WorldWideScience

Sample records for interaction rate coulomb

  1. Coulomb interaction in multiple scattering theory

    Science.gov (United States)

    Ray, L.; Hoffmann, G. W.; Thaler, R. M.

    1980-10-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+208Pb elastic scattering and compared with experimental data. NUCLEAR REACTIONS 208Pb(p, p), E=0.8 GeV, Kerman, McManus, and Thaler, and Watson multiple scattering theories, Coulomb correction terms, high momentum transfer.

  2. Module of System Galactica with Coulomb's Interaction

    Directory of Open Access Journals (Sweden)

    Joseph J. Smulsky

    2014-12-01

    Full Text Available The system Galactica of free access is supplemented module for the Coulomb interaction. It is based on a high-precision method for solving differential equations of motion of N charged particles. The paper presents all the theoretical and practical issues required to use this module of system Galactica so that even the beginning researcher could study the motion of particles, atoms and molecules.

  3. Nanoplasmonic renormalization and enhancement of Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Durach, M; Rusina, A; Stockman, M I [Department of Physics and Astronomy, Georgia State University, Atlanta, GA (United States); Klimov, V I [Chemistry Division, C-PCS, Los Alamos National Laboratory, Los Alamos, NM (United States)], E-mail: mstockman@gsu.edu

    2008-10-15

    In this paper, we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing the dressed interaction explicitly for an important example of metal-dielectric nanoshells which exhibits a rich resonant behavior in magnitude and phase. This interaction is used to describe the nanoplasmonic-enhanced Foerster resonant energy transfer (FRET) between nanocrystal quantum dots near a nanoshell.

  4. Nanoplasmonic renormalization and enhancement of Coulomb interactions

    Science.gov (United States)

    Durach, M.; Rusina, A.; Klimov, V. I.; Stockman, M. I.

    2008-10-01

    In this paper, we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing the dressed interaction explicitly for an important example of metal-dielectric nanoshells which exhibits a rich resonant behavior in magnitude and phase. This interaction is used to describe the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between nanocrystal quantum dots near a nanoshell.

  5. Effect of Coulomb interaction on multi-electronwave packet dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shiokawa, T. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571 (Japan); Takada, Y. [Faculty of Engineering, Tokyo University of Science, Chiyoda, Tokyo, 102-0073, Japan and CREST, Japan Science and Technology Agency (Japan); Konabe, S.; Hatsugai, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and CREST, Japan Science and Technology Agency (Japan); Muraguchi, M. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and CREST, Japan Science and Technology Agency (Japan); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and Center for Spintronics Integrated Systems, Tohoku University, Sendai, 980-8577, Japan and CREST, Japan Science and Technology Agency (Japan); Shiraishi, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and Center for Computational Science, University of Tsukuba, Tsukuba, 305-8577, Japan and CREST, Japan Science and Technology Agency (Japan)

    2013-12-04

    We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.

  6. Direct simulation Monte Carlo schemes for Coulomb interactions in plasmas

    CERN Document Server

    Dimarco, Giacomo; Pareschi, Lorenzo

    2010-01-01

    We consider the development of Monte Carlo schemes for molecules with Coulomb interactions. We generalize the classic algorithms of Bird and Nanbu-Babovsky for rarefied gas dynamics to the Coulomb case thanks to the approximation introduced by Bobylev and Nanbu (Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation, Physical Review E, Vol. 61, 2000). Thus, instead of considering the original Boltzmann collision operator, the schemes are constructed through the use of an approximated Boltzmann operator. With the above choice larger time steps are possible in simulations; moreover the expensive acceptance-rejection procedure for collisions is avoided and every particle collides. Error analysis and comparisons with the original Bobylev-Nanbu (BN) scheme are performed. The numerical results show agreement with the theoretical convergence rate of the approximated Boltzmann operator and the better performance of Bird-type schemes with respect to t...

  7. Super-Coulombic atom-atom interactions in hyperbolic media

    CERN Document Server

    Cortes, Cristian L

    2016-01-01

    Dipole-dipole interactions which govern phenomena like cooperative Lamb shifts, superradiant decay rates, Van der Waals forces, as well as resonance energy transfer rates are conventionally limited to the Coulombic near-field. Here, we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic (QED) interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a Super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media and propose practical implementations with phonon-polaritonic hexagonal boron nitride in the infrared spectral range and plasmonic super-lattice structures in the visible range. Our work paves the way for the control of cold atoms in hyperbolic media and the study of many-body atomic states where optical phonons mediate qua...

  8. Super-Coulombic atom–atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media. PMID:28120826

  9. Coulomb-Sturmian separable expansion approach three-body Faddeev calculations for Coulomb-like interactions

    CERN Document Server

    Papp, Z

    1996-01-01

    We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation.

  10. Exchange Coulomb interaction in nanotubes: Dispersion of Langmuir waves

    CERN Document Server

    Andreev, P A

    2015-01-01

    Microscopic derivation of the Coulomb exchange interaction for electrons located on the nanotubes is presented. Our derivation is based on the many-particle quantum hydrodynamic method. We demonstrate the role of the curvature of the nanocylinders on the force of the exchange interaction. We calculate corresponding dispersion dependencies for electron oscillations on the nanotubes.

  11. O-16 Coulomb dissociation : towards a new means to determine the C-12+alpha fusion rate in stars

    NARCIS (Netherlands)

    Fleurot, F; van den Berg, AM; Davids, B; Harakeh, MN; Kravchuk, VL; Wilschut, HW; Guillot, J; Laurent, H; Willis, A; Assuncao, M; Kiener, J; Lefebvre, A; de Sereville, N; Tatischeff, [No Value; Assuncao, L.; Lefebvre, L.; Tafischeff, V.

    2005-01-01

    A feasibility study was made of an important aspect of the Coulomb-dissociation method, which has been proposed for the determination of the rate of the astrophysically important C-12(alpha, gamma)160 reaction. A crucial aspect is the disentanglement of nuclear and Coulomb interactions on one hand a

  12. Local simulation algorithms for Coulombic interactions

    Indian Academy of Sciences (India)

    L Leverel; F Alet; J Rottler; A C Maggs

    2005-06-01

    We consider a problem in dynamically constrained Monte Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation. We discuss a simple implementation of a charged lattice gas as well as more elaborate off-lattice versions of the algorithm. There are analogies between our formulation of electrostatics and the bosonic Hubbard model in the phase approximation. Cluster methods developed for this model further improve the efficiency of the electrostatics algorithm.

  13. Interplay of Coulomb interaction and spin-orbit coupling

    Science.gov (United States)

    Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian

    2016-07-01

    We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .

  14. Electron interactions in graphene through an effective Coulomb potential

    Science.gov (United States)

    Rodrigues, Joao N. B.; Adam, Shaffique

    A recent numerical work [H.-K. Tang et al, PRL 115, 186602 (2015)] considering graphene's π-electrons interacting through an effective Coulomb potential that is finite at short-distances, stressed the importance of the sp2 -electrons in determining the semimetal to Mott insulator phase transition in graphene. Some years ago, I. F. Herbut [PRL 97, 146401 (2006)] studied such a transition by mapping graphene's π-electrons into a Gross-Neveu model. From a different perspective, D. T. Son [PRB 75, 235423 (2007)] put the emphasis on the long-range interactions by modelling graphene as Dirac fermions interacting through a bare Coulomb potential. Here we build on these works and explore the phase diagram of Dirac fermions interacting through an effective Coulomb-like potential screened at short-distances. The interaction potential used allows for analytic results that controllably switch between the two perspectives above. This work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM medium-sized centre program) and by the Singapore Ministry of Education and Yale-NUS College (R-607-265-01312).

  15. Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes

    OpenAIRE

    Kane, Charlie; Balents, Leon; Fisher, Matthew

    1997-01-01

    We argue that long-range Coulomb forces convert an isolated (N,N) armchair carbon nanotube into a strongly-renormalized *Luttinger liquid*. At high temperatures, we find anomalous temperature dependences for the interaction and impurity contributions to the resistivity, and similar power-law dependences for the local tunneling density of states. At low temperatures, the nanotube exhibits spin-charge separation, visible as an extra energy scale in the discrete tunneling density of states (for ...

  16. Coulomb interaction in multiple scattering theory. [Kerman-McManus-Thaler and Watson theories

    Energy Technology Data Exchange (ETDEWEB)

    Ray, L.; Hoffmann, G.W.; Thaler, R.M.

    1980-10-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+/sup 208/Pb elastic scattering and compared with experimental data.

  17. Coulomb interaction and first-order superconductor-insulator transition.

    Science.gov (United States)

    Syzranov, S V; Aleiner, I L; Altshuler, B L; Efetov, K B

    2010-09-24

    The superconductor-insulator transition (SIT) in regular arrays of Josephson junctions is studied at low temperatures. We derived an imaginary time Ginzburg-Landau-type action properly describing the Coulomb interaction. The renormalization group analysis at zero temperature T=0 in the space dimensionality d=3 shows that the SIT is always of the first order. At finite T, a tricritical point separates the lines of the first- and second-order phase transitions. The same conclusion holds for d=2 if the mutual capacitance is larger than the distance between junctions.

  18. Mean Field Evolution of Fermions with Coulomb Interaction

    Science.gov (United States)

    Porta, Marcello; Rademacher, Simone; Saffirio, Chiara; Schlein, Benjamin

    2017-03-01

    We study the many body Schrödinger evolution of weakly coupled fermions interacting through a Coulomb potential. We are interested in a joint mean field and semiclassical scaling, that emerges naturally for initially confined particles. For initial data describing approximate Slater determinants, we prove convergence of the many-body evolution towards Hartree-Fock dynamics. Our result holds under a condition on the solution of the Hartree-Fock equation, that we can only show in a very special situation (translation invariant data, whose Hartree-Fock evolution is trivial), but that we expect to hold more generally.

  19. Coulomb Interaction in Quantum Dot with a Precessing Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study electronic transport through a quantum dot (QD) with a precessing magnetic field. By using the Keldysh nonequilibrium Green function method, formulas of local density of states (LDOS) and conductance of QD are derived self-consistently. It shows that the LDOS and conductance have obvious changes with the Coulomb blockade interaction. The intensity and angle of the magnetic field or temperatures, which reflect the mesoscopic structure of the QD are derived. The superiority of this device is that the QD can be controlled easily by the magnetic field, so it is valuable to apply in generating, manipulating and probing spin state.

  20. Relativistic study of the energy-dependent Coulomb potential including Coulomb-like tensor interaction

    CERN Document Server

    Hamzavi, Majid

    2012-01-01

    The exact Dirac equation for the energy-dependent Coulomb (EDC) potential including a Coulomb-like tensor (CLT) potential has been studied in the presence of spin and pseudospin (p-spin) symmetries with arbitrary spin-orbit quantum number The energy eigenvalues and corresponding eigenfunctions are obtained in the framework of asymptotic iteration method (AIM). Some numerical results are obtained in the presence and absence of EDC and CLT potentials.

  1. Coulomb interaction effect in tilted Weyl fermion in two dimensions

    Science.gov (United States)

    Isobe, Hiroki; Nagaosa, Naoto

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)2I3 and three-dimensional WTe2. The Coulomb interaction between electrons modifies the velocities in an essential way in the low energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the velocity of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  2. The generalized Coulomb interactions for relativistic scalar bosons

    Science.gov (United States)

    Zarrinkamar, S.; Panahi, H.; Rezaei, M.

    2016-07-01

    Approximate analytical solutions of Duffin-Kemmer-Petiau (DKP) equation are obtained for the truncated Coulomb, generalized Cornell, Richardson and Song-Lin potentials via the quasi-exact analytical ansatz approach.

  3. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, Dibakar, E-mail: dibakar.roychowdhury@anu.edu.au [Center for Sustainable Energy Systems, College of Engineering and Computer Science, Australian National University, Canberra 0200 (Australia); College of Engineering, Mahindra Ecole Centrale, Jeedimetla, Hyderabad, 500043 (India); Xu, Ningning; Zhang, Weili [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States); Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  4. Influence of gun design on Coulomb interactions in a field emission gun

    NARCIS (Netherlands)

    Verduin, T.; Cook, B.; Kruit, P.

    2011-01-01

    The authors investigate by simulation the Coulomb effects on brightness and energy spread for cold field emitters. At first, we show that brightness is ultimately limited by Coulomb interactions. The authors analyze the maximum attainable brightness for tip radii ranging from 1 nm to 1 μm. Remarkabl

  5. Aftershock triggering by postseismic stresses: A study based on Coulomb rate-and-state models

    Science.gov (United States)

    Cattania, Camilla; Hainzl, Sebastian; Wang, Lifeng; Enescu, Bogdan; Roth, Frank

    2015-04-01

    The spatiotemporal clustering of earthquakes is a feature of medium- and short-term seismicity, indicating that earthquakes interact. However, controversy exists about the physical mechanism behind aftershock triggering: static stress transfer and reloading by postseismic processes have been proposed as explanations. In this work, we use a Coulomb rate-and-state model to study the role of coseismic and postseismic stress changes on aftershocks and focus on two processes: creep on the main shock fault plane (afterslip) and secondary aftershock triggering by previous aftershocks. We model the seismic response to Coulomb stress changes using the Dieterich constitutive law and focus on two events: the Parkfield, Mw = 6.0, and the Tohoku, Mw = 9.0, earthquakes. We find that modeling secondary triggering systematically improves the maximum log likelihood fit of the sequences. The effect of afterslip is more subtle and difficult to assess for near-fault events, where model errors are largest. More robust conclusions can be drawn for off-fault aftershocks: following the Tohoku earthquake, afterslip promotes shallow crustal seismicity in the Fukushima region. Simple geometrical considerations indicate that afterslip-induced stress changes may have been significant on trench parallel crustal fault systems following several of the largest recorded subduction earthquakes. Moreover, the time dependence of afterslip strongly enhances its triggering potential: seismicity triggered by an instantaneous stress change decays more quickly than seismicity triggered by gradual loading, and as a result we find afterslip to be particularly important between few weeks and few months after the main shock.

  6. Isospin Effect of Coulomb Interaction on Momentum Dissipation in Intermediate Energy Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Ye; GUO Wen-Jun; XING Yong-Zhong; Li Xi-Guo

    2004-01-01

    We investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. We also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section.In this case, Coulomb interaction does not change obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential.

  7. Coexistence and competition of on-site and intersite Coulomb interactions in Mott-molecular-dimers

    Science.gov (United States)

    Juliano, R. C.; de Arruda, A. S.; Craco, L.

    2016-02-01

    We reveal the interplay between on-site (U) and intersite (V) Coulomb interactions in the extended two-site Hubbard model. Due to its atomic-like form quantum correlations intrinsic to Mott-molecular-dimers are exactly computed. Our results for physical quantities such as double occupancy and specific heat are consistent with those obtained for the one-band Hubbard model, suggesting that a two-site dimer model is able to capture the essential thermodynamic properties of strongly interacting electron systems. It is noted that intersite Coulomb interactions promote the formation of doublons, which compete with the spin-singlet state induced by the on-site Coulomb repulsion. Our results are expected to be relevant for understanding electronic and thermodynamical properties of interacting electrons in systems with strongly coupled magnetic atoms.

  8. Effect of Coulomb Interaction on Dynamical Localization in a Two-Electron Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Min; DUAN Su-Qing; ZHAO Xian-Geng; LIU Cheng-Shi

    2004-01-01

    The combined interaction of Coulomb interaction and ac fields with two electrons in a quantum dot molecule is studied respectively with numerical simulation, perturbation theory and the approximation of driven two-level model. The dynamical localization occurs with the ac field whose ratio of the amplitude to the angular frequency is a root of n-order Bessel functions, where n is determined by the Coulomb interaction energy. Such results are explained with either the driven two-level approximation or the degenerated three-level model and verified by the numerical simulations.

  9. Dynamic gap generation in graphene under the long-range Coulomb interaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingrong; Liu Guozhu, E-mail: wangjr@mail.ustc.edu.cn, E-mail: gzliu@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026 (China)

    2011-08-31

    Dynamic gap generation in graphene under the long-range Coulomb interaction is studied by the Dyson-Schwinger gap equation beyond the instantaneous approximation. Once the dependence of the dynamic gap on the energy has been considered, the critical interaction strength {alpha}{sub c} decreases to 0.542. If the renormalization of the fermion velocity is considered, {alpha}{sub c} will become {alpha}{sub c} = 1.02. This indicates that the dependence on the energy and the renormalization of the fermion velocity are both important for dynamic gap generation in graphene under long-range Coulomb interaction. (paper)

  10. Effects of the Lorentz invariance violation in Coulomb interaction in nuclei and atoms

    CERN Document Server

    Flambaum, V V

    2016-01-01

    Anisotropy in the speed of light (studied in the Michelson-Morley experiment ) generates anisotropy in the Coulomb interaction. This anisotropy manifests itself in the nuclear and atomic experiments. The experimental results for 21Ne are used to improve the limits on the tensor components characterising the asymmetry of the speed of light and the Coulomb interaction (violation of the Lorentz symmetry in the photon sector) by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10E-28.

  11. Natural and Unnatural Parity Resonance States in the Positron-Hydrogen System with Screened Coulomb Interactions

    Directory of Open Access Journals (Sweden)

    Ye Ning

    2015-12-01

    Full Text Available In the present work, we report calculations of resonances in the positron-hydrogen system interacting with screened Coulomb potentials using the method of complex scaling together with employing correlated Hylleraas wave functions. Resonances with natural and unnatural parities are investigated. For the natural parity case, resonance parameters (energy and width for D-wave resonance states with even parity lying below various positronium and hydrogen thresholds up to the H(N = 4 level are determined. For the unnatural parity case, results for P-even and D-odd resonance states with various screened Coulomb interaction strengths are located below different lower-lying Ps and H thresholds.

  12. Effects of the Lorentz Invariance Violation on Coulomb Interactions in Nuclei and Atoms

    Science.gov (United States)

    Flambaum, V. V.; Romalis, M. V.

    2017-04-01

    Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in Ne2110 are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10-28.

  13. Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.

    Science.gov (United States)

    Flambaum, V V; Romalis, M V

    2017-04-07

    Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in _{10}^{21}Ne are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10^{28}.

  14. Strong-field S -matrix theory with final-state Coulomb interaction in all orders

    Science.gov (United States)

    Faisal, F. H. M.

    2016-09-01

    During the last several decades the so-called Keldysh-Faisal-Reiss or strong-field approximation (SFA) has been highly useful for the analysis of atomic and molecular processes in intense laser fields. However, it is well known that SFA does not account for the final-state Coulomb interaction which is, however, unavoidable for the ubiquitous ionization process. In this Rapid Communication we solve this long-standing problem and give a complete strong-field S -matrix expansion that accounts for the final-state Coulomb interaction in all orders, explicitly.

  15. Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene.

    Science.gov (United States)

    Schüler, M; Rösner, M; Wehling, T O; Lichtenstein, A I; Katsnelson, M I

    2013-07-19

    To understand how nonlocal Coulomb interactions affect the phase diagram of correlated electron materials, we report on a method to approximate a correlated lattice model with nonlocal interactions by an effective Hubbard model with on-site interactions U(*) only. The effective model is defined by the Peierls-Feynman-Bogoliubov variational principle. We find that the local part of the interaction U is reduced according to U(*)=U-V[over ¯], where V[over ¯] is a weighted average of nonlocal interactions. For graphene, silicene, and benzene we show that the nonlocal Coulomb interaction can decrease the effective local interaction by more than a factor of 2 in a wide doping range.

  16. Coulomb interactions between cytoplasmic electric fields and phosphorylated messenger proteins optimize information flow in cells.

    Directory of Open Access Journals (Sweden)

    Robert A Gatenby

    Full Text Available BACKGROUND: Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM. While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length. FINDINGS: Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions. CONCLUSION: This work demonstrates that previously unrecognized Coulomb interactions

  17. Determining astrophysical three-body radiative capture reaction rates from inclusive Coulomb break-up measurements

    CERN Document Server

    Casal, J; Arias, J M; Gómez-Camacho, J

    2016-01-01

    A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly-bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of $B(E1)$ distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to $^{11}$Li ($^{9}$Li+n+n) and $^6$He ($^{4}$He+n+n) three-body systems for which some data exist.

  18. Determining astrophysical three-body radiative capture reaction rates from inclusive Coulomb break-up measurements

    Science.gov (United States)

    Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.

    2016-04-01

    A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of B (E 1 ) distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to 11Li (9Li+n +n ) and 6He (4He+n +n ) three-body systems for which some data exist.

  19. Coulomb drag: a probe of electron interactions in coupled quantum wells

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka

    1996-01-01

    calculations lead to several predictions of effects not yet seen experimentally We conclude that Coulomb drag, in particular when combined with magnetic fields, is a very versatile tool for directly probing interparticle interactions in dimensionally restricted systems. A further line for research could...

  20. Asymptotic regimes for diffractive scatterings at ultrahigh energies and coulomb interaction

    CERN Document Server

    Anisovich, V V; Nyiri, J

    2016-01-01

    Comparative analysis of the interplay of hadron and Coulomb interactions in $pp^\\pm$ scattering amplitudes is performed for two extreme cases: for the asymptotic interaction of hadrons in black disk and resonant disk modes. The interactions are discussed in terms of the $K$-matrix function technique, the interference effects are estimated in the energy interval $\\sqrt{s}=1-10^6$ TeV. In both cases the real part of the hadronic amplitude is concentrated on the boundary of the disks in the impact parameter space that causes a growth of interference effects with the energy increase. For the $pp$ scattering at $\\sqrt{s}\\sim 10$ TeV an interplay of the hadron and Coulomb interactions in the resonant disk modes is realized in a specific shoulder in $d\\sigma_{el}/d{\\bf q}^2$ at ${\\bf q}^2\\sim 0.0025-0.0075$ GeV$^2$.

  1. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    Science.gov (United States)

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  2. Weak Interaction Neutron Production Rates in Fully Ionized Plasmas

    OpenAIRE

    Widom, A.; Swain, J.; Srivastava, Y. N.

    2013-01-01

    Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enha...

  3. Many-body effects of Coulomb interaction on Landau levels in graphene

    Science.gov (United States)

    Sokolik, A. A.; Zabolotskiy, A. D.; Lozovik, Yu. E.

    2017-03-01

    In strong magnetic fields, massless electrons in graphene populate relativistic Landau levels with the square-root dependence of each level energy on its number and magnetic field. Interaction-induced deviations from this single-particle picture were observed in recent experiments on cyclotron resonance and magneto-Raman scattering. Previous attempts to calculate such deviations theoretically using the unscreened Coulomb interaction resulted in overestimated many-body effects. This work presents many-body calculations of cyclotron and magneto-Raman transitions in single-layer graphene in the presence of Coulomb interaction, which is statically screened in the random-phase approximation. We take into account self-energy and excitonic effects as well as Landau level mixing, and achieve good agreement of our results with the experimental data for graphene on different substrates. The important role of a self-consistent treatment of the screening is found.

  4. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  5. Nonlocal Coulomb interaction in the two-dimensional spin-1/2 Falicov–Kimball model

    Indian Academy of Sciences (India)

    S K Bhowmick; N K Ghosh

    2012-02-01

    The two-dimensional (2D) extended Falicov–Kimball model has been studied to observe the role of nonlocal Coulomb interaction (nc) using an exact diagonalization technique. The f-state occupation ($n^f$), the f–d intersite correlation function (fd), the specific heat (), entropy () and the specific heat coefficient () have been examined. Nonlocal Coulomb interaction-induced discontinuous insulator-to-metal transition occurs at a critical f-level energy. More ordered state is obtained with the increase of nc. In the specific heat curves, two-peak structure as well as a singlepeak structure appears. At low-temperature region, a sharp rise in the specific heat coefficient is observed. The peak value of shifts to the higher temperature region with nc.

  6. Calculation of the matrix elements of the Coulomb interaction involving relativistic hydrogenic wave functions

    Science.gov (United States)

    Sarkadi, L.

    2017-03-01

    The program MTRDCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) ∣ R - r∣-1ψi(r) d r. Bound-free transitions are considered, and relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library subprogram [2] is fixed.

  7. Interband coulomb interaction and horizontal line nodes in triplet superconductor Sr sub 2 RuO sub 4

    CERN Document Server

    Hasegawa, Y

    2003-01-01

    A possible mechanism for appearance of the horizontal line nodes in triplet superconductor, Sr sub 2 RuO sub 4 , is proposed. We consider the interlayer Coulomb interaction, as well as the on-site Coulomb repulsion, between electrons in different bands. In the second order perturbation of the interband interaction, the effective interaction becomes dependent on cos q sub z /2, resulting in horizontal line nodes. (author)

  8. Influence of long-range Coulomb interaction in velocity map imaging

    Science.gov (United States)

    Barillot, T.; Brédy, R.; Celep, G.; Cohen, S.; Compagnon, I.; Concina, B.; Constant, E.; Danakas, S.; Kalaitzis, P.; Karras, G.; Lépine, F.; Loriot, V.; Marciniak, A.; Predelus-Renois, G.; Schindler, B.; Bordas, C.

    2017-07-01

    The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.

  9. Effects of anisotropy and Coulomb interactions on quantum transport in a quadruple quantum-dot structure

    Science.gov (United States)

    Kagan, M. Yu.; Val'kov, V. V.; Aksenov, S. V.

    2017-01-01

    We present an analytical and numerical investigation of the spectral and transport properties of a quadruple quantum-dot (QQD) structure which is one of the popular low-dimensional systems in the context of fundamental quantum physics study, future electronic applications, and quantum calculations. The density of states, occupation numbers, and conductance of the structure were analyzed using the nonequilibrium Green's functions in the tight-binding approach and the equation-of-motion method. In particular the anisotropy of hopping integrals and on-site electron energies as well as the effects of the finite intra- and interdot Coulomb interactions were investigated. It was found out that the anisotropy of the kinetic processes in the system leads to the Fano-Feshbach asymmetrical peak. We demonstrated that the conductance of the QQD device has a wide insulating band with steep edges separating triple-peak structures if the intradot Coulomb interactions are taken into account. The interdot Coulomb correlations between the central QDs result in the broadening of this band and the occurrence of an additional band with low conductance due to the Fano antiresonances. It was shown that in this case the conductance of the anisotropic QQD device can be dramatically changed by tuning the anisotropy of on-site electron energies.

  10. Charge separation in organic solar cells: Effects of Coulomb interaction, recombination and hole propagation

    Science.gov (United States)

    Nemati Aram, Tahereh; Asgari, Asghar; Mayou, Didier

    2016-07-01

    Bulk heterojunction (BHJ) organic photovoltaic cells are analysed within a simple efficient model that includes the important physical properties of such photovoltaic systems. In this model, in contrast with most of the previous studies, we take into account the motion of both the electron and the hole in the separation process at the donor-acceptor interface. We theoretically examine the exciton dissociation yield under the influences of charge Coulomb interaction and non-radiative recombination. We find that the electron-hole local Coulomb attraction and charge carriers' coupling parameters play an important role in the system performance and in the optimal energy conversion efficiency of the BHJ photocell. We show that the fixed-hole models tend to underestimate the yield.

  11. Influence of angular momentum and Coulomb interaction of colliding nuclei on their multifragmentation

    CERN Document Server

    Ergun, A; Buyukcizmeci, N; Ogul, R; Botvina, A S

    2014-01-01

    Theoretical calculations are performed to investigate the angular momentum and Coulomb effects on fragmentation and multifragmentation in peripheral heavy-ion collisions at Fermi energies. Inhomogeneous distributions of hot fragments in the freeze-out volume are taken into account by microcanonical Markov chain calculations within the Statistical Multifragmentation Model (SMM). Including an angular momentum and a long-range Coulomb interaction between projectile and target residues leads to new features in the statistical fragmentation picture. In this case, one can obtain specific correlations of sizes of emitted fragments with their velocities and an emission in the reaction plane. In addition, one may see a significant influence of these effects on the isotope production both in the midrapidity and in the kinematic regions of the projectile/target. The relation of this approach to the simulations of such collisions with dynamical models is also discussed.

  12. Efficient Modeling of Coulomb Interaction Effect on Exciton in Crystal-Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Taherkhani, Masoomeh; Gregersen, Niels; Mørk, Jesper

    2016-01-01

    The binding energy and oscillation strength of the ground-state exciton in type-II quantum dot (QD) is calculated by using a post Hartree-Fock method known as the configuration interaction (CI) method which is significantly more efficient than conventional methods like ab initio method. We show t...... that the Coulomb interaction between electron and holes in these structures considerably affects the transition dipole moment which is the key parameter of optical quantum gating in STIRAP (stimulated Raman adiabatic passage) process for implementing quantum gates [1], [2]....

  13. Extraordinary waves in two dimensional electron gas with separate spin evolution and Coulomb exchange interaction

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    Hydrodynamics analysis of waves in two-dimensional degenerate electron gas with the account of separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like mediums the contribution of the transverse electric field is small. We show the decrease of frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic wave has negative dispersion at the relatively large spin-polarization. Corresponding dispersion dependencies are presented and analyzed.

  14. Role of the Coulomb interaction in the flow and the azimuthal distribution of kaons from heavy ion reactions

    CERN Document Server

    Wang, Z S; Fuchs, C; Maheswari, V S U; Kosov, D S; Faessler, Amand

    1998-01-01

    Coulomb final-state interaction of positive charged kaons in heavy ion reactions and its impact on the kaon transverse flow and the kaon azimuthal distribution are investigated within the framework of QMD (Quantum Molecular Dynamics) model. The Coulomb interaction is found to tend to draw the flow of kaons away from that of nucleons and lead to a more isotropic azimuthal distribution of kaons in the target rapidity region. The recent FOPI data have been analyzed by taking into accout both the Coulomb interaction and a kaon in-medium potential of the strong interaction. It is found that both the calculated kaon flows with only the Coulomb interaction and with both the Coulomb interaction and the strong potential agree within the error bars with the data. The kaon azimuthal distribution exhibits asymmetries of similar magnitude in both theoretical approaches. This means, the inclusion of the Coulomb potential makes it more difficult to extract information of the kaon mean field potential in nuclear matter from ...

  15. Study of the $ar{D}$N Interaction in a QCD Coulomb Gauge Quark Model

    Directory of Open Access Journals (Sweden)

    Vizcarra V.E.

    2010-04-01

    Full Text Available We study the $ar{D}$N interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a confining Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperfine interaction consistent with a finite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an effective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range mesonbaryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by effective Lagrangians are incorporated. The derived effective $ar{D}$N potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.

  16. A Fortran program to calculate the matrix elements of the Coulomb interaction involving hydrogenic wave functions

    Science.gov (United States)

    Sarkadi, L.

    2017-03-01

    The program MTRXCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) | R - r | - 1ψi(r) d r. Bound-free transitions are considered, and non-relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library (PL) subprogram [2] is fixed. Furthermore, the COULCC CPC PL subprogram [3] applied for the calculations of the radial wave functions of the free states and the Bessel functions is replaced by the CPC PL subprogram DCOUL [4].

  17. Relativistic symmetry of position-dependent mass particles in a Coulomb field including tensor interaction

    Institute of Scientific and Technical Information of China (English)

    M.Eshghi; M.Hamzavi; S.M.Ikhdair

    2013-01-01

    The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.

  18. Weak Interaction Neutron Production Rates in Fully Ionized Plasmas

    CERN Document Server

    Widom, A; Srivastava, Y N

    2013-01-01

    Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enhanced neutron production rate. The scattering wave function should replace the bound state wave function for estimates of the enhanced neutron production rate on water plasma drenched cathodes of chemical cells.

  19. Coulomb and spin-orbit interactions in random phase approximation calculations

    CERN Document Server

    De Donno, V; Anguiano, M; Lallena, A M

    2013-01-01

    We present a fully self-consistent computational framework composed by Hartree-Fock plus ran- dom phase approximation where the spin-orbit and Coulomb terms of the interaction are included in both steps of the calculations. We study the effects of these terms of the interaction on the random phase approximation calculations, where they are usually neglected. We carry out our investigation of excited states in spherical nuclei of oxygen, calcium, nickel, zirconium, tin and lead isotope chains. We use finite-range effective nucleon-nucleon interactions of Gogny type. The size of the effects we find is, usually, of few hundreds of keV. There are not simple approximations which can be used to simulate these effects since they strongly depend on all the variables related to the excited states, angular momentum, parity, excitation energy, isoscalar and isovector characters. Even the Slater approximation developed to account for the Coulomb exchange terms in Hartree-Fock is not valid in random phase approximation ca...

  20. Coulomb static stress interactions between simulated M>7 earthquakes and major faults in Southern California

    Science.gov (United States)

    Rollins, J. C.; Ely, G. P.; Jordan, T. H.

    2010-12-01

    We calculate the Coulomb stress changes imparted to major Southern California faults by thirteen simulated worst-case-scenario earthquakes for the region, including the “Big Ten” scenarios (Ely et al, in progress). The source models for the earthquakes are variable-slip simulations from the SCEC CyberShake project (Graves et al, 2010). We find strong stress interactions between the San Andreas and subparallel right-lateral faults, thrust faults under the Los Angeles basin, and the left-lateral Garlock Fault. M>7 earthquakes rupturing sections of the southern San Andreas generally decrease Coulomb stress on the San Jacinto and Elsinore faults and impart localized stress increases and decreases to the Garlock, San Cayetano, Puente Hills and Sierra Madre faults. A M=7.55 quake rupturing the San Andreas between Lake Hughes and San Gorgonio Pass increases Coulomb stress on the eastern San Cayetano fault, consistent with Deng and Sykes (1996). M>7 earthquakes rupturing the San Jacinto, Elsinore, Newport-Inglewood and Palos Verdes faults decrease stress on parallel right-lateral faults. A M=7.35 quake on the San Cayetano Fault decreases stress on the Garlock and imparts localized stress increases and decreases to the San Andreas. A M=7.15 quake on the Puente Hills Fault increases stress on the San Andreas and San Jacinto faults, decreases stress on the Sierra Madre Fault and imparts localized stress increases and decreases to the Newport-Inglewood and Palos Verdes faults. A M=7.25 shock on the Sierra Madre Fault increases stress on the San Andreas and decreases stress on the Puente Hills Fault. These findings may be useful for hazard assessment, paleoseismology, and comparison with dynamic stress interactions featuring the same set of earthquakes.

  1. The MV model of the color glass condensate for a finite number of sources including Coulomb interactions

    Science.gov (United States)

    McLerran, Larry; Skokov, Vladimir V.

    2017-01-01

    We modify the McLerran-Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran-Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this paper we provide a basic formulation of the problem on a lattice.

  2. Diffusion, Coulombic interactions and multicomponent ionic transport of charged species in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo; Muniruzzaman, Muhammad

    Diffusion and compound-specific mixing significantly affect conservative and reactive transport in groundwater at different scales, not only under diffusion-dominated regimes but also under advection-dominated flow through conditions [1]. When dissolved species are charged, besides the magnitude...... of their aqueous diffusion coefficients also the electrostatic interactions significantly affect solute displacement. We investigated electrostatic interactions between ionic species under flow-through conditions resulting in multicomponent ionic dispersion: the dispersive fluxes of the different ions in the pore...... water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection...

  3. Coulomb interaction parameters in bcc iron: an LDA+DMFT study.

    Science.gov (United States)

    Belozerov, A S; Anisimov, V I

    2014-09-17

    We study the influence of Coulomb interaction parameters on electronic structure and magnetic properties of paramagnetic bcc Fe by means of the local density approximation plus dynamical mean-field theory approach. We consider the local Coulomb interaction in the density-density form as well as in the form with spin rotational invariance approximated by averaging over all directions of the quantization axis. Our results indicate that the magnetic properties of bcc Fe are mainly affected by the Hund's rule coupling J rather than by the Hubbard U. By employing the constrained density functional theory approach in the basis of Wannier functions of spd character, we obtain U = 4 eV and J = 0.9 eV. In spite of the widespread belief that U = 4 eV is too large for bcc Fe, our calculations with the obtained values of U and J result in a satisfactory agreement with the experiment. The correlation effects caused by U are found to be weak even for large U = 6 eV. The agreement between the calculated and experimental Curie temperatures is further improved if J is reduced to 0.8 eV. However, with the decrease of J, the effective local magnetic moment moves further away from the experimental value.

  4. Coulomb interaction parameters in bcc iron: an LDA+DMFT study

    Science.gov (United States)

    Belozerov, A. S.; Anisimov, V. I.

    2014-09-01

    We study the influence of Coulomb interaction parameters on electronic structure and magnetic properties of paramagnetic bcc Fe by means of the local density approximation plus dynamical mean-field theory approach. We consider the local Coulomb interaction in the density-density form as well as in the form with spin rotational invariance approximated by averaging over all directions of the quantization axis. Our results indicate that the magnetic properties of bcc Fe are mainly affected by the Hund's rule coupling J rather than by the Hubbard U. By employing the constrained density functional theory approach in the basis of Wannier functions of spd character, we obtain U = 4 eV and J = 0.9 eV. In spite of the widespread belief that U = 4 eV is too large for bcc Fe, our calculations with the obtained values of U and J result in a satisfactory agreement with the experiment. The correlation effects caused by U are found to be weak even for large U = 6 eV. The agreement between the calculated and experimental Curie temperatures is further improved if J is reduced to 0.8 eV. However, with the decrease of J, the effective local magnetic moment moves further away from the experimental value.

  5. Coulombic interactions during advection-dominated transport of ions in porous media

    Science.gov (United States)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-04-01

    Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport

  6. Scale-free avalanches in disordered systems of localized charges with long-range Coulomb interaction

    Science.gov (United States)

    Palassini, Matteo; Goethe, Martin

    2012-02-01

    We study theoretically and numerically the charge avalanches created by a perturbation in disordered systems of localized charges with unscreened Coulomb interaction (the so-called electron glass model), in two and three dimensions. Starting from a low-lying local energy minimum, we perturb the system by inserting an extra charge or an extra dipole, and let it relax via one-particle hops until a new minimum is reached. We find that the size distribution of the avalanches created in this process displays generically a power-law tail with an exponent close to the mean-field value 3/2 both in 2D and 3D, without requiring any parameter tuning. We provide a qualitative explanation of these results in terms of the density of states of elementary charge and dipole excitations and the associated Coulomb gap, which shows that the power-law tail arises from arbitrarily long hops, without requiring to assume the existence of a glass phase. Finally, we discuss the experimental relevance of these results and compare our picture to similar scale-free avalanches observed in mean field spin glasses, in which they are are associated to a marginal glass phase.

  7. Fermi surface versus Fermi sea contributions to intrinsic anomalous and spin Hall effects of multiorbital metals in the presence of Coulomb interaction and spin-Coulomb drag

    Science.gov (United States)

    Arakawa, Naoya

    2016-06-01

    Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.

  8. Coulomb-interaction induced coupling of Landau levels in intrinsic and modulation-doped quantum wells

    Science.gov (United States)

    Paul, J.; Stevens, C. E.; Zhang, H.; Dey, P.; McGinty, D.; McGill, S. A.; Smith, R. P.; Reno, J. L.; Turkowski, V.; Perakis, I. E.; Hilton, D. J.; Karaiskaj, D.

    2017-06-01

    We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaks is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.

  9. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions

    Science.gov (United States)

    Isobe, Hiroki; Nagaosa, Naoto

    2016-03-01

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α -(BEDT -TTF )2I3 and three-dimensional WTe2 . The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  10. Strength of effective Coulomb interactions and origin of ferromagnetism in hydrogenated graphene

    Science.gov (United States)

    Şaşıoǧlu, E.; Hadipour, H.; Friedrich, C.; Blügel, S.; Mertig, I.

    2017-02-01

    Hydrogenation provides a novel way to tune the electronic properties of graphene. Recent scanning tunneling microscopy experiments have demonstrated that local graphene magnetism can be selectively switched on and off by hydrogen (H) dimers. Employing first-principles calculations in conjunction with the constrained random-phase approximation we determine the strength of the effective Coulomb interaction U in hydrogenated graphene. We find that the calculated U parameters are smaller than the ones in graphene and depend on the H concentration. Moreover, the U parameters are very sensitive to the position of H atoms adsorbed on the graphene lattice. We discuss the instability of the paramagnetic state of the hydrogenated graphene towards the ferromagnetic one on the basis of calculated U parameters within the Stoner model. Spin-polarized calculations reveal that the itinerant ferromagnetism in hydrogenated graphene can be well accounted for by the Stoner model.

  11. Data-Derived Coulomb Stress Rate Uncertainties of the San Andreas Fault System

    Science.gov (United States)

    Smith-Konter, B. R.; Solis, T.; Sandwell, D. T.

    2008-12-01

    Interseismic stress rates of the San Andreas Fault System (SAFS), derived from the present-day geodetic network spanning the North American-Pacific plate boundary, range from 0.5 - 7 MPa/100yrs and vary as a function of fault locking depth, slip rate, and fault geometry. Calculations of accumulated stress over several earthquake cycles, consistent with coseismic stress drops of ~3-7 MPa, also largely depend on the rupture history of a fault over the past few thousand years. However, uncertainties in paleoseismic slip history, combined with ongoing discrepancies in geologic/geodetic slip rates and variable locking depths throughout the earthquake cycle, can introduce uncertainties in stress rate and in present-day stress accumulation calculations. For example, a number of recent geodetic studies have challenged geologic slip rates along the SAFS, varying by as much as 25% of the total slip budget; geodetically determined locking depths, while within the bounds of seismicity, typically have uncertainties that range from 0.5 - 5 km; uncertainties in paleoseismic chronologies can span several decades, with slip uncertainties on the order of a few meters. Here we assess the importance of paleoseismic accuracy, variations in slip rates, and basic stress model components using a 3-D semi-analytic time-dependent deformation model of the SAFS. We perform a sensitivity analysis of Coulomb stress rate and present-day accumulated stress with respect to the six primary parameters of our model: slip rate, locking depth, mantle viscosity, elastic plate thickness, coefficient of friction, and slip history. In each case, we calculate a stress derivative with respect to a parameter over the estimated range of uncertainty, as well as any tradeoffs in parameters. Our results suggest that a 25% variation, or exchange, of slip rates between the primary SAFS and faults of the Eastern California Shear Zone (ECSZ) yields a respective decrease (SAFS) and increase (ECSZ) of stress rate by

  12. The relationship between afterslip and aftershocks: a study based on Coulomb-Rate-and-State models

    Science.gov (United States)

    Cattania, Camilla; Hainzl, Sebastian; Roth, Frank; Wang, Lifeng

    2014-05-01

    The original Coulomb stress hypothesis, as well as most physics based models of aftershock sequences, assume that aftershocks are triggered by the instantaneous coseismic stress: in other words, the stress field is treated as stationary following the mainshock. However, several lines of evidence indicate that postseismic processes may affect aftershock triggering. The cumulative seismic moment of afterslip can be a significant fraction of the coseismic moment, generating comparable stress changes; moreover, afterslip has a similar time dependence as aftershocks, suggesting that the two processes may be linked. Aftershocks themselves contribute to the redistribution of stresses, and they can trigger their own aftershocks: spatial clustering, and the success of statistical models which include secondary triggering (ETAS) suggest that, even though aftershocks typically generate stresses orders of magnitude smaller than the mainshock, they are significant on a local scale. Our goal is to study the effect of postseismically induced stresses in the spatial and temporal distribution of aftershocks. We focus on the two processes described above (afterslip and secondary triggering), and do not consider other phenomena such as poroelastic response and viscoelastic relaxation. We study a period of 250 days following the mainshock, for two case studies: the Parkfield, Mw=6.0 and the Tohoku, Mw=9.0 earthquakes. We model the seismic response to stress changes using the Dieterich constitutive law, derived from a population of faults governed by Rate-and-State dependent friction; we also consider uncertainties in the input stress field using a Monte Carlo technique. We find that modeling secondary triggering systematically improves model performance; afterslip has a less significant overall impact on the model, but in both cases studies we observe clusters of seismicity which, due to their location relative to the coseismic and postseismic slip, are better explained when afterslip

  13. Capture cross-section and rate of the 14C(, )15C reaction from the Coulomb dissociation of 15C

    Indian Academy of Sciences (India)

    Shubhchintak; Neelam; R Chatterjee

    2014-10-01

    We calculate the Coulomb dissociation of 15C on a Pb target at 68 MeV/u incident beam energy within the fully quantum mechanical distorted wave Born approximation formalism of breakup reactions. The capture cross-section and the subsequent rate of the 14C(, )15C reaction are calculated from the photodisintegration of 15C, using the principle of detailed balance. Our theoretical model is free from the uncertainties associated with the multipole strength distributions of the projectile.

  14. Effect of Cluster Coulomb Fields on Electron Acceleration in Laser-Cluster Interaction

    Institute of Scientific and Technical Information of China (English)

    CANG Yu; DONG Quan-Li; WU Hui-Chun; SHENG Zheng-Ming; YU Wei; ZHANG Jie

    2004-01-01

    @@ Single particle simulations are used to investigate electron acceleration in the laser-clusterinteraction, taking into account the Coulomb fields around individual clusters. These Coulomb fields are induced from the cluster cores with positive charge when electrons escape from the cluster cores through ponderomotive push from the laser field. These Coulomb fields enable some stripped electrons to be stochastically in phases with the laser fields so that they can gain net energy from the laser efficiently. In this heating mechanism, circularly polarized lasers, larger cluster size and higher cluster densities make the acceleration more efficient.

  15. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    Science.gov (United States)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.

  16. Partial-wave Coulomb transition matrices for attractive interaction by Fock's method

    CERN Document Server

    Kharchenko, V F

    2016-01-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states. Keywords: Partial wave Coulomb transition matrix; Lippmann-Schwinger equation; Fock method; Analytical solution PACS Nos. 03.65.-w; 03.65.Nk; 34.20.Cf

  17. Fermi and Coulomb correlation effects upon the interacting quantum atoms energy partition

    CERN Document Server

    Ruiz, Isela; Holguín-Gallego, Fernando José; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-01-01

    The Interacting Quantum Atoms (IQA) electronic energy partition is an important method in the field of quantum chemical topology which has given important insights of different systems and processes in physical chemistry. There have been several attempts to include Electron Correlation (EC) in the IQA approach, for example, through DFT and Hartree-Fock/Coupled-Cluster (HF/CC) transition densities. This work addresses the separation of EC in Fermi and Coulomb correlation and its effect upon the IQA analysis by taking into account spin-dependent one- and two-electron matrices $D^{\\mathrm{HF/CC}}_{p\\sigma q \\sigma}$ and $d^{\\mathrm{HF/CC}}_{p\\sigma q\\sigma r\\tau s\\tau}$ wherein $\\sigma$ and $\\tau$ represent either of the $\\alpha$ and $\\beta$ spin projections. We illustrate this approach by considering BeH$_2$,BH, CN$^-$, HF, LiF, NO$^+$, LiH, H$_2$O$\\cdots$H$_2$O and C$_2$H$_2$, which comprise non-polar covalent, polar covalent, ionic and hydrogen bonded systems. The same and different spin contributions to ($i$...

  18. Interatomic Coulombic Decay Effects in Theoretical DNA Recombination Systems Involving Protein Interaction Sites

    Science.gov (United States)

    Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.

    2015-03-01

    DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  19. Effects of coulomb repulsion on conductivity of heterojunction carbon nanotube quantum dots with spin-orbital coupling and interacting leads

    Science.gov (United States)

    Ogloblya, O. V.; Kuznietsova, H. M.; Strzhemechny, Y. M.

    2017-01-01

    We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.

  20. Effects of Coulomb repulsion on conductivity of heterojunction carbon nanotube quantum dots with spin-orbital coupling and interacting leads

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblya, O.V., E-mail: olexandr.ogloblya@gmail.com [Taras Shevchenko National University, 64/13 Volodymyrska St., Kyiv 01601 (Ukraine); Kuznietsova, H.M. [Taras Shevchenko National University, 64/13 Volodymyrska St., Kyiv 01601 (Ukraine); Strzhemechny, Y.M. [Dept. of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

    2017-01-01

    We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.

  1. High-T C superconductivity in Cs3C60 compounds governed by local Cs-C60 Coulomb interactions

    Science.gov (United States)

    Harshman, Dale R.; Fiory, Anthony T.

    2017-04-01

    Unique among alkali-doped A 3C60 fullerene compounds, the A15 and fcc forms of Cs3C60 exhibit superconducting states varying under hydrostatic pressure with highest transition temperatures at T\\text{C}\\text{meas}   =  38.3 and 35.2 K, respectively. Herein it is argued that these two compounds under pressure represent the optimal materials of the A 3C60 family, and that the C60-associated superconductivity is mediated through Coulombic interactions with charges on the alkalis. A derivation of the interlayer Coulombic pairing model of high-T C superconductivity employing non-planar geometry is introduced, generalizing the picture of two interacting layers to an interaction between charge reservoirs located on the C60 and alkali ions. The optimal transition temperature follows the algebraic expression, T C0  =  (12.474 nm2 K)/ℓζ, where ℓ relates to the mean spacing between interacting surface charges on the C60 and ζ is the average radial distance between the C60 surface and the neighboring Cs ions. Values of T C0 for the measured cation stoichiometries of Cs3-x C60 with x  ≈  0 are found to be 38.19 and 36.88 K for the A15 and fcc forms, respectively, with the dichotomy in transition temperature reflecting the larger ζ and structural disorder in the fcc form. In the A15 form, modeled interacting charges and Coulomb potential e2/ζ are shown to agree quantitatively with findings from nuclear-spin relaxation and mid-infrared optical conductivity. In the fcc form, suppression of T\\text{C}\\text{meas} below T C0 is ascribed to native structural disorder. Phononic effects in conjunction with Coulombic pairing are discussed.

  2. Monte Carlo study of charge transport in organic sandwich-type single-carrier devices: Effects of Coulomb interactions

    Science.gov (United States)

    van der Holst, J. J. M.; van Oost, F. W. A.; Coehoorn, R.; Bobbert, P. A.

    2011-02-01

    We present the results of Monte Carlo simulations of transport of charge carriers of a single type in devices consisting of a disordered organic semiconductor sandwiched in between two electrodes. The simulations are based on hopping of carriers between sites with a Gaussian energetic distribution, which is either spatially uncorrelated or has a correlation based on interactions with randomly oriented dipoles. Coulomb interactions between the carriers are taken into account explicitly. For not too small injection barriers between the electrodes and the organic semiconductor, we find that the current obtained from the simulations can be described quite well by a one-dimensional drift-diffusion continuum model, which takes into account the long-range contributions of Coulomb interactions through the space-charge potential. For devices with low injection barriers, however, the simulations yield a considerably lower current than the continuum model. The reduction of the current for uncorrelated disorder is larger than for correlated disorder. By performing simulations in which the short-range contributions of the Coulomb interactions between the carriers are omitted, we demonstrate that the difference is caused by these short-range contributions. We can rationalize our results by analyzing the three-dimensional current distributions and the in-plane radial distribution function of the carriers resulting from the simulations for different injection barriers with and without taking into account these short-range contributions.

  3. Screened Coulomb interactions in metallic alloys. II. Screening beyond the single-site and atomic-sphere approximations

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Korzhavyi, P.A.

    2002-01-01

    -electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic-sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless, a simple parametrization of the screened Coulomb interactions...... for the ordinary single-site methods, including the generalized perturbation method, is still possible. We obtained such a parametrization for bulk and surface NiPt alloys, which allows one to obtain quantitatively accurate effective interactions in this system....

  4. From Coulomb Fluid to Self-Generated Charge Glass due to Long-Range Interactions and Geometric Frustration

    Science.gov (United States)

    Mahmoudian, Samiyeh; Rademaker, Louk; Ralko, Arnaud; Fratini, Simone; Dobrosavljević, Vladimir

    2015-03-01

    We show that introducing long-range Coulomb interactions immediately lifts the massive ground state degeneracy induced by geometric frustration for electrons on quarter-filled triangular lattices in the semi-classical regime. This produces not only a stripe-ordered (global) crystalline ground state, but also very many low-lying metastable states with amorphous ``stripe-glass'' spatial structure. At intermediate temperatures, such a frustrated Coulomb liquid shows remarkably slow (viscous) dynamics, with very long relaxation times growing in Arrhenius fashion upon cooling, as typical of ``strong glass formers.'' On shorter time scales, the system falls out of equilibrium and displays the ``aging'' phenomena characteristic of supercooled liquids around the glass transition. Our results, which are obtained using mean field theory, classical Monte Carlo simulations and exact diagonalization, show remarkable similarity with the recent observations of charge-glass behavior in ultra-clean triangular organic materials θ-RbZn and θ-CsZn.

  5. Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    Science.gov (United States)

    Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai

    2010-12-01

    FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been

  6. {sup 16}O Coulomb dissociation: towards a new means to determine the {sup 12}C+{alpha} fusion rate in stars

    Energy Technology Data Exchange (ETDEWEB)

    Fleurot, F. [Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen (Netherlands)]. E-mail: fleurot@snolab.ca; Berg, A.M. van den [Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen (Netherlands); Davids, B. [Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen (Netherlands); Harakeh, M.N. [Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen (Netherlands); Kravchuk, V.L. [Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen (Netherlands); Wilschut, H.W. [Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen (Netherlands)]. E-mail: wilschut@kvi.nl; Guillot, J. [IPN, 15 rue Georges Clemenceau, 91406 Orsay cedex (France); Laurent, H. [IPN, 15 rue Georges Clemenceau, 91406 Orsay cedex (France); Willis, A. [IPN, 15 rue Georges Clemenceau, 91406 Orsay cedex (France); Assuncao, M. [CSNSM, bat. 104-108, 91405 Orsay Campus (France); Kiener, J. [CSNSM, bat. 104-108, 91405 Orsay Campus (France); Lefebvre, A. [CSNSM, bat. 104-108, 91405 Orsay Campus (France); Sereville, N. de [CSNSM, bat. 104-108, 91405 Orsay Campus (France); Tatischeff, V. [CSNSM, bat. 104-108, 91405 Orsay Campus (France)

    2005-06-02

    A feasibility study was made of an important aspect of the Coulomb-dissociation method, which has been proposed for the determination of the rate of the astrophysically important {sup 12}C({alpha}, {gamma}){sup 16}O reaction. A crucial aspect is the disentanglement of nuclear and Coulomb interactions on one hand and the separation of dipole and quadrupole contributions on the other. As a first step the resonant breakup via two well-known 2{sup +} states of {sup 16}O was measured. The differential cross section of {sup 208}Pb({sup 16}O, {sup 16}O*){sup 208}Pb and the angular correlations of the fragments {sup 12}C and {alpha} in the center of mass were measured and compared to theoretical predictions calculated in DWBA and the coupled-channel method. The best agreement was found for the state at 11.52 MeV associated to a one-step excitation from the ground state, while the 9.84 MeV requires coupling to the first-excited 2{sup +} state and is not well described.

  7. Coulomb static stress interactions between M>5 earthquakes and major active faults in Northern California

    Science.gov (United States)

    Segou, M.; Parsons, T.; Kalkan, E.

    2011-12-01

    We have calculated Coulomb stress changes between 1980-2006 in Northern California from fourteen events as well as from the major historic ruptures of 1865, 1868 and 1906. The seismic and fault geometry parameters are taken from the Working Group on California Earthquake Probabilities report (2008). We assess the static Coulomb stress hypothesis as a triggering mechanism for the aftershock sequences of these events using the high accuracy earthquake catalog of Waldhauser and Schaff (2008), which is based on waveform cross-correlation and double-difference methods. We examined the sensitivity of static Coulomb stress changes due to source parametrization by considering different rupture models and aftershock fault orientations for each event. To quantify the variability due to slip distribution, we used both a uniform and variable slip model. Source fault geometry corresponds to: (1) a fault plane suggested by the Global Centroid Moment Tensor (GCMT) and (2) the related mapped fault. In order to analyze the impact of the receiving fault geometry, we used: (1) geometry similar to the source and (2) optimally oriented fault planes for failure (King et al., 1994), taking into account the regional stress field derived in Hardebeck and Michael (2004) from focal mechanism analysis. The sensitivity of the calculations to different focal depths and apparent coefficients of friction (0.1-0.8) has been also investigated.

  8. Effect of Intra-Dot Coulomb Interaction on Andreev Reflection in Normal-Metal/Quantum-Dot/Superconductor System

    Institute of Scientific and Technical Information of China (English)

    ZHU Yu; SUN Qing-Feng; LIN Tsung-Han

    2001-01-01

    We investigate the effect of intra-dot Coulomb interaction on the Andreev reflection in a normalmetal/quantum-dot/superconductor (N-QD-S) system with multiple levels in the quantum dot, in the regime where the intra-dot interacting constant is comparable to the energy gap of superconducting lead. By using nonequilibrium Green function method, the averaged occupation of electrons in the quantum dot and the Andreev reflection (AR) current are studied. Comparing to the case of non-interacting quantum dot, the system shows significant changes for the a two-step-like behavior; and the I-Vg shows two groups of peaks, separated by U and with equal heights, where Vg is the gate voltage and U denotes the intra-dot Coulomb interaction constant. (ii) For finite bias voltage, dips, superposed V ≥ U/2, extra AR current peaks occur between the two groups of the peaks. Besides, the properties of the heights of the AR current peaks are more complicated.``

  9. Impact of density-dependent symmetry energy and Coulomb interactions on the evolution of intermediate mass fragments

    Indian Academy of Sciences (India)

    Karan Singh Vinayak; Suneel Kumar

    2014-03-01

    Within the framework of isospin-dependent quantum molecular dynamics (IQMD) model, we demonstrate the evolution of intermediate mass fragments in heavy-ion collisions. In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry energy. The IMF production and charge distribution show a minor but considerable sensitivity towards various forms of densitydependent symmetry energy. The Coulomb interactions affect the IMF production significantly at peripheral collisions. The IMF production increases with the stiffness of symmetry energy.

  10. The MV Model of the Color Glass Condensate for a Finite Number of Sources Including Coulomb Interactions

    CERN Document Server

    McLerran, Larry

    2016-01-01

    We modify the McLerran-Venugopalan model to include only a finite number of sources of color charge. We argue that Coulombic interactions between these color charges generates a source-source correlation function that properly includes the effects of color charge screening, a generalization of Debye screening for the Color Glass Condensate. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this paper we provide a basic formulation of the problem on a lattice.

  11. Observation of forbidden exciton transitions mediated by Coulomb interactions in photoexcited semiconductor quantum wells.

    Science.gov (United States)

    Rice, W D; Kono, J; Zybell, S; Winnerl, S; Bhattacharyya, J; Schneider, H; Helm, M; Ewers, B; Chernikov, A; Koch, M; Chatterjee, S; Khitrova, G; Gibbs, H M; Schneebeli, L; Breddermann, B; Kira, M; Koch, S W

    2013-03-29

    We use terahertz pulses to induce resonant transitions between the eigenstates of optically generated exciton populations in a high-quality semiconductor quantum well sample. Monitoring the excitonic photoluminescence, we observe transient quenching of the 1s exciton emission, which we attribute to the terahertz-induced 1s-to-2p excitation. Simultaneously, a pronounced enhancement of the 2s exciton emission is observed, despite the 1s-to-2s transition being dipole forbidden. A microscopic many-body theory explains the experimental observations as a Coulomb-scattering mixing of the 2s and 2p states, yielding an effective terahertz transition between the 1s and 2s populations.

  12. Determination of the 36Mg(n ,γ )37Mg reaction rate from Coulomb dissociation of 37Mg

    Science.gov (United States)

    Shubhchintak; Chatterjee, R.; Shyam, R.

    2017-08-01

    We use the Coulomb dissociation (CD) method to calculate the rate of the 36Mg(n ,γ )37Mg radiative capture reaction. The CD cross sections of the 37Mg nucleus on a 208Pb target at the beam energy of 244 MeV/nucleon, for which new experimental data have recently become available, were calculated within the framework of a finite-range distorted-wave Born approximation theory that is extended to include the projectile deformation effects. Invoking the principle of detailed balance, these cross sections are used to determine the excitation function and subsequently the rate of the 36Mg(n ,γ )37Mg reaction. We compare these rates to those of the 36Mg(α ,n )39Si reaction calculated within a Hauser-Feshbach model. We find that for T9 as large as up to 1.0 (in units of 109 K) the 36Mg(n ,γ )37Mg reaction is much faster than the 36Mg(α ,n )39Si one. The inclusion of the effects of 37Mg projectile deformation in the breakup calculations enhances the (n ,γ ) reaction rate even further. Therefore, it is highly unlikely that the (n ,γ )β -decay r -process flow will be broken at the 36Mg isotope by the α process.

  13. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.

    Science.gov (United States)

    Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf

    2014-10-28

    Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated

  14. Thermoelectric transport through a zigzag like chain: Influence of the chain length, the interdot tunneling and the intradot Coulomb interaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui-Xue, E-mail: li19851025@126.com [School of Science, Henan Institute of Engineering, Zhengzhou 451191 (China); Ni, Yun [Wenhua College, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Hai-Dong; Tian, Xing-Ling [School of Science, Henan Institute of Engineering, Zhengzhou 451191 (China); Yao, Kai-Lun; Fu, Hua-Hua [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-07-15

    We have studied the thermoelectric transport through a zigzaglike chain in the linear response regime using the non-equilibrium Green's function method. This model consists of the main zigzaglike chain and the side radicals coupled with the main chain at the next-near-neighbor sites. The finite-scale effect on the thermoelectric properties has been studied, our results show that thermoelectric efficiency can be enhanced by increasing the chain length. The thermopower and the figure of merit can be enhanced by strengthening the interdot tunneling coupling between the main chain and the side radicals. However, increase of the interdot tunneling coupling in the main chain can weaken the thermoelectric efficiency. Moreover, the thermoelectric efficiency is also strongly dependent on the intradot Coulomb interaction. These results can provide a guidance for the synthesis of thermal devices with high thermoelectric efficiency.

  15. Relativistic symmetries with the trigonometric P(o)schl-Teller potential plus Coulomb-like tensor interaction

    Institute of Scientific and Technical Information of China (English)

    Babatunde J.Falaye; Sameer M.Ikhdair

    2013-01-01

    The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric P(o)schl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ ± 1)r-2.In view of spin and pseudo-spin (p-spin) symmetries,the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM).We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ.The non-relativistic limit is also obtained.

  16. Color-Flavor Locked Strangelets in a New Quark Model with Linear Confinement and Coulomb-Type Interactions

    Institute of Scientific and Technical Information of China (English)

    陈世武; 彭光雄

    2012-01-01

    The color-flavor locked (CFL) strangelets have been investigated in a new quark model with linear con- finement and one-gluon-exchange interactions. Considering Coulomb energy, we have studied the properties of three kinds of CFL strangelets, namely, positively charged, negatively charged and nearly neutral CFL strangelets. It is found that the one-gluon-exchange effect lowers the energy of a strangelet considerably and thus makes it much more stable than without considering the effect. The charge of a positive strangelet is larger than 0.15A^2/3 with A being the baryon number, but smaller than that in bag model. The charge of a negatively charged or nearly neutral CFL strangelet is nearly proportional to A^1/3.

  17. Coulomb interaction of electron gas in MQWs Si/Si{sub 1-x}Ge{sub x}/Si

    Energy Technology Data Exchange (ETDEWEB)

    Sfina, N. [Unite de Physique des Solides, Departement de Physique, Faculte des Sciences de Monastir, Avenue de l' Environnement, 5019 Monastir (Tunisia)], E-mail: sfina_fsm@yahoo.fr; Lazzari, J.-L. [Centre de Recherche en Matiere Condensee et Nanosciences, CRMC-N, UPR-CNRS 7251, Laboratory associated with the Universite de la Mediterranee and the Universite Paul Cezanne, Campus de Luminy, Case 913, 13288 Marseille cedex 9 (France); Cuminal, Y.; Christol, P. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2, UMR-CNRS 5507, Universite Montpellier 2 - Sciences et Techniques du Languedoc, CC 067, Place Eugene Bataillon, 34095 Montpellier cedex 5 (France); Said, M. [Unite de Physique des Solides, Departement de Physique, Faculte des Sciences de Monastir, Avenue de l' Environnement, 5019 Monastir (Tunisia)], E-mail: moncef_said@yahoo.fr

    2008-07-01

    We present a theoretical analysis of the conduction and valence-band diagrams of SiGe/Si Multiple Quantum Wells (MQWs), having a specific 'W' geometry, and designed for emission or photodetection around the 1.55 {mu}m wavelength. Peculiar features have been extrapolated by solving self-consistent Schroedinger and Poisson equations, taking into account the electrostatic attraction induced by carrier injection. As a result, Coulomb interaction strongly modifies the band profiles and increases the electron probability density at the quantum well interfaces; the injected carrier concentration enhances electron-hole wave functions overlap and the in-plane oscillator strength. These MQWs structures, strain-compensated on relaxed Si{sub 0.75}Ge{sub 0.25} pseudo-substrates, are potentially interesting for telecom applications.

  18. Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Luis B. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil); Oliveira, Luiz P. de [Universidade de Sao Paulo (USP), Instituto de Fisica, Sao Paulo, SP (Brazil); Garcia, Marcelo G. [Instituto Tecnologico de Aeronautica (ITA), Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), IMECC, Departamento de Matematica Aplicada, Campinas, SP (Brazil); Castro, Antonio S. de [Universidade Estadual Paulista (UNESP), Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2017-05-15

    The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a sine qua non condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings. (orig.)

  19. A parallel code to calculate rate-state seismicity evolution induced by time dependent, heterogeneous Coulomb stress changes

    Science.gov (United States)

    Cattania, C.; Khalid, F.

    2016-09-01

    The estimation of space and time-dependent earthquake probabilities, including aftershock sequences, has received increased attention in recent years, and Operational Earthquake Forecasting systems are currently being implemented in various countries. Physics based earthquake forecasting models compute time dependent earthquake rates based on Coulomb stress changes, coupled with seismicity evolution laws derived from rate-state friction. While early implementations of such models typically performed poorly compared to statistical models, recent studies indicate that significant performance improvements can be achieved by considering the spatial heterogeneity of the stress field and secondary sources of stress. However, the major drawback of these methods is a rapid increase in computational costs. Here we present a code to calculate seismicity induced by time dependent stress changes. An important feature of the code is the possibility to include aleatoric uncertainties due to the existence of multiple receiver faults and to the finite grid size, as well as epistemic uncertainties due to the choice of input slip model. To compensate for the growth in computational requirements, we have parallelized the code for shared memory systems (using OpenMP) and distributed memory systems (using MPI). Performance tests indicate that these parallelization strategies lead to a significant speedup for problems with different degrees of complexity, ranging from those which can be solved on standard multicore desktop computers, to those requiring a small cluster, to a large simulation that can be run using up to 1500 cores.

  20. Coulomb correlation effects and density dependence of radiative recombination rates in polar AlGaN quantum wells

    Science.gov (United States)

    Rupper, Greg; Rudin, Sergey; Bertazzi, Francesco; Garrett, Gregory; Wraback, Michael

    2013-03-01

    AlGaN narrow quantum wells are important elements of deep-ultraviolet light emitting devices. The electron-hole radiative recombination rates are important characteristics of these nanostructures. In this work we evaluated their dependence on carrier density and lattice temperature and compared our theoretical results with the experimentally determined radiative lifetimes in the c-plane grown AlGaN quantum wells. The bands were determined in the k .p approximation for a strained c-plane wurtzite quantum well and polarization fields were included in the model. In order to account for Coulomb correlations at relatively high densities of photo-excited electron-hole plasma and arbitrary temperature, we employed real-time Green's function formalism with self-energies evaluated in the self-consistent T-matrix approximation. The luminescence spectrum was obtained from the susceptibility by summing over scattering in-plane directions and polarization states. The recombination coefficient was obtained from the integrated photo-luminescence. The density dependence of the radiative recombination rate shows effects of strong screening of the polarization electric field at high photo-excitation density.

  1. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    Science.gov (United States)

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  2. Coulomb stress evolution along Xianshuihe-Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008

    Science.gov (United States)

    Shan, Bin; Xiong, Xiong; Wang, Rongjiang; Zheng, Yong; Yang, Song

    2013-09-01

    The curved left-lateral strike-slip Xianshuihe-Xiaojiang Fault System (XXFS) in southwestern China extends at least 1400 km in the eastern margin of the Tibetan Plateau. Fieldworks confirm that the XXFS is one of the longest and most seismically active faults in China. The strain released by the slip motion on the XXFS is related to the convergence between the Indian and Eurasian plates. The entire fault system has experienced at least 35 earthquakes of M>6 in the recent 300 years and almost all segments of the system have been the locus of major historical earthquakes. Since the XXFS region is heavily populated (over 50 million people), understanding the migration of the large earthquakes in space and time is of crucial importance for the seismic hazard assessment in this region. We analyze a sequence of 25 earthquakes (M⩾6.5) that occurred along the XXFS since 1713, and investigate their influence on the 2008 Mw7.9 Wenchuan earthquake occurred on the adjacent Longmenshan fault. In our analysis, the relevant parameters for the earth crust are constrained by seismic studies. The locations and geometries of the earthquake faults as well as the rupture distributions are taken from field observations and seismological studies. Results from the Coulomb failure stress modeling indicate significant interactions among the earthquakes. After the 1713 earthquake, 19 out of 24 earthquakes occurred in the positive stress zone of the preceding earthquakes. The other 5 earthquakes located in the area without significant stress changes induced by the preceding events. In particular, we can identify 4 visible earthquake gaps with increasing seismic hazard along the XXFS, consistent with the findings from the paleo-seismological studies. The seismic activity and tectonic motion on the XXFS reduced the Coulomb stress accumulation at the hypocenter of 2008 Mw7.9 Wenchuan earthquake, implying that the Wenchuan earthquake might not be triggered directly by the seismic activities on

  3. Switching between attractive and repulsive Coulomb-interaction-mediated drag in an ambipolar GaAs/AlGaAs bilayer device

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, B.; Croxall, A. F.; Waldie, J., E-mail: jw353@cam.ac.uk; Sfigakis, F.; Farrer, I.; Beere, H. E.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Das Gupta, K. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-02-08

    We present measurements of Coulomb drag in an ambipolar GaAs/AlGaAs double quantum well structure that can be configured as both an electron-hole bilayer and a hole-hole bilayer, with an insulating barrier of only 10 nm between the two quantum wells. Coulomb drag resistivity is a direct measure of the strength of interlayer particle-particle interactions. We explore the strongly interacting regime of low carrier densities (2D interaction parameter r{sub s} up to 14). Our ambipolar device design allows a comparison between the effects of the attractive electron-hole and repulsive hole-hole interactions and also shows the effects of the different effective masses of electrons and holes in GaAs.

  4. Magneto-Coulomb Drag: Interplay of Electron-Electron Interactions and Landau Quantization

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1996-01-01

    effect. The presence of both electron-electron interactions and Landau quantization results in (i) a twin-peaked structure of rho(21)(B) in the interplateau regions at low temperatures and (ii) for the chemical potential at the center of a Landau level band, a peaked temperature dependence of rho(21)(T...

  5. Effect of finite Coulomb interaction on full counting statistics of electronic transport through single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Xue Haibin, E-mail: xhb98326110@163.co [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China); Nie, Y.-H., E-mail: nieyh@sxu.edu.c [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China); Li, Z.-J.; Liang, J.-Q. [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2011-01-17

    We study the full counting statistics (FCS) in a single-molecule magnet (SMM) with finite Coulomb interaction U. For finite U the FCS, differing from U{yields}{infinity}, shows a symmetric gate-voltage-dependence when the coupling strengths with two electrodes are interchanged, which can be observed experimentally just by reversing the bias-voltage. Moreover, we find that the effect of finite U on shot noise depends on the internal level structure of the SMM and the coupling asymmetry of the SMM with two electrodes as well. When the coupling of the SMM with the incident-electrode is stronger than that with the outgoing-electrode, the super-Poissonian shot noise in the sequential tunneling regime appears under relatively small gate-voltage and relatively large finite U, and dose not for U{yields}{infinity}; while it occurs at relatively large gate-voltage for the opposite coupling case. The formation mechanism of super-Poissonian shot noise can be qualitatively attributed to the competition between fast and slow transport channels.

  6. Computing Coulomb Interaction in Inhomogeneous Dielectric Media via a Local Electrostatics Lattice Algorithm

    CERN Document Server

    Fahrenberger, Florian

    2013-01-01

    The local approach to computing electrostatic interactions proposed by Maggs and adapted by Pasichnyk for molecular dynamics simulations is extended to situations where the dielectric background medium is inhomogeneous. We furthermore correct a problem of the original algorithm related to the correct treatment of the global dipole moment, provide an error estimate for the accuracy of the algorithm, and suggest a different form of the treatment of the self-energy problem. Our implementation is highly scalable on many cores, and we have validated and compared its performance against theoretical predictions and simulation data obtained by other algorithmic approaches.

  7. Relaxation of strongly coupled Coulomb systems after rapid changes of the interaction potential

    CERN Document Server

    Gericke, D O; Semkat, D; Bonitz, M; Kremp, D

    2003-01-01

    The relaxation of charged particle systems after sudden changes of the pair interaction strength is investigated. As examples, we show the results for plasmas after ionization and after a rapid change of screening. Comparisons are made between molecular dynamics simulation and a kinetic description based on the Kadanoff-Baym equations. We found the latter very sensitive to the way the scattering cross section is treated. We also predict the new equilibrium state requiring only conservation of energy. In this case, the correlation energy is computed using the hypernetted chain approximation.

  8. Coulomb scattering in a 2D interacting electron gas and production of EPR pairs.

    Science.gov (United States)

    Saraga, D S; Altshuler, B L; Loss, Daniel; Westervelt, R M

    2004-06-18

    We propose a setup to generate nonlocal spin Einstein-Podolsky-Rosen pairs via pair collisions in a 2D interacting electron gas, based on constructive two-particle interference in the spin-singlet channel at the pi/2 scattering angle. We calculate the scattering amplitude via the Bethe-Salpeter equation in the ladder approximation and small r(s) limit and find that the Fermi sea leads to a substantial renormalization of the bare scattering process. From the scattering length, we estimate the current of spin-entangled electrons and show that it is within experimental reach.

  9. Coulombic interactions and multicomponent ionic dispersion during transport of charged species in heterogeneous porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    Electrochemical cross-coupling plays a significant role for transport of charged species in porous media [1, 2]. In this study we performed flow-through experiments in a quasi two-dimensional setup using dilute solutions of strong electrolytes to study the influence of charge interactions on mass...... transfer of ionic species in saturated porous media. The experiments were carried out under advection-dominated conditions (seepage velocity: 1 and 1.5 m/day) in two well-defined heterogeneous domains where flow diverging around a low-permeability inclusion and flow focusing in high-permeability zones...

  10. The effect of Coulomb interaction on spasing conditions in small nanoparticles (Conference Presentation)

    Science.gov (United States)

    Pustovit, Vitaliy N.; Shahbazyan, Tigran V.; Chipouline, Arkadi; Urbas, Augustine M.

    2016-09-01

    The prediction of plasmonic laser (spaser) and its experimental realization in various systems have been among the highlights in the rapidly developing field of plasmonics during the past decade. First observed in gold nanoparticles (NP) coated by dye-doped dielectric shells spasing action was reported in hybrid plasmonic waveguides, semiconductor quantum dots on metal film, plasmonic nanocavities and nanocavity arrays, metallic NP and nanorods, and recently was studied in graphene-based structures. The small spaser size well below the diffraction limit gives rise to numerous promising applications, e.g., in sensing or medical diagnostics. However, most experimental realizations of spaser-based nanolasers were carried in relatively large systems, while only a handful of experiments reported spasing action in small systems with overall size below 50 nm. In this work, we perform a numerical study of the role of quenching and direct interactions between gain molecules in reaching the lasing threshold for small spherical NP with metal core and dye-doped dielectric shell. We use a semiclassical approach that combines Maxwell-Bloch equations with the Green function formalism to derive the threshold condition in terms of exact system eigenstates, which we find numerically. We show that for a large number of gain molecules needed to satisfy loss compensation condition, the coupling to nonresonant modes plays no significant role. In contrast, the direct dipole-dipole interactions, by causing random shifts in gain molecules' excitation energies, can hinder reaching the lasing threshold in small NP-based spasers.

  11. The impact of coulombic interactions among polar molecules and metal substrates on flow and lubrication properties

    Science.gov (United States)

    Gkagkas, K.; Ponnuchamy, V.

    2017-09-01

    In the current work we present an extensive study on the impact of short- and long-range interactions between solids and liquids on the hydrodynamic and lubrication behaviour of a tribological system. We have implemented a coarse grain molecular dynamics description of two ionic liquids (ILs) as lubricants which are confined by two infinitely long flat iron solids and which are subjected to a shearing flow. The impact of surface polarizability and molecule geometry on the ion arrangement under shearing has been studied in detail. The results have revealed two regimes of lubrication, with a liquid phase being present under low normal loads, while solidification of the ILs, accompanied by a steep rise of normal forces and significant wall slip is observed at small plate-to-plate distances.

  12. Dirac Hamiltonian and Reissner-Nordstrom Metric: Coulomb Interaction in Curved Space-Time

    CERN Document Server

    Noble, J H

    2016-01-01

    We investigate the spin-1/2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordstrom space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordstrom geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational, and electro-gravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electro-gravitational correction terms to the potential proportional to alpha^n G, where alpha is the fine-structure constant, and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic c...

  13. Coulomb Effects in Femtoscopy

    CERN Document Server

    Maj, Radoslaw

    2009-01-01

    The correlation function of two identical particles - pions or kaons - interacting via Coulomb potential is computed. The particles are emitted from an anisotropic particle's source of finite lifetime. In the case of pions, the effect of halo is taken into account as an additional particle's source of large spatial extension. The relativistic effects are discussed in detail. The Bowler-Sinyukov procedure to remove the Coulomb interaction is carefully tested. In the absence of halo the procedure is shown to work very well even for an extremely anisotropic source. When the halo is taken into account the free correlation function, which is extracted by means of the Bowler-Sinyukov procedure, is distorted at small relative momenta but the source parameters are still correctly reproduced.

  14. One-Range Addition Theorems in Terms of ψα-ETOs for STOs and Coulomb-Yukawa Like Correlated Interaction Potentials of Integer and Noninteger Indices

    Institute of Scientific and Technical Information of China (English)

    I.I.Guseinov

    2008-01-01

    @@ The expansion formulas in terms of complete orthonormal sets of ψα-exponential type orbitals are established for the Slater type orbitals and Coulomb-Yukawa-like correlated interaction potentials of integer and noninteger indices. These relations are used in obtaining their unsymmetrical and symmetrical one-range addition theorems.The final results are especially useful in the calculations of multicentre multielectron integrals occurring when Hartree-Fock-Roothaan and explicitly correlated methods are employed.

  15. The Role of Coulomb Interactions for Spin Crossover Behaviors and Crystal Structural Transformation in Novel Anionic Fe(III Complexes from a π-Extended ONO Ligand

    Directory of Open Access Journals (Sweden)

    Suguru Murata

    2016-05-01

    Full Text Available To investigate the π-extension effect on an unusual negative-charged spin crossover (SCO FeIII complex with a weak N2O4 first coordination sphere, we designed and synthesized a series of anionic FeIII complexes from a π-extended naphthalene derivative ligand. Acetonitrile-solvate tetramethylammonium (TMA salt 1 exhibited an SCO conversion, while acetone-solvate TMA salt 2 was in a high-spin state. The crystal structural analysis for 2 revealed that two-leg ladder-like cation-anion arrays derived from π-stacking interactions between π-ligands of the FeIII complex anion and Coulomb interactions were found and the solvated acetone molecules were in one-dimensional channels between the cation-anion arrays. A desolvation-induced single-crystal-to-single-crystal transformation to desolvate compound 2’ may be driven by Coulomb energy gain. Furthermore, the structural comparison between quasi-polymorphic compounds 1 and 2 revealed that the synergy between Coulomb and π-stacking interactions induces a significant distortion of coordination structure of 2.

  16. Direct measurement of stellar neutron capture rates of 14C and comparison with the Coulomb breakup method

    Science.gov (United States)

    Reifarth, Rene; Heil, M.; Plag, R.; Besserer, U.; Couture, A.; Dababneh, S.; Dörr, L.; Forssén, C.; Görres, J.; Haight, R. C.; Mengoni, A.; O'Brien, S.; Patronis, N.; Rundberg, R. S.; Uberseder, E.; Wiescher, M.; Wilhelmy, J. B.

    The neutron capture cross section of 14 C has been shown to be important for several neutron driven nucleosynthesis scenarios. Due to the high neutron abundance it is expected that the 14 C(n,γ) reaction competes strongly with other neutron-induced reactions on 14 C. The 14 C(n,γ) reaction is also important to validate (n,γ) cross sections obtained via the inverse reaction by the Coulomb breakup method. In principle, 14 C belongs to the few cases where this correspondence can be validated in a convincingly clean way. So far, the example of 14 C is obscured, however, by discrepancies between several experiments and theory. In this contribution we report on a re- analysis of the direct measurements of the 14 C(n,γ) reaction presented on the last NIC conference (Vancouver, 2004). The neutron energies used during the experiment ranged from 30 to 800 keV. The earlier presented disagreement between the direct measurements and the Coulomb breakup method has been resolved.

  17. Two effects relevant for the study of astrophysical reaction rates: gamma transitions in capture reactions and Coulomb suppression of the stellar enhancement

    CERN Document Server

    Rauscher, T

    2008-01-01

    Nucleosynthesis processes involve reactions on several thousand nuclei, both close to and far off stability. The preparation of reaction rates to be used in astrophysical investigations requires experimental and theoretical input. In this context, two interesting aspects are discussed: (i) the relevant gamma transition energies in astrophysical capture reactions, and (ii) the newly discovered Coulomb suppression of the stellar enhancement factor. The latter makes a number of reactions with negative Q value more favorable for experimental investigation than their inverse reactions, contrary to common belief.

  18. Role of long range Coulomb interaction near the disorder driven metal-insulator transition in Ga1-xMnxAs

    Science.gov (United States)

    Mahmoudian, S.; Miranda, E.; Dobrosavljevic, V.

    2013-03-01

    Surprising signatures of interaction effects on disorder-driven localization have recently been observed by scanning tunneling microscopy of Ga1-xMnxAs, where visualizing the electronic wave function near the metal-insulator transition revealed[1] a pronounced suppression of the local tunneling density of states (LDOS) and enhanced localization only near the Fermi energy. These features highlight the limitation of the non-interacting picture, and point to the crucial importance of the long-range Coulomb interaction. Here, we implement a theoretical approach based on the recently developed Typical-Medium Theory,[2] the conceptually simplest approach to interaction-localization. We show that the presence of long-range Coulomb interaction leads to the simultaneous opening of a soft pseudogap in both the typical (geometrically averaged) and the average (algebraically averaged) LDOS, as the transition is approached. This result is consistent with the experimentally observed features of the STM spectra, suggesting new experiments that should be performed to fully characterize the quantum critical behavior at the metal-insulator transition

  19. The influence of the interband Coulomb interaction and the f-electron hopping on excitonic correlations in the extended Falicov-Kimball model

    Science.gov (United States)

    Farkašovský, Pavol

    2015-05-01

    The density matrix renormalization group (DMRG) method is used to examine the effects of the interband Coulomb interaction U between f and d electrons as well as the f-electron hopping on the stability of the excitonic phase in the one-dimensional Falicov-Kimball model (FKM) with local hybridization V. It is found that the interband Coulomb interaction significantly enhances the excitonic Pdf= average and that this effect is especially strong in the limit of small hybridization, where the interacting Pdf(U) excitonic value is enhanced several hundred times in comparison to its non-interacting Pdf(U=0) value. The further increase in P df is observed due to the non-zero f-electron hopping, but these changes are considerable only if the d and f bands have opposite parity. In addition, the examination of the interplay between the excitonic effects and the charge density wave (CDW) instability showed that the CDW and excitonic phase coexist up to relatively large values of local hybridization (V ∼ 0.13) . The ground-state phase diagram of the model in the V\\text-U plane is discussed.

  20. Effect of spin-orbit and on-site Coulomb interactions on the electronic structure and lattice dynamics of uranium monocarbide

    Science.gov (United States)

    Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.

    2016-08-01

    Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.

  1. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Ongonwou, F., E-mail: fred.ongonwou@gmail.com [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Tetchou Nganso, H.M., E-mail: htetchou@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon); Ekogo, T.B., E-mail: tekogo@yahoo.fr [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Kwato Njock, M.G., E-mail: mkwato@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon)

    2016-12-15

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  2. Electronic properties of single-layer antimony: Tight-binding model, spin-orbit coupling, and the strength of effective Coulomb interactions

    Science.gov (United States)

    Rudenko, A. N.; Katsnelson, M. I.; Roldán, R.

    2017-02-01

    The electronic properties of single-layer antimony are studied by a combination of first-principles and tight-binding methods. The band structure obtained from relativistic density functional theory is used to derive an analytic tight-binding model that offers an efficient and accurate description of single-particle electronic states in a wide spectral region up to the mid-UV. The strong (λ =0.34 eV) intra-atomic spin-orbit interaction plays a fundamental role in the band structure, leading to splitting of the valence band edge and to a significant reduction of the effective mass of the hole carriers. To obtain an effective many-body model of two-dimensional Sb we calculate the screened Coulomb interaction and provide numerical values for the on-site V¯00 (Hubbard) and intersite V¯i j interactions. We find that the screening effects originate predominantly from the 5 p states, and are thus fully captured within the proposed tight-binding model. The leading kinetic and Coulomb energies are shown to be comparable in magnitude, | t01|/ (V¯00-V¯01) ˜1.6 , which suggests a strongly correlated character of 5 p electrons in Sb. The results presented here provide an essential step toward the understanding and rational description of a variety of electronic properties of this two-dimensional material.

  3. Universal properties of high-temperature superconductors from real-space pairing: Role of correlated hopping and intersite Coulomb interaction within the t -J -U model

    Science.gov (United States)

    Zegrodnik, Michał; Spałek, Józef

    2017-08-01

    We study the effect of the correlated hopping term and the intersite Coulomb interaction term on principal features of the d -wave superconducting (SC) state, in both the electron- and hole-doped regimes within the t -J -U model. In our analysis, we use the approach based on the diagrammatic expansion of the Gutzwiller wave function (DE-GWF), which allows us to go beyond the renormalized mean-field theory (RMFT). We show that the correlated hopping term enhances the pairing at the electron-doped side of the phase diagram. Moreover, the so-called non-BCS regime (which manifests itself by the negative kinetic energy gain at the transition to the SC phase) is narrowed down with the increasing magnitude of the correlated hopping ˜K . Also, the doping dependencies of the nodal Fermi velocity and Fermi momentum, as well as the average number of double occupancies, are analyzed with reference to the experimental data for selected values of the parameter K . For the sake of completeness, the influence of the intersite Coulomb repulsion on the obtained results is provided. Additionally, selected results concerning the Hubbard-model case are also presented. A complete model with all two-site interactions is briefly discussed in Appendix for reference.

  4. Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy.

    Science.gov (United States)

    De Luca, Sergio; Chen, Fan; Seal, Prasenjit; Stenzel, Martina H; Smith, Sean C

    2017-10-02

    The accelerating search for new types of drugs and delivery strategies poses challenge to understanding the mechanism of delivery. To this end, a detailed atomistic picture of binding between the drug and carrier is quintessential. Although many studies focus on the electrostatics of drug-vector interactions, it has also been pointed out that entropic factors relating to water and counterions can play an important role. By carrying out extensive molecular dynamics simulations and subsequently validating with experiments, we shed light herein on the binding in aqueous solution between a protein drug and polymeric carrier. We examined the complexation between the polymer poly(ethylene glycol) methyl ether acrylate-b-poly(carboxyethyl acrylate (PEGMEA-b-PCEA) and the protein egg white lysozyme, a system that acts as a model for polymer-vector/protein-drug delivery systems. The complexation has been visualized and characterized using contact maps and hydrogen bonding analyses for five independent simulations of the complex, each running over 100 ns. Binding at physiological pH is, as expected, mediated by Coulombic attraction between the positively charged protein and negatively charged carboxylate groups on the polymer. However, we find that consideration of electrostatics alone is insufficient to explain the complexation behavior at low pH. Intracomplex hydrogen bonds, van der Waals interactions, as well as water-water interactions dictate that the polymer does not release the protein at pH 4.8 or indeed at pH 3.2 even though the Coulombic attractions are largely removed as carboxylate groups on the polymer become titrated. Experiments in aqueous solution carried out at pH 7.0, 4.5, and 3.0 confirm the veracity of the computed binding behavior. Overall, these combined simulation and experimental results illustrate that coulomb interactions need to be complemented with consideration of other entropic forces, mediated by van der Waals interactions and hydrogen bonding

  5. Coulomb Effects in Few-Body Reactions

    Directory of Open Access Journals (Sweden)

    Deltuva A.

    2010-04-01

    Full Text Available The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the momentum-space description of three- and four-body nuclear reactions. The necessity for the renormalization of the scattering amplitudes and the reliability of the method is demonstrated. The Coulomb effect on observables is discussed.

  6. A study of the Coulomb stress and seismicity rate changes induced by the 2008 Mw 7.9 Wenchuan earthquake, SW China

    Science.gov (United States)

    Hu, Junhua; Fu, Li-Yun; Sun, Weijia; Zhang, Yan

    2017-03-01

    Correlations between the calculated Coulomb stress changes and observed seismicity rate changes after the Wenchuan earthquake are investigated in this article. Three improvements are made in the calculation of static stress change, including employing a dislocation method with triangular elements rather than traditional rectangular elements, setting up a more realistic source-slip model and a more complete receiver fault model, and resolving stress changes on assumed receiver faults with spatially variable focal mechanisms based on well-determined focal mechanisms at different calculation points. The recorded aftershocks are mapped for comparison with the spatial distribution of stress changes. The results indicate that the Wenchuan earthquake encourages not only three major fault systems (the East Kunlun, south of Xianshuihe and west of Qinling Southern Frontal) but also several other regions including Tazang, north of Min Jiang, north of Pingwu-Qingchuan and west of Chongqing. In particular, the eastern segment of Longriba is shown to be quite dangerous with dramatic stress increase. The influence of depth and frictional coefficient is analyzed. The depth of calculation beyond the depth range of the source model will make a significant difference to the stress-change map and thus cannot be neglected. Many aftershocks occurring in the stress shadow zone near the main rupture can be attributed to dynamic stress triggering and the fractal structure of the main fault. The observed seismicity rate changes are compared with the static stress changes. The results show that high background seismicity rates will amplify the effect of stress change. The observed seismicity rate changes support the forecast rate of 10-year seismicity after the Wenchuan earthquake based on the rate- and state-dependent friction model. Coulomb stresses increase on the focal mechanisms away from the main rupture, which demonstrates the influence of the Wenchuan earthquake over a wide range

  7. Effect of Coulomb interactions and Hartree-Fock exchange on structural, elastic, optoelectronic and magnetic properties of Co2MnSi Heusler: A comparative study

    Science.gov (United States)

    Lantri, T.; Bentata, S.; Bouadjemi, B.; Benstaali, W.; Bouhafs, B.; Abbad, A.; Zitouni, A.

    2016-12-01

    Using the first-principle calculations, we have investigated the structural, elastic, optoelectronic and magnetic properties of Co2MnSi Heusler alloy. Based on the density functional theory (DFT) and hiring the full-potential linearized augmented plane wave (FP-LAPW) method, we have used five approaches: the Hybrid on-site exact exchange, the Local Spin Density Approximation (LSDA), the LSDA+U, the Generalized Gradient Approximation GGA and GGA+U; where the Hubbard on-site Coulomb interaction correction U is calculated by constraint local density approximation for Co and Mn atoms. Our results show that the highly-ordered Co2MnSi alloy is a ductile, stiff and anisotropic material. It has a half-metallic ferromagnetic character with an integer magnetic moment of 5 μB which is in good agreement with the Slater-Pauling rule.

  8. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. II. Coulomb interaction effects in single conjugated polymer chains

    Science.gov (United States)

    Miranda, R. P.; Fisher, A. J.; Stella, L.; Horsfield, A. P.

    2011-06-01

    Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed.

  9. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    Science.gov (United States)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  10. Coulomb drag in quantum circuits

    OpenAIRE

    Levchenko, Alex; Kamenev, Alex

    2008-01-01

    We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the non-linear regime the drag current is proportional to the shot noise of the driving circuit,...

  11. Smooth models for the Coulomb potential

    CERN Document Server

    González-Espinoza, Cristina E; Karwowski, Jacek; Savin, Andreas

    2016-01-01

    Smooth model potentials with parameters selected to reproduce the spectrum of one-electron atoms are used to approximate the singular Coulomb potential. Even when the potentials do not mimic the Coulomb singularity, much of the spectrum is reproduced within the chemical accuracy. For the Hydrogen atom, the smooth approximations to the Coulomb potential are more accurate for higher angular momentum states. The transferability of the model potentials from an attractive interaction (Hydrogen atom) to a repulsive one (Harmonium and the uniform electron gas) is discussed.

  12. On the classical description of the recombination of dark matter particles with a Coulomb-like interaction

    Science.gov (United States)

    Belotsky, K. M.; Esipova, E. A.; Kirillov, A. A.

    2016-10-01

    Cold dark matter (DM) scenario may be cured of several problems by involving self-interaction of dark matter. Viability of the models of long-range interacting DM crucially depends on the effectiveness of recombination of the DM particles, making thereby their interaction short-range. Usually in numeric calculations, recombination is described by cross section obtained on a feasible quantum level. However in a wide range of parameter values, a classical treatment, where the particles are bound due to dipole radiation, is applicable. The cross sections, obtained in both approaches, are very different and lead to diverse consequences. Classical cross section has a steeper dependence on relative velocity, what leads to the fact that, after decoupling of DM particles from thermal background of "dark photons" (carriers of DM long-range interaction), recombination process does not "freeze out", diminishing gradually density of unbound DM particles. Our simplified estimates show, that at the taken parameter values (the mass of DM particle is 100 GeV, interaction constant is 100-1, and quite natural assumptions on initial conditions, from which the result is very weakly dependent) the difference in residual density reaches about 5 orders of magnitude on pre-galactic stage. This estimate takes into account thermal effects induced by dipole radiation and recombination, which resulted in the increase of both temperature and density of DM particles by a half order of magnitude.

  13. Coulomb Thrusting Application Study

    Science.gov (United States)

    2006-01-20

    this formation about the orbit radial direction. From this point on- wards, this will be referred to as the Coulomb tether regulation problem . These...m2 m2 (6.13) For the Coulomb tether regulation problem , L is taken as a sum of a constant reference length Lref and a small varying length δL...be noted that in the Coulomb tether regulation problem Lref is constant and the dif- ferential equation given in Eq. (6.13) is lin- earized by

  14. Multinucleon transfer in the interaction of /sup 58/Ni with /sup 124/Sn around the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, I.; Lunardi, S.; Morando, M.; Signorini, C. (Padua Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Padua (Italy)); Fortuna, G.; Starzecki, W.; Stefanini, A.M. (Istituto Nazionale di Fisica Nucleare, Padua (Italy). Lab. di Legnaro); Korschinek, G.; Morinaga, H.

    1982-02-06

    Relative cross-sections for 1, 2, 3, (4, 5) neutron pick-up from a /sup 124/Sn target were measured at THETAsub(l)sub(a)sub(b)=70/sup 0/ with a /sup 58/Ni beam energy of 249 MeV; pairing correlations in the two interacting nuclei and kinematical effects strongly affect the cross-sections; the possibility of observing coherent multipair transfer is discussed.

  15. Effect of Coulomb interactions and Hartree-Fock exchange on structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lantri, T. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bentata, S., E-mail: sam_bentata@yahoo.com [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouadjemi, B.; Benstaali, W. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Abbad, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Zitouni, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria)

    2016-12-01

    Using the first-principle calculations, we have investigated the structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler alloy. Based on the density functional theory (DFT) and hiring the full-potential linearized augmented plane wave (FP-LAPW) method, we have used five approaches: the Hybrid on-site exact exchange, the Local Spin Density Approximation (LSDA), the LSDA+U, the Generalized Gradient Approximation GGA and GGA+U; where the Hubbard on-site Coulomb interaction correction U is calculated by constraint local density approximation for Co and Mn atoms. Our results show that the highly-ordered Co{sub 2}MnSi alloy is a ductile, stiff and anisotropic material. It has a half-metallic ferromagnetic character with an integer magnetic moment of 5 µB which is in good agreement with the Slater-Pauling rule. - Highlights: • Each approach gives a half magnetic compound. • EECE gives the largest gap. • Elastic properties show a stiff, ductile and anisotropic material. • Electronic properties are similar for the five approaches. • Total magnetic moment is the same for the five approaches (5 µB).

  16. A Study of the Crystallizations Possible on the Surface of a Spherical Droplet Using Coulomb Interactions Between Point Charges

    Science.gov (United States)

    1990-01-01

    This report may not be cited for purposes of advertisement. Reproduction of this document in whole or in part is prohibited except with permission of...at least part of a hemisphere. Examples of this are shown for N 26 and N - 99 in Figure 7. We have come across several cases where there are two or...expanding in theta we find 41 - 2/N!/2 The interaction energy which is to be subtracted is then U2 - 2TT* Integrall 0 (Phi*Sigma d&) where Phi is the

  17. Coulomb screening in linear coasting nucleosynthesis

    CERN Document Server

    Singh, Parminder

    2015-01-01

    We investigate the impact of coulomb screening on primordial nucleosynthesis in a universe having scale factor that evolves linearly with time. Coulomb screening affects primordial nucleosynthesis via enhancement of thermonuclear reaction rates. This enhancement is determined by the solving Poisson equation within the context of mean field theory (under appropriate conditions during the primordial nucleosynthesis). Using these results, we claim that the mean field estimates of coulomb screening hardly affect the predicted element abundances and nucleosynthesis parameters$, \\{\\eta_9,\\xi_e\\}$. The deviations from mean field estimates are also studied in detail by boosting genuine screening results with the screening parameter ($\\omega_s$). These deviations show negligible effect on the element abundances and on nucleosynthesis parameters. This work thus rules out the coulomb screening effects on primordial nucleosynthesis in slow evolving models and confirms that constraints in ref.[7] on nucleosynthesis parame...

  18. On the Coulomb corrections to the total cross section of the interaction of the $\\pi^{+}\\pi^{-}$ atom with ordinary atoms at high energy

    CERN Document Server

    Ivanov, D Yu

    1999-01-01

    The size of $\\pi^+\\pi^-$ atom in the low lying states is considerably smaller than the radius of atomic screening. Due to that we can neglect this screening calculating the contribution of multi-photon exchanges. We obtain the analytic formula for Coulomb corrections which works with a very good accuracy for the ground state of $\\pi^+\\pi^-$ atom.

  19. New approach to folding with the Coulomb wave function

    Energy Technology Data Exchange (ETDEWEB)

    Blokhintsev, L. D.; Savin, D. A. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Kadyrov, A. S. [Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, GPO Box U1987, Perth 6845 (Australia); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A and M University, College Station, Texas 77843 (United States)

    2015-05-15

    Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.

  20. Holographic Hadronization and Thermal Hadron Emission Rate in $\\mathcal{N}=4$ super Yang-Mills Plasma on the Coulomb Branch

    CERN Document Server

    Mamo, Kiminad A

    2016-01-01

    We study $\\mathcal{N} = 4$ super Yang-Mills theory on the Coulomb branch (cSYM) in the strong coupling limit by using the AdS/CFT correspondence. The dual geometry is the rotating black 3-brane Type IIB supergravity solution with a single non-zero rotation parameter $r_{0}$ which sets a fixed mass scale corresponding to the scalar condensate $\\,\\,\\sim r_{0}^4$ in the coulomb branch. We introduce a new ensemble where $T$ and $r_{0}$ are held fixed, and show that $r_{0}$ plays a similar role as $\\Lambda_{QCD}$. We compute the equation of state (EoS) of $\\mathcal{N} = 4$ cSYM at finite $T$, as well as the heavy quark-antiquark potential and the quantized mass spectrums of the scalar and spin-2 glueballs at $T=0$. By computing the Wilson loop (minimal surface) at $T=0$, we determine the heavy quark-antiquark potential $V(L)$ to be Cornell potential. At $T\

  1. Coulomb gauge ghost propagator and the Coulomb form factor

    CERN Document Server

    Quandt, M; Chimchinda, S; Reinhardt, H

    2008-01-01

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0--propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0-propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  2. Coulomb gauge ghost propagator and the Coulomb form factor

    Science.gov (United States)

    Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  3. Effect of coulomb interaction on Anderson localization; Effet de l'interaction coulombienne sur la localisation d'Anderson dans des systemes de basses dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Waintal, X

    1999-09-10

    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part,one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  4. Traceable Coulomb Blockade Thermometry

    CERN Document Server

    Hahtela, Ossi; Kemppinen, Antti; Meschke, Matthias; Prunnila, Mika; Gunnarsson, David; Roschier, Leif; Penttila, Jari; Pekola, Jukka

    2016-01-01

    We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods, the numerical fitting of the full conductance curve and measuring the height of the conductance dip yield almost identical results. The complete uncertainty analysis shows that the relative expanded uncertainty (k = 2) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 1 %. A good agreement within the measurement uncertainty is experimentally demonstrated between the Coulomb blockade thermometer and a superconducting reference point device that has been directly calibrated against the Provisional Low Temperature Scale of 2000.

  5. On the decoupling between classical Coulomb matter and radiation

    Science.gov (United States)

    Alastuey, Angel; Appel, Walter

    2000-02-01

    We consider a model of matter coupled to radiation at equilibrium. Matter is described by a one-component plasma of classical point charges with Coulomb interactions, while radiation is represented by the classical transverse potential vector in Coulomb gauge. Using a straightforward generalization of the Bohr-van Leeuwen theorem, we show that the equilibrium properties of classical Coulomb matter remain unaffected by the presence of the classical radiation. As far as the real world is concerned, this decoupling does survive at large distances where both matter and radiation can be treated classically. This invalidates all the large-distances predictions, for the charge correlations, of the so-called Darwin models which incorporate retarded electromagnetic interactions beyond the instantaneous Coulomb potential. A second related important consequence is that the first relativistic corrections to the Coulomb thermodynamical quantities must be evaluated within the theory of quantum electrodynamics at finite temperature, even in a weakly relativistic and almost classical regime for matter.

  6. Coulomb drag between helical Luttinger liquids

    Science.gov (United States)

    Kainaris, N.; Gornyi, I. V.; Levchenko, A.; Polyakov, D. G.

    2017-01-01

    We theoretically study Coulomb drag between two helical edges with broken spin-rotational symmetry, such as would occur in two capacitively coupled quantum spin Hall insulators. For the helical edges, Coulomb drag is particularly interesting because it specifically probes the inelastic interactions that break the conductance quantization for a single edge. Using the kinetic equation formalism, supplemented by bosonization, we find that the drag resistivity ρD exhibits a nonmonotonic dependence on the temperature T . In the limit of low T ,ρD vanishes with decreasing T as a power law if intraedge interactions are not too strong. This is in stark contrast to Coulomb drag in conventional quantum wires, where ρD diverges at T →0 irrespective of the strength of repulsive interactions. Another unusual property of Coulomb drag between the helical edges concerns higher T for which, unlike in the Luttinger liquid model, drag is mediated by plasmons. The special type of plasmon-mediated drag can be viewed as a distinguishing feature of the helical liquid—because it requires peculiar umklapp scattering only available in the presence of a Dirac point in the electron spectrum.

  7. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    Science.gov (United States)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  8. The Coulomb Green's function

    Science.gov (United States)

    Lieber, Michael

    1989-06-01

    It is something of a miracle that the nonrelativistic Schrodinger equation with a Coulomb potential can be solved for the wavefunction in exact analytic form. Even more miraculous is the result of Schwinger which enables the Green's function to be solved in closed form, for this is in effect, an infinite sum of wavefunction products. In the relativistic case too the wavefunction can be found in closed form, but as yet no such result for the Green's function has been found. This lecture provides a brief overview of the situation with an emphasis on the ``hidden symmetry'' which underlies the nonrelativisitic problem and its degenerate form which carries over to the relativistic case.

  9. Reply to `Extended Rejoinder to "Extended Comment on "One-Range Addition Theorems for Coulomb Interaction Potential and Its Derivatives" by I. I. Guseinov (Chem. Phys. Vol. 309 (2005), pp. 209 - 211)", arXiv:0706.0975v2"

    CERN Document Server

    Weniger, Ernst Joachim

    2007-01-01

    In the years from 2001 to 2006, Guseinov and his coworkers published 40 articles on the derivation and application of one-range addition theorems. In E. J. Weniger, Extended Comment on ``One-Range Addition Theorems for Coulomb Interaction Potential and Its Derivatives'' by I. I. Guseinov (Chem. Phys. Vol. 309 (2005), pp. 209 - 213), arXiv:0704.1088v2 [math-ph], it was argued that Guseinov's treatment of one-range addition theorems is at best questionable and in some cases fundamentally flawed. In I. I. Guseinov, Extended Rejoinder to "Extended Comment on "One-Range Addition Theorems for Coulomb Interaction Potential and Its Derivatives'' by I. I. Guseinov (Chem. Phys. and Vol. 309 (2005)'', pp. 209-213), arXiv:0706.0975v2 [physics.chem-ph], these claims were disputed. To clarify the situation, the most serious mathematical flaws in Guseinov's treatment of one-range addition theorems are discussed in more depth.

  10. Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory.

    Science.gov (United States)

    Abram, M; Zegrodnik, M; Spałek, J

    2017-09-13

    In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.

  11. Role of electronic correlation in high-low temperature phase transition of hexagonal nickel sulfide: a comparative density functional theory study with and without correction for on-site Coulomb interaction.

    Science.gov (United States)

    Zhang, Wei-Bing; Li, Jie; Tang, Bi-Yu

    2013-06-28

    The structural, electronic, magnetic, and elastic properties of hexagonal nickel sulfide (NiS) have been investigated comparatively by Density Functional theory (DFT) and DFT plus correction for on-site Coulomb interaction (DFT+U), in which two different exchange correlation functionals local density approximations (LDA) and general gradient approximations (GGA) in the form of Perdew-Burke-Ernzerhof (PBE) are used. Our results indicate LDA and PBE methods predict hexagonal NiS to be a paramagnetic metal whereas LDA(PBE)+U calculations with reasonable on-site Coulomb interaction energy give the antiferromagnetic insulating state of low temperature hexagonal NiS successfully. Meanwhile, compared with LDA(PBE) results, LDA(PBE)+U methods give larger lattice parameters, crystal volume, and shear constant c44, consistent with the experimental picture during high-low temperature phase transition of hexagonal NiS, in which an increase of the shear constant c44 and lattice parameters were found in the low-temperature antiferromagnetic phase. The present DFT and DFT+U calculations provide a reasonable description for the properties of high temperature and low temperature hexagonal NiS respectively, which indicates that electronic correlation is responsible for this high-low temperature phase transition.

  12. Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory

    Science.gov (United States)

    Abram, M.; Zegrodnik, M.; Spałek, J.

    2017-09-01

    In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.

  13. Coulomb collision effects on linear Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J. D., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison, Wisconsin 53706-1609 (United States)

    2014-05-15

    Coulomb collisions at rate ν produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ν{sub eff} ≫ ν and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t ≳ 1/ν{sub eff} during Landau damping of a small amplitude Langmuir wave.

  14. Traceable Coulomb blockade thermometry

    Science.gov (United States)

    Hahtela, O.; Mykkänen, E.; Kemppinen, A.; Meschke, M.; Prunnila, M.; Gunnarsson, D.; Roschier, L.; Penttilä, J.; Pekola, J.

    2017-02-01

    We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods are demonstrated: numerical fitting of the full conductance curve and measuring the height of the conductance dip. The complete uncertainty analysis shows that using either analysis method the relative combined standard uncertainty (k  =  1) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 0.5%. In this temperature range, both analysis methods produced temperature estimates that deviated from 0.39% to 0.67% from the reference temperatures provided by a superconducting reference point device calibrated against the Provisional Low Temperature Scale of 2000.

  15. Classical and quantum Coulomb crystals

    CERN Document Server

    Bonitz, M; Baumgartner, H; Henning, C; Filinov, A; Block, D; Arp, O; Piel, A; Kading, S; Ivanov, Y; Melzer, A; Fehske, H; Filinov, V

    2008-01-01

    Strong correlation effects in classical and quantum plasmas are discussed. In particular, Coulomb (Wigner) crystallization phenomena are reviewed focusing on one-component non-neutral plasmas in traps and on macroscopic two-component neutral plasmas. The conditions for crystal formation in terms of critical values of the coupling parameters and the distance fluctuations and the phase diagram of Coulomb crystals are discussed.

  16. Coulomb blockade and Coulomb staircase behavior observed at room temperature

    Science.gov (United States)

    Uky Vivitasari, Pipit; Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2017-02-01

    A single-electron transistor (SET) consists of source, drain, Coulomb island, and gate to modulate the number of electrons and control the current. For practical applications, it is important to operate a SET at room temperature. One proposal towards the ability to operate at room temperature is to decrease Coulomb island size down to a few nanometres. We investigate a SET using Sn-porphyrin (Sn-por) protected gold nanoparticles (AuNPs) with 1.4 nm in core diameter as a Coulomb island. The fabrication method of nanogap electrodes uses the combination of a top-down technique by electron beam lithography (EBL) and a bottom-up process through electroless gold plating (ELGP) as our group have described before. The electrical measurement was conducted at room temperature (300 K). From current-voltage (I d-V d) characteristics, we obtained clear Coulomb blockade phenomena together with a Coulomb staircase due to a Sn-por protected gold NP as a Coulomb island. Experimental results of I d-V d characteristics agree with a theoretical curve based on using the orthodox model. Clear dI d/dV d peaks are observed in the Coulomb staircase at 9 K which suggest the electron transports through excited energy levels of Au NPs. These results are a big step for obtaining SETs that can operate at room temperature.

  17. Momentum-space treatment of Coulomb distortions in a multiple-scattering expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, C.R. (Physics Department, Lawrence Livermore National Laboratory, Livermore, California (USA)); Elster, C. (Department of Physics, Ohio State University, Columbus, Ohio (USA)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, New Mexico (USA) Department of Physics, Case Western Reserve University, Cleveland, Ohio (USA))

    1991-10-01

    The momentum-space treatment of the Coulomb interaction within the framework of the Watson multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excitations and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to be the sum of the convolutions of a two-body nucleon-nucleon {ital t} matrix with the nuclear density and the point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact and numerically stable procedure. Elastic-scattering observables are presented for {sup 16}O, {sup 40}Ca, and {sup 208}Pb at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb interaction. The interference of nonlocality effects in the nuclear optical potential with different treatments of the Coulomb interaction is investigated.

  18. Momentum-space treatment of Coulomb distortions in a multiple-scattering expansion

    Science.gov (United States)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.

    1991-10-01

    The momentum-space treatment of the Coulomb interaction within the framework of the Watson multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excitations and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to be the sum of the convolutions of a two-body nucleon-nucleon t matrix with the nuclear density and the point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact and numerically stable procedure. Elastic-scattering observables are presented for 16O, 40Ca, and 208Pb at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb interaction. The interference of nonlocality effects in the nuclear optical potential with different treatments of the Coulomb interaction is investigated.

  19. Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater—Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    F.Oner; R.A.Mamedoy

    2002-01-01

    Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of the average Coulomb interaction between two particles.Coulomb energy difference according to shell model of light mirror nuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions.In this study,using the one-center expansion of exponential-type wavefunctions in terms of Slater-type orbitals with the same center,we derived formula for Coulomb energy difference of light mirror nuclei.

  20. Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater-Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    F. Oner; B.A. Mainedov

    2002-01-01

    Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of theaverage Coulomb interaction between two particles. Coulomb energy difference according to shell model of light mirrornuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions. Inthis study, using the one-center expansion of exponential-type wavcfunctions in terms of Slater-type orbitals with thesame center, we derived formula for Coulomb energy difference of light mirror mulei.

  1. Coulomb dissociation of $^{20,21}$N

    CERN Document Server

    Röder, Marko; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J G; Burgunder, G; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A; Farinon, F; Fraile, Luis M; Freer, Martin; Freudenberger, M; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Diaz, Diego Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Bleis, Tudi Le; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Caro, Magdalena Mostazo; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S; Plag, Ralf; Prochazka, A; Rahaman, Md Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Saez, Jose Sanchez del Rio; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G; Wimmer, Christine; Winfield, J S; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role for the creation of chemical elements. Here, data from a Coulomb dissociation experiment on $^{20,21}$N are reported. Relativistic $^{20,21}$N ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ and $^{20}\\mathrm{N}(\\mathrm{n},\\gamma)^{21}\\mathrm{N}$ excitation functions and thermonuclear reaction rates have been determined. The $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ rate is up to a factor of 5 higher at $T<1$\\,GK with respect to previous theoretical calculations, leading to a 10\\,\\% decrease in the predicted fluorine abundance.

  2. Coulomb crystallization of highly charged ions.

    Science.gov (United States)

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  3. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  4. Sensory information and encounter rates of interacting species.

    Directory of Open Access Journals (Sweden)

    Andrew M Hein

    Full Text Available Most motile organisms use sensory cues when searching for resources, mates, or prey. The searcher measures sensory data and adjusts its search behavior based on those data. Yet, classical models of species encounter rates assume that searchers move independently of their targets. This assumption leads to the familiar mass action-like encounter rate kinetics typically used in modeling species interactions. Here we show that this common approach can mischaracterize encounter rate kinetics if searchers use sensory information to search actively for targets. We use the example of predator-prey interactions to illustrate that predators capable of long-distance directional sensing can encounter prey at a rate proportional to prey density to the [Formula: see text] power (where [Formula: see text] is the dimension of the environment when prey density is low. Similar anomalous encounter rate functions emerge even when predators pursue prey using only noisy, directionless signals. Thus, in both the high-information extreme of long-distance directional sensing, and the low-information extreme of noisy non-directional sensing, encounter rate kinetics differ qualitatively from those derived by classic theory of species interactions. Using a standard model of predator-prey population dynamics, we show that the new encounter rate kinetics derived here can change the outcome of species interactions. Our results demonstrate how the use of sensory information can alter the rates and outcomes of physical interactions in biological systems.

  5. Sensory information and encounter rates of interacting species.

    Science.gov (United States)

    Hein, Andrew M; McKinley, Scott A

    2013-01-01

    Most motile organisms use sensory cues when searching for resources, mates, or prey. The searcher measures sensory data and adjusts its search behavior based on those data. Yet, classical models of species encounter rates assume that searchers move independently of their targets. This assumption leads to the familiar mass action-like encounter rate kinetics typically used in modeling species interactions. Here we show that this common approach can mischaracterize encounter rate kinetics if searchers use sensory information to search actively for targets. We use the example of predator-prey interactions to illustrate that predators capable of long-distance directional sensing can encounter prey at a rate proportional to prey density to the [Formula: see text] power (where [Formula: see text] is the dimension of the environment) when prey density is low. Similar anomalous encounter rate functions emerge even when predators pursue prey using only noisy, directionless signals. Thus, in both the high-information extreme of long-distance directional sensing, and the low-information extreme of noisy non-directional sensing, encounter rate kinetics differ qualitatively from those derived by classic theory of species interactions. Using a standard model of predator-prey population dynamics, we show that the new encounter rate kinetics derived here can change the outcome of species interactions. Our results demonstrate how the use of sensory information can alter the rates and outcomes of physical interactions in biological systems.

  6. The Effects of Static Coulomb Stress Change on Southern California Earthquake Forecasting

    Science.gov (United States)

    Strader, Anne Elizabeth

    I investigate how inclusion of static Coulomb stress changes, caused by tectonic loading and previous seismicity, contributes to the effectiveness and reliability of prospective earthquake forecasts. Several studies have shown that positive static Coulomb stress changes are associated with increased seismicity, relative to stress shadows. However, it is difficult to avoid bias when the learning and testing intervals are chosen retrospectively. I hypothesize that earthquake forecasts based on static Coulomb stress fields may improve upon existing earthquake forecasts based on historical seismicity. Within southern California, I have confirmed the aforementioned relationship between earthquake location and Coulomb stress change, but found no identifiable triggering threshold based on static Coulomb stress history at individual earthquake locations. I have also converted static Coulomb stress changes into spatially-varying earthquake rates by optimizing an index function and calculating probabilities of cells containing at least one earthquake based on Coulomb stress ranges. Inclusion of Coulomb stress effects gives an improvement in earthquake forecasts that is significant with 95% confidence, compared to smoothed seismicity null forecasts. Because of large uncertainties in Coulomb stress calculations near faults (and aftershock distributions), I combine static Coulomb stress and smoothed seismicity into a hybrid earthquake forecast. Evaluating such forecasts against those in which only Coulomb stress or smoothed seismicity determines earthquake rates indicates that Coulomb stress is more effective in the far field, whereas statistical seismology outperforms Coulomb stress near faults. Additionally, I test effects of receiver plane orientation, stress type (normal and shear components), and declustering receiver earthquakes. While static Coulomb stress shows significant potential in a prospective earthquake forecast, simplifying assumptions compromise its

  7. NaFe0.56Cu0.44As : A Pnictide Insulating Phase Induced by On-Site Coulomb Interaction

    Science.gov (United States)

    Matt, C. E.; Xu, N.; Lv, Baiqing; Ma, Junzhang; Bisti, F.; Park, J.; Shang, T.; Cao, Chongde; Song, Yu; Nevidomskyy, Andriy H.; Dai, Pengcheng; Patthey, L.; Plumb, N. C.; Radovic, M.; Mesot, J.; Shi, M.

    2016-08-01

    In the studies of iron pnictides, a key question is whether their bad-metal state from which the superconductivity emerges lies in close proximity with a magnetically ordered insulating phase. Recently, it was found that at low temperatures, the heavily Cu-doped NaFe1 -xCuxAs (x >0.3 ) iron pnictide is an insulator with long-range antiferromagnetic order, similar to the parent compound of cuprates but distinct from all other iron pnictides. Using angle-resolved photoemission spectroscopy, we determined the momentum-resolved electronic structure of NaFe1 -xCuxAs (x =0.44 ) and identified that its ground state is a narrow-gap insulator. Combining the experimental results with density functional theory (DFT) and DFT +U calculations, our analysis reveals that the on-site Coulombic (Hubbard) and Hund's coupling energies play crucial roles in the formation of the band gap about the chemical potential. We propose that at finite temperatures, charge carriers are thermally excited from the Cu-As-like valence band into the conduction band, which is of Fe 3 d -like character. With increasing temperature, the number of electrons in the conduction band becomes larger and the hopping energy between Fe sites increases, and finally the long-range antiferromagnetic order is destroyed at T >TN . Our study provides a basis for investigating the evolution of the electronic structure of a Mott insulator transforming into a bad metallic phase and eventually forming a superconducting state in iron pnictides.

  8. Drug Interaction Alert Override Rates in the Meaningful Use Era

    Science.gov (United States)

    Bryant, A.D.; Fletcher, G.S.

    2014-01-01

    Summary Background Interruptive drug interaction alerts may reduce adverse drug events and are required for Stage I Meaningful Use attestation. For the last decade override rates have been very high. Despite their widespread use in commercial EHR systems, previously described interventions to improve alert frequency and acceptance have not been well studied. Objectives (1) To measure override rates of inpatient medication alerts within a commercial clinical decision support system, and assess the impact of local customization efforts. (2) To compare override rates between drug-drug interaction and drug-allergy interaction alerts, between attending and resident physicians, and between public and academic hospitals. (3) To measure the correlation between physicians’ individual alert quantities and override rates as an indicator of potential alert fatigue. Methods We retrospectively analyzed physician responses to drug-drug and drug-allergy interaction alerts, as generated by a common decision support product in a large teaching hospital system. Results (1) Over four days, 461 different physicians entered 18,354 medication orders, resulting in 2,455 visible alerts; 2,280 alerts (93%) were overridden. (2) The drug-drug alert override rate was 95.1%, statistically higher than the rate for drug-allergy alerts (90.9%) (p < 0.001). There was no significant difference in override rates between attendings and residents, or between hospitals. (3) Physicians saw a mean of 1.3 alerts per day, and the number of alerts per physician was not significantly correlated with override rate (R2 = 0.03, p = 0.41). Conclusions Despite intensive efforts to improve a commercial drug interaction alert system and to reduce alerting, override rates remain as high as reported over a decade ago. Alert fatigue does not seem to contribute. The results suggest the need to fundamentally question the premises of drug interaction alert systems. PMID:25298818

  9. Modeling of Kashmir Aftershock Decay Based on Static Coulomb Stress Changes and Laboratory-Derived Rate-and-State Dependent Friction Law

    Science.gov (United States)

    Javed, F.; Hainzl, S.; Aoudia, A.; Qaisar, M.

    2016-05-01

    We model the spatial and temporal evolution of October 8, 2005 Kashmir earthquake's aftershock activity using the rate-and-state dependent friction model incorporating uncertainties in computed coseismic stress perturbations. We estimated the best possible value for frictional resistance " Aσ n", background seismicity rate " r" and coefficient of stress variation "CV" using maximum log-likelihood method. For the whole Kashmir earthquake sequence, we measure a frictional resistance Aσ n ~ 0.0185 MPa, r ~ 20 M3.7+ events/year and CV = 0.94 ± 0.01. The spatial and temporal forecasted seismicity rate of modeled aftershocks fits well with the spatial and temporal distribution of observed aftershocks that occurred in the regions with positive static stress changes as well as in the apparent stress shadow region. To quantify the effect of secondary aftershock triggering, we have re-run the estimations for 100 stochastically declustered catalogs showing that the effect of aftershock-induced secondary stress changes is obviously minor compared to the overall uncertainties, and that the stress variability related to uncertain slip model inversions and receiver mechanisms remains the major factor to provide a reasonable data fit.

  10. The Interaction between Technical Currency Trading and Exchange Rate Fluctuations

    OpenAIRE

    Schulmeister, Stephan

    2005-01-01

    This paper examines the mutually reinforcing interactions between exchange rate dynamics and technical trading strategies. I first show that technical trading systems have been quite profitable during the floating rate period. This profitability stems from the successful exploitation of exchange-rate trends and not from taking winning positions relatively frequently. I then show that technical models exert an excess demand pressure on currency markets. When these models produce trading signal...

  11. Coulomb explosion of "hot spot"

    CERN Document Server

    Oreshkin, V I; Chaikovsky, S A; Artyomov, A P

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  12. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  13. MOLECULAR OPEN-SHELL CONFIGURATION-INTERACTION CALCULATIONS USING THE DIRAC-COULOMB HAMILTONIAN - THE F6-MANIFOLD OF AN EMBEDDED EUO69- CLUSTER

    NARCIS (Netherlands)

    VISSER, O; VISSCHER, L; AERTS, PJC; NIEUWPOORT, WC

    1992-01-01

    We present results of all-electron molecular relativistic (Hartree-Fock-Dirac) and nonrelativistic (Hartree-Fock) calculations followed by a complete open shell configuration interaction (COSCI) calculation on an EuO6(9-) cluster in a Ba2GdNbO6 crystal. The results include the calculated energies of

  14. MOLECULAR OPEN-SHELL CONFIGURATION-INTERACTION CALCULATIONS USING THE DIRAC-COULOMB HAMILTONIAN - THE F6-MANIFOLD OF AN EMBEDDED EUO69- CLUSTER

    NARCIS (Netherlands)

    VISSER, O; VISSCHER, L; AERTS, PJC; NIEUWPOORT, WC

    1992-01-01

    We present results of all-electron molecular relativistic (Hartree-Fock-Dirac) and nonrelativistic (Hartree-Fock) calculations followed by a complete open shell configuration interaction (COSCI) calculation on an EuO6(9-) cluster in a Ba2GdNbO6 crystal. The results include the calculated energies of

  15. Long-range Coulomb interactions in surface systems: a first-principles description within self-consistently combined GW and dynamical mean-field theory.

    Science.gov (United States)

    Hansmann, P; Ayral, T; Vaugier, L; Werner, P; Biermann, S

    2013-04-19

    Systems of adatoms on semiconductor surfaces display competing ground states and exotic spectral properties typical of two-dimensional correlated electron materials which are dominated by a complex interplay of spin and charge degrees of freedom. We report a fully ab initio derivation of low-energy Hamiltonians for the adatom systems Si(111):X, with X=Sn, Si, C, Pb, that we solve within self-consistently combined GW and dynamical mean-field theory. Calculated photoemission spectra are in agreement with available experimental data. We rationalize experimentally observed trends from Mott physics toward charge ordering along the series as resulting from substantial long-range interactions.

  16. Coulomb Corrections to the Parameters of the Landau-Pomeranchuk-Migdal Effect Theory and its Analogue

    CERN Document Server

    Kuraev, E A; Torosyan, H T

    2013-01-01

    Using the Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory we obtained analytically and numerically the Coulomb corrections to the quantities of the Migdal LPM effect theory. We showed that the Coulomb corrections to the spectral bremsstrahlung rate allow completely to eliminate the discrepancy between the predictions of the LPM effect theory and its measuremens and also additionally improve the agreement between predictions of the LPM effect theory analogue for a thin target and experimental data.

  17. Existence of the thermodynamic limit for disordered quantum Coulomb systems

    CERN Document Server

    Blanc, Xavier

    2012-01-01

    Following a recent method introduced by C. Hainzl, J.P. Solovej and the second author of this article, we prove the existence of the thermodynamic limit for a system made of quantum electrons, and classical nuclei whose positions and charges are randomly perturbed in an ergodic fashion. All the particles interact through Coulomb forces.

  18. Plasmon-mediated Coulomb drag between graphene waveguides

    DEFF Research Database (Denmark)

    Shylau, Artsem A.; Jauho, Antti-Pekka

    2014-01-01

    We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...

  19. Efros-Shklovskii Coulomb gap in the absence of disorder

    Science.gov (United States)

    Rademaker, Louk; Mahmoudian, Samiyeh; Ralko, Arnaud; Fratini, Simone; Dobrosavljevic, Vladimir

    2015-03-01

    Certain models of frustrated electron systems have been shown to self-generate glassy behavior, in the absence of disorder. Possible candidate materials contain quarter-filled triangular lattices with long-range Coulomb interactions, as found in the θ-family of organic BEDT-TTF crystals. In disordered insulators with localized electronic states, the so-called Coulomb glass, the single particle excitation spectrum displays the well-known Efros-Shklovskii gap. The same excitation spectrum is investigated in a class of models that display self-generated electronic glassiness, showing pseudogap formation related to the Efros-Shklovskii Coulomb gap. Our study suggests universal characteristics of all electron glasses, regardless of disorder.

  20. Elementary excitations and avalanches in the Coulomb glass

    Science.gov (United States)

    Palassini, Matteo; Goethe, Martin

    2012-07-01

    We study numerically the statistics of elementary excitations and charge avalanches in the classical Coulomb glass model of localized charges with unscreened Coulomb interaction and disorder. We compute the single-particle density of states with an energy minimization algorithm for systems of up to 1003 sites. The shape of the Coulomb gap is consistent with a power-law with exponent δ simeq 2.4 and marginally consistent with exponential behavior. The results are also compared with a recently proposed self-consistent approach. We then analyze the size distribution of the charge avalanches produced by a small perturbation of the system. We show that the distribution decays as a power law in the limit of large system size, and explain this behavior in terms of the elementary excitations. Similarities and differences with the scale-free avalanches observed in mean-field spin glasses are discussed.

  1. No confinement without Coulomb confinement

    CERN Document Server

    Zwanziger, D

    2003-01-01

    We compare the physical potential $V_D(R)$ of an external quark-antiquark pair in the representation $D$ of SU(N), to the color-Coulomb potential $V_{\\rm coul}(R)$ which is the instantaneous part of the 44-component of the gluon propagator in Coulomb gauge, $D_{44}(\\vx,t) = V_{\\rm coul}(|\\vx|) \\delta(t)$ + (non-instantaneous). We show that if $V_D(R)$ is confining, $\\lim_{R \\to \\infty}V_D(R) = + \\infty$, then the inequality $V_D(R) \\leq - C_D V_{\\rm coul}(R)$ holds asymptotically at large $R$, where $C_D > 0$ is the Casimir in the representation $D$. This implies that $ - V_{\\rm coul}(R)$ is also confining.

  2. Coulomb excitation of Ga-73

    NARCIS (Netherlands)

    Diriken, J.; Stefanescu, I.; Balabanski, D.; Blasi, N.; Blazhev, A.; Bree, N.; Cederkaell, J.; Cocolios, T. E.; Davinson, T.; Eberth, J.; Ekstrom, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Georgiev, G.; Gladnishki, K.; Huyse, M.; Ivanov, O. V.; Ivanov, V. S.; Iwanicki, J.; Jolie, J.; Konstantinopoulos, T.; Kroell, Th.; Kruecken, R.; Koester, U.; Lagoyannis, A.; Lo Bianco, G.; Maierbeck, P.; Marsh, B. A.; Napiorkowski, P.; Patronis, N.; Pauwels, D.; Reiter, P.; Seliverstov, M.; Sletten, G.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Walters, W. B.; Warr, N.; Wenander, F.; Wrzosek, K.

    2010-01-01

    The B(E2; I-i -> I-f) values for transitions in Ga-71(31)40 and Ga-73(31)42 were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of Ga-71,Ga-73 at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were dete

  3. Star formation rates and mass distributions in interacting galaxies

    CERN Document Server

    Kapferer, W; Schindler, S; Van Kampen, E

    2005-01-01

    We present a systematic investigation of the star formation rate (hereafter SFR) in interacting disk galaxies. We determine the dependence of the overall SFR on different spatial alignments and impact parameters of more than 50 different configurations in combined N-body/hydrodynamic simulations. We also show mass profiles of the baryonic components. We find that galaxy-galaxy interactions can enrich the surrounding intergalatic medium with metals very efficiently up to distances of several 100 kpc. This enrichment can be explained in terms of indirect processes like thermal driven galactic winds or direct processes like 'kinetic' spreading of baryonic matter. In the case of equal mass mergers the direct -kinetic- redistribution of gaseous matter (after 5 Gyr) is less efficient than the environmental enrichment of the same isolated galaxies by a galactic wind. In the case of non-equal mass mergers however, the direct -kinetic- process dominates the redistribution of gaseous matter. Compared to the isolated sy...

  4. CubeSat testing of Coulomb drag propulsion

    CERN Document Server

    Janhunen, Pekka; Toivanen, Petri; Rauhala, Timo; Haeggström, Edward; Grönland, Tor-Arne

    2016-01-01

    In Coulomb drag propulsion, a long high voltage tether or system of tethers gathers momentum from a natural plasma stream such as solar wind or ionospheric plasma ram flow. A positively polarised tether in the solar wind can be used for efficient general-purpose interplanetary propellantless propulsion (the electric solar wind sail or E-sail), whereas a negatively polarised tether in LEO can be used for efficient deorbiting of satellites (the plasma brake). Aalto-1 is a 3-U cubesat to be launched in May 2016. The satellite carries three scientific experiments including 100 m long Coulomb drag tether experiment. The tether is made of four 25 and 50 micrometre diameter aluminium wires that are ultrasonically bonded together every few centimetre intervals. The tether can be charged by an onboard voltage source up to one kilovolt positive and negative. The Coulomb drag is measured by monitoring the spin rate.

  5. Coulomb crystal mass spectrometry in a digital ion trap

    CERN Document Server

    Deb, Nabanita; Smith, Alexander D; Keller, Matthias; Rennick, Christopher J; Heazlewood, Brianna R; Softley, Timothy P

    2015-01-01

    We present a mass spectrometric technique for identifying the masses and relative abundances of Coulomb-crystallized ions held in a linear Paul trap. A digital radiofrequency waveform is employed to generate the trapping potential, as this can be cleanly switched off, and static dipolar fields subsequently applied to the trap electrodes for ion ejection. Excellent detection efficiency is demonstrated for Ca+ and CaF+ ions from bi-component Ca+/CaF+ Coulomb crystals prepared by reaction of Ca+ with CH3F. A quantitative linear relationship is observed between ion number and the corresponding integrated TOF peak, independent of the ionic species. The technique is applicable to a diverse range of multi-component Coulomb crystals - demonstrated here for Ca+/NH3+/NH4+ and Ca+/CaOH+/CaOD+ crystals - and will facilitate the measurement of ion-molecule reaction rates and branching ratios in complicated reaction systems.

  6. Modeling the intracellular pathogen-immune interaction with cure rate

    Science.gov (United States)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by

  7. Twin Interactions in Pure Ti Under High Strain Rate Compression

    Science.gov (United States)

    Zhou, Ping; Xiao, Dawu; Jiang, Chunli; Sang, Ge; Zou, Dongli

    2017-01-01

    Twin interactions associated with {11 overline{2} 1} (E2) twins in titanium deformed by high strain rate ( 2600 s-1) compression were studied using electron backscatter diffraction technique. Three types of twins, {10 overline{1} 2} (E1), {11 overline{2} 2} (C1), and {11 overline{2} 4} (C3), were observed to interact with the preformed E2 twins in four parent grains. The E1 variants nucleated at twin boundaries of some E2 variants. And the C3 twins were originated from the intersection of C1 and E2. The selection of twin variant was investigated by the Schmid factors (SFs) and the twinning shear displacement gradient tensors (DGTs) calculations. The results show that twin variants that did not follow the Schmid law were more frequently observed under high strain rate deformation than quasi-static deformation. Among these low-SF active variants, 73 pct (8 out of 11) can be interpreted by DGT. Besides, 26 variants that have SF values close to or higher than their active counterparts were absent. Factors that may affect the twin variant selections were discussed.

  8. Coulomb crystallization in classical and quantum systems

    Science.gov (United States)

    Bonitz, Michael

    2007-11-01

    Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter

  9. Distorted Coulomb field of the scattered electron

    CERN Document Server

    Thomsen, H D; Andersen, K K; Lund, M D; Knudsen, H; Uggerhøj, E; Uggerhøj1, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Ballestrero, S; Connell, S H

    2010-01-01

    Experimental results for the radiation emission from ultrarelativistic electrons in targets of 0.03%–5% radiation length is presented. For the thinnest targets, the radiation emission is in accordance with the Bethe-Heitler formulation of bremsstrahlung, the target acting as a single scatterer. In this regime, the radiation intensity is proportional to the thickness. As the thickness increases, the distorted Coulomb field of the electron that is the result of the first scattering events, leads to a suppressed radiation emission per interaction, upon subsequent scattering events. In that case, the radiation intensity becomes proportional to a logarithmic function of the thickness, due to the suppression. Eventually, once the target becomes sufficiently thick, the entire radiation process becomes influenced by multiple scattering and the radiation intensity is again proportional to the thickness, but with a different constant of proportionality. The observed logarithmic thickness dependence of radiation inten...

  10. Relativistic collision rate calculations for electron-air interactions

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G. [EG and G Energy Measurements, Inc., Los Alamos, NM (United States); Roussel-Dupre, R. [Los Alamos National Lab., NM (United States). Space Science and Technologies

    1992-12-16

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.

  11. Coulomb blockade effect simulation to the electrical characteristic of silicon based single electron transistor

    Science.gov (United States)

    Nugraha, Mohamad Insan; Darma, Yudi

    2012-06-01

    In this paper, we simulate the effect of interaction between electrons on the electrical characteristic of silicon based single electron transistor (SET). The interaction between electrons is defined in the term of Coulomb blockade effect. These electrical characteristics involve conductance and I-V characteristic in SET structure. The simulation results show that when Coulomb blockade effect is included, the characteristic of I-V and conductance in SET shift to right. In addition, by reducing the quantum dot size, Coulomb blockade effect contributes greater effect. These results are shown in the characteristic of I-V and conductance which shift greater to the right in smaller quantum dot.

  12. Effect of Coulomb Screening Length on Nuclear Pasta Simulations

    CERN Document Server

    Alcain, P N; Nichols, J I; Dorso, C O

    2013-01-01

    We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in conditions according to those in a neutron star's crust. Calculations were made with a semi-classical molecular dynamics model, studying isospin symmetric matter at sub-saturation densities and low temperatures. The electrostatic interaction between protons interaction is included in the form of a screened Coulomb potential in the spirit of the Thomas-Fermi approximation, but the screening length is artificially varied to explore its effect on the formation of the non-homogeneous nuclear structures known as ``nuclear pasta''. As the screening length increases, we can a transition from a one-per-cell pasta regime (due exclusively to finite size effects) to a more appealing multiple pasta per simulation box. This shows qualitative difference in the structure of neutron star matter at low temperatures, and therefore, special caution should be taken when the screening length is estimated for numerical simulat...

  13. Confining Dyon-Anti-Dyon Coulomb Liquid Model I

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2015-01-01

    We revisit the dyon-anti-dyon liquid model for the Yang-Mills confining vacuum discussed by Diakonov and Petrov, by retaining the effects of the classical interactions mediated by the streamline between the dyons and anti-dyons. In the SU(2) case the model describes a 4-component strongly interacting Coulomb liquid in the center symmetric phase. We show that in the linearized screening approximation the streamline interactions yield Debye-Huckel type corrections to the bulk parameters such as the pressure and densities, but do not alter significantly the large distance behavior of the correlation functions in leading order. The static scalar and charged structure factors are consistent with a plasma of a dyon-anti-dyon liquid with a Coulomb parameter $\\Gamma_{D\\bar D}\\approx 1$ in the dyon-anti-dyon channel. Heavy quarks are still linearly confined and the large spatial Wilson loops still exhibit area laws in leading order.

  14. Reconstruction of interaction rate in Holographic dark energy

    CERN Document Server

    Mukherjee, Ankan

    2016-01-01

    The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for two different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernova data (SNe), baryon acoustic oscillation data (BAO) and the distance prior of cosmic microwave background (CMB) namely the CMB shift parameter data (CMBShift). The nature of the dark energy equation of state parameter has also been studied for the present models. The dark energy equation of state shows a phantom nature at present. Different information criteria and the Bayesian evidence, which have been invoked in the context of model selection, show that the these two models are at close proximity of each other.

  15. Strong-Field S-Matrix Theory With Coulomb-Volkov Final State in All Orders

    CERN Document Server

    Faisal, F H M

    2016-01-01

    Despite its long standing usefulness for the analysis of various processes in intense laser fields, it is well-known that the so-called strong-field KFR or SFA ansatz does not account for the final-state Coulomb interaction. Due to its importance for the ubiquitous ionisation process, numerous heuristic attempts have been made during the last several decades to account for the final state Coulomb interaction with in the SFA. Also to this end an ad hoc model with the so-called Coulomb-Volkov final state was introduced a long time ago. However, till now, no systematic strong-field S-matrix expansion using the Coulomb-Volkov final state could be found. Here we solve this long standing problem by determining the Coulomb-Volkov Hamiltonian, identifying the rest-interaction in the final state, and explicitly constructng the Coulomb-Volkov propagator (or Green's function). We employ them to derive the complete S-matrix series for the ionisation amplitude governed by the Coulomb-Volkov final state in all orders. The ...

  16. Elastic Coulomb breakup of 34Na

    Science.gov (United States)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  17. Coulomb dissociation of N-20,N-21

    NARCIS (Netherlands)

    Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Golubev, Pavel; Diaz, D. Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Bjorn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knoebel, Ronja; Kroell, Thorsten; Kruecken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; del Rio Saez, Jose Sanchez; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a

  18. Coulomb dissociation of N-20,N-21

    NARCIS (Netherlands)

    Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Golubev, Pavel; Diaz, D. Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Bjorn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knoebel, Ronja; Kroell, Thorsten; Kruecken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; del Rio Saez, Jose Sanchez; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a

  19. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations.

    Science.gov (United States)

    Dong, B; Ding, G H; Lei, X L

    2015-05-27

    A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime.

  20. Calcium interacts with temperature to influence Daphnia movement rates

    Science.gov (United States)

    Roszell, Jordan; Heyland, Andreas; Fryxell, John M.

    2016-01-01

    Predicting the ecological responses to climate change is particularly challenging, because organisms might be affected simultaneously by the synergistic effects of multiple environmental stressors. Global warming is often accompanied by declining calcium concentration in many freshwater ecosystems. Although there is growing evidence that these changes in water chemistry and thermal conditions can influence ecosystem dynamics, little information is currently available about how these synergistic environmental stressors could influence the behaviour of aquatic organisms. Here, we tested whether the combined effects of calcium and temperature affect movement parameters (average speed, mean turning frequency and mean-squared displacement) of the planktonic Daphnia magna, using a full factorial design and exposing Daphnia individuals to a range of realistic levels of temperature and calcium concentration. We found that movement increased with both temperature and calcium concentration, but temperature effects became considerably weaker when individuals were exposed to calcium levels close to survival limits documented for several Daphnia species, signalling a strong interaction effect. These results support the notion that changes in water chemistry might have as strong an effect as projected changes in temperature on movement rates of Daphnia, suggesting that even sublethal levels of calcium decline could have a considerable impact on the dynamics of freshwater ecosystems. PMID:28083097

  1. Photon deflection by a Coulomb field in noncommutative QED

    Energy Technology Data Exchange (ETDEWEB)

    Pires, C A de S [Departamento de FIsica, Universidade Federal da ParaIba, Caixa Postal 5008, 58059-970, Joao Pessoa, PB (Brazil)

    2004-12-01

    In noncommutative QED photons present self-interactions in the form of triple and quartic interactions. The triple interaction implies that, even though the photon is electrically neutral, it will deflect when in the presence of an electromagnetic field. If detected, such deflection would be undoubted evidence of noncommutative space-time. In this work we derive a general expression for the deflection of a photon by any electromagnetic field. As an application we consider the case of the deflection of a photon by an external static Coulomb field. (brief report)

  2. Photon deflection by a Coulomb field in noncommutative QED

    CERN Document Server

    De Pires, C A S

    2004-01-01

    In noncommutative QED photons present self-interactions in the form of triple and quartic interactions. The triple interaction implies that, even though the photon is electrically neutral, it will deflect when in the presence of an electromagnetic field. If detected, such deflection would be an undoubted signal of noncommutative space-time. In this work we derive the general expression for the deflection of a photon by any electromagnetic field. As an application we consider the case of the deflection of a photon by an external static Coulomb field.

  3. Coulomb string tension, asymptotic string tension, and the gluon chain

    Science.gov (United States)

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the nonperturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  4. Exchange effects in Coulomb quantum plasmas: Dispersion of waves in 2D and 3D mediums

    CERN Document Server

    Andreev, Pavel A

    2014-01-01

    We describe quantum hydrodynamic equations with the Coulomb exchange interaction for three and two dimensional plasmas. Explicit form of the force densities are derived. We present non-linear Schrodinger equations (NLSEs) for the Coulomb quantum plasmas with the exchange interaction. We show contribution of the exchange interaction in the dispersion of the Langmuir, and ion-acoustic waves. We consider influence of the spin polarization ratio on strength of the Coulomb exchange interaction. This is important since exchange interaction between particles with same spin direction and particles with opposite spin directions are different. At small particle concentrations $n_{0}>10^{25}cm^{-3}$ the Fermi pressure prevails over the exchange interaction for all polarizations. Similar picture we obtain for two dimensional quantum plasmas.

  5. Low-Temperature Kinetics and Dynamics with Coulomb Crystals

    Science.gov (United States)

    Heazlewood, Brianna R.; Softley, Timothy P.

    2015-04-01

    Coulomb crystals-as a source of translationally cold, highly localized ions-are being increasingly utilized in the investigation of ion-molecule reaction dynamics in the cold regime. To develop a fundamental understanding of ion-molecule reactions, and to challenge existing models that describe the rates, product branching ratios, and temperature dependence of such processes, investigators need to exercise full control over the experimental reaction parameters. This requires not only state selection of the reactants, but also control over the collision process (e.g., the collisional energy and angular momentum) and state-selective product detection. The combination of Coulomb crystals in ion traps with cold neutral-molecule sources is enabling the measurement of state-selective reaction rates in a diverse range of systems. With the development of appropriate product detection techniques, we are moving toward the ultimate goal of examining low-energy, state-to-state ion-molecule reaction dynamics.

  6. Large ion Coulomb crystals: A near-ideal medium for coupling optical cavity modes to matter

    DEFF Research Database (Denmark)

    Dantan, Aurélien; Albert, Magnus; Marler, Joan

    2009-01-01

    We present an investigation of the coherent coupling of various transverse field modes of an optical cavity to ion Coulomb crystals. The obtained experimental results, which include the demonstration of identical collective coupling rates for different transverse modes of a cavity field to ions...... in the same large Coulomb crystal, are in excellent agreement with theoretical predictions. The results furthermore suggest that Coulomb crystals in the future may serve as near-ideal media for high-fidelity multimode quantum information processing and communication purposes, including the generation...

  7. Glassy Dynamics in Geometrically Frustrated Coulomb Liquids without Disorder

    Science.gov (United States)

    Mahmoudian, Samiyeh; Rademaker, Louk; Ralko, Arnaud; Fratini, Simone; Dobrosavljević, Vladimir

    2015-07-01

    We show that introducing long-range Coulomb interactions immediately lifts the massive ground state degeneracy induced by geometric frustration for electrons on quarter-filled triangular lattices in the classical limit. Important consequences include the stabilization of a stripe-ordered crystalline (global) ground state, but also the emergence of very many low-lying metastable states with amorphous "stripe-glass" spatial structures. Melting of the stripe order thus leads to a frustrated Coulomb liquid at intermediate temperatures, showing remarkably slow (viscous) dynamics, with very long relaxation times growing in Arrhenius fashion upon cooling, as typical of strong glass formers. On shorter time scales, the system falls out of equilibrium and displays the aging phenomena characteristic of supercooled liquids above the glass transition. Our results show remarkable similarity with the recent observations of charge-glass behavior in ultraclean triangular organic materials of the θ -(BEDT -TTF )2 family.

  8. Back to epicycles - relativistic Coulomb systems in velocity space

    Science.gov (United States)

    Ben-Ya'acov, Uri

    2017-05-01

    The study of relativistic Coulomb systems in velocity space is prompted by the fact that the study of Newtonian Kepler/Coulomb systems in velocity space, although less familiar than the analytic solutions in ordinary space, provides a much simpler (also more elegant) method. The simplicity and elegance of the velocity-space method derives from the linearity of the velocity equation, which is the unique feature of 1/r interactions for Newtonian and relativistic systems alike. The various types of possible trajectories are presented, their properties deduced from the orbits in velocity space, accompanied with illustrations. In particular, it is found that the orbits traversed in the relativistic velocity space (which is hyperbolic (H 3) rather than Euclidean) are epicyclic - circles whose centres also rotate - thus the title. Dedicated to the memory of J. D. Bekenstein - physicist, teacher and human

  9. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  10. Femtosecond Studies Of Coulomb Explosion Utilizing Covariance Mapping

    CERN Document Server

    Card, D A

    2000-01-01

    The studies presented herein elucidate details of the Coulomb explosion event initiated through the interaction of molecular clusters with an intense femtosecond laser beam (≥1 PW/cm2). Clusters studied include ammonia, titanium-hydrocarbon, pyridine, and 7-azaindole. Covariance analysis is presented as a general technique to study the dynamical processes in clusters and to discern whether the fragmentation channels are competitive. Positive covariance determinations identify concerted processes such as the concomitant explosion of protonated cluster ions of asymmetrical size. Anti- covariance mapping is exploited to distinguish competitive reaction channels such as the production of highly charged nitrogen atoms formed at the expense of the protonated members of a cluster ion ensemble. This technique is exemplified in each cluster system studied. Kinetic energy analyses, from experiment and simulation, are presented to fully understand the Coulomb explosion event. A cutoff study strongly suggests that...

  11. Applicability of the molecular dynamics technique to a Coulomb plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.G.; Galeev, R.Kh.

    1993-09-01

    In the present work, we report the calculations of the local Lyapunov parameter which determines the nature of the motion for a system of n particles interacting according to Coulomb`s law. These calculations have been performed for the most probable states of a fully ionized plasma, and they were performed using a Microvax-3 computer with the NAG(FO2) program package for a plasma consisting of particles with the same mass and for a fully ionized hydrogen plasma. The particle coordinates were prescribed as a uniformly distributed set of random numbers obtained using the NAG(GO5) routine. Results for the Lyapunov parameter are presented, and it is shown that the values of the parameter increases sharply as a function of particle number up to n=100 and then saturate. This latter observation is attributed to shielding, related to Debye effects.

  12. Comments on Coulomb pairing in aromatic hydrocarbons

    CERN Document Server

    Huber, D L

    2013-01-01

    Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.

  13. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  14. Coulomb Distortion in the Inelastic Regime

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  15. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  16. Gaussian expansion approach to Coulomb breakup

    CERN Document Server

    Egami, T; Matsumoto, T; Iseri, Y; Kamimura, M; Yahiro, M

    2004-01-01

    An accurate treatment of Coulomb breakup reactions is presented by using both the Gaussian expansion method and the method of continuum discretized coupled channels. As $L^2$-type basis functions for describing Coulomb breakup processes, we take complex-range Gaussian functions, which form in good approximation a complete set in a large configuration space being important for the processes. Accuracy of the method is tested quantitatively for $^{8}{\\rm B}+^{58}$Ni scattering at 25.8 MeV.

  17. Structural phase transitions and topological defects in ion Coulomb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Albert-Einstein Allee-11, Ulm University, 89069 Ulm (Germany); Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Institute for Theoretical Physics, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram (Israel); Zurek, Wojciech H. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Campo, Adolfo del [Department of Physics, University of Massachusetts Boston, Boston, MA 02125 (United States); Mehlstäubler, Tanja E., E-mail: tanja.mehlstaeubler@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2015-03-01

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  18. Structural phase transitions and topological defects in ion Coulomb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Ulm Univ., Ulm (Germany); Burgermeister, Tobias [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keller, Jonas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Ulm Univ., Ulm, (Germany):Institute for Theoretical Physics, Ulm Univ.,Ulm, (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram (Israel); Zurek, Wojciech Hubert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); del Campo, Adolfo [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Physics; Mehlstaubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  19. Coulomb Traps and Charge Transport in Molecular Solids

    Science.gov (United States)

    Scher, Harvey

    2000-03-01

    A major result of experimental studies of a diverse assortment of disordered molecular solids is the observation of a common pattern in the charge transport properties. The transport ranges from charge transfer between molecules doped in an inert polymer to motion along the silicon backbone of polysilylenes. The pattern is the unusual combination of Poole Frenkel-like electric field dependence and non-Arrhenius temperature dependence of the mobility. The latter feature has been especially puzzling. We study the drift mobility of a molecular polaron in the presence of an applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. The key electric field and temperature dependencies of the mobility measurements are well reproduced by this model. Our conclusion is that this nearly universal transport behavior arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.

  20. Integrability and separation of variables in Calogero-Coulomb-Stark and two-center Calogero-Coulomb systems

    CERN Document Server

    Hakobyan, Tigran

    2015-01-01

    We define the integrable N-dimensional Calogero-Coulomb-Stark and two-center Calogero-Coulomb systems and construct their constants of motion via the Dunkl operators. Their Schroedinger equations decouple in parabolic and elliptic coordinates, respectively, into the set of three differential equations like for the Coulomb-Stark and two-center Coulomb problems.

  1. Binary interactions with high accretion rates onto main sequence stars

    Science.gov (United States)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  2. Entertainment Capture through Heart Rate Activity in Physical Interactive Playgrounds

    DEFF Research Database (Denmark)

    Yannakakis, Georgios; Hallam, John; Lund, Henrik Hautop

    2008-01-01

    that predict reported entertainment preferences given HR features. These models are expressed as artificial neural networks and are demonstrated and evaluated on two Playware games and two control tasks requiring physical activity. The best network is able to correctly match expressed preferences in 64......An approach for capturing and modeling individual entertainment (“fun”) preferences is applied to users of the innovative Playware playground, an interactive physical playground inspired by computer games, in this study. The goal is to construct, using representative statistics computed from...

  3. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.

    Science.gov (United States)

    Jackson, M I; Hiley, M J; Yeadon, M R

    2011-10-13

    In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2007-04-14

    The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine alpha-helix chains and three-dimensional diamond pieces.

  5. Interactions between distal speech rate, linguistic knowledge, and speech environment.

    Science.gov (United States)

    Morrill, Tuuli; Baese-Berk, Melissa; Heffner, Christopher; Dilley, Laura

    2015-10-01

    During lexical access, listeners use both signal-based and knowledge-based cues, and information from the linguistic context can affect the perception of acoustic speech information. Recent findings suggest that the various cues used in lexical access are implemented with flexibility and may be affected by information from the larger speech context. We conducted 2 experiments to examine effects of a signal-based cue (distal speech rate) and a knowledge-based cue (linguistic structure) on lexical perception. In Experiment 1, we manipulated distal speech rate in utterances where an acoustically ambiguous critical word was either obligatory for the utterance to be syntactically well formed (e.g., Conner knew that bread and butter (are) both in the pantry) or optional (e.g., Don must see the harbor (or) boats). In Experiment 2, we examined identical target utterances as in Experiment 1 but changed the distribution of linguistic structures in the fillers. The results of the 2 experiments demonstrate that speech rate and linguistic knowledge about critical word obligatoriness can both influence speech perception. In addition, it is possible to alter the strength of a signal-based cue by changing information in the speech environment. These results provide support for models of word segmentation that include flexible weighting of signal-based and knowledge-based cues.

  6. Interaction between Total Cost and Fill Rate: A Case Study

    Directory of Open Access Journals (Sweden)

    Liljana Ferbar Tratar

    2016-09-01

    Full Text Available Forecasting plays a central role in the efficient operation of a supply chain – i.e., the total costs and fill rate. As forecasts of demand are required on a regular basis for a very large number of products, the methods developed should be fast, flexible, user-friendly, and able to produce results that are reliable and easy to interpret by a manager. In this paper we show that the supply chain costs cannot be optimal if the forecasting method is treated separately from the inventory model. We analyse the performance of the joint optimization of the modified Holt-Winters forecasting method and a stock control policy and investigate the effect of different penalties for unsatisfied demand on the total cost and fill rate of the supply chain. From the results obtained with 1,428 real time series from M3-Competition we show that an essential reduction of supply chain costs and an increase of fill rate can be achieved if we use the joint model with the modified Holt-Winters method.

  7. Coulomb screening in graphene with topological defects

    Science.gov (United States)

    Chakraborty, Baishali; Gupta, Kumar S.; Sen, Siddhartha

    2015-06-01

    We analyze the screening of an external Coulomb charge in gapless graphene cone, which is taken as a prototype of a topological defect. In the subcritical regime, the induced charge is calculated using both the Green's function and the Friedel sum rule. The dependence of the polarization charge on the Coulomb strength obtained from the Green's function clearly shows the effect of the conical defect and indicates that the critical charge itself depends on the sample topology. Similar analysis using the Friedel sum rule indicates that the two results agree for low values of the Coulomb charge but differ for the higher strengths, especially in the presence of the conical defect. For a given subcritical charge, the transport cross-section has a higher value in the presence of the conical defect. In the supercritical regime we show that the coefficient of the power law tail of polarization charge density can be expressed as a summation of functions which vary log periodically with the distance from the Coulomb impurity. The period of variation depends on the conical defect. In the presence of the conical defect, the Fano resonances begin to appear in the transport cross-section for a lower value of the Coulomb charge. For both sub and supercritical regime we derive the dependence of LDOS on the conical defect. The effects of generalized boundary condition on the physical observables are also discussed.

  8. A practical calculational method for treating Coulomb scattering in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Elster, Ch. (Ohio Univ., Athens, OH (United States). Dept. of Physics and Astronomy); Liu, L.C. (Los Alamos National Lab., NM (United States)); Thaler, R.M. (Los Alamos National Lab., NM (United States) Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics)

    1993-12-01

    An exact and practical numerical procedure for treating the Coulomb interaction in momentum-space calculations of elastic scattering of charged particles is presented. The method is tested for various interactions over a wide charge, energy and angular momentum range and found to be accurate. (Author).

  9. Coulomb-influenced collisions in aerosols and dusty plasmas.

    Science.gov (United States)

    Gopalakrishnan, Ranganathan; Hogan, Christopher J

    2012-02-01

    In aerosol and dusty plasma systems, the behavior of suspended particles (grains) is often strongly influenced by collisions occurring between ions and particles, as well as between particles themselves. In determining the collision kernel or collision rate coefficient for such charged entities, complications arise in that the collision process can be completely described neither by continuum transport mechanics nor by free molecular (ballistic) mechanics; that is, collisions are transition regime processes. Further, both the thermal energy and the potential energy between colliding entities can strongly influence the collision rate and must be considered. Flux-matching theory, originally developed by Fuchs, is frequently applied for calculation of collision rate coefficients under these circumstances. However, recent work suggests that crucial assumptions in flux-matching theory are not appropriate to describe transition regime collisions in the presence of potential interactions. Here, we combine dimensional analysis and mean first passage time calculations to infer the collision kernel between dilute charged entities suspended in a light background gas at thermal equilibrium. The motion of colliding entities is described by a Langevin equation, and Coulombic interactions are considered. It is found that the dimensionless collision kernel for these conditions, H, is a function of the diffusive Knudsen number, Kn(D) (in contrast to the traditional Knudsen number), and the potential energy to thermal energy ratio, Ψ(E). For small and large Kn(D), it is found that the dimensionless collision kernels inferred from mean first passage time calculations collapse to the appropriate continuum and free molecular limiting forms, respectively. Further, for repulsive collisions (Ψ(E) negative) or attractive collisions with Ψ(E)0.5, it is found that flux-matching theory predictions substantially underestimate the collision kernel. We find that the collision process in this

  10. Hadronic correction to Coulomb potential between quarks and diquark structure

    Energy Technology Data Exchange (ETDEWEB)

    Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Xue-Qian, Li; Peng-Nian, Shen [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang [Nankai Univ., TJ (China). Dept. of Physics

    1997-07-01

    We have studied the hadronic correction from the background pion fields due to the chiral symmetry breaking to the Coulomb potential that governs the short-distance behavior of the interactions between the bound quarks. The background fields are associated with the constituent quark mass. We find a modified form which favors the diquark structure. We also roughly estimate an influence of this correction on the phase shifts in nucleon scattering and find that it may cause an extra middle range attraction between nucleons which is expected. (author) 17 refs., 4 figs.

  11. Interaction of Rate of Force Development and Duration of Rate in Isometric Force.

    Science.gov (United States)

    Siegel, Donald

    A study attempted to determine whether force and duration parameters are programmed in an interactive or independent fashion prior to executing ballistic type isometric contractions of graded intensities. Four adult females each performed 360 trials of producing ballistic type forces representing 25, 40, 55, and 75 percent of their maximal…

  12. Observation of ionic Coulomb blockade in nanopores

    Science.gov (United States)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  13. Leading order QCD in Coulomb gauge

    CERN Document Server

    Watson, Peter

    2011-01-01

    Coulomb gauge QCD in the first order formalism can be written in terms of a ghost-free, nonlocal action that ensures total color charge conservation via Gauss' law. Making an Ansatz whereby the nonlocal term (the Coulomb kernel) is replaced by its expectation value, the resulting Dyson-Schwinger equations can be derived. With a leading order truncation, these equations reduce to the gap equations for the static gluon and quark propagators obtained from a quasi-particle approximation to the canonical Hamiltonian approach. Moreover a connection to the heavy quark limit can be established, allowing an intuitive explanation for the charge constraint and infrared divergences.

  14. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    , such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  15. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  16. LDA+DMFT study of Ca{sub 2}RuO{sub 4} and Sr{sub 2}RuO{sub 4} using the full on-site Coulomb interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gorelov, Evgeny; Pavarini, Eva [Forschungszentrum Juelich, IFF, 52425 Juelich (Germany); Lichtenstein, Alexander I. [Institute of Theoretical Physics, University Hamburg, 20355 Hamburg (Germany)

    2009-07-01

    The Ca{sub 2-x}Sr{sub x}RuO{sub 4} layered ruthenates display a complex phase diagram. Whereas Sr{sub 2}RuO{sub 4} is a correlated metal, the progressive substitution Sr with Ca leads to a number of structural phase changes. Finally, Ca{sub 2}RuO{sub 4} exhibits Mott transition at T{approx}350 K. In this work we calculate the photoemission spectra of Sr{sub 2}RuO{sub 4} and study the temperature-induced Mott transition in Ca{sub 2}RuO{sub 4}. As a method we use the LDA+DMFT technique. First we construct a material-specific NMTO Wannier basis for the partially filled 4d t{sub 2g} bands and the corresponding three-band t{sub 2g} Hubbard Hamiltonian. Then we solve this model within the DMFT approximation retaining the full self-energy matrix and using the Continuous Time QMC impurity solver. This solver allow us to analyze the role played by the spin-flip terms of the on-site Coulomb vertex.

  17. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-09-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  18. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  19. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    Science.gov (United States)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-03-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancelation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude.

  20. Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method

    Science.gov (United States)

    Garrido, E.; Kievsky, A.; Viviani, M.

    2016-10-01

    In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the {S} -matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.

  1. Interatomic Coulombic decay in helium nanodroplets

    DEFF Research Database (Denmark)

    Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana

    2017-01-01

    Interatomic Coulombic decay (ICD) is induced in helium nanodroplets by photoexciting the n=2 excited state of He+ using XUV synchrotron radiation. By recording multiple-coincidence electron and ion images we find that ICD occurs in various locations at the droplet surface, inside the surface region...

  2. Coulomb Logarithm, Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-23

    Clog is a library of charged particle stopping powers and related Coulomb logarithm processes in a plasma. The stopping power is a particularly useful quantity for plasma physics, as it measures the energy loss of per unit length of charged particle as it traverses a plasma. Clog's primary stopping power is the BPS (Brown-Preston-Singleton) theory.

  3. Coulomb's Electrical Measurements. Experiment No. 14.

    Science.gov (United States)

    Devons, Samuel

    Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)

  4. Heart rate responses induced by acoustic tempo and its interaction with basal heart rate

    Science.gov (United States)

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2017-01-01

    Many studies have revealed the influences of music on the autonomic nervous system (ANS). Since previous studies focused on the effects of acoustic tempo on the ANS, and humans have their own physiological oscillations such as the heart rate (HR), the effects of acoustic tempo might depend on the HR. Here we show the relationship between HR elevation induced by acoustic tempo and individual basal HR. Since high tempo-induced HR elevation requires fast respiration, which is based on sympatho-respiratory coupling, we controlled the participants’ respiration at a faster rate (20 CPM) than usual (15 CPM). We found that sound stimuli with a faster tempo than the individual basal HR increased the HR. However, the HR increased following a gradual increase in the acoustic tempo only when the extent of the gradual increase in tempo was within a specific range (around + 2%/min). The HR did not follow the increase in acoustic tempo when the rate of the increase in the acoustic tempo exceeded 3% per minute. These results suggest that the effect of the sympatho-respiratory coupling underlying the HR elevation caused by a high acoustic tempo depends on the basal HR, and the strength and the temporal dynamics of the tempo. PMID:28266647

  5. Propagating Uncertainties from Source Model Estimations to Coulomb Stress Changes

    Science.gov (United States)

    Baumann, C.; Jonsson, S.; Woessner, J.

    2009-12-01

    changes from the 2500 computed ΔCFS-values at each grid node divided by the absolute mean. The CV is roughly constant in the far-field, however, varies strongly close to the source. Therefore, ΔCFS uncertainties in the near-field of the fault need to be evaluated separately from the far-field uncertainties. Third, we show that the ΔCFS uncertainties in regions of small absolute ΔCFS do not approximate a normal distribution where positive and negative ΔCFS are possible. In contrast, they do in regions of larger positive and negative absolute ΔCFS. Thus, assuming a normal distribution of uncertainties to improve the forecasting ability of models combining Coulomb stress change calculations with a rate & state friction model should be investigated thoroughly. Finally, we compared the occurrence of aftershocks to the ΔCFS mean value of all 2500 models and preliminary results show a positive correlation between occurrence and increased Coulomb failure stress change values.

  6. Sensor Craft Control Using Drone Craft with Coulomb Propulsion System

    OpenAIRE

    Joe, Hyunsik

    2005-01-01

    The Coulomb propulsion system has no exhaust plume impingement problem with neighboring spacecraft and does not contaminate their sensors because it requires essentially no propellant. It is suitable to close formation control on the order of dozens of meters. The Coulomb forces are internal forces of the formation and they influence all charged spacecraft at the same time. Highly nonlinear and strongly coupled equations of motion of Coulomb formation makes creating a Coulomb control method a...

  7. A simple dependence between protein evolution rate and the number of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Hirsh Aaron E

    2003-05-01

    Full Text Available Abstract Background It has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species. Results In contrast to a previous study that used an incomplete set of protein-protein interactions, we observed a highly significant correlation between number of interactions and evolutionary distance to either Candida albicans or Schizosaccharomyces pombe. This study differs from the previous one in that it includes all known protein interactions from S. cerevisiae, and a larger set of protein evolutionary rates. In both evolutionary comparisons, a simple monotonic relationship was found across the entire range of the number of protein-protein interactions. In agreement with our earlier findings, this relationship cannot be explained by the fact that proteins with many interactions tend to be important to yeast. The generality of these correlations in other kingdoms of life unfortunately cannot be addressed at this time, due to the incompleteness of protein-protein interaction data from organisms other than S. cerevisiae. Conclusions Protein-protein interactions tend to slow the rate at which proteins evolve. This may be due to structural constraints that must be met to maintain interactions, but more work is needed to definitively establish the mechanism(s behind the correlations we have observed.

  8. Coulombic amino group-metal bonding: adsorption of adenine on Cu110.

    Science.gov (United States)

    Preuss, M; Schmidt, W G; Bechstedt, F

    2005-06-17

    The interaction between molecular amino groups and metal surfaces is analyzed from first-principles calculations using the adsorption of adenine on Cu110 as a model case. The amino group nitrogens are found to adsorb on top of the surface copper atoms. However, the bonding clearly cannot be explained in terms of covalent interactions. Instead, we find it to be largely determined by mutual polarization and Coulomb interaction between substrate and adsorbate.

  9. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    DEFF Research Database (Denmark)

    Albert, Magnus; Dantan, Aurelien Romain; Drewsen, Michael

    2011-01-01

    nonlinear interactions, such as those based on electromagnetic induced transparency (EIT)2, 3, 4, 5, 6, 9, 10, 11, 12. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Changes from essentially full...

  10. Genetic Background, Maternal Age, and Interaction Effects Mediate Rates of Crossing Over in Drosophila melanogaster Females.

    Science.gov (United States)

    Hunter, Chad M; Robinson, Matthew C; Aylor, David L; Singh, Nadia D

    2016-05-03

    Meiotic recombination is a genetic process that is critical for proper chromosome segregation in many organisms. Despite being fundamental for organismal fitness, rates of crossing over vary greatly between taxa. Both genetic and environmental factors contribute to phenotypic variation in crossover frequency, as do genotype-environment interactions. Here, we test the hypothesis that maternal age influences rates of crossing over in a genotypic-specific manner. Using classical genetic techniques, we estimated rates of crossing over for individual Drosophila melanogaster females from five strains over their lifetime from a single mating event. We find that both age and genetic background significantly contribute to observed variation in recombination frequency, as do genotype-age interactions. We further find differences in the effect of age on recombination frequency in the two genomic regions surveyed. Our results highlight the complexity of recombination rate variation and reveal a new role of genotype by maternal age interactions in mediating recombination rate.

  11. Genetic Background, Maternal Age, and Interaction Effects Mediate Rates of Crossing Over in Drosophila melanogaster Females

    Directory of Open Access Journals (Sweden)

    Chad M. Hunter

    2016-05-01

    Full Text Available Meiotic recombination is a genetic process that is critical for proper chromosome segregation in many organisms. Despite being fundamental for organismal fitness, rates of crossing over vary greatly between taxa. Both genetic and environmental factors contribute to phenotypic variation in crossover frequency, as do genotype–environment interactions. Here, we test the hypothesis that maternal age influences rates of crossing over in a genotypic-specific manner. Using classical genetic techniques, we estimated rates of crossing over for individual Drosophila melanogaster females from five strains over their lifetime from a single mating event. We find that both age and genetic background significantly contribute to observed variation in recombination frequency, as do genotype–age interactions. We further find differences in the effect of age on recombination frequency in the two genomic regions surveyed. Our results highlight the complexity of recombination rate variation and reveal a new role of genotype by maternal age interactions in mediating recombination rate.

  12. On the Klein–Gordon oscillator subject to a Coulomb-type potential

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br; Furtado, C., E-mail: furtado@fisica.ufpb.br

    2015-04-15

    By introducing the scalar potential as modification in the mass term of the Klein–Gordon equation, the influence of a Coulomb-type potential on the Klein–Gordon oscillator is investigated. Relativistic bound states solutions are achieved to both attractive and repulsive Coulomb-type potentials and the arising of a quantum effect characterized by the dependence of angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system is shown. - Highlights: • Interaction between the Klein–Gordon oscillator and a modified mass term. • Relativistic bound states for both attractive and repulsive Coulomb-type potentials. • Dependence of the Klein–Gordon oscillator frequency on the quantum numbers. • Relativistic analogue of a position-dependent mass system.

  13. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    Science.gov (United States)

    Quan, Wei; Hao, Xiaolei; Chen, Yongju; Yu, Shaogang; Xu, Songpo; Wang, Yanlan; Sun, Renping; Lai, Xuanyang; Wu, Chengyin; Gong, Qihuang; He, Xiantu; Liu, Xiaojun; Chen, Jing

    2016-06-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  14. Photodetachment Microscope with Repulsive Coulomb Field

    CERN Document Server

    Golovinski, P A

    2011-01-01

    Investigation of electronic waves with high coherence in photodetachment of a negative ion gives a physical basis to develop the holographic electronic microscopy with high resolution. The interference pattern is considered in the framework of steady-state wave approach. In semiclassical approximation, an outgoing wave is described by the amplitude slowly varying along a trajectory. Quantum description of electron photodetachment from negative ion is formulated with the help of the inhomogeneous Schr\\"odinger equation. Its asymptotic solution is expressed in terms of the Green function that has exact expression for the homogeneous electric field and the Coulomb field. It is demonstrated that repulsive Coulomb field is effective for magnification of the interference pattern at a short distance from an ion. For the first time, as shown for this case, the interference pattern in asymptotic area can be calculated by means of global semiclassical approximation or, a little more roughly, by simple uniform field app...

  15. Non-linear conductivity in Coulomb glasses

    Energy Technology Data Exchange (ETDEWEB)

    Voje, A.; Bergli, J. [Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo (Norway); Ortuno, M.; Somoza, A.M. [Departamento de Fisica - CIOyN, Universidad de Murcia, Murcia 30.071 (Spain); Caravaca, M.

    2009-12-15

    We have studied the nonlinear conductivity of two-dimensional Coulomb glasses. We have used a Monte Carlo algorithm to simulate the dynamic of the system under an applied electric field E. We have compared results for two different models: a regular square lattice with only diagonal disorder and a random array of sites with diagonal and off-diagonal disorder. We have found that for moderate fields the logarithm of the conductivity is proportional to {radical}(E)/T{sup 2}, reproducing experimental results. We have also found that in the nonlinear regime the site occupancy in the Coulomb gap follows a Fermi-Dirac distribution with an effective temperature T{sub eff} higher than the phonon bath temperature T. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  17. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  18. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  19. Elastic Coulomb breakup of $^{34}$Na

    CERN Document Server

    Singh, G; Chatterjee, R

    2016-01-01

    Purpose : The aim of this paper is to study the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb to give us a core of $^{33}$Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of $^{34}$Na. Method : A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb at 100 MeV/u. The triple differential cross-section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum and angular distributions as well as the average momenta, along with the energy-angular distributions. Results : The total one neutron removal cross-section is calculated to test the possible ground state configurations of $^{34}$Na. The average momentum results along with energy-angular calculations indicate $^{34}$Na to ha...

  20. Drug interaction alert override rates in the Meaningful Use era: no evidence of progress.

    Science.gov (United States)

    Bryant, A D; Fletcher, G S; Payne, T H

    2014-01-01

    Interruptive drug interaction alerts may reduce adverse drug events and are required for Stage I Meaningful Use attestation. For the last decade override rates have been very high. Despite their widespread use in commercial EHR systems, previously described interventions to improve alert frequency and acceptance have not been well studied. (1) To measure override rates of inpatient medication alerts within a commercial clinical decision support system, and assess the impact of local customization efforts. (2) To compare override rates between drug-drug interaction and drug-allergy interaction alerts, between attending and resident physicians, and between public and academic hospitals. (3) To measure the correlation between physicians' individual alert quantities and override rates as an indicator of potential alert fatigue. We retrospectively analyzed physician responses to drug-drug and drug-allergy interaction alerts, as generated by a common decision support product in a large teaching hospital system. (1) Over four days, 461 different physicians entered 18,354 medication orders, resulting in 2,455 visible alerts; 2,280 alerts (93%) were overridden. (2) The drug-drug alert override rate was 95.1%, statistically higher than the rate for drug-allergy alerts (90.9%) (p < 0.001). There was no significant difference in override rates between attendings and residents, or between hospitals. (3) Physicians saw a mean of 1.3 alerts per day, and the number of alerts per physician was not significantly correlated with override rate (R2 = 0.03, p = 0.41). Despite intensive efforts to improve a commercial drug interaction alert system and to reduce alerting, override rates remain as high as reported over a decade ago. Alert fatigue does not seem to contribute. The results suggest the need to fundamentally question the premises of drug interaction alert systems.

  1. Global Star Formation Rates and Dust Emission Over the Galaxy Interaction Sequence

    CERN Document Server

    Lanz, Lauranne; Brassington, Nicola; Smith, Howard A; Ashby, Matthew L N; da Cunha, Elisabete; Fazio, Giovanni G; Hayward, Christopher C; Hernquist, Lars; Jonsson, Patrik

    2013-01-01

    We measured and modeled the spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFR), specific star formation rates (sSFR), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increase...

  2. Limit analysis and homogenization of porous materials with Mohr-Coulomb matrix. Part I: Theoretical formulation

    Science.gov (United States)

    Anoukou, K.; Pastor, F.; Dufrenoy, P.; Kondo, D.

    2016-06-01

    The present two-part study aims at investigating the specific effects of Mohr-Coulomb matrix on the strength of ductile porous materials by using a kinematic limit analysis approach. While in the Part II, static and kinematic bounds are numerically derived and used for validation purpose, the present Part I focuses on the theoretical formulation of a macroscopic strength criterion for porous Mohr-Coulomb materials. To this end, we consider a hollow sphere model with a rigid perfectly plastic Mohr-Coulomb matrix, subjected to axisymmetric uniform strain rate boundary conditions. Taking advantage of an appropriate family of three-parameter trial velocity fields accounting for the specific plastic deformation mechanisms of the Mohr-Coulomb matrix, we then provide a solution of the constrained minimization problem required for the determination of the macroscopic dissipation function. The macroscopic strength criterion is then obtained by means of the Lagrangian method combined with Karush-Kuhn-Tucker conditions. After a careful analysis and discussion of the plastic admissibility condition associated to the Mohr-Coulomb criterion, the above procedure leads to a parametric closed-form expression of the macroscopic strength criterion. The latter explicitly shows a dependence on the three stress invariants. In the special case of a friction angle equal to zero, the established criterion reduced to recently available results for porous Tresca materials. Finally, both effects of matrix friction angle and porosity are briefly illustrated and, for completeness, the macroscopic plastic flow rule and the voids evolution law are fully furnished.

  3. On the drift mobility of a molecular polaron in the presence of Coulomb traps

    Science.gov (United States)

    Rackovsky, S.; Scher, H.

    1999-08-01

    We study the drift mobility of a molecular polaron in the presence of an external applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. It is shown that the unusual combination of Poole-Frenkel-like field dependence and non-Arrhenius temperature dependence of the mobility, measured experimentally in molecular films, is well reproduced by this model. Our key result is that this nearly universal experimental behavior of the mobility arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.

  4. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria.

    Science.gov (United States)

    Godwin, Casey M; Whitaker, Emily A; Cotner, James B

    2017-03-01

    The effects of resource stoichiometry and growth rate on the elemental composition of biomass have been examined in a wide variety of organisms, but the interaction among these effects is often overlooked. To determine how growth rate and resource imbalance affect bacterial carbon (C): nitrogen (N): phosphorus (P) stoichiometry and elemental content, we cultured two strains of aquatic heterotrophic bacteria in chemostats at a range of dilution rates and P supply levels (C:P of 100:1 to 10,000:1). When growing below 50% of their maximum growth rate, P availability and dilution rate had strong interactive effects on biomass C:N:P, elemental quotas, cell size, respiration rate, and growth efficiency. In contrast, at faster growth rates, biomass stoichiometry was strongly homeostatic in both strains (C:N:P of 70:13:1 and 73:14:1) and elemental quotas of C, N, and P were tightly coupled (but not constant). Respiration and cell size increased with both growth rate and P limitation, and P limitation induced C accumulation and excess respiration. These results show that bacterial biomass stoichiometry is relatively constrained when all resources are abundant and growth rates are high, but at low growth rates resource imbalance is relatively more important than growth rate in controlling bacterial biomass composition. © 2016 by the Ecological Society of America.

  5. Hunter-gatherer inter-band interaction rates: implications for cumulative culture.

    Directory of Open Access Journals (Sweden)

    Kim R Hill

    Full Text Available Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads throughout a tribal home range. Results show high probabilities (5%-29% per year of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture.

  6. Hunter-gatherer inter-band interaction rates: implications for cumulative culture.

    Science.gov (United States)

    Hill, Kim R; Wood, Brian M; Baggio, Jacopo; Hurtado, A Magdalena; Boyd, Robert T

    2014-01-01

    Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%-29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture.

  7. Contribution of excited states to stellar weak-interaction rates in odd-A nuclei

    CERN Document Server

    Sarriguren, Pedro

    2016-01-01

    Weak-interaction rates, including beta-decay and electron capture, are studied in several odd-A nuclei in the pf-shell region at various densities and temperatures of astrophysical interest. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus. The nuclear structure involved in the weak processes is studied within a quasiparticle random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. In the range of densities and temperatures considered, it is found that the total rates do not differ much from the rates of the ground state fully populated. In any case, the changes are not larger than the uncertainties due to the nuclear model dependence of the rates.

  8. Excitation of pygmy dipole resonance in neutron-rich nuclei via Coulomb and nuclear fields

    Indian Academy of Sciences (India)

    A Vitturi; E G Lanza; M V Andrés; F Catara; D Gambacurta

    2010-07-01

    We study the nature of the low-lying dipole strength in neutron-rich nuclei, often associated with the pygmy dipole resonance. The states are described within the Hartree–Fock plus RPA formalism, using different parametrizations of the Skyrme inter-action. We show how the information from combined reaction processes involving the Coulomb and different mixtures of isoscalar and isovector nuclear interactions can provide a clue to reveal the characteristic features of these states.

  9. On the lattice dynamics of metallic hydrogen and other Coulomb systems

    Science.gov (United States)

    Beck, H.; Straus, D.

    1975-01-01

    Numerical results for the phonon spectra of metallic hydrogen and other Coulomb systems in cubic lattices are presented. In second order in the electron-ion interaction, the behavior of the dielectric function of the interacting electron gas for arguments around the seond Fermi harmonic leads to drastic Kohn anomalies and even to imaginary phonon frequencies. Third-order band-structure corrections are also calculated. Properties of self-consistent phonons and the validity of the adiabatic approximation are discussed.

  10. Topological defect motifs in two-dimensional Coulomb clusters

    CERN Document Server

    Radzvilavičius, A; 10.1088/0953-8984/23/38/385301

    2012-01-01

    The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...

  11. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji

    2011-10-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.

  12. Heavy ion reactions around the Coulomb barrier

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The angular distributions of fission fragments for the 32S+184W reaction near Coulomb barrier energies are measured. The ex perimental fission excitation function is obtained. The measured fission cross sections are decomposed into fusion-fission, quasi-fission and fast fission contributions by the dinuclear system (DNS) model. The hindrance to completing fusion both at small and large collision energies is explained. The fusion excitation functions of 32S+90,96Zr in an energy range from above to below the Coulomb barrier are measured and analyzed within a semi-classical model. The obvious effect of positive Q-value multi-neutron transfers on the sub-barrier fusion enhancement is observed in the 32S+96Zr system. In addition, the excitation functions of quasi-elastic scattering at a backward angle have been measured with high precision for the systems of 16O+208Pb, 196Pt, 184W, and 154,152Sm at energies well below the Coulomb barrier. Considering the deformed coupling effects, the extracted diffuseness parameters are close to the values extracted from the systematic analysis of elastic and inelastic scattering data. The elastic scattering angular distribution of 17F+12C at 60 MeV is measured and calculated by using the continuum-discretized coupled-channels (CDCC) approach. It is found that the diffuseness parameter of the real part of core-target potential has to be increased by 20% to reproduce the experimental result, which corresponds to an increment of potential depth at the surface re gion. The breakup cross section and the coupling between breakup and elastic scattering are small.

  13. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  14. Overlap Quark Propagator in Coulomb Gauge QCD

    CERN Document Server

    Mercado, Ydalia Delgado; Schröck, Mario

    2014-01-01

    The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.

  15. Coulombic dragging of molecular assemblies on nanotubes

    Science.gov (United States)

    Kral, Petr; Sint, Kyaw; Wang, Boyang

    2009-03-01

    We show by molecular dynamics simulations that polar molecules, ions and their assemblies could be Coulombically dragged on the surfaces of single-wall carbon and boron-nitride nanotubes by ionic solutions or individual ions moving inside the nanotubes [1,2]. We also briefly discuss highly selective ionic sieves based on graphene monolayers with nanopores [3]. These phenomena could be applied in molecular delivery, separation and desalination.[3pt] [1] Boyang Wang and Petr Kral, JACS 128, 15984 (2006). [0pt] [2] Boyang Wang and Petr Kral, Phys. Rev. Lett. 101, 046103 (2008). [0pt] [3] Kyaw Sint, Boyang Wang and Petr Kral, JACS, ASAP (2008).

  16. Action principle for Coulomb collisions in plasmas

    Science.gov (United States)

    Hirvijoki, Eero

    2016-09-01

    An action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.

  17. Action principle for Coulomb collisions in plasmas

    CERN Document Server

    Hirvijoki, Eero

    2015-01-01

    In this letter we derive an action principle for Coulomb collisions in plasmas. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth potentials. Exact conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles. Being suitable for discretization, the presented action allows construction of variational integrators. Numerical implementation is left for a future study.

  18. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  19. Coulomb field in a constant electromagnetic background

    CERN Document Server

    Adorno, T C; Shabad, A E

    2016-01-01

    Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with Euler-Heisenberg effective Lagrangian. Linear electric response to imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field, corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants.

  20. Coulomb effects in Fermi {beta} decay of {sup 74}Rb

    Energy Technology Data Exchange (ETDEWEB)

    Oinonen, M. [CERN, EP Div., Geneva (Switzerland)

    2003-07-01

    Coulomb effects in the {beta} decay of {sup 74}Rb have been studied at ISOLDE. The observation of the non-analog feeding in the {beta} decay allows for an estimation of the Coulomb mixing parameter {delta}{sub IM}{sup 1}. The analysis of the total Coulomb correction {delta}{sub C} is still hampered by the uncertainty in the decay energy. (orig.)

  1. The proton-proton scattering without Coulomb force renormalization

    Directory of Open Access Journals (Sweden)

    Glöckle W.

    2010-04-01

    Full Text Available We demonstrate numerically that proton-proton (pp scattering observables can be determined directly by standard short range methods using a screened pp Coulomb force without renormalization. We numerically investigate solutions of the 3-dimensional Lippmann-Schwinger (LS equation for an exponentially screened Coulomb potential. For the limit of large screening radii we confirm analytically predicted properties for off-shell, half-shell and on-shell elements of the Coulomb t-matrix.

  2. Momentum measurement of secondary particle by multiple coulomb scattering with emulsion cloud chamber in DONuT experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, K. [Aichi University of Education, Kariya (Japan); Saoulidou, N. [University of Athens (Greece); Tzanakos, G. [University of Athens (Greece); Baller, B. [Fermilab, Batavia, IL 60510 (United States); Lundberg, B. [Fermilab, Batavia, IL 60510 (United States); Rameika, R. [Fermilab, Batavia, IL 60510 (United States); Song, J.S. [Gyeongsang University, Chinju, South Korea (Korea, Republic of); Yoon, C.S. [Gyeongsang University, Chinju, South Korea (Korea, Republic of); Chung, S.H. [Gyeongsang University, Chinju, South Korea (Korea, Republic of); Aoki, S. [Kobe University, Kobe (Japan); Hara, T. [Kobe University, Kobe (Japan); Erickson, C. [University of Minnesota, MN (United States); Heller, K. [University of Minnesota, MN (United States); Schwienhorst, R. [University of Minnesota, MN (United States); Sielaff, J. [University of Minnesota, MN (United States); Trammell, J. [University of Minnesota, MN (United States); Hoshino, K. [Nagoya University, Nagoya 464 8602 (Japan); Kawada, J. [Nagoya University, Nagoya 464 8602 (Japan); Komatsu, M. [Nagoya University, Nagoya 464 8602 (Japan); Miyanishi, M. [Nagoya University, Nagoya 464 8602 (Japan); Nakamura, M. [Nagoya University, Nagoya 464 8602 (Japan); Nakano, T. [Nagoya University, Nagoya 464 8602 (Japan); Narita, K. [Nagoya University, Nagoya 464 8602 (Japan); Niwa, K. [Nagoya University, Nagoya 464 8602 (Japan); Nonaka, N. [Nagoya University, Nagoya 464 8602 (Japan); Okada, K.; Sato, O.; Toshito, T.; Miyamoto, S.; Takahashi, S. [Nagoya University, Nagoya 464 8602 (Japan); Park, B.D. [Nagoya University, Nagoya 464 8602 (Japan)]. E-mail: park@flab.phys.nagoya-u.ac.jp; Furukawa, T. [Nagoya University, Nagoya 464 8602 (Japan); Paolone, V. [University of Pittsburgh, Pittsburgh, PA 15260 (United States); Kafka, T. [Tufts University, Medford, Massachusetts 02155 (United States)

    2007-04-21

    We present a method of momentum measurement of charged particles using emulsion data from the DONuT experiment, and report results from the momentum analysis of secondary particles from neutrino interactions. In 578 neutrino interactions, 2338 secondary particles were analyzed and 83.2% of attempted particles were measured by multiple coulomb scattering.

  3. Reconciling Coulomb breakup and neutron radiative capture

    Science.gov (United States)

    Capel, P.; Nollet, Y.

    2017-07-01

    The Coulomb-breakup method to extract the cross section for neutron radiative capture at astrophysical energies is analyzed in detail. In particular, its sensitivity to the description of the neutron-core continuum is ascertained. We consider the case of 14C(n ,γ )15C for which both the radiative capture at low energy and the Coulomb breakup of 15C into 14C+n on Pb at 68 MeV/nucleon have been measured with accuracy. We confirm the direct proportionality of the cross section for both reactions to the square of the asymptotic normalization constant of 15C observed by Summers and Nunes [Phys. Rev. C 78, 011601(R) (2008), 10.1103/PhysRevC.78.011601], but we also show that the 14C-n continuum plays a significant role in the calculations. Fortunately, the method proposed by Summers and Nunes can be improved to absorb that continuum dependence. We show that a more precise radiative-capture cross section can be extracted selecting the breakup data at forward angles and low 14C-n relative energies.

  4. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  5. Transport Through a Coulomb Blockaded Majorana Nanowire

    Science.gov (United States)

    Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd

    In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.

  6. Dark Coulomb binding of heavy neutrinos of fourth family

    Science.gov (United States)

    Belotsky, K. M.; Esipova, E. A.; Khlopov, M. Yu.; Laletin, M. N.

    2015-11-01

    Direct dark matter searches put severe constraints on the weakly interacting massive particles (WIMPs). These constraints cause serious troubles for the model of stable neutrino of fourth generation with mass around 50GeV. Though the calculations of primordial abundance of these particles make them in the charge symmetric case a sparse subdominant component of the modern dark matter, their presence in the universe would exceed the current upper limits by several orders of the magnitude. However, if quarks and leptons of fourth generation possess their own Coulomb-like y-interaction, recombination of pairs of heavy neutrinos and antineutrinos and their annihilation in the “neutrinium” atoms can play important role in their cosmological evolution, reducing their modern abundance far below the experimental upper limits. The model of stable fourth generation assumes that the dominant part of dark matter is explained by excessive Ū antiquarks, forming (ŪŪŪ)-- charged clusters, bound with primordial helium in nuclear-interacting O-helium (OHe) dark atoms. The y charge conservation implies generation of the same excess of fourth generation neutrinos, potentially dangerous WIMP component of this scenario. We show that due to y-interaction recombination of fourth neutrinos with OHe hides these WIMPs from direct WIMP searches, leaving the negligible fraction of free neutrinos, what makes their existence compatible with the experimental constraints.

  7. Interactions between rate processes with different timescales explain counterintuitive foraging patterns of arctic wintering eiders

    NARCIS (Netherlands)

    Heath, J.P.; Gilchrist, H.G.; Ydenberg, R.C.

    2010-01-01

    To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of

  8. Heart Rate Variability during Social Interactions in Children with and without Psychopathology: A Meta-Analysis

    Science.gov (United States)

    Shahrestani, Sara; Stewart, Elizabeth M.; Quintana, Daniel S.; Hickie, Ian B.; Guastella, Adam J.

    2014-01-01

    Background: The inability to regulate autonomic activity during social interactions is believed to contribute to social and emotional dysregulation in children. Research has employed heart rate variability (HRV) during both socially engaging and socially disengaging dyadic tasks between children and adults to assess this. Methods: We conducted a…

  9. Covariation of Social Stimuli and Interaction Rates in the Natural Preschool Environment.

    Science.gov (United States)

    Hops, Hyman

    An intensive longitudinal investigation was conducted on the social behavior of two three-year old boys in a nursery school setting over a four-month period to analyze observable stimuli in each subject's immediate social environment for the main determinants of his social interactive behavior. It was hypothesized that the daily rate of social…

  10. Interactions between rate processes with different timescales explain counterintuitive foraging patterns of arctic wintering eiders

    NARCIS (Netherlands)

    Heath, J.P.; Gilchrist, H.G.; Ydenberg, R.C.

    2010-01-01

    To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of

  11. Do the Naive Know Best? The Predictive Power of Naive Ratings of Couple Interactions

    Science.gov (United States)

    Baucom, Katherine J. W.; Baucom, Brian R.; Christensen, Andrew

    2012-01-01

    We examined the utility of naive ratings of communication patterns and relationship quality in a large sample of distressed couples. Untrained raters assessed 10-min videotaped interactions from 134 distressed couples who participated in both problem-solving and social support discussions at each of 3 time points (pre-therapy, post-therapy, and…

  12. Heart Rate Variability during Social Interactions in Children with and without Psychopathology: A Meta-Analysis

    Science.gov (United States)

    Shahrestani, Sara; Stewart, Elizabeth M.; Quintana, Daniel S.; Hickie, Ian B.; Guastella, Adam J.

    2014-01-01

    Background: The inability to regulate autonomic activity during social interactions is believed to contribute to social and emotional dysregulation in children. Research has employed heart rate variability (HRV) during both socially engaging and socially disengaging dyadic tasks between children and adults to assess this. Methods: We conducted a…

  13. Weak interaction rates for Kr and Sr waiting-point nuclei under rp-process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sarriguren, P., E-mail: sarriguren@iem.cfmac.csic.e [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain)

    2009-10-12

    Weak interaction rates are studied in neutron deficient Kr and Sr waiting-point isotopes in ranges of densities and temperatures relevant for the rp process. The nuclear structure is described within a microscopic model (deformed QRPA) that reproduces not only the half-lives but also the Gamow-Teller strength distributions recently measured. The various sensitivities of the decay rates to both density and temperature are discussed. Continuum electron capture is shown to contribute significantly to the weak rates at rp-process conditions.

  14. Coulomb Explosion and Energy Loss of Energetic C_(20) Clusters in Dense Plasmas

    Institute of Scientific and Technical Information of China (English)

    WANG Gui-Qiu; LI Wen-Kun; WANG You-Nian

    2009-01-01

    The molecular dynamics(MD)method is used to simulate the interactions of energetic C_(20) clusters with the dense plasma targets within the framework of the linear Vlasov-Poisson theory.The influences of various clusters(H_2,N_2,C_(20) and C_(60) respectively)on stopping power are discussed.The simulation results show that the vicinage effects in the Coulomb explosion dynamics and the stopping power are strongly affected by the variations in the cluster speed and the plasma parameters.Coulomb explosions axe found to proceed faster for higher speeds,lower plasma densities and higher electron temperatures.In addition,the cluster stopping power is strongly enhanced in the early stages of Coulomb explosions due to the vicinage effect,but this enhancement eventually diminishes,after the cluster constituent ions are sufficiently separated.For the large and heavy clusters,the stopping power ratio reaches much higher values in the early stage of Coulomb explosion owing to the constructive interferences in the vicinage effect.

  15. Coulomb blockade model of permeation and selectivity in biological ion channels

    Science.gov (United States)

    Kaufman, I. Kh; McClintock, P. V. E.; Eisenberg, R. S.

    2015-08-01

    Biological ion channels are protein nanotubes embedded in, and passing through, the bilipid membranes of cells. Physiologically, they are of crucial importance in that they allow ions to pass into and out of cells, fast and efficiently, though in a highly selective way. Here we show that the conduction and selectivity of calcium/sodium ion channels can be described in terms of ionic Coulomb blockade in a simplified electrostatic and Brownian dynamics model of the channel. The Coulomb blockade phenomenon arises from the discreteness of electrical charge, the strong electrostatic interaction, and an electrostatic exclusion principle. The model predicts a periodic pattern of Ca2+ conduction versus the fixed charge Qf at the selectivity filter (conduction bands) with a period equal to the ionic charge. It thus provides provisional explanations of some observed and modelled conduction and valence selectivity phenomena, including the anomalous mole fraction effect and the calcium conduction bands. Ionic Coulomb blockade and resonant conduction are similar to electronic Coulomb blockade and resonant tunnelling in quantum dots. The same considerations may also be applicable to other kinds of channel, as well as to charged artificial nanopores.

  16. Coulomb-blockade transport in single-crystal organic thin-film transistors

    Science.gov (United States)

    Schoonveld, W. A.; Wildeman, J.; Fichou, D.; Bobbert, P. A.; van Wees, B. J.; Klapwijk, T. M.

    2000-04-01

    Coulomb-blockade transport-whereby the Coulomb interaction between electrons can prohibit their transport around a circuit-occurs in systems in which both the tunnel resistance, RT, between neighbouring sites is large (>>h/e2) and the charging energy, EC (EC = e2/2C, where C is the capacitance of the site), of an excess electron on a site is large compared to kT. (Here e is the charge of an electron, k is Boltzmann's constant, and h is Planck's constant.) The nature of the individual sites-metallic, superconducting, semiconducting or quantum dot-is to first order irrelevant for this phenomenon to be observed. Coulomb blockade has also been observed in two-dimensional arrays of normal-metal tunnel junctions, but the relatively large capacitances of these micrometre-sized metal islands results in a small charging energy, and so the effect can be seen only at extremely low temperatures. Here we demonstrate that organic thin-film transistors based on highly ordered molecular materials can, to first order, also be considered as an array of sites separated by tunnel resistances. And as a result of the sub-nanometre sizes of the sites (the individual molecules), and hence their small capacitances, the charging energy dominates at room temperature. Conductivity measurements as a function of both gate bias and temperature reveal the presence of thermally activated transport, consistent with the conventional model of Coulomb blockade.

  17. Does replication groups scoring reduce false positive rate in SNP interaction discovery?

    Directory of Open Access Journals (Sweden)

    Demsar Janez

    2010-01-01

    Full Text Available Abstract Background Computational methods that infer single nucleotide polymorphism (SNP interactions from phenotype data may uncover new biological mechanisms in non-Mendelian diseases. However, practical aspects of such analysis face many problems. Present experimental studies typically use SNP arrays with hundreds of thousands of SNPs but record only hundreds of samples. Candidate SNP pairs inferred by interaction analysis may include a high proportion of false positives. Recently, Gayan et al. (2008 proposed to reduce the number of false positives by combining results of interaction analysis performed on subsets of data (replication groups, rather than analyzing the entire data set directly. If performing as hypothesized, replication groups scoring could improve interaction analysis and also any type of feature ranking and selection procedure in systems biology. Because Gayan et al. do not compare their approach to the standard interaction analysis techniques, we here investigate if replication groups indeed reduce the number of reported false positive interactions. Results A set of simulated and false interaction-imputed experimental SNP data sets were used to compare the inference of SNP-SNP interactions by means of replication groups to the standard approach where the entire data set was directly used to score all candidate SNP pairs. In all our experiments, the inference of interactions from the entire data set (e.g. without using the replication groups reported fewer false positives. Conclusions With respect to the direct scoring approach the utility of replication groups does not reduce false positive rates, and may, depending on the data set, often perform worse.

  18. Gauge Theories on the Coulomb Branch

    Science.gov (United States)

    Schwarz, John H.

    We construct the world-volume action of a probe D3-brane in AdS5 × S5 with N units of flux. It has the field content, symmetries, and dualities of the U(1) factor of 𝒩 = 4 U(N + 1) super Yang-Mills theory, spontaneously broken to U(N) × U(1) by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a highly effective action (HEA). We construct an SL(2, Z) multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that they reproduce the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a soliton bubble, which is interpreted as a phase boundary.

  19. Gauge Theories on the Coulomb branch

    CERN Document Server

    Schwarz, John H

    2014-01-01

    We construct the world-volume action of a probe D3-brane in $AdS_5 \\times S^5$ with $N$ units of flux. It has the field content, symmetries, and dualities of the $U(1)$ factor of ${\\cal N} =4$ $U(N+1)$ super Yang--Mills theory, spontaneously broken to $U(N) \\times U(1)$ by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a `highly effective action' (HEA). We construct an $SL(2,Z)$ multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that it reproduces the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a `soliton bubble', which is interpreted as a phase boundary.

  20. Coulomb dissociation of light unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabana, Kazuhiro; Suzuki, Yoshiyuki

    1997-05-01

    The aim of this study is that a simulation method applicable to the atomic nucleus with neutron halo structure developed till now is applied to a wider range unstable nucleus containing proton excess nucleus to also attribute understanding of nuclear reaction with interest in astronomical nuclear reaction. The proton dissociation energy in {sup 8}B nucleus is small value of 138 eV, which is thought to have a structure of proton at the most outer shell bound much weakly by core nucleus and spread in thinner thickness. For the coulomb excitation of such weak bound system, quantum theoretical and non-perturbational treatment is important. Therefore, 3-dimensional time-dependent Schroedinger equation on relative wave function of the core nucleus {sup 7}Be and halo proton p will be dissolved in time space and will execute a time developmental simulation. (G.K.)

  1. Ion Coulomb Crystals and Their Applications

    Science.gov (United States)

    Drewsen, Michael

    The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].

  2. Relativistic Coulomb scattering of spinless bosons

    CERN Document Server

    Garcia, M G

    2015-01-01

    The relativistic scattering of spin-0 bosons by spherically symmetric Coulomb fields is analyzed in detail with an arbitrary mixing of vector and scalar couplings. It is shown that the partial wave series reduces the scattering amplitude to the closed Rutherford formula exactly when the vector and scalar potentials have the same magnitude, and as an approximation for weak fields. The behavior of the scattering amplitude near the conditions that furnish its closed form is also discussed. Strong suppressions of the scattering amplitude when the vector and scalar potentials have the same magnitude are observed either for particles or antiparticles with low incident momentum. We point out that such strong suppressions might be relevant in the analysis of the scattering of fermions near the conditions for the spin and pseudospin symmetries. From the complex poles of the partial scattering amplitude the exact closed form of bound-state solutions for both particles and antiparticles with different scenarios for the ...

  3. Pair distribution of ions in Coulomb lattice

    CERN Document Server

    Witt, H E D; Chugunov, A I; Baiko, D A; Yakovlev, D G

    2003-01-01

    The pair distribution function g(r) ident to g(x, y, z) and the radial pair distribution function g(r) of ions in body-centred-cubic and face-centred-cubic Coulomb crystals are calculated within the harmonic-lattice (HL) approximation in a wide temperature range, from the high-temperature classical limit (T >> h-bar w sub p , w sub p being the ion plasma frequency) to the low-temperature quantum limit (T || h-bar w sub p). In the classical limit, g(r) is also calculated by the Monte Carlo (MC) method. MC and HL results are demonstrated to be in good agreement. With decreasing T, the correlation peaks of g(r) and g(r) become narrower. At T || h-bar w sub p they become temperature independent (determined by zero-point ion vibrations).

  4. Coulomb crystals in the magnetic field

    CERN Document Server

    Baiko, D A

    2009-01-01

    The body-centered cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields $B \\gtrsim 10^{14}$ G). The effect of the magnetic ...

  5. Thermodynamic Functions of Magnetized Coulomb Crystals

    CERN Document Server

    Baiko, D A

    2013-01-01

    Free energy, internal energy, and specific heat for each of the three phonon spectrum branches of a magnetized Coulomb crystal with body-centered cubic lattice are calculated by numerical integration over the Brillouin zone in the range of magnetic fields $B$ and temperatures $T$, such that $0 \\le \\omega_{\\rm B}/\\omega_{\\rm p}\\le 10^3$ and $10^{-4} \\le T/T_{\\rm p} \\le 10^4$. In this case, $\\omega_{\\rm B}$ is the ion cyclotron frequency, $\\omega_{\\rm p}$ and $T_{\\rm p}$ are the ion plasma frequency and plasma temperature, respectively. The results of numerical calculations are approximated by simple analytical formulas. For illustration, these formulas are used to analyze the behavior of the heat capacity in the crust of a neutron star with strong magnetic field. Thermodynamic functions of magnetized neutron star crust are needed for modeling various observational phenomena in magnetars and high magnetic field pulsars.

  6. Study on Coulomb explosions of ion mixtures

    CERN Document Server

    Boella, E; D'Angola, A; Coppa, G; Silva, L O

    2015-01-01

    The paper presents a theoretical work on the dynamics of Coulomb explosion for spherical nanoplasmas composed by two different ion species. Particular attention has been dedicated to study the energy spectra of the ions with the larger charge-to-mass ratio. The connection between the formation of shock shells and the energy spread of the ions has been the object of a detailed analysis, showing that under particular conditions the width of the asymptotic energy spectrum tends to become very narrow, which leads to a multi-valued ion phase-space. The conditions to generate a quasi mono-energetic ion spectrum have been rigorously demonstrated and verifed by numerical simulations, using a technique that, exploiting the spherical symmetry of the problem, allows one to obtain very accurate and precise results.

  7. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Darus, L.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    To create an efficient bioelectrochemical system, a high Coulombic efficiency is required. This efficiency is a direct measure for the competition between electrogens and methanogens when acetate is used as substrate. In this study the Coulombic efficiency in a microbial electrolysis cell was invest

  8. Coulomb distortion effects in deep-inelastic electron scattering

    Science.gov (United States)

    Co', Giampaolo; Heisenberg, Jochen

    1987-11-01

    The effects of the Coulomb distortion of the electron wave functions in the description of the electron scattering processes in the quasi-elastic region are discussed. A method to extract longitudinal and transverse response functions considering these effects is presented. While the transverse response function is remarkably affected by the Coulomb distortion, the values of the longitudinal response function are practically unchanged.

  9. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    DEFF Research Database (Denmark)

    Badalyan, S. M.; Shylau, A. A.; Jauho, Antti-Pekka

    2017-01-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon...

  10. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  11. Spherical Calogero model with oscillator/Coulomb potential: classical case

    CERN Document Server

    Correa, Francisco; Lechtenfeld, Olaf; Nersessian, Armen

    2016-01-01

    We construct the Hamiltonians and symmetry generators of Calogero-oscillator and Calogero-Coulomb models on the N-dimensional sphere within the matrix-model reduction approach. Our method also produces the integrable Calogero-Coulomb-Stark model on the sphere and proves the integrability of the spin extensions of all these systems.

  12. Quantum Dynamics of Biological Plasma in the External Coulomb Field

    Science.gov (United States)

    Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.

    2013-10-01

    A quantum solution to the truncated Fisher-Kolmogorov-Petrovskii-Piskunov equation with Coulomb convection and linear diffusion is derived. The quantum radiation of biological systems, individual microorganisms (cells, bacteria), and dust plasma particles in the Coulomb field is studied using the foregoing solution.

  13. Magneto-Coulomb effect in spin-valve devices

    NARCIS (Netherlands)

    van der Molen, SJ; Tombros, N; van Wees, BJ

    2006-01-01

    We discuss the influence of the magneto-Coulomb effect (MCE) on the magnetoconductance of spin-valve devices. We show that the MCE can induce magnetoconductances of several percent or more, depending on the strength of the Coulomb blockade. Furthermore, the MCE-induced magnetoconductance changes sig

  14. Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V; Mănăilescu, C

    2016-01-01

    A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.

  15. Probing Neutrino Mass Hierarchy by Comparing the Charged-Current and Neutral-Current Interaction Rates of Supernova Neutrinos

    CERN Document Server

    Lai, Kwang-Chang; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, $\

  16. Coulomb traction on a penny-shaped crack in a three dimensional piezoelectric body

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun; Kuna, Meinhard [TU Bergakademie Freiberg, Institute of Mechanics and Fluid Dynamics, Freiberg (Germany); Ricoeur, Andreas [University of Kassel, Institute of Mechanics, Kassel (Germany)

    2011-06-15

    The axisymmetric problem of a penny-shaped crack embedded in an infinite three-dimensional (3D) piezoelectric body is considered. A general formulation of Coulomb traction on the crack surfaces can be obtained based on thermodynamical considerations of electromechanical systems. Three-dimensional electroelastic solutions are derived by the classical complex potential theory when Coulomb traction is taken into account and the poling direction of piezoelectric body is perpendicular to the crack surfaces. Numerical results show that the magnitude of Coulomb tractions can be large, especially when a large electric field in connection with a small mechanical load is applied. Unlike the traditional traction-free crack model, Coulomb tractions induced by an applied electric field influence the Mode I stress intensity factor for a penny-shaped crack in 3D piezoelectric body. Moreover, compared to the current model, the traditional traction-free crack model always overestimates the effect of the applied electric load on the field intensity factors and energy release rates, which has consequences for 3D piezoelectric fracture mechanics. (orig.)

  17. Phase diagram, correlation gap, and critical properties of the Coulomb glass

    OpenAIRE

    2008-01-01

    We investigate the lattice Coulomb glass model in three dimensions via Monte Carlo simulations. No evidence for an equilibrium glass phase is found down to very low temperatures, although the correlation length increases rapidly near T=0. A charge-ordered phase (COP) exists at low disorder. The transition to this phase is consistent with the Random Field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. For large disorder, the single-p...

  18. Coulomb solutions from improper pseudo-unitary free gauge field operator translations

    CERN Document Server

    Aste, Andreas

    2014-01-01

    Fundamental problems of quantum field theory related to the representation problem of canonical commutation relations are discussed within a gauge field version of a van Hove-type model. The Coulomb field generated by a static charge distribution is described as a formal superposition of time-like pseudo-photons in Fock space with a Krein structure. In this context, a generalization of operator gauge transformations is introduced to generate coherent states of abelian gauge fields interacting with a charged background.

  19. Dissociation of deuteron, 6He and 11Be from Coulomb dissociation reaction cross-section

    Indian Academy of Sciences (India)

    Ramendra Nath Majumdar

    2008-05-01

    The fragmentation of deuteron, 6He and 11Be have been studied during interaction with the 208Pb nucleus at various projectile energies. The Coulomb dissociation cross-sections and the momentum distribution of the break-up fragments have been analysed within the framework of the direct fragmentation model. The post-acceleration effect of deuteron during break-up and the halo structures of both the 6He and 11Be have been investigated.

  20. Cold transfer between deformed, Coulomb excited nuclei; Kalter Transfer zwischen deformierten, Coulomb-angeregten Kernen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H.

    1998-12-31

    The scattering system {sup 162}Dy {yields} {sup 116}Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high {gamma}-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in {sup 162}Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  1. "Does replication groups scoring reduce false positive rate in SNP interaction discovery?: Response"

    OpenAIRE

    González-Pérez Antonio; Gayán Javier; Ruiz Agustín

    2010-01-01

    Abstract A response to Toplak et al: Does replication groups scoring reduce false positive rate in SNP interaction discovery? BMC Genomics 2010, 11:58. Background The genomewide evaluation of genetic epistasis is a computationally demanding task, and a current challenge in Genetics. HFCC (Hypothesis-Free Clinical Cloning) is one of the methods that have been suggested for genomewide epistasis analysis. In order to perform an exhaustive search of epistasis, HFCC has implemented several tools ...

  2. On the stream-accretion disk interaction - Response to increased mass transfer rate

    Science.gov (United States)

    Dgani, Ruth; Livio, Mario; Soker, Noam

    1989-01-01

    The time-dependent interaction between the stream of mass from the inner Lagrangian point and the accretion disk, resulting from an increasing mass transfer rate is calculated. The calculation is fully three-dimensional, using a pseudoparticle description of the hydrodynamics. It is demonstrated that the results of such calculations, when combined with specific observations, have the potential of both determining essential parameters, such as the viscosity parameter alpha, and can distinguish between different models of dwarf nova eruptions.

  3. Complex ordering in spin networks: Critical role of adaptation rate for dynamically evolving interactions

    Science.gov (United States)

    Pathak, Anand; Sinha, Sitabhra

    2015-09-01

    Many complex systems can be represented as networks of dynamical elements whose states evolve in response to interactions with neighboring elements, noise and external stimuli. The collective behavior of such systems can exhibit remarkable ordering phenomena such as chimera order corresponding to coexistence of ordered and disordered regions. Often, the interactions in such systems can also evolve over time responding to changes in the dynamical states of the elements. Link adaptation inspired by Hebbian learning, the dominant paradigm for neuronal plasticity, has been earlier shown to result in structural balance by removing any initial frustration in a system that arises through conflicting interactions. Here we show that the rate of the adaptive dynamics for the interactions is crucial in deciding the emergence of different ordering behavior (including chimera) and frustration in networks of Ising spins. In particular, we observe that small changes in the link adaptation rate about a critical value result in the system exhibiting radically different energy landscapes, viz., smooth landscape corresponding to balanced systems seen for fast learning, and rugged landscapes corresponding to frustrated systems seen for slow learning.

  4. Cerberus Fossae and Elysium Planitia Lavas, Mars: Source Vents, Flow Rates, Edifice Styles and Water Interactions

    Science.gov (United States)

    Sakimoto, S. E. H.; Gregg, T. K. P.

    2004-01-01

    The Cerberus Fossae and Elysium Planitia regions have been suggested as some of the youngest martian surfaces since the Viking mission, although there was doubt whether the origins were predominantly volcanic or fluvial. The Mars Global Surveyor and Mars Odyssey Missions have shown that the region is certainly young in terms of the topographic preservation and the youthful crater counts (e.g. in the tens to a few hundred million yrs.). Numerous authors have shown that fluvial and volcanic features share common flow paths and vent systems, and that there is evidence for some interaction between the lava flows and underlying volatiles as well as the use by lavas and water of the same vent system. Given the youthful age and possible water-volcanism interaction environment, we'd like constraints on water and volcanic flux rates and interactions. Here, we model ranges of volcanic flow rates where we can well-constrain them, and consider the modest flow rate results results in context with local eruption styles, and track vent locations, edifice volumes, and flow sources and data.

  5. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil

    Science.gov (United States)

    Sierra, Carlos A.; Malghani, Saadatullah; Loescher, Henry W.

    2017-02-01

    Determining environmental controls on soil organic matter decomposition is of importance for developing models that predict the effects of environmental change on global soil carbon stocks. There is uncertainty about the environmental controls on decomposition rates at temperature and moisture extremes, particularly at high water content levels and high temperatures. It is uncertain whether observed declines in decomposition rates at high temperatures are due to declines in the heat capacity of extracellular enzymes as predicted by thermodynamic theory, or due to simultaneous declines in soil moisture. It is also uncertain whether oxygen limits decomposition rates at high water contents. Here we present the results of a full factorial experiment using organic soils from a boreal forest incubated at high temperatures (25 and 35 °C), a wide range of water-filled pore space (WFPS; 15, 30, 60, 90 %), and contrasting oxygen concentrations (1 and 20 %). We found support for the hypothesis that decomposition rates are high at high temperatures, provided that enough moisture and oxygen are available for decomposition. Furthermore, we found that decomposition rates are mostly limited by oxygen concentrations at high moisture levels; even at 90 % WFPS, decomposition proceeded at high rates in the presence of oxygen. Our results suggest an important degree of interaction among temperature, moisture, and oxygen in determining decomposition rates at the soil core scale.

  6. Interaction of small repeating earthquakes in a rate and state fault model

    Science.gov (United States)

    Lapusta, N.; Chen, T.

    2010-12-01

    Small repeating earthquake sequences can be located very close, for example, the San Andreas Fault Observatory at Depth (SAFOD) target cluster repeaters "San Francisco" and "Los Angeles" are separated by only about 50 m. These two repeating sequences also show closeness in occurrence time, indicating substantial interaction. Modeling of the interaction of repeating sequences and comparing the modeling results with observations would help us understand the physics of fault slip. Here we conduct numerical simulations of two asperities in a rate and state fault model (Chen and Lapusta, JGR, 2009), with asperities being rate weakening and the rest of the fault being rate-strengthening. One of our goals is to create a model for the observed interaction between "San Francisco" and "Los Angeles" clusters. The study of Chen and Lapusta (JGR, 2009) and Chen et al (accepted by EPSL, 2010) showed that this approach can reproduce behavior of isolated repeating earthquake sequences, in particular, the scaling of their moment versus recurrence time and the response to accelerated postseismic creep. In this work, we investigate the effect of distance between asperities and asperity size on the interaction, in terms of occurrence time, seismic moment and rupture pattern. The fault is governed by the aging version of rate-and-state friction. To account for relatively high stress drops inferred seismically for Parkfield SAFOD target earthquakes (Dreger et al, 2007), we also conduct simulations that include enhanced dynamic weakening during seismic events. As expected based on prior studies (e.g., Kato, JGR, 2004; Kaneko et al., Nature Geoscience, 2010), the two asperities act like one asperity if they are close enough, and they behave like isolated asperities when they are sufficiently separated. Motivated by the SAFOD target repeaters that rupture separately but show evidence of interaction, we concentrate on the intermediate distance between asperities. In that regime, the

  7. BRIEF REPORT: Photon deflection by a Coulomb field in noncommutative QED

    Science.gov (United States)

    Pires, C. A. de S.

    2004-12-01

    In noncommutative QED photons present self-interactions in the form of triple and quartic interactions. The triple interaction implies that, even though the photon is electrically neutral, it will deflect when in the presence of an electromagnetic field. If detected, such deflection would be undoubted evidence of noncommutative space-time. In this work we derive a general expression for the deflection of a photon by any electromagnetic field. As an application we consider the case of the deflection of a photon by an external static Coulomb field.

  8. Fluid-structure interaction modeling of aortic valve stenosis at different heart rates.

    Science.gov (United States)

    Bahraseman, Hamidreza Ghasemi; Languri, Ehsan Mohseni; Yahyapourjalaly, Niloofar; Espino, Daniel M

    2016-01-01

    This paper proposes a model to measure the cardiac output and stroke volume at different aortic stenosis severities using a fluid-structure interaction (FSI) simulation at rest and during exercise. The geometry of the aortic valve is generated using echocardiographic imaging. An Arbitrary Lagrangian-Eulerian mesh was generated in order to perform the FSI simulations. Pressure loads on ventricular and aortic sides were applied as boundary conditions. FSI modeling results for the increment rate of cardiac output and stroke volume to heart rate, were about 58.6% and -14%, respectively, at each different stenosis severity. The mean gradient of curves of cardiac output and stroke volume to stenosis severity were reduced by 57% and 48%, respectively, when stenosis severity varied from healthy to critical stenosis. Results of this paper confirm the promising potential of computational modeling capabilities for clinical diagnosis and measurements to predict stenosed aortic valve parameters including cardiac output and stroke volume at different heart rates.

  9. Brightness limitations of cold field emitters caused by Coulomb interactions

    NARCIS (Netherlands)

    Cook, B.J.; Verduin, T.; Hagen, C.W.; Kruit, P.

    2010-01-01

    Emission theory predicts that high brightness cold field emitters can enhance imaging in the electron microscope. This (neglecting chromatic aberration) is because of the large (coherent) probe current available from a high brightness source and is based on theoretically determined values of reduced

  10. Interactions between rate processes with different timescales explain counterintuitive foraging patterns of arctic wintering eiders.

    Science.gov (United States)

    Heath, Joel P; Gilchrist, H Grant; Ydenberg, Ronald C

    2010-10-22

    To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of diving for benthic invertebrates, digestive processing rate and a nonlinear decrease in profitability of diving as currents increase over the tidal cycle. Using a multi-scale dynamic modelling approach and continuous field observations of individuals, we demonstrate that the strategy that maximizes long-term energy gain involves resting during the most profitable foraging period (slack currents). These counterintuitive foraging patterns are an adaptive trade-off between multiple overlapping rate processes and cannot be explained by classical rate-maximizing optimization theory, which only considers a single timescale and predicts a constant rate of foraging. By reducing foraging and instead digesting during slack currents, eiders structure their activity in order to maximize long-term energetic gain over an entire tide cycle. This study reveals how counterintuitive patterns and a complex functional response can result from a simple trade-off among several overlapping rate processes, emphasizing the necessity of a multi-scale approach for understanding adaptive routines in the wild and evaluating mechanisms in ecological time series.

  11. Analysis of the instability growth rate during the jetbackground interaction in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    Miroslav Hork(y); Petr Kulhánek

    2013-01-01

    The two-stream instability is common,responsible for many observed phenomena in nature,especially the interaction of jets of various origins with the background plasma (e.g.extragalactic jet interacting with the cosmic background).The dispersion relation that does not consider magnetic fields is described by the wellknown Buneman relation.In 2011,Bohata,Bren and Kulánek derived the relation for the two-stream instability without the cold limit,with the general orientation of a magnetic field,and arbitrary stream directions.The maximum value of the imaginary part of the individual dispersion branches ωn(k) is of interest from a physical point of view.It represents the instability growth rate which is responsible for the onset of turbulence mode and subsequent reconnection on the scale of the ion radius accompanied by a strong plasma thermalization.The paper presented here is focused on the non-relativistic instability growth rate and its dependence on various input parameters,such as magnitude and direction of magnetic field,sound velocity,plasma frequency of the jet and direction of the wave vector during the jet-intergalactic medium interaction.The results are presented in plots and can be used for determination of the plasma parameter values close to which the strong energy transfer and thermalization between the jet and the background plasma occur.

  12. Ionic Coulomb Blockade and Resonant Conduction in Biological Ion Channels

    CERN Document Server

    Kaufman, I Kh; Eisenberg, R S

    2014-01-01

    The conduction and selectivity of calcium/sodium ion channels are described in terms of ionic Coulomb blockade, a phenomenon based on charge discreteness and an electrostatic model of an ion channel. This novel approach provides a unified explanation of numerous observed and modelled conductance and selectivity phenomena, including the anomalous mole fraction effect and discrete conduction bands. Ionic Coulomb blockade and resonant conduction are similar to electronic Coulomb blockade and resonant tunnelling in quantum dots. The model is equally applicable to other nanopores.

  13. Coulomb Breakup of Nucleus 6 Li on Ion 208Pb

    OpenAIRE

    Irgaziev, B. F.; ERGASHBAEV, H. T.

    1998-01-01

    In the framework of the three-body approach the A(a,bc)A Coulomb breakup has been investigated. The three-body Coulomb dynamic is taken into account to derive the expression for the reaction matrix element. The mechanism of the breakup includes the direct process and the excitation of resonance state of the particle a. The calculation of the triple differential cross section of the 208Pb(6Li, a d)208Pb Coulomb dissociation have been performed in the energy region Ea d < 1MeV. Cal...

  14. Theory and simulation of strong correlations in quantum Coulomb systems

    CERN Document Server

    Bonitz, M; Filinov, A V; Golubnychiy, V O; Kremp, D; Gericke, D O; Murillo, M S; Filinov, V S; Fortov, V; Hoyer, W; Koch, S W

    2003-01-01

    Strong correlations in quantum Coulomb systems (QCS) are attracting increasing interest in many fields ranging from dense plasmas and semiconductors to metal clusters and ultracold trapped ions. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) or Coulomb crystals. We present first-principle simulation results of these systems including path integral Monte Carlo simulations of the equilibrium behaviour of dense hydrogen and electron-hole plasmas and molecular dynamics and quantum kinetic theory simulations of the nonequilibrium properties of QCS. Finally, we critically assess potential and limitations of the various methods in their application to Coulomb systems.

  15. Platelets interact with tissue factor immobilized on surfaces: effects of shear rate.

    Science.gov (United States)

    Tonda, R; Lopez-Vilchez, I; Navalon, F; Pino, M; Hernandez, M R; Escolar, G; Galan, A M

    2008-01-01

    While procoagulant activities of Tissue Factor (TF) have been widely investigated, its possible pro-adhesive properties towards platelets have not been studied in detail. We explored the interaction of platelets with human Tissue Factor (hTF) firmly adsorbed on a synthetic surface of polyvinilidene difluoride (PVDF) using different shear rates. For studies at 250 and 600 s(-1), TF firmly adsorbed was exposed to flowing anticoagulated blood in flat perfusion devices. Deposition of platelets and fibrin were evaluated by morphometric, immunocytochemical and ultrastructural methods. Prothrombin fragment 1 + 2 (F1 + 2) levels were also measured. Experiments at 5000 s(-1), were performed on the Platelet Function Analyzer (PFA-100) with experimental cartridges with collagen (COL) or collagen-hTF (COL + TF). Haemostatic effect of recombinant activated FVIIa (rFVIIa) was assessed in the same experimental settings. Platelet deposition on hTF reached 19.8 +/- 1.3% and 26.1 +/- 3.4% of the total surface, at 250 and 600 s(-1), respectively. Fibrin formation was significantly higher at 250 s(-1) than at 600 s(-1) (P hTF (154.09 +/- 14.69 s vs. 191.45 +/- 16.09 s COL alone; P hTF is an adhesive substrate for platelets and suggest that the von Willebrand factor could mediate these interactions. At low and intermediate shear rates, rFVIIa enhanced the procoagulant action of hTF, but this effect was not observed at very high shear rates.

  16. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  17. Coulomb crystals in the harmonic lattice approximation

    CERN Document Server

    Baiko, D A; De Witt, H E; Slattery, W L

    2000-01-01

    The dynamic structure factor ${\\tilde S}({\\bf k},\\omega)$ and the two-particle distribution function $g({\\bf r},t)$ of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multi-phonon excitation and absorption. The static radial two-particle distribution function $g(r)$ is calculated for classical ($T \\gtrsim \\hbar \\omega_p$, where $\\omega_p$ is the ion plasma frequency) and quantum ($T \\ll \\hbar \\omega_p$) body-centered cubic (bcc) crystals. The results for the classical crystal are in a very good agreement with extensive Monte Carlo (MC) calculations at $1.5 \\lesssim r/a calculated for classical and quantum bcc and face-centered cubic crystals, and anharmonic corrections are discussed. The inelastic part of the HL static structure factor $S''(k)$, averaged over orientations of wave-vector {\\bf k}, is shown to contain pronounced singularities at Bragg diffraction positions. The type of the singularities is di...

  18. Electron attraction mediated by Coulomb repulsion.

    Science.gov (United States)

    Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S

    2016-07-21

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  19. Dirac Hamiltonian with superstrong Coulomb field

    CERN Document Server

    Voronov, B L; Tyutin, I V

    2006-01-01

    We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=137 based on the fact that the standard expression for energy eigenvalues yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is the nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamilt...

  20. Relativistic Coulomb excitation of {sup 88}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Moschner, Kevin; Blazhev, Andrey; Jolie, Jan; Warr, Nigel; Wendt, Andreas [IKP, Universitaet zu Koeln, 50937 Koeln (Germany); Collaboration: PreSPEC-Collaboration

    2015-07-01

    Within the scope of the PreSPEC campaign we performed a Coulomb-excitation experiment to determine absolute E2 transition strengths to 2{sup +} states in the radioactive nucleus {sup 88}Kr. The aim of our studies was to identify the one quadruple-phonon mixed-symmetry 2{sub MS}{sup +} state in order to extend our knowledge on these states to lighter N = 52 isotones and to track their evolution over different proton shells. The investigated ions were provided through projectile fission of a 650 MeV {sup 238}U beam on a primary target consisting of 0.6 g/cm{sup 2} {sup 9}Be and subsequent separation and identification of the reaction products via the FRS at GSI. The secondary target consisted of 0.4 g/cm{sup 2} {sup 197}Au. De-exciting γ radiation was detected by the PreSPEC array, consisting of 15 EUROBALL Cluster detectors. The Lund-York-Cologne-CAlorimeter LYCCA was used for particle identification after the secondary target. Absolute transition strengths of the transitions depopulating the 2{sup +}{sub 3} state in {sup 88}Kr which suggest the mixed symmetric character of this state are presented and discussed within the systematics of the N = 52 isotones.

  1. Strong Coulomb Coupling in the Todorov Equation

    Science.gov (United States)

    Bawin, M.; Cugnon, J.; Sazdjian, H.

    A positronium-like system with strong Coulomb coupling, considered in its pseudoscalar sector, is studied in the framework of relativistic quantum constraint dynamics with the Todorov choice for the potential. Case’s method of self-adjoint extension of singular potentials, which avoids explicit introduction of regularization cut-offs, is adopted. It is found that, as the coupling constant α increases, the bound state spectrum undergoes an abrupt change at the critical value α=αc=1/2. For α>αc, the mass spectrum displays, in addition to the existing states for α<αc, a new set of an infinite number of bound states concentrated in a narrow band starting at mass W=0; all the states have indefinitely oscillating wave functions near the origin. In the limit α→αc from above, the oscillations disappear and the narrow band of low-lying states shrinks to a single massless state with a mass gap with the rest of the spectrum. This state has the required properties to represent a Goldstone boson and to signal spontaneous breakdown of chiral symmetry.

  2. Electron attraction mediated by Coulomb repulsion

    Science.gov (United States)

    Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.

    2016-07-01

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  3. Coulomb gauge model for hidden charm tetraquarks

    Science.gov (United States)

    Xie, W.; Mo, L. Q.; Wang, Ping; Cotanch, Stephen R.

    2013-08-01

    The spectrum of tetraquark states with hidden charm is studied within an effective Coulomb gauge Hamiltonian approach. Of the four independent color schemes, two are investigated, the (qcbar)1(cqbar)1 singlet-singlet (molecule) and the (qc)3(qbarcbar)3 triplet-triplet (diquark), for selected JPC states using a variational method. The predicted masses of triplet-triplet tetraquarks are roughly a GeV heavier than the singlet-singlet states. There is also an interesting flavor dependence with (qqbar)1 (ccbar1) states about half a GeV lighter than (qcbar)1(qbarc)1. The lightest 1++ and 1-- predictions are in agreement with the observed X (3872) and Y (4008) masses suggesting they are molecules with ωJ / ψ and ηhc, rather than D*Dbar* and DDbar, type structure, respectively. Similarly, the lightest isovector 1++ molecule, having a ρJ / ψ flavor composition, has mass near the recently observed charged Zc (3900) value. These flavor configurations are consistent with observed X, Y and Zc decays to ππJ / ψ.

  4. A novel treatment of the proton-proton Coulomb force in proton-deuteron Faddeev calculations

    Directory of Open Access Journals (Sweden)

    Glöckle W.

    2010-04-01

    Full Text Available We present resently introduced novel approach to include th e proton-proton (pp Coulomb force into the momentum space three-nucleon (3N Faddeev calculations. It is based on a standard formulation for short range forces and relies on a screening of the long-range Coul omb interaction. In order to avoid all uncertainties connected with an application of the partial wave expansion, unsuitable when working with long-range forces, we apply directly the 3-dimensional pp screened Coulomb t-matrix. That main new ingredient, the 3-dimensional screened pp Coulomb t-matrix, is obtained by a numerical sol ution of the 3-dimensional Lippmann-Schwinger (LS equation. Using a simple dynamical model for the nuclear part of the interaction we demonstrate the feasibility of that approach. The physical elastic pd scattering amplitude has a well defined screening limit and does not require renormalisation. Well converged elastic pd cro ss sections are obtained at finite screening radii. Also the proton-deuteron (pd breakup observables can be determ ined from the resulting on-shell 3N amplitudes increasing the screening radius. However, contrary to the pd e lastic scattering, the screening limit exists only after renormalisation of the pp t-matrices.

  5. Interaction between Digestive Strategy and Niche Specialization Predicts Speciation Rates across Herbivorous Mammals.

    Science.gov (United States)

    Tran, Lucy A P

    2016-04-01

    Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.

  6. Furry picture transition rates in the intense fields at a lepton collider interaction point

    Directory of Open Access Journals (Sweden)

    A. Hartin

    2015-04-01

    Full Text Available The effect on particle physics processes by intense electromagnetic fields in the charge bunch collisions at future lepton colliders is considered. Since the charge bunch fields are tied to massive sources (the e+e− charges, a reference frame is chosen in which the fields appear to be co-propagating. Solutions of the Dirac equation minimally coupled to the electromagnetic fields reasonably associated with two intense overlapping charge bunches are obtained and found to be a Volkov solution with respect to a null 4-vector whose 3-vector part lies in the common propagation direction. These solutions are used within the Furry interaction picture to calculate the beamstrahlung transition rate for electron radiation due to interaction with the electromagnetic fields of two colliding charge bunches. New analytic expressions are obtained and compared numerically with the beamstrahlung in the electromagnetic field of one charge bunch. The techniques developed will be applied to other collider physics processes in due course.

  7. Estimation of apparent rate coefficients for phenanthrene and pentachlorophenol interacting with sediments.

    Science.gov (United States)

    Chen, Hua-Lin; Chen, Ying-Xu; Xu, Yun-Tai; Shen, Meng-Wei

    2004-09-01

    To gain information on organic pollutants in water-sediment systems, a compartment model was applied to study the sorption course of phenanthrene and pentachlorophenol (PCP) in sediments. The model described the time-dependent interaction of phenanthrene and PCP with operationally defined reversible and irreversible (or slowly reversible) sediment fractions. The interactions between these fractions were described using first order differential equations. By fitting the models to the experimental data, apparent rate constants were obtained using numerical optimization software. The model optimizations showed that the amount of reversible phase increased rapidly in the first 10 d with the sorption time, then decreased after 10 d, while the amount of irreversible phase increased in the total sorption course. That suggested the mass transport between reversible phase and irreversible phase. The extraction efficiency with hot methanol ranged from 36% to 103% for phenanthrene and from 65% to 101% for PCP, with the trend of decreasing with sorption time.

  8. Furry picture transition rates in the intense fields at a lepton collider interaction point

    CERN Document Server

    Hartin, Anthony

    2015-01-01

    The effect on particle physics processes by intense electromagnetic fields in the charge bunch collisions at future lepton colliders is considered. Since the charge bunch fields are tied to massive sources (the $e^{+}e^{-}$ charges), a reference frame is chosen in which the fields appear to be co-propagating. Solutions of the Dirac equation minimally coupled to the electromagnetic fields reasonably associated with two intense overlapping charge bunches are obtained and found to be a Volkov solution with respect to a null 4-vector whose 3-vector part lies in the common propagation direction. These solutions are used within the Furry interaction picture to calculate the beamstrahlung transition rate for electron radiation due to interaction with the electromagnetic fields of two colliding charge bunches. New analytic expressions are obtained and compared numerically with the beamstrahlung in the electromagnetic field of one charge bunch. The techniques developed will be applied to other collider physics process...

  9. Wave functions of a particle with polarizability in the Coulomb potential

    CERN Document Server

    Kisel, V; Ovsiyuk, E; Amirfachrian, M; Red'kov, V

    2011-01-01

    Quantum mechanical scalar particle with polarizability is considered in the presence of the Coulomb field. Separation of variables is performed with the use of Wigner $D$-functions, the radial system of 15 equations is reduced to a single second order differential equation, which among the Coulomb term includes an additional interaction term of the form \\sigma \\alpha^{2} / M^{2}r^{4}. Various physical regimes exist that is demonstrated by examining the behavior of the curves of generalized squared radial momentum P^{2}(r). Eigenstates of the equations can be constructed in terms of double confluent Heun functions. Numerical analysis proves the existence of the bound states in the system; the lowest energy level and corresponding solution are calculated based on generalization of Ritz variational procedure.

  10. Ultranarrow resonance in Coulomb drag between quantum wires at coinciding densities

    Science.gov (United States)

    Dmitriev, A. P.; Gornyi, I. V.; Polyakov, D. G.

    2016-08-01

    We investigate the influence of the chemical potential mismatch Δ (different electron densities) on Coulomb drag between two parallel ballistic quantum wires. For pair collisions, the drag resistivity ρD(Δ ) shows a peculiar anomaly at Δ =0 with ρD being finite at Δ =0 and vanishing at any nonzero Δ . The "bodyless" resonance in ρD(Δ ) at zero Δ is only broadened by processes of multiparticle scattering. We analyze Coulomb drag for finite Δ in the presence of both two- and three-particle scattering within the kinetic equation framework, focusing on a Fokker-Planck picture of the interaction-induced diffusion in momentum space of the double-wire system. We describe the dependence of ρD on Δ for both weak and strong intrawire equilibration due to three-particle scattering.

  11. Classification of N=2 Superconformal Field Theories with Two-Dimensional Coulomb Branches, II

    CERN Document Server

    Argyres, P C; Argyres, Philip C.; Wittig, John R.

    2005-01-01

    We continue the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries. This classification was begun in [hep-th/0504070] where singularities corresponding to curves of the form y^2=x^6 with a fixed canonical basis of holomorphic one forms were analyzed. Here we perform the analysis for the y^2=x^5 type singularities. (The final maximal singularity type, y^2=x^3(x-1)^3, will be analyzed in a later paper.) These singularities potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that there are only 13 solutions satisfying the integrability condition (enforcing the RSK geometry of the Coulomb branch) and the Z-consistency condition (requiring massless charged states at singularities). Of these solutions, one has a marginal deformation, and corresponds to the known solution for certain Sp(2) gauge theories, while the rest correspond to isolated strongly interacting conformal field theories.

  12. The impact of sharp screening on the Coulomb scattering problem in three dimensions

    CERN Document Server

    Yakovlev, S L; Yarevsky, E; Elander, N

    2010-01-01

    The scattering problem for two particles interacting via the Coulomb potential is examined for the case where the potential has a sharp cut-off at some distance. The problem is solved for two complimentary situations, firstly when the interior part of the Coulomb potential is left in the Hamiltonian and, secondly, when the long range tail is considered as the potential. The partial wave results are summed up to obtain the wave function in three dimensions. It is shown that in the domains where the wave function is expected to be proportional to the known solutions, the proportionality is given by an operator acting on the angular part of the wave function. The explicit representation for this operator is obtained in the basis of Legendre polynomials. We proposed a driven Schr\\"odinger equation including an inhomogeneous term of the finite range with purely outgoing asymptotics for its solution in the case of the three dimensional scattering problem with long range potentials.

  13. Phase Diagram, Correlation Gap, and Critical Properties of the Coulomb Glass

    Science.gov (United States)

    Goethe, Martin; Palassini, Matteo

    2009-07-01

    We investigate the lattice Coulomb glass model in three dimensions via Monte Carlo simulations. No evidence for an equilibrium glass phase is found down to very low temperatures, although the correlation length increases rapidly near T=0. A charge-ordered phase exists at low disorder. The transition to this phase is consistent with the random field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. For large disorder, the single-particle density of states near the Coulomb gap satisfies the scaling relation g(γ,T)=Tδf(|γ|/T) with δ=2.01±0.05 in agreement with the prediction of Efros and Shklovskii. For decreasing disorder, a crossover to a larger effective exponent occurs due to the proximity of the charge-ordered phase.

  14. On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.

    Science.gov (United States)

    Striganov, S I

    2005-01-01

    The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.

  15. On the Theory and Simulation of Multiple Coulomb Scattering of Heavy Charged Particles

    CERN Document Server

    Striganov, S I

    2004-01-01

    The Moliere theory of multiple Coulomb scattering is modified to take into account difference between scattering off atomic nuclei and electron. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential cross section and has wider range of applicability than a Gaussian approximation. A well-known method to simulate multiple Coulomb scattering is based on the different treatment of soft and hard collisions. An angular deflection in a large number of soft collisions is sampled using the proposed distribution function, a small number of hard collisions are simulated directly. A boundary between hard and soft collisions is defined providing a precise sampling of scattering angle (1% level) and small number of hard collisions. A corresponding simulation module takes into account projectile and nucleus charge distributions and exact kinematics of a projectile-electron interaction.

  16. A Finite-Rate Gas-Surface Interaction Model Informed by Fundamental Computational Chemistry Simulations

    Science.gov (United States)

    2013-03-31

    oxygen interactions with a specific crystalline polymorph of SiO2 (called β- cristobalite ). Computer images of this crystal lattice are shown in Fig...2. The choice of β- cristobalite is motivated by experimental studies from Balat-Pichelin et al. [15,22,23] where silicon-carbide (SiC) surfaces were...conclusion that the measured loss rates correspond to β- cristobalite was based on the fact that for polymorph diagrams of SiO2, β- cristobalite is most stable

  17. Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia

    Science.gov (United States)

    Jensen, Kaare H.; Valente, André X. C. N.; Stone, Howard A.

    2014-05-01

    We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order of scaling.

  18. Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Valente, Andre X. C. N.; Stone, Howard A.

    2014-01-01

    to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order......We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results...

  19. The Coulomb Branch of 3d N= 4 Theories

    Science.gov (United States)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide

    2017-09-01

    We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.

  20. Modelos exactamente solubles en mecanica estadistica de sistemas de Coulomb

    National Research Council Canada - National Science Library

    Tellez, Gabriel

    2013-01-01

    Se presenta una revision de modelos exactamente solubles de fisica estadistica clasica en dos dimensiones de sistemas de Coulomb, que son sistemas compuestos por un gran numero de particulas cargadas electricamente...

  1. Thermodynamic properties of the magnetized Coulomb crystal lattices

    Science.gov (United States)

    Kozhberov, A. A.

    2016-08-01

    It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.

  2. Quantifying the Interactions between Maternal and Fetal Heart Rates by Transfer Entropy.

    Science.gov (United States)

    Marzbanrad, Faezeh; Kimura, Yoshitaka; Palaniswami, Marimuthu; Khandoker, Ahsan H

    2015-01-01

    Evidence of the short term relationship between maternal and fetal heart rates has been found in previous studies. However there is still limited knowledge about underlying mechanisms and patterns of the coupling throughout gestation. In this study, Transfer Entropy (TE) was used to quantify directed interactions between maternal and fetal heart rates at various time delays and gestational ages. Experimental results using maternal and fetal electrocardiograms showed significant coupling for 63 out of 65 fetuses, by statistically validating against surrogate pairs. Analysis of TE showed a decrease in transfer of information from fetus to the mother with gestational age, alongside the maturation of the fetus. On the other hand, maternal to fetal TE was significantly greater in mid (26-31 weeks) and late (32-41 weeks) gestation compared to early (16-25 weeks) gestation (Mann Whitney Wilcoxon (MWW) pheart rate being larger than 4 msec in the late gestation. This difference was not observed for the fetuses with smaller RMSSD, which could be associated with the quiet sleep state. Delay in the information transfer from mother to fetus significantly decreased (p = 0.03) from mid to late gestation, implying a decrease in fetal response time. These changes occur concomitant with the maturation of the fetal sensory and autonomic nervous systems with advancing gestational age. The effect of maternal respiratory rate derived from maternal ECG was also investigated and no significant relationship was found between breathing rate and TE at any lag. In conclusion, the application of TE with delays revealed detailed information on the fetal-maternal heart rate coupling strength and latency throughout gestation, which could provide novel clinical markers of fetal development and well-being.

  3. Simple field theoretical approach of Coulomb systems. Entropic effects

    Energy Technology Data Exchange (ETDEWEB)

    Di Caprio, D; Badiali, J P [Laboratory of Electrochemistry and Analytical Chemistry, University Paris 6, CNRS, ENSCP, BP 39, 4, Place Jussieu, 75252 Paris, Cedex 05 (France); Holovko, M [Institute for Condensed Matter Physics, National Academy of Sciences, 1 Svientsitskii Str, 79011 Lviv (Ukraine)], E-mail: dung.di_caprio@upmc.fr

    2009-05-29

    We discuss a new simple field theory approach of Coulomb systems. Using a description in terms of fields, we introduce in a new way the statistical degrees of freedom in relation to the quantum mechanics. We show by a series of examples that these fundamental entropic effects can help account for physical phenomena in relation to Coulomb systems whether symmetric or asymmetric in valence. Overall, this gives a new understanding of these systems.

  4. COULOMB BLOCKADE OSCILLATIONS OF Si SINGLE-ELECTRON TRANSISTORS

    Institute of Scientific and Technical Information of China (English)

    王太宏; 李宏伟; 周均铭

    2001-01-01

    Coulomb blockade oscillations of Si single-electron transistors, which are fabricated completely by the conventional photolithography technique, have been investigated. Most of the single-electron transistors clearly show Coulomb blockade oscillations and these oscillations can be periodic by applying negative voltages to the in-plane gates. A shift of the peak positions is observed at high temperatures. It is also found that the fluctuation of the peak spacing cannot be neglected.

  5. Temperature dependence of coulomb drag between finite-length quantum wires.

    Science.gov (United States)

    Peguiron, J; Bruder, C; Trauzettel, B

    2007-08-24

    We evaluate the Coulomb drag current in two finite-length Tomonaga-Luttinger-liquid wires coupled by an electrostatic backscattering interaction. The drag current in one wire shows oscillations as a function of the bias voltage applied to the other wire, reflecting interferences of the plasmon standing waves in the interacting wires. In agreement with this picture, the amplitude of the current oscillations is reduced with increasing temperature. This is a clear signature of non-Fermi-liquid physics because for coupled Fermi liquids the drag resistance is always expected to increase as the temperature is raised.

  6. Coulomb sink effect on coarsening of metal nanostructures on surfaces

    Institute of Scientific and Technical Information of China (English)

    Yong HAN; Feng LIU

    2008-01-01

    We discuss Coulomb effects on the coarsening of metal nanostructures on surfaces. We have proposed a new concept of a "Coulomb sink" [Phys. Rev. Lett., 2004, 93: 106102] to elucidate the effect of Coulomb charging on the coarsening of metal mesas grown on semiconductor surfaces. A charged mesa, due to its reduced chemical potential, acts as a Coulomb sink and grows at the expense of neighboring neu-tral mesas. The Coulomb sink provides a potentially useful method for the controlled fabrication of metal nanostructures. In this article, we will describe in detail the proposed physical models, which can explain qualitatively the most salient fea-tures of coarsening of charged Pb mesas on the Si(111) sur-face, as observed by scanning tunneling microscopy (STM). We will also describe a method of precisely fabricating large-scale nanocrystals with well-defined shape and size. By using the Coulomb sink effect, the artificial center-full-hol-lowed or half-hollowed nanowells can be created.

  7. Statistical analysis of interaction between lake seepage rates and groundwater and lake levels

    Science.gov (United States)

    Ala-aho, P.; Rossi, P. M.; Klöve, B.

    2012-04-01

    In Finland, the main sources of groundwater are the esker deposits from the last ice age. Small lakes imbedded in the aquifer with no outlets or inlets are typically found in eskers. Some lakes at Rokua esker, in Northern Finland, have been suffering from changes in water stage and quality. A possible permanent decline of water level has raised considerable concern as the area is also used for recreation and tourism. Rare biotypes supported by the oligotrophic lakes can also be endangered by the level decline. Drainage of peatlands located in the discharge zone of the aquifer is a possible threat for the lakes and the whole aquifer. Drainage can potentially lower the aquifer water table which can have an effect on the groundwater-lake interaction. The aim of this study was to understand in more detail the interaction of the aquifer and the lake systems so potential causes for the lake level variations could be better understood and managed. In-depth understanding of hydrogeological system provides foundation to study the nutrient input to lakes affecting lake ecosystems. A small lake imbedded the Rokua esker aquifer was studied in detail. Direct measurements of seepage rate between the lake and the aquifer were carried out using seepage meters. Seepage was measured from six locations for eight times during May 2010 - November 2010. Precipitation was recorded with a tipping bucket rain gauge adjacent to the lake. Lake stage and groundwater levels from three piezometers were registered on an hourly interval using pressure probes. Statistical methods were applied to examine relationship between seepage measurements and levels of lake and groundwater and amount of precipitation. Distinct areas of inseepage and outseepage of the lake were distinguished with seepage meter measurements. Seepage rates showed only little variation within individual measurement locations. Nevertheless analysis revealed statistically significant correlation of seepage rate variation in four

  8. Coulomb Bubbles: Over-stable Driving of Magnetoacoustic Waves Due to the Rapid and Anisotropic Diffusion of Energy

    CERN Document Server

    Socrates, A; Stone, J M; Socrates, Aristotle; Parrish, Ian J.; Stone, James M.

    2007-01-01

    We perform a linear magnetohydrodynamic perturbation analysis for a stratified magnetized envelope where the diffusion of heat is mediated by charged particles that are confined to flow along magnetic field lines. We identify an instability, the ``coulomb bubble instability,'' which may be thought of as standard magnetosonic fast and slow waves, driven by the rapid diffusion of heat along the direction of the magnetic field. We calculate the growth rate and stability criteria for the coulomb bubble instability for various choices of equilibrium conditions. The coulomb bubble instability is most strongly driven for weakly magnetized atmospheres that are strongly convectively stable. We briefly discuss a possible application of astrophysical interest: diffusion of interstellar cosmic rays in the hot T ~ 10^6 K Galactic corona. We show that for commonly accepted values of the cosmic ray and gas pressure as well as its overall characteristic dimensions, the Galactic corona is in a marginal state of stability with...

  9. Does raising type 1 error rate improve power to detect interactions in linear regression models? A simulation study.

    Directory of Open Access Journals (Sweden)

    Casey P Durand

    Full Text Available INTRODUCTION: Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. METHODS: A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. RESULTS: In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. CONCLUSIONS: Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.

  10. Understanding interaction of small repeating earthquakes through models of rate-and-state faults

    Science.gov (United States)

    Chen, T.; Lui, K.; Lapusta, N.

    2012-12-01

    Due to their short recurrence times and known locations, small repeating earthquakes are widely used to study earthquake physics. Some of the repeating sequences are located close to each other and appear to interact. For example, the "San Francisco" (SF) and "Los Angeles" (LA) repeating sequences, which are targets of the San Andreas Fault Observatory at Depth (SAFOD), have a lateral separation of less than 70 m. The LA events tend to occur within 24 hours after the SF events, suggesting a triggering effect. Our goal is to study interaction of repeating earthquakes in the framework of rate-and-state fault models, in which repeating earthquakes occur on velocity-weakening patches embedded into a larger velocity-strengthening fault area. Such models can reproduce behavior of isolated repeating earthquake sequences, in particular, the scaling of their moment versus recurrence time and the response to accelerated postseismic creep (Chen and Lapusta, 2009; Chen et al., 2010). Our studies of the interaction of seismic events on two patches show that a variety of interesting behaviors. As expected based on intuition prior studies (e.g., Kato, JGR, 2004; Kaneko et al., Nature Geoscience, 2010), the two patches behave independently when they are far apart and rupture together if they are next to each other. In the intermediate range of distances, we observe triggering effects, with ruptures on the two patches clustering in time, but also other patterns, including supercycles that alternate between events that rupture a single asperity and events that rupture both asperities at the same time. When triggering occurs, smaller events tend to trigger larger events, since the nucleation of smaller events tends to be more frequent. To overcome such a pattern, and have larger events trigger smaller events as observed for the SF-LA interaction, the patch for the smaller event needs to be of the order of the nucleation size, so that the smaller event has difficulty nucleating by

  11. Line broadening caused by Coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots

    DEFF Research Database (Denmark)

    Uskov, Alexander V; Magnúsdóttir, Ingibjörg; Tromborg, Bjarne;

    2001-01-01

    Mechanisms of pure dephasing in quantum dots due to Coulomb correlations and the dynamics of carrier capture and emission are suggested, and a phenomenological model for the dephasing is developed. It is shown that, if the rates of these capture and emission processes are sufficiently high...

  12. High Override Rate for Opioid Drug-allergy Interaction Alerts: Current Trends and Recommendations for Future.

    Science.gov (United States)

    Topaz, Maxim; Seger, Diane L; Lai, Kenneth; Wickner, Paige G; Goss, Foster; Dhopeshwarkar, Neil; Chang, Frank; Bates, David W; Zhou, Li

    2015-01-01

    This study examined trends in drug-allergy interaction (DAI) alert overrides for opioid medications - the most commonly triggered alerts in the computerized provider order entry (CPOE). We conducted an observational analysis of the DAI opioid alerts triggered over the last decade (2004-2013, n=342,338) in two large academic hospitals in Boston (United States). We found an increasing rate of DAI alert overrides culminating in 89.7% in 2013. Allergic reactions included a high proportion (38.2%) of non-immune mediated opioid reactions (e.g. gastrointestinal upset). The DAI alert override rate was high for immune mediated (88.6%) and life threatening reactions (87.8%). Exact allergy-medication matches were overridden less frequently (about 70%) compared to non-exact matches within allergy groups (over 90%). About one-third of the alert override reasons pointed to irrelevant alerts (i.e."Patient has tolerated the medication before") and 44.9% were unknown. Those findings warrant further investigation into providers' reasons for high override rate. User interfaces should evolve to enable less interruptive and more accurate alerts to decrease alert fatigue.

  13. Thermal and chaotic distributions of plasma in laser driven Coulomb explosions of deuterium clusters

    CERN Document Server

    Barbarino, M; Bonasera, A; Lattuada, D; Bang, W; Quevedo, H J; Consoli, F; De Angelis, R; Andreoli, P; Kimura, S; Dyer, G; Bernstein, A C; Hagel, K; Barbui, M; Schmidt, K; Gaul, E; Donovan, M E; Natowitz, J B; Ditmire, T

    2015-01-01

    In this work we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is chaotic enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is nearly isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell- Boltzmann (MB) distribution, a shifted MB distribution (sMB) and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise be...

  14. Thermal and log-normal distributions of plasma in laser driven Coulomb explosions of deuterium clusters

    Science.gov (United States)

    Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Bang, W.; Quevedo, H. J.; Consoli, F.; de Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-08-01

    In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.

  15. Coulomb fission in multiply charged molecular clusters: Experiment and theory

    Science.gov (United States)

    Harris, Christopher; Baptiste, Joshua; Lindgren, Eric B.; Besley, Elena; Stace, Anthony J.

    2017-04-01

    A series of three multiply charged molecular clusters, (C6H6)nz+ (benzene), (CH3CNnz) + (acetonitrile), and (C4H8O)nz+ (tetrahydrofuran), where the charge z is either 3 or 4, have been studied for the purpose of identifying the patterns of behaviour close to the charge instability limit. Experiments show that on a time scale of ˜10-4 s, ions close to the limit undergo Coulomb fission where the observed pathways exhibit considerable asymmetry in the sizes of the charged fragments and are all associated with kinetic (ejection) energies of between 1.4 and 2.2 eV. Accurate kinetic energies have been determined through a computer simulation of peak profiles recorded in the experiments and the results modelled using a theory formulated to describe how charged particles of dielectric materials interact with one another [E. Bichoutskaia et al., J. Chem. Phys. 133, 024105 (2010)]. The calculated electrostatic interaction energy between separating fragments gives an accurate account for the measured kinetic energies and also supports the conclusion that +4 ions fragment into +3 and +1 products as opposed to the alternative of two +2 fragments. This close match between the theory and experiment reinforces the assumption that a significant fraction of excess charge resides on the surfaces of the fragment ions. It is proposed that the high degree of asymmetry seen in the fragmentation patterns of the multiply charged clusters is due, in part, to limits imposed by the time window during which observations are made.

  16. Wood source and pyrolysis temperature interact to control PyOM degradation rates

    Science.gov (United States)

    Bird, J. A.; Hatton, P. J.; Filley, T. R.; Chatterjee, S.; Auclerc, A.; Gormley, M.; Dastmalchi, K.; Stark, R. E.; Nadelhoffer, K. J.

    2015-12-01

    Surprisingly little is known about how shifts in tree species composition and increased forest fire frequency and intensity will affect one of the most stable pools of soil organic matter, i.e. the pyrogenic organic matter (PyOM or char). In a previous study, we showed that wood source and pyrolysis temperature interact to control PyOM structure and potential reactivity for two tree species common in high-latitude forests, jack pine (JP) and red maple (RM). Here, we investigate whether these differences affect PyOM turnover by examining the fates of 13C/15N-enriched JP wood and PyOM pyrolyzed at 300 (JP300) and 450 °C (JP450) and RM pyrolyzed at 450 °C (RM450). The substrates were applied 1-3 cm below the O/A interface of a well-drained Spodosol in a long-term forest fire study located at the University of Michigan Biological Station (Pellston, MI, USA). 13C-CO2effluxes from the first 996 days of decay showed a significant wood source by pyrolysis temperature interaction on PyOM field mineralisation rates, with RM450 mineralising twice faster than JP450 during the first 90 days. Increasing pyrolysis temperature substantially decreased field mineralization rates during the first 996 days, with mineralisation rates 24 and 80 times slower for JP300 and JP450 compared with JP wood. After 1 year, (i) bacterial groups were large sinks for PyOM-derived C as pyrolysis temperature increased and as substrate use efficiency decreased; (ii) potential phenol oxidase and net peroxidase activities were unaffected by the PyOM addition, although net peroxidase activities measured tended to lesser for soils amended with JP450 and RM450; and (iii) Collembola detritivores appeared less likely to be found for soils amended with JP450 and RM450. PyOM-derived C and N recoveries did not differ after 1 year; we will present 3-y recovery data. Our results suggest that the composition of angiosperms (e.g. RM) and gymnosperms (e.g. JP) in high-latitude forests is an underappreciated but

  17. Temperature dependence of the rate constant of hydrogen isotope interactions with a lithium capillary-porous system under reactor irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Kulsartov, Timur; Gordienko, Yuri [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Mukanova, Aliya [Al’ Farabi Kazakh National University, Almaty (Kazakhstan); Ponkratov, Yuri; Barsukov, Nikolay; Tulubaev, Evgeniy [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Platacis, Erik [University of Latvia (IPUL), Riga (Latvia); Kenzhin, Ergazy [Shakarim Semey State University, Semey (Kazakhstan)

    2013-10-15

    Highlights: • The experiments with Li CPS sample were carried out at reactor IVG-1.M. • The gas absorption technique was used to study hydrogen isotope interaction with lithium CPS. • The temperature dependence of constants of interaction rate was obtained for various power rates of the reactor. • Determination of the activation energies, and pre-exponents of Arrhenius dependence. • The effect of increase of the rate constant under reaction irradiation. -- Abstract: Experiments with a sample of a lithium capillary-porous system (CPS) were performed at the reactor IVG-1.M of the Institute of Atomic Energy NNC RK to study the effects of neutron irradiation on the parameters of hydrogen isotope interactions with a lithium CPS. The absorption technique was used during the experiments, and this technique allowed the temperature dependences of the hydrogen isotope interaction rate constants with the lithium CPS to be obtained under various reactor powers. The obtained dependencies were used to determine the main interaction parameters: the activation energies and the pre-exponents of the Arrhenius dependence of the hydrogen interaction rate constants with lithium and the lithium CPS. An increase of the hydrogen isotope interaction rate with the lithium CPS was observed under reactor irradiation.

  18. Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions

    Science.gov (United States)

    Wang, K.; Hu, Y.

    2004-12-01

    The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.

  19. Exploring a new interaction between dark matter and dark energy using the growth rate of structure

    CERN Document Server

    Richarte, Martín G

    2015-01-01

    We present a phenomenological interaction with a scale factor power law form which leads to the appearance of two kinds of perturbed terms, a scale factor spatial variation along with perturbed Hubble expansion rate. We study both the background and the perturbation evolution within the parametrized post-Friedmann scheme, obtaining that the exchange of energy-momentum can flow from dark energy to dark matter in order to keep dark energy and dark matter densities well defined at all times. We combine several measures of the cosmic microwave background (WMAP9+Planck) data, baryon acoustic oscillation measurements, redshift-space distortion data, JLA sample of supernovae, and Hubble constant for constraining the coupling constant and the exponent provided both parametrized the interaction itself. The joint analysis of ${\\rm Planck+WMAP9+BAO}$ ${\\rm +RSD+JLA+HST}$ data seems to favor large coupling constant, $\\xi_c = 0.34403427_{- 0.18907353}^{+ 0.14430125}$ at 1 $\\sigma$ level, and prefers a power law interactio...

  20. Evaluation of Finite-Rate GasSurface Interaction Models for a Carbon Based Ablator

    Science.gov (United States)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  1. Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac-Coulomb Hamiltonian.

    Science.gov (United States)

    Lipparini, Filippo; Gauss, Jürgen

    2016-09-13

    We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full configuration interaction part. The numerical aspects are discussed, and the capabilities of the SFDC-CASSCF methodology are demonstrated through a pilot application.

  2. Coulomb and nuclear effects in breakup and reaction cross sections

    Science.gov (United States)

    Descouvemont, P.; Canto, L. F.; Hussein, M. S.

    2017-01-01

    We use a three-body continuum discretized coupled channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li+208Pb . For breakup, we investigate various aspects, such as the role of the α +t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention to different definitions of the reaction cross section which exist in the literature and which may induce small, but significant, differences in the numerical values.

  3. "Does replication groups scoring reduce false positive rate in SNP interaction discovery?: Response"

    Directory of Open Access Journals (Sweden)

    González-Pérez Antonio

    2010-06-01

    Full Text Available Abstract A response to Toplak et al: Does replication groups scoring reduce false positive rate in SNP interaction discovery? BMC Genomics 2010, 11:58. Background The genomewide evaluation of genetic epistasis is a computationally demanding task, and a current challenge in Genetics. HFCC (Hypothesis-Free Clinical Cloning is one of the methods that have been suggested for genomewide epistasis analysis. In order to perform an exhaustive search of epistasis, HFCC has implemented several tools and data filters, such as the use of multiple replication groups, and direction of effect and control filters. A recent article has claimed that the use of multiple replication groups (as implemented in HFCC does not reduce the false positive rate, and we hereby try to clarify these issues. Results/Discussion HFCC uses, as an analysis strategy, the possibility of replicating findings in multiple replication groups, in order to select a liberal subset of preliminary results that are above a statistical criterion and consistent in direction of effect. We show that the use of replication groups and the direction filter reduces the false positive rate of a study, although at the expense of lowering the overall power of the study. A post-hoc analysis of these selected signals in the combined sample could then be performed to select the most promising results. Conclusion Replication of results in independent samples is generally used in scientific studies to establish credibility in a finding. Nonetheless, the combined analysis of several datasets is known to be a preferable and more powerful strategy for the selection of top signals. HFCC is a flexible and complete analysis tool, and one of its analysis options combines these two strategies: A preliminary multiple replication group analysis to eliminate inconsistent false positive results, and a post-hoc combined-group analysis to select the top signals.

  4. "Does replication groups scoring reduce false positive rate in SNP interaction discovery?: Response"

    Science.gov (United States)

    2010-01-01

    A response to Toplak et al: Does replication groups scoring reduce false positive rate in SNP interaction discovery? BMC Genomics 2010, 11:58. Background The genomewide evaluation of genetic epistasis is a computationally demanding task, and a current challenge in Genetics. HFCC (Hypothesis-Free Clinical Cloning) is one of the methods that have been suggested for genomewide epistasis analysis. In order to perform an exhaustive search of epistasis, HFCC has implemented several tools and data filters, such as the use of multiple replication groups, and direction of effect and control filters. A recent article has claimed that the use of multiple replication groups (as implemented in HFCC) does not reduce the false positive rate, and we hereby try to clarify these issues. Results/Discussion HFCC uses, as an analysis strategy, the possibility of replicating findings in multiple replication groups, in order to select a liberal subset of preliminary results that are above a statistical criterion and consistent in direction of effect. We show that the use of replication groups and the direction filter reduces the false positive rate of a study, although at the expense of lowering the overall power of the study. A post-hoc analysis of these selected signals in the combined sample could then be performed to select the most promising results. Conclusion Replication of results in independent samples is generally used in scientific studies to establish credibility in a finding. Nonetheless, the combined analysis of several datasets is known to be a preferable and more powerful strategy for the selection of top signals. HFCC is a flexible and complete analysis tool, and one of its analysis options combines these two strategies: A preliminary multiple replication group analysis to eliminate inconsistent false positive results, and a post-hoc combined-group analysis to select the top signals. PMID:20576100

  5. Interactive effects of task difficulty and personality on mood and heart rate variability.

    Science.gov (United States)

    Sakuragi, Sokichi; Sugiyama, Yoshiki

    2004-05-01

    Susceptibility to stress would presumably be different from person to person and be affected by the cause of the given stress. The purpose of this study was to investigate the interactive effects of task difficulty and subject's personality on mood and autonomic nervous function when stress was induced experimentally by tasks involving 3 degrees of difficulty: easy (Task A), difficult but controllable (Task B), and very difficult and uncontrollable (Task C). Twelve healthy female subjects volunteered for the experiment. We assessed their personalities using the Minnesota Multiphasic Personality Inventory (MMPI) questionnaire. Mood states were evaluated by a profile of mood states and a frontal alpha laterality ratio (FALR). Autonomic nervous function was estimated by a spectral analysis of heart rate variability (HRV). Repeated measures analysis of variance applied to two groups (low- and high-) divided by a median split of MMPI clinical scales, revealed significant interactions of time course x task difficulty x Hs (hypochondriasis) in FALR and time course x task difficulty x Pt (psychasthenia) in a low-frequency component and in a high-frequency component of HRV, and in FALR. The differences between low- and high-Hs, and low- and high-Pt were more obvious in Task B session. High-Hs group, whose members tend to place overemphasis on existing physical disorders, showed more negative FALR throughout the session, which would indicate prolonged negative mood possibly due to the task. High-Pt group, whose members tend to be susceptible to stress, showed sympathetic predominance during task period and parasympathetic predominance after task period, which would imply a tendency to overreact. These results suggest that task difficulties would affect mood states assessed by FALR and/or autonomic nervous function differently depending on the subject's personality, especially on Hs and Pt.

  6. Rating Parent-Child Interactions: Joint Engagement, Communication Dynamics, and Shared Topics in Autism, Down Syndrome, and Typical Development

    Science.gov (United States)

    Adamson, Lauren B.; Bakeman, Roger; Deckner, Deborah F.; Nelson, P. Brooke

    2012-01-01

    A battery of 17 rating items were applied to video records of typically-developing toddlers and young children with autism and Down syndrome interacting with their parents during the Communication Play Protocol. This battery provided a reliable and broad view of the joint engagement triad of child, partner, and shared topic. Ratings of the child's…

  7. In the Eye of the Beholder: Subjective and Observer Ratings of Middle-Class African American Mother-Adolescent Interactions

    Science.gov (United States)

    Campione-Barr, Nicole; Smetana, Judith G.

    2004-01-01

    Middle-class African American mothers and adolescents (n=81) participated in a dyadic interaction task in early adolescence (M=13.06 years, SD=1.27) and then again 2 years later (M=15.01 years, SD=1.27). Following the task, mothers and adolescents rated their own and their partner's support and involvement in the task; observers rated videotaped…

  8. Quasiparticle Gaps and Exciton Coulomb Energies in Si Nanoshells

    Energy Technology Data Exchange (ETDEWEB)

    Frey, K. [University of Illinois, Chicago; Idrobo Tapia, Juan C [ORNL; Tiago, Murilo L [ORNL; Reboredo, Fernando A [ORNL; Ogut, Serdar [University of Illinois, Chicago

    2009-01-01

    Quasiparticle gaps and exciton Coulomb energies of H-passivated spherical Si nanoshells are computed using rst principles SCF and GW methods. We nd that the quasiparticle gap of a nanoshell depends on both its inner radius R1 (weakly) and outer radius R2 (strongly). These dependences on R1 and R2 are mostly consistent with electrostatics of a metallic shell. We also nd that the unscreened Coulomb energy ECoul in Si nanoshells has a somewhat unexpected size dependence at xed outer radius R2: ECoul decreases as the nanoshell becomes more conning, contrary to what one would expect from quantum connement eects. We show that this is a consequence of an increase in the average electron-hole distance, giving rise to reduced exciton Coulomb energies in spite of the reduction in the conning nanoshell volume.

  9. Gribov horizon and Gribov copies effect in lattice Coulomb gauge

    CERN Document Server

    Burgio, Giuseppe; Reinhardt, Hugo; Vogt, Hannes

    2016-01-01

    Following a recent proposal by Cooper and Zwanziger we investigate via lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e. the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g. the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.

  10. Aspects of Coulomb dissociation and interference in peripheral nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystrand, Joakim; Baltz, Anthony; Klein, Spencer R.

    2001-10-21

    Coherent vector meson production in peripheral nucleus-nucleus collisions is discussed. These interactions may occur for impact parameters much larger than the sum of the nuclear radii. Since the vector meson production is always localized to one of the nuclei, the system acts as a two-source interferometer in the transverse plane. By tagging the outgoing nuclei for Coulomb dissociation it is possible to obtain a measure of the impact parameter and thus the source separation in the interferometer. This is of particular interest since the life-time of the vector mesons are generally much shorter than the impact parameters of the collisions.

  11. Coulomb excitation of neutron-rich $^{134-136}$Sn isotopes

    CERN Multimedia

    We propose to study excited states in the isotopes $^{134,136}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to investigate the evolution of quadrupole collectivity beyond the magic shell closure at N = 82 by the determination of B(E2) values and electric quadrupole moments $\\mathcal{Q}_2$. Recent shell-model calculations using realistic interactions predict possible enhanced collectivity in neutron-rich regions. Evidence for this could be obtained by this experiment. Furthermore, the currently unknown excitation energies of the 2$^+_{1}$ and 4$^+_{1}$ states in $^{136}$Sn will be measured for the first time.

  12. Coulomb blur advantage of a multi-shaped beam lithography approach

    Science.gov (United States)

    Slodowski, Matthias; Doering, Hans-Joachim; Elster, Thomas; Stolberg, Ines A.

    2009-03-01

    This paper describes a new multi beam approach in electron beam lithography called Multi Shaped Beam (MSB). Based on the well known Variable Shaped Beam (VSB) principle, the single shaped beam arrangement is extended and complemented by an array of individually controlled shaped beams. The positive effect of the MSB approach on resolution limiting stochastic beam blur due to Coulomb interactions will be highlighted applying detailed electron-optical Monte-Carlo simulations. To verify the feasibility of the above-mentioned new approach, there is also depicted a proof-of-lithography test stand based on a complete e-beam-lithography system containing MSB-specific hardware and software components.

  13. Quadrupole Collectivity beyond N=28: Intermediate-Energy Coulomb Excitation of Ar47,48

    Science.gov (United States)

    Winkler, R.; Gade, A.; Baugher, T.; Bazin, D.; Brown, B. A.; Glasmacher, T.; Grinyer, G. F.; Meharchand, R.; McDaniel, S.; Ratkiewicz, A.; Weisshaar, D.

    2012-05-01

    We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei Ar47,48 using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.

  14. Resolutions of the Coulomb operator: VIII. Parallel implementation using the modern programming language X10.

    Science.gov (United States)

    Limpanuparb, Taweetham; Milthorpe, Josh; Rendell, Alistair P

    2014-10-30

    Use of the modern parallel programming language X10 for computing long-range Coulomb and exchange interactions is presented. By using X10, a partitioned global address space language with support for task parallelism and the explicit representation of data locality, the resolution of the Ewald operator can be parallelized in a straightforward manner including use of both intranode and internode parallelism. We evaluate four different schemes for dynamic load balancing of integral calculation using X10's work stealing runtime, and report performance results for long-range HF energy calculation of large molecule/high quality basis running on up to 1024 cores of a high performance cluster machine.

  15. Dependence of the rate of LiF ion pairing on the description of molecular interaction

    Energy Technology Data Exchange (ETDEWEB)

    Pluharova, Eva; Baer, Marcel D.; Schenter, Gregory K.; Jungwirth, Pavel; Mundy, Christopher J.

    2016-03-03

    We present an analysis of the dynamics of ion-pairing of Lithium Fluoride (LiF) in aqueous solvent using both detailed molecular simulation as well as reduced models within a Gener- alized Langevin Equation (GLE) framework. We explored the sensitivity of the ion-pairing phenomena to the details of descriptions of molecular interaction, comparing two empirical potentials to explicit quantum based density functional theory. We find quantitative differences in the potentials of mean force for ion-pairing as well as time dependent frictions that lead to variations in the rate constant and reactive flux correlation functions. These details reflect differences in solvent response to ion-pairing between different representations of molecular interaction and influence anharmonicity of the dynamic response. We find that the short time anharmonic response is recovered with a GLE parameterization. Recovery of the details of long time response may require extensions to the reduced model. We show that the utility of using a reduced model leads to a straight forward application of variational transition state the- ory concepts to the condensed phase system. The significance of this is reflected in the analysis of committor distributions and the variation of planar hypersurfaces, leading to an improved understanding of factors that determine the rate of LiF ion-pairing. CJM and GKS are supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest Na- tional Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is grateful for the support of Laboratory Directed Research and Development funding under the auspices of PNNL’s Laboratory Initiative Materials Synthesis and Simulation across Scales (MS3). Additional computing resources were generously allocated by PNNL’s Institutional Computing program. EP acknowledges support from PNNL’s Alternate Sponsored

  16. Bayesian inference for genomic data integration reduces misclassification rate in predicting protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Chuanhua Xing

    2011-07-01

    Full Text Available Protein-protein interactions (PPIs are essential to most fundamental cellular processes. There has been increasing interest in reconstructing PPIs networks. However, several critical difficulties exist in obtaining reliable predictions. Noticeably, false positive rates can be as high as >80%. Error correction from each generating source can be both time-consuming and inefficient due to the difficulty of covering the errors from multiple levels of data processing procedures within a single test. We propose a novel Bayesian integration method, deemed nonparametric Bayes ensemble learning (NBEL, to lower the misclassification rate (both false positives and negatives through automatically up-weighting data sources that are most informative, while down-weighting less informative and biased sources. Extensive studies indicate that NBEL is significantly more robust than the classic naïve Bayes to unreliable, error-prone and contaminated data. On a large human data set our NBEL approach predicts many more PPIs than naïve Bayes. This suggests that previous studies may have large numbers of not only false positives but also false negatives. The validation on two human PPIs datasets having high quality supports our observations. Our experiments demonstrate that it is feasible to predict high-throughput PPIs computationally with substantially reduced false positives and false negatives. The ability of predicting large numbers of PPIs both reliably and automatically may inspire people to use computational approaches to correct data errors in general, and may speed up PPIs prediction with high quality. Such a reliable prediction may provide a solid platform to other studies such as protein functions prediction and roles of PPIs in disease susceptibility.

  17. Bayesian inference for genomic data integration reduces misclassification rate in predicting protein-protein interactions.

    Science.gov (United States)

    Xing, Chuanhua; Dunson, David B

    2011-07-01

    Protein-protein interactions (PPIs) are essential to most fundamental cellular processes. There has been increasing interest in reconstructing PPIs networks. However, several critical difficulties exist in obtaining reliable predictions. Noticeably, false positive rates can be as high as >80%. Error correction from each generating source can be both time-consuming and inefficient due to the difficulty of covering the errors from multiple levels of data processing procedures within a single test. We propose a novel Bayesian integration method, deemed nonparametric Bayes ensemble learning (NBEL), to lower the misclassification rate (both false positives and negatives) through automatically up-weighting data sources that are most informative, while down-weighting less informative and biased sources. Extensive studies indicate that NBEL is significantly more robust than the classic naïve Bayes to unreliable, error-prone and contaminated data. On a large human data set our NBEL approach predicts many more PPIs than naïve Bayes. This suggests that previous studies may have large numbers of not only false positives but also false negatives. The validation on two human PPIs datasets having high quality supports our observations. Our experiments demonstrate that it is feasible to predict high-throughput PPIs computationally with substantially reduced false positives and false negatives. The ability of predicting large numbers of PPIs both reliably and automatically may inspire people to use computational approaches to correct data errors in general, and may speed up PPIs prediction with high quality. Such a reliable prediction may provide a solid platform to other studies such as protein functions prediction and roles of PPIs in disease susceptibility.

  18. Classical electromagnetism as a consequence of Coulomb's law, special relativity and Hamilton's principle and its relationship to quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Field, J H [Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, 24, quai Ernest-Ansermet CH-1211 Geneva 4 (Switzerland)

    2006-12-15

    It is demonstrated how all the mechanical equations of classical electromagnetism (CEM) may be derived from only Coulomb's inverse square force law, special relativity and Hamilton's principle. The instantaneous nature of the Coulomb force in the centre-of-mass frame of two interacting charged objects, mediated by the exchange of space-like virtual photons, is predicted by quantum electrodynamics (QED). The interaction Lagrangian of QED is shown to be identical, in the appropriate limit, to the potential energy term in the Lorentz-invariant Lagrangian of CEM. A comparison is made with the Feynman-Wheeler action-at-a-distance formulation of CEM.

  19. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  20. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    Science.gov (United States)

    Badalyan, S. M.; Shylau, A. A.; Jauho, A. P.

    2017-09-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q . Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  1. Spin and polarized current from Coulomb blockaded quantum dots.

    Science.gov (United States)

    Potok, R M; Folk, J A; Marcus, C M; Umansky, V; Hanson, M; Gossard, A C

    2003-07-04

    We report measurements of spin transitions for GaAs quantum dots in the Coulomb blockade regime and compare ground and excited state transport spectroscopy to direct measurements of the spin polarization of emitted current. Transport spectroscopy reveals both spin-increasing and spin-decreasing transitions, as well as higher-spin ground states, and allows g factors to be measured down to a single electron. The spin of emitted current in the Coulomb blockade regime, measured using spin-sensitive electron focusing, is found to be polarized along the direction of the applied magnetic field regardless of the ground state spin transition.

  2. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling....... Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments...

  3. An algebraic model of Coulomb scattering with spin

    Energy Technology Data Exchange (ETDEWEB)

    Levay, P. [School of Physics, University of Melbourne, Parkville (Australia); Department of Theoretical Physics, Institute of Physics, Technical University, Budapest (Hungary); Amos, K. [School of Physics, University of Melbourne, Parkville (Australia)

    2001-05-11

    A new matrix-valued realization for the so(3,1) algebra leads to a natural generalization of the Coulomb scattering problem of a particle with spin. The underlying su(2) gauge structure of this realization recasts the scattering problem into a familiar form, namely, the Coulomb scattering problem of a collection of dyons (particles having both electric and magnetic charges). Using this equivalent form and the results of Zwanziger for such systems, the scattering matrix can be calculated in the helicity formalism. (author)

  4. Lyapunov spectra of Coulombic and gravitational periodic systems

    CERN Document Server

    Kumar, Pankaj

    2016-01-01

    We compute Lyapunov spectra for Coulombic and gravitational versions of the one-dimensional systems of parallel sheets with periodic boundary conditions. Exact time evolution of tangent-space vectors are derived and are utilized toward computing Lypaunov characteristic exponents using an event-driven algorithm. The results indicate that the energy dependence of the largest Lyapunov exponent emulates that of Kolmogorov-entropy density for each system at different degrees of freedom. Our approach forms an effective and approximation-free tool toward studying the dynamical properties exhibited by the Coulombic and gravitational systems and finds applications in investigating indications of thermodynamic transitions in large versions of the spatially periodic systems.

  5. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  6. Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature

    Science.gov (United States)

    Poovathingal, Savio

    An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of

  7. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.

    Science.gov (United States)

    Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian

    2013-12-11

    We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.

  8. Precision measurement of the (7)Be solar neutrino interaction rate in Borexino.

    Science.gov (United States)

    Bellini, G; Benziger, J; Bick, D; Bonetti, S; Bonfini, G; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Pallavicini, M; Papp, L; Peña-Garay, C; Perasso, L; Perasso, S; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, A; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2011-09-30

    The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst) counts/(day·100  ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9)  cm(-2) s(-1) and, under the assumption of ν(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0 σ. A global solar neutrino analysis with free fluxes determines Φ(pp)=6.06(-0.06)(+0.02)×10(10)  cm(-2) s(-1) and Φ(CNO)neutrino oscillation model is experimentally tested at low energy.

  9. Distributional sources for Newman's holomorphic Coulomb field

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Gerald [Center for Signals and Waves, Austin, TX (United States)

    2004-09-10

    Newman (1973 J. Math. Phys. 14 102-3) considered the holomorphic extension E-tilde(z) of the Coulomb field E(x) in R{sup 3}. From an analysis of its multipole expansion, he concluded that the real and imaginary parts E(x+iy){identical_to}Re E-tilde(x+iy), H(x+iy){identical_to}Im E-tilde(x+iy), viewed as functions of x, are the electric and magnetic fields generated by a spinning ring of charge R. This represents the EM part of the Kerr-Newman solution to the Einstein-Maxwell equations (Newman E T and Janis A I 1965 J. Math. Phys. 6 915-7; Newman E T et al 1965 J. Math. Phys. 6 918-9). As already pointed out in Newman and Janis (1965 J. Math. Phys. 6 915-7), this interpretation is somewhat problematic since the fields are double-valued. To make them single-valued, a branch cut must be introduced so that R is replaced by a charged disc D having R as its boundary. In the context of curved spacetime, D becomes a spinning disc of charge and mass representing the singularity of the Kerr-Newman solution. Here we confirm the above interpretation of E and H without resorting to asymptotic expansions, by computing the charge and current densities directly as distributions in R{sup 3} supported in D. This will show that D spins rigidly at the critical rate so that its rim R moves at the speed of light.

  10. The masculinity paradox: facial masculinity and beardedness interact to determine women's ratings of men's facial attractiveness.

    Science.gov (United States)

    Dixson, B J W; Sulikowski, D; Gouda-Vossos, A; Rantala, M J; Brooks, R C

    2016-11-01

    In many species, male secondary sexual traits have evolved via female choice as they confer indirect (i.e. genetic) benefits or direct benefits such as enhanced fertility or survival. In humans, the role of men's characteristically masculine androgen-dependent facial traits in determining men's attractiveness has presented an enduring paradox in studies of human mate preferences. Male-typical facial features such as a pronounced brow ridge and a more robust jawline may signal underlying health, whereas beards may signal men's age and masculine social dominance. However, masculine faces are judged as more attractive for short-term relationships over less masculine faces, whereas beards are judged as more attractive than clean-shaven faces for long-term relationships. Why such divergent effects occur between preferences for two sexually dimorphic traits remains unresolved. In this study, we used computer graphic manipulation to morph male faces varying in facial hair from clean-shaven, light stubble, heavy stubble and full beards to appear more (+25% and +50%) or less (-25% and -50%) masculine. Women (N = 8520) were assigned to treatments wherein they rated these stimuli for physical attractiveness in general, for a short-term liaison or a long-term relationship. Results showed a significant interaction between beardedness and masculinity on attractiveness ratings. Masculinized and, to an even greater extent, feminized faces were less attractive than unmanipulated faces when all were clean-shaven, and stubble and beards dampened the polarizing effects of extreme masculinity and femininity. Relationship context also had effects on ratings, with facial hair enhancing long-term, and not short-term, attractiveness. Effects of facial masculinization appear to have been due to small differences in the relative attractiveness of each masculinity level under the three treatment conditions and not to any change in the order of their attractiveness. Our findings suggest that

  11. Structural properties of screened Coulomb balls

    CERN Document Server

    Bonitz, M; Arp, O; Golubnychiy, V; Baumgartner, H; Ludwig, P; Piel, A; Filinov, A

    2005-01-01

    Small three-dimensional strongly coupled charged particles in a spherical confinement potential arrange themselves in a nested shell structure. By means of experiments, computer simulations and theoretical analysis, it is shown that their structural properties depend on the type of interparticle forces. Using an isotropic Yukawa interaction, quantitative agreement for shell radii and occupation is obtained.

  12. High Textbook Reading Rates When Using an Interactive Textbook for a Material and Energy Balances Course

    Science.gov (United States)

    Liberatore, Matthew

    2017-01-01

    Textbooks are experiencing a 21st century makeover. The author has created a web-based electronic textbook, Material and Energy Balances zyBook, that records students' interactions. Animations and question sets create interactive and scaffolded content. The interactive format is adopted successfully in other engineering disciplines and is now…

  13. Coulomb's law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    Science.gov (United States)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio

    2016-05-01

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ̅ in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb's law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb's law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb's law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally observed or

  14. PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain

    Science.gov (United States)

    Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.

    2009-12-01

    A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007

  15. Measuring Propagation Speed of Coulomb Fields

    OpenAIRE

    De Sangro, R.; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G.

    2012-01-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planets motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly movi...

  16. Coulomb repulsion in (TMTSF)2X and (TMTTF)2X

    DEFF Research Database (Denmark)

    Mortensen, Kell; Engler, E. M.

    1985-01-01

    On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF-salts are ...

  17. Canonical derivation of the Vlasov-Coulomb noncanonical Poisson structure

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, A.N.; Dewar, R.L.

    1983-09-01

    Starting from a Lagrangian formulation of the Vlasov-Coulomb system, canonical methods are used to define a Poisson structure for this system. Successive changes of representation then lead systematically to the noncanonical Lie-Poisson structure for functionals of the Vlasov distribution.

  18. Coulomb and nuclear effects in breakup and reaction cross sections

    CERN Document Server

    Descouvemont, Pierre; Hussein, Mahir S

    2016-01-01

    We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the 'Coulomb' and 'nuclear' breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest...

  19. Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil

    2013-01-01

    of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...

  20. Integrating over the Coulomb branch in N=2 gauge theory

    OpenAIRE

    Marino, Marcos; Moore, Gregory

    1997-01-01

    We review the relation of certain integrals over the Coulomb phase of $d=4$, N=2 SO(3) supersymmetric Yang-Mills theory with Donaldson-Witten theory. We describe a new way to write an important contact term in the theory and show how the integrals generalize to higher rank gauge groups.

  1. Coulomb blockade and superuniversality of the theta angle

    NARCIS (Netherlands)

    Burmistrov, I.S.; Pruisken, A.M.M.

    2008-01-01

    Based on the Ambegaokar-Eckern-Schön approach to the Coulomb blockade, we develop a complete quantum theory of the single electron transistor. We identify a previously unrecognized physical observable in the problem that, unlike the usual average charge on the island, is robustly quantized for any f

  2. Revised variational approach to QCD in Coulomb gauge

    CERN Document Server

    Campagnari, Davide R; Reinhardt, Hugo; Vastag, Peter

    2016-01-01

    The variational approach to QCD in Coulomb gauge is revisited. By assuming the non-Abelian Coulomb potential to be given by the sum of its infrared and ultraviolet parts, i.e.~by a linearly rising potential and an ordinary Coulomb potential, and by using a Slater determinant ansatz for the quark wave functional, which contains the coupling of the quarks and the gluons with two different Dirac structures, we obtain variational equations for the kernels of the fermionic vacuum wave functional, which are free of ultraviolet divergences. Thereby, a Gaussian type wave functional is assumed for the gluonic part of the vacuum. By using the results of the pure Yang--Mills sector for the gluon propagator as input, we solve the equations for the fermionic kernels numerically and calculate the quark condensate and the effective quark mass in leading order. Assuming a value of $\\sigma_{\\mathrm{C}} = 2.5 \\sigma$ for the Coulomb string tension (where $\\sigma$ is the usual Wilsonian string tension) the phenomenological valu...

  3. Interpolating the Coulomb Phase of Little String Theory

    CERN Document Server

    Lin, Ying-Hsuan; Wang, Yifan; Yin, Xi

    2015-01-01

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.

  4. The Coulomb law and atomic levels in a superstrong B

    Directory of Open Access Journals (Sweden)

    Vysotsky M.I.

    2014-04-01

    Full Text Available The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.

  5. Application of Designer Polynomials to the Soft-Coulomb Potential

    Science.gov (United States)

    Weatherford, Charles; Wynn, Albert, III; Red, Eddie; Mathis, Clausell

    2004-05-01

    In a recent article [C.A. Weatherford, E. Red, A. Wynn III, International Journal of Quantum Chemistry 90, 1289-1294 (2002)], an algorithm was described whereby a synthetic weighted polynomial basis may be constructed which is adapted (designed) to a particular potential. It was applied therein to the Schroedinger equation with a coulomb potential in one dimension (-1/|x| ). A weighted polynomial basis with weight function w(x)=exp(-a|x|) was employed. It was observed that this potential had no even parity solutions - only odd parity solutions. The question arises as to the relationship of the solutions (eigenfunctions and eigenvalues) for this hard coulomb potential to the solutions for the soft coulomb potential (-1/ √x^2+b^2^1/2 ). In particular, since the soft coulomb potential is clearly expected to possess both even and odd parity solutions, how do these solutions behave as b->0 and thus what happens to the even solutions. This problem is deceptively difficult none of the standard basis sets produce a variational minimum as a function of 'a' for nonzero 'b'. This is apparently why this problem has never been done before. A new orthonormal basis was designed with weight function w(x)=exp(-a√x^2+b^2) which did produce a variational minimum for variable a and arbitrary fixed 'b'. The present paper describes these solutions and clearly indicates how they behave as b->0 .

  6. Nonlocal Coulomb Correlations in Metals Close to a Charge Order Insulator Transition

    Science.gov (United States)

    Merino, Jaime

    2007-07-01

    The charge ordering transition induced by the nearest-neighbor Coulomb repulsion V in the 1/4-filled extended Hubbard model is investigated using cellular dynamical mean-field theory. We find a transition to a strongly renormalized charge ordered Fermi liquid at VCO and a metal-to-insulator transition at VMI>VCO. Short range antiferromagnetism occurs concomitantly with the CO transition. Approaching the charge ordered insulator, V≲VMI, the Fermi surface deforms and the scattering rate of electrons develops momentum dependence on the Fermi surface.

  7. Can Hall drag be observed in Coulomb coupled quantum wells in a magnetic field?

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang

    1997-01-01

    We study the transresistivity rho(21) (or equivalently, the drag rate) of two Coulomb-coupled quantum wells in the presence of a perpendicular magnetic field, using semi-classical transport theory. Elementary arguments seem to preclude any possibility of observation of ''Hall drag'' (i.e., a non......-zero off-diagonal component in rho(21)). We show that these arguments are specious, and in fact Hall drag can be observed at sufficiently high temperatures when the intralayer transport time tau has significant energy-dependence around the Fermi energy epsilon(F). The ratio of the Hall to longitudinal...

  8. Density functional theory of the Seebeck coefficient in the Coulomb blockade regime

    Science.gov (United States)

    Yang, Kaike; Perfetto, Enrico; Kurth, Stefan; Stefanucci, Gianluca; D'Agosta, Roberto

    2016-08-01

    The Seebeck coefficient plays a fundamental role in identifying the efficiency of a thermoelectric device. Its theoretical evaluation for atomistic models is routinely based on density functional theory calculations combined with the Landauer-Büttiker approach to quantum transport. This combination, however, suffers from serious drawbacks for devices in the Coulomb blockade regime. We show how to cure the theory through a simple correction in terms of the temperature derivative of the exchange correlation potential. Our results compare well with both rate equations and experimental findings on carbon nanotubes.

  9. Optimal control of a charge qubit in a double quantum dot with a Coulomb impurity

    Science.gov (United States)

    Coden, Diego S. Acosta; Romero, Rodolfo H.; Ferrón, Alejandro; Gomez, Sergio S.

    2017-02-01

    We study the efficiency of modulated external electric pulses to produce efficient and fast charge localization transitions in a two-electron double quantum dot. We use a configuration interaction method to calculate the electronic structure of a quantum dot model within the effective mass approximation. The interaction with the electric field is considered within the dipole approximation and optimal control theory is applied to design high-fidelity ultrafast pulses in pristine samples. We assessed the influence of the presence of Coulomb charged impurities on the efficiency and speed of the pulses. A protocol based on a two-step optimization is proposed for preserving both advantages of the original pulse. The processes affecting the charge localization is explained from the dipole transitions of the lowest lying two-electron states, as described by a discrete model with an effective electron-electron interaction.

  10. Fault-plane solutions from moment-tensor inversion and preliminary Coulomb stress analysis for the Emilia Plain

    Directory of Open Access Journals (Sweden)

    Angela Saraò

    2012-10-01

    Full Text Available We investigate the seismicity occurred in the Po area, in the period July 2011-June 1012, by means of moment tensor and we use our set of revised focal mechanisms - computed for M> 3.7 earthquakes - to evaluate Coulomb elastic stress changes in order to detect potential intermediate-distance faults interaction, and the main features of this complex structural system.

  11. Three-dimensional numerical modelling of static and transient Coulomb stress changes on intra-continental dip-slip faults

    OpenAIRE

    Meike Bagge

    2017-01-01

    Earthquakes on intra-continental faults pose substantial seismic hazard to populated areas. The interaction of faults is an important mechanism of earthquake triggering and can be investigated by the calculation of Coulomb stress changes. Using three-dimensional finite-element models, co- and postseismic stress changes and the effect of viscoelastic relaxation on dip-slip faults are investigated. The models include elastic and viscoelastic layers, gravity, ongoing regional deformation as well...

  12. Dissociative ionization and Coulomb explosion of CH3I in intense femto second laser fields

    Science.gov (United States)

    Zhang, Dongdong; Luo, Sizuo; Xu, Haifeng; Jin, Mingxing; Liu, Fuchun; Yan, Bing; Wang, Zhigang; Liu, Hang; Jiang, Dianwu; Eppink, André; Roeterdink, Wim; Stolte, Steven; Ding, Dajun

    2017-06-01

    The interaction of CH3I molecules with 100 fs 800 nm linearly polarized laser fields has been investigated at the intensity region from 2.6 × 1014 to 5.8 × 1014 W/cm2 by means of a velocity map imaging method. The kinetic energy distribution of the various atomic fragment ions I q+ ( q = 1-3) has been measured and reproduced by a fit of multiple Gaussian functions. Several dissociative ionization and Coulomb explosion channels were identified for I q+ ( q = 1-3). As expected for a geometric alignment dominated interaction process the anisotropic angular recoil distributions of the atomic ion fragments are peaked in the laser polarization direction. The kinetic energy release (KER) of I q+ ( q = 1-3) depending upon the laser intensity has been investigated. The relative weight of the various contributions from the identified dissociative ionization (DI) and Coulomb explosion (CE) channels is found to depend strongly on the laser intensity.

  13. Effects of Parental Interaction on Infant Vocalization Rate, Variability and Vocal Type

    Science.gov (United States)

    Franklin, Beau; Warlaumont, Anne S.; Messinger, Daniel; Bene, Edina; Iyer, Suneeti Nathani; Lee, Chia-Chang; Lambert, Brittany; Oller, D. Kimbrough

    2014-01-01

    Examination of infant vocalization patterns across interactive and noninteractive contexts may facilitate better understanding of early communication development. In the current study, with 24 infant-parent dyads, infant volubility increased significantly when parent interaction ceased (presenting a "still face," or SF) after a period of…

  14. Web GIS in practice: an interactive geographical interface to English Primary Care Trust performance ratings for 2003 and 2004

    Directory of Open Access Journals (Sweden)

    Kamel Boulos Maged N

    2004-07-01

    Full Text Available Abstract Background On 21 July 2004, the Healthcare Commission http://www.healthcarecommission.org.uk/ released its annual star ratings of the performance of NHS Primary Care Trusts (PCTs in England for the year ending March 2004. The Healthcare Commission started work on 1 April 2004, taking over all the functions of the former Commission for Health Improvement http://www.chi.nhs.uk/, which had released the corresponding PCT ratings for 2002/2003 in July 2003. Results We produced two Web-based interactive maps of PCT star ratings, one for 2003 and the other for 2004 http://healthcybermap.org/PCT/ratings/, with handy functions like map search (by PCT name or part of it. The maps feature a colour-blind friendly quadri-colour scheme to represent PCT star ratings. Clicking a PCT on any of the maps will display the detailed performance report of that PCT for the corresponding year. Conclusion Using our Web-based interactive maps, users can visually appreciate at a glance the distribution of PCT performance across England. They can visually compare the performance of different PCTs in the same year and also between 2003 and 2004 (by switching between the synchronised 'PCT Ratings 2003' and 'PCT Ratings 2004' themes. The performance of many PCTs has improved in 2004, whereas some PCTs achieved lower ratings in 2004 compared to 2003. Web-based interactive geographical interfaces offer an intuitive way of indexing, accessing, mining, and understanding large healthcare information sets describing geographically differentiated phenomena. By acting as an enhanced alternative or supplement to purely textual online interfaces, interactive Web maps can further empower organisations and decision makers.

  15. Rating Parent-Child Interactions: Joint Engagement, Communication Dynamics, and Shared Topics in Autism, Down Syndrome, and Typical Development

    OpenAIRE

    Adamson, Lauren B.; Bakeman, Roger; Deckner, Deborah F.; Nelson, P. Brooke

    2012-01-01

    A battery of 17 rating items were applied to video records of typically-developing toddlers and young children with autism and Down syndrome interacting with their parents during the Communication Play Protocol. This battery provided a reliable and broad view of the joint engagement triad of child, partner, and shared topic. Ratings of the child’s joint engagement correlated very strongly with state coding of joint engagement and replicated the findings that coordinated joint engagement was l...

  16. Measuring Propagation Speed of Coulomb Fields

    CERN Document Server

    Calcaterra, A; Finocchiaro, G; Patteri, P; Piccolo, M; Pizzella, G

    2012-01-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planets motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Li\\'enard-Weichert retarded potential leads to a formula indistinguishable from the one obtained assuming that the electric field propagates with infinite velocity. Feyman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformely moving electron beam. The results we obtain on such a finite lifetime kinema...

  17. On the role of deformed Coulomb potential in fusion using energy density formalism

    Indian Academy of Sciences (India)

    Lavneet Kaur; Raj Kumari

    2015-10-01

    Using the Skyrme energy density formalism, the effect of deformed Coulomb potential on fusion barriers and fusion cross-sections is studied. Our detailed study reveals that the fusion barriers as well as fusion probabilities depend on the shape deformation (due to deformed Coulomb potential) of the colliding nuclei. However, this dependence due to deformed Coulomb potential is found to be very weak.

  18. Measuring propagation speed of Coulomb fields

    Energy Technology Data Exchange (ETDEWEB)

    Sangro, R. de; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy)

    2015-03-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planet motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Lienard-Weichert retarded potential leads to the same formula as the one obtained assuming that the electric field propagate with infinite velocity. The Feynman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformly moving electron beam. The results we obtain, on a finite lifetime kinematical state, are compatible with an electric field rigidly carried by the beam itself. (orig.)

  19. Low wages and high unemployment rates : The role of social interactions in hiring discrimination

    OpenAIRE

    Jacques, Jean-François; Walkowiak, Emmanuelle

    2009-01-01

    The purpose of this paper is to explain why low-wage workers with identical qualifications to higher-wage workers are more exposed to unemployment. Each worker is considered to belong to a social group (defined according to his/her gender, age, and nationality). We assume that workers experience both productive interdependencies and social interactions within the firm. Also inter- and intra-group interactions determine worker productivity, and frictions on the labor market limit the hiring of...

  20. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide

    Science.gov (United States)

    Toda, Shingi; Stein, Ross S.; Sevilgen, Volkan; Lin, Jian

    2011-01-01

    Coulomb is intended both for publication-directed research and for college and graduate school classroom instruction. We believe that one learns best when one can see the most and can explore alternatives quickly. So the principal feature of Coulomb is ease of input, rapid interactive modification, and intuitive visualization of the results. The program has menus and check-items, and dialogue boxes to ease operation. The internal graphics are suitable for publication, and can be easily imported into Illustrator, GMT, Google Earth, or Flash for further enhancements.

  1. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

    Science.gov (United States)

    Middlebrooks, John C.

    2004-07-01

    Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.

  2. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, Hongsheng; Lin, Shisheng, E-mail: shishenglin@zju.edu.cn [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.

  3. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    Science.gov (United States)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Chen, Hongsheng; Lin, Shisheng

    2015-06-01

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.

  4. Quantifying Coulombic and solvent polarization-mediated forces between DNA helices.

    Science.gov (United States)

    He, Zhaojian; Chen, Shi-Jie

    2013-06-20

    One of the fundamental problems in nucleic acids biophysics is to predict the different forces that stabilize nucleic acid tertiary folds. Here we provide a quantitative estimation and analysis for the forces between DNA helices in an ionic solution. Using the generalized Born model and the improved atomistic tightly binding ions model, we evaluate ion correlation and solvent polarization effects in interhelix interactions. The results suggest that hydration, Coulomb correlation and ion entropy act together to cause the repulsion and attraction between nucleic acid helices in Mg(2+) and Mn(2+) solutions, respectively. The theoretical predictions are consistent with experimental findings. Detailed analysis further suggests that solvent polarization and ion correlation both are crucial for the interhelix interactions. The theory presented here may provide a useful framework for systematic and quantitative predictions of the forces in nucleic acids folding.

  5. Estimates for the Large Time Behavior of the Landau Equation in the Coulomb Case

    Science.gov (United States)

    Carrapatoso, Kleber; Desvillettes, Laurent; He, Lingbing

    2017-05-01

    This work deals with the large time behaviour of the spatially homogeneous Landau equation with Coulomb potential. Firstly, we obtain a bound from below of the entropy dissipation D( f) by weighted relative Fisher information of f with respect to the associated Maxwellian distribution, which leads to a variant of Cercignani's conjecture thanks to a logarithmic Sobolev inequality. Secondly, we prove the propagation of polynomial and stretched exponential moments with an at-most linearly growing in-time rate. As an application of these estimates, we show the convergence of any ( H- or weak) solution to the Landau equation with Coulomb potential to the associated Maxwellian equilibrium with an explicitly computable rate, assuming initial data with finite mass, energy, entropy and some higher L 1-moment. More precisely, if the initial data have some (large enough) polynomial L 1-moment, then we obtain an algebraic decay. If the initial data have a stretched exponential L 1-moment, then we recover a stretched exponential decay.

  6. Maternal characteristics, ratings of child behavior, and mother-child interactions in families of children with externalizing disorders.

    Science.gov (United States)

    Johnston, C; Pelham, W E

    1990-08-01

    Relationships among maternal characteristics, ratings of child behavior, and observed mother-child interactions were examined in a sample of 40 4- to 12-year-old children with externalizing disorders. Mothers and children were observed in a task interaction and mothers provided self-reports of depressed mood, parenting self-esteem, marital satisfaction, social support, and life stress. Child behavior was rated by both mothers and teachers. Several significant correlations were found among observed mother and child behaviors and among maternal self-report measures. However, few significant relationships were found between maternal characteristics and observed mother or child behavior. Although life stress predicted increased child negativity, maternal depressed mood was related to more appropriate child behavior. Mother and teacher ratings of child behavior demonstrated few significant relationships with other measures. These results suggest that, in samples comprised primarily of children with attention deficit disorder from socially advantaged families, few relationships exist between maternal characteristics, parenting behavior, and child behavior.

  7. Permanence of a general discrete-time two-species-interaction model with non-monotonic per capita growth rates

    CERN Document Server

    Kang, Yun

    2011-01-01

    Combined with all density-dependent factors, the per capita growth rate of a species may be non-monotonic. One important consequence is that species may suffer from weak Allee effects or strong Allee effects. In this paper, we study the permanence of a discrete-time two-species-interaction model with non-monotonic per capita growth rates for the first time. By using the average Lyapunov functions and extending the ecological concept of the relative nonlinearity, we find a simple sufficient condition for guaranteeing the permanence of systems that can model complicated two-species interactions. The extended relative nonlinearity allows us to fully characterize the effects of nonlinearities in the per capita growth functions with non-monotonicity. These results are illustrated with specific two species competition and predator-prey models of generic forms with non-monotone per capita growth rates.

  8. Data sensitivity in a hybrid STEP/Coulomb model for aftershock forecasting

    Science.gov (United States)

    Steacy, S.; Jimenez Lloret, A.; Gerstenberger, M.

    2014-12-01

    Operational earthquake forecasting is rapidly becoming a 'hot topic' as civil protection authorities seek quantitative information on likely near future earthquake distributions during seismic crises. At present, most of the models in public domain are statistical and use information about past and present seismicity as well as b-value and Omori's law to forecast future rates. A limited number of researchers, however, are developing hybrid models which add spatial constraints from Coulomb stress modeling to existing statistical approaches. Steacy et al. (2013), for instance, recently tested a model that combines Coulomb stress patterns with the STEP (short-term earthquake probability) approach against seismicity observed during the 2010-2012 Canterbury earthquake sequence. They found that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. They suggested that the major reason for this discrepancy was uncertainty in the slip models and, in particular, in the geometries of the faults involved in each complex major event. Here we test this hypothesis by developing a number of retrospective forecasts for the Landers earthquake using hypothetical slip distributions developed by Steacy et al. (2004) to investigate the sensitivity of Coulomb stress models to fault geometry and earthquake slip, and we also examine how the choice of receiver plane geometry affects the results. We find that the results are strongly sensitive to the slip models and moderately sensitive to the choice of receiver orientation. We further find that comparison of the stress fields (resulting from the slip models) with the location of events in the learning period provides advance information on whether or not a particular hybrid model will perform better than STEP.

  9. Andreev reflection through a ferromagnet-quantum dot-superconductor system with intradot Coulomb correlations

    Directory of Open Access Journals (Sweden)

    Rudziński Wojciech

    2013-01-01

    Full Text Available Spin-dependent tunneling through a quantum dot coupled to one ferromagnetic and one superconducting electrodes is studied in the Andreev reflection (AR regime. Electrical conductance is calculated within the nonequilibrium Green function technique. Effects due to a competition between the Coulomb correlations on the dot and intradot spin-flip processes are considered in the linear transport regime and for different coupling strengths between the dot and the external electrodes. It is shown that when a coherent spin rotation is present on the dot, Coulomb interactions may lead to a significant enhancement of the AR tunneling current and even to the perfect AR transmission. Origin of occurrence of a variety of the multipeak structure of the linear conductance is also discussed.

  10. Effect of repulsive interactions on the rate of doublet formation of colloidal nanoparticles in the presence of convective transport.

    Science.gov (United States)

    Lattuada, Marco; Morbidelli, Massimo

    2011-03-01

    In this work, we have performed a systematic investigation of the effect of electrostatic repulsive interactions on the aggregation rate of colloidal nanoparticles to from doublets in the presence of a convective transport mechanism. The aggregation rate has been computed by solving numerically the Fuchs-Smoluchowski diffusion-convection equation. Two convective transport mechanisms have been considered: extensional flow field and gravity-induced relative sedimentation. A broad range of conditions commonly encountered in the applications of colloidal dispersions has been analyzed. The relative importance of convective to diffusive contributions has been quantified by using the Peclet number Pe. The simulation results indicate that, in the presence of repulsive interactions, the evolution of the aggregation rate as a function of Pe can always be divided into three distinct regimes, no matter which convective mechanism is considered. At low Pe values the rate of aggregation is independent of convection and is dominated by repulsive interactions. At high Pe values, the rate of aggregation is dominated by convection, and independent of repulsive interactions. At intermediate Pe values, a sharp transition between these two regimes occurs. During this transition, which occurs usually over a 10-100-fold increase in Pe values, the aggregation rate can change by several orders of magnitude. The interval of Pe values where this transition occurs depends upon the nature of the convective transport mechanism, as well as on the height and characteristic lengthscale of the repulsive barrier. A simplified model has been proposed that is capable of quantitatively accounting for the simulations results. The obtained results reveal unexpected features of the effect of ionic strength and particle size on the stability of colloidal suspensions under shear or sedimentation, which have relevant consequences in industrial applications.

  11. Coulomb Artifacts and Bottomonium Hyperfine Splitting in Lattice NRQCD

    CERN Document Server

    Liu, Tao; Rayyan, Ahmed

    2016-01-01

    We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a "na\\"ive" perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD [1, 2]. We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives $M_{\\Upsilon(1S)}-M_{\\eta_b(1S)}=52.9\\pm 5.5~{\\rm MeV}$ [1].

  12. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    U Datta Pramanik; T Aumann; D Cortina; H Emling; H Geissel; M Hellström; R Holzmann; N Iwasa; Y Leifels; G Münzenberg; M Rejmund; C Scheidenberger; K Sümmerer; A Leistenschneider; Th W Elze; A Grünschloss; S Ilievski; K Boretzky; J V Kratz; R Kulessa; E Lubkiewicz; E Wajda; W Walus; P Reiter; H Simon

    2001-08-01

    Coulomb breakup of neutron-rich nuclei around mass ∼ 20 has been studied experimentally using secondary beams (∼ 500–600 MeV/u) of unstable nuclei produced at GSI. The spectroscopic factor deduced for the neutron occupying 1/2 level in 15C ground state is consistent with the earlier reported value. The data analysis for Coulomb breakup of 17C shows that most of the cross section yields the 16C core in its excited state. For 17-22O, the low-lying E1 strength amounts up to about 12% of the energy weighted dipole sum rule strength depending on neutron excess. The cluster sum rule limit with 16O as a core is almost exhausted for 17,18O, while for more neutron rich isotopes the strength with respect to that limit decreases.

  13. Scaling laws for near barrier Coulomb and Nuclear Breakup

    CERN Document Server

    Hussein, M S; Lubian, J; Otomar, D R; Canto, L F

    2013-01-01

    We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_{\\mathrm{\\scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{\\mathrm{% \\scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.

  14. Time-resolved studies of interatomic Coulombic decay

    Energy Technology Data Exchange (ETDEWEB)

    Frühling, U. [Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Trinter, F. [Institut für Kernphysik, Goethe Universität, Max-von-Laue-Str.1, 60438 Frankfurt (Germany); Karimi, F. [Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Williams, J.B. [Institut für Kernphysik, Goethe Universität, Max-von-Laue-Str.1, 60438 Frankfurt (Germany); Jahnke, T., E-mail: jahnke@atom.uni-frankfurt.de [Institut für Kernphysik, Goethe Universität, Max-von-Laue-Str.1, 60438 Frankfurt (Germany)

    2015-10-15

    Interatomic Coulombic decay (ICD) is a decay mechanism occurring in loosely bound matter, e.g. in systems bound by van der Waals-forces or hydrogen bonds. In many such cases the decay time is similar to the time scale of nuclear motion during the decay. As the efficiency of ICD strongly depends on the internuclear distance of the atoms or molecules involved in the decay, an overall non-trivial temporal decay behavior arises. The progress of examining the time-domain aspects of interatomic Coulombic decay is summarized in this short topical review with a special emphasis on experiments that are now feasible due to the developments of free-electron lasers.

  15. Low-energy Coulomb excitation of Sr,9896 beams

    Science.gov (United States)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  16. Coulomb oscillations in three-layer graphene nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K [Solid State Physics Laboratory, ETH Zurich, 8093 Zurich (Switzerland)], E-mail: guettinj@phys.ethz.ch

    2008-12-15

    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of {approx}0.6 meV is extracted.

  17. Coulomb field of an accelerated charge physical and mathematical aspects

    CERN Document Server

    Alexander, F J; Alexander, Francis J.; Gerlach, Ulrich H.

    1991-01-01

    The Maxwell field equations relative to a uniformly accelerated frame, and the variational principle from which they are obtained, are formulated in terms of the technique of geometrical gauge invariant potentials. They refer to the transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge invariant "2+2" decomposition is used to see how the Coulomb field of a charge, static in an accelerated frame, has properties that suggest features of electromagnetism which are different from those in an inertial frame. In particular, (1) an illustrative calculation shows that the Larmor radiation reaction equals the electrostatic attraction between the accelerated charge and the charge induced on the surface whose history is the event horizon, and (2) a spectral decomposition of the Coulomb potential in the accelerated frame suggests the possibility that the distortive effects of this charge on the Rindler vacuum are akin to those of a charge on a crystal lattice.

  18. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  19. Renormalization group analysis of graphene with a supercritical Coulomb impurity

    CERN Document Server

    Nishida, Yusuke

    2016-01-01

    We develop a field theoretical approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.

  20. Renormalization group analysis of graphene with a supercritical Coulomb impurity

    Science.gov (United States)

    Nishida, Yusuke

    2016-08-01

    We develop a field-theoretic approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial-wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power-law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.

  1. An entropic form for NLFP with coulombic-like potential

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, A., E-mail: agrassi@unict.it [Dipartimento di Scienze del Farmaco, Università di Catania, V.le A. Doria 6, 95125 Catania (Italy)

    2012-01-30

    Here it is proposed a new entropy form for which it is possible to obtain a stationary solution of the Non-Linear Fokker–Planck equation (NLFP) with coulombic-like potentials. The general properties of this new entropy form are shown and the results are compared with those obtained by other entropy forms. Finally, the behavior of the stationary solution in presence of two point charges is also shown. -- Highlights: ► In this Letter we have proposed a new form of entropy. ► Starting from this new entropy form a Non-Linear Fokker–Planck equation has been derived. ► The stationary solution of the Non-Linear Fokker–Planck equation is obtained by using an external coulombic-like potential. ► A comparison with other forms of entropies has been proposed in the case of a single or two point charges.

  2. Coulomb-Born-Oppenheimer approximation in Ps-H scattering

    Indian Academy of Sciences (India)

    Hasi Ray

    2006-02-01

    To improve the Coulomb-Born approximation (CBA) theory of ionization in positronium (Ps) and atom scattering, the effect of exchange is introduced. The nine-dimensional exchange amplitude for ionization of Ps in Ps-H scattering is reduced to a two-dimensional integral using the present Coulomb-Born-Oppenheimer approximation (CBOA). The methodology is extremely useful to evaluate ionization parameters for different target systems and for different types of ionization processes. It is then applied to evaluate the Ps-ionization cross-section and to estimate the effect of exchange on Ps-ionization in Ps-H system. We establish the importance of exchange at lower energy region.

  3. Molecular Dynamics Simulation of Shear Moduli for Coulomb Crystals

    CERN Document Server

    Horowitz, C J

    2008-01-01

    Torsional (shear) oscillations of neutron stars may have been observed in quasiperiodic oscillations of Magnetar Giant Flares. The frequencies of these modes depend on the shear modulus of neutron star crust. We calculate the shear modulus of Coulomb crystals from molecular dynamics simulations. We find that electron screening reduces the shear modulus by about 10% compared to previous Ogata et al. results. Our MD simulations can be extended to calculate the effects of impurities and or polycrystalline structures on the shear modulus.

  4. PT-invariant one-dimensional Coulomb problem

    CERN Document Server

    Sinha, A K; Sinha, Anjana; Roychoudhury, Rajkumar

    2002-01-01

    The one-dimensional Coulomb-like potential with a real coupling constant beta, and a centrifugal-like core of strength G = alpha^2 - {1/4}, viz. V(x) = {alpha^2 - (1/4)}/{(x-ic)^2} + beta/|x-ic|, is discussed in the framework of PT-symmetry. The PT-invariant exactly solvable model so formed, is found to admit a double set of real and discrete energies, numbered by a quasi-parity q = +/- 1.

  5. Coulomb excitation of 144,146,148,150Nd

    NARCIS (Netherlands)

    Ahmad, A.; Bomar, G.; Crowell, H.; Hamilton, J. H.; Kawakami, H.; Maguire, C. F.; Nettles, W. G.; Piercey, R. B.; Ramayya, A. V.; Soundranayagam, R.; Ronningen, R. M.; Scholten, O.; Stelson, P. H.

    1988-01-01

    Coulomb excitation of 144,146,148,1605060Nd by 10.5 and 11 MeV alpha particles was studied by magnetic analysis of particles scattered into 150°. Values of B(E20+-->2+) for the 2+ states at 696, 454, 302, and 130 keV are 0.58(1), 0.78(1), 1.390(20), and 2.816(35) e2b2, respectively. For 148,150Nd, v

  6. Coulombic potentials in the semi-classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Chantelau, K. (Technische Univ. Berlin (Germany, F.R.). Fachbereich 3 - Mathematik)

    1990-05-01

    This paper is devoted to Schroedinger operators in two dimensions with singular (Coulombic) potentials. We investigate the behaviour of the eigenvalues at the bottom of the spectrum in the semi-classical limit. To overcome the difficulties due to the singularities, we use some kind of generalisation of the Levi-Civita transform. After this regularisation, we apply the theory of Helffer and Sjoestrand to get the full asymptotics for the eigenvalues. (orig.).

  7. Coulomb Sturmians as a basis for molecular calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2012-01-01

    Almost all modern quantum chemistry programs use Gaussian basis sets even though Gaussians cannot accurately represent the cusp at atomic nuclei, nor can they represent the slow decay of the wave function at large distances. The reason that Gaussians dominate quantum chemistry today is the great...... of hyperspherical harmonics. For the remaining many-centre integrals, Coulomb Sturmians are shown to have advantages over other ETOs. Pilot calculations are performed on N-electron molecules using the Generalized Sturmian Method....

  8. The impact of sharp screening on the Coulomb scattering problem in three dimensions

    Science.gov (United States)

    Yakovlev, S. L.; Volkov, M. V.; Yarevsky, E.; Elander, N.

    2010-06-01

    The scattering problem for two particles interacting via the Coulomb potential is examined for the case where the potential has a sharp cut-off at some distance. The problem is solved for two complementary situations, firstly, when the interior part of the Coulomb potential is left in the Hamiltonian and, secondly, when the long-range tail is considered as the potential. The partial wave results are summed up to obtain the wavefunction in three dimensions. It is shown that in the domains where the wavefunction is expected to be proportional to the known solutions, the proportionality is given by an operator acting on the angular part of the wavefunction. The explicit representation for this operator is obtained in the basis of Legendre polynomials. We proposed a driven Schrödinger equation including an inhomogeneous term of the finite range with purely outgoing asymptotics for its solution in the case of the three-dimensional scattering problem with long-range potentials.

  9. The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation

    CERN Document Server

    Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-02

    The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...

  10. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice

    Science.gov (United States)

    Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas

    2016-12-01

    Artificial spin-ice systems are lithographically patterned arrangements of interacting magnetic nanostructures that were introduced as way of investigating the effects of geometric frustration in a controlled manner. This approach has enabled unconventional states of matter to be visualized directly in real space, and has triggered research at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite efforts to create an artificial realization of the square-ice model—a two-dimensional geometrically frustrated spin-ice system defined on a square lattice—no simple geometry based on arrays of nanomagnets has successfully captured the macroscopically degenerate ground-state manifold of the model. Instead, square lattices of nanomagnets are characterized by a magnetically ordered ground state that consists of local loop configurations with alternating chirality. Here we show that all of the characteristics of the square-ice model are observed in an artificial square-ice system that consists of two sublattices of nanomagnets that are vertically separated by a small distance. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of a Coulomb phase and algebraic spin-spin correlations, which are characterized by the presence of ‘pinch’ points in the associated magnetic structure factor. Local excitations—the classical analogues of magnetic monopoles—are free to evolve in an extensively degenerate, divergence-free vacuum. We thus provide a protocol that could be used to investigate collective magnetic phenomena, including Coulomb phases and the physics of ice-like materials.

  11. Collision between two ortho-positronium (Ps) atoms: A four-body Coulomb problem

    Indian Academy of Sciences (India)

    RAY HASI

    2016-05-01

    The elastic collision between two ortho-positronium (e.g. $S = 1$) atoms is studied using an {\\it ab-initio} static exchange model (SEM) in the centre of mass (CM) frame by considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly. A coupled channel methodology in momentum space is used to solve Lippman–Schwinger equation following the integral approach. A new SEM code is developed in which the Born–Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude adapting the partial wave analysis. The $s$-, $p$- and $d$-wave elastic phase shifts and the corresponding partial cross-sections for the spin alignment $S = 0$, i.e., singlet (+) and $S = 2$, i.e., triplet (−) states are studied. An augmented Born approximation is used to includethe contribution of higher partial waves more accurately to determine the total/integrated elastic cross-section $(\\sigma)$, the quenching cross-section (σq) and ortho-to-para conversion ratio $(\\sigma/\\sigma q)$. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The theory includes the non-adiabatic short-range effects due to exchange.

  12. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities.

    Science.gov (United States)

    Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S; Desai, Dhruv K; Rodgers, Griffin F; Bradley, Aaron J; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F

    2015-07-24

    Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene's charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene's electronic properties. Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge and/or molecular states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies. These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices.

  13. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Kwang-Chang [Center for General Education, Chang Gung University,Kwei-Shan, Taoyuan, 333, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Lee, Fei-Fan [Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lee, Feng-Shiuh [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lin, Guey-Lin [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Liu, Tsung-Che [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Yang, Yi [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China)

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  14. The EMC effect of Nuclear Matter with Coulomb Corrections

    Science.gov (United States)

    Li, Shujie; Solvignon, Patricia; Arrington, John; Gaskell, Dave

    2016-09-01

    Extraction of the EMC effect for nuclear matter is of great interest since it allows comparison to theoretical calculations in a regime where ``exact'' nuclear wave functions can be used. Earlier extractions from (e,e') cross sections ignored the contribution of the Coulomb distortion, which can be approximated as an electron energy shift on the order of MeV. Though small, this shift can cause a noticeable change in cross sections in certain kinematic regimes. In this study, we applied Coulomb corrections on the per-nucleon ratios from the published SLAC E139 data and preliminary JLAB E03-103 data. I will show preliminary results for an extrapolation of the EMC ratios from finite nuclei to symmetric nuclear matter, including Coulomb Corrections and examining the sensitivity to different approximations for the nuclear density. The data from two experiments will also be combined to study the nuclear dependence of R =σL /σT . Supported in part by DOE Grant No. DE-AC05-06OR23177, No. DE-AC02-06CH11357, and No. DE-SC0014168.

  15. Implosive Interatomic Coulombic decay in the simplest molecular anion

    Science.gov (United States)

    Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila

    2016-05-01

    Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.

  16. Regularized friction and continuation: Comparison with Coulomb's law

    Science.gov (United States)

    Vigué, Pierre; Vergez, Christophe; Karkar, Sami; Cochelin, Bruno

    2017-02-01

    Periodic solutions of systems with friction are difficult to investigate because of the non-smooth nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degree-of-freedom system (mass, spring, damper, and belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is constructed step by step, which gives a usable existence condition. With the regularized law, the Asymptotic Numerical Method and the Harmonic Balance Method provide bifurcation diagrams with respect to the belt speed or normal force, and for several values of the regularization parameter. Formulations from the Coulomb case give the means of a comparison between regularized solutions and a standard reference. With an appropriate definition, regularized stick-slip motion exists, its amplitude increases with respect to the belt speed and its pulsation decreases with respect to the normal force.

  17. Coulomb Collision for Plasma Simulations: Modelling and Numerical Methods

    Science.gov (United States)

    Geiser, Juergen

    2016-09-01

    We are motivated to model weakly ionized Plasma applications. The modeling problem is based on an incorporated explicit velocity-dependent small-angle Coulomb collision terms into a Fokker-Planck equation. Such a collision is done with so called test and field particles, which are scattered stochastically based on a Langevin equation. Based on such different model approaches, means the transport part is done with kinetic equations, while the collision part is done via the Langevin equations, we present a splitting of these models. Such a splitting allow us to combine different modeling parts. For the transport part, we can apply particle models and solve them with particle methods, e.g., PIC, while for the collision part, we can apply the explicit Coulomb collision model, e.g., with fast stochastic differential equation solvers. Additional, we also apply multiscale approaches for the different parts of the transport part, e.g., different time-scales of an explicit electric field, and model-order reduction approaches. We present first numerical results for particle simulations with the deterministic-stochastic splitting schemes. Such ideas can be applied to sputtering problems or plasma applications with dominant Coulomb collisions.

  18. Vacuum polarization of planar Dirac fermions by a superstrong Coulomb potential

    CERN Document Server

    Khalilov, V R

    2016-01-01

    We study the vacuum polarization of planar charged Dirac fermions by a strong Coulomb potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. For the massless case the induced vacuum charge density is localized at the origin when the Coulomb center charge is subcritical while it has a power-law tail when the Coulomb center charge is supercritical. The finite mass contribution into the induced charge due to the vacuum polarization is small and insignificantly distorts the Coulomb potential only at distances of order of the Compton length. The induced vacuum charge has a screening sign. As is known the quantum electrodynamics vacuum becomes unstable when the Coulomb center charge is increased from subcritical to supercritical values. In the supercritical Coulomb potential the quantum electrodynamics vacuum acquires the charge due to the so-called real vacuum polarization. We calculate the real vacuum polarizat...

  19. An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps

    Science.gov (United States)

    Jennings, Laura D.; Keller, Steven W.

    2005-01-01

    An interactive classroom activity that includes two-step reaction of unwrapping and eating chocolate candies is described which brings not only the reaction intermediate, but also the reactants and products into macroscopic view. The qualitative activation barriers of both steps can be adjusted independently.

  20. Hill Interaction Matrix (HIM): The Conceptual Framework, Derived Rating Scales, and an Updated Bibliography

    Science.gov (United States)

    Hill, W. Fawcett

    1977-01-01

    Essentially, the HIM is a systematic set of categories developed for use in understanding and classifying interaction in small groups, especially therapy groups. It has, however, been used not only on T-groups, encounter groups, discussion groups, and such, but also on individual and dyadic counseling sessions. (Author)

  1. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    . Kinematic effects for nonuniform explosion also result in a narrow isotope dependent energy distribution (of width DeltaE) of the light ions (with DeltaE/E(H,av) approximately 0.3 and DeltaE/E(D,av) approximately 0.4), with the distribution peaking at the high energy edge, in marked contrast with the uniform explosion case. Features of laser-heterocluster interactions were inferred from the analyses of the intensity dependent boundary radii (R(0))(I) and the corresponding average D+ ion energies (E(D,av))(I), which provide a measure for optimization of the cluster size at intensity I for the neutron yield from dd nuclear fusion driven by Coulomb explosion (NFDCE) of these heteroclusters. We infer on the advantage of deuterium containing heteronuclear clusters, e.g., (CD4)(n) in comparison to homonuclear clusters, e.g., (D2)(n/2), for dd NFDCE, where the highly charged heavy ions (e.g., C4+ or C6+) serve as energetic and kinematic triggers driving the D+ ions to a high (10-200 keV) energy domain.

  2. Universal quantum computation with electron spins in quantum dots based on superpositions of spacetime paths and Coulomb blockade

    CERN Document Server

    Lin, C C Y; Wu, Y Z; Zhang, W M; Lin, Cyrus C.Y.; Soo, Chopin; Wu, Yin-Zhong; Zhang, Wei-Min

    2004-01-01

    Using electrostatic gates to control the electron positions, we present a new controlled-NOT gate based on quantum dots. The qubit states are chosen to be the spin states of an excess conductor electron in the quantum dot; and the main ingredients of our scheme are the superpositions of space-time paths of electrons and the effect of Coulomb blockade. All operations are performed only on individual quantum dots and are based on fundamental interactions. Without resorting to spin-spin terms or other assumed interactions, the scheme can be realized with a dedicated circuit and a necessary number of quantum dots. Gate fidelity of the quantum computation is also presented.

  3. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    Science.gov (United States)

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 1014 W/cm2 to 3.5 × 1014 W/cm2. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  4. Influence of the Chemical Interactions on the Removal Rate of Different Salts in Electrokinetic Desalination Processes

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2011-01-01

    Electrokinetic desalination techniques have been successfully applied for the prevention of salt-induced deterioration problems of masonry and other construction materials. A mathematical model for electrochemical desalination treatments is described, based on the Poisson-Nernst-Planck system...... and sculptures. Simulations of the desalination treatment of brick samples contaminated with these target contaminants are shown. The influence of the chemical interactions on the efficiency is highlighted in the results....

  5. Calculation of molecular integrals over Slater-type orbitals using recurrence relations for overlap integrals and basic one-center Coulomb integrals.

    Science.gov (United States)

    Guseinov, Israfil; Mamedov, Bahtiyar; Rzaeva, Afet

    2002-04-01

    The recurrence relations are established for the basic one-center Coulomb integrals over Slater-type orbitals (STOs). These formulae and the recurrence relations for basic overlap integrals are utilized for the calculation of multicenter electron-repulsion integrals. The calculations of multicenter electron-repulsion integrals are performed by the use of translation formulae for STOs obtained from the Lambda and Coulomb Sturmian exponential-type functions (ETFs). It is shown that these integrals show a faster convergence rate in the case of Coulomb Sturmian ETFs. The accuracy of the results is quite high for the quantum numbers of STOs and for the arbitrary values of internuclear distances and screening constants of atomic orbitals.

  6. Some Analytical Properties of the Model for Stochastic Evolutionary Games in Finite Populations with Non-uniform Interaction Rate

    Institute of Scientific and Technical Information of China (English)

    QUAN Ji; WANG Xian-Jia

    2013-01-01

    Traditional evolutionary games assume uniform interaction rate,which means that the rate at which individuals meet and interact is independent of their strategies.But in some systems,especially biological systems,the players interact with each other discriminately.Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies.Their model is based on replicator dynamics which assumes an infinite size population.But in reality,the number of individuals in the population is always finite,and there will be some random interference in the individuals' strategy selection process.Therefore,it is more practical to establish the corresponding stochastic evolutionary model in finite populations.In fact,the analysis of evolutionary games in a finite size population is more difficult.Just as Taylor and Nowak said in the outlook section of their paper,"The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations." In this paper,we are exactly doing this work.We extend Taylor and Nowak's model from infinite to finite case,especially focusing on the influence of non-uniform connection characteristics on the evolutionary stable state of the system.We model the strategy evolutionary process of the population by a continuous ergodic Markov process.Based on the fimit distribution of the process,we can give the evolutionary stable state of the system.We make a complete classification of the symmetric 2 × 2 games.For each case game,the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough.In contrast with most literatures in evolutionary games using the simulation method,all our results obtained are analytical.Especially,in the dominant-case game,coexistence of the two strategies may become evolutionary stable states in our model.This result can be used to explain the emergence of

  7. Exchange rate and oil price interactions in transition economies: Czech Republic, Hungary and Poland

    Directory of Open Access Journals (Sweden)

    Bayat Tayfur

    2015-01-01

    Full Text Available This study investigates causal dynamics between crude oil prices and exchange rates in Czech Republic, Poland and Hungary by employing monthly data from the beginning of flexible exchange regime in each country to December 2011. The study benefits from the recent advance in the time series econometric analysis and carries out linear causality, non-linear causality, volatility spillover and frequency domain causality tests. The frequency domain causality analysis results imply that oil price fluctuations affect real exchange rates in the long run in Poland and Czech Republic. On the other hand, frequency domain causality test results indicate that oil price fluctuations do not affect exchange rate in any period in Hungary despite its economy’s high imported energy dependency.

  8. Effects of different kinds of couple interaction on cortisol and heart rate responses to stress in women.

    Science.gov (United States)

    Ditzen, Beate; Neumann, Inga D; Bodenmann, Guy; von Dawans, Bernadette; Turner, Rebecca A; Ehlert, Ulrike; Heinrichs, Markus

    2007-06-01

    In animal studies, positive social interaction and physical contact play a preeminent role in the control of behavioral and neuroendocrine responses to stress. The aim of this study was to determine whether specific kinds of couple interaction reduce hypothalamic-pituitary-adrenal (HPA) and autonomic responses to psychosocial stress in women. Sixty-seven women, aged 20-37 years, who had been married or cohabiting with a male partner for at least 12 months at the time of the study, were exposed to a standardized psychosocial laboratory stressor (Trier Social Stress Test). Participants were randomly assigned to three study groups differing in the type of a 10-min period of social interaction with their partner prior to stress: n=25 with no partner interaction, n=22 with verbal social support, and n=20 with physical contact (standardized neck and shoulder massage). Salivary free cortisol levels, plasma levels of oxytocin, heart rate, and psychological responses to stress were compared among the three study groups. Women with positive physical partner contact before stress exhibited significantly lower cortisol and heart rate responses to stress but no different plasma oxytocin levels compared to women who received social support or no social interaction. Verbal social support alone was not associated with reduced stress responsiveness. Our results are in line with previous human studies indicating reduced responsiveness to verbal social support by a spouse in women. More importantly, these findings imply a direct protective effect of touch on stress-related neurobiological systems as a possible underlying mechanism of health beneficial effects of positive couple interaction.

  9. Two-body bound states in quantum electrodynamics. [Rate

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, G.P.

    1978-07-01

    Novel formulations of the two-body bound state problem in quantum field theory are examined. While equal in rigor, these have several calculational advantages over the traditional Bethe-Salpeter formalism. In particular there exist exact solutions of the bound state equations for a Coulomb-like interaction in quantum electrodynamics. The corrections to such zeroth-order solutions can be systematically computed in a simple perturbation theory. These methods are illustrated by computing corrections to the orthopositronium decay rate and to the ground state splittings in positronium and muonium.

  10. Gender-age interaction in incidence rates of childhood emotional disorders

    DEFF Research Database (Denmark)

    Wesselhoeft, R; Pedersen, C B; Mortensen, P B

    2014-01-01

    rates of emotional disorders throughout childhood. METHOD: This is a population-based cohort study of 907 806 Danish 3- to 18-year-olds. The outcome was assignment of an emotional disorder diagnosis based on in-patient and out-patient data from The Danish Psychiatric Central Register. Outcome measures...

  11. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    Science.gov (United States)

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  12. Interacting Effects of Instructions and Presentation Rate on Visual Statistical Learning

    Directory of Open Access Journals (Sweden)

    Julie eBertels

    2015-11-01

    Full Text Available The statistical regularities of a sequence of visual shapes can be learned incidentally. Arciuli et al. (2014 recently argued that intentional instructions only improve learning at slow presentation rates as they favor the use of explicit strategies. The aim of the present study was (1 to test this assumption directly by investigating how instructions (incidental vs. intentional and presentation rate (fast vs. slow affect the acquisition of knowledge and (2 to examine how these factors influence the conscious vs. unconscious nature of the knowledge acquired. To this aim, we exposed participants to four triplets of shapes, presented sequentially in a pseudo-random order, and assessed their degree of learning in a subsequent completion task that integrated confidence judgments. Supporting Arciuli et al.’s claim, participant performance only benefited from intentional instructions at slow presentation rates. Moreover, informing participants beforehand about the existence of statistical regularities increased their explicit knowledge of the sequences, an effect that was not modulated by presentation speed. These results support that, although visual statistical learning can take place incidentally and, to some extent, outside conscious awareness, factors such as presentation rate and prior knowledge can boost learning of these regularities, presumably by favoring the acquisition of explicit knowledge.

  13. The collision between two positronium (Ps) atoms: the exact evaluation of a four-body Coulomb problem

    CERN Document Server

    Ray, Hasi

    2014-01-01

    The collision between two positronium (Ps) atoms is a four-body Coulomb problem with all the particles of equal masses. It is very difficult to compute the Born-Oppenheimer (BO) scattering amplitude involving the nine-dimensional integrals with four Coulomb interaction terms between the atoms. It is extremely difficult in the electron-electron correlation term to include the exchange or antisymmetry between two system electrons exactly. Earlier the Ps and H system was easily approximated as a three-body problem, due to the light mass of Ps the center of mass of the system was confined in the H-nucleus. A simple substitution of variables using no approximation has enabled to evaluate the electron-electron Coulomb exchange-correlation term exactly in such a four-center problem in the center of mass frame involving a nine dimensional integral. The present code of Ps-Ps collision using an ab-initio and exact static-exchange model (SEM) that uses the BO amplitude as input, can reproduce exactly the same data of Ps...

  14. On the influence of the hydrodynamic interactions on the aggregation rate of magnetic spheres in a dilute suspension

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, F.R., E-mail: frcunha@unb.b [Universidade de Brasilia, Faculdade de Tecnologia, Depto. de Engenharia Mecanica, Grupo de Mecanica dos Fluidos de Escoamentos Complexos - VORTEX, Campus Universitario Darcy Ribeiro, 70910-900, Brasilia, DF (Brazil); Couto, H.L.G. [Universidade de Brasilia, Faculdade de Tecnologia, Depto. de Engenharia Mecanica, Grupo de Mecanica dos Fluidos de Escoamentos Complexos - VORTEX, Campus Universitario Darcy Ribeiro, 70910-900, Brasilia, DF (Brazil)

    2011-01-15

    Magnetostatic attraction may lead to formation of aggregates in stable colloidal magnetic suspensions and magneto-rheological suspensions. The aggregation problem of magnetic composites under differential sedimentation is a key problem in the control of the instability of non-Brownian suspensions. Against these attractive forces are the electrostatic repulsion and the hydrodynamic interactions acting as stabilizing effects to the suspension. This work concerns an investigation of the pairwise interaction of magnetic particles in a dilute sedimenting suspension. We focus attention on suspensions where the Peclet number is large (negligible Brownian motion) and where the Reynolds number (negligible inertia) is small. The suspension is composed of magnetic micro-spheres of different radius and density immersed in a Newtonian fluid moving under the action of gravity. The theoretical calculations are based on direct computations of the hydrodynamic and the magnetic interactions among the rigid spheres in the regime of low particle Reynolds number. From the limiting trajectory in which aggregation occurs, we calculate the collision efficiency, representing the dimensionless rate at which aggregates are formed. The numerical results show clear evidence that the hydrodynamic interactions are of fundamental relevance in the process of magnetic particle aggregation. We compare the stabilizing effects between electrostatic repulsion and hydrodynamic interactions.

  15. Interaction Cross Sections and Survival Rates for Proposed Solar System Member Planet Nine

    CERN Document Server

    Li, Gongjie

    2016-01-01

    Motivated by the report of a possible new planetary member of the Solar System, this work calculates cross sections for interactions between passing stars and this proposed Planet Nine. Evidence for the new planet is provided by the orbital alignment of Kuiper Belt objects, and other Solar System properties, which suggest a Neptune-mass object on an eccentric orbit with semimajor axis a_9~400-1500 AU. With such a wide orbit, Planet Nine has a large interaction cross section, and is susceptible to disruption by passing stars. Using a large ensemble of numerical simulations (several million), and Monte Carlo sampling, we calculate the cross sections for different classes of orbit-altering events: [A] scattering the planet into its proposed orbit from a smaller orbit, [B] ejecting it from the Solar System from its current orbit, [C] capturing the planet from another system, and [D] capturing a free-floating planet. Results are presented for a range of orbital elements with planetary mass m_9=10M_\\earth. Removing...

  16. Butachlor degradation in tropical soils: effect of application rate, biotic-abiotic interactions and soil conditions.

    Science.gov (United States)

    Pal, R; Das, P; Chakrabarti, K; Chakraborty, A; Chowdhury, A

    2006-01-01

    The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.

  17. Influence of UAS Pilot Communication and Execution Delay on Controller's Acceptability Ratings of UAS-ATC Interactions

    Science.gov (United States)

    Vu, Kim-Phuong L.; Morales, Gregory; Chiappe, Dan; Strybel, Thomas Z.; Battiste, Vernol; Shively, Jay; Buker, Timothy J

    2013-01-01

    Successful integration of UAS in the NAS will require that UAS interactions with the air traffic management system be similar to interactions between manned aircraft and air traffic management. For example, UAS response times to air traffic controller (ATCo) clearances should be equivalent to those that are currently found to be acceptable with manned aircraft. Prior studies have examined communication delays with manned aircraft. Unfortunately, there is no analogous body of research for UAS. The goal of the present study was to determine how UAS pilot communication and execution delays affect ATCos' acceptability ratings of UAS pilot responses when the UAS is operating in the NAS. Eight radar-certified controllers managed traffic in a modified ZLA sector with one UAS flying in it. In separate scenarios, the UAS pilot verbal communication and execution delays were either short (1.5 s) or long (5 s) and either constant or variable. The ATCo acceptability of UAS pilot communication and execution delays were measured subjectively via post trial ratings. UAS verbal pilot communication delay, were rated as acceptable 92% of the time when the delay was short. This acceptability level decreased to 64% when the delay was long. UAS pilot execution delay had less of an influence on ATCo acceptability ratings in the present stimulation. Implications of these findings for UAS in the NAS integration are discussed.

  18. Polymer-Ion Interaction Weakens the Strain-Rate Dependence of Extension-Induced Crystallization for Poly(ethylene oxide).

    Science.gov (United States)

    Hu, Tingting; Tian, Nan; Ali, Sarmad; Wang, Zhen; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-03-01

    The crystallization of poly(ethylene oxide) (PEO)-sodium iodine (NaI) composites is investigated by differential scanning calorimetry (DSC), extensional rheology, and in situ small-angle X-ray scattering (SAXS) with the aim of demonstrating versatile roles played by polymer-ion interactions. In the isothermal quiescent crystallization process, a decrease in the crystal growth rate is observed for PEO-NaI and is attributed to slow chain movement caused by the coordination between cations and polymer. In situ SAXS on extensional flow-induced crystallization (FIC) exhibits enhanced kinetics and orientation for both PEO and PEO-NaI with increasing strain rate. However, an overall weaker strain-rate dependence of FIC is observed for PEO-NaI, which can be interpreted as a synergistic consequence of promoted nucleation under flow and impeded crystal growth by polymer-ion interaction. A possible microscopic mechanism is proposed to account for the experimental observation based on the formation of transient cross-linking points in PEO-NaI and their influence on the entanglement network of polymer under various flow fields. The disclosed strain-rate dependence and various ion effects on the behavior of PEO-salt composites contribute to a comprehensive understanding of polymer-ion solid polyelectrolytes.

  19. Stock Prices and Exchange Rates in the EU and the USA: Evidence of their Mutual Interactions

    OpenAIRE

    Stavarek, Daniel

    2004-01-01

    This paper investigates the nature of the causal relationships among stock prices and effective exchange rates in four old EU member countries (Austria, France, Germany, and the UK), four new EU member countries (Czech Republic, Hungary, Poland, and Slovakia), and in the United States. Both the long- and short-term causalities between these variables are explored using monthly data. The paper also endeavors to answer the question of whether the linkages between the analyzed economic variables...

  20. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans.

    Science.gov (United States)

    Sin, Peter Y W; Webber, Matthew R; Galletly, Duncan C; Ainslie, Philip N; Brown, Stephen J; Willie, Chris K; Sasse, Alexander; Larsen, Peter D; Tzeng, Yu-Chieh

    2010-07-01

    The respiratory component of heart rate variability (respiratory sinus arrhythmia, RSA) has been associated with improved pulmonary gas exchange efficiency in humans via the apparent clustering and scattering of heart beats in time with the inspiratory and expiratory phases of alveolar ventilation, respectively. However, since human RSA causes only marginal redistribution of heart beats to inspiration, we tested the hypothesis that any association between RSA amplitude and pulmonary gas exchange efficiency may be indirect. In 11 patients with fixed-rate cardiac pacemakers and 10 healthy control subjects, we recorded R-R intervals, respiratory flow, end-tidal gas tension and the ventilatory equivalents for carbon dioxide and oxygen during 'fast' (0.25 Hz) and 'slow' paced breathing (0.10 Hz). Mean heart rate, mean arterial blood pressure, mean arterial pressure fluctuations, tidal volume, end-tidal CO(2), and were similar between pacemaker and control groups in both the fast and slow breathing conditions. Although pacemaker patients had no RSA and slow breathing was associated with a 2.5-fold RSA amplitude increase in control subjects (39 +/- 21 versus 97 +/- 45 ms, P exchange efficiency during variable-frequency paced breathing observed in prior human work is not contingent on RSA being present. Therefore, whether RSA serves an intrinsic physiological function in optimizing pulmonary gas exchange efficiency in humans requires further experimental validation.