.; Smit, F.D.

    2011-01-01

    The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40 Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E p =200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40 Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle-two-hole (2p-2h) states.

  3. Nuclear quadrupole resonance of arsenolite

    International Nuclear Information System (INIS)

    Madarazo, R.

    1988-01-01

    A pulsed Nuclear Quadrupole Resonance (NQR) spectrometer was constructed using imported Matec units. Peripherical components were specially assembled and tested for the implantation of the spin-echo technique in the Laboratorio de Centros de Cor of IFUSP. The R.F. operation range is from 50 to 1 ) and spin-spin (T 2 ) relaxation times were carried out at room temperature in arsenolite. The 75 As NQR frequency measured at room temperature is 116.223 MHz. (author) [pt

  4. Interactive computation of coverage regions for indoor wireless communication

    Science.gov (United States)

    Abbott, A. Lynn; Bhat, Nitin; Rappaport, Theodore S.

    1995-12-01

    This paper describes a system which assists in the strategic placement of rf base stations within buildings. Known as the site modeling tool (SMT), this system allows the user to display graphical floor plans and to select base station transceiver parameters, including location and orientation, interactively. The system then computes and highlights estimated coverage regions for each transceiver, enabling the user to assess the total coverage within the building. For single-floor operation, the user can choose between distance-dependent and partition- dependent path-loss models. Similar path-loss models are also available for the case of multiple floors. This paper describes the method used by the system to estimate coverage for both directional and omnidirectional antennas. The site modeling tool is intended to be simple to use by individuals who are not experts at wireless communication system design, and is expected to be very useful in the specification of indoor wireless systems.

  5. Interactive Building Design Space Exploration Using Regionalized Sensitivity Analysis

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2017-01-01

    simulation inputs are most important and which have negligible influence on the model output. Popular sensitivity methods include the Morris method, variance-based methods (e.g. Sobol’s), and regression methods (e.g. SRC). However, all these methods only address one output at a time, which makes it difficult...... in combination with the interactive parallel coordinate plot (PCP). The latter is an effective tool to explore stochastic simulations and to find high-performing building designs. The proposed methods help decision makers to focus their attention to the most important design parameters when exploring......Monte Carlo simulations combined with regionalized sensitivity analysis provide the means to explore a vast, multivariate design space in building design. Typically, sensitivity analysis shows how the variability of model output relates to the uncertainties in models inputs. This reveals which...

  6. Pion-nucleon interactions in low energy region

    International Nuclear Information System (INIS)

    Hiroshige, Noboru; Tsujimura, Tadakuni.

    1977-01-01

    Pion-nucleon interactions in low energy region (below 320 MeV in kinetic energy) are investigated on the basis of the one-particle-exchange model. The model is directly compared with the experimental data, i.e., differential cross sections and recoil nucleon polarizations, since phase shifts have not been uniquely determined. It is shown that these experimental data can be well reproduced by taking account of N (nucleon), Δ 33 , N 11 , N 13 , rho, f 0 and S (scalar meson) in the intermediate state. Some comments are given on the coupling constants which are determined so as to minimize chi-squared value (chi 2 ). Our predicted phase shifts for s-, p- and d-waves are also compared with other authors'. (auth.)

  7. Status of the FCC-ee Interaction Region Design

    CERN Document Server

    Roman Martin; Medina, L

    2015-01-01

    The FCC-ee project is a high-luminosity circular electron-positron collider envisioned to operate at center-of-mass energies from 90 to 350 GeV, allowing high-precision measurements of the properties of the Z, W and Higgs boson as well as the top quark. It is considered to be a predecessor of a new 100 TeV proton-proton collider hosted in the same 80 to 100 km tunnel in the Geneva area. Currently two interaction region designs are being developed by CERN and BINP using different approaches to the definition of baseline parameters. Both preliminary designs are presentedwith the aimof highlighting the challenges the FCC-ee is facing.

  8. Aerosol-cloud interactions from urban, regional to global scales

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan [California Institute of Technology, Pasadena, CA (United States). Seismological Lab.

    2015-10-01

    The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

  9. Aerosol-cloud interactions from urban, regional to global scales

    International Nuclear Information System (INIS)

    Wang, Yuan

    2015-01-01

    The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

  10. Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region

    Science.gov (United States)

    Hong, X.; Wang, S.; Nachamkin, J. E.

    2017-12-01

    Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.

  11. Delineation of the calcineurin-interacting region of cyclophilin B.

    Science.gov (United States)

    Carpentier, M; Allain, F; Haendler, B; Slomianny, M C; Spik, G

    2000-12-01

    The immunosuppressant drug cyclosporin A (CsA) inhibits T-cell function by blocking the phosphatase activity of calcineurin. This effect is mediated by formation of a complex between the drug and cyclophilin (CyP), which creates a composite surface able to make high-affinity contacts with calcineurin. In vitro, the CyPB/CsA complex is more effective in inhibiting calcineurin than the CyPA/CsA and CyPC/CsA complexes, pointing to fine structural differences in the calcineurin-binding region. To delineate the calcineurin-binding region of CyPB, we mutated several amino acids, located in two loops corresponding to CyPA regions known to be involved, as follows: R76A, G77H, D155R, and D158R. Compared to wild-type CyPB, the G77H, D155R, and D158R mutants had intact isomerase and CsA-binding activities, indicating that no major conformational changes had taken place. When complexed to CsA, they all displayed only reduced affinity for calcineurin and much decreased inhibition of calcineurin phosphatase activity. These results strongly suggest that the three amino acids G77, D155, and D158 are directly involved in the interaction of CyPB/CsA with calcineurin, in agreement with their exposed position. The G77, D155, and D158 residues are not maintained in CyPA and might therefore account for the higher affinity of the CyPB/CsA complex for calcineurin.

  12. Government and Governance of Regional Triple Helix Interactions

    Science.gov (United States)

    Danson, Mike; Todeva, Emanuela

    2016-01-01

    This conceptual paper contributes to the discussion of the role of regional government and regional Triple Helix constellations driving economic development and growth within regional boundaries. The impact of regionalism and subsidiarity on regional Triple Helix constellations, and the questions of governmentality, governance and institutional…

  13. Summary of Test Results of MQXFS1—The First Short Model 150 mm Aperture Nb$_3$Sn Quadrupole for the High-Luminosity LHC Upgrade

    CERN Document Server

    Stoynev, S; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D; DiMarco, J; Felice, H; Ferracin, P; Chlachidze, G; Ghosh, A; Grosclaude, P; Guinchard, M; Hafalia, A R; Holik, E; Izquierdo Bermudez, S; Krave, S; Marchevsky, M; Nobrega, F; Orris, D; Pan, H; Perez, J C; Prestemon, S; Ravaioli, E; Sabbi, G; Salmi, T; Schmalzle, J; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Vallone, G; Velev, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    The development of $Nb_3Sn$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb$_{3}$Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also sum...

  14. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $Nb_3Sn$ Quadrupole for the High-Luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Stoynev, S.; et al.

    2017-01-01

    The development of $Nb_3Sn$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.

  15. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    CERN Document Server

    Ambrosio, G; Wanderer, P; Ferracin, P; Sabbi, G

    2017-01-01

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb$_{3}$Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  16. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermilab; Chlachidze, G. [Fermilab; Wanderer, P. [Brookhaven; Ferracin, P. [CERN; Sabbi, G. [LBNL, Berkeley

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  17. MQXFS1 Quadrupole Fabrication Report

    CERN Document Server

    Ambrosio, G; Bossert, R; Cavanna, E; Cheng, D; Chlachidize, G; Cooley, L D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Hafalia, R; Holik, E F; Izquierdo Bermudez, S; Juchno, M; Krave, S; Marchevsky, M; Muratore, J; Nobrega, F; Pan, H; Perez, J C; Pong, I; Prestemon, S; Ravaioli, E; Sabbi, G L; Santini, C; Schmalzle, J; Schmalzle, J; Stoynev, S; Strauss, T; Vallone, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  18. MQXFS1 Quadrupole Fabrication Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Anerella, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bossert, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cavanna, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cheng, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chlachidize, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dietderich, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Felice, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ghosh, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hafalia, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holik, E. F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bermudez, S. Izquierdo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Juchno, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Krave, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchevsky, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muratore, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nobrega, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perez, J. C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pong, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestemon, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ravaioli, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Santini, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmalzle, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoynev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Strauss, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vallone, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wanderer, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, X. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-07-16

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  19. Magnetic Measurements of the First Nb$_3$Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    CERN Document Server

    DiMarco, J; Chlachidze, G; Ferracin, P; Holik, E; Sabbi, G; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Velev, G; Wang, X

    2017-01-01

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb$_{3}$Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  20. Status of Long Coil Production for the MQXFB Nb3Sn Prototype Quadrupole for the HiLumi LHC

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Friedrich; Ferracin, Paolo; Todesco, Ezio; Triquet, Stephan; Pozzobon, Marc; Luzieux, S.; Perez, J. C.; Scheuerlein, Christian; Cavanna, Eugenio; Ohnweiler, Timm; Revilak, Philipp; Genestier, Thibault; Principe, Rosario; Prin, Herve; Duret, Max; Savary, Frederic

    2017-01-01

    The High luminosity LHC upgrade target is to increase the integrated luminosity by a factor 10, resulting in an integrated luminosity of 3000 fb-1. One major improvement foreseen is the reduction of the beam size at the collision points. This requires the development of 150 mm single aperture quadrupoles for the interaction regions. These quadrupoles are under development in a joint collaboration between CERN and the US-LHC Accelerator Research Program (LARP). The chosen approach for achieving a nominal quadrupole field gradient of 132.6 T/m is based on the Nb3Sn technology. The coils with a length of 7281 mm will be the longest Nb3Sn coils fabricated so far for accelerator magnets. The production of the long coils was launched in 2016 based on practise coils made from copper. This paper provides a status of the production of the first low grade and full performance coils and describes the production process and applied quality control. Furthermore an outlook for the prototype assembly is provided.

  1. Ab-initio study of pure sup 7 sup 7 Se and sup 1 sup 2 sup 5 Te systems and of the sup 7 sup 7 Se nuclear quadrupole interaction in tellurium

    CERN Document Server

    Oh, Y K; Cho, H S

    1999-01-01

    Using the Hartree-Fock cluster procedure, we have studied the electric-field gradient tensors at the nuclear sites of sup 7 sup 7 Se and sup 1 sup 2 sup 5 Te in pure sup 1 sup 2 sup 5 Te systems and in tellurium crystalline system's with a sup 7 sup 7 Se impurity. From the results for the pure systems, sup 7 sup 7 Se in selenium and sup 1 sup 2 sup 5 Te in tellurium, using the observed quadrupole moments: Q( sup 7 sup 7 Se) 0.75 +- 0.07 barns and Q( sup 1 sup 2 sup 5 Te) = 0.35 +- 0.04 barns. Comparison is made with earlier values obtained by different methods. Using our calculated values of Q and the results of a study of the field-gradient tensors for sup 7 sup 7 Se in tellurium, the theoretical values of the quadrupole coupling constants are found to agree, within about 7 percent, with experiment. The calculated asymmetry parameters are also found to be in reasonable agreement with the experiment values, although the agreement not as close as in the case of the quadrupole -coupling constants. Directions fo...

  2. Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.

    1988-01-01

    The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)

  3. Simulation of a quadrupole resonator

    Energy Technology Data Exchange (ETDEWEB)

    Kleindienst, Raphael [Helmholtz Zentrum Berlin (Germany)

    2013-07-01

    Modern particle accelerators often rely on superconducting radio frequency (SRF) technology for accelerating cavities. In particular in CW operation, very high quality factors up into the high range are desirable, since one of the main cost drivers of such an accelerator, the cryogenic refrigeration plant, is inversely proportional to Q{sub 0}. Present day superconducting cavities are generally made of solid Niobium. A possibility to increase the quality factor as well as accelerating fields is to use thin film coated cavities. Apart from Niobium thin films, other superconducting materials, such as MgB{sub 2}, NbN and Nb{sub 3}Sn are promising candidates. Measuring and understanding the RF-properties of superconducting thin films, specifically the surface resistance, is needed to drive forward this development. Currently only few facilities exist capable of measuring the surface resistance of thin films samples with a resolution in the nano-ohm range at the operating frequency of typical cavities(e.g. L-band). A dedicated test stand consisting of a quadrupole resonator is therefore being constructed at the Helmholtz Zentrum Berlin. This system is based on the 400 MHz quadrupole resonator at CERN, with the design adapted to 433 MHz (making available the higher harmonic mode at 1.3 GHz) and optimized with respect to resolution and maximum achievable fields using simulation data obtained with CST Microwave Studio as well as ANSYS. The simulated design is being manufactured. An outlook for future physics runs is given.

  4. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  5. Electrostatic quadrupoles for heavy-ion fusion

    International Nuclear Information System (INIS)

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed

  6. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  7. Interactive 3D computer model of the human corneolimbal region

    DEFF Research Database (Denmark)

    Molvaer, Rikke K; Andreasen, Arne; Heegaard, Steffen

    2013-01-01

    in the limbal region: limbal epithelial crypts (LECs), limbal crypts (LCs) and focal stromal projections (FSPs). In all, eight LECs, 25 LCs and 105 FSPs were identified in the limbal region. The LECs, LCs and FSPs were predominantly located in the superior limbal region with seven LECs, 19 LCs and 93 FSPs...

  8. Longitudinal capture in the radio-frequency-quadrupole structure

    International Nuclear Information System (INIS)

    Inagaki, S.

    1980-03-01

    The radio-frequency-quadrupole (RFQ) linac structure not only can attain easily transverse focusing in the low-beta region, but also can obtain very high capture efficiency because of its low beta-lambda and low-particle rigidity. An optimization study of the zero space-charge longitudinal capture in an RFQ linac that yields configurations with large capture efficiency is described

  9. Quadrupole collectivity in {sup 128}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Boenig, Esther Sabine

    2014-07-07

    The regions around shell closures, especially around doubly magic nuclei, are of major interest in nuclear structure physics, as they provide a perfect test for nuclear structure theory. The neutron-rich Cd isotopes in the region of {sup 132}Sn are only two protons away from the shell closure at Z=50 and in close proximity to the N=82 magic number. Nevertheless they show an irregular behaviour regarding the excitation energy of the first excited 2{sup +} state. This is not reproduced by shell model calculations, which is astonishing due to the proximity of the shell closures. In order to shed light on the much discussed region around doubly magic {sup 132}Sn, a Coulomb excitation experiment of {sup 128}Cd has been performed at REX-ISOLDE, CERN. The reduced transition strength B(E2;0{sup +}{sub gs} → 2{sup +}{sub 1}), which is a measure of collectivity, and the spectroscopic quadrupole moment Q{sub s}(2{sup +}{sub 1}) as a measure of deformation could be determined for the first time. The results are shown as the continuation of already measured neutron-rich Cd isotopes and are compared to both beyond mean field and shell model calculations, which give different predictions for these observables.

  10. Investigating Near Space Interaction Regions: Developing a Remote Observatory

    Science.gov (United States)

    Gallant, M.; Mierkiewicz, E. J.; Oliversen, R. J.; Jaehnig, K.; Percival, J.; Harlander, J.; Englert, C. R.; Kallio, R.; Roesler, F. L.; Nossal, S. M.; Gardner, D.; Rosborough, S.

    2016-12-01

    The Investigating Near Space Interaction Regions (INSpIRe) effort will (1) establish an adaptable research station capable of contributing to terrestrial and planetary aeronomy; (2) integrate two state-of-the-art second generation Fabry-Perot (FP) and Spatial Heteorodyne Spectrometers (SHS) into a remotely operable configuration; (3) deploy this instrumentation to a clear-air site, establishing a stable, well-calibrated observatory; (4) embark on a series of observations designed to contribute to three major areas of geocoronal research: geocoronal physics, structure/coupling, and variability. This poster describes the development of the INSpIRe remote observatory. Based at Embry-Riddle Aeronautical University (ERAU), initiative INSpIRe provides a platform to encourage the next generation of researchers to apply knowledge gained in the classroom to real-world science and engineering. Students at ERAU contribute to the INSpIRe effort's hardware and software needs. Mechanical/optical systems are in design to bring light to any of four instruments. Control software is in development to allow remote users to control everything from dome and optical system operations to calibration and data collection. In April 2016, we also installed and tested our first science instrument in the INSpIRe trailer, the Redline DASH Demonstration Instrument (REDDI). REDDI uses Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy, and its deployment as part of INSpIRe is a collaborative research effort between the Naval Research Lab, St Cloud State University, and ERAU. Similar to a stepped Michelson device, REDDI measures oxygen (630.0 nm) winds from the thermosphere. REDDI is currently mounted in a temporary location under INSpIRe's main siderostat until its entrance optical system can be modified. First light tests produced good signal-to-noise fringes in ten minute integrations, indicating that we will soon be able to measure thermospheric winds from our Daytona Beach testing site

  11. Estimating the Local Size and Coverage of Interaction Network Regions

    Science.gov (United States)

    Eagle, Michael; Barnes, Tiffany

    2015-01-01

    Interactive problem solving environments, such as intelligent tutoring systems and educational video games, produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled the student-tutor interactions using complex network…

  12. Patterns of interactive learning in a high tech region

    NARCIS (Netherlands)

    Meeus, M.T.H.; Oerlemans, L.A.G.; Hage, J.

    2001-01-01

    This paper aims at developing a theoretical framework that explains levels of interactive learning. Interactive learning is defined as the exchange and sharing of knowledge resources conducive to innovation between an innovator firm, its suppliers, and/or its customers. Our research question is: Why

  13. Field quality of the LHC inner triplet quadrupoles being fabricated at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gueorgui V. Velev et al.

    2003-06-02

    Fermilab, as part of the US-LHC Accelerator Project, has designed and is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 70 mm bore, 5.5 m long magnets operate in superfluid helium at 1.9 K with a maximum operating gradient of 214 T/m. Two quadrupoles, combined with a dipole orbit corrector, form a single LQXB cryogenic assembly, the Q2 optical element of the final focus triplets in the LHC interaction regions. Field quality was measured at room temperature during fabrication of the cold masses as well as at superfluid helium temperature in two thermal cycles for the first LQXB cryogenic assembly. Integral cold measurements were made with a 7.1 m long rotating coil and with a 0.8 m long rotating coil at 8 axial positions and in a range of currents. In addition to the magnetic measurements, this paper reports on the quench performance of the cold masses and on the measurements of their internal alignment.

  14. Fabrication of First 4-m Coils for the LARP MQXFA Quadrupole and Assembly in Mirror Structure

    CERN Document Server

    Holik, E F; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D R; Ferracin, P; Ghosh, A K; Izquierdo Bermudez, S; Krave, S; Nobrega, A; Perez, J C; Pong, I; Sabbi, G L; Santini, C; Schmalzle, J; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    The US LHC Accelerator Research Program is constructing prototype interaction region quadrupoles as part of the US in-kind contribution to the Hi-Lumi LHC project. The low-beta MQXFA Q1/Q3 coils have a 4-m length and a 150 mm bore. The design is first validated on short, one meter models (MQXFS) developed as part of the longstanding Nb$_{3}$Sn quadrupole R&D; by LARP in collaboration with CERN. In parallel, facilities and tooling are being developed and refined at BNL, LBNL, and FNAL to enable long coil production, assembly, and cold testing. Long length scale-up is based on the experience from the LARP 90 mm aperture (TQ-LQ) and 120 mm aperture (HQ and Long HQ) programs. A 4-m long MQXF practice coil was fabricated, water jet cut and analyzed to verify procedures, parts, and tooling. In parallel, the first complete prototype coil (QXFP01a) was fabricated and assembled in a long magnetic mirror, MQXFPM1, to provide early feedback on coil design and fabrication following the successful experience of previo...

  15. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    International Nuclear Information System (INIS)

    Wang, Lanfa

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  16. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  17. Design and performance of a new 50mm quadrupole magnet for the SSC

    International Nuclear Information System (INIS)

    Spigo, G.; Cunningham, G.; Goodzeit, C.; Orrell, D.; Turner, J.; Jayakumar, R.

    1994-01-01

    A superconducting quadrupole model magnet with a 50 mm aperture and a gradient of 190 T/m, in operation at 4.35 K and 6500 A, has been designed, built and tested at the SSC. This accelerator magnet is expected to have application in the interaction regions of the collider main rings. Its dipole-type stainless steel collars with mated self-aligning pole spacers were a major innovation in design. The model had stringent requirements on field quality and a conservative 21% current margin. The first two articles have now demonstrated satisfactory quench performance over several thermal cycles, reaching plateau at approximately 8660 A with minimal training. This paper is a brief sketch of the design and preliminary results on the first model. Fabrication and testing are described in other papers of this conference

  18. Magnetic Analysis of the Nb$_3$Sn low-beta Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Chlachidze, G; Ferracin, P; Holik, E; Di Marco, J; Todesco, E; Sabbi, G L; Vallone, G; Wang, X

    2017-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture $Nb_3Sn$ quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axis and the contribution of the coil ends are also discussed. Moreover, we present the influence of the conductor magnetization and the dynamic effects.

  19. Mechanical design and analysis of LHC inner triplet quadrupole magnets at Fermilab

    CERN Document Server

    Andreev, N; Bossert, R; Chichili, D R; Fehér, S; Kerby, J S; Lamm, M J; Makarov, A A; Nobrega, A; Novitski, I; Orris, D; Ozelis, J P; Tartaglia, M; Tompkins, J C; Yadav, S; Zlobin, A V

    2000-01-01

    A series of model magnets is being constructed and tested at Fermilab in order to verify the design of high gradient quadrupole magnets for the LHC interaction region inner triplets. The 2 m models are being built in order to refine the mechanical and magnetic design, optimize fabrication and assembly tooling, and ensure adequate quench performance. This has been carried out using a complementary combination of analytical and FEA modeling, empirical tests on 0.4 m mechanical assemblies and testing of model magnets during fabrication and under cryogenic conditions. The results of these tests and studies have led to improvements in the design of the magnet end restraints, to a preferred choice in coil end part material, and to a better understanding of factors affecting coil stress throughout the fabrication and operational stages. (8 refs).

  20. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    Science.gov (United States)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.; Downey, Joshua S.; Nudell, Jeremy J.; Jain, Animesh

    2018-01-30

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  1. Nonuniform radiation damage in permanent magnet quadrupoles.

    Science.gov (United States)

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  2. Nonuniform radiation damage in permanent magnet quadrupoles

    International Nuclear Information System (INIS)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-01-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components

  3. Nonuniform radiation damage in permanent magnet quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  4. Hadron-nucleus interactions in the nucleon resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Gessler, Stefanie

    2017-06-15

    Experiments with high-energy hadron beams have found renewed attention. In the near future nuclear studies with hadron beams are planned at least at two facilities, namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory investigation of interactions of mesons and baryons with nuclei at energies of interest for future research with antiprotons at FAIR. The theoretical discussion is started with an introductory presentation of the optical model and Eikonal theory as appropriate tools for the description of scattering processes at high energies. In antiproton interactions with nucleons and nuclei, annihilation processes into pions are playing the major role for the reaction dynamics. Therefore, we consider first the interactions of pions with nuclei by deriving an extended selfenergy scheme for a large range of incident pion energies. In order to have a uniform description over a broad energy interval, the existing approaches had to be reconsidered and in essential parts reformulated and extended. A central result is the treatment of pion-nucleus self-energies from high lying N{sup *} resonances. Only by including those channels in a proper manner into the extended pion optical potential, pion-nucleus scattering could be described over the required large energy range. At low energies the well known Kisslinger potential is recapped. Next, the same type of reaction theory is used to analyze antiproton-nucleon and nucleus scattering from low to highly relativistic energies. The reaction dynamics of antiproton interactions with nuclear targets is discussed. We start with a new approach to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived, covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is used to describe the antiproton scattering amplitudes in momentum and in coordinate space. We consider, in particular, interactions with nuclei at energies around and well above 1 GeV. The antiproton

  5. Hadron-nucleus interactions in the nucleon resonance region

    International Nuclear Information System (INIS)

    Gessler, Stefanie

    2017-06-01

    Experiments with high-energy hadron beams have found renewed attention. In the near future nuclear studies with hadron beams are planned at least at two facilities, namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory investigation of interactions of mesons and baryons with nuclei at energies of interest for future research with antiprotons at FAIR. The theoretical discussion is started with an introductory presentation of the optical model and Eikonal theory as appropriate tools for the description of scattering processes at high energies. In antiproton interactions with nucleons and nuclei, annihilation processes into pions are playing the major role for the reaction dynamics. Therefore, we consider first the interactions of pions with nuclei by deriving an extended selfenergy scheme for a large range of incident pion energies. In order to have a uniform description over a broad energy interval, the existing approaches had to be reconsidered and in essential parts reformulated and extended. A central result is the treatment of pion-nucleus self-energies from high lying N * resonances. Only by including those channels in a proper manner into the extended pion optical potential, pion-nucleus scattering could be described over the required large energy range. At low energies the well known Kisslinger potential is recapped. Next, the same type of reaction theory is used to analyze antiproton-nucleon and nucleus scattering from low to highly relativistic energies. The reaction dynamics of antiproton interactions with nuclear targets is discussed. We start with a new approach to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived, covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is used to describe the antiproton scattering amplitudes in momentum and in coordinate space. We consider, in particular, interactions with nuclei at energies around and well above 1 GeV. The antiproton

  6. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 first. Shims and washers on the wide quadrupoles (QFW, QDW; located in the lattice where dispersion was large) served mostly for corrections of those lattice parameters which were a function of momentum. After mounting shims and washers, the quadrupoles were measured to determine their magnetic centre and to catalogue the effect of washer constellations. Raymond Brown is busy measuring a wide quad.

  7. The rotationally induced quadrupole pair field in the particle-rotor model

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-04-01

    A formalism is developed which makes it possible to consider the influence of the rotationally induced quadrupole pair field and corresponding quasi-particle residual interactions within the particle-rotor model. The Y 21 pair field renormalizes both the Coriolis and the recoil interactions. (Auth.)

  8. Laced permanent magnet quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs

  9. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Hart, T. L. [Mississippi U.; Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.

  10. Quadrupole magnets for IR-FEL at RRCAT

    International Nuclear Information System (INIS)

    Ruwali, Kailash; Singh, Kushraj; Mishra, Anil Kumar; Biswas, Bhaskar

    2013-01-01

    The IR-FEL project at RRCAT needs quadrupole magnets for focusing 15 to 35 MeV electron beam through a dog-leg type beam line. This bend needs tighter relative tolerances on the central quadrupole triplet . The magnetic design, fabrication and magnetic characterization of five quadrupole magnets were carried out. The poles are detachable and wider than the coils. This significantly improves the good field region of the magnet. The magnet cross-section was optimized using 2D POISON code and entry-exit tapers were optimized using 3D code TOSCA.. The aperture radius of the magnet is 30 mm and the total core length is 180 mm. The integrated gradient of magnet is 0.51 T. The magnetic measurements were carried out using Danfysik make rotating coil bench model 690. Integrated gradient and multipoles present in the magnet aperture were measured at various excitation levels. The details of magnetic development and the magnetic measurements are discussed in this paper. (author)

  11. Solar wind interaction with comet 67P: Impacts of corotating interaction regions

    Science.gov (United States)

    Edberg, N. J. T.; Eriksson, A. I.; Odelstad, E.; Vigren, E.; Andrews, D. J.; Johansson, F.; Burch, J. L.; Carr, C. M.; Cupido, E.; Glassmeier, K.-H.; Goldstein, R.; Halekas, J. S.; Henri, P.; Koenders, C.; Mandt, K.; Mokashi, P.; Nemeth, Z.; Nilsson, H.; Ramstad, R.; Richter, I.; Wieser, G. Stenberg

    2016-02-01

    We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1-2.7 AU from the Sun and the neutral outgassing rate ˜1025-1026 s-1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30 km. The ionospheric low-energy (˜5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below -20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (˜10-100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.

  12. Monitoring the beam position in the SLC interaction region

    Energy Technology Data Exchange (ETDEWEB)

    Denard, J.C.; Bowden, G.B.; Oxoby, G.J.; Pellegrin, J.L.; Ross, M.C.

    1987-03-01

    The Stanford Linear Collider requires special Beam Position Monitors near the Interaction Point (IP) to bring the two beams (e/sup +/ and e/sup -/) into collision. These beams pass through two monitors on each side of the IP with a short time separation (about 20 and 50 ns). The mechanics of the monitors as well as the electronics will be described. In order to bring beams of several microns diameter into collision at the IP, these monitors measure beam deflection induced by the presence of the opposite beam.

  13. Monitoring the beam position in the SLC interaction region

    International Nuclear Information System (INIS)

    Denard, J.C.; Bowden, G.B.; Oxoby, G.J.; Pellegrin, J.L.; Ross, M.C.

    1987-03-01

    The Stanford Linear Collider requires special Beam Position Monitors near the Interaction Point (IP) to bring the two beams (e + and e - ) into collision. These beams pass through two monitors on each side of the IP with a short time separation (about 20 and 50 ns). The mechanics of the monitors as well as the electronics will be described. In order to bring beams of several microns diameter into collision at the IP, these monitors measure beam deflection induced by the presence of the opposite beam

  14. Monitoring the beam position in the SLC interaction region

    International Nuclear Information System (INIS)

    Denard, J.C.; Bowden, G.B.; Oxoby, G.J.; Pellegrin, J.L.; Ross, M.C.

    1987-01-01

    The Stanford Linear Collider requires special Beam Position Monitors near the Interaction Point (IP) to bring the two beams (e/sup +/ and /sup e-/) into collision. These beams pass through two monitors on each side of the IP with a short time separation (about 20 and 50ns). The mechanics of the monitors as well as the electronics will be described. In order to bring beams of several microns diameter into collision at the IP, these monitors measure beam deflection induced by the presence of the opposite beam

  15. IMPROVEMENT OF INTERACTION BETWEEN CREDIT INSTITUTIONS AND ENTREPRENEURSHIP ORGANIZATIONS AT REGIONAL LEVEL

    Directory of Open Access Journals (Sweden)

    A. V. Russavskaya

    2011-01-01

    Full Text Available Interaction between credit and entrepreneurship organizations aimed at implementation of regional development programs should be improved according to the following main directions: better accessibility to financial resources; broader spectrum of consultancy, particularly business planning related services rendered to the business; more active cooperation with venture funds. Current regional crediting mechanisms are described for Kaluga Region as example.

  16. Nearshore regional behavior of lightning interaction with wind turbines

    Directory of Open Access Journals (Sweden)

    Gilbert A. Malinga

    2016-01-01

    Full Text Available The severity of lightning strikes on offshore wind turbines built along coastal and nearshore regions can pose safety concerns that are often overlooked. In this research study the behavior of electrical discharges for wind turbines that might be located in the nearshore regions along the East Coast of China and Sea of Japan were characterized using a physics-based model that accounted for a total of eleven different geometrical and lightning parameters. Utilizing the electrical potential field predicted using this model it was then possible to estimate the frequency of lightning strikes and the distribution of electrical loads utilizing established semi-empirical relationships and available data. The total number of annual lightning strikes on an offshore wind turbine was found to vary with hub elevation, extent of cloud cover, season and geographical location. The annual lightning strike rate on a wind turbine along the nearshore region on the Sea of Japan during the winter season was shown to be moderately larger compared to the lightning strike frequency on a turbine structure on the East Coast of China. Short duration electrical discharges, represented using marginal probability functions, were found to vary with season and geographical location, exhibiting trends consistent with the distribution of the electrical peak current. It was demonstrated that electrical discharges of moderately long duration typically occur in the winter months on the East Coast of China and the summer season along the Sea of Japan. In contrast, severe electrical discharges are typical of summer thunderstorms on the East Coast of China and winter frontal storm systems along the West Coast of Japan. The electrical charge and specific energy dissipated during lightning discharges on an offshore wind turbine was found to vary stochastically, with severe electrical discharges corresponding to large electrical currents of long duration.

  17. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Paar, V; Brant, S [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Leander, G [Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics; Oak Ridge National Lab., TN (USA)); Vouk, M [Zagreb Univ. (Yugoslavia). Computing Centre SRCE

    1982-04-05

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  18. Air-Sea Interaction in the Somali Current Region

    Science.gov (United States)

    Jensen, T. G.; Rydbeck, A.

    2017-12-01

    The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.

  19. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    International Nuclear Information System (INIS)

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-01-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of loW--cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet RandD construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  20. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Meinke

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  1. Electromagnetic interactions in the {Delta}-resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Rolf

    1995-03-01

    Cross sections for some electro- and photoinduced spallation reactions on {sup 27}Al and {sup 51}V are measured in the energy region 130 MeV to 580 MeV with the activation method. Comparisons are made with calculations based on the Dalitz formalism for virtual photon spectra, and Monte Carlo calculations based on a cascade evaporation model, respectively. By use of Bremsstrahlung with end-point energies from threshold to 750 MeV, the yields for photo- production of{pi}{sup -}leading to ground and isomeric states in {sup 197}Hg are measured with the activation method. The activity from the Hg-isotopes were measured after a chemical separation of Hg from the target material. The yields and isomeric ratios are compared with impulse approximation calculations. For the photoproduction of {sup 195m}Hg and {sup 192}Hg from {sup 197}Au, the yields were measured. The experimental mean cross sections are compared with data from other experiments and with cascade evaporation calculations. Cross sections for the reaction {sup 14}N({gamma},{pi}{sup -}){sup 14}O are calculated by use of the DWIA, and compared with experimental cross sections for the same reaction by use of the activation method. The cross sections were deduced by the photon difference method together with a smoothing procedure. Different assumptions are made for the theoretical calculations. Absolute cross sections for inclusive electron scattering on H, D, Be, Al and Si are measured for low values of the momentum transfer Q{sup 2} at the scattering angle 10 deg. The incident electron energies were 3 MeV, 6 MeV, and 7 GeV. Through the fitting of A{sub eff}/A=A{sup {epsilon}}, with {epsilon} as a free parameter, to experimental data it is shown than A{sub eff}

  2. Puzzle of the 6Li Quadrupole Moment: Steps toward Solving It

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.

    2005-01-01

    The problem of the origin of the quadrupole deformation in the 6 Li ground state is investigated with allowance for the three-deuteron component of the 6 Li wave function. Two long-standing puzzles related to the tensor interaction in the 6 Li nucleus are known: that of an anomalous smallness of the 6 Li quadrupole moment (being negative, it is smaller in magnitude than the 7 Li quadrupole moment by a factor of 5) and that of an anomalous behavior of the tensor analyzing power T 2q in the scattering of polarized 6 Li nuclei on various targets. It is shown that a large (in magnitude) negative exchange contribution to the 6 Li quadrupole moment from the three-deuteron configuration cancels almost completely the 'direct' positive contribution due to the αd folding potential. As a result, the total quadrupole moment proves to be close to zero and highly sensitive to fine details of the tensor nucleon-nucleon interaction in the 4 He nucleus and of its wave function

  3. Threshold couplings of phase-conjugate mirrors with two interaction regions.

    Science.gov (United States)

    Beli, M; Petrovi, M; Sandfuchs, O; Kaiser, F

    1998-03-01

    Using the grating-action method, we determine the threshold coupling strengths of three generic examples of phase-conjugate mirrors with two interaction regions: the cat conjugator, the mutually incoherent beam coupler, and the interconnected ring mirror.

  4. A compact quadrupole ion filter for helium detection

    International Nuclear Information System (INIS)

    Pereira, E.B.

    1981-01-01

    A compact quadrupole ion filter was conceived and constructed for optimum performance at the mass four region of the mass spectra. It was primarely designed for geological applications in the measurements of helium of soil-gases. The whole ion filter structure is 15 cm long by 3.5 cm diameter, including ion source and collecting plate. The sensitivity to helium is of the order of 10 - 2 A.torr - 1 measured at a total pressure of 6x10 - 6 torr and resolution 6. The system can be easily adapted to work as a dynamic residual gas analyser for other purposes. (Author) [pt

  5. Quadrupole singlet focusing for achromatic parallel-to-parallel devices

    International Nuclear Information System (INIS)

    Brown, K.L.

    1983-01-01

    A first order achromatic magnetic deflection system for use in conjunction with a charged particle accelerator is realized from a stepped gap magnet wherein charged particles propagating through the system are subject to at least two adjacent homogeneous magnetic fields in adjacent regions in traversing one-half of a symmetric trajectory through the system. A quadrupole singlet element Q of adjustable focal length disposed substantially at the entrance plane of such a symmetric system makes possible the coincidence of the waists of the beam in both the vertical (transverse) and (radial) bending planes. (author)

  6. A comparison of ray-tracing software for the design of quadrupole microbeam systems

    International Nuclear Information System (INIS)

    Incerti, S.; Smith, R.W.; Merchant, M.; Grime, G.W.; Meot, F.; Serani, L.; Moretto, Ph.; Touzeau, C.; Barberet, Ph.; Habchi, C.; Nguyen, D.T.

    2005-01-01

    For many years the only ray-tracing software available with sufficient precision for the design of quadrupole microbeam focusing systems has been OXRAY and its successor TRAX, developed at Oxford in the 1980s. With the current interest in pushing the beam diameter into the nanometre region, this software has become dated and more importantly the precision at small displacements may not be sufficient and new simulation tools are required. Two candidates for this are Zgoubi, developed at CEA as a general beam line design tool and the CERN simulation program Geant in its latest version Geant4. In order to use Geant4 new quadrupole field modules have been developed and implemented. In this paper the capabilities of the three codes TRAX, Zgoubi and Geant4 are reviewed. Comparisons of ray-tracing calculations in a high demagnification quadrupole probe-forming system for the sub-micron region are presented

  7. Second Generation Coil Design of the Nb$_{3}$Sn low-beta Quadrupole for the High Luminosity LHC

    CERN Document Server

    Izquierdo Bermudez, S; Ballarino, A; Cavanna, E; Bossert, R; Cheng, D; Dietderich, D; Ferracin, P; Ghosh, A; Hagen,P; Holik, E; Perez, J C; Rochepault, E; Schmalzle, J; Todesco, E; Yu, M

    2016-01-01

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb$_{3}$Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with a fine tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this paper we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.

  8. Boson models of quadrupole collective motion

    International Nuclear Information System (INIS)

    Zelevinskij, V.G.

    1985-01-01

    The subject of the lecture is the low-lying excitations of even-even (e-e) spherical nuclei. The predominant role of the quadrupole mode, which determines the structure of spectra and transitions, is obvious on the background of shell periodicity and pair correlations. Typical E2-transitions are strengthened Ω ∼ A 2/3 times in comparison with single particle evaluations. Together with the regularity of the whole picture it gives evidence about collectivization of quadrupole motion. The collective states are combined in bands, where the transition probability are especially great; frequencies ω of the strengthened transitions are small in comparison with pair separation energies of 2 E-bar ∼ 2 MeV. Thus, the description of low-lying excitations of spherical nuclei has to be based on three principles: collectivity (Ω >> 1), adiabaticity (τ ≡ ω/2E-bar << 1) and quadrupole symmetry

  9. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  10. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  11. Initial value gravitational quadrupole radiation theorem

    International Nuclear Information System (INIS)

    Winicour, J.

    1987-01-01

    A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment

  12. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS

    International Nuclear Information System (INIS)

    Parker, B.

    2001-01-01

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing

  13. Gender-specific spatial interactions on Dutch regional labour markets and the gender employment gap

    NARCIS (Netherlands)

    Noback, Inge; Broersma, Lourens; Van Dijk, Jouke

    2013-01-01

    Gender-specific spatial interactions on Dutch regional labour markets and the gender employment gap, Regional Studies. This paper analyses gender-specific employment rates and the gender employment gap in Dutch municipalities for 2002. The novelty of this analysis is that it takes into account the

  14. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  15. Preliminary proposal of a Nb3Sn quadrupole model for the low β insertions of the LHC

    International Nuclear Information System (INIS)

    Ambrosio, G.; Ametrano, F.; Bellomo, G.; Broggi, F.; Rossi, L.; Volpini, G.

    1995-09-01

    In recent years Nb 3 Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb 3 Sn technology is progressing fast, increasing both technical reliability and availability. The Nb 3 Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb 3 Sn cable for a second generation IR inner triplet low β quadrupoles, for the Large Hadron Collider at CERN. The low β quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: 1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; 2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC

  16. Preliminary proposal of a Nb{sub 3}Sn quadrupole model for the low {beta} insertions of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G; Ametrano, F; Bellomo, G; Broggi, F; Rossi, L; Volpini, G [Milan Univ. (Italy). Dip. di Fisica; [INFN, Sezione di Milano (Italy). Laboratorio Acceleratori e Superconduttivita` Applicata

    1995-09-01

    In recent years Nb{sub 3}Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb{sub 3}Sn technology is progressing fast, increasing both technical reliability and availability. The Nb{sub 3}Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb{sub 3}Sn cable for a second generation IR inner triplet low {beta} quadrupoles, for the Large Hadron Collider at CERN. The low {beta} quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: (1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; (2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC.

  17. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  18. Quadrupole moments of the 12+ isomers in 188Hg and 190Hg

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lonnroth, T.; Vajda, S.; Dafni, E.; Schatz, G.

    1984-01-01

    The electric quadrupole interaction of the 12 + isomers in 188 Hg and 190 Hg has been measured in solid Hg. The quadrupole moments deduced, vertical strokeQ[ 188 Hg(12 + )]vertical stroke = 91(11) e fm 2 and vertical strokeQ[ 190 Hg(12 + )]vertical stroke = 117(14) e fm 2 suggest a possible change in γ-deformation due to the rotation alignment of the isub(13/2) quasi-neutrons. The temperature dependence of the electric field gradient tensor in Hg was also determined. (orig.)

  19. Hyperfine structure in the Gd II spectrum and the nuclear electric quadrupole moment of 157Gd

    International Nuclear Information System (INIS)

    Clieves, H.P.; Steudel, A.

    1979-01-01

    The hyperfine structure of 157 Gd was investigated in 20 Gd II lines by means of a photoelectric recording Fabry-Perot interferometer with digital data processing. The hyperfine splitting factors, A and B, were obtained by computer fits to the observed line structures. Using a multiconfigurational set of wave functions in intermediate coupling derived by Wyart, mono-electronic parameters were deduced by a parametric treatment. The nuclear electric quadrupole moment of 157 Gd was evaluated from the quadrupole interaction of the 5d electron in 4f 7 5d6s, the 5d electron in 4f 7 5d6p, and the 6p electron in 4f 7 5d6p. The three values obtained for the quadrupole moment agree very well. The final result, corrected for Sternheimer shielding, is Q( 157 Gd) = 1.34(7) x 10 -24 cm 2 . (orig.) [de

  20. All systems go for LHC quadrupoles

    CERN Multimedia

    2003-01-01

    The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...

  1. Collective Quadrupole Excitations of Transactinide Nuclei

    CERN Document Server

    Zajac, K; Pomorski, K; Rohozinski, S G; Srebrny, J

    2003-01-01

    The quadrupole excitations of transuranic nuclei are described in the frame of the microscopic Bohr Hamiltonian modified by adding the coupling with the collective pairing vibrations. The energies of the states from the ground-state bands in U to No even-even isotopes as well as the B(E2) transition probabilities are reproduced within the model containing no adjustable parameters.

  2. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  3. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 and 8103203 first. Wide quadrupole (QFW, QDW) with end-shims and shimming washers on the measurement stand. With the measurement coil one measured the harmonics of the magnetic field, determined the magnetic centre, and catalogued the effect of washer constellations.

  4. Giant quadrupole resonance in 12C, 24Mg, and 27Al observed via deuteron inelastic scattering

    International Nuclear Information System (INIS)

    Chang, C.C.; Didelez, J.P.; Kwiatowski, K.; Wo, J.R.

    1977-06-01

    Giant quadrupole resonance in 12 C, 24 Mg, and 27 Al was studied using 70 MeV deuteron beam. The results clearly show, in all three targets, resonance-like structures peaked at E/sub x/ approximately 63A/sup -1/3/ MeV, with a width of about 10 MeV. The experimental angular distributions for these resonances agree well with the l = 2 DWBA prediction. For 12 C, a binary splitting was observed, and for 24 Mg, there are indications of finer structure in the main giant quadrupole resonance region

  5. Fringe fields modeling for the high luminosity LHC large aperture quadrupoles

    CERN Document Server

    Dalena, B; Payet, J; Chancé, A; Brett, D R; Appleby, R B; De Maria, R; Giovannozzi, M

    2014-01-01

    The HL-LHC Upgrade project relies on large aperture magnets (mainly the inner Triplet and the separation dipole D1). The beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. Different tracking models are compared in order to provide a numerical estimate of the impact of fringe fields for the actual design of the inner triplet quadrupoles. The implementation of the fringe fields in SixTrack, to be used for dynamic apertures studies, is also discussed.

  6. Social Media Interactions and Online Games - Building up New Human Relationships in Danube Region

    Directory of Open Access Journals (Sweden)

    Predrag K Nikolić

    2015-08-01

    Full Text Available In this paper we are trying to explore possibilities of using online environment, multiplayer gaming culture and social media networks to engage people in the Danube Region around social, multi-cultural and environment initiatives. The Danube Region online community could become a new cultural phenomena, technology mediated, built on human interactions, common interests and cultural heritage which open space for future humancentered social and infrastructural design initiatives. We believe that such social media environment could also be a research playground where people form Danube Region may express their needs and desires as well as to leave the trace of their behavior, significant for further Danube Region development.

  7. Determination of the effective quadrupole moment in $^{181}$Ta with pionic x-rays

    CERN Document Server

    Beetz, R; Fransson, K; Konijn, J; Panman, J; Tauscher, Ludwig; Tibell, G

    1978-01-01

    From the hyperfine splitting of the 5g to 4f and the 6g to 4f pionic X-rays in /sup 181/Ta, an effective quadrupole moment of Q/sub eff /=3.58+or-0.03 b was determined. The strong interaction monopole shift epsilon /sub 0/ and the width Gamma /sub 0/ of the 4f level were measured to be epsilon /sub 0/=540+or-100 eV and Gamma /sub 0 /=225+or-57 eV, in good agreement with the values obtained with the standard optical potential description of the pion-nucleus interaction. Estimating the influence of the finite nuclear size, the deformation induced through the strong interaction between the pion and the finite nucleus, and the relative magnitude between the strong and the electromagnetic quadrupole coupling constants values for the spectroscopic quadrupole moment of Q=3.30+or-0.06 b, and for the intrinsic quadrupole moment of Q/sub 0/=7.06+or-0.12 b are obtained. (28 refs).

  8. Three-dimensional quadrupole lenses made with permanent magnets

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1984-01-01

    The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged

  9. Interaction Region Design for a Ring-Ring LHeC

    CERN Document Server

    Thompson, L N S; Bernard, N R; Fitterer, M; Holzer, B; Klein, M; Kostka, P

    2011-01-01

    tively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discusse...

  10. Quadrupole oscillations as paradigm of the chaotic motion in nuclei

    International Nuclear Information System (INIS)

    Berezovoj, V.P.; Bolotin, Yu.L.; Gonchar, V.Yu.; Granovsky, M.Ya.

    2003-01-01

    A complete description of classical dynamics, generated by the Hamiltonian of quadrupole nuclear oscillations, is presented. Those peculiarities of quantum dynamics, which can be interpreted as quantum manifestations of classical stochasticity are identified. Semiclassical approximation to an energy spectrum is developed through quantization of the Birkhoff-Gustavson normal form. We show that the type of classical motion is correlated with the structure of the stationary wave functions. Correlations were found both in the coordinate space (the lattice of nodal curves and the distribution of the probability density) and in the Hilbert space associated with the integrable part of the Hamiltonian. Quadrupole oscillations of nuclei were used to investigate the shell structure destruction induced by the increase of nonintegrable perturbation, which models residual nucleon-nucleon interaction. The process of wave packet tunneling through potential barrier is considered for the case of finite motion. We demonstrate that the stringent correlation between the level quasi-crossing and the wave function delocalization, which leads to the resonant tunneling, takes place [ru

  11. The quadrupole moments of Cd and Zn isotopes - an apology

    Science.gov (United States)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  12. Quadrupole to BPM offset determination in Indus-2

    International Nuclear Information System (INIS)

    Jena, Saroj; Ghodke, A.D.; Singh, G.

    2009-01-01

    A feasibility of finding the quadrupole to BPM offset using beam based alignment (BBA) technique in Indus-2 has been studied. The measurements of the offsets between BPM and quadrupoles could be performed by using quadratic fitting for the minima of the orbit response w. r. t. changes in the quadrupole strengths. These offsets will be integrated to the orbit data during closed orbit correction. There are 72 quadrupoles and 56 BPMs in Indus-2. However the assessment of Quad-BPM offsets is not feasible in some cases due to non-availability of BPM adjacent to quadrupole and also in some cases because of a large phase advance between quadrupole and nearby BPM. Here single corrector method is used to obtain these offsets and assumed the current of each quadrupole can be varied independently. A graphical user interface (GUI) is developed in MATLAB for the use of BBA in Indus-2. (author)

  13. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  14. Design of permanent magnet quadrupole for LEHIPA DTL

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2011-01-01

    The drift tube linac (DTL) of the low energy high intensity proton accelerator (LEHIPA) has been designed to accelerate 30 mA proton beam from 3 MeV to 20 MeV in a distance of around 13 m. A FFDD lattice structure is selected to provide strong transverse focusing, where each drift tube includes one quadrupole magnet. Beam dynamics simulations specified an effective magnet length of 47 mm, maximum field gradient of 47 T/m, and bore aperture of 24 mm. For these specifications, a detailed design of a very thin permanent magnet quadrupole (PMQ) is presented. Four types of PMQ designs have been compared: a 16-segment trapezoidal design in the Halbach configuration, two 16-segment rectangular designs (with and without gaps), and an 8-segment rectangular design. 2D and 3D modeling codes, POISSON and CST Studio suite are used for the design studies. The good field region is calculated based on field gradient deviation in the transverse plane and integral field homogeneity. The very low aspect ratio of these PMQs leads to edge effects, thereby reducing the central field strength. The 3D simulations are used to study these edge effects. (author)

  15. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction.

    Science.gov (United States)

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.

  16. Engineering Aromatic-Aromatic Interactions To Nucleate Folding in Intrinsically Disordered Regions of Proteins.

    Science.gov (United States)

    Balakrishnan, Swati; Sarma, Siddhartha P

    2017-08-22

    Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b 5 . Structural changes from disorder to order due to aromatic interactions in two variants of the protein, viz., WF-cytb5 and FF-cytb5, result in significant long-range secondary and tertiary structure. The results show that 54 and 52% of the residues in WF-cytb5 and FF-cytb5, respectively, occupy ordered regions versus 26% in apo-cytochrome b 5 . The interactions between the aromatic groups are offset-stacked and edge-to-face for the Trp-Phe and Phe-Phe mutants, respectively. Urea denaturation studies indicate that both mutants have a C m higher than that of apo-cytochrome b 5 and are more stable to chaotropic agents than apo-cytochrome b 5 . The introduction of these aromatic residues also results in "trimer" interactions with existing aromatic groups, reaffirming the selectivity of the aromatic interactions. These studies provide insights into the aromatic interactions that drive disorder-to-order transitions in intrinsically disordered regions of proteins and will aid in de novo protein design beyond small peptide scaffolds.

  17. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  18. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Fermilab; Brookhaven; LBL, Berkeley; Texas A-M

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  19. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  20. The LHC Main Quadrupoles during Series Fabrication

    CERN Document Server

    Tortschanoff, Theodor; Durante, M; Hagen, P; Klein, U; Krischel, D; Payn, A; Rossi, L; Schellong, B; Schmidt, P; Simon, F; Schirm, K-M; Todesco, E

    2006-01-01

    By the end of August 2005 about 320 of the 400 main LHC quadrupole magnets have been fabricated and about 220 of them assembled into their cold masses, together with corrector magnets. About 130 of them have been cold tested in their cryostats and most of the quadrupoles exceeded their nominal excitation, i.e. 12,000 A, after no more than two training quenches. During this series fabrication, the quality of the magnets and cold masses was thoroughly monitored by means of warm magnetic field measurements, of strict geometrical checking, and of various electrical verifications. A number of modifications were introduced in order to improve the magnet fabrication, mainly correction of the coil geometry for achieving the specified field quality and measures for avoiding coil insulation problems. Further changes concern the electrical connectivity and insulation of instrumentation, and of the corrector magnets inside the cold masses. The contact resistances for the bus-bar connections to the quench protection diode...

  1. Quadrupole collective excitations in rapidly rotating nuclej

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.

    1983-01-01

    The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum

  2. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  3. The puzzle of the 6Li quadrupole moment: steps toward the solution

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.

    2005-01-01

    The problem of origin of the ground-state 6 Li quadrupole deformation has been investigated with account of the three-deuteron component of this nucleus wave function. two long-standing puzzles related to the tensor interaction in 6 Li are known. The first one lies in the anomalously small value of the 6 Li quadrupole moment which, being negative, is in absolute magnitude smaller by the factor of 5 than that of 6 Li. The second puzzle consists in the anomalous behavior of the tensor analyzing power T 2q in scattering of polarized 6 Li nuclei from various targets. It is shown that the large (in absolute magnitude) negative contribution to the 6 Li quadrupole moment resulting from the three-deuteron configuration cancels almost completely the direct positive contribution due to the folding αd-potential. As a result, the total quadrupole moment turns out to be close to zero and highly sensitive to fine details of the tensor NN interaction and of the 4 He wave function [ru

  4. Quadrupole moments of odd-A 53−63Mn: Onset of collectivity towards N=40

    Directory of Open Access Journals (Sweden)

    C. Babcock

    2016-09-01

    Full Text Available The spectroscopic quadrupole moments of the odd–even Mn isotopes between N=28 and N=38 have been measured using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. In order to increase sensitivity to the quadrupole interaction, the measurements have been done using a transition in the ion rather than in the atom, with the additional advantage of better spectroscopic efficiency. Since the chosen transition is from a metastable state, optical pumping in ISOLDE's cooler and buncher (ISCOOL was used to populate this state. The extracted quadrupole moments are compared to large-scale shell model predictions using three effective interactions, GXPF1A, LNPS and modified A3DA. The inclusion of both the 1νg9/2 and 2νd5/2 orbitals in the model space is shown to be necessary to reproduce the observed increase in the quadrupole deformation from N=36 onwards. Specifically, the inclusion of the 2νd5/2 orbital induces an increase in neutron and proton excitations across the reduced gaps at N=40 and Z=28, leading to an increase in deformation above N=36.

  5. Contamination measurements with quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Bohatka, S.; Berecz, I.; Langer, G.

    1981-01-01

    A sensitive quadrupole mass spectrometer of our own construction was used for different purity measurements. The analysis of gases in operating rooms showed a 1 ppm-10 5 ppm concentration of narcotics and helped to develop an effective and cheap method for regenerating narcotic filters. We regularly control the gases used in radioactive pollution measurements by internal GM counters and in radiocarbon dating technique. Combustion products and the gases of a fermenter are investigated for industrial application. (orig.) [de

  6. On the theory of nuclear quadrupole oscillations

    International Nuclear Information System (INIS)

    Abrosimov, V.I.; Strutinskij, V.M.

    1978-01-01

    Presented is a deduction and a convinient writing form of the secular equation for nuclear quadrupole oscillations. The deduction is consistent with usual random phase approximation. It is regarded that the oscillations of the nuclear average potential are adiabatic with respect to formation of the Cooper pairs and the collective motion arises as a result of the coherent distortion of the quasiparticle wave functions. The energy gap changes are also taken into account

  7. 15 T And Beyond - Dipoles and Quadrupoles

    International Nuclear Information System (INIS)

    Sabbi, GianLuca

    2008-01-01

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R and D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  8. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  9. Emittance measurements by variable quadrupole method

    International Nuclear Information System (INIS)

    Toprek, D.

    2005-01-01

    The beam emittance is a measure of both the beam size and beam divergence, we cannot directly measure its value. If the beam size is measured at different locations or under different focusing conditions such that different parts of the phase space ellipse will be probed by the beam size monitor, the beam emittance can be determined. An emittance measurement can be performed by different methods. Here we will consider the varying quadrupole setting method.

  10. Radio frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  11. Overview of design development of FCC-hh Experimental Interaction Regions

    CERN Document Server

    AUTHOR|(CDS)2082479; Abelleira, Jose; Cruz Alaniz, Emilia; Van Riesen-Haupt, Leon; Benedikt, Michael; Besana, Maria Ilaria; Buffat, Xavier; Burkhardt, Helmut; Cerutti, Francesco; Langner, Andy Sven; Martin, Roman; Riegler, Werner; Schulte, Daniel; Tomas Garcia, Rogelio; Appleby, Robert Barrie; Rafique, Haroon; Barranco Garcia, Javier; Pieloni, Tatiana; Boscolo, Manuela; Collamati, Francesco; Nevay, Laurence James; Hofer, Michael

    2017-01-01

    The experimental interaction region (EIR) is one of the key areas that define the performance of the Future Circular Collider. In this overview we will describe the status and the evolution of the design of EIR of FCC-hh, focusing on design of the optics, energy deposition in EIR elements, beam-beam effects and machine detector interface issues.

  12. Study of neutron-proton interaction in the 300-700 MeV energy region

    International Nuclear Information System (INIS)

    Northcliffe, L.C.

    1989-08-01

    The primary objective of the program is investigation of the nucleon-nucleon (NN) interaction, in the medium-energy region, in both elastic and inelastic channels. Most of the results of this research have already been published in refereed journals and will not be discussed here

  13. Logic of quench protection assembly for BEPC II interaction region superconducting magnet

    International Nuclear Information System (INIS)

    Chen Fusan; Cheng Jian

    2006-01-01

    Two superconducting magnet complexes are used in BEPC II interaction region. The corresponding quench protection system divides all related faults into two classes and takes different protection actions according to the urgency degree. Since BEPC II has two operating modes and the superconducting magnets use different power supplies in different operating modes, the quench protection system must take the mode switching into consideration. (authors)

  14. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  15. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  16. The lignite industry and regional development. Interactions exemplified by the Rhenish mining area

    International Nuclear Information System (INIS)

    Kulik, Lars; Voigt, Jens

    2013-01-01

    Even in times of globalised markets, the German lignite industry retains its local and regional roots. Viewed against this background, the relationship between lignite industry and regional actors, and the interactions between the two play a major role in the perspectives for this branch of Germany's energy sector. Today, the links between the lignite industry and regional bodies are those of a partnership at eye-level. This type of relationship between the industry and regional actors has led to new forms and methods of cooperation at various levels. This is particularly evident in the efforts to re-shape the regional structure, develop the structure of townships and strengthen the economic structure with lignite playing an important role and new partners which are gaining in importance. (orig.)

  17. Interaction region for crab waist scheme of the Future Electron-Positron Collider (CERN)

    CERN Document Server

    Bogomyagkov, A

    2015-01-01

    Design study in CERN of the accelerator that would fit 80-100 km tunnel called Future Circular Colliders (FCC) includes high-luminosity $e^+ e^−$ collider (FCC-ee) with center-of-mass energy from 90 to 350 GeV to study Higgs boson properties and perform precise measurements at the electroweak scale [1–3]. Crab waist interaction region provides collisions with luminosity higher than 2 × 10$^{36}$ cm$^{−2}$ sec$^{−1}$ at beam energy of 45 GeV. The small values of the beta functions at the interaction point and distant final focus lenses are the reasons for high nonlinear chromaticity limiting energy acceptance of the whole ring. The paper describes interaction region for crab waist collision scheme in the FCC-ee, principles of tuning the chromaticity correction section in order to provide large energy acceptance.

  18. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    Science.gov (United States)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  19. High-Energy Gun-Injected Toroidal Quadrupole

    International Nuclear Information System (INIS)

    Hammel, J.E.; Henins, I.; Kewish, R.W. Jr.; Marshall, J.; Sherwood, A.R.

    1971-01-01

    A quadrupole device is being used to investigate the trapping and containment of an energetic gun plasma. The quadrupole is designed to contain a peak density of 5 x 10 13 cm -3 at 2.5 keV within the MHD-stable region. At design field there are 5 gyro-radii for 2. 5-keV protons from the separatrix to the ψ crit . The interior conductors are directly driven with a 0.8-MJ capacitor bank. The current to the coils is fed through a single pair of dipole-guarded conductors to each coil. The coils are also supported from the current feed, The dipole guard is in a force-free configuration with 5 gyro-radii for 2. 5-keV protons from the separatrix (between the dipole and quadrupole fields) to the dipole surface. The dipole is designed so that loss of plasma from the dipole region will be directed away from the interior conductors. This feature is necessary for the prevention of contamination by secondary gas produced by plasma lost at the dipole guard. Experiments at one-half design value of magnetic field have shown that the kilovolt energy gun plasma is trapped by depolarization currents around the coils, and that a very high percentage (>50%) of the gun output can be trapped. The plasma density is measured by a unique Michelson interferometer using CO 2 laser light. The energy of the plasma is derived from magnetic pickup loops placed outside the containment region. The leak caused by the dipole guard Held has been examined by double electric probe measurements. The plasma drift thus inferred is an order of magnitude less than that predicted by a model of Meade's or by calculations by us. This casts doubt upon the validity of any such simple model and emphasizes the necessity of further experimental investigation of the matter. New coils which are being built to operate at full design magnetic field strength will allow a check on the containment time of the device for kilovolt energy plasma. (author)

  20. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  1. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2016-01-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under a China Meteorological Administration (CMA chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme – WDM6 and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  2. The Institutional Models of Participants Interaction as Instrument for Regional Development

    Directory of Open Access Journals (Sweden)

    Bogdan Nataliia M.

    2017-11-01

    Full Text Available The article is aimed at studying the processes of interaction of participants at the regional level. The necessity of search and development of directions of cooperation of participants in process of realization of tasks of both sectoral and regional development has been proved. A peculiar philosophy of cooperation has been formulated, it has been proved that it should not appear as some legal formality. The objectives of cooperation within in terms its broad understanding have been defined, taking into consideration the conception of classical marketing complex (4P. The basic theories of cooperation have been reviewed, on the basis of analyzing these it has been found that an intensifying precisely the non-economic conditions of cooperation at regional level is necessary, and also that cooperation and interaction in region should be considered with understanding of function of different parties to the discussed forms of cooperation. A characterization of forms of both intra- and inter-sectoral cooperation of the participants, operating at the regional level, has been developed. The importance of the institutional forms of cooperation in relation to the processes of solving common problems of both the sectoral and the regional development has been substantiated.

  3. The structure and institutions: a regional aspect of interaction in the economic system

    Directory of Open Access Journals (Sweden)

    Leonid Stepanovich Tarasevich

    2014-09-01

    Full Text Available In the article with the help of two-sector model of the economic system, the interaction of national and regional economy is investigated. This interaction is observed from the position of development of material structure and institutions. As the key structural parameter of an economy, the proportion between sector of excess resources and sector of scarce resources is taken. The situation when sector of excess resources prevails over sector of scarce resources forms structural conditions for the creation of the market institutions. If a sector of excess resources is smaller than a sector of scarce resources, the conditions for the emergence of institutions of government regulation are formed. Two cases are analyzed: the first one concerns the situation of a simple national economy consisting of 2 provisory regions. The second is the case of the national economy consisting of many regions. The authors show that material structure of a total combination of regions defines institutions of the market or state regulation for the national economy as a whole. The institutions formed at the level of the national economy, can support or resist the development of structure of the region. The conditions are observed under which united institutions of the national economy contradict a development of structure of the individual region.

  4. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Directory of Open Access Journals (Sweden)

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  5. Lateral and medial ventral occipitotemporal regions interact during the recognition of images revealed from noise

    Directory of Open Access Journals (Sweden)

    Barbara eNordhjem

    2016-01-01

    Full Text Available Several studies suggest different functional roles for the medial and the lateral ventral sections in object recognition. Texture and surface information is processed in medial regions, while shape information is processed in lateral sections. This begs the question whether and how these functionally specialized sections interact with each other and with early visual cortex to facilitate object recognition. In the current research, we set out to answer this question. In an fMRI study, thirteen subjects viewed and recognized images of objects and animals that were gradually revealed from noise while their brains were being scanned. We applied dynamic causal modeling (DCM – a method to characterize network interactions – to determine the modulatory effect of object recognition on a network comprising the primary visual cortex (V1, the lingual gyrus (LG in medial ventral cortex and the lateral occipital cortex (LO. We found that object recognition modulated the bilateral connectivity between LG and LO. Moreover, the feed-forward connectivity from V1 to LG and LO was modulated, while there was no evidence for feedback from these regions to V1 during object recognition. In particular, the interaction between medial and lateral areas supports a framework in which visual recognition of objects is achieved by networked regions that integrate information on image statistics, scene content and shape – rather than by a single categorically specialized region – within the ventral visual cortex.

  6. Gasdynamics of H II regions. V. The interaction of weak R ionization fronts with dense clouds

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, G; Bedijn, P J

    1981-06-01

    The interaction of weak R-type ionization fronts with a density enhancement is calculated numerically as a function of time within the framework of the champagne model of the evolution of H II regions. Calculations are performed under the assumption of plane-parallel geometry for various relative densities of the cloud in which the exciting star is formed and a second cloud with which an ionization front from the first cloud interacts. The supersonic ionization front representing the outer boundary of an H II region experiencing the champagne phase is found to either evolve into a D-type front or remain of type R, depending on the absolute number of photons leaving the H II region that undergoes the champagne phase. Recombinations in the ionized gas eventually slow the ionization front, however photon fluxes allow it to speed up again, resulting in oscillatory propagation of the front. Front-cloud interactions are also shown to lead to the development of a backward-facing shock, a forward-facing shock, and a density maximum in the ionized gas. The results can be used to explain the origin of bright rims in H II regions.

  7. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Directory of Open Access Journals (Sweden)

    Recep Colak

    2010-10-01

    Full Text Available Computational prediction of functionally related groups of genes (functional modules from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented.We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB, by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples.We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely

  8. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Science.gov (United States)

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large

  9. Network Interaction of Universities in Higher Education System of Ural Macro-Region

    Directory of Open Access Journals (Sweden)

    Garold Efimovich Zborovsky

    2017-06-01

    Full Text Available The subject-matter of the analysis are the characteristics and forms of cooperation between universities of Ural Federal District on the basis of their typology. The purpose of the article is to substantiate the necessity and possibility of network interaction between universities of the macro-region. We prove the importance and potential effectiveness of universities network interaction in the terms of socio-economic uncertainty of the development of Ural Federal District and its higher education. Networking interaction and multilateral cooperation are considered as a new type of inter-universities relations, which can be activated and intensified by strengthening the relations of universities with stakeholders. The authors examine certain concrete forms and formats of network interaction and cooperation between universities and discuss selected cases of new type of relations. In it, they see the real and potential innovation of higher school nonlinear development processes. The statements of the article allow to confirm the hypothesis about the reality of strengthening the network interaction in macro-region. It can transform higher education in the driver of socio-economic development of Ural Federal District; ensure the competitiveness of higher education of the macro-region in the Russian and global educational space; enhance its role in the society; become one of the most significant elements of nonlinear models of higher education development in the country. The authors’ research is based on the interdisciplinary methodology including the potential of theoretical sociology, sociology of higher education, economic sociology, management theory, regional economics. The results of the study can form the basis for the improvement of the Ural Federal District’s educational policy.

  10. Emission-line diagnostics of nearby H II regions including interacting binary populations

    Science.gov (United States)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  11. HOM [higher order mode] losses at the IR [interaction region] of the B-factory

    International Nuclear Information System (INIS)

    Heifets, S.

    1990-08-01

    Masking at the interaction region (IR) will presumably reduce the synchrotron radiation background in the detector. One possible layout of the IR for B-factory shows a rather complicated system of masks. A bunch passing each mask will generate RF waves. These waves (called usually higher order modes, HOM-s) will be absorbed in the beam pipe wall producing additional heating and, interacting with the beam, kicking particles in the radial and azimuthal directions. This may change the bunch motion and its emittance. These effects are estimated in the present note

  12. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  13. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  14. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    Science.gov (United States)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  15. Accelerator and Technical Sector Seminar: Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution

    CERN Multimedia

    2011-01-01

    Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15  -  BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...

  16. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J., E-mail: mscott@hao.ucar.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  17. An improved method for pancreas segmentation using SLIC and interactive region merging

    Science.gov (United States)

    Zhang, Liyuan; Yang, Huamin; Shi, Weili; Miao, Yu; Li, Qingliang; He, Fei; He, Wei; Li, Yanfang; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2017-03-01

    Considering the weak edges in pancreas segmentation, this paper proposes a new solution which integrates more features of CT images by combining SLIC superpixels and interactive region merging. In the proposed method, Mahalanobis distance is first utilized in SLIC method to generate better superpixel images. By extracting five texture features and one gray feature, the similarity measure between two superpixels becomes more reliable in interactive region merging. Furthermore, object edge blocks are accurately addressed by re-segmentation merging process. Applying the proposed method to four cases of abdominal CT images, we segment pancreatic tissues to verify the feasibility and effectiveness. The experimental results show that the proposed method can make segmentation accuracy increase to 92% on average. This study will boost the application process of pancreas segmentation for computer-aided diagnosis system.

  18. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  19. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193

    Science.gov (United States)

    Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.

    2011-01-01

    The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  20. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb

    CERN Document Server

    Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S

    2011-01-01

    The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  1. Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females.

    Science.gov (United States)

    Gupta, Arpana; Labus, Jennifer; Kilpatrick, Lisa A; Bonyadi, Mariam; Ashe-McNalley, Cody; Heendeniya, Nuwanthi; Bradesi, Sylvie; Chang, Lin; Mayer, Emeran A

    2016-04-01

    Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit.

  2. The 2 mrad crossing-angle ILC interaction region and extraction line

    CERN Document Server

    Appleby, Robert; Bambade, Philip; Dadoun, Olivier; Parker, Brett; Keller, Lewis; Moffeit, Kenneth C; Nosochkov, Yuri; Seryi, Andrei; Spencer, Cherrill M; Carter, John; Napoly, Olivier

    2006-01-01

    A complete optics design for the 2mrad crossing angle interaction region and extraction line was presented at Snowmass 2005. Since this time, the design task force has been working on developing and improving the performance of the extraction line. The work has focused on optimising the final doublet parameters and on reducing the power losses resulting from the disrupted beam transport. In this paper, the most recent status of the 2mrad layout and the corresponding performance are presented.

  3. SUMMARY REPORT OF THE INTERACTION REGION WORKING GROUP (T1) AT SNOWMASS

    Energy Technology Data Exchange (ETDEWEB)

    Markiewicz, Thomas W

    2002-09-23

    The Interaction Region Working Group (T1) at Snowmass 2001 reviewed the issues, designs, and plans of existing and proposed colliders, including hadron colliders, e{sup -} hadron colliders, e{sup +}e{sup -} and {gamma}{gamma} linear colliders, e{sup +}e{sup -} circular colliders, and muon colliders. This document summarizes the IR issues, status, and R&D plans for each project.

  4. Quenching of spin-flip quadrupole transitions

    International Nuclear Information System (INIS)

    Castel, B.; Blunden, P.; Okuhara, Y.

    1985-01-01

    An increasing amount of experimental data indicates that spin-flip quadrupole transitions exhibit quenching effects similar to those reported earlier in (p,n) reactions involving l = 0 and l = 1 transitions. We present here two model calculations suggesting that the E2 spin-flip transitions are more affected than their M1 and M3 counterparts by the tensor and spin-orbit components of the nuclear force and should exhibit the largest quenching. We also review the experimental evidence corroborating our observations

  5. Quadrupole Transfer Function for Emittance Measurement

    CERN Document Server

    Cameron, Peter; Jansson, Andreas; Tan, Cheng-Yang

    2008-01-01

    Historically the use of the quadrupole moment measurement has been impeded by the requirement for large dynamic range, as well as measurement sensitivity to beam position. We investigate the use of the transfer function technique [1-3] in combination with the sensitivity and 160dB revolution line rejection of the direct diode detection analog front end [4] to open the possibility of an emittance diagnostic that may be implemented without operational complication, quasi- parasitic to the operation of existing tune measurement systems. Such a diagnostic would be particularly useful as an emittance monitor during acceleration ramp development in machines like RHIC and the LHC.

  6. Fast storage of nuclear quadrupole resonance signals

    International Nuclear Information System (INIS)

    Anferov, V.P.; Molchanov, S.V.; Levchun, O.D.

    1988-01-01

    Fast multichannel storage of nuclear quadrupole resonance (NQR) signals is described. Analog-to-digital converter, arithmetic-logical unit, internal memory device (IMD) selection-storage unit and control unit are the storage main units. The storage is based on 43 microcircuits and provides for record and storage of NQR-signals at the contributed operation with Mera-60 microcomputer. Time of analog-to-digital conversion and signal recording into IMD is ∼ 1 mks. Capacity of analog-to-digital converter constitutes 8-10 bits. IMD capacity is 4 K bitsx16. Number of storage channels is 4

  7. Conserved regions of ribonucleoprotein ribonuclease MRP are involved in interactions with its substrate.

    Science.gov (United States)

    Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2013-08-01

    Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.

  8. POPULATION MOBILITY CHARACTERISTIC: NOTES FROM THE URBAN-URBAN INTERACTION IN SEMARANG METROPOLITAN REGION

    Directory of Open Access Journals (Sweden)

    MARDHOTILLAH Santi

    2016-12-01

    Full Text Available The rapid growth of cities is characterized by the "pressure" in the form of increasingly dense urban areas, slums, traffic congestion, unemployment in the cities, and the number of illegal housing in the suburbs. This issue demonstrates the need for a balance between urban and rural areas. The balance is obtained through the interaction, and the interaction there is a process of "transfer" in the form of the human population, natural resources, and other supporting components. This view of the phenomenon makes many researchers conducting various studies in the context of the interaction between rural and urban. Furthermore, the study of the interaction of cities such as Salatiga and Semarang are in fact joined in the same region, KSN Kedungsepur. Semarang and surrounding developments as Semarang Metropolitan Region (SMR are the main attraction for the people who are around Semarang that caused an increase in the spatial interactions between Semarang and surrounding areas. From some areas belonging to KSN Kedungsepur, there are only two areas with the status of the city of Semarang city as a centre of KSN and Salatiga. This becomes interesting, unique conditions for studying the phenomenon under study is the interaction of the cities. The method used in this research was a quantitative method with descriptive analysis. Data was collected through a questionnaire survey technique primary by taking a random sample of migrants from Salatiga City and studied at the city of Semarang. The results of the study there were four mobility characteristics formed between Salatiga and Semarang, namely, commuting-boarding, boarding-commuting, boarding and boarding-permanent.

  9. Assembly and Tests of SQ02, a Nb3Sn Racetrack Quadrupole Magnet for LARP

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, Paolo; Ambrosio, G.; Barzi, E.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Lizarazo, J.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.L.; Zlobin, A.V.

    2007-06-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb{sub 3}Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented.

  10. Assembly and Tests of SQ02, a Nb3Sn Racetrack Quadrupole Magnet for LARP

    International Nuclear Information System (INIS)

    Ferracin, Paolo; Ambrosio, G.; Barzi, E.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Lizarazo, J.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.L.; Zlobin, A.V.

    2007-01-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb 3 Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented

  11. Quench Protection System Optimization for the High Luminosity LHC Nb $_3$Sn Quadrupoles

    CERN Document Server

    Ravaioli, E; Auchmann, B; Ferracin, P; Maciejewski, M; Rodriguez-Mateos, F; Sabbi, GL; Todesco, E; Verweij, A P

    2017-01-01

    The upgrade of the large hadron collider to achieve higher luminosity requires the installation of twenty-four 150 mm aperture, 12 T, $Nb_3Sn$ quadrupole magnets close to the two interaction regions at ATLAS and CMS. The protection of these high-field magnets after a quench is particularly challenging due to the high stored energy density, which calls for a fast, effective, and reliable protection system. Three design options for the quench protection system of the inner triplet circuit are analyzed, including quench heaters attached to the coil's outer and inner layer, Coupling-Loss Induced Quench (CLIQ), and combinations of those. The discharge of the magnet circuit and the electromagnetic and thermal transients occurring in the coils are simulated by means of the TALES and LEDET programs. The sensitivity to strand parameters and the effects of several failure cases on the coil's hot-spot temperature and peak voltages to ground are assessed. A protection system based only on quench heaters attached to the o...

  12. Inter-comparison of MARS and FLUKA: Predictions on energy deposition in LHC IR quadrupoles

    International Nuclear Information System (INIS)

    Hoa, Christine; Cerutti, F.; Ferrari, A.; Mokhov, N.V.

    2008-01-01

    Detailed modelings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes--based on different independent physics models--for the identical geometry and initial conditions of a simple model representing the IR5 and its first quadrupole

  13. Fabrication of the 7.3 m long coils for the prototype of MQXFB, the Nb$_{3}$Sn low-b quadrupole magnet for the HiLumi LHC

    CERN Document Server

    Lackner, F; Ambrosio, G; Todesco, E; Duret, M; Triquet, S; Pozzobon, M; Luzieux, S; Perez, J C; Scheuerlein, C; Sahner, T; Michels, M; Semeraro, M; Bourcey, N; Cavanna, E; Revilak, P; Genestier, T; Axensalva, J; Principe, R; Prin, H; Savary, F

    2017-01-01

    The High luminosity LHC upgrade target is to increase the integrated luminosity by a factor 10, resulting in an integrated luminosity of 3000 fb-1. One major improvement foreseen is the reduction of the beam size at the collision points. This requires the development of 150 mm single aperture quadrupoles for the interaction regions. These quadrupoles are under development in a joint collaboration between CERN and the US-LHC Accelerator Research Program (LARP). The chosen approach for achieving a nominal quadrupole field gradient of 132.6 T/m is based on the Nb$_{3}$Sn technology. The coils with a length of 7281 mm will be the longest Nb$_{3}$Sn coils fabricated so far for accelerator magnets. The production of the long coils was launched in 2016 based on practise coils made from copper. This paper provides a status of the production of the first low grade and full performance coils and describes the production process and applied quality control. Furthermore an outlook for the prototype assembly is provided.

  14. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    International Nuclear Information System (INIS)

    Counsell, G F

    2002-01-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV e e >10 19 m -3 ) but weakly ionized (n 0 >10 20 m -3 , n e /n 0 <0.1) plasma found nowhere else in the fusion environment. This plasma provides many of the conditions found in industrial plasmas exploiting plasma chemistry and the presence of carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues

  15. The Target Model of Strategic Interaction of Kazan Federal University and the Region in the Field of Education

    Science.gov (United States)

    Gabdulchakov, Valerian F.

    2016-01-01

    The subject of the study in the article is conceptual basis of construction of the target model of interaction between University and region. Hence the topic of the article "the Target model of strategic interaction between the University and the region in the field of education." The objective was to design a target model of this…

  16. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    Science.gov (United States)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  17. DO COROTATING INTERACTION REGION ASSOCIATED SHOCKS SURVIVE WHEN THEY PROPAGATE INTO THE HELIOSHEATH?

    International Nuclear Information System (INIS)

    Provornikova, E.; Opher, M.; Izmodenov, V.; Toth, G.

    2012-01-01

    During the solar minimum at the distance of 42-52 AU from the Sun, Voyager 2 observed recurrent sharp, shock-like increases in the solar wind speed that look very much like forward shocks (Lazarus et al.). The shocks were produced by corotating interaction regions (CIRs) that originated near the Sun. After the termination shock (TS) crossing in 2007, Voyager 2 entered the heliosheath and has been observing the plasma emanated during the recent solar minima. Measurements show high variable flow, but there were no shocks detected in the heliosheath. When CIR-driven shocks propagate to the outer heliosphere, their structure changes due to collision and merging processes of CIRs. In this Letter, we explore an effect of the merging of CIRs on the structure of CIR-associated shocks. We use a three-dimensional MHD model to study the outward propagation of the shocks with characteristics similar to those observed by Voyager 2 at ∼45 AU (Lazarus et al. 1999). We show that due to merging of CIRs (1) reverse shocks disappear, (2) forward shocks become weaker due to interaction with rarefaction regions from preceding CIRs, and (3) forward shocks significantly weaken in the heliosheath. Merged CIRs produce compression regions in the heliosheath with small fluctuations of plasma parameters. Amplitudes of the fluctuations diminish as they propagate deeper in the sheath. We conclude that interaction of shocks and rarefaction regions could be one of the explanations, why shocks produced by CIRs are not observed in the heliosheath by Voyager 2 while they were frequently observed upstream the TS.

  18. Analysis of intense beam instability in a general quadrupole focusing channel with image charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, A., E-mail: animesh@vecc.gov.in; Sing Babu, P., E-mail: psb@vecc.gov.in; Pandit, V.S., E-mail: pandit@vecc.gov.in

    2016-02-01

    The stability properties of transverse envelopes of mismatched intense continuous charge particle beam propagating in a general quadrupole focusing channel have been investigated in the presence of image charge effect due to a cylindrical conducting pipe. Phase shifts and growth factors of the envelope oscillations in the case of instability are calculated by numerical evaluation of the eigenvalues of linearly perturbed envelope equations for small deviations from the matched beam conditions. A detailed study on the region of instability and its dependence on the system parameters like occupancy of the quadrupole focusing field, syncopation factor, zero current phase advance, beam intensity etc. have been carried out. It has been found that the strength and regions of envelope instability due to the lattice and confluent resonances in the parametric space are affected by the presence of image charge.

  19. Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)

    CERN Document Server

    Janssens, Stef; Linde, Frank; van den Brand, Jo; Bertolini, Alessandro; Artoos, Kurt

    This thesis describes the research done to provide stabilisation and precision positioning for the main beam quadrupole magnets of the Compact Linear Collider CLIC. The introduction describes why new particle accelerators are needed to further the knowledge of our universe and why they are linear. A proposed future accelerator is the Compact Linear Collider (CLIC) which consists of a novel two beam accelerator concept. Due to its linearity and subsequent single pass at the interaction point, this new accelerator requires a very small beam size at the interaction point, in order to increase collision effectiveness. One of the technological challenges, to obtain these small beam sizes at the interaction point, is to keep the quadrupole magnets aligned and stable to 1.5 nm integrated r.m.s. in vertical and 5 nm integrated root mean square (r.m.s.) in lateral direction. Additionally there is a proposal to create an intentional offset (max. 50 nm every 20 ms with a precision of +/- 1 nm), for several quadrupole ma...

  20. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  1. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  2. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.

    1990-01-01

    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  3. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    International Nuclear Information System (INIS)

    Maschke, A. W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly

  4. A functional interaction approach to the definition of meso regions: The case of the Czech Republic

    Directory of Open Access Journals (Sweden)

    Erlebach Martin

    2016-06-01

    Full Text Available The definition of functional meso regions for the territory of the Czech Republic is articulated in this article. Functional regions reflect horizontal interactions in space and are presented as a useful tool for various types of geographical analyses, and also for spatial planning, economic policy designs, etc. This paper attempts to add to the discussion on the need to delineate areal units at different hierarchical levels, and to understand the functional flows and spatial behaviours of the population in a given space. Three agglomerative methods are applied in the paper (the CURDS regionalisation algorithm, Intramax, and cluster analysis, and they have not been used previously in Czech geography for the delineation of functional meso regions. Existing functional regions at the micro-level, based on daily travel-to-work flows from the 2001 census, have served as the building blocks. The analyses have produced five regional systems at the meso level, based on daily labour commuting movements of the population. Basic statistics and a characterisation of these systems are provided in this paper.

  5. Performance of upstream interaction region detectors for the FIRST experiment at GSI

    CERN Document Server

    Abou-Haidar, Z; Alvarez, M A G; Anelli, M; Aumann, T; Battistoni, G; Bocci, A; Bohlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cirrone, G A P; Cortes-Giraldo, M A; Cuttone, G; De Napoli, M; Durante, M; Fernandez-Garcia, J P; Finck, C; Gallardo, M I; Golosio, B; Iarocci, E; Iazzi, F; Ickert, G; Introzzi, R; Juliani, D; Krimmer, J; Kurz, N; Labalme, M; Leifels, Y; Le Fevre, A; Leray, S; Marchetto, F; Monaco, V; Morone, M C; Oliva, P; Paoloni, A; Patera, V; Piersanti, L; Pleskac, R; Quesada, J M; Randazzo, N; Romano, F; Rossi, D; Rosso, V; Rousseau, M; Sacchi, R; Sala, P; Sarti, A; Schuy, C; Sciubba, A; Sfienti, C; Simon, H; Sipala, V; Spiriti, E; Stuttge, L; Tropea, S; Younis, H

    2012-01-01

    The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI has been designed to study carbon fragmentation, measuring (12)C double differential cross sections (- (2)I /- - E) for different beam energies between 100 and 1000 MeV/u. The experimental setup integrates newly designed detectors in the, so called, Interaction Region around the graphite target. The Interaction Region upstream detectors are a 250 mum thick scintillator and a drift chamber optimized for a precise measurement of the ions interaction time and position on the target. In this article we review the design of the upstream detectors along with the preliminary results of the data taking performed on August 2011 with 400 MeV/u fully stripped carbon ion beam at GSI. Detectors performances will be reviewed and compared to those obtained during preliminary tests, performed with 500 MeV electrons (at the BTF facility in the INFN Frascati Laboratories) and 80 MeV/u protons and carbon ions (at the INFN LNS Laboratories in Cata...

  6. Measurements of electron cloud growth and mitigation in dipole, quadrupole, and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.R., E-mail: jrc97@cornell.edu; Hartung, W.; Li, Y.; Livezey, J.A.; Makita, J.; Palmer, M.A.; Rubin, D.

    2015-01-11

    Retarding field analyzers (RFAs), which provide a localized measurement of the electron cloud, have been installed throughout the Cornell Electron Storage Ring (CESR), in different magnetic field environments. This paper describes the RFA designs developed for dipole, quadrupole, and wiggler field regions, and provides an overview of measurements made in each environment. The effectiveness of electron cloud mitigations, including coatings, grooves, and clearing electrodes, are assessed with the RFA measurements.

  7. Observation of interference between stark and electric quadrupole transitions in LIF from He atoms in plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Namba, S.; Furukawa, S.; Oda, T.; James, B.W.; Andruczyk, D.

    2004-01-01

    Interference between Stark-induced dipole and electric quadrupole amplitudes was observed in a He hollow cathode plasma with axial magnetic field perpendicular to the sheath electric field E by laser-induced fluorescence (LIF) method. Circularly polarized LIF signals were observed in the sheath region. Spatial profile of the degree of polarization P c showed characteristic features of the interference. Using theoretically calculated P c -E relationship, E-profile was successfully obtained form the measure P c . (author)

  8. Coexistence of spherical and deformed states in nuclei in the Z = 50 region; and the interaction of nuclei with electromagnetic fields in crystals

    International Nuclear Information System (INIS)

    Shroy, R.E. Jr.

    1976-01-01

    By applying the techniques of γ ray spectroscopy to γ rays produced in the decay of nuclear states populated in heavy-ion reactions, the following studies were performed: (1) High-spin states in 113 115 117 119 Sb and 125 127 I were investigated. The states were populated via the ( 6 Li,3n) reaction. Information on the energies, spins, decay modes, lifetimes, and electromagnetic moments was obtained for states up to a typical maximum spin of 25/2. The states in the Sb (Z = 51) and I (Z = 53) nuclei are of interest because of the nearness of the Z = 50 closed proton shell. (2) Experiments were performed to investigate the possibility of using the time differential perturbed angular distribution method to measure quadrupole moments of isomers populated in heavy-ion reactions. First, the previously known quadrupole interaction frequency of the 9/2 1 + state of 69 Ge in Zn was measured, with the state populated via the (α,n) and ( 7 Li,pn) reactions. Next, the quadrupole interaction frequency of the 9/2 1 + state of 73 As was measured in Zn using the ( 7 Li,2n) reaction. A value e 2 Qq/h = 20.2 +- 0.4 MHz was obtained. (3) The destruction of nuclear alignment by lattice defects was also studied for Sb nuclei in a Cd lattice by measuring the anisotropy of γ rays emitted in the decay of an isomer in 115 Sb as a function of temperature. The states were initially aligned when produced in a heavy-ion reaction. As the temperature of the target was increased from approximately 420 0 K to approximately 470 0 K, the anisotrophy was found to increase from zero to the maximum value expected. This can be interpreted in terms of trapping and detrapping of defects by the Sb impurities

  9. LEMS: application of the method to study the static quadrupole moment of the K=35/2 isomer in 179W

    International Nuclear Information System (INIS)

    Neyens, G.; Vyvey, K.; Byrne, A.P.; Dracoulis, G.D.; Blaha, P.

    1997-01-01

    The method of the level mixing spectroscopy (LEMS) was applied for the first time for the study of the static quadrupole moments of high-K isomers in the A∼180 mass region. Results from a preliminary experiment for the static quadrupole moment of the 35/2 - (750 ns) isomer in 179 W give a limit for its upper value Q 2 <0.343. (orig.). With 1 fig

  10. THE MAIN TRENDS OF INTERACTION BETWEEN THE ADMINISTRATION OF ROSPOTREBNADZOR IN THE LENINGRAD REGION AND THE GOVERNMENT OF LENINGRAD REGION IN THE FIELD OF POPULATION RADIATION PROTECTION

    Directory of Open Access Journals (Sweden)

    S. A. Gorbanev

    2008-01-01

    Full Text Available The article gives the main interaction trends of the Administration of Rospotrebnadzor in the Leningrad Region and the Government of Leningrad Region regarding issues of regional radiation protection. It reports on comprehensive measures devoted to the limitation of the population exposure from natural irradiation sources, monitoring of territories which suffered from Chernobyl NPP accident and monitoring of the environmental impact of unauthorized dumps and solid municipal waste sites in the Leningrad Region. It presents the basic issues of medical exposure limitation in the Leningrad Region and measures for their solving.

  11. Development of a neutron-polarizing device based on a quadrupole magnet and its application to a focusing SANS instrument

    International Nuclear Information System (INIS)

    Oku, Takayuki

    2009-01-01

    We have investigated suitable magnetic field distribution to polarize neutrons based only on the electromagnetic interaction between a neutron magnetic moment and magnetic field, and found out a quadrupole field was the most suitable among simple multipole fields. Then we constructed a quadrupole magnet with a Halbach magnetic circuit as the neutron polarizing device. A cold neutron polarizing experiment of the quadrupole magnet was performed at the beamline C3-1-2-1 (NOP) of JRR-3 at JAEA. By passing through the aperture of the quadrupole magnet, positive and negative polarity neutrons are accelerated in opposite directions and spatially separated. Therefore, we extracted the one-spin component and analyzed its polarization degree. As a result very high neutron polarization degree P=0.9993±0.0025 was obtained. Then the quadrupole magnet was installed into the polarized neutron focusing geometry SANS instrument SANS-J-II of JRR-3. The instrument performance was enhanced by about 10 times compared with the case with the magnetic supermirror as the neutron polarizing device. The details are shown and discussed. (author)

  12. Optimization of the LHC interaction region with respect to beam-induced energy deposition

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Strait, J.B.

    1996-06-01

    Energy deposition in the superconducting magnets by particles from p- p collisions is a significant challenge for the design of the LHC high luminosity insertions. We have studies the dependence of the energy deposition on the apertures and strengths of insertion magnets and on the placement of absorbers in front of and within the quadrupoles. Monte Carlo simulations were made using the code DTUJET to generate 7x7 TeV p-p events and the code MARS to follow hadronic and electromagnetic cascades induced in the insertion components. The 3D geometry and magnetic field descriptions of the LHC-4.1 lattice were used. With a quadrupole coil aperture ≥70 mm, absorbers can be placed within the magnet bore which reduce the peak power density, at full luminosity, below 0.5 mW/g, a level that should allow the magnets to operate at their design field. The total heat load can be removed by a cooling system similar to that used in the main magnets

  13. The g-factor and the electric quadrupole moment of the 7/2+ isomer in 125Xe

    International Nuclear Information System (INIS)

    Alber, D.; Bertschat, H.H.; Grawe, H.; Haas, H.; Mahnke, H.E.; Menningen, M.; Semmler, W.; Sielemann, R.; Zeitz, W.D.; Freie Univ. Berlin

    1983-01-01

    The time differential perturbed angular distribution method (PAD) was used to measure the g-factor and the electric quadrupole interaction in a Cd single crystal for the tsub(1/2)=140 ns, Isup(π)=7/2 + isomer in 125 Xe. The g-factor is g=+0.264(10) and the quadrupole coupling constant e 2 Qq/h=122.1(6) MHz at 552 K. The lifetime of the Isup(π)=11/2 + state was measured to be tau=11.3(1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-pulse-particle (TRPP) model the quadrupole moment of the 7/2 + isomer is deduced to be Q=1.40(15) b yielding an electric field gradient (efg) eq=3.6(4)x10 17 V/cm 2 for Xe Cd. (orig.)

  14. The g-factor and the electric quadrupole moment of the 7/2+ isomer in 125Xe

    International Nuclear Information System (INIS)

    Alber, D.; Bertschat, H.H.; Grawe, H.; Haas, H.; Mahnke, H.E.; Menningen, M.; Semmler, W.; Sielemann, R.; Zeitz, W.D.

    1983-01-01

    The time differential perturbed angular distribution method (PAD) was used to measure the g-factor and the electric quadrupole interaction in a Cd single crystal for the tsub(1/2) = 140 ns, Isup(π) = 7/2 + isomer in 125 Xe. The g-factor is g = +0.264(10) and the quadrupole coupling constant e 2 Qq/h = 122.1(6) MHz at 552 K. The lifetime of the Isup(π) = 11/2 + state was measured to be tau = 11.3(1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-plus-particle (TRPP) model the quadrupole moment of the 7/2 + isomer is deduced to be Q = 1.40(15) b yielding an electric field gradient (efg) eq = 3.6(4)x10 17 V/cm 2 for Xe Cd. (orig.)

  15. Recurrent variations of anomalous oxygen in association with a corotating interaction region

    Directory of Open Access Journals (Sweden)

    M. K. Reuss

    Full Text Available The fluxes of anomalous oxygen (E ranging from 3.5-6.8 MeV/amu, as measured by the EPAC instrument on ULYSSES, show a recurrent variation with the solar rotation period, which is anticorrelated with the fluxes of particles accelerated at the shocks of a corotating interaction region (CIR, and correlated with the fluxes of galactic cosmic rays known to be modulated by the CIR. The amplitude of this variation is much higher than expected for galactic cosmic rays of the same rigidity.

  16. Interaction Region for a 100 TeV Proton-Proton Collider

    CERN Document Server

    Martin, R; Dalena, B

    2015-01-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, FCC-hh, running at center-of-mass energies of up to 100 TeV, pushing the energy frontier of fundamental physics to a new limit. At a circumference of 80-100 km, this machine is planned to use the same tunnel as FCC-ee, a proposed 90-350 GeV high luminosity electron-positron collider. This paper presents the design progress and technical challenges for the interaction region of FCC-hh.

  17. Comparison of various clustered interaction regions with regard to chromatic and dynamic behavior

    International Nuclear Information System (INIS)

    Leemann, B.; Wrulich, A.

    1986-05-01

    Clustered interaction regions for the SSC may be preferable from the viewpoint of costs and operation. In going from distributed to clustered IR's the superperiodicity of the machine is reduced and therefore the number of resonances induced by chromaticity correcting sextupoles is increased. This break in symmetry may cause a reduction in dynamic stability. The chromatic and dynamic behavior of the bare lattice is investigated for various cluster configurations. That means only chromaticity correcting sextupoles have been included and no magnetic imperfection errors have been considered. Then, the dynamic apertures of lattices with various IR clustering schemes are compared when random magnetic imperfections are included

  18. Particle acceleration at corotating interaction regions in the three-dimensional heliosphere

    International Nuclear Information System (INIS)

    Desai, M.I.; Marsden, R.G.; Sanderson, T.R.; Balogh, A.; Forsyth, R.J.; Gosling, J.T.

    1998-01-01

    We have investigated the relationship between the energetic (∼1MeV) proton intensity (J) and the magnetic compression ratio (C) measured at the trailing edges of corotating interaction regions observed at Ulysses. In general, our results show that the proton intensity was well correlated with the compression ratio, provided that the seed intensity remained constant, consistent with predictions of the Fermi model. Specifically, our results indicate that particles were accelerated to above ∼1MeV in energy at or near the trailing edges of the compression regions observed in the midlatitude southern heliosphere, irrespective of whether the bounding reverse shocks were present or not. On the basis of this, we conclude that shock acceleration is probably not the only mechanism by which particles are accelerated to above ∼1MeV in energy at compression or interaction regions (CIRs). On the basis of magnetic field measurements obtained near the trailing edges of several midlatitude CIRs, we propose that particles could have been accelerated via the Fermi mechanism by being scattered back and forth across the trailing edges of the compression regions by large-amplitude Alfvacute en waves. Our results also show that the proton intensity was well correlated with the compression ratio during low solar activity periods but was essentially independent of C during periods of high solar activity. We suggest that the correlation between J and C was not observed during solar active periods because of significant variations in the seed intensity that result from sporadic contributions from transient solar events. In contrast, the correlation was observable during quiescent periods probably because contributions from transients had decreased dramatically, which allowed the CIRs to accelerate particles out of a seed population whose intensity remained relatively unperturbed. copyright 1998 American Geophysical Union

  19. Isabelle dipole and quadrupole coil configurations

    International Nuclear Information System (INIS)

    Dahl, P.F.; Hahn, H.

    1980-01-01

    The coil configurations of the ISABELLE dipole and quadrupole magnets have been reviewed and a number of improvements were suggested for incorporation into the final design. The coil designs are basically single layer multiple block approximations to cosine current distributions, wound from a high aspect ratio non-keystoned braided conductor. The blocks are separated by knife-edge wedges to maximize the quench propagation velocity. The current density variation is obtained by an appropriate distribution of the spacer turns and, to a lesser degree, by the wedge locations. The use of inert turns is necessary to minimize the peak field enhancement both in the ends and in the two dimensional section. Schemes for deriving turns distributions yielding harmonic coefficients satisfying the stringent ISABELLE tolerances on field uniformity, while allowing for simplicity in winding and taking into account quench propagation considerations, will be discussed, as well as our approach to the coil end configuration

  20. An improved integrally formed radio frequency quadrupole

    Science.gov (United States)

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  1. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  2. RF quadrupole beam dynamics design studies

    International Nuclear Information System (INIS)

    Crandall, K.R.; Stokes, R.H.; Wangler, T.P.

    1979-01-01

    The radio-frequency quadrupole (RFQ) linear accelerator structure is expected to permit considerable flexibility in achieving linac design objectives at low velocities. Calculational studies show that the RFQ can accept a high-current, low-velocity, dc beam, bunch it with high efficiency, and accelerate it to a velocity suitable for injection into a drift-tube linac. Although it is relatively easy to generate a satisfactory design for an RFQ linac for low beam currents, the space-charge effects produced by high currents dominate the design criteria. Methods have been developed to generate solutions that make suitable compromises between the effects of emittance growth, transmission efficiency, and overall structure length. Results are given for a test RFQ linac operating at 425 MHz

  3. Commissioning results of the HZB quadrupole resonator

    CERN Document Server

    Kleindienst, Raphael; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    Recent cavity results with niobium have demonstrated the necessity of a good understanding of both the BCS and residual resistance. For a complete picture and comparison with theory, it is essential that one can measure the RF properties as a function of field, temperature, frequency and ambient magnetic field. Standard cavity measurements are limited in their ability to change all parameters freely and in a controlled manner. On the other hand, most sample measurement setups operate at fairly high frequency, where the surface resistance is always BCS dominated. The quadrupole resonator, originally developed at CERN, is ideally suited for characterization of samples at typical cavity RF frequencies. We report on a modified version of the QPR with improved RF figures of merit for high-field operation. Experimental challenges in the commissioning run and alternate designs for simpler sample changes are shown alongside measurement results of a large grain niobium sample.

  4. TOUTATIS: A radio frequency quadrupole code

    Directory of Open Access Journals (Sweden)

    Romuald Duperrier

    2000-12-01

    Full Text Available A cw high power linear accelerator can only work with very low particle losses and structure activation. At low energy, the radio frequency quadrupole (RFQ is an accelerator element that is very sensitive to losses. To design this structure, a good understanding of the beam dynamics is required. Generally, the reference code PARMTEQM is enough to design the accelerator. TOUTATIS has been written with the goals of cross-checking results and obtaining more reliable dynamics. This paper relates the different numerical methods used in the code. It is time based, using multigrids methods and adaptive mesh for a fine description of the forces without being time consuming. The field is calculated through a Poisson solver and the vanes are fully described, allowing it to properly simulate the coupling gaps and the RFQs extremities. Theoretical and experimental tests are also described and show a good agreement between simulations and reference cases.

  5. Experimental investigation of quadrupole virtual photon spectrum

    International Nuclear Information System (INIS)

    Gouffon, P.

    1986-01-01

    To test experimentally the quadrupole virtual photon spectrum calculation, the (e,α) excitation function of an isolated 2 + level at 20.14 MeV in 24 Mg was measured. The most recent calculations in DWBA, including nuclear size effects, are compared to this experimental curve. The differential cross section d 2 σ/dΩdE was measured 48 0 , 90 0 , 132 0 in the laboratory system, for total electron energies of 20.0, 20.8, 21.5, 24.0, 26.0, 28.0, 30.0, 32.0, 36.0, and 40.0 MeV. The reduced matrix element B(E2) of the 20,14 MeV level is extracted as a secondary product of this work. (author) [pt

  6. Study of Quench Protection for the Nb$_3$Sn Low-β Quadrupole for the LHC Luminosity Upgrade (HiLumi-LHC)

    CERN Document Server

    Todesco, E; Bellomo, G; Sorbi, M; Ambrosio, G; Chlachidze, G; Felice, H; Marchevsky, M; Salmi, T

    2015-01-01

    The HiLumi program is aiming to develop and build new Nb$_{3}$Sn, high-field (12 T) and large aperture (150 mm) superconducting quadrupoles, which will be inserted in the LHC interaction regions and will provide the final focusing of the beam, in the program of the luminosity upgrade. The quench protection of these magnets is one of the most challenging aspects, mainly because of the large value of the magnet inductance (160 mH for the configuration with two 8 m long magnets in series), of the large value of the stored magnetic energy density in the coils (0.12 J/mm3, a factor 2 larger than in the conventional NbTi quadrupoles) and of the use of Nb$_{3}$Sn as conductor, which has never been used for large accelerator magnets. Previous works have demonstrated that a “standard” conservative analysis, assuming quench heaters only on the coils outer layer, gives high hot spot temperature, close to the design limit (350 K). In this paper, a new study of quench protection is presented. The benefic effects of la...

  7. Interaction study of rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization.

    Science.gov (United States)

    Lian, Sen; Cho, Won Kyong; Jo, Yeonhwa; Kim, Sang-Min; Kim, Kook-Hyung

    2014-04-01

    Rice stripe virus (RSV), which belongs to the genus Tenuivirus, is an emergent virus problem. The RSV genome is composed of four single-strand RNAs (RNA1-RNA4) and encodes seven proteins. We investigated interactions between six of the RSV proteins by yeast-two hybrid (Y2H) assay in vitro and by bimolecular fluorescence complementation (BiFC) in planta. Y2H identified self-interaction of the nucleocapsid protein (NP) and NS3, while BiFC revealed self-interaction of NP, NS3, and NCP. To identify regions(s) and/or crucial amino acid (aa) residues required for NP self-interaction, we generated various truncated and aa substitution mutants. Y2H assay showed that the N-terminal region of NP (aa 1-56) is necessary for NP self-interaction. Further analysis with substitution mutants demonstrated that additional aa residues located at 42-47 affected their interaction with full-length NP. These results indicate that the N-terminal region (aa 1-36 and 42-47) is required for NP self-interaction. BiFC and co-localization studies showed that the region required for NP self-interaction is also required for NP localization at the nucleus. Overall, our results indicate that the N-terminal region (aa 1-47) of the NP is important for NP self-interaction and that six aa residues (42-47) are essential for both NP self-interaction and nuclear localization. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Characterization of the ELIMED prototype permanent magnet quadrupole system

    International Nuclear Information System (INIS)

    Russo, A.D.; Schillaci, F.; Romano, F.; Amato, A.; Amico, A.G.; Calanna, A.; Cirrone, G.A.P.; Costa, M.; Cuttone, G.; Amato, C.; Luca, G. De; Gallo, G.; Grmek, A.; Rosa, G. La; Leanza, R.; Pommarel, L.; Flacco, F.A.; Malka, V.; Giove, D.; Maggiore, M.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  9. Characterization of the ELIMED prototype permanent magnet quadrupole system

    Science.gov (United States)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  10. Quadrupole corrections to matrix elements of transitions in resonant reactions of muonic molecule formation

    International Nuclear Information System (INIS)

    Faifman, M.P.; Strizh, T.A.; Armour, E.A.G.; Harston, M.R.

    1996-01-01

    The calculated resonant formation rates of the muonic molecules DDμ and DTμ are presented. The approach developed earlier for calculating the transition matrix elements in the dipole approximation has been extended to include the quadrupole terms in the multipole expansion of the interaction operator. The calculated dependence of the DTμ formation rates on the energies of the incident Tμ muonic atoms shows that the effect of including the quadrupole correction is to reduce the magnitude of the peak rates by about 20-30% at the different temperatures, compared to those calculated in the dipole approximation. The dependence on temperature for the DDμ formation rates is obtained with the differences between the presented and previous calculations being less than 5%. (orig.)

  11. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    Science.gov (United States)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  12. Possible interaction between thermal electrons and vibrationally excited N2 in the lower E-region

    Directory of Open Access Journals (Sweden)

    K.-I. Oyama

    2011-03-01

    Full Text Available As one of the tasks to find the energy source(s of thermal electrons, which elevate(s electron temperature higher than neutral temperature in the lower ionosphere E-region, energy distribution function of thermal electron was measured with a sounding rocket at the heights of 93–131 km by the applying second harmonic method. The energy distribution function showed a clear hump at the energy of ~0.4 eV. In order to find the reason of the hump, we conducted laboratory experiment. We studied difference of the energy distribution functions of electrons in thermal energy range, which were measured with and without EUV radiation to plasma of N2/Ar and N2/O2 gas mixture respectively. For N2/Ar gas mixture plasma, the hump is not clearly identified in the energy distribution of thermal electrons. On the other hand for N2/O2 gas mixture, which contains vibrationally excited N2, a clear hump is found when irradiated by EUV. The laboratory experiment seems to suggest that the hump is produced as a result of interaction between vibrationally excited N2 and thermal electrons, and this interaction is the most probable heating source for the electrons of thermal energy range in the lower E-region. It is also suggested that energy distribution of the electrons in high energy part may not be Maxwellian, and DC probe measures the electrons which are non Maxwellian, and therefore "electron temperature" is calculated higher.

  13. Cryosphere-hydrosphere interactions: Numerical modeling using the Regional Ocean Modeling System (ROMS) at different scales

    International Nuclear Information System (INIS)

    Bergamasco, A.; Carniel, S.; Sclavo, M.; Budgell, W.P.

    2005-01-01

    Conveyor belt circulation controls global climate through heat and water fluxes with atmosphere and from tropical to polar regions and vice versa. This circulation, commonly referred to as thermohaline circulation (THC), seems to have millennium time scale and nowadays-a non-glacial period-appears to be as rather stable. However, concern is raised by the buildup of CO 2 and other greenhouse gases in the atmosphere (IPCC, Third assessment report: Climate Change 2001. A contribution 01 working group I, n and In to the Third Assessment Report of the intergovernmental Panel on Climate Change (Cambridge Univ. Press, UK) 2001, http://www.ipcc.ch) as these may affect the THC conveyor paths. Since it is widely recognized that dense water formation sites ad as primary sources in strengthening quasi-stable THC paths (Stommel H., Tellus, 13 (1961) 224), in order to simulate properly the consequences of such scenarios a better understanding of these oceanic processes is needed. To successfully model these processes, air sea-ice-integrated modelling approaches are often required. Here we focus on two polar regions using the Regional Ocean Modeling System (ROMS). In the first region investigated, the North Atlantic-Arctic, where open-ocean Jeep convection and open-sea ire formation and dispersion under the intense air-sea interactions are the major engines, we use a new version of the coupled hydrodynamic-ice ROMS model. The second area belongs to the Antarctica region inside the Southern Ocean, where brine rejections during ice formation inside shelf seas origin dense water that, flowing along the continental slope, overflow becoming eventually abyssal waters. Results show how nowadays integrated-modelling tasks have become more and more feasible and effective; numerical simulations dealing with large computational domains or challenging different climate scenarios can be run on multi-processors platforms and on systems like LINUX clusters, made of the same hardware as PCs, and

  14. Quadrupole interaction in ternary chalcopyrite semiconductors experiments and theory

    CERN Document Server

    Dietrich, M; Degering, D; Deicher, M; Kortus, J; Magerle, R; Möller, A; Samokhvalov, V; Unterricker, S; Vianden, R

    2000-01-01

    Electric field gradients have been measured at substitutional lattice sites in ternary semiconductors using perturbed gamma - gamma angular correlation spectroscopy. The experimental results for A/sup I/B/sup III/C/sub 2//sup VI/ chalcopyrite structure compounds and Square Operator A/sup II/B/sub 2//sup III/C/sub 4//sup VI/ defect chalcopyrites are compared with ab-initio calculations. The latter were carried out with the WIEN code that uses the full potential linearized augmented plane wave method within a density functional theory. The agreement between experiment and theory is in most cases very good. Furthermore, the anion displacements in AgGaX/sub 2/- compounds (X: S, Se, Te) have been determined theoretically by determining the minimum of the total energy of the electrons in an elementary cell. (20 refs).

  15. Beam dynamics of the interaction region solenoid in a linear collider due to a crossing angle

    Directory of Open Access Journals (Sweden)

    P. Tenenbaum

    2003-06-01

    Full Text Available Future linear colliders may require a nonzero crossing angle between the two beams at the interaction point (IP. This requirement in turn implies that the beams will pass through the strong interaction region solenoid with an angle, and thus that the component of the solenoidal field perpendicular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence of a crossing angle will cause optical effects not observed for beams passing through the solenoid on axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed linear collider detector solenoid configurations are presented.

  16. Experimental evidence of biological interactions among different isolates of Trypanosoma cruzi from the Chaco Region.

    Directory of Open Access Journals (Sweden)

    Paula G Ragone

    Full Text Available Many infectious diseases arise from co-infections or re-infections with more than one genotype of the same pathogen. These mixed infections could alter host fitness, the severity of symptoms, success in pathogen transmission and the epidemiology of the disease. Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a high biological variability often correlated with its genetic diversity. Here, we developed an experimental approach in order to evaluate biological interaction between three T. cruzi isolates belonging to different Discrete Typing Units (DTUs TcIII, TcV and TcVI. These isolates were obtained from a restricted geographical area in the Chaco Region. Different mixed infections involving combinations of two isolates (TcIII + TcV, TcIII + TcVI and TcV + TcVI were studied in a mouse model. The parameters evaluated were number of parasites circulating in peripheral blood, histopathology and genetic characterization of each DTU in different tissues by DNA hybridization probes. We found a predominance of TcVI isolate in blood and tissues respect to TcIII and TcV; and a decrease of the inflammatory response in heart when the damage of mice infected with TcVI and TcIII + TcVI mixture were compared. In addition, simultaneous presence of two isolates in the same tissue was not detected. Our results show that biological interactions between isolates with different biological behaviors lead to changes in their biological properties. The occurrence of interactions among different genotypes of T. cruzi observed in our mouse model suggests that these phenomena could also occur in natural cycles in the Chaco Region.

  17. Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties versus particle motion

    International Nuclear Information System (INIS)

    Bini, Donato; Geralico, Andrea; Luongo, Orlando; Quevedo, Hernando

    2009-01-01

    An exact solution of Einstein's field equations in empty space first found in 1985 by Quevedo and Mashhoon is analyzed in detail. This solution generalizes Kerr spacetime to include the case of matter with an arbitrary mass quadrupole moment and is specified by three parameters, the mass M, the angular momentum per unit mass a and the quadrupole parameter q. It reduces to the Kerr spacetime in the limiting case q = 0 and to the Erez-Rosen spacetime when the specific angular momentum a vanishes. The geometrical properties of such a solution are investigated. Causality violations, directional singularities and repulsive effects occur in the region close to the source. Geodesic motion and accelerated motion are studied on the equatorial plane which, due to the reflection symmetry property of the solution, also turns out to be a geodesic plane.

  18. Dynamical Models of Interactions between Herds Forage and Water Resources in Sahelian Region

    Directory of Open Access Journals (Sweden)

    Jean Jules Tewa

    2014-01-01

    Full Text Available Optimal foraging is one of the capital topics nowadays in Sahelian region. The vast majority of feed consumed by ruminants in Sahelian region is still formed by natural pastures. Pastoral constraints are the high variability of available forage and drinking water in space and especially in time (highly seasonal, interannual variability and the scarcity of water resources. The mobility is the main functional and opportunistic adaptation to these constraints. Our goal in this paper is to formalize two dynamical models for interactions between a herd of domesticate animals, forage resources, and water resources inside a given Sahelian area, in order to confirm, explain, and predict by mathematical models some observations about pastoralism in Sahelian region. These models in some contexts can be similar to predator-prey models as forage and water resources can be considered as preys and herd’s animals as predators. These models exhibit very rich dynamics, since it predicts abrupt changes in consumer behaviour and disponibility of forage or water resources. The dynamics exhibits a possible coexistence between herd, resources, and water with alternative peaks in their trajectories.

  19. Design of the LINAC4 Transfer Line Quadrupole Electromagnets

    CERN Document Server

    Vanherpe, L

    2013-01-01

    Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.

  20. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  1. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF PAPAGAYO, COSTA RICA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology Gulf of Papagayo, Costa Rica dataset was created using an automated...

  2. Development of a totally computer-controlled triple quadrupole mass spectrometer system

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Barton, V.C.; Brand, H.R.; Neufeld, K.W.; Bowman, J.E.

    1983-01-01

    A totally computer-controlled triple quadrupole mass spectrometer (TQMS) is described. It has a number of unique features not available on current commercial instruments, including: complete computer control of source and all ion axial potentials; use of dual computers for data acquisition and data processing; and capability for self-adaptive control of experiments. Furthermore, it has been possible to produce this instrument at a cost significantly below that of commercial instruments. This triple quadrupole mass spectrometer has been constructed using components commercially available from several different manufacturers. The source is a standard Hewlett-Packard 5985B GC/MS source. The two quadrupole analyzers and the quadrupole CAD region contain Balzers QMA 150 rods with Balzers QMG 511 rf controllers for the analyzers and a Balzers QHS-511 controller for the CAD region. The pulsed-positive-ion-negative-ion-chemical ionization (PPINICI) detector is made by Finnigan Corporation. The mechanical and electronics design were developed at LLNL for linking these diverse elements into a functional TQMS as described. The computer design for total control of the system is unique in that two separate LSI-11/23 minicomputers and assorted I/O peripherals and interfaces from several manufacturers are used. The evolution of this design concept from totally computer-controlled instrumentation into future self-adaptive or ''expert'' systems for instrumental analysis is described. Operational characteristics of the instrument and initial results from experiments involving the analysis of the high explosive HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) are presented

  3. Spectroscopic Quadrupole Moments in {96,98}Sr: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60.

    Science.gov (United States)

    Clément, E; Zielińska, M; Görgen, A; Korten, W; Péru, S; Libert, J; Goutte, H; Hilaire, S; Bastin, B; Bauer, C; Blazhev, A; Bree, N; Bruyneel, B; Butler, P A; Butterworth, J; Delahaye, P; Dijon, A; Doherty, D T; Ekström, A; Fitzpatrick, C; Fransen, C; Georgiev, G; Gernhäuser, R; Hess, H; Iwanicki, J; Jenkins, D G; Larsen, A C; Ljungvall, J; Lutter, R; Marley, P; Moschner, K; Napiorkowski, P J; Pakarinen, J; Petts, A; Reiter, P; Renstrøm, T; Seidlitz, M; Siebeck, B; Siem, S; Sotty, C; Srebrny, J; Stefanescu, I; Tveten, G M; Van de Walle, J; Vermeulen, M; Voulot, D; Warr, N; Wenander, F; Wiens, A; De Witte, H; Wrzosek-Lipska, K

    2016-01-15

    Neutron-rich {96,98}Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60.

  4. Interannual-to-decadal air-sea interactions in the tropical Atlantic region

    Science.gov (United States)

    Ruiz-Barradas, Alfredo

    2001-09-01

    The present research identifies modes of atmosphere-ocean interaction in the tropical Atlantic region and the mechanisms by which air-sea interactions influence the regional climate. Novelties of the present work are (1)the use of relevant ocean and atmosphere variables important to identity coupled variability in the system. (2)The use of new data sets, including realistic diabatic heating. (3)The study of interactions between ocean and atmosphere relevant at interannual-to-decadal time scales. Two tropical modes of variability are identified during the period 1958-1993, the Atlantic Niño mode and the Interhemispheric mode. Those modes have defined structures in both ocean and atmosphere. Anomalous sea surface temperatures and winds are associated to anomalous placement of the Intertropical Convergence Zone (ITCZ). They develop maximum amplitude during boreal summer and spring, respectively. The anomalous positioning of the ITCZ produces anomalous precipitation in some places like Nordeste, Brazil and the Caribbean region. Through the use of a diagnostic primitive equation model, it is found that the most important terms controlling local anomalous surface winds over the ocean are boundary layer temperature gradients and diabatic heating anomalies at low levels (below 780 mb). The latter is of particular importance in the deep tropics in producing the anomalous meridional response to the surface circulation. Simulated latent heat anomalies indicate that a thermodynamic feedback establishes positive feedbacks at both sides of the equator and west of 20°W in the deep tropics and a negative feedback in front of the north west coast of Africa for the Interhemispheric mode. This thermodynamic feedback only establishes negative feedbacks for the Atlantic Niño mode. Transients establish some connection between the tropical Atlantic and other basins. Interhemispheric gradients of surface temperature in the tropical Atlantic influence winds in the midlatitude North

  5. Interaction of dependent and non-dependent regions of the acutely injured lung during a stepwise recruitment manoeuvre

    International Nuclear Information System (INIS)

    Gómez-Laberge, Camille; Rettig, Jordan S; Arnold, John H; Wolf, Gerhard K; Smallwood, Craig D; Boyd, Theonia K

    2013-01-01

    The benefit of treating acute lung injury with recruitment manoeuvres is controversial. An impediment to settling this debate is the difficulty in visualizing how distinct lung regions respond to the manoeuvre. Here, regional lung mechanics were studied by electrical impedance tomography (EIT) during a stepwise recruitment manoeuvre in a porcine model with acute lung injury. The following interaction between dependent and non-dependent regions consistently occurred: atelectasis in the most dependent region was reversed only after the non-dependent region became overdistended. EIT estimates of overdistension and atelectasis were validated by histological examination of lung tissue, confirming that the dependent region was primarily atelectatic and the non-dependent region was primarily overdistended. The pulmonary pressure–volume equation, originally designed for modelling measurements at the airway opening, was adapted for EIT-based regional estimates of overdistension and atelectasis. The adaptation accurately modelled the regional EIT data from dependent and non-dependent regions (R 2 > 0.93, P < 0.0001) and predicted their interaction during recruitment. In conclusion, EIT imaging of regional lung mechanics reveals that overdistension in the non-dependent region precedes atelectasis reversal in the dependent region during a stepwise recruitment manoeuvre. (paper)

  6. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    Science.gov (United States)

    Trippanera, Daniele; Ruch, Joël; Acocella, Valerio; Thordarson, Thor; Urbani, Stefano

    2018-01-01

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja's calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  7. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    KAUST Repository

    Trippanera, Daniele

    2017-12-04

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja’s calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  8. Economic crisis and its influences on the interaction between land use and transport in Madrid Region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.

    2016-07-01

    The road transport system is closely linked to the land-use system. The road system connects territories at all spatial scale, on the other hand, passengers and freight travel behavior are strongly influenced both by land-use and the road transport system. Hence, research in the field of the interactions between land-use and the road transport system is still less, particular the influence of the economic crisis. This paper aims to find out if the statistical analysis of land use and mobility can help to answer the question of what happens during economic crisis on both land use and transport system, and unveiling key spatial relationships between them. The methodology for the analysis was developed accordingly with the data and resources available. First, an exploratory data analysis (EDA) is performed in order to identify the land use and mobility pattern during the last decade. This analysis focuses on six aspects, which are distribution of population and dwellings, employment and jobs, GDP, motorization and modal split. The second aspect consists on crossing the spatial patterns of the different aspects in order to find some explanatory relationships that indicate the presence of the key characteristics. The analysis is based on the case of Madrid Region. The land-use and transport data presented in this analysis are from 2004 to 2014, which are collected from the national statistical institute, the regional government database and two urban mobility surveys of Madrid. Through the exploration analysis, we find that there is close relationship between the land-use system and travel behavior in Madrid Region. With an increasing of new dwellings constructed in the outer periphery of Madrid Region, it leads longer trips distance and more travel cost particularly by car mode. Moreover, during the economic crisis, we also find the motorization level of Madrid keeps the same, as a result of the decreasing GDP and relatively decreasing. (Author)

  9. The Features of Moessbauer Spectra of Hemoglobins: Approximation by Superposition of Quadrupole Doublets or by Quadrupole Splitting Distribution?

    International Nuclear Information System (INIS)

    Oshtrakh, M. I.; Semionkin, V. A.

    2004-01-01

    Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.

  10. Mask locations in the SLC final focus region

    International Nuclear Information System (INIS)

    Cence, R.J.

    1983-01-01

    The location of four sets of masks needed to shield against background in the final focus region of the SLC is shown. The main point of this note is to update the results of Miller and Sens taking into account the recent changes that have been made in the optics of the SLC beams. For the latest beam design we use the TRANSPORT output dated 5-13-83. This design assumes that the final bends will form an S about the interaction point and that the final quadrupoles will be superconducting and will be placed about 8 feet from the interaction point

  11. Towards a new LHC interaction region design for a luminosity upgrade

    International Nuclear Information System (INIS)

    James Strait et al.

    2003-01-01

    After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the low-β insertions with a higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. Preliminary studies show that, with magnet technology that is expected to be developed by early in the next decade, a factor of 2 to 5 reduction in β* could be achieved with new insertions, as part of an upgrade aimed at a factor of 10 luminosity increase. In this paper we survey several possible second generation LHC interaction regions designs, which address the expected limitations on LHC performance imposed by the baseline insertions

  12. Extended interacting boson model description of Pd nuclei in the A∼100 transitional region

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Studies of even-even nuclei in the A∼100 transitional mass region within the framework of the interacting boson model-1 (IBM-1 have been expanded down to 98Pd nuclei to compare the calculation with new experimental results from measurements obtained at the Institute of Nuclear Physics in Cologne. The low-lying energy levels and the E2 transition rates of 98−100Pd nuclei are investigated and their geometric structures are described in the present work. We have also focused on the new B(E2:21+ → 01+ values of 112,114Pd nuclei to compare with previously calculated values.

  13. Towards a new LHC Interaction Region design for a luminosity upgrade

    CERN Document Server

    Strait, J; Limon, P; Mokhov, N V; Sen, T; Zlobin, A V; Brüning, Oliver Sim; Ostojic, R; Rossi, L; Ruggiero, F; Taylor, T; ten Kate, H; Devred, A; Gupta, R; Harrison, M; Peggs, S; Pilat, F; Caspi, S; Gourlay, S; Sabbi, G

    2003-01-01

    After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the low-beta insertions with a higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. Preliminary studies show that, with magnet technology that is expected to be developed by early in the next decade, a factor of 2 to 5 reduction in beta* could be achieved with new insertions, as part of an upgrade aimed at a factor of 10 luminosity increase. In this paper we survey several possible second generation LHC interaction regions designs, which address the expected limitations on LHC performance imposed by the baseline insertions.

  14. Conceptual Design of the LHC Interaction Region Upgrade Phase-I

    CERN Document Server

    Ostojic, R; Baglin, V; Ballarino, A; Cerutti, F; Denz, R; Fartoukh, S; Fessia, P; Foraz, K; Fürstner, M; Herr, Werner; Karppinen, M; Kos, N; Mainaud-Durand, H; Mereghetti, A; Muttoni, Y; Nisbet, D; Prin, H; Tock, J P; Van Weelderen, R; Wildner, E

    2008-01-01

    The LHC is starting operation with beam. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently and that it achieves nominal performance in the shortest term. Since several years the community has been discussing the directions for maximizing the physics reach of the LHC by upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex, in a phased approach. The first phase of the LHC interaction region upgrade was approved by Council in December 2007. This phase relies on the mature Nb-Ti superconducting magnet technology with the target of increasing the LHC luminosity to 2 to 3 10^34 cm^-2s^-1, while maximising the use of the existing infrastructure. In this report, we present the goals and the proposed conceptual solutions for the LHC IR Upgrade Phase-I which include the recommendations of the conceptual design review.

  15. Muon and neutron observations in connection with the corotating interaction regions

    Science.gov (United States)

    da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.

    Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.

  16. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  17. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  18. Beam-based alignment of C-shaped quadrupole magnets

    International Nuclear Information System (INIS)

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 microm

  19. Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations

    Directory of Open Access Journals (Sweden)

    L. Guicking

    2010-04-01

    Full Text Available We investigate wave properties of low-frequency magnetic field fluctuations in Venus' solar wind interaction region based on the measurements made on board the Venus Express spacecraft. The orbit geometry is very suitable to investigate the fluctuations in Venus' low-altitude magnetosheath and mid-magnetotail and provides an opportunity for a comparative study of low-frequency waves at Venus and Mars. The spatial distributions of the wave properties, in particular in the dayside and nightside magnetosheath as well as in the tail and mantle region, are similar to observations at Mars. As both planets do not have a global magnetic field, the interaction process of the solar wind with both planets is similar and leads to similar instabilities and wave structures. We focus on the spatial distribution of the wave intensity of the fluctuating magnetic field and detect an enhancement of the intensity in the dayside magnetosheath and a strong decrease towards the terminator. For a detailed investigation of the intensity distribution we adopt an analytical streamline model to describe the plasma flow around Venus. This allows displaying the evolution of the intensity along different streamlines. It is assumed that the waves are generated in the vicinity of the bow shock and are convected downstream with the turbulent magnetosheath flow. However, neither the different Mach numbers upstream and downstream of the bow shock, nor the variation of the cross sectional area and the flow velocity along the streamlines play probably an important role in order to explain the observed concentration of wave intensity in the dayside magnetosheath and the decay towards the nightside magnetosheath. But, the concept of freely evolving or decaying turbulence is in good qualitative agreement with the observations, as we observe a power law decay of the intensity along the streamlines. The observations support the assumption of wave convection through the magnetosheath, but

  20. Phase-alternated composite π/2 pulses for solid state quadrupole echo NMR spectroscopy

    International Nuclear Information System (INIS)

    Ramamoorthy, A.; Narasimhan, P.T.

    1991-01-01

    Phase-alternated composite π/2 pulses have been constructed for spin I=1 to overcome quadrupole interaction effects in solid state nuclear magnetic resonance(NMR) spectroscopy. Magnus expansion approach is used to design these sequences in a manner similar to the NMR coherent averaging theory. It is inferred that the symmetric phase-alternated composite π/2 pulses reported here are quite successful in producing quadrupole echo free phase distortions. This effectiveness of the present composite pulses is due to the fact that most of them are of shorter durations as compared to the ones reported in literature. In this theoretical procedure, irreducible spherical tensor operator formalism is employed to simplify the complexity involved in the evaluation of Magnus expansion terms. It has been argued in this paper that composite π/2 pulse sequences for this purpose can also be derived from the broadband inversion π pulses which are designed to compensate electric field gradient(efg) inhomogeniety in spin I=1 nuclear quadrupole resonance(NQR) spectroscopy. (author). 28 refs

  1. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  2. Quadrupole moment of the superdeformed band in 131Ce

    International Nuclear Information System (INIS)

    He, Y.; Godfrey, M.J.; Jenkins, I.; Kirwan, A.J.; Nolan, P.J.

    1990-01-01

    A mean lifetime measurement has been carried out on the states in the superdeformed band found in 131 Ce using the Doppler shift attenuation method (DSAM). The measured intrinsic nuclear quadrupole moment is Q o approx= 6 eb, assuming constant deformation, which corresponds to a quadrupole deformation β 2 approx= 0.35. This is considerably smaller than the value deduced for 132 Ce. (author)

  3. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  4. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    Science.gov (United States)

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  5. Two qubits in pure nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Furman, G.B.; Goren, S.D.; Meerovich, V.M.; Sokolovsky, V.L.

    2002-01-01

    It is shown theoretically that by the use of two radio-frequency fields of the same resonance frequency but with the different phases and directions the degeneracy of the energy spectrum of a spin system with I=3/2 is removed. This leads to four non-degenerate spin states which can be used as a platform for quantum computing. The feasibility of quantum computing based on a pure (without DC magnetic fields) nuclear quadrupole resonance technique is investigated in detail. Various quantum logic gates can be constructed by using different excitation techniques allowing different manipulations with the spin system states. Three realizations of quantum logic gates are considered: the application of an additional magnetic field with the resonance frequency, the amplitude modulation of one of the applied RF fields by the resonance frequency field, and the level-crossing method. It is shown that the probabilities of the resonance transitions depend on the method of excitation and on the direction of the excitation field. Feasibility of quantum computing is demonstrated with the examples of constructing a controlled-NOT logic gate using the resonance excitation technique and SWAP and NOT2 logic gates using the level-crossing method. (author)

  6. Interactive handling of regional cerebral blood flow data using a macrolanguage

    International Nuclear Information System (INIS)

    Sveinsdottir, E.; Schomacker, T.; Lassen, N.A.

    1976-01-01

    A general image handling software system has been developed for on-line collection, processing and display of gamma camera images (IMAGE system). The most distinguishable feature of the system is the ability for the user to interactively specify sequences, called macros, of basic functions to be performed. Information about a specified sequence is retained in the system, thus enabling new sequences or macros to be defined using already specified sequences. Facilities for parameter setting and parameter transfer between functions, as well as facilities for repetition of a function, are included. Finally, functions, be it basic or macro, can be specified to be iteratively activated using a physiological trigger signal as f.ex. the ECG. In addition, a special program system was developed for handling the dynamic data, from Xenon-133 studies of regional cerebral blood flow (CBF system). Parametric or functional images derived from the CBF system and depicting estimates of regional cerebral blood flow, relative weights of grey matter or other parameters can after computation be handled in the IMAGE system

  7. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.

    Science.gov (United States)

    Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng

    2015-03-01

    Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P Microbiology and John Wiley & Sons Ltd.

  8. Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective.

    Science.gov (United States)

    Maxwell, Peter I; Popelier, Paul L A

    2017-11-05

    Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high-energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (O i -1 , C i , N i , N i +1 ) and some sidechain hydrogen atoms (H γ ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the O i -1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  9. Interactive Development of Regional Climate Web Pages for the Western United States

    Science.gov (United States)

    Oakley, N.; Redmond, K. T.

    2013-12-01

    Weather and climate have a pervasive and significant influence on the western United States, driving a demand for information that is ongoing and constantly increasing. In communications with stakeholders, policy makers, researchers, educators, and the public through formal and informal encounters, three standout challenges face users of weather and climate information in the West. First, the needed information is scattered about the web making it difficult or tedious to access. Second, information is too complex or requires too much background knowledge to be immediately applicable. Third, due to complex terrain, there is high spatial variability in weather, climate, and their associated impacts in the West, warranting information outlets with a region-specific focus. Two web sites, TahoeClim and the Great Basin Weather and Climate Dashboard were developed to overcome these challenges to meeting regional weather and climate information needs. TahoeClim focuses on the Lake Tahoe Basin, a region of critical environmental concern spanning the border of Nevada and California. TahoeClim arose out of the need for researchers, policy makers, and environmental organizations to have access to all available weather and climate information in one place. Additionally, TahoeClim developed tools to both interpret and visualize data for the Tahoe Basin with supporting instructional material. The Great Basin Weather and Climate Dashboard arose from discussions at an informal meeting about Nevada drought organized by the USDA Farm Service Agency. Stakeholders at this meeting expressed a need to take a 'quick glance' at various climate indicators to support their decision making process. Both sites were designed to provide 'one-stop shopping' for weather and climate information in their respective regions and to be intuitive and usable by a diverse audience. An interactive, 'co-development' approach was taken with sites to ensure needs of potential users were met. The sites were

  10. Cryosphere-hydrosphere interactions: numerical modeling using the Regional Ocean Modeling System (ROMS) at different scales

    Science.gov (United States)

    Bergamasco, A.; Budgell, W. P.; Carniel, S.; Sclavo, M.

    2005-03-01

    Conveyor belt circulation controls global climate through heat and water fluxes with atmosphere and from tropical to polar regions and vice versa. This circulation, commonly referred to as thermohaline circulation (THC), seems to have millennium time scale and nowadays--a non-glacial period--appears to be as rather stable. However, concern is raised by the buildup of CO2 and other greenhouse gases in the atmosphere (IPCC, Third assessment report: Climate Change 2001. A contribution of working group I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, UK) 2001, http://www.ipcc.ch) as these may affect the THC conveyor paths. Since it is widely recognized that dense-water formation sites act as primary sources in strengthening quasi-stable THC paths (Stommel H., Tellus131961224), in order to simulate properly the consequences of such scenarios a better understanding of these oceanic processes is needed. To successfully model these processes, air-sea-ice-integrated modelling approaches are often required. Here we focus on two polar regions using the Regional Ocean Modeling System (ROMS). In the first region investigated, the North Atlantic-Arctic, where open-ocean deep convection and open-sea ice formation and dispersion under the intense air-sea interactions are the major engines, we use a new version of the coupled hydrodynamic-ice ROMS model. The second area belongs to the Antarctica region inside the Southern Ocean, where brine rejections during ice formation inside shelf seas origin dense water that, flowing along the continental slope, overflow becoming eventually abyssal waters. Results show how nowadays integrated-modelling tasks have become more and more feasible and effective; numerical simulations dealing with large computational domains or challenging different climate scenarios can be run on multi-processors platforms and on systems like LINUX clusters, made of the same hardware as PCs, and

  11. On the representation of the electric charge distribution in ethane for calculations of the molecular quadrupole moment and intermolecular electrostatic energy

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Alldredge, G. P.; Bruch, L. W.

    1985-01-01

    and gives a repulsive rather than an attractive electrostatic interaction at typical intermolecular distances. In the local multipole model, the atom-site dipoles give the largest contribution to both the molecular quadrupole moment and the intermolecular interaction. The Journal of Chemical Physics...

  12. Quadrupole deformed and octupole collective bands in 228Ra

    International Nuclear Information System (INIS)

    Gulda, K.; Aas, A.J.

    1998-01-01

    Spins and parities for collective states in 228 Ra have been determined from conversion electron measurements with a mini-orange β spectrometer. The fast-timing βγγ(t) method has been used to measure lifetimes of T 1/2 =550(20) ps and 181(3) ps for the 2 + 1 and 4 + 1 members of the K=0 + band, and T 1/2 ≤7 ps and ≤6 ps for the 1 - 1 and 3 - 1 members of the K=0 - band, respectively. The quadrupole moments, Q 0 , deduced from the B(E2; 2 + 1 →0 + 1 ) and B(E2; 4 + 1 →2 + 1 ) rates are in good agreement with the previously measured value and the systematics of the region. However, the B(E1) rates of ≥4 x 10 -4 e 2 fm 2 , which represent the first B(E1) measurements for this nucleus, are at least 25 times larger than the value previously suggested for 228 Ra. The new results are consistent with the B(E1) rates recently measured for the neighbouring 227 Ra and reveal octupole correlations in 228 Ra. (orig.)

  13. Design Challenges for a Wide-Aperture Insertion Quadrupole Magnet

    CERN Document Server

    Russenschuck, S; Perez, J C; Ramos, D; Fessia, P; Karppinen, M; Kirby, G; Sahner, T; Schwerg, N

    2011-01-01

    The design and development of a superconducting (Nb-Ti) quadrupole with 120 mm aperture, for an upgrade of the LHC insertion region, faces challenges arising from the LHC beam optics requirements and the heat-deposition. The first triggered extensive studies of coil alternatives with four and six coil-blocks in view of field quality and operation margins. The latter requires more porous insulation schemes for both the cables and the ground-plane. This in turn necessitates extensive heatpropagation and quench-velocity studies, as well as more efficient quench heaters. The engineering design of the magnet includes innovative features such as self-locking collars, which will enable the collaring to be performed with the coils on a horizontal assembly bench, a spring-loaded and collapsible assembly mandrel, tuning-shims for field quality, porous collaring-shoes, and coil end-spacer design based on differential geometry methods. The project also initiated code extensions in the quench-simulation and CAD/CAM module...

  14. Design of the dipole and quadrupole magnets of the dedicated proton synchrotron for hadron therapy

    International Nuclear Information System (INIS)

    Kukarnikov, S.I.; Makoveev, V.K.; Minashkin, V.F.; Molodozhentsev, A.Yu.; Shevtsov, V.F.; Sidorov, G.I.

    1998-01-01

    The 2D-calculation results of magnetic elements of the PRAMES (Prague Medical Synchrotron) are presented. This machine is a dedicated accelerator for cancer therapy. The output energy of the beam should be variable in the range 60-220 MeV. The maximum magnetic field of the dipole magnet should be 1.2 T, the maximum magnetic field ramp - less than 8 T/s. The focusing structure of the proton synchrotron consists of 8 dipole and 18 quadrupole magnets. All magnets are laminated to minimize leakage currents. The dipoles are parallel-edge, H-type magnets. The field uniformity should be of the order of ± 1 x 10 -4 in the working area (± 63 mm and ± 27 mm in the horizontal and vertical planes, respectively). The maximum magnetic field on the pole of the quadrupole lenses should be less than 1 T. The gradient uniformity of quadrupole magnets in the working region should be less than ± 3.5 x 10 -4

  15. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Breese, M.B.H. E-mail: m.breese@surrey.ac.uk; Grime, G.W.; Linford, W.; Harold, M

    1999-09-02

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations.

  16. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    International Nuclear Information System (INIS)

    Breese, M.B.H.; Grime, G.W.; Linford, W.; Harold, M.

    1999-01-01

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations

  17. Test and Simulation Results for Quenches Induced by Fast Losses on a LHC Quadrupole

    CERN Document Server

    Bracco, Ch; Bartmann, W; Bednarek, M; Lechner, A; Sapinski, M; Vittal Shetty, N; Schmidt, R; Solfaroli Camillocci, M; Verweij, A

    2014-01-01

    A test program for beam induced quenches was started in the LHC in 2011 in order to reduce as much as possible BLM-triggered beam dumps, without jeopardising the safety of the superconducting magnets. A first measurement was performed to asses the quench level of a quadrupole located in the LHC injection region in case of fast (ns) losses. It consisted in dumping single bunches onto an injection protection collimator located right upstream of the quadrupole, varying the bunch intensity up to 3×1010 protons and ramping the quadrupole current up to 2200 A. No quench was recorded at that time. The test was repeated in 2013 with increased bunch intensity (6.5×1010 protons); a quench occurred when powering the magnet at 2500 A. The comparison between measurements during beam induced and quench heaters induced quenches is shown. Results of FLUKA simulations on energy deposition, calculations on quench behaviour using the QP3 code and the respective estimates of quench levels are also presented.

  18. Mississippian subadults from the Middle Cumberland and Eastern regions of Tennessee: Biological indicators of population interaction.

    Science.gov (United States)

    Scopa Kelso, Rebecca

    2018-02-23

    Human subadult skeletal remains can provide a unique perspective into biosocial aspects of Mississippian period population interactions within and between the Middle Cumberland (MCR) and Eastern Tennessee Regions (ETR). The majority of previous studies have concentrated on adult skeletal remains, leaving out a large and extremely important population segment. Skeletal indicators of disease, growth, body proportions, and metabolic stress were collected from subadult remains from five archaeological sites over several temporal periods. Crucial to overcoming limitations associated with the osteological paradox, the biological results were placed into an archaeological context based on prior studies as well as paleoclimatological data. Results reveal homogeneity both within and between regions for most skeletal indicators. However, MCR individuals exhibit a higher frequency of pathology than those from ETC, while stature is significantly lower in younger subadults from the MCR. Within the ETR, there is no evidence for biological differences between Early Dallas and subsequent Late Dallas and Mouse Creek cultural phases. Despite presumed signs of increased conflict at the Dallas site, frequencies and types of skeletal pathology and growth disruptions are comparable to other regional sites. These findings suggest that despite cultural differences between the ETR and MCR, there was no large-scale intrusion from an outside population into the ETR during the Late Mississippian Period, or if one occurred, it is biologically invisible. Combined with climatic and archaeobotanical data, results suggest the MCR subadults were under increased stress in their earlier years. This may have been associated with increased interpersonal violence and dependence on few food sources occurring with greater scarcity. © 2018 Wiley Periodicals, Inc.

  19. Deciphering interaction of regional aquifers in Southern Tunisia using hydrochemistry and isotopic tools

    International Nuclear Information System (INIS)

    Abid, Kamel; Dulinski, Marek; Ammar, Friha Hadj; Rozanski, Kazimierz; Zouari, Kamel

    2012-01-01

    Groundwater is the most important source of water supply in southern Tunisia. Previous hydrogeologic and isotopic studies carried out in this region revealed the existence of two major aquifer systems: the “Complex Terminal” (CT) and the “Continental Intercalaire” (CI). Turonian carbonates constitute one of the major aquifer levels of the CT multilayered aquifer. It extends over most of southern Tunisia, and its hydrodynamic regime is largely influenced by tectonics, lithology and recharge conditions. Forty-eight groundwater samples from the CI and Turonian aquifers were collected between January and April 2004 for chemical and isotopic analyses. Hydrochemistry and isotopic tools were combined to get an insight into the processes controlling chemical composition of groundwater and wide-scale interaction of these two aquifer systems. Analysis of the dissolved constituents revealed that several processes control the observed chemical composition: (i) incongruent dissolution of carbonate minerals, (ii) dissolution of evaporitic minerals, and (iii) cation exchange. Dissolution alone cannot account for the observed high supersaturation states of groundwater with respect to calcite and dolomite. The observed supersaturation is most probably linked to geogenic CO 2 entering water-bearing horizons of the CT and CI aquifers via deep tectonic faults and discontinuities and subsequent degassing in the exploitation wells. Presence of geogenic CO 2 in the investigated region was confirmed by C isotope data of the DIC reservoir. The radiocarbon content of the Turonian samples varied between 9.5 and 43 pmc. For CI samples generally lower values were recorded, between 3.8 and 22.5 pmc. Stable isotope composition of Turonian groundwater samples varied from −8.3 to −5.3‰ for δ 18 O and from −60 to −25‰ for δ 2 H. The corresponding ranges of δ values for the Continental Intercalaire samples were from −8.9‰ to −6.9‰ for δ 18 O and from −68.2‰ to

  20. Interactions Between Atmospheric Aerosols and Marine Boundary Layer Clouds on Regional and Global Scales

    Science.gov (United States)

    Wang, Zhen

    Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Angstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land

  1. Energetic electron precipitation in weak to moderate corotating interaction region-driven storms

    Science.gov (United States)

    Ødegaard, Linn-Kristine Glesnes; Tyssøy, Hilde Nesse; Søraas, Finn; Stadsnes, Johan; Sandanger, Marit Irene

    2017-03-01

    High-energy electron precipitation from the radiation belts can penetrate deep into the mesosphere and increase the production rate of NOx and HOx, which in turn will reduce ozone in catalytic processes. The mechanisms for acceleration and loss of electrons in the radiation belts are not fully understood, and most of the measurements of the precipitating flux into the atmosphere have been insufficient for estimating the loss cone flux. In the present study the electron flux measured by the NOAA POES Medium Energy Proton and Electron Detectors 0° and 90° detectors is combined together with theory of pitch angle diffusion by wave-particle interaction to quantify the electron flux lost below 120 km altitude. Using this method, 41 weak and moderate geomagnetic storms caused by corotating interaction regions during 2006-2010 are studied. The dependence of the energetic electron precipitation fluxes upon solar wind parameters and geomagnetic indices is investigated. Nine storms give increased precipitation of >˜750 keV electrons. Nineteen storms increase the precipitation of >˜300 keV electrons, but not the >˜750 keV population. Thirteen storms either do not change or deplete the fluxes at those energies. Storms that have an increase in the flux of electrons with energy >˜300 keV are characterized by an elevated solar wind velocity for a longer period compared to the storms that do not. Storms with increased precipitation of >˜750 keV flux are distinguished by higher-energy input from the solar wind quantified by the ɛ parameter and corresponding higher geomagnetic activity.

  2. Concerning effects of fringe fields and longitudinal distribution of b10 in LHC low-β regions

    International Nuclear Information System (INIS)

    Meot, F.; Paris, A.

    1997-08-01

    Effects of fringe fields in separation dipoles D1/D2 and low-β quadrupoles Q1-Q3 of LHC interaction regions in collision optics are investigated by means of stepwise ray-tracing in terms of aberrations, beam envelopes and other detunings. Effects of the longitudinal distribution of b 10 error coefficient are next investigated in a similar way for assessment and comparison

  3. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage

    2009-01-01

    genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC......To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1...... region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein...

  4. Informing Regional Water-Energy-Food Nexus with System Analysis and Interactive Visualizations

    Science.gov (United States)

    Yang, Y. C. E.; Wi, S.

    2016-12-01

    Communicating scientific results to non-technical practitioners is challenging due to their differing interests, concerns and agendas. It is further complicated by the growing number of relevant factors that need to be considered, such as climate change and demographic dynamic. Visualization is an effective method for the scientific community to disseminate results, and it represents an opportunity for the future of water resources systems analysis (WRSA). This study demonstrates an intuitive way to communicate WRSA results to practitioners using interactive web-based visualization tools developed by the JavaScript library: Data-Driven Documents (D3) with a case study in Great Ruaha River of Tanzania. The decreasing trend of streamflow during the last decades in the region highlights the need of assessing the water usage competition between agricultural production, energy generation, and ecosystem service. Our team conduct the advance water resources systems analysis to inform policy that will affect the water-energy-food nexus. Modeling results are presented in the web-based visualization tools and allow non-technical practitioners to brush the graph directly (e. g. Figure 1). The WRSA suggests that no single measure can completely resolve the water competition. A combination of measures, each of which is acceptable from a social and economic perspective, and accepting that zero flows cannot be totally eliminated during dry years in the wetland, are likely to be the best way forward.

  5. Region specific changes in nonapeptide levels during client fish interactions with allopatric and sympatric cleaner fish.

    Science.gov (United States)

    Soares, Marta C; Cardoso, Sónia C; Mazzei, Renata; André, Gonçalo I; Morais, Marta; Gozdowska, Magdalena; Kalamarz-Kubiak, Hanna; Kulczykowska, Ewa

    2017-01-01

    Social relationships are crucially dependent on individual ability to learn and remember ecologically relevant cues. However, the way animals recognize cues before engaging in any social interaction and how their response is regulated by brain neuromodulators remains unclear. We examined the putative involvement of arginine vasotocin (AVT) and isotocin (IT), acting at different brain regions, during fish decision-making in the context of cooperation, by trying to identify how fish distinguish and recognize the value of other social partners or species. We hypothesized that the behavioural responses of cleaner fish clients to different social contexts would be underlain by changes in brain AVT and IT levels. We have found that changes in AVT at the level of forebrain and optic tectum are linked with a response to allopatric cleaners (novel or unfamiliar stimuli) while those at cerebellum are associated with the willingness to be cleaned (in response to sympatric cleaners). On the other hand, higher brain IT levels that were solely found in the diencephalon, also in response to allopatric cleaners. Our results are the first to implicate these nonapeptides, AVT in particular, in the assessment of social cues which enable fish to engage in mutualistic activities.

  6. Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia.

    Science.gov (United States)

    Ford, Trent W; Frauenfeld, Oliver W

    2016-01-18

    Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas.

  7. GALACTIC COSMIC-RAY INTENSITY MODULATION BY COROTATING INTERACTION REGION STREAM INTERFACES AT 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190 (China); Florinski, V. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States)

    2016-07-20

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  8. GALACTIC COSMIC-RAY INTENSITY MODULATION BY COROTATING INTERACTION REGION STREAM INTERFACES AT 1 au

    International Nuclear Information System (INIS)

    Guo, X.; Florinski, V.

    2016-01-01

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  9. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Andreas [Université Libre de Bruxelles, Service de Physique Statistique et des Plasmas, CP 231, B-1050 Brussels (Belgium); Wiengarten, Tobias; Fichtner, Horst [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Effenberger, Frederic [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Kühl, Patrick; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel, D-24098 Kiel (Germany); Raath, Jan-Louis; Potgieter, Marius S. [Centre for Space Research, North-West University, 2520 Potchefstroom (South Africa)

    2017-03-01

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.

  10. A Preliminary Interaction Region Design for a Super B-Factory

    CERN Document Server

    Sullivan, Michael K; Donald, Martin; Ecklund, Stanley; Novokhatski, Alexander; Seeman, John; Wienands, Ulrich

    2005-01-01

    The success of the two B-Factories (PEP-II and KEKB) has encouraged us to look at design parameters for a B-Factory with a 30-50 times increase in the luminosity of the present machines (L~1e36). In order to achieve this high luminosity, the beta y* values are reduced to 3-2 mm, the bunch spacing is minimized (0.6-0.3 m) and the bunch currents are increased. Total beam currents range from 5-25 A. The interaction region (IR) of these "SuperB" designs presents special challenges. Synchrotron radiation fans from local bending in shared magnets and from upstream sources pose difficulties due to the high power levels in these fans. High-order-mode(HOM)heating, effects that have been seen in the present B-factories, will become much more pronounced with the very short bunches and high beam currents. Masking the detector beam pipe from synchrotron radiation must take into account effects of HOM power generation. Backgrounds that are a function of the luminosity will become very important. We presen...

  11. Quantifying wetland–aquifer interactions in a humid subtropical climate region: An integrated approach

    Science.gov (United States)

    Mendoza-Sanchez, Itza; Phanikumar, Mantha S.; Niu, Jie; Masoner, Jason R.; Cozzarelli, Isabelle M.; McGuire, Jennifer T.

    2013-01-01

    Wetlands are widely recognized as sentinels of global climate change. Long-term monitoring data combined with process-based modeling has the potential to shed light on key processes and how they change over time. This paper reports the development and application of a simple water balance model based on long-term climate, soil, vegetation and hydrological dynamics to quantify groundwater–surface water (GW–SW) interactions at the Norman landfill research site in Oklahoma, USA. Our integrated approach involved model evaluation by means of the following independent measurements: (a) groundwater inflow calculation using stable isotopes of oxygen and hydrogen (16O, 18O, 1H, 2H); (b) seepage flux measurements in the wetland hyporheic sediment; and (c) pan evaporation measurements on land and in the wetland. The integrated approach was useful for identifying the dominant hydrological processes at the site, including recharge and subsurface flows. Simulated recharge compared well with estimates obtained using isotope methods from previous studies and allowed us to identify specific annual signatures of this important process during the period of study (1997–2007). Similarly, observations of groundwater inflow and outflow rates to and from the wetland using seepage meters and isotope methods were found to be in good agreement with simulation results. Results indicate that subsurface flow components in the system are seasonal and readily respond to rainfall events. The wetland water balance is dominated by local groundwater inputs and regional groundwater flow contributes little to the overall water balance.

  12. A 120 mm Bore Quadrupole for the Phase 1 LHC Upgrade

    CERN Document Server

    Fessia, P; Borgnolutti, F; Regis, F; Richter, D; Todesco, E

    2010-01-01

    The phase I LHC upgrade foresees the installation of a new final focusing for the high luminosity experiences in order to be able to focus the beams in the interaction points to b*~ 0.25 cm. Key element of this upgrade is a large bore (120 mm) superconducting quadrupole. This article proposes a magnet design that will make use of the LHC main dipole superconducting cable. Due to the schedule constraints and to the budget restrictions, it is mandatory to integrate in the design the maximum number of features successfully used during the LHC construction. This paper presents this design option and the rationales behind the several technical choices.

  13. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-06-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behaviour. We also suggest some other tests that could be used as bench-marks

  14. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-01-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behavior. We also suggest some other tests that could be used as bench-marks

  15. Dispersion interaction between an atom and linear molecule

    International Nuclear Information System (INIS)

    Carvalho, I.L. de

    1987-01-01

    The Jacobi-Csanak method is adapted to the calculation of the dipole-dipole, dipole-quadrupole, quadrupole-dipole, and quadrupole-quadrupole terms of the dispersion energy of an atom-linear molecule system. The angle-dependent parts of the Born amplitudes for the linear molecule are represented by real spherical harmonics. The dispersion energy is finite at all distances and reproduces the usual expression in the asymptotic region (R≥4.7 (angstrom)). In the intermediary region (2.4(angstrom) ≤ R [pt

  16. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6.

    Science.gov (United States)

    Kim, Han Ie; Jung, Jinwon; Lee, Eun-Saem; Kim, Yong-Chul; Lee, Weontae; Lee, Seung-Taek

    2007-11-03

    PTK6 (also known as Brk) is an intracellular tyrosine kinase that contains SH3, SH2, and tyrosine kinase catalytic (Kinase) domains. The SH3 domain of PTK6 interacts with the N-terminal half of the linker (Linker) region between the SH2 and Kinase domains. Site-directed mutagenesis and surface plasmon resonance studies showed that a tryptophan residue (Trp44) in the SH3 domain and proline residues in the Linker region, in the order of Pro177, Pro175, and Pro179, contribute to the interaction. The three-dimensional modeled structure of the SH3-Linker complex was in agreement with the biochemical data. Disruption of the intramolecular interaction between the SH3 domain and the Linker region by mutation of Trp44, Pro175, Pro177, and Pro179 markedly increased the catalytic activity of PTK6 in HEK 293 cells. These results demonstrate that Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the Linker region play important roles in the SH3-Linker interaction to maintain the protein in an inactive conformation along with the phosphorylated Tyr447-SH2 interaction.

  17. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    Science.gov (United States)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  18. Interaction effects of region-level GDP per capita and age on labour market transition rates in Italy

    Directory of Open Access Journals (Sweden)

    Luca Zanin

    2017-04-01

    Full Text Available Abstract The aim of this paper is to measure the effect of the interaction between age for the population of males and females aged 18 to 74 and region-level GDP per capita on labour market transition probabilities in Italy. We compare different occupational states in a sample of males and females who remained in their region of residence at two points in time (12 months apart. We estimate the transition probabilities using a flexible hierarchical logit model with interaction effects between worker age and region-level GDP per capita. We apply this model using longitudinal data from the Italian Labour Force Survey that cover the 2004–2013 period. We find empirical support for the assumption that people in the same age cohort have different labour market opportunities based on the level of GDP per capita in their region of residence. These differences are particularly relevant among younger workers.

  19. MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration

    International Nuclear Information System (INIS)

    Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.

    1980-01-01

    MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size

  20. Assembly and Test of SQ01b, a Nb3Sn Quadrupole Magnet for the LHC Accelerator Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Ambrosio, G.; Bartlett, S. E.; Bordini, B.; Carcagno, R.H.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Lamm, M.J.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Orris, D.F.; Pischalnikov, Y.M.; Sabbi, G.L.; Sylvester, C.D.; Tartaglia, M.A.; Velev, G.V.; Zlobin, A.V.; Kashikhin, V.V.

    2006-06-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb{sub 3}Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented

  1. Assembly and Test of SQ01b, a Nb3Sn Quadrupole Magnet for the LHC Accelerator Research Program

    International Nuclear Information System (INIS)

    Ferracin, P.; Ambrosio, G.; Bartlett, S. E.; Bordini, B.; Carcagno, R.H.; Caspi, S.; Dietderich, D.R.; Feher, S.; Gourlay, S.A.; Hafalia, A.R.; Lamm, M.J.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Orris, D.F.; Pischalnikov, Y.M.; Sabbi, G.L.; Sylvester, C.D.; Tartaglia, M.A.; Velev, G.V.; Zlobin, A.V.; Kashikhin, V.V.

    2006-01-01

    The US LHC Accelerator Research Program (LARP) consists of four US laboratories (BNL, FNAL, LBNL, and SLAC) collaborating with CERN to achieve a successful commissioning of the LHC and to develop the next generation of Interaction Region magnets. In 2004, a large aperture Nb 3 Sn racetrack quadrupole magnet (SQ01) has been fabricated and tested at LBNL. The magnet utilized four subscale racetrack coils and was instrumented with strain gauges on the support structure and directly over the coil's turns. SQ01 exhibited training quenches in two of the four coils and reached a peak field in the conductor of 10.4 T at a current of 10.6 kA. After the test, the magnet was disassembled, inspected with pressure indicating films, and reassembled with minor modifications. A second test (SQ01b) was performed at FNAL and included training studies, strain gauge measurements and magnetic measurements. Magnet inspection, test results, and magnetic measurements are reported and discussed, and a comparison between strain gauge measurements and 3D finite element computations is presented

  2. Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei

    CERN Document Server

    Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T

    2010-01-01

    Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.

  3. WR 110: A SINGLE WOLF-RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND?

    International Nuclear Information System (INIS)

    Chene, A.-N.; Moffat, A. F. J.; Fahed, R.; St-louis, N.; Muntean, V.; Chevrotiere, A. De La; Cameron, C.; Matthews, J. M.; Gamen, R. C.; Lefevre, L.; Rowe, J. F.; Guenther, D. B.; Kuschnig, R.; Weiss, W. W.; Rucinski, S. M.; Sasselov, D.

    2011-01-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 ± 0.55 days along with a number of harmonics at periods P/n, with n ∼ 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ∼0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ∼two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.

  4. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Fauth, A. C.; Kemp, E.; Manganote, E. J. T. [Instituto de Fisica Gleb Wathagin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Leigui de Oliveira, M. A. [Centro de Ciencias Naturais e Humanas da Universidade Federal do ABC, Santo Andre, SP (Brazil); Miranda, P.; Ticona, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA, La Paz Bolivia (United States)

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  5. The System-Supplementing Effect of the Interaction between Innovative Capacity and Institutional Environment Factors of a Region

    Directory of Open Access Journals (Sweden)

    Viktor Nikolayevich Ovchinnikov

    2016-06-01

    Full Text Available In the article, the effect of interaction between the development level of regional innovative capacity and its innovative and institutional infrastructure is traced. The research objective is to prove the hypothesis of the essential impact of the regional institutional and information environment on its innovative capacity, the identification of the effect of their systemsupplementing interaction. From the standpoint of the methodology of system-structural research its components are allocated within the innovative capacity of the regional innovative system (RIS, they are presented by a corporate sector, the structures of small and medium business, and also by the subjects of ethnic economy. The use of essential-analytical and functional approaches has revealed the leading role of intangible assets of the corporate sector of the economy in region’s innovative development. The correlation and regression analysis has confirmed the essential dependence of the innovative activity of the region on the systemic completeness of the development of its institutional and infrastructure environment. The results of the research have shown that to ensure the system-supplementing effect of the interaction between innovative capacity and the factors of its activation in the sphere of institutional infrastructure, it is necessary to consistently develop its operational base — the institutions of RIS. The recommendations reasoned in the article may be used for the development of regional innovation strategies, the formation of innovation clusters. The three-component structure of the innovation cluster of the region is offered; its integrating function in relation to the innovative components of the regional sectoral clusters is determined. The factors constraining the growth of innovation activity of the regional economic subjects are revealed and the recommendations on the development of the institutional and infrastructural environment of the Rostov

  6. Variable-field permanent-magnet quadrupole for the SSC

    International Nuclear Information System (INIS)

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1994-01-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use in the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum of 4.3 T by a 90 degree rotation of the outer ring of iron and magnet material

  7. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  8. Development of LHC-IR model quadrupoles in the US

    CERN Document Server

    Sabbi, G

    2007-01-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 1035 cm-2 s-1 at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb$_{3}$Sn in order to operate at high field and with sufficient temperature margin. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper reports on the development od model quadrupoles and outlines the long-term goals of the program.

  9. Variable-field permanent magnet quadrupole for the SSC

    International Nuclear Information System (INIS)

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-01-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90 degrees rotation of the outer ring of iron and magnet material

  10. Source Population and Acceleration Location of Suprathermal Heavy Ions in Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Filwett, R. J.; Desai, M. I. [University of Texas at San Antonio, San Antonio, TX (United States); Dayeh, M. A.; Broiles, T. W. [Southwest Research Institute, San Antonio, TX (United States)

    2017-03-20

    We have analyzed the ∼20–320 keV nucleon{sup −1} suprathermal (ST) heavy ion abundances in 41 corotating interaction regions (CIRs) observed by the Wind spacecraft from 1995 January to 2008 December. Our results are: (1) the CIR Fe/CNO and NeS/CNO ratios vary with the sunspot number, with values being closer to average solar energetic particle event values during solar maxima and lower than nominal solar wind values during solar minima. The physical mechanism responsible for the depleted abundances during solar minimum remains an open question. (2) The Fe/CNO increases with energy in the 6 events that occurred during solar maximum, while no such trends are observed for the 35 events during solar minimum. (3) The Fe/CNO shows no correlation with the average solar wind speed. (4) The Fe/CNO is well correlated with the corresponding upstream ∼20–320 keV nucleon{sup −1} Fe/CNO and not with the solar wind Fe/O measured by ACE in 31 events. Using the correlations between the upstream ∼20–40 keV nucleon{sup −1} Fe/CNO and the ∼20–320 keV nucleon{sup −1} Fe/CNO in CIRs, we estimate that, on average, the ST particles traveled ∼2 au along the nominal Parker spiral field line, which corresponds to upper limits for the radial distance of the source or acceleration location of ∼1 au beyond Earth orbit. Our results are consistent with those obtained from recent surveys, and confirm that CIR ST heavy ions are accelerated more locally, and are at odds with the traditional viewpoint that CIR ions seen at 1 au are bulk solar wind ions accelerated between 3 and 5 au.

  11. Interaction between the tidal and seasonal variability of the Gulf of Maine and Scotian Shelf region

    Science.gov (United States)

    Katavouta, Anna; Thompson, Keith; Lu, Youyu; Loder, John

    2017-04-01

    In the Gulf of Maine and Scotian Shelf (off the northeastern coast of North America) tides are large and can alter the local hydrographic properties, circulation, and sea surface height through processes such as tidal rectification, mixing, and horizontal advection. Furthermore, the stratification of the water column can influence tidal elevation and currents over the shelves (e.g., baroclinic tides). To investigate this interaction, a newly developed high resolution (1/36 degree) regional circulation model is used (GoMSS model). First, numerical experiments with and without density stratification are used to demonstrate the influence of stratification on the tides. GoMSS model is then used to interpret the physical mechanisms responsible for the largest seasonal variations in the M2 surface current which occur over, and to the north of, Georges Bank. An alternating pattern of highs and lows in the summer maximum M2 surface speed in the Gulf of Maine is identified, for the first time, in both the model output and observations by a high frequency coastal radar system. This pattern consists of extended striations in tidal speed aligned with the northern flank of Georges Bank that separates the Gulf of Maine from the North Atlantic. The striations are explained in terms of a linear superposition of the barotropic tide flowing across the northern flank of Georges Bank and the reflected, phase-locked baroclinic tide. The striations have amplitudes of about 0.1 m/s and longitudinal length scales of order 100 km, and are thus of practical significance.

  12. Solar Wind 0.1-1 keV Electrons in the Corotating Interaction Regions

    Science.gov (United States)

    Wang, L.; Tao, J.; Li, G.; Wimmer-Schweingruber, R. F.; Jian, L. K.; He, J.; Tu, C.; Tian, H.; Bale, S. D.

    2017-12-01

    Here we present a statistical study of the 0.1-1 keV suprathermal electrons in the undisturbed and compressed slow/fast solar wind, for the 71 corotating interaction regions (CIRs) with good measurements from the WIND 3DP and MFI instruments from 1995 to 1997. For each of these CIRs, we separate the strahl and halo electrons based on their different behaviors in pitch angle distributions in the undisturbed and compressed solar wind. We fit both the strahl and halo energy spectra to a kappa function with an index κ index and effective temperature Teff, and calculate the pitch-angle width at half-maximum (PAHM) of the strahl population. We also integrate the electron measurements between 0.1 and 1.0 keV to obtain the number density n and average energy Eavg for the strahl and halo populations. We find that for both the strahl and halo populations within and around these CIRs, the fitted κ index strongly correlates with Teff, similar to the quiet-time solar wind (Tao et al., ApJ, 2016). The number density of both the strahl and halo shows a strong positive correlation with the electron core temperature. The strahl number density ns is correlated with the magnitude of interplanetary magnetic field, and the strahl PAHM width is anti-correlated with the solar wind speed. These results suggest that the origin of strahl electrons from the solar corona is likely related to the electron core temperature and magnetic field strength, while the production of halo electrons in the interplanetary medium could depend on the solar wind velocity.

  13. Emotion and attention interactions in social cognition: brain regions involved in processing anger prosody.

    Science.gov (United States)

    Sander, David; Grandjean, Didier; Pourtois, Gilles; Schwartz, Sophie; Seghier, Mohamed L; Scherer, Klaus R; Vuilleumier, Patrik

    2005-12-01

    Multiple levels of processing are thought to be involved in the appraisal of emotionally relevant events, with some processes being engaged relatively independently of attention, whereas other processes may depend on attention and current task goals or context. We conducted an event-related fMRI experiment to examine how processing angry voice prosody, an affectively and socially salient signal, is modulated by voluntary attention. To manipulate attention orthogonally to emotional prosody, we used a dichotic listening paradigm in which meaningless utterances, pronounced with either angry or neutral prosody, were presented simultaneously to both ears on each trial. In two successive blocks, participants selectively attended to either the left or right ear and performed a gender-decision on the voice heard on the target side. Our results revealed a functional dissociation between different brain areas. Whereas the right amygdala and bilateral superior temporal sulcus responded to anger prosody irrespective of whether it was heard from a to-be-attended or to-be-ignored voice, the orbitofrontal cortex and the cuneus in medial occipital cortex showed greater activation to the same emotional stimuli when the angry voice was to-be-attended rather than to-be-ignored. Furthermore, regression analyses revealed a strong correlation between orbitofrontal regions and sensitivity on a behavioral inhibition scale measuring proneness to anxiety reactions. Our results underscore the importance of emotion and attention interactions in social cognition by demonstrating that multiple levels of processing are involved in the appraisal of emotionally relevant cues in voices, and by showing a modulation of some emotional responses by both the current task-demands and individual differences.

  14. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  15. Nuclear quadrupole relaxation and viscosity in liquid metals

    International Nuclear Information System (INIS)

    Schirmacher, W.

    1976-01-01

    It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de

  16. High and ulta-high gradient quadrupole magnets

    International Nuclear Information System (INIS)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e + /e - super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%

  17. Characterization and tuning of ultrahigh gradient permanent magnet quadrupoles

    Directory of Open Access Journals (Sweden)

    S. Becker

    2009-10-01

    Full Text Available The application of quadrupole devices with high field gradients and small apertures requires precise control over higher order multipole field components. We present a new scheme for performance control and tuning, which allows the illumination of most of the quadrupole device aperture because of the reduction of higher order field components. Consequently, the size of the aperture can be minimized to match the beam size achieving field gradients of up to 500  T m^{-1} at good imaging quality. The characterization method based on a Hall probe measurement and a Fourier analysis was confirmed using the high quality electron beam at the Mainz Microtron MAMI.

  18. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  19. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    Science.gov (United States)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  20. Quadrupole photoionization of endohedral Xe-C60

    International Nuclear Information System (INIS)

    Govil, Karan; Deshmukh, P C

    2009-01-01

    The effect of an endohedral confinement on the quadrupole photoionization of atomic Xe is studied using the relativistic random phase approximation (RRPA). The atom's confinement is modelled by placing atomic Xe at the centre of a C 60 cage represented by an annular potential around it. A new confinement resonance is reported in the 4p quadrupole cross-section along with 'correlation confinement resonances' in 4d, 5s and 5p photoionizations at about 185 eV. The effect of the confinement on the non-dipole photoelectron angular distribution parameter γ is also reported.

  1. Calculation of the quadrupole-lense fringing field

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1978-01-01

    With the aim of decreasing the scattering field effect at electrode edge or quadrupole lens poles with conformal transformations the scattering fields of electric quadrupole lens, two-electrode lens with the electrodes in a hyperbola form, as well as magnetic lens with hyperbolic poles are calculated. For the two-electrode system with kappa=0.1 (kappa - is coefficient, characterizing the rate of field intensity change in the lens) field distortion equals 1.8%. The comparison of experimental data with the calculation data has shown that with a rather high accuracy the scattering field effect in electric and magnetic lenses with hyperbolic poles may be taken into account

  2. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    International Nuclear Information System (INIS)

    Felice, Helene

    2008-01-01

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb 3 Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  3. Natural analogue study for interaction between alkaline groundwater and bentonite at Mangatarem region in the Philippines

    International Nuclear Information System (INIS)

    Tsukada, Y.; Fujita, K.; Nakabayashi, R.; Sato, T.; Yoneda, T.; Yamakawa, M.; Fujii, N.; Namiki, K.; Kasama, T.; Alexander, R.; Arcilla, C.; Pascua, C.

    2012-01-01

    Document available in extended abstract form only. Alteration of bentonite by alkaline leachate from cement/concrete in geological repositories for TRU radioactive waste is deleterious to bentonite performance as a buffer material. Although there have been many laboratory studies on high pH fluid-bentonite interaction for longer term understanding of the behavior of bentonites as buffer materials, different time scales between laboratory experiments and real disposal conditions impede its proper assessment. Thus, a natural analogue study can play an important role in (a) bridging the timescale gaps between laboratory experiments and real disposal conditions and (b) verifying the modeling studies of bentonite stability. Previous natural analogue studies on the cement-bentonite interaction are relatively few. Therefore, this study focuses on the process of serpentinization in ophiolitic rocks which resemble the process of leaching high pH ground waters from cement materials and report the results of study about alkaline water-bentonite interaction in Mangatarem, Philippines. In Mangatarem, in west central Luzon Island in the northern Philippines, there are bentonite quarries in the Aksitero Formation, which is part of the Zambales Ophiolite. Several alkaline hot springs derived from ongoing serpentinization of the ophiolite can be found in close proximity to the bentonite.Through a site characterization (including a foot survey, a series of boreholes and trench excavation in the Saile quarry in Mangatarem, the interface between the bentonite and the pillow lava of the upper ophiolite was confirmed, and chrysotile, a low temperature type of serpentine, was observed in the fault filling by XRD analysis. In the pillow lava, serpentine was also observed inside the fault that cut across both the bentonite and the pillow lava. From these facts, low temperature high pH fluids appears to have passed through the faults and came into contact with the bentonite. In order to

  4. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  5. TAXPAYERS AND TAX AUTHORITIES INTERACTING WITHIN THE MENA REGION: THE NEXUS BETWEEN TRUST, POWER AND COMPLIANCE

    Directory of Open Access Journals (Sweden)

    Batrancea Larissa

    2014-12-01

    Full Text Available Any type of interaction climate, be it synergistic or antagonistic, is delineated by a tandem of dimensions: trust in authorities and power of authorities. Advocates for this assumption are the manifold of empirical studies testing the “slippery slope framework” which subsumes the two dimensions. A major proffer advanced by the framework is that tax authorities’ approach towards citizens poses great influence on compliance, either fuelling or hindering it. Irrespective of whether tax burden level is high (e.g., Scandinavian, Continental welfare states, medium (e.g., East European, Anglo-Saxon welfare states, minimum or completely lacking (e.g., tax havens, tax authorities and taxpayers establish a connection in which the former’s actions are mirrored in the latter’s perceptions about leadership’s benevolence in public good provisions (i.e., trust and efficiency in deterring tax evasion (i.e., power. The tandem trust-power and the specific features of such connections within some countries of the Middle East and Northern Africa tax climate (i.e., Bahrain, Egypt, Iran, Jordan, Kuwait, Morocco, Oman, Qatar, Saudi Arabia, United Arab Emirates are the thrust of the present study. The methodology spans a multidisciplinary approach, from explaining trust and power via governance indicators proposed by the World Bank, investigating economic development with chain base indexes and examining tax compliance process on country-level. The MENA region is source for novel and relevant insights on the nexus between trust, power and compliance, as it hosts countries which vary greatly in terms of economic development (transition to developed, fiscal policy (low to no taxes or economy drivers (oil exporters, oil importers and where tax compliance gains importance amid diminishing hydrocarbon resources. Nowadays economic realities constrain MENA authorities to refocus their governing strategies and perceive taxation as a viable future solution for

  6. Interactions of solvent with the heme region of methemoglobin and fluoro-methemoglobin.

    Science.gov (United States)

    Koenig, S H; Brown, R D; Lindstrom, T R

    1981-06-01

    -bound paramagnetic ion by another ligand should decrease relaxation rates, replacement of H2O by F- increases the relaxation rate drastically. The data can all be reconciled, however, with what is anticipated from knowledge of ligand interactions in the heme region.

  7. Local and regional interactions between air quality and climate in New Delhi- A sector based analysis

    Science.gov (United States)

    Marrapu, Pallavi

    Deteriorating air quality is one of the major problems faced worldwide and in particular in Asia. The world's most polluted megacities are located in Asia highlighting the urgent need for efforts to improve the air quality. New Delhi (India), one of the world's most polluted cities, was the host of the Common Wealth Games during the period of 4-14 October 2010. This high profile event provided a good opportunity to accelerate efforts to improve air quality. Computational advances now allow air quality forecast models to fully couple the meteorology with chemical constituents within a unified modeling system that allows two-way interactions. The WRF-Chem model is used to simulate air quality in New Delhi. The thesis focuses on evaluating air quality and meteorology feedbacks. Four nested domains ranging from South Asia, Northern India, NCR Delhi and Delhi city at 45km, 15km, 5km and 1.67km resolution for a period of 20 day (26th Sep--15th Oct, 2010) are used in the study. The predicted mean surface concentrations of various pollutants show similar spatial distributions with peak values in the middle of the domain reflecting the traffic and population patterns in the city. Along with these activities, construction dust and industrial emissions contribute to high levels of criteria pollutants. The study evaluates the WRF-Chem capabilities using a new emission inventory developed over Delhi at a fine resolution of 1.67km and evaluating the results with observational data from 11 monitoring sties placed at various Game venues. The contribution of emission sectors including transportation, power, industry, and domestic to pollutant concentrations at targeted regions are studied and the results show that transportation and domestic sector are the major contributors to the pollution levels in Delhi, followed by industry. Apart from these sectors, emissions outside of Delhi contribute 20-50% to surface concentrations depending on the species. This indicates that pollution

  8. Sectoral patterns of interactive learning : an empirical exploration of a case in a Dutch region

    NARCIS (Netherlands)

    Meeus, M.T.H.; Oerlemans, L.A.G.; Hage, J.

    2001-01-01

    This paper pursues the development of a theoretical framework that explains interactive learning between innovator firms and external actors in both the knowledge infrastructure and the production chain. The research question is: What kinds of factors explain the interactive learning of innovator

  9. Designing of a Quadrupole Paul Ion Trap

    Science.gov (United States)

    Kiyani, Abouzar; Abdollahzadeh, M.; Sadat Kiai, S. M.; Zirak, A. R.

    2011-08-01

    The ion motion equation in a Paul ion trap known as Mathieu differential equation has been solved for the first time by using Runge-Kutta methods with 4th, 6th, and 8th orders. The first stability regions in az - qz plane and the corresponding qmax values were determined and compared. Also, the first stability regions of , , , ions in the Vdc - Vac plane were drown, and the threshold voltages for the ion separation was investigated.

  10. Spontaneous transition rates for electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions for He-like calcium and sulfur ions

    International Nuclear Information System (INIS)

    Kingston, A.E.; Norrington, P.H.; Boone, A.W.

    2002-01-01

    The spontaneous decay rates for the electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions between all of the 1s 2 , 1s2 l and 1s3 l states have been obtained for helium-like calcium and sulfur ions. To assess the accuracy of the calculations, the transition probabilities were calculated using two sets of configuration interaction wavefunctions. One set of wavefunctions was generated using the fully relativistic GRASP code and the other was obtained using CIV3, in which relativistic effects are introduced using the Breit-Pauli approximation. The transition rates, A values, oscillator strengths and line strengths from our two calculations are found to be similar and to compare very well with other recent results for Δn=1 or 2 transitions. For Δn=0 transitions the agreement is much less good; this is mainly due to differences in the calculated excitation energies. (author)

  11. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  12. ISR Superconducting Quadrupole Prototype:preparing the first test

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The photo shows the first prototype quadrupole (still with an adjustable stainless steel shrinking cylinder) being lifted to be inserted in a vertical cryostat for testing. It attained the design field gradient without any quench.The persons are Pierre Rey and Michel Bouvier. See also 7702690X.

  13. Prototype Superconducting Quadrupole for the ISR low-beta insertion

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The picture shows the cold mass of the Quadrupole with its outer aluminium alloy rings pre-compressing the superconducting coils via the magnetic yoke split in 4 parts.The end of the inner vacuum chamber,supporting the 6-pole correction windings, can also be seen as well as the electrical connections. See also photos 7702690X, 7702307.

  14. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  15. Correction of chromatic abberation in electrostatic lense systems containing quadrupoles

    International Nuclear Information System (INIS)

    Baranova, L.A.; Ul'yanova, N.S.; Yavor, S.Ya.

    1991-01-01

    Possibility of chromatic abberation correction in immersion systems consisting of axysimmetric and quadrupole lenses is shown. Concrete examples are presented. A number of new directions in science and technique, using ion beams are intensively developed presently. When using them accute necessity arises in chromatic abberation correction, while large-scale energy scattering is observed as a rule in such cases

  16. Quadrupole formula for Kaluza-Klein modes in the braneworld

    International Nuclear Information System (INIS)

    Kinoshita, Shunichiro; Kudoh, Hideaki; Sendouda, Yuuiti; Sato, Katsuhiko

    2005-01-01

    The quadrupole formula in four-dimensional Einstein gravity is a useful tool to describe gravitational wave radiation. We derive the quadrupole formula for the Kaluza-Klein (KK) modes in the Randall-Sundrum braneworld model. The quadrupole formula provides a transparent representation of the exterior weak gravitational field induced by localized sources. We find that a general isolated dynamical source gives rise to the 1/r 2 correction to the leading 1/r gravitational field. We apply the formula to an evaluation of the effective energy carried by the KK modes from the viewpoint of an observer on the brane. Contrary to the ordinary gravitational waves (zero mode), the flux of the induced KK modes by the non-spherical part of the quadrupole moment vanishes at infinity and only the spherical part contributes to the flux. Since the effect of the KK modes appears in the linear order of the metric perturbations, the effective energy flux observed on the brane is not always positive, but can become negative depending on the motion of the localized sources

  17. Optimization of an electrostatic quadrupole doublet focusing systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Oday A., E-mail: oah@sc.nahrainuniv.edu.iq [Department of Physics, College of Science, Al-Nahrain University, Baghdad (Iraq); Sise, Omer [Department of Science Education, Faculty of Education, Suleyman Demirel University, Isparta (Turkey)

    2017-05-15

    Highlights: • The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. • The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. • The imaging properties of are very sensitive to the lunching angle of the electron-beam. - Abstract: The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. The optical properties as: Magnifications, spot sizes in the image plane and aberration figures were discussed. The results showed that the focusing of the lens was strong in the xy-plane in comparison with the focusing in the xz-plane. The distortion of the image was greater when the image position will be close to the lens in comparison with object position. Also, the imaging properties were very sensitive to the lunching angle of the electron-beam.

  18. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...

  19. BPM Offset Determination by Sinusoidal Quadrupole K-modulation

    CERN Document Server

    Baer, T; Wenninger, J

    2011-01-01

    To ensure an adequate orbit steering that maximizes the machine aperture, a good knowledge of the BPM measurement offsets is crucial. During this MD, a sinusoidal k-modulation of individually powered quadrupoles was performed to determine the offsets of the nearby BPMs. An accuracy of 10µm for the determination of the absolute beam position is reached.

  20. Completion of the Series Fabrication of the Main Superconducting Quadrupole Magnets of LHC

    CERN Document Server

    Tortschanoff, Theodor; Papaphilippou, Y; Rossi, L; Schirm, K M; Burgmer, R; Klein, H U; Krischel, D; Schellong, B; Schmidt, P; Durante, M; Payn, A; Rifflet, J M; Simon, F

    2007-01-01

    By end of November 2006, the last main superconducting quadrupole cold mass needed for the installation was delivered by ACCEL Instruments to CERN. In total, 360 cold masses for the arc regions of the machine and 32 special units dedicated to the dispersion suppressor regions are installed in the LHC ring. The latter ones contain the same main magnet but different types of correctors and are of increased length with respect to the regular arc ones. The end of the fabrication of these magnets coincided with the end of the main dipole deliveries allowing a parallel assembly into their cryostats and installation into the LHC tunnel. The positioning into the tunnel was optimized using the warm field measurements performed in the factory. On the other hand, the correct slot assignment of the quadrupoles was complicated due to the multitude of variants and to the fact that a number of units needed to be replaced by spares which were customized for other slots. The paper gives some final data about the successful fa...

  1. The isovector quadrupole resonance in yttrium excited by neutron radiative capture

    International Nuclear Information System (INIS)

    Zorro, R.; Bergqvist, I.

    1987-01-01

    In order to investigate the properties of the isovector giant quadrupole resonance (ΔT=1, ΔS=0) in the A=90 mass region, gamma-ray spectra from the reaction 89 Y(n,γ) 90 Y were recorded at several neutron energies in the energy range 12 to 27 MeV at 55 0 , 90 0 and 125 0 . The measured fore-aft asymmetry for the ground-state transition is very small in the low-energy region, but becomes appreciable above a neutron energy of 18 MeV. The observed asymmetry is attributed to interference between radiation from the isovector giant quadrupole resonance and radiation of opposite parity (from the high-energy tail of the giant dipole resonance and direct E1 capture). The data obtained in the present work, interpreted in terms of the direct-semidirect capture model, indicate that the excitation energy of the isovector E2 resonance in 90 Y is 26 ± 1 MeV. The data are consistent with a resonance width of 10 ± 2 MeV and with complete exhaustion of the energy-weighted sum rule for the lower isospin component of the resonance. (orig.)

  2. A general method, a la Transport, for evaluation of the perturbing effects of solenoidal inserts in storage ring interaction regions

    International Nuclear Information System (INIS)

    Murray, J.J.

    1976-07-01

    It may be expected that solenoid magnets will be used in many storage ring experiments. Typically an insert would consist of a main solenoid at the interaction point with a symmetrical pair of compensating solenoids located somewhere between the main solenoid and the ends of the interaction region. The magnetic fields of such an insert may significantly affect storage ring performance. We suggest here a simple, systematic method for evaluation of the effects, which together with adequate design supervision and field measurements will help to prevent any serious operational problems that might result if significant perturbations went unnoticed. 5 refs

  3. Exploring the Relation between the Degree of Novelty of Innovations and User-producer Interaction across Different Income Regions

    DEFF Research Database (Denmark)

    Harirchi, Gouya; Chaminade, Cristina

    2014-01-01

    User–producer interactions have been recognized as important for innovation. With the rapid growth of emerging economies’ markets, and an increasing degree of technological sophistication of both users and producers in those markets, user–producer interaction is becoming global. Using original firm......-level data, this paper explores how collaboration with users in different income regions affects the degree of innovations’ novelty. We find that collaborating with international users is positively related to higher degrees of novelty. Furthermore, firms in low- and middle income countries will benefit more...... from south–south user collaboration than a south–north one....

  4. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Malik, A; Fernandes, C.E.G.; Gonsalves, M.J.B.D.; Subina, N.S.; Mamatha, S.S.; Krishna, K.S.; Varik, S.; RituKumari; Gauns, M.; Cejoice, R.P.; Pandey, S.S.; Jineesh, V.K.; Kamaleson, A; Vijayan, V.; Mukherjee, I.; Subramanyan, S.; Nair, S.; Ingole, B.S.; LokaBharathi, P.A

    Coastal upwelling is a regular phenomenon occurring along the southwest coast of India during summer monsoon (May–September). We hypothesize that there could be a shift in environmental parameters along with changes in the network of interactions...

  5. Spontaneous structural distortion of the metallic Shastry-Sutherland system Dy B4 by quadrupole-spin-lattice coupling

    Science.gov (United States)

    Sim, Hasung; Lee, Seongsu; Hong, Kun-Pyo; Jeong, Jaehong; Zhang, J. R.; Kamiyama, T.; Adroja, D. T.; Murray, C. A.; Thompson, S. P.; Iga, F.; Ji, S.; Khomskii, D.; Park, Je-Geun

    2016-11-01

    Dy B4 has a two-dimensional Shastry-Sutherland (Sh-S) lattice with strong Ising character of the Dy ions. Despite the intrinsic frustrations, it undergoes two successive transitions: a magnetic ordering at TN=20 K and a quadrupole ordering at TQ=12.5 K . From high-resolution neutron and synchrotron x-ray powder diffraction studies, we have obtained full structural information on this material in all phases and demonstrate that structural modifications occurring at quadrupolar transition lead to the lifting of frustrations inherent in the Sh-S model. Our paper thus provides a complete experimental picture of how the intrinsic frustration of the Sh-S lattice can be lifted by the coupling to quadrupole moments. We show that two other factors, i.e., strong spin-orbit coupling and long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in metallic Dy B4 , play an important role in this behavior.

  6. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Qiong-Ying Hu

    Full Text Available Heparan sulfate proteoglycans (HSPG can act as binding receptors for certain laboratory-adapted (TCA strains of feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV. Heparin, a soluble heparin sulfate (HS, can inhibit TCA HIV and FIV entry mediated by HSPG interaction in vitro. In the present study, we further determined the selective interaction of heparin with the V3 loop of TCA of FIV. Our current results indicate that heparin selectively inhibits infection by TCA strains, but not for field isolates (FS. Heparin also specifically interferes with TCA surface glycoprotein (SU binding to CXCR4, by interactions with HSPG binding sites on the V3 loop of the FIV envelope protein. Peptides representing either the N- or C-terminal side of the V3 loop and containing HSPG binding sites were able to compete away the heparin block of TCA SU binding to CXCR4. Heparin does not interfere with the interaction of SU with anti-V3 antibodies that target the CXCR4 binding region or with the interaction between FS FIV and anti-V3 antibodies since FS SU has no HSPG binding sites within the HSPG binding region. Our data show that heparin blocks TCA FIV infection or entry not only through its competition of HSPG on the cell surface interaction with SU, but also by its interference with CXCR4 binding to SU. These studies aid in the design and development of heparin derivatives or analogues that can inhibit steps in virus infection and are informative regarding the HSPG/SU interaction.

  7. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    Science.gov (United States)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake

  8. Interaction of Two Active Region Filaments Observed by NVST and SDO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liheng; Yan, Xiaoli; Xue, Zhike; Xiang, Yongyuan [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, Ting, E-mail: yangliheng@ynao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-04-01

    Using high spatial and temporal resolution H α data from the New Vacuum Solar Telescope (NVST) and simultaneous observations from the Solar Dynamics Observatory , we present the rare event of the interaction between two filaments (F1 and F2) in AR 11967 on 2014 January 31. The adjacent two filaments were almost perpendicular to each other. Their interaction was driven by the movement of F1 and started when the two filaments collided with each other. During the interaction, the threads of F1 continuously slipped from the northeast to the southwest, and were accompanied by the brightenings at the junction of two filaments and the northeast footpoint of F2. Part of F1 and the main body of F2 became invisible in H α wavelength due to the heating and the motion of F2. At the same time, bright material initiated from the junction of two filaments were observed to move along F1. The magnetic connectivities of F1 were found to be changed after their interaction. These observations suggest that magnetic reconnection was involved in the interaction of two filaments and resulted in the eruption of one filament.

  9. Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions

    DEFF Research Database (Denmark)

    Zhu, Xuefeng; Wirén, Marianna; Sinha, Indranil

    2006-01-01

    Mediator exists in a free form containing the Med12, Med13, CDK8, and CycC subunits (the Srb8-11 module) and a smaller form, which lacks these four subunits and associates with RNA polymerase II (Pol II), forming a holoenzyme. We use chromatin immunoprecipitation (ChIP) and DNA microarrays...... to investigate genome-wide localization of Mediator and the Srb8-11 module in fission yeast. Mediator and the Srb8-11 module display similar binding patterns, and interactions with promoters and upstream activating sequences correlate with increased transcription activity. Unexpectedly, Mediator also interacts...... with the downstream coding region of many genes. These interactions display a negative bias for positions closer to the 5' ends of open reading frames (ORFs) and appear functionally important, because downregulation of transcription in a temperature-sensitive med17 mutant strain correlates with increased Mediator...

  10. Does serotonin influence aggression? Comparing regional activity before and during social interaction

    DEFF Research Database (Denmark)

    Summers, C.H.; Korzan, W.J.; Lukkes, J.L.

    2005-01-01

    Serotonin is widely believed to exert inhibitory control over aggressive behavior and intent. In addition, a number of studies of fish, reptiles, and mammals, including the lizard Anolis carolinensis, have demonstrated that serotonergic activity is stimulated by aggressive social interaction...... in both dominant and subordinate males. As serotonergic activity does not appear to inhibit agonistic behavior during combative social interaction, we investigated the possibility that the negative correlation between serotonergic activity and aggression exists before aggressive behavior begins. To do......, where low serotonergic activity may help promote aggression, agonistic behavior also stimulates the greatest rise in serotonergic activity among the most aggressive males, most likely as a result of the stress associated with social interaction....

  11. Vibrational Markovian modelling of footprints after the interaction of antibiotics with the packaging region of HIV type 1.

    Science.gov (United States)

    Díaz, Humberto González; de Armas, Ronal Ramos; Molina, Reinaldo

    2003-11-01

    The design of novel anti-HIV compounds has now become a crucial area for scientists working in numerous interrelated fields of science such as molecular biology, medicinal chemistry, mathematical biology, molecular modelling and bioinformatics. In this context, the development of simple but physically meaningful mathematical models to represent the interaction between anti-HIV drugs and their biological targets is of major interest. One such area currently under investigation involves the targets in the HIV-RNA-packaging region. In the work described here, we applied Markov chain theory in an attempt to describe the interaction between the antibiotic paromomycin and the packaging region of the RNA in Type-1 HIV. In this model, a nucleic acid squeezed graph is used. The vertices of the graph represent the nucleotides while the edges are the phosphodiester bonds. A stochastic (Markovian) matrix was subsequently defined on this graph, an operation that codifies the probabilities of interaction between specific nucleotides of HIV-RNA and the antibiotic. The strength of these local interactions can be calculated through an inelastic vibrational model. The successive power of this matrix codifies the probabilities with which the vibrations after drug-RNA interactions vanish along the polynucleotide main chain. The sums of self-return probabilities in the k-vicinity of each nucleotide represent physically meaningful descriptors. A linear discriminant function was developed and gave rise to excellent discrimination in 80.8% of interacting and footprinted nucleotides. The Jackknife method was employed to assess the stability and predictability of the model. On the other hand, a linear regression model predicted the local binding affinity constants between a specific nucleotide and the antibiotic (R(2)=0.91, Q(2)=0.86). These kinds of models could play an important role either in the discovery of new anti-HIV compounds or the study of their mode of action.

  12. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    Science.gov (United States)

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  13. Design of the 70 mm twin aperture superconducting quadrupole for the LHC dump insertion

    CERN Document Server

    Kirby, G A; Taylor, T M; Trinquart, G

    1996-01-01

    The LHC dump insertion features a pair of superconducting quadrupoles located on either side of a 340 m long straight section. Two horizontally deflecting kickers, located in between the quadrupole pairs, and a septum in the centre of the insertion, vertically deflect the two counter-rotating beams past the quadrupoles on the downstream sides, and into the dump areas. Due to the layout, the optical ß function in the quadrupoles is around 640 m, the largest around the LHC at injection. The quadrupoles must therefore have enlarged aperture and specially designed cryostats to allow for the safe passage of both the circulating and ejected beams. In this paper we present the design of the twin aperture dump quadrupole based on the 70 mm four layer coil proposed for the LHC low-ß quadrupoles. In preparation for model construction, we report on improvements of the coil design and a study of the retaining structures.

  14. Interactive effects of environmental change and management strategies on regional forest carbon emissions.

    Science.gov (United States)

    Hudiburg, Tara W; Luyssaert, Sebastiaan; Thornton, Peter E; Law, Beverly E

    2013-11-19

    Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.

  15. Interactive Ways of Becoming a Specialist Fine Art of the Ukrainian Danube Region

    Directory of Open Access Journals (Sweden)

    Ivan Pastyr

    2016-08-01

    Full Text Available In modern conditions the method of education is especially effective if it is built on the intensification of mental activity and is aimed at developing a creative personality. The study presents a system of interactive ways of becoming a specialist in Izmail State Liberal Arts University.

  16. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level.

  17. Parallel Beam-Beam Simulation Incorporating Multiple Bunches and Multiple Interaction Regions

    CERN Document Server

    Jones, F W; Pieloni, T

    2007-01-01

    The simulation code COMBI has been developed to enable the study of coherent beam-beam effects in the full collision scenario of the LHC, with multiple bunches interacting at multiple crossing points over many turns. The program structure and input are conceived in a general way which allows arbitrary numbers and placements of bunches and interaction points (IP's), together with procedural options for head-on and parasitic collisions (in the strong-strong sense), beam transport, statistics gathering, harmonic analysis, and periodic output of simulation data. The scale of this problem, once we go beyond the simplest case of a pair of bunches interacting once per turn, quickly escalates into the parallel computing arena, and herein we will describe the construction of an MPI-based version of COMBI able to utilize arbitrary numbers of processors to support efficient calculation of multi-bunch multi-IP interactions and transport. Implementing the parallel version did not require extensive disruption of the basic ...

  18. Low-lying collective quadrupole and octupole strengths in even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.; Kahane, S.; Bhatt, K.H.

    1991-01-01

    The B(E2)↑ values for the first 2 + state of even-even nuclei in the Z≥50 region are compared with the predictions of several theoretical models. Comparative estimates of the overall agreement with the data are provided. Gaps and discrepancies in the data and examples that show interesting features such as shape changes are discussed. The B(E2)↑ values are examined critically to search for the dynamical Pauli effects predicted by the fermion dynamic symmetry model. The empirical B(E2)↑ and B(E3)↑ systematics are employed to obtain a measure of the harmonicity of the quadrupole and octupole vibrations. The fraction of the energy-weighted sum-rule strength exhausted by the sum of all known low-lying 2 + states below 2.3 MeV is found to be surprisingly constant in the 60< A<250 region except near closed shells

  19. Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.

    Directory of Open Access Journals (Sweden)

    Lauren A Vanderlinden

    Full Text Available To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA. Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL with a genomic region that regulates alcohol consumption (bQTL. To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories and from gene expression data from 6 brain regions (nucleus accumbens (NA; prefrontal cortex (PFC; ventral tegmental area (VTA; striatum (ST; hippocampus (HP; cerebellum (CB available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.

  20. Interaction of lithium ferrite with low-melting additives in the region of their low concentrations

    International Nuclear Information System (INIS)

    Mozhaev, A.P.; Olejnikov, N.N.; Shumilkin, N.S.; Fadeeva, V.I.

    1977-01-01

    The state diagrams of the Lisub(0.5)Fesub(2.5)O 4 - V 2 O 5 system has been studied in the region of small concentrations of V 2 O 5 (up to 3 wt.%). The existance regions of V 2 O 5 solid solutions in lithium ferrite have been determined. The possibility of using the state diagram for choosing optimum conditions of sintering has been shown. Addition of V 2 O 5 (up to 3 wt.%) intensifies the process of magnetic ceramics sintering