Lagrangian model of conformal invariant interacting quantum field theory
International Nuclear Information System (INIS)
Lukierski, J.
1976-01-01
A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3
Problems of vector Lagrangians in field theories
International Nuclear Information System (INIS)
Krivsky, I.Yu.; Simulik, V.M.
1997-01-01
A vector Lagrange approach to the Dirac spinor field and the relationship between the vector Lagrangians for the spinor and electromagnetic fields are considered. A vector Lagrange approach for the system of interacting electromagnetic B=(B μ υ)=(E-bar,H-bar) and spinor Ψ fields is constructed. New Lagrangians (scalar and vector) for electromagnetic field in terms of field strengths are found. The foundations of two new QED models are formulated
Effective lagrangian for strong interactions
International Nuclear Information System (INIS)
Jain, P.
1988-01-01
We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories
Buican, Matthew; Laczko, Zoltan
2018-02-01
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.
Buican, Matthew; Laczko, Zoltan
2018-02-23
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
Lagrangian vector field and Lagrangian formulation of partial differential equations
Directory of Open Access Journals (Sweden)
M.Chen
2005-01-01
Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.
Effective lagrangian from bosonic string field theory
International Nuclear Information System (INIS)
Nakazawa, Naohito
1987-01-01
We investigate the low-energy effective action from the string field theoretical view point. The low-energy effective lagrangian for the massless mode of bosonic string is determined to the order of α'. We find a term which can not be determined from the S-matrix approach. (author)
Lagrangian procedures for higher order field equations
International Nuclear Information System (INIS)
Bollini, C.G.
1987-01-01
A Lagrangian procedure for a pedagogical way is presented for the treatment of higher order field equations. The energy-momentum tensor and the conserved density current are built. In particular the case in which the derivatives appear only in the invariant D'Alembertian operator is discussed. Some examples are discussed. The fields are quantized and the corresponding Hamilonian which is shown not to be positive defructed. Rules are given to write the causal propagators. (author) [pt
Lagrangian procedures for higher order field equations
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1986-01-01
We present in a pedagogical way a Lagrangian procedure for the treatment of higher order field equations. We build the energy-momentum tensor and the conserved density current. In particular we discuss the case in which the derivatives appear only in the invariant D'Alembertian operator. We discuss some examples. We quantize the fields and construct the corresponding Hamiltonian which is shown not to be positive definite. We give the rules for the causal propagators. (Author) [pt
Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik
2015-06-09
An extended Lagrangian formalism that allows for a smooth transition between two different descriptions of interactions during a molecular dynamics simulation is presented. This time-adaptive method is particularly useful in the context of multiscale simulation as it provides a sound recipe to switch on demand between different hierarchical levels of theory, for instance between ab initio ("QM") and force field ("MM") descriptions of a given (sub)system in the course of a molecular dynamics simulation. The equations of motion can be integrated straightforwardly using the usual propagators, such as the Verlet algorithm. First test cases include a bath of harmonic oscillators, of which a subset is switched to a different force constant and/or equilibrium position, as well as an all-MM to QM/MM transition in a hydrogen-bonded water dimer. The method is then applied to a smectic 8AB8 liquid crystal and is shown to be able to switch dynamically a preselected 8AB8 molecule from an all-MM to a QM/MM description which involves partition boundaries through covalent bonds. These examples show that the extended Lagrangian approach is not only easy to implement into existing code but that it is also efficient and robust. The technique moreover provides easy access to a conserved energy quantity, also in cases when Nosé-Hoover chain thermostatting is used throughout dynamical switching. A simple quadratic driving potential proves to be sufficient to guarantee a smooth transition whose time scale can be easily tuned by varying the fictitious mass parameter associated with the auxiliary variable used to extend the Lagrangian. The method is general and can be applied to time-adaptive switching on demand between two different levels of theory within the framework of hybrid scale-bridging simulations.
Hadronic interactions from effective chiral Lagrangians of quarks and gluons
International Nuclear Information System (INIS)
Krein, G.
1996-06-01
We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs
"Lagrangian" for a Non-Lagrangian Field Theory with N=2 Supersymmetry.
Gadde, Abhijit; Razamat, Shlomo S; Willett, Brian
2015-10-23
We suggest that at least some of the strongly coupled N=2 quantum field theories in 4D can have a nonconformal N=1 Lagrangian description flowing to them at low energies. In particular, we construct such a description for the N=2 rank one superconformal field theory with E(6) flavor symmetry, for which a Lagrangian description was previously unavailable. We utilize this description to compute several supersymmetric partition functions.
An investigation of singular Lagrangians as field systems
International Nuclear Information System (INIS)
Rabei, E.M.
1995-07-01
The link between the treatment of singular Lagrangians as field systems and the general approach is studied. It is shown that singular Lagrangians as field systems are always in exact agreement with the general approach. Two examples and the singular Lagrangian with zero rank Hessian matrix are studied. The equations of motion in the field systems are equivalent to the equations which contain acceleration, and the constraints are equivalent to the equations which do not contain acceleration in the general approach treatment. (author). 10 refs
Gauge invariant Lagrangian formulation of massive higher spin fields in (A)dS3 space
International Nuclear Information System (INIS)
Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Yu.M.
2012-01-01
We develop the frame-like formulation of massive bosonic higher spin fields in the case of three-dimensional (A)dS space with the arbitrary cosmological constant. The formulation is based on gauge invariant description by involving the Stueckelberg auxiliary fields. The explicit form of the Lagrangians and the gauge transformation laws are found. The theory can be written in terms of gauge invariant objects similar to the massless theories, thus allowing us to hope to use the same methods for investigation of interactions. In the massive spin 3 field example we are able to rewrite the Lagrangian using the new the so-called separated variables, so that the study of Lagrangian formulation reduces to finding the Lagrangian containing only half of the fields. The same construction takes places for arbitrary integer spin field as well. Further working in terms of separated variables, we build Lagrangian for arbitrary integer spin and write it in terms of gauge invariant objects. Also, we demonstrate how to restore the full set of variables, thus receiving Lagrangian for the massive fields of arbitrary spin in the terms of initial fields.
Geometry of Lagrangian first-order classical field theories
International Nuclear Information System (INIS)
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N.
1996-01-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether's theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
Geometry of Lagrangian first-order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Munoz-Lecanda, M.C. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica; Roman-Roy, N. [Univ. Politecnica de Cataluna, Barcelona (Spain). Departamento de Matematica Aplicada y Telematica
1996-10-01
We construct a lagrangian geometric formulation for first-order field theories using the canonical structures of first-order jet bundles, which are taken as the phase spaces of the systems in consideration. First of all, we construct all the geometric structures associated with a first-order jet bundle and, using them, we develop the lagrangian formalism, defining the canonical forms associated with a lagrangian density and the density of lagrangian energy, obtaining the Euler-Lagrange equations in two equivalent ways: as the result of a variational problem and developing the jet field formalism (which is a formulation more similar to the case of mechanical systems). A statement and proof of Noether`s theorem is also given, using the latter formalism. Finally, some classical examples are briefly studied. (orig.)
International Nuclear Information System (INIS)
Chang, Y.W.; Chu, H.Y.; Gvildys, J.; Wang, C.Y.
1979-01-01
The analysis of fluid-structure interaction involves the calculation of both fluid transient and structure dynamics. In the structural analysis, Lagrangian meshes have been used exclusively, whereas for the fluid transient, Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian (quasi-Eulerian) meshes have been used. This paper performs an evaluation on these three types of meshes. The emphasis is placed on the applicability of the method in analyzing fluid-structure interaction problems in HCDA analysis
Infinitely many inequivalent field theories from one Lagrangian
100__; Mavromatos, Nick E.; Sarkar, Sarben
2014-01-01
Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field $\\phi$. In Euclidean space the Lagrangian of such a theory, $L=\\frac{1}{2}(\
International Nuclear Information System (INIS)
Ritus, V.I.
1987-01-01
This chapter gives methods of formulating the Lagrangian function of an intense field and its asymptotic properties are investigated. Section 2 gives a derivation of the correction pounds to the Lagrangian function resulting from the change in the radiation interaction of the vacuum electrons induced by a constant external field. Section 3 is devoted to the renormalization of the external field as well as the charge and mass of the electron. Like charge renormalization, mass renormalization is performed within the scope of the calculation of the Lagrangian function of the electromagnetic field (without separate consideration of the mass operator or the position of the pole of the Green function of the electron) using a general physical renormalization principle requiring vanishing of the radiation corrections to the observed charge and mass when the field is switched off. This calculation process is performed explicitly in Section 4 where the imaginary part of the Lagrangian function is calculated for weak and strong fields. Here it is noted that the asymptotic behavior of the Lagrangian function with large fields coincides with logarithmic accuracy to the asymptotic behavior of a polarized function with large momenta
Unambiguous formalism for higher order Lagrangian field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris
2009-01-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
Energy Technology Data Exchange (ETDEWEB)
Kubo, R; Yokoyama, K
1974-11-01
The purpose of this work is to study the structure of c-number gauge transformation in connection with renormalization problem. In the wide theory of neutral vector fields, there is the gauge structure described essentially by free Lagrangian density. The c-number gauge transformation makes the Lagrangian invariant correspondingly to the usual case of quantum electrodynamics. The c-number transformation can be used to derive relationships among all relevant renormalization constants in the case of interacting fields. In the presence of interaction, total Lagrangian density L is written as L=L/sub 0/+L/sub 1/+L/sub 2/, where L/sub 1/ is given from matter-field Lagrangian density, and L/sub 2/ denotes necessary additional counter terms. In order to conserve the gauge structure, the form of L is invariant under the gauge transformation. Since L matter is self-adjoining, L/sub 1/ remains invariant by itself under the transformation. The form of L/sub 2/ is finally given from the observation that L/sub 3/ cannot contain wave-function renormalization constants. Since L/sub 2/ is invariant under q-number gauge transformation, this transformation in unrenormalized form makes the present L form-invariant. Therefore, together with the above results, auxiliary fields produce the q-number gauge transformation for renormalized fields.
Deconstructing field-induced ketene isomerization through Lagrangian descriptors.
Craven, Galen T; Hernandez, Rigoberto
2016-02-07
The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.
Non-linear effective Lagrangian treatment of 'Penguin' interaction
International Nuclear Information System (INIS)
Pham, T.N.
1984-01-01
Using the non-linear effective lagrangian technique, we show explicitly that only derivative coupling is allowed for the K - π, K -> 2 π and K -> 3 π transitions induced by the ΔS = 1 Penguin operator of SVZ in agreement with chiral symmetry requirements. From a derivative coupling (3, anti 3) mass term and the SU(3) breaking effect for fsub(K)/fsub(π), we estimate the strength of the Penguin interactions and find it too small to account for the ΔI = 1/2 amplitude. (orig.)
The Gaussian streaming model and convolution Lagrangian effective field theory
Energy Technology Data Exchange (ETDEWEB)
Vlah, Zvonimir [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)
2016-12-01
We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.
International Nuclear Information System (INIS)
Sapershtein, E.E.; Khodel', V.A.
1981-01-01
The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle Lagrangian L/sub q/. It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of the system. The connection between the parameters of the effective Lagrangian and the constants of the quasiparticle interaction introduced in the theory of finite Fermi systems is established
International Nuclear Information System (INIS)
Blanchet, Y.; Obry, P.; Louvet, J.; Graveleau, J.
1981-04-01
Two different numerical methods have been implemented in two computer codes developed in CEA/DRNR, Cadarache, to predict the dynamic response of the containment of Super-Phenix reactor after a hypothetical energy excursion. Both codes are 2D-axisymmetric and solve the time-dependent flow of compressible fluids in the presence of deformable thin structures. The first one, called SIRIUS, uses only Lagrangian meshes; in the second one, called CASSIOPEE, the thick elastic-plastic materials are calculated in Lagrangian coordinates while fluids can be calculated either in Lagrangian or in Eulerian coordinates. The treatment of hydrodynamic, elastic-plastic thick domains then the thin shells models and the fluid-structure couplings are described in parallel for both codes. The efficiency and the limits of the previous methods are finally illustrated by comparison of measured and predicted strains of a vessel issued from one of the MARA experiments which are being purposely performed in Cadarache for validation of these codes in Super-Phenix scale models. These comparisons are encouraging and justify that the Super-Phenix reactor vessel response can be determined using the SIRIUS and CASSIOPEE codes
Relativistic particle dynamics: Lagrangian proof of the no-interaction theorem
International Nuclear Information System (INIS)
Marmo, G.; Mukunda, N.; Sudarshan, E.C.G.
1983-11-01
An economical proof is given, in the Lagrangian framework, of the No Interaction Theorem of relativistic particle mechanics. It is based on the assumption that there is a Lagrangian, which if singular is allowed to lead at most to primary first class constraints. The proof works with Lagrange rather than Poisson brackets, leading to considerable simplifications compared to other proofs
International Nuclear Information System (INIS)
Reshetnyak, A.
2013-01-01
We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having k rows, on a basis of the BRST–BFV approach suggested for bosonic fields in our first article [I.L. Buchbinder, A. Reshetnyak, Nucl. Phys. B 862 (2012) 270, (arXiv:1110.5044 [hep-th])]. Starting from a description of fermionic mixed-symmetry higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space associated with a special Poincare module, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a system of first-class constraints. To do this, we find, in first time, by means of generalized Verma module the auxiliary representations of the constraint subsuperalgebra, to be isomorphic due to Howe duality to osp(k|2k) superalgebra, and containing the subsystem of second-class constraints in terms of new oscillator variables. We suggest a universal procedure of finding unconstrained gauge-invariant Lagrangians with reducible gauge symmetries, describing the dynamics of both massless and massive fermionic fields of any spin. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by constraints corresponding to an irreducible Poincare-group representation. As examples of the general approach, we propose a method of Lagrangian construction for fermionic fields subject to an arbitrary Young tableaux having 3 rows, and obtain a gauge-invariant Lagrangian for a new model of a massless rank-3 spin-tensor field of spin (5/2,3/2) with first-stage reducible gauge symmetries and a non-gauge Lagrangian for a massive rank-3 spin-tensor field of spin (5/2,3/2)
Duality rotations for interacting fields
International Nuclear Information System (INIS)
Gaillard, M.K.; Zumino, Bruno
1981-05-01
We study the properties of interacting field theories which are invariant under duality rotations which transform a vector field strength into its dual. We consider non-abelian duality groups and find that the largest group for n interacting field strengths is the non-compact Sp(2n,R), which has U(n) as its maximal compact subgroup. We show that invariance of the equations of motion requires that the Lagrangian change in a particular way under duality. We use this property to demonstrate the existence of conserved currents, the invariance of the energy momentum tensor, and also in the general construction of the Lagrangian. Finally we comment on the existence of zero mass spin one bound states in N=8 supergravity, which possesses a non-compact E 7 dual invariance
A multivector derivative approach to Lagrangian field theory
International Nuclear Information System (INIS)
Lasenby, A.; Gull, S.; Doran, C.
1993-01-01
A new calculus, based upon the multivector derivative, is developed for Lagrangian mechanics and field theory, providing streamlined and rigorous derivations of the Euler-Lagrange equations. A more general form of Noether's theorem is found which is appropriate to both discrete and continuous symmetries. This is used to find the conjugate currents of the Dirac theory, where it improves on techniques previously used for analyses of local observables. General formulas for the canonical stress-energy and angular-momentum tensors are derived, with spinors and vectors treated in a unified way. It is demonstrated that the antisymmetric terms in the stress-energy tensor are crucial to the correct treatment of angular momentum. The multivector derivative is extended to provide a functional calculus for linear functions which is more compact and more powerful than previous formalisms. This is demonstrated in a reformulation of the functional derivative with respect to the metric, which is then used to recover the full canonical stress-energy tensor. Unlike conventional formalisms, which result in a symmetric stress-energy tensor, this reformulation retains the potentially important antisymmetric contribution. 23 refs
On infrared problems of effective Lagrangians of massive spin 2 fields coupled to gauge fields
Energy Technology Data Exchange (ETDEWEB)
Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia (Chile); Giacomini, Alex, E-mail: alexgiacomini@uach.cl [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile); Zerwekh, Alfonso R., E-mail: alfonso.zerwekh@usm.cl [Departamento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile)
2016-12-15
In this paper we analyze the interactions of massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati–Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stückelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stückelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space–time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for “large enough” gauge potentials. This opens the possibility to avoid the appearance of such gauge fixing ambiguities by using a Gribov–Zwanziger like approach.
Versatility of field theory motivated nuclear effective Lagrangian approach
International Nuclear Information System (INIS)
Arumugam, P.; Sharma, B.K.; Sahu, P.K.; Patra, S.K.; Sil, Tapas; Centelles, M.; Vinas, X.
2004-01-01
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei
A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories
Li, Wenliang
2018-04-01
We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.
Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map
Rosales, Carlos
2011-07-01
A method for simple but realistic generation of three-dimensional synthetic turbulent passive scalar fields is presented. The method is an extension of the minimal turnover Lagrangian map approach (MTLM) [C. Rosales and C. Meneveau, Phys. Rev. E 78, 016313 (2008)] formulated for the generation of synthetic turbulent velocity fields. In this development, the minimal Lagrangian map is applied to deform simultaneously a vector field and an advected scalar field. This deformation takes place over a hierarchy of spatial scales encompassing a range from integral to dissipative scales. For each scale, fluid particles are mapped transporting the scalar property, without interaction or diffusional effects, from their initial configuration to new positions determined only by their velocity at the beginning of the motion and a parameter chosen to accumulate deformation for the equivalent of the phenomenological "turn-over" time scale. The procedure is studied for the case of inertial-convective regime. It is found that many features of passive scalar turbulence are well reproduced by this simple kinematical construction. Fundamental statistics of the resulting synthetic scalar fields, evaluated through the flatness and probability density functions of the scalar gradient and scalar increments, reproduce quite well the known statistical characteristics of passive scalars in turbulent fields. High-order statistics are also consistent with those observed in real hydrodynamic turbulence. The anomalous scaling of real turbulence is well reproduced for different kind of structure functions, with good quantitative agreement in general, for the scaling exponents. The spatial structure of the scalar field is also quite realistic, as well as several characteristics of the dissipation fields for the scalar variance and kinetic energy. Similarly, the statistical geometry at dissipative scales that ensues from the coupling of velocity and scalar gradients behaves in agreement with what is
International Nuclear Information System (INIS)
Drechsler, W.
1977-01-01
A Lagrangian formalism invariant under the gauge group U 1 xUSpsub(2.2) is set up in terms of spinor fields defined on a fiber bundle with Cartan connexion. The fiber of the Cartan bundle over space-time associated with strong interactions is characterized by an elementary length parameter R related to the range of the strong forces, and the structural group USpsub(2.2) of the bundle (being the covering group of the SOsub(4.1) de Sitter group) implies a gauge description of strong interactions based on the noncompact gauge group USpsub(2.2). The U 1 factor in the total gauge group corresponds to the usual gauge formulation for the electromagnetic interactions. The positivity of the energy associated with stable extended one-particle states in this dualistic description of charged hadronic matter immersed in the fiber geometry (this dualism is called strong fiber dynamics (SFD)) requires hadrons to be assigned to representations of the compact subgroup SU 2 xSU 2 of the strong-interaction gauge group USpsub(2.2). A brief discussion of the point-particle limit R→O is given by linking the presented SFD formalism for extended hadrons to an idealized description in terms of operators in a local quantum field theory
Geometric Lagrangian approach to the physical degree of freedom count in field theory
Díaz, Bogar; Montesinos, Merced
2018-05-01
To circumvent some technical difficulties faced by the geometric Lagrangian approach to the physical degree of freedom count presented in the work of Díaz, Higuita, and Montesinos [J. Math. Phys. 55, 122901 (2014)] that prevent its direct implementation to field theory, in this paper, we slightly modify the geometric Lagrangian approach in such a way that its resulting version works perfectly for field theory (and for particle systems, of course). As in previous work, the current approach also allows us to directly get the Lagrangian constraints, a new Lagrangian formula for the counting of the number of physical degrees of freedom, the gauge transformations, and the number of first- and second-class constraints for any action principle based on a Lagrangian depending on the fields and their first derivatives without performing any Dirac's canonical analysis. An advantage of this approach over the previous work is that it also allows us to handle the reducibility of the constraints and to get the off-shell gauge transformations. The theoretical framework is illustrated in 3-dimensional generalized general relativity (Palatini and Witten's exotic actions), Chern-Simons theory, 4-dimensional BF theory, and 4-dimensional general relativity given by Palatini's action with a cosmological constant.
International Nuclear Information System (INIS)
Hojman, S.
1982-01-01
We present a review of the inverse problem of the Calculus of Variations, emphasizing the ambiguities which appear due to the existence of equivalent Lagrangians for a given classical system. In particular, we analyze the properties of equivalent Lagrangians in the multidimensional case, we study the conditions for the existence of a variational principle for (second as well as first order) equations of motion and their solutions, we consider the inverse problem of the Calculus of Variations for singular systems, we state the ambiguities which emerge in the relationship between symmetries and conserved quantities in the case of equivalent Lagrangians, we discuss the problems which appear in trying to quantize classical systems which have different equivalent Lagrangians, we describe the situation which arises in the study of equivalent Lagrangians in field theory and finally, we present some unsolved problems and discussion topics related to the content of this article. (author)
Lagrangian analysis of nonlinear wave-wave interactions in bounded plasmas
International Nuclear Information System (INIS)
Carr, A.R.
1979-01-01
In a weakly turbulent nonlinear wave-supporting medium, one of the important nonlinear processes which may occur is resonant three-wave interaction. Whitham's averaged Lagrangian method provides a general formulation of wave evolution laws which is easily adapted to nonlinear dispersive media. In this thesis, the strength of nonlinear interactions between three coherent, axisymmetric, low frequency, magnetohydrodynamic (Alfven) waves propagating in resonance along a cold cylindrical magnetized plasma column is calculated. Both a uniform and a parabolic density distribution have been considered. To account for a non-zero plasma temperature, pressure effects have been included. Distinctive features of the work are the use of cylindrical geometry, the presence of a finite rather than an infinite axial magnetic field, the treatment of a parabolic density distribution, and the inclusion of both ion and electron contributions in all expressions. Two astrophysical applications of the presented theory have been considered. In the first, the possibility of resonant three-wave coupling between geomagnetic micropulsations, which propagate as Alfven or magnetosonic waves along the Earth's magnetic field lines, has been investigated. The second case is the theory of energy transport through the solar chromosphere by upward propagating magnetohydrodynamic waves, which may then couple to heavily damped waves in the corona, causing the observed excess heating in that region
van Gent, P.L.; Michaelis, D; van Oudheusden, B.W.; Weiss, P.E.; de Kat, R.; Laskari, A.; Jeon, Y.J.; David, L; Schanz, D; Huhn, F.; Gesemann, S; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, David E.; Schneiders, J.F.G.; Schrijer, F.F.J.
2017-01-01
A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences
Lagrangian derivation of the two coupled field equations in the Janus cosmological model
Petit, Jean-Pierre; D'Agostini, G.
2015-05-01
After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.
Covariant quantization of Lagrangians with quadratic dependent fields and derivative couplings
International Nuclear Information System (INIS)
Lam, C.S.; Wang, K.
1977-01-01
A covariant path-integral formula is derived for Lagrangians with quadratic dependent fields and derivative couplings. It differs from the naive one by a factor which can be viewed graphically as due to the coupling with ghost fields. These path integrals can be shown to be unitary and to satisfy equations of motion if and only if this extra factor is present. Applications of this formula to gauge and other field theories are discussed
On a canonical formulation of field theories with singular Lagrangians
International Nuclear Information System (INIS)
Mal'tsev, V.K.
1978-01-01
An attempt is made to introduce the Routh function formalism into the field theory: only ''nondegenerated'' field components are considered as canonical variables. Electrodynamics and general relativity are considered. The formalism appears to be quite simple and gauge-independent
International Nuclear Information System (INIS)
Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.
1983-11-01
MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables
Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations
International Nuclear Information System (INIS)
Atzberger, Paul J.
2011-01-01
We present approaches for the study of fluid-structure interactions subject to thermal fluctuations. A mixed mechanical description is utilized combining Eulerian and Lagrangian reference frames. We establish general conditions for operators coupling these descriptions. Stochastic driving fields for the formalism are derived using principles from statistical mechanics. The stochastic differential equations of the formalism are found to exhibit significant stiffness in some physical regimes. To cope with this issue, we derive reduced stochastic differential equations for several physical regimes. We also present stochastic numerical methods for each regime to approximate the fluid-structure dynamics and to generate efficiently the required stochastic driving fields. To validate the methodology in each regime, we perform analysis of the invariant probability distribution of the stochastic dynamics of the fluid-structure formalism. We compare this analysis with results from statistical mechanics. To further demonstrate the applicability of the methodology, we perform computational studies for spherical particles having translational and rotational degrees of freedom. We compare these studies with results from fluid mechanics. The presented approach provides for fluid-structure systems a set of rather general computational methods for treating consistently structure mechanics, hydrodynamic coupling, and thermal fluctuations.
Rashid, M.
2011-01-01
Considering the Lagrangian density of the electromagnetic field, a 4 × 4 transformation matrix is found which can be used to include two of the symmetrized Maxwell’s equations as one of the Euler-Lagrange equations of the complete Lagrangian density. The 4 × 4 transformation matrix introduces newly
Scheme (in?) dependence in perturbative Lagrangian quantum field theory
International Nuclear Information System (INIS)
Slavnov, D.A.
1995-01-01
A problem of renormalization - scheme ambiguity in perturbation quantum field theory is investigated. A procedure is described that makes it possible to express uniquely all observable quantities in terms of a set base observables. Renormalization group equations for the base observable are constructed. The case of mass theory is treated. 9 refs
A study on relativistic lagrangian field theories with non-topological soliton solutions
International Nuclear Information System (INIS)
Diaz-Alonso, J.; Rubiera-Garcia, D.
2009-01-01
We perform a general analysis of the dynamic structure of two classes of relativistic lagrangian field theories exhibiting static spherically symmetric non-topological soliton solutions. The analysis is concerned with (multi-) scalar fields and generalized gauge fields of compact semi-simple Lie groups. The lagrangian densities governing the dynamics of the (multi-) scalar fields are assumed to be general functions of the kinetic terms, whereas the gauge-invariant lagrangians are general functions of the field invariants. These functions are constrained by requirements of regularity, positivity of the energy and vanishing of the vacuum energy, defining what we call 'admissible' models. In the scalar case we establish the general conditions which determine exhaustively the families of admissible lagrangian models supporting this kind of finite-energy solutions. We analyze some explicit examples of these different families, which are defined by the asymptotic and central behaviour of the fields of the corresponding particle-like solutions. From the variational analysis of the energy functional, we show that the admissibility constraints and the finiteness of the energy of the scalar solitons are necessary and sufficient conditions for their linear static stability against small charge-preserving perturbations. Furthermore, we perform a general spectral analysis of the dynamic evolution of the small perturbations around the statically stable solitons, establishing their dynamic stability. Next, we consider the case of many-components scalar fields, showing that the resolution of the particle-like field problem in this case reduces to that of the one-component case. The study of these scalar models is a necessary step in the analysis of the gauge fields. In this latter case, we add the requirement of parity invariance to the admissibility constraints. We determine the general conditions defining the families of admissible gauge-invariant models exhibiting finite
Lagrangian finite element formulation for fluid-structure interaction and application
International Nuclear Information System (INIS)
Hautfenne, M.H.
1983-01-01
The aim of this communication is to present a new finite element software (FLUSTRU) for fluid-structure interaction in a lagrangian formulation. The stiffness and damping matrices of the fluid are computed from the governing laws of the medium: the fluid is supposed to be viscous and compressible (Stokes' equations). The main problem stated by the lagrangian formulation of the fluid is the presence of spurious free-vibration modes (zero energy modes) in the fluid. Those modes are generated by the particular form of the matrix. These spurious modes have been examined and two particular methods to eliminate them have been developed: industrial applications prove the efficiency of the proposed methods. (orig./GL)
The Hamiltonian formulation of regular rth-order Lagrangian field theories
International Nuclear Information System (INIS)
Shadwick, W.F.
1982-01-01
A Hamiltonian formulation of regular rth-order Lagrangian field theories over an m-dimensional manifold is presented in terms of the Hamilton-Cartan formalism. It is demonstrated that a uniquely determined Cartan m-form may be associated to an rth-order Lagrangian by imposing conditions of congruence modulo a suitably defined system of contact m-forms. A geometric regularity condition is given and it is shown that, for a regular Lagrangian, the momenta defined by the Hamilton-Cartan formalism, together with the coordinates on the (r-1)st-order jet bundle, are a minimal set of local coordinates needed to express the Euler-Lagrange equations. When r is greater than one, the number of variables required is strictly less than the dimension of the (2r-1)st order jet bundle. It is shown that, in these coordinates, the Euler-Lagrange equations take the first-order Hamiltonian form given by de Donder. It is also shown that the geometrically natural generalization of the Hamilton-Jacobi procedure for finding extremals is equivalent to de Donder's Hamilton-Jacobi equation. (orig.)
Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems
International Nuclear Information System (INIS)
Donea, J.; Fasoli-Stella, P.; Giuliani, S.
1977-01-01
The basic finite element equations for transient compressible fluid flow are presented in a form that allows the elements to be moved with the fluid in normal Lagrangian fashion, to be held fixed in a Eulerian manner, or to be moved in some arbitrarily specified way. The co-existence of Lagrangian and Eulerian regions within the finite element mesh will permit to handle greater distortions in the fluid motion than would be allowed by a purely Lagrangian method, with more resolution than is afforded by a purely Eulerian method. To achieve a mixed formulation, the conservation statements of mass, momentum and energy are expressed in integral form over a reference volume whose surface may be moving with an arbitrarily prescribed velocity. Direct use can be made of the integral forms of the mass and energy equations to adjust the element density and specific internal energy. The Galerkin process is employed to formulate a variational statement associated with the momentum equation. The difficulties associated with the presence of convective terms in the conservation equations are handled by expressing transports of mass, momentum and energy terms of intermediate velocities derived at each cycle from the previous cycle velocities and accelerations. The hydrodynamic elements presented are triangles, quadrilaterals with constant pressure and density. The finite element equations associated with these elements are described in the necessary detail. Numerical results are presented based on purely Lagrangian, purely Eulerian and mixed formulations. Simple problems with analytic solution are solved first to show the validity and accuracy of the proposed mixed finite element formulation. Then, practical problems are illustrated in the field of fast reactor safety analysis
Dual field theory of strong interactions
International Nuclear Information System (INIS)
Akers, D.
1987-01-01
A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137
Multipole interactions of charged particles with the electromagnetic field
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
The full multipole expansion for the lagrangian and hamiltonian of a system of point charges interacting with the electromagnetic field is studied in detail. Both classical and quantum theory are described for external and dynamical fields separately. One improvement with respect to the known Fiutak's paper is made. (author)
Generalized continuity equations from two-field Schrödinger Lagrangians
Spourdalakis, A. G. B.; Pappas, G.; Morfonios, C. Â. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.
2016-11-01
A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states. The formalism reproduces the bilocal continuity equation obtained in the special case of P T -symmetric quantum mechanics and paraxial optics.
International Nuclear Information System (INIS)
Santilli, R.M.
1977-01-01
In this paper we first study the equivalence transformations of class C 2 , regular, tensorial, quasi-linear systems of field which (a) preserve the continuity, regularity, and quasi-linear structure of the systems; and (b) occur within a fixed system of Minkowski coordinates and field components. We identify, among the transformations of this class, those which either induce or preserve a self-adjoint structure of the field equations and we term them genotopic and isotopic transformations, respectively. We then give the necessary and sufficient conditions for an equivalence transformation of the above type to be either genotopic or isotopic. By using this methodology, we then extend the theorem on the necessary and sufficient condition for the existence of ordered direct analytic representations introduced in the preceding paper to the case of ordered indirect analytic representations in terms of the conventional Lagrange equations; we introduce a method for the construction of a Lagrangian, when it exists, in this broader context; and we explore some implications of the underlying methodology for the problem of the structure of the Lagrangian capable of representing interactions within the framework of the indirect analytic representations. Some of the several aspects which demand an inspection prior to the use of this analytic approach in actual models are pointed out.In particular, we indicate a possible deep impact in the symmetries and conservation laws of the system generated by the use of the concept of indirect analytic representation
Reyes, Jonathan; Shadwick, B. A.
2016-10-01
Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
Antonowicz, Marek; Szczyrba, Wiktor
1985-06-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
International Nuclear Information System (INIS)
Antonowicz, M.; Szczyrba, W.
1985-01-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8 = 12 independent degrees of freedom in the phase space
Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás
2016-07-15
The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mean Field Type Control with Congestion (II): An Augmented Lagrangian Method
Energy Technology Data Exchange (ETDEWEB)
Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS (France)
2016-12-15
This work deals with a numerical method for solving a mean-field type control problem with congestion. It is the continuation of an article by the same authors, in which suitably defined weak solutions of the system of partial differential equations arising from the model were discussed and existence and uniqueness were proved. Here, the focus is put on numerical methods: a monotone finite difference scheme is proposed and shown to have a variational interpretation. Then an Alternating Direction Method of Multipliers for solving the variational problem is addressed. It is based on an augmented Lagrangian. Two kinds of boundary conditions are considered: periodic conditions and more realistic boundary conditions associated to state constrained problems. Various test cases and numerical results are presented.
Effect of δ meson and ρ-ω cross couplings in effective field theory motivated Lagrangian approach
International Nuclear Information System (INIS)
Jagota, R.K.; Dhiman, S.K.; Sharma, B.K.; Arumugam, P.; Patra, S.K.
2005-01-01
It is shown that the self and cross couplings of ω meson plays an important role to make the nuclear equation of state (EOS) softer. The parameter set G2, obtained from the effective field theory motivated Lagrangian (E-RMF) approach, is very successful to reproduce the nuclear matter properties including the structure of neutron star as well as of finite nuclei. The motivation of the present report is to see the effects of these terms in the E-RMF Lagrangian on infinite nuclear matter as well as finite nuclei
International Nuclear Information System (INIS)
Kaminski, J.Z.
1981-01-01
A renormalization group equation for the effective Lagrangian of QED is obtained. Starting from this equation, perturbation theory for the renormalization group equation (PTRGE) is developed. The results are in full agreement with the standard perturbation theory. Conjecturing that the asymptotic effective coupling constant is finite, the effective Lagrangian for a strong magnetic field is obtained, which is proportional to the Maxwellian Lagrangian. For the asymptotically free theories the situation is diametrically opposed to QED. In these cases the effective Lagrangian of the Yang-Mills system tends to infinity for very strong external Yang-Mills fields. (Auth.)
Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe
2014-02-01
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
International Nuclear Information System (INIS)
Gogala, B.
1983-01-01
The equations of the gauge theory of gravitation are derived from a complex quadratic Lagrangian with torsion. The derivation is performed in a coordinate basis in a completely covariant way. (author)
National Research Council Canada - National Science Library
Shao, Y
2004-01-01
Lagrangian Stochastic (LS) particle models have proven to be a useful computational tool for the description and prediction of dispersion of pollutant releases in complex meteorological situations (e.g...
On the generally invariant Lagrangians for the metric field and other tensor fields
International Nuclear Information System (INIS)
Novotny, J.
1978-01-01
The Krupka and Trautman method for the description of all generally invariant functions of the components of geometrical object fields is applied to the invariants of second degree of the metrical field and other tensor fields. The complete system of differential identities fulfilled by the invariants mentioned is found and it is proved that these invariants depend on the tensor quantities only. (author)
Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.
2018-05-01
Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.
IMPOSING A LAGRANGIAN PARTICLE FRAMEWORK ON AN EULERIAN HYDRODYNAMICS INFRASTRUCTURE IN FLASH
International Nuclear Information System (INIS)
Dubey, A.; Daley, C.; Weide, K.; Graziani, C.; ZuHone, J.; Ricker, P. M.
2012-01-01
In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.
Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash
Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.
2012-01-01
In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.
Peco, C.; Rosolen, A.; Arroyo, M.
2013-01-01
We present a Lagrangian phase-field method to study the low Reynolds number dynamics of vesicles embedded in a viscous fluid. In contrast to previous approaches, where the field variables are the phase-field and the fluid velocity, here we exploit the fact that the phasefield tracks a material interface to reformulate the problem in terms of the Lagrangian motion of a background medium, containing both the biomembrane and the fluid. We discretize the equations in space with maximum-entr...
International Nuclear Information System (INIS)
Gaida, R.P.; Kluchkousky, Ya.B.; Tretyak, V.I.
1987-01-01
In the present report the main attention is paid to the interrelations of various three-dimensional approaches and to the relation of the latter to the Fokker-type action formalism; the problem of the correspondence between three-dimensional descriptions and singular Lagrangian formalism will be shortly concerned. The authors start with the three-dimensional Lagrangian formulation of the classical RDIT. The generality of this formalism enables, similarly as in the non-relativistic case, to consider it as a central link explaining naturally a number of features of other three-dimensional approaches, namely Newtonian (based directly on second order equations of motion) and Hamiltonian ones). It is also capable of describing four-dimensional manifestly covariant models using Fokker action integrals and singular Lagrangians
International Nuclear Information System (INIS)
Beyl, L.M.
1979-01-01
It is shown that the Einstein, Weyl, supergravity and superconformal theories are special cases of gauge transformations in SU(4vertical-barN). This group is shown to contain SU(2,2) x SU(N) x U(1) for its commuting or Bose part, and to contain 8N supersymmetry generators for its anticommuting or Fermi part. Using the electromagnetic Lagrangian as a model, a super-Lagrangian is constructed for vector potentials. Invariance is automatic in free space, but, in the presence of matter, restrictions on the supersymmetry transformations are necessary. The Weyl action and the Einstein cosmological field equations are obtained in the appropriate limits. Finally, a super-Lagrangian is constructed from nongeometric principles which includes the Dirac Lagrangian and except for a sum over symmetry indices resembles the electron-electromagnetic Lagrangian
El-Nabulsi, Rami Ahmad
2018-03-01
Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.
International Nuclear Information System (INIS)
Weinberg, S.
1979-01-01
The author presents an argument that phenomenological Lagrangians can be used not only to reproduce the soft pion results of current algebra, but also to justify these results, without any use of operator algebra, and shows how phenomenological Lagrangians can be used to calculate corrections to the leading soft pion results to any desired order in external momenta. The renormalization group is used to elucidate the structure of these corrections. Corrections due to the finite mass of the pion are treated and speculations are made about another possible application of phenomenological Lagrangians. (Auth.)
Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton
2017-03-28
Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Directory of Open Access Journals (Sweden)
G Boiger
2016-06-01
Full Text Available In order to study the powder coating process of metal substrates, a comprehensive, numerical 3D Eulerian-LaGrangian model, featuring two particle sub-models, has been developed. The model considers the effects of electro-static, fluid-dynamic and gravity forces. The code has been implemented in C++ within the open source CFD platform OpenFoam®, is transient in nature with respect to the applied LaGrangian particle implementation and the electro-static field calculation and is stationary regarding fluid-dynamic phenomena. Qualitative validation of the developed solver has already been achieved by comparison to simple coating experiments and will hereby be presented alongside a thorough description of the model itself. Upon combining knowledge of the relevant dimensionless groups and the numerical model, a dimensionless chart, representing all possible states of coating, was populated with comprehensive, exemplary cases, which are shown here as well.
On dynamic equations for interaction of the affinor field with affine connection
International Nuclear Information System (INIS)
Pestov, A.B.
1987-01-01
The Lagrangian of interaction of an affinor field with an affine connection is constructed and the equations of motion and conservation laws are derived. It is shown that there exists a symmetric conserved tensor of the affine-connection energy-momentum
International Nuclear Information System (INIS)
Burdík, C; Reshetnyak, A
2012-01-01
We derive non-linear commutator HS symmetry algebra, which encode unitary irreducible representations of AdS group subject to Young tableaux Y(s 1 ,..., s k ) with κ ≥ 2 rows on d-dimensional anti-de-Sitter space. Auxiliary representations for specially deformed non-linear HS symmetry algebra in terms of generalized Verma module in order to additively convert a subsystem of second-class constraints in the HS symmetry algebra into one with first-class constraints are found explicitly for the case of HS fields for κ = 2 Young tableaux. The oscillator realization over Heisenberg algebra for obtained Verma module is constructed. The results generalize the method of auxiliary representations construction for symplectic sp(2κ) algebra used for mixed-symmetry HS fields on a flat spaces and can be extended on a case of arbitrary HS fields in AdS-space. Gauge-invariant unconstrained reducible Lagrangian formulation for free bosonic HS fields with generalized spin (s 1 , s 2 ) is derived.
International Nuclear Information System (INIS)
Chanda, R.
1981-01-01
The theoretical and experimental evidences to form a basis for Lagrangian Quantum field theory for Weak Interactions are discussed. In this context, gauge invariance aspects of such interactions are showed. (L.C.) [pt
Lagrangian and Hamiltonian dynamics
Mann, Peter
2018-01-01
An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Mo...
Energy Technology Data Exchange (ETDEWEB)
Wang, C.Y.
1993-06-01
This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts` ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.
Energy Technology Data Exchange (ETDEWEB)
Wang, C.Y.
1993-01-01
This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts' ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.
Derivative self-interactions for a massive vector field
Energy Technology Data Exchange (ETDEWEB)
Beltrán Jiménez, Jose, E-mail: jose.beltran@cpt.univ-mrs.fr [CPT, Aix Marseille Université, UMR 7332, 13288 Marseille (France); Heisenberg, Lavinia, E-mail: lavinia.heisenberg@eth-its.ethz.ch [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland)
2016-06-10
In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi–Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley–Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.
International Nuclear Information System (INIS)
Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa
2015-01-01
We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well
Weyl's Lagrangian in teleparallel form
International Nuclear Information System (INIS)
Burnett, James; Vassiliev, Dmitri
2009-01-01
The Weyl Lagrangian is the massless Dirac Lagrangian. The dynamical variable in the Weyl Lagrangian is a spinor field. We provide a mathematically equivalent representation in terms of a different dynamical variable - the coframe (an orthonormal tetrad of covector fields). We show that when written in terms of this dynamical variable, the Weyl Lagrangian becomes remarkably simple: it is the wedge product of axial torsion of the teleparallel connection with a teleparallel lightlike element of the coframe. We also examine the issues of U(1)-invariance and conformal invariance. Examination of the latter motivates us to introduce a positive scalar field (equivalent to a density) as an additional dynamical variable; this makes conformal invariance self-evident.
Lagrangian formulation of classical BMT-theory
International Nuclear Information System (INIS)
Pupasov-Maksimov, Andrey; Deriglazov, Alexei; Guzman, Walberto
2013-01-01
Full text: The most popular classical theory of electron has been formulated by Bargmann, Michel and Telegdi (BMT) in 1959. The BMT equations give classical relativistic description of a charged particle with spin and anomalous magnetic momentum moving in homogeneous electro-magnetic field. This allows to study spin dynamics of polarized beams in uniform fields. In particular, first experimental measurements of muon anomalous magnetic momentum were done using changing of helicity predicted by BMT equations. Surprisingly enough, a systematic formulation and the analysis of the BMT theory are absent in literature. In the present work we particularly fill this gap by deducing Lagrangian formulation (variational problem) for BMT equations. Various equivalent forms of Lagrangian will be discussed in details. An advantage of the obtained classical model is that the Lagrangian action describes a relativistic spinning particle without Grassmann variables, for both free and interacting cases. This implies also the possibility of canonical quantization. In the interacting case, an arbitrary electromagnetic background may be considered, which generalizes the BMT theory formulated to the case of homogeneous fields. The classical model has two local symmetries, which gives an interesting example of constrained classical dynamics. It is surprising, that the case of vanishing anomalous part of the magnetic momentum is naturally highlighted in our construction. (author)
The nucleon-nucleon interaction from a realistic pseudoscalar-vector chiral lagrangian
International Nuclear Information System (INIS)
Kaiser, N.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge
1990-01-01
We investigate the static nucleon-nucleon potential in the framework of a non-linear chiral meson theory. The model includes pions as well as the vector mesons ρ and ω. All parameters are fixed in the meson sector and predictions about the nucleon-nucleon interaction follow without adjusting any parameters. We use an S-matrix approach to calculate correlated two-pion exchange between two solitons. The most prominent feature of this two-pion exchange is that it leads very natural to attraction in the scalar-isoscalar channel. We also discuss the effect of πp correlations on the central potential, and present the spectral function related to the correlated two-pion exchange. Furthermore, we study the form factors of the nucleon sources related to the two-pion exchange and find that they are of dipole type with typical cutoff scales Λ D ≅ 700 MeV. We also discuss the destructive interference of π- and ρ-exchange in the isovector tensor potential. Altogether, we present a unified treatment of meson exchange phenomenology based on a serious model of the nucleon. Finally, we point out the limitations of the model and discuss some further applications. (orig.)
Lagrangian averaging with geodesic mean.
Oliver, Marcel
2017-11-01
This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.
Quantum principles in field interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1986-01-01
The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions
Lagrangian postprocessing of computational hemodynamics.
Shadden, Shawn C; Arzani, Amirhossein
2015-01-01
Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.
Lakshminarayanan, Vasudevan; Thyagarajan, K
2002-01-01
Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the ...
Casimir effect for interacting fields
International Nuclear Information System (INIS)
Kay, B.S.
1982-01-01
The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)
Strong field QED in lepton colliders and electron/laser interactions
Hartin, Anthony
2018-05-01
The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the
The Wess-Zumino lagrangian and colored techni-pseudo-Goldstone bosons
International Nuclear Information System (INIS)
McKay, D.W.; Young Binglin; Iowa State Univ. of Science and Technology, Ames
1986-01-01
The construction of the Wess-Zumino type effective action is discussed for color octet techni-pion and techni-eta fields interacting with the light gauge bosons - gluon, photon, Wsup(+-) and Z. The explicit effective lagrangian for the one-pseudoscalar meson sector is displayed. GAMMA(eta->GWW), GAMMA(eta->GGγ) and GAMMA(eta->GGZ) are compared to GAMMA(eta->GZ) to illustrate the predictive content of the lagrangian. (orig.)
Alternative kinetic energy metrics for Lagrangian systems
Sarlet, W.; Prince, G.
2010-11-01
We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.
Low-energy phenomenological chiral Lagrangians
International Nuclear Information System (INIS)
Cavopol, A.V.
1987-01-01
We develop a phenomenological Lagrangian that satisfies the requirements of the so called alternative schemes designed to model low energy meson phenomenology. Linear and nonlinear σ type Lagrangians and symmetry breaking schemes are used to describe pions that exhibit masses proportional to the square of the symmetry breaking term's coefficient, ε. (m π 2 ∼ 0(ε 2 )). The invariance of the theory under coordinate dependent transformations is achieved by introducing gauge fields for both linear and nonlinear Lagrangians. Finally, analogies between the minimal symmetry breaking terms in Quantum Electrodynamics and in our phenomenological lagrangians are used to generate a discussion of the quark-pion mass dependence indicated by the model
Effective lagrangian description on discrete gauge symmetries
International Nuclear Information System (INIS)
Banks, T.
1989-01-01
We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)
Parsakhoo, Zahra; Shao, Yaping
2017-04-01
Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).
Cubic Interactions of Massless Bosonic Fields in Three Dimensions
Mkrtchyan, Karapet
2018-06-01
In this Letter, we take the first step towards construction of nontrivial Lagrangian theories of higher-spin gravity in a metriclike formulation in three dimensions. The crucial feature of a metriclike formulation is that it is known how to incorporate matter interactions into the description. We derive a complete classification of cubic interactions for arbitrary triples s1 , s2 , s3 of massless fields, which are the building blocks of any interacting theory with massless higher spins. We find that there is, at most, one vertex for any given triple of spins in 3D (with one exception, s1=s2=s3=1 , which allows for two vertices). Remarkably, there are no vertices for spin values that do not respect strict triangle inequalities and contain at least two spins greater than one. This translates into selection rules for three-point functions of higher-spin conserved currents in two dimensional conformal field theory. Furthermore, universal coupling to gravity for any spin is derived. Last, we argue that this classification persists in arbitrary Einstein backgrounds.
Lagrangian ocean analysis : Fundamentals and practices
van Sebille, Erik; Deleersnijder, E.L.C.; Heemink, A.W.; Griffies, Stepehn M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Authors, More
2018-01-01
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several
Lagrangian ocean analysis : Fundamentals and practices
van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H.A.M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.
2018-01-01
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades,
A Lagrangian-dependent metric space
International Nuclear Information System (INIS)
El-Tahir, A.
1989-08-01
A generalized Lagrangian-dependent metric of the static isotropic spacetime is derived. Its behaviour should be governed by imposing physical constraints allowing to avert the pathological features of gravity at the strong field domain. This would restrict the choice of the Lagrangian form. (author). 10 refs
On the canonical treatment of Lagrangian constraints
International Nuclear Information System (INIS)
Barbashov, B.M.
2001-01-01
The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a special Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge
On the canonical treatment of Lagrangian constraints
International Nuclear Information System (INIS)
Barbashov, B.M.
2001-01-01
The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a specific Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge
Some Lagrangians for systems without a Lagrangian
International Nuclear Information System (INIS)
Nucci, M C; Leach, P G L
2011-01-01
We demonstrate how to construct many different Lagrangians for two famous examples that were deemed by Douglas (1941 Trans. Am. Math. Soc. 50 71-128) not to have a Lagrangian. Following Bateman's dictum (1931 Phys. Rev. 38 815-9), we determine different sets of equations that are compatible with those of Douglas and derivable from a variational principle.
Self-interacting scalar fields at high-temperature
Energy Technology Data Exchange (ETDEWEB)
Deur, Alexandre [University of Virginia, Charlottesville, VA (United States)
2017-06-15
We study two self-interacting scalar field theories in their high-temperature limit using path integrals on a lattice. We first discuss the formalism and recover known potentials to validate the method. We then discuss how these theories can model, in the high-temperature limit, the strong interaction and General Relativity. For the strong interaction, the model recovers the known phenomenology of the nearly static regime of heavy quarkonia. The model also exposes a possible origin for the emergence of the confinement scale from the approximately conformal Lagrangian. Aside from such possible insights, the main purpose of addressing the strong interaction here - given that more sophisticated approaches already exist - is mostly to further verify the pertinence of the model in the more complex case of General Relativity for which non-perturbative methods are not as developed. The results have important implications on the nature of Dark Matter. In particular, non-perturbative effects naturally provide flat rotation curves for disk galaxies, without need for non-baryonic matter, and explain as well other observations involving Dark Matter such as cluster dynamics or the dark mass of elliptical galaxies. (orig.)
Study of interacting fields in a canonical formalism in Heisenberg picture of quantum field theory
International Nuclear Information System (INIS)
RANAIVOSON, R.T.R.
2011-01-01
In this work, we have made a study on the canonical formalism of the quantum field theory. Our contribution has been the development of a study using the Heisenberg picture. We showed that this approach may be useful for the description of quantum dynamics of interacting fields in bounded states. Our approach is to start from the lagrangian density of a classical theory from which one deduce the classical evolution equations of the fields via Euler-Lagrange equation for fields and establish the expression of conserved quantities characterizing the dynamics using the Noether theorem. Passing to the canonical quantization, fields and quantities characterizing the dynamics become quantum operators and evolution equations become operatorial evolution equations in Heisenberg picture. Expressions of quantum observable are also deduced from the expressions of classical conserved quantities. After, we showed that using the properties of fields operators and quantum states vectors, one can deduce from the operatorial evolution equations, the evolution equations for the wave functions of fermions and the evolution equations of expectation values of boson fields. For the illustration, various studies were conducted: the case of electrodynamics, the case of a general gauge theory and the case of the Standard Model. [fr
Exact spinor-scalar bound states in a quantum field theory with scalar interactions
International Nuclear Information System (INIS)
Shpytko, Volodymyr; Darewych, Jurij
2001-01-01
We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields
International Nuclear Information System (INIS)
Theodorakis, S.
1988-01-01
This paper presents a phenomenological Lagrangian that fully describes the dynamics of any homogeneous phase of superfluid 3 He, unitary or not, omitting relaxation. This Lagrangian is built by using the concept of a local SO(3) x SO(3) x U(1) symmetry. The spin and angular momentum play the role of gauge fields. We derive the Leggett equations for spin and orbital dynamics from the equations of motion, for both the A and the B phase. This Lagrangian not only enables us to describe both the spin and orbital dynamics of superfluid 3 He in a unified fashion, but can also be used for finding the dynamics in any experimental situation. Furthermore, it can describe the dynamics of the magnitude, as well as of the orientation of the order parameter, and thus it can be used to describe the dynamics of the A-B phase transition
Target Lagrangian kinematic simulation for particle-laden flows.
Murray, S; Lightstone, M F; Tullis, S
2016-09-01
The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
Form of the manifestly covariant Lagrangian
Johns, Oliver Davis
1985-10-01
The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.
Lagrangian velocity correlations in homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Gotoh, T.; Rogallo, R.S.; Herring, J.R.; Kraichnan, R.H.
1993-01-01
The Lagrangian velocity autocorrelation and the time correlations for individual wave-number bands are computed by direct numerical simulation (DNS) using the passive vector method (PVM), and the accuracy of the method is studied. It is found that the PVM is accurate when K max /k d ≥2 where K max is the maximum wave number carried in the simulation and k d is the Kolmogorov wave number. The Eulerian and Lagrangian time correlations for various wave-number bands are compared. At moderate to high wave number the Eulerian time correlation decays faster than the Lagrangian, and the effect of sweep on the former is observed. The time scale of the Eulerian correlation is found to be (kU 0 ) -1 while that of the Lagrangian is [∫ 0 k p 2 E(p)dp] -1/2 . The Lagrangian velocity autocorrelation in a frozen turbulent field is computed using the DIA, ALHDIA, and LRA theories and is compared with DNS measurements. The Markovianized Lagrangian renormalized approximation (MLRA) is compared with the DNS, and good agreement is found for one-time quantities in decaying turbulence at low Reynolds numbers and for the Lagrangian velocity autocorrelation in stationary turbulence at moderate Reynolds number. The effect of non-Gaussianity on the Lagrangian correlation predicted by the theories is also discussed
International Nuclear Information System (INIS)
Nagpal, A.K.
1978-01-01
Contrary to the prevalent belief, it is shown here that for the spin-3/2 Rarita-Schwinger field in the presence of a fully quantized interaction, the (anti) commutation relations are compatible with the Heisenberg equations of motion. The latter are indeed the same as the Lagrangian equations of motion. Further, it is shown that the validity of the Heisenberg equations of motion does not depend upon the choice of the canonical variables
International Nuclear Information System (INIS)
Boyer, Timothy H
2006-01-01
The classical electromagnetic interaction of a point charge and a magnet is discussed by first calculating the interaction of a point charge with a simple model magnetic moment and then suggesting a multiparticle limit. The Darwin-Lagrangian is used to analyse the electromagnetic behaviour of the model magnetic moment (composed of two oppositely charged particles of different masses in an initially circular Coulomb orbit) interacting with a passing point charge. Considerations of force, energy, momentum and centre of energy are treated through second order in 1/c. The changing magnetic moment is found to put a force back on a passing charge; this force is of order 1/c 2 and depends upon the magnitude of the magnetic moment. The limit of a many-particle magnet arranged as a toroid is discussed. It is suggested that in the multiparticle limit, the electric fields of the passing charge are screened out of the body of the magnet while the magnetic fields of the passing charge penetrate into the body of the magnet. This is consistent with our understanding of the penetration of electromagnetic velocity fields into ohmic conductors. The proposed multiparticle limit is consistent with the conservation laws for energy and momentum, as well as constant motion of the centre of energy, and Newton's third law for the net Lorentz forces on the magnet and on the point charge. The work corresponds to a classical electromagnetic analysis of the interaction which is basic to understanding the controversy over the Aharonov-Bohm and Aharonov-Casher phase shifts and represents a refutation of the suggestions of Aharonov, Pearle and Vaidman
Directory of Open Access Journals (Sweden)
Christoph Häni
2018-04-01
Full Text Available A controlled ammonia (NH3 release experiment was performed at a grassland site. The aim was to quantify the effect of dry deposition between the source and the receptors (NH3 measurement locations on emission rate estimates by means of inverse dispersion modelling. NH3 was released for three hours at a constant rate of Q = 6.29 mg s−1 from a grid of 36 orifices spread over an area of 250 m2. The increase in line-integrated NH3 concentration was measured with open-path optical miniDOAS devices at different locations downwind of the artificial source. Using a backward Lagrangian stochastic (bLS dispersion model (bLSmodelR, the fraction of the modelled release rate to the emitted NH3 ( Q bLS / Q was calculated from the measurements of the individual instruments. Q bLS / Q was found to be systematically lower than 1, on average between 0.69 and 0.91, depending on the location of the receptor. We hypothesized that NH3 dry deposition to grass and soil surfaces was the main factor responsible for the observed depletion of NH3 between source and receptor. A dry deposition algorithm based on a deposition velocity approach was included in the bLS modelling. Model deposition velocities were evaluated from a ‘big-leaf’ canopy resistance analogy. Canopy resistances (generally termed R c that provided Q bLS / Q = 1 ranged from 75 to 290 s m−1, showing that surface removal of NH3 by dry deposition can plausibly explain the original underestimation of Q bLS / Q . The inclusion of a dry deposition process in dispersion modelling is crucial for emission estimates, which are based on concentration measurements of depositing tracers downwind of homogeneous area sources or heterogeneously-distributed hot spots, such as, e.g., urine patches on pastures in the case of NH3.
Yearsley, J. R.
2017-12-01
The semi-Lagrangian numerical scheme employed by RBM, a model for simulating time-dependent, one-dimensional water quality constituents in advection-dominated rivers, is highly scalable both in time and space. Although the model has been used at length scales of 150 meters and time scales of three hours, the majority of applications have been at length scales of 1/16th degree latitude/longitude (about 5 km) or greater and time scales of one day. Applications of the method at these scales has proven successful for characterizing the impacts of climate change on water temperatures in global rivers and on the vulnerability of thermoelectric power plants to changes in cooling water temperatures in large river systems. However, local effects can be very important in terms of ecosystem impacts, particularly in the case of developing mixing zones for wastewater discharges with pollutant loadings limited by regulations imposed by the Federal Water Pollution Control Act (FWPCA). Mixing zone analyses have usually been decoupled from large-scale watershed influences by developing scenarios that represent critical scenarios for external processes associated with streamflow and weather conditions . By taking advantage of the particle-tracking characteristics of the numerical scheme, RBM can provide results at any point in time within the model domain. We develop a proof of concept for locations in the river network where local impacts such as mixing zones may be important. Simulated results from the semi-Lagrangian numerical scheme are treated as input to a finite difference model of the two-dimensional diffusion equation for water quality constituents such as water temperature or toxic substances. Simulations will provide time-dependent, two-dimensional constituent concentration in the near-field in response to long-term basin-wide processes. These results could provide decision support to water quality managers for evaluating mixing zone characteristics.
International Nuclear Information System (INIS)
Pourmehran, O.; Rahimi-Gorji, M.; Gorji-Bandpy, M.; Gorji, T.B.
2015-01-01
Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter
Energy Technology Data Exchange (ETDEWEB)
Pourmehran, O., E-mail: oveis87@yahoo.com; Rahimi-Gorji, M.; Gorji-Bandpy, M., E-mail: gorji@nit.ac.ir; Gorji, T.B.
2015-11-01
Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter.
Quantized fields in interaction with external fields. Pt. 1
International Nuclear Information System (INIS)
Bellissard, J.
1975-01-01
We consider a massive, charged, scalar quantized field interacting with an external classical field. Guided by renormalized perturbation theory we show that whenever the integral equations defining the Feynman or retarded or advanced interaction kernel possess non perturbative solutions, there exists an S-operator which satisfies, up to a phase, the axioms of Bogoliubov, and is given for small external fields by a power series which converges on coherent states. Furthermore this construction is shown to be equivalent to the one based on the Yang-Kaellen-Feldman equation. This is a consequence of the relations between chronological and retarded Green's functions which are described in detail. (orig.) [de
Ding, Zi'ang
2016-01-01
Both vector and tensor fields are important mathematical tools used to describe the physics of many phenomena in science and engineering. Effective vector and tensor field visualization techniques are therefore needed to interpret and analyze the corresponding data and achieve new insight into the considered problem. This dissertation is concerned with the extraction of important structural properties from vector and tensor datasets. Specifically, we present a unified approach for the charact...
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Extended Lagrangian Excited State Molecular Dynamics.
Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N
2018-02-13
An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).
Strongly interacting matter in magnetic fields
Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung
2013-01-01
The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...
Interaction of the geomagnetic field with northward interplanetary magnetic field
Bhattarai, Shree Krishna
The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.
A new proposal for Lagrangian correlation coefficient
International Nuclear Information System (INIS)
Altinsoy, N.; Tugrul, A.B.
2002-01-01
The statistical description of dispersion in turbulent flow was first considered by Taylor (Proc. London Math. Soc. 20 (1921) 196) and the statistical properties of the field were determined by Lagrangian correlation coefficient R L (τ). Frenkiel (Adv. Appl. Mech. 3 (1953) 61) has proposed several simple forms for R L (τ). Some workers have investigated for a proper form of the Lagrangian correlation coefficient. In this work, a new proposal for the Lagrangian correlation coefficient is proposed and discussed. It can be written in general form with the one of the Frenkiel's (Adv. Appl. Mech. 3 (1953) 61) Lagrangian correlation coefficient. There is very satisfactory agreement between the new correlation and the experiment
Directory of Open Access Journals (Sweden)
Qing Zhang
2018-01-01
Full Text Available Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM method was used to calculate the dielectrophoretic (DEP forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.
Interactions between electromagnetic fields and matter
Steiner, Karl-Heinz
2013-01-01
Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.
Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain
Kunishima, Y.; Onishi, R.
2017-12-01
Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column
Directory of Open Access Journals (Sweden)
Alessandra M Bavo
Full Text Available In recent years the role of FSI (fluid-structure interaction simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results.
Exotic Material as Interactions Between Scalar Fields
Directory of Open Access Journals (Sweden)
Robertson G. A.
2015-10-01
Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.
Exotic Material as Interactions Between Scalar Fields
Directory of Open Access Journals (Sweden)
Robertson G. A.
2006-04-01
Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.
Directory of Open Access Journals (Sweden)
G. Aad
2016-02-01
Full Text Available The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. The parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H→γγ decay channel with an integrated luminosity of 20.3 fb−1 at s=8 TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the H→γγ candidate events in the proton–proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions.
International Nuclear Information System (INIS)
Bowes, J.P.; Foot, R.; Volkas, R.R.
1997-01-01
In gauge theories like the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is however mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this, possible modifications of the minimal standard model are discussed which will give a complete electric charge quantisation from classical constraints alone. Because these modifications to the Standard Model involve the consideration of baryon number violating scalar interactions, a complete catalogue of the simplest ways to modify the Standard Model is presented so as to introduce explicit baryon number violation. 9 refs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Bowes, J.P.; Foot, R.; Volkas, R.R.
1997-06-01
In gauge theories like the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is however mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this, possible modifications of the minimal standard model are discussed which will give a complete electric charge quantisation from classical constraints alone. Because these modifications to the Standard Model involve the consideration of baryon number violating scalar interactions, a complete catalogue of the simplest ways to modify the Standard Model is presented so as to introduce explicit baryon number violation. 9 refs., 7 figs.
Quantized Dirac field interacting with a classical Maxwell field
International Nuclear Information System (INIS)
Kolsrud, M.
1987-10-01
The S operator for the quantized and the s matrix for the unquantized Dirac field, both fields interacting with an unquantized Maxwell field, are shown to be related in the following way: S=exp(-ic†kc) and s=exp(-ik). Here c is the column matrix of the particle operators, and k is a Hermitian matrix. With splitting of c into an electron and a positron part, a corresponding factorization of S is performed. Exact expressions for the probability amplitude for various electron and/or positron processes are then obtained
Interaction of strong electromagnetic fields with atoms
International Nuclear Information System (INIS)
Brandi, H.S.; Davidovich, L.; Zagury, N.
1982-06-01
Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt
Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data
2015-09-30
Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation
Meaning of the BRS Lagrangian theory
International Nuclear Information System (INIS)
Cheng, H.; Tsai, E.
1989-01-01
A simplified treatment of the Becchi-Rouet-Stora (BRS) Lagrangian theory is presented. With this treatment we show that the BRS Lagrangian theory in general, and the Feynman-gauge field theory in particular, are effective theories, not the physical theory, and the Feynman gauge is not, strictly speaking, a gauge. The relationship between the quantum states in the BRS Lagrangian theory and those in the physical theory is explicitly given. We also show that one may obtain matrix elements of gauge-invariant operators in the physical theory by calculating corresponding ones in the BRS Lagrangian theory. The formulas which equate such matrix elements are called correspondence formulas. The correspondence formula for the S matrix enables us to equate the scattering amplitudes in the physical theory with those in the BRS Lagrangian theory, thus a proof of the unitary of the Feynman-gauge (as well as other covariant gauges) Feynman rules is rendered unnecessary. This treatment can be applied to various gauge field theories and the examples of the pure Yang-Mills theory and a gauge field theory with a Higgs field is explicitly worked out
Arbogast, Todd
2010-05-01
Tracer transport is governed by a convection-diffusion problem modeling mass conservation of both tracer and ambient fluids. Numerical methods should be fully conservative, enforcing both conservation principles on the discrete level. Locally conservative characteristics methods conserve the mass of tracer, but may not conserve the mass of the ambient fluid. In a recent paper by the authors [T. Arbogast, C. Huang, A fully mass and volume conserving implementation of a characteristic method for transport problems, SIAM J. Sci. Comput. 28 (2006) 2001-2022], a fully conservative characteristic method, the Volume Corrected Characteristics Mixed Method (VCCMM), was introduced for potential flows. Here we extend and apply the method to problems with a solenoidal (i.e., divergence-free) flow field. The modification is a computationally inexpensive simplification of the original VCCMM, requiring a simple adjustment of trace-back regions in an element-by-element traversal of the domain. Our numerical results show that the method works well in practice, is less numerically diffuse than uncorrected characteristic methods, and can use up to at least about eight times the CFL limited time step. © 2010 Elsevier Inc.
The stationary states of interacting fields
Frazer, W.R.; Hove, Léon van
1958-01-01
As an application of a time-independent perturbation formalism developed earlier for systems with many degrees of freedom, we give in terms of diagrams the general perturbation expressions for the exact stationary states of interacting fields. The physical vacuum is obtained by applying to the bare
International Nuclear Information System (INIS)
Sternberg, S.; Santilli, R.M.
1979-01-01
Studies of general covariance and its application to particle motion and continuum mechanics were continued. Also developed was a new method in microlocal analysis which has applications to integral geometry, geometrical quantization and the fine structure of certain types of spectra. The classical aspect of a program was studied by a comprehensive analysis of the integrability conditions for the existence of a Lagrangian or, independently, of a Hamiltonian for the representation of given Newtonian systems with forces nonderivable from a potential, as well as the methods for the computation of these functions from the equations of motion. The study of a classical, complementary, methodological approach to the same class of systems was also initiated. It consists of the representation of systems with forces nonderivable from a potential via a generalization of Hamilton's equations posessing a Lie-admissible algebraic structure. The problem of the quantization of forces nonderivable from a potential was then studied via the use of these complementary methods. The use of the integrability conditions for the existence of a Hamiltonian representation (the inverse problem) yielded, under certain restrictions, the conventional Heisenberg's equations, but expressed in terms of a generalized Hamiltonian structure. The use of the Lie-admissible formulations yielded a generalization of Heisenberg's equations possessing a generalized (Lie-admissible) algebraic structure, but expressed in terms of a conventional Hamiltonian structure. These preliminary studies were then applied to the investigation of the old idea that the strong interactions are of the type considered, local and nonderivable from a potential, as an approximation of expected nonlocal settings. The experimental verification of Pauli's exclusion principle and other basic physical laws for the nuclear and the hadronic structure was proposed. A list of publications is included
Interaction vertices in reduced string field theories
International Nuclear Information System (INIS)
Embacher, F.
1989-01-01
In contrast to previous expectations, covariant overlap vertices are not always suitable for gauge-covariant formulations of bosonic string field theory with a reduced supplementary field content. This is demonstrated for the version of the theory suggested by Neveu, Schwarz and West. The method to construct the interaction, as formulated by Neveu and West, fails at one level higher than these authors have considered. The condition for a general vertex to describe formally a local gauge-invariant interaction is derived. The solution for the action functional and the gauge transformation law is exhibited for all fields at once, to the first order in the coupling constant. However, all these vertices seem to be unphysical. 21 refs. (Author)
Hamilton-Jacobi equations and brane associated Lagrangians
International Nuclear Information System (INIS)
Baker, L.M.; Fairlie, D.B.
2001-01-01
This article seeks to relate a recent proposal for the association of a covariant Field Theory with a string or brane Lagrangian to the Hamilton-Jacobi formalism for strings and branes. It turns out that since in this special case, the Hamiltonian depends only upon the momenta of the Jacobi fields and not the fields themselves, it is the same as a Lagrangian, subject to a constancy constraint. We find that the associated Lagrangians for strings or branes have a covariant description in terms of the square root of the same Lagrangian. If the Hamilton-Jacobi function is zero, rather than a constant, then it is in in one dimension lower, reminiscent of the 'holographic' idea. In the second part of the paper, we discuss properties of these Lagrangians, which lead to what we have called 'Universal Field Equations', characteristic of covariant equations of motion
Collisionless reconnection: magnetic field line interaction
Directory of Open Access Journals (Sweden)
R. A. Treumann
2012-10-01
Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.
Fermions in interaction with time dependent fields
International Nuclear Information System (INIS)
Falkensteiner, P.; Grosse, H.
1988-01-01
We solve a two dimensional model describing the interaction of fermions with time dependent external fields. We work out the second quantized formulation and obtain conditions for equivalence of representations at different times. This implies the existence of sectors which describe charged states. We obtain the time dependence of charges and observe that charge differences become integer for unitary equivalent states. For scattering we require the equivalence of in- and out-representations; nevertheless charged sectors may be reached by suitable interactions and ionization is possible. 20 refs. (Author)
Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.
Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco
2017-08-25
We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.
Lectures on interacting string field theory
International Nuclear Information System (INIS)
Jevicki, A.
1986-09-01
We give a detailed review of the current formulations of interacting string field theory. The historical development of the subject is taken beginning with the old dual resonance model theory. The light cone approach is reviewed in some detail with emphasis on conformal mapping techniques. Witten's covariant approach is presented. The main body of the lectures concentrates on developing the operator formulation of Witten's theory. 38 refs., 22 figs., 5 tabs
Renormalization and Interaction in Quantum Field Theory
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2008-01-01
This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr
Interactive flow field around two Savonius turbines
Energy Technology Data Exchange (ETDEWEB)
Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)
2011-02-15
The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)
Modeling pollutant transport using a meshless-lagrangian particle model
International Nuclear Information System (INIS)
Carrington, D.B.; Pepper, D.W.
2002-01-01
A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons
The Bach-Lanczos Lagrangian in matrix relativity
International Nuclear Information System (INIS)
Maluf, J.W.
1987-01-01
The author examines the generalisation of the Bach-Lanczos Lagrangian in matrix relativity where it is no longer a topological invariant, and find that for certain structures of the matrix affine connection a Yang-Mills type Lagrangian is obtained. Thus the possibility is considered of interpreting non-Abelian gauge fields as arising from an otherwise topological invariant. (author)
Lagrangian solution of supersonic real gas flows
Loh, Ching-Yuen; Liou, Meng-Sing
1993-01-01
The present extention of a Lagrangian approach of the Riemann solution procedure, which was originally proposed for perfect gases, to real gases, is nontrivial and requires the development of an exact real-gas Riemann solver for the Lagrangian form of the conservation laws. Calculations including complex wave interactions of various types were conducted to test the accuracy and robustness of the approach. Attention is given to the case of 2D oblique waves' capture, where a slip line is clearly in evidence; the real gas effect is demonstrated in the case of a generic engine nozzle.
Lagrangian solution of supersonic real gas flows
International Nuclear Information System (INIS)
Loh, Chingyuen; Liou, Mengsing
1993-01-01
This paper details the procedure of the real gas Riemann solution in the Lagrangian approach originally proposed by Loh and Hui for perfect gases. The extension to real gases is nontrivial and requires substantial development of an exact real-gas Riemann solver for the Lagrangian form of conservation laws. The first-order Gudonov scheme is enhanced for accuracy by adding limited anti-diffusive terms according to Sweby. Extensive calculations were made to test the accuracy and robustness of the present real gas Lagrangian approach, including complex wave interactions of different types. The accuracy for capturing 2D oblique waves and slip line is clearly demonstrated. In addition, we also show the real gas effect in a generic engine nozzle
High-field electron-photon interactions
International Nuclear Information System (INIS)
Hartemann, F V.
1999-01-01
Recent advances in novel technologies (including chirped-pulse amplification, femtosecond laser systems operating in the TW-PW range, high-gradient rf photoinjectors, and synchronized relativistic electron bunches with subpicosecond durations and THz bandwidths) allow experimentalists to study the interaction of relativistic electrons with ultrahigh-intensity photon fields. Ponderomotive scattering can accelerate these electrons with extremely high gradients in a three-dimensional vacuum laser focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding laser pulses, where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength photons. Finally, one expects strong radiative corrections when the Doppler-upshifted laser wavelength approaches the Compton scale. These are discussed within the context of high-field classical electrodynamics, a new discipline borne out of the aforementioned innovations
Interaction of orientable object fields with gauge fields
International Nuclear Information System (INIS)
Gitman, D M; Shelepin, A L
2011-01-01
We consider a scalar field f(g) on the Poincaré group M(3, 1). This scalar field describes objects that are characterized by a position x and an orientation z, g=(x,z). The field f(x, z) admits two kinds of transformations, corresponding to a change of the space-fixed reference frame, as well as to a change of the body-fixed reference frame, which form the group M(3, 1) ext ×M(3, 1) int , and also phase transformations U(1) ch of orientational variables z. Elementary particles considered as elementary orientable objects are described by the scalar functions transforming according to irreps of the group M(3, 1) ext ×M(3, 1) int ×U(1) ch . Correspondingly, their continuous symmetries can be divided into external, which form the Poincaré group M(3, 1) ext , and internal M(3, 1) int ×U(1) ch . The assumption that the internal symmetries in the theory of orientable objects are gauge ones allows one to obtain important features of the known fundamental interactions—the electroweak and the gravitational. Localization of the group of the right translations T(4) int leads to the teleparallel theory of gravity, which is equivalent to general relativity. Localization of the compact subgroup SU(2) int ×U(1) ch leads to the theory of electroweak interactions. Thus, the suggested approach can be considered as a possible way to gravitational-electroweak unification.
Lagrangian ocean analysis: Fundamentals and practices
van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H. A. M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.
2018-01-01
Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
Lagrangian statistics in compressible isotropic homogeneous turbulence
Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi
2011-11-01
In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.
Renormalization and effective lagrangians
International Nuclear Information System (INIS)
Polchinski, J.
1984-01-01
There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study renormalizability in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional lambda PHI 4 theory with a momentum cutoff. We organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A lengthy but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The method extends immediately to any system in which a momentum-space cutoff can be used, but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed. (orig.)
Low energy effective Lagrangians in open superstring theory
International Nuclear Information System (INIS)
Medina, Ricardo
2008-01-01
The low energy effective Lagrangian describes the interactions of the massless modes of String Theory. Present work is being done to obtain all alpha' 3 terms (bosonic and fermionic) by means of the known 5-point amplitudes and SUSY
Gravity, Time, and Lagrangians
Huggins, Elisha
2010-01-01
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Exact Lagrangian caps and non-uniruled Lagrangian submanifolds
Dimitroglou Rizell, Georgios
2015-04-01
We make the elementary observation that the Lagrangian submanifolds of C n , n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian caps, which obviously are non-uniruled in themselves. This property is also used to show that if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its Chekanov-Eliashberg algebra is acyclic.
Equivalence of Lagrangian and Hamiltonian BRST quantizations
International Nuclear Information System (INIS)
Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.
1992-01-01
Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme
Lagrangian motion, coherent structures, and lines of persistent material strain.
Samelson, R M
2013-01-01
Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.
Conference summary: antinucleon- and nucleon-nucleus interactions
International Nuclear Information System (INIS)
Wilets, L.
1985-01-01
Topics summarized include: the hadronic substructure, the EMC effect, observations on relativity and the Dirac equation, and relativistic Lagrangian field theories for N-N interactions and nuclear matter
Lagrangian multiforms and multidimensional consistency
Energy Technology Data Exchange (ETDEWEB)
Lobb, Sarah; Nijhoff, Frank [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)
2009-10-30
We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of the lattice from the point of view of the relevant variational principle.
Lagrangian cobordism and tropical curves
Sheridan, Nick; Smith, Ivan
2018-01-01
We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstructions to and constructions of cobordisms; in particular, we give examples of symplectic tori in which the cobordism group has no non-trivial cobordism relations between pairwise distinct fibres, and ones in which the degree zero fibre cobordism gr...
Fab Four self-interaction in quantum regime
Arbuzov, A. B.; Latosh, B. N.
2017-10-01
Quantum behavior of the John Lagrangian from the Fab Four class of covariant Galileons is studied. We consider one-loop corrections to the John interaction due to cubic scalar field interaction. Counter terms are calculated, one appears because of massless scalar field theory infrared issues, another one lies in the George class, and the rest of them can be reduced to the initial Lagrangian up to surface terms. The role of quantum corrections in the context of cosmological applications is discussed.
Fab Four self-interaction in quantum regime
Energy Technology Data Exchange (ETDEWEB)
Arbuzov, A.B.; Latosh, B.N. [JINR, Bogoliubov Laboratory for Theoretical Physics, Dubna (Russian Federation); Dubna State University, Dubna, Moscow Region (Russian Federation)
2017-10-15
Quantum behavior of the John Lagrangian from the Fab Four class of covariant Galileons is studied. We consider one-loop corrections to the John interaction due to cubic scalar field interaction. Counter terms are calculated, one appears because of massless scalar field theory infrared issues, another one lies in the George class, and the rest of them can be reduced to the initial Lagrangian up to surface terms. The role of quantum corrections in the context of cosmological applications is discussed. (orig.)
Strong field interaction of laser radiation
International Nuclear Information System (INIS)
Pukhov, Alexander
2003-01-01
The Review covers recent progress in laser-matter interaction at intensities above 10 18 W cm -2 . At these intensities electrons swing in the laser pulse with relativistic energies. The laser electric field is already much stronger than the atomic fields, and any material is instantaneously ionized, creating plasma. The physics of relativistic laser-plasma is highly non-linear and kinetic. The best numerical tools applicable here are particle-in-cell (PIC) codes, which provide the most fundamental plasma model as an ensemble of charged particles. The three-dimensional (3D) PIC code Virtual Laser-Plasma Laboratory runs on a massively parallel computer tracking trajectories of up to 10 9 particles simultaneously. This allows one to simulate real laser-plasma experiments for the first time. When the relativistically intense laser pulses propagate through plasma, a bunch of new physical effects appears. The laser pulses are subject to relativistic self-channelling and filamentation. The gigabar ponderomotive pressure of the laser pulse drives strong currents of plasma electrons in the laser propagation direction; these currents reach the Alfven limit and generate 100 MG quasistatic magnetic fields. These magnetic fields, in turn, lead to the mutual filament attraction and super-channel formation. The electrons in the channels are accelerated up to gigaelectronvolt energies and the ions gain multi-MeV energies. We discuss different mechanisms of particle acceleration and compare numerical simulations with experimental data. One of the very important applications of the relativistically strong laser beams is the fast ignition (FI) concept for the inertial fusion energy (IFE). Petawatt-class lasers may provide enough energy to isochorically ignite a pre-compressed target consisting of thermonuclear fuel. The FI approach would ease dramatically the constraints on the implosion symmetry and improve the energy gain. However, there is a set of problems to solve before the FI
Shear and shearless Lagrangian structures in compound channels
Enrile, F.; Besio, G.; Stocchino, A.
2018-03-01
Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.
Quantizing non-Lagrangian gauge theories: an augmentation method
International Nuclear Information System (INIS)
Lyakhovich, Simon L.; Sharapov, Alexei A.
2007-01-01
We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in d dimensions into an equivalent Lagrangian, topological field theory in d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest
Mean field interaction in biochemical reaction networks
Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro
2011-01-01
In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits
Extended pure Yang-Mills gauge theories with scalar and tensor gauge fields
International Nuclear Information System (INIS)
Gabrielli, E.
1991-01-01
The usual abelian gauge theory is extended to an interacting Yang-Mills-like theory containing vector, scalar and tensor gauge fields. These gauge fields are seen as components along the Clifford algebra basis of a gauge vector-spinorial field. Scalar fields φ naturally coupled to vector and tensor fields have been found, leading to a natural φ 4 coupling in the lagrangian. The full expression of the lagrangian for the euclidean version of the theory is given. (orig.)
Dark Mass Creation During EWPT Via Dark Energy Interaction
Kisslinger, Leonard S.; Casper, Steven
2013-01-01
We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.
Effective interactions from q-deformed quark fields
International Nuclear Information System (INIS)
Timoteo, V. S.; Lima, C. L.
2007-01-01
From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed
Budyansky, M. V.; Prants, S. V.; Samko, E. V.; Uleysky, M. Yu.
2017-09-01
Based on the AVISO velocity field, we compute daily synoptic Lagrangian maps in the South Kuril area for the fishery seasons of 1998, 1999, and 2001-2005 from available catching data on neon flying squid (NFS). With the help of drift maps for artificial particles, we found that the majority of NFS fishing grounds featuring maximum catches are situated near large-scale Lagrangian intrusions: tongues of water penetrating the surrounding water of other Lagrangian properties. It is shown that the NFS catch locations tend to accumulate at places where waters with different magnitudes of certain Lagrangian indicators converge, mix, and produce filaments, swirls, and tendrils typical of chaotic advection. Potential NFS fishing grounds are mainly located near (1) Lagrangian intrusions of the Subarctic front, (2) intrusions of Okhotsk Sea and Oyashio waters around mesoscale anticyclones east of Hokkaido with subsequent penetration of catch locations inside eddies and (3) intrusions of subtropical waters into the central part of the South Kuril area due to interaction with eddies of different size and polarity. Possible reasons for increased biological production and fishery in the vicinity of Lagrangian intrusions are discussed.
Test Particles with Acceleration-Dependent Lagrangian
Toller, M.
2005-01-01
We consider a classical test particle subject to electromagnetic and gravitational fields, described by a Lagrangian depending on the acceleration and on a fundamental length. We associate to the particle a moving local reference frame and we study its trajectory in the principal fibre bundle of all the Lorentz frames. We discuss in this framework the general form of the Lagrange equations and the connection between symmetries and conservation laws (Noether theorem). We apply these results to...
Effective lagrangian for Kaon-nucleon scattering
International Nuclear Information System (INIS)
Andrade, S.C.B. de; Ferreira, E.M.
1980-11-01
A model for the Kaon-nucleon interaction is investigated, based on a lagrangian which includes the Yukawa interactions of hyperons, kaons and nucleons plus contact terms representing short range interactions in each isospin state. All diagrams up to fourth order are evaluated and the partial wave S matrix elements are unitarized through diagonal Pade approximants. The results of the calculations with this model give a good description of all experimental data on both I = O and I = 1 states of the KN system at low and intermediate energies. (Author) [pt
Mean field interaction in biochemical reaction networks
Tembine, Hamidou
2011-09-01
In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.
Constraint theory, singular lagrangians and multitemporal dynamics
International Nuclear Information System (INIS)
Lusanna, L.
1988-01-01
Singular Lagrangians and constraint theory permeate theoretical physics, as shown by the relevance of gauge theories, string models and general relativity. Their study used finite---dimensional models as a guide to develop the theory, but their main use was in classical field theory, due to the necessity of understanding their quantization. The covariant quantization of singular Lagrangians led to the BRST approach and to the theory of the effective action. On the other hand their phase---space formulation, culminated with the BFV approach for first class, second class and reducible constraints. It, in turn, gave new insights in the theory of singular Lagrangians and constraints and in their cohomological aspects. However the Hamiltonian approach to field theory is highly nontrivial, is open to criticism due to its problems with locality, geometry and manifest covariance and its canonical quantization has still to be developed, because there is no proof of the renormalizability of the Schroedinger representation of field theory. This paper discusses how, notwithstanding these developments, there is still a big amount of ambiguity at every level of the theory
Lagrangian structures in time-periodic vortical flows
Directory of Open Access Journals (Sweden)
S. V. Kostrykin
2006-01-01
Full Text Available The Lagrangian trajectories of fluid particles are experimentally studied in an oscillating four-vortex velocity field. The oscillations occur due to a loss of stability of a steady flow and result in a regular reclosure of streamlines between the vortices of the same sign. The Eulerian velocity field is visualized by tracer displacements over a short time period. The obtained data on tracer motions during a number of oscillation periods show that the Lagrangian trajectories form quasi-regular structures. The destruction of these structures is determined by two characteristic time scales: the tracers are redistributed sufficiently fast between the vortices of the same sign and much more slowly transported into the vortices of opposite sign. The observed behavior of the Lagrangian trajectories is quantitatively reproduced in a new numerical experiment with two-dimensional model of the velocity field with a small number of spatial harmonics. A qualitative interpretation of phenomena observed on the basis of the theory of adiabatic chaos in the Hamiltonian systems is given. The Lagrangian trajectories are numerically simulated under varying flow parameters. It is shown that the spatial-temporal characteristics of the Lagrangian structures depend on the properties of temporal change in the streamlines topology and on the adiabatic parameter corresponding to the flow. The condition for the occurrence of traps (the regions where the Lagrangian particles reside for a long time is obtained.
International Nuclear Information System (INIS)
Ibrahim, Tarek; Nath, Pran; Psinas, Anastasios
2004-01-01
We extend previous analyses of the supersymmetric loop correction to the charged Higgs couplings to include the coupling H ± χ ± χ 0 . The analysis completes the previous analyses where similar corrections were computed for H + t-barb (H - tb-bar), and for H + τ - ν-bar τ (H - τ + ν τ ) couplings within the minimal supersymmetric standard model. The effective one loop Lagrangian is then applied to the computation of the charged Higgs decays. The sizes of the supersymmetric loop correction on branching ratios of the charged Higgs H + (H - ) into the decay modes tb-bar (t-barb), τ-barν τ (τν-bar τ ), and χ i + χ j 0 (χ i - χ j 0 )(i=1,2; j=1-4) are investigated and the supersymmetric loop correction is found to be significant, i.e., in the range 20-30 % in significant regions of the parameter space. The loop correction to the decay mode χ 1 ± χ 2 0 is examined in specific detail as this decay mode leads to a trileptonic signal. The effects of CP phases on the branching ratio are also investigated. A brief discussion of the implications of the analysis for colliders is given
Weak stability of Lagrangian solutions to the semigeostrophic equations
International Nuclear Information System (INIS)
Faria, Josiane C O; Lopes Filho, Milton C; Nussenzveig Lopes, Helena J
2009-01-01
In (Cullen and Feldman 2006 SIAM J. Math. Anal. 37 137–95), Cullen and Feldman proved the existence of Lagrangian solutions for the semigeostrophic system in physical variables with initial potential vorticity in L p , p > 1. Here, we show that a subsequence of the Lagrangian solutions corresponding to a strongly convergent sequence of initial potential vorticities in L 1 converges strongly in L q , q < ∞, to a Lagrangian solution, in particular extending the existence result of Cullen and Feldman to the case p = 1. We also present a counterexample for Lagrangian solutions corresponding to a sequence of initial potential vorticities converging in BM. The analytical tools used include techniques from optimal transportation, Ambrosio's results on transport by BV vector fields and Orlicz spaces
International Nuclear Information System (INIS)
Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh
2002-01-01
We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI
International Nuclear Information System (INIS)
Sugama, H.
1999-08-01
The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)
Linearized interactions of scalar and vector fields with the higher spin field in AdSD
International Nuclear Information System (INIS)
Mkrtchyan, K.
2011-01-01
The explicit form of linearized gauge and generalized 'Weyl invariant' interactions of scalar and general higher even spin fields in the AdS D space is reviewed. Also a linearized interaction of vector field with general higher even spin gauge field is obtained. It is shown that the gauge-invariant action of linearized vector field interacting with the higher spin field also includes the whole tower of invariant actions for couplings of the same vector field with the gauge fields of smaller even spin
Quadratic Lagrangians and Legendre transformation
International Nuclear Information System (INIS)
Magnano, G.
1988-01-01
In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor
Lagrangian Observations and Modeling of Marine Larvae
Paris, Claire B.; Irisson, Jean-Olivier
2017-04-01
Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.
Pairing interaction method in crystal field theory
International Nuclear Information System (INIS)
Dushin, R.B.
1989-01-01
Expressions, permitting to describe matrix elements of secular equation for metal-ligand pairs via parameters of the method of pairing interactions, genealogical coefficients and Clebsch-Gordan coefficients, are given. The expressions are applicable to any level or term of f n and d n configurations matrix elements for the terms of the maximum multiplicity of f n and d n configurations and also for the main levels of f n configurations are tabulated
Interacting massless scalar and source-free electromagnetic fields
International Nuclear Information System (INIS)
Ayyangar, B.R.N.; Mohanty, G.
1985-01-01
The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)
Interaction mechanisms and biological effects of static magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.
Lepton-photon interactions in external background fields
Energy Technology Data Exchange (ETDEWEB)
Akal, Ibrahim [Theory Group, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg (Germany); Moortgat-Pick, Gudrid [II. Institute for Theoretical Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)
2016-07-01
We investigate lepton-photon interactions in a class of generalized external background fields with periodic plane-wave character. Considering the full interaction with the background, S-matrix elements are calculated exactly. We apply those general expressions to interaction schemes like Compton scattering in specific field configurations, as for instance provided in modern laser facilities, or in high intense regions of future linear colliders. Results are extended to the case of frontal colliding high-energy field photons with leptons such that new insights beyond the usual soft terms become accessible.
Nonleptonic decay of charmed mesons and chiral lagrangians
International Nuclear Information System (INIS)
Kalinovskij, Yu.L.; Pervushin, V.N.
1978-01-01
Nonleptonic decays of charmed mesons in chiral theory are considered. The lagrangian of strong interaction is taken to be invariant under the SU(4)xSU(4) group. Symmetry breaking is chosen according to the (4,4sup(*))+(4sup(*),4) simplest representation of the SU(4)xSU(4) group. The lagrangian of weak interaction is taken in the ''current x current'' form and satisfies exactly the rule probabilities of decays for D and F mesons are compared with available experimental data
Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution
Directory of Open Access Journals (Sweden)
Luis Amilca Andrade-Morales
2016-09-01
Full Text Available We study the entropy of a quantized field in interaction with a two-level atom (in a pure state when the field is initially in a mixture of two number states. We then generalise the result for a thermal state; i.e., an (infinite statistical mixture of number states. We show that for some specific interaction times, the atom passes its purity to the field and therefore the field entropy decreases from its initial value.
Biological interactions and human health effects of static magnetic fields
International Nuclear Information System (INIS)
Tenforde, T.S.
1994-09-01
Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided
Generating functionals and Lagrangian partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin [Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Dept. 0112, La Jolla, California 92093-0112 (United States)
2013-08-15
The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an example of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.
Mean-Lagrangian formalism and covariance of fluid turbulence.
Ariki, Taketo
2017-05-01
Mean-field-based Lagrangian framework is developed for the fluid turbulence theory, which enables physically objective discussions, especially, of the history effect. Mean flow serves as a purely geometrical object of Lie group theory, providing useful operations to measure the objective rate and history integration of the general tensor field. The proposed framework is applied, on the one hand, to one-point closure model, yielding an objective expression of the turbulence viscoelastic effect. Application to two-point closure, on the other hand, is also discussed, where natural extension of known Lagrangian correlation is discovered on the basis of an extended covariance group.
Interaction of Mutually Perpendicular Magnetic Fields in HTSC
Directory of Open Access Journals (Sweden)
Vasilyev Aleksandr Fedorovich
2015-11-01
Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.
Semicalssical quantization of interacting anyons in a strong magnetic field
International Nuclear Information System (INIS)
Levit, S.; Sivan, N.
1992-01-01
We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)
Minimal local Lagrangians for higher-spin geometry
International Nuclear Information System (INIS)
Francia, Dario; Sagnotti, Augusto
2005-01-01
The Fronsdal Lagrangians for free totally symmetric rank-s tensors φ μ 1 ...μ s rest on suitable trace constraints for their gauge parameters and gauge fields. Only when these constraints are removed, however, the resulting equations reflect the expected free higher-spin geometry. We show that geometric equations, in both their local and non-local forms, can be simply recovered from local Lagrangians with only two additional fields, a rank-(s-3) compensator α μ 1 ...μ s-3 and a rank-(s-4) Lagrange multiplier β μ 1 ...μ s-4 . In a similar fashion, we show that geometric equations for unconstrained rank-n totally symmetric spinor-tensors ψ μ 1 ...μ n can be simply recovered from local Lagrangians with only two additional spinor-tensors, a rank-(n-2) compensator ξ μ 1 ...μ n-2 and a rank-(n-3) Lagrange multiplier λ μ 1 ...μ n-3
Phenomenology of the Higgs effective Lagrangian via FEYNRULES
International Nuclear Information System (INIS)
Alloul, Adam; Fuks, Benjamin; Sanz, Verónica
2014-01-01
The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FEYNRULES and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FEYNRULES capable to generate model files that can be understood by the MADGRAPH 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions
Phenomenology of the Higgs effective Lagrangian via FEYNRULES
Energy Technology Data Exchange (ETDEWEB)
Alloul, Adam [Groupe de Recherche de Physique des Hautes Énergies (GRPHE), Université de Haute-Alsace, IUT Colmar, 34 rue du Grillenbreit BP 50568, 68008 Colmar Cedex (France); Fuks, Benjamin [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques,Université de Strasbourg/CNRS-IN2P3, 23 rue du Loess, F-67037 Strasbourg (France); Sanz, Verónica [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)
2014-04-16
The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FEYNRULES and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FEYNRULES capable to generate model files that can be understood by the MADGRAPH 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions.
Partition function of a chiral boson on a 2-torus from the Floreanini–Jackiw Lagrangian
International Nuclear Information System (INIS)
Chen, Wei-Ming; Ho, Pei-Ming; Kao, Hsien-chung; Khoo, Fech Scen; Matsuo, Yutaka
2014-01-01
We revisit the problem of quantizing a chiral boson on a torus. The conventional approach is to extract the partition function of a chiral boson from the path integral of a non-chiral boson. Instead we compute it directly from the chiral boson Lagrangian of Floreanini and Jackiw modified by topological terms involving an auxiliary field. A careful analysis of the gauge-fixing condition for the extra gauge symmetry reproduces the correct results for the free chiral boson, and has the advantage of being applicable to a wider class of interacting chiral boson theories
Relativistic quantum information in detectors–field interactions
International Nuclear Information System (INIS)
Hu, B L; Lin, Shih-Yuin; Louko, Jorma
2012-01-01
We review Unruh–DeWitt detectors and other models of detector–field interaction in a relativistic quantum field theory setting as a tool for extracting detector–detector, field–field and detector–field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. In particular, we highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behavior. (paper)
Collaborative Research: Lagrangian Modeling of Dispersion in the Planetary Boundary Layer
National Research Council Canada - National Science Library
Weil, Jeffrey
2003-01-01
...), using Lagrangian "particle" models coupled with large-eddy simulation (LES) fields. A one-particle model for the mean concentration field was enhanced by a theoretically improved treatment of the LES subgrid-scale (SGS) velocities...
Effects of an electric field on interaction of aromatic systems.
Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S
2016-04-30
The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.
Lagrangian multi-particle statistics
DEFF Research Database (Denmark)
Lüthi, Beat; Berg, Jacob; Ott, Søren
2007-01-01
Combined measurements of the Lagrangian evolution of particle constellations and the coarse-grained velocity derivative tensor. partial derivative(u) over tilde (i) /partial derivative x(j) are presented. The data are obtained from three-dimensional particle tracking measurements in a quasi isotr...
Classical dynamical variables for the Wess-Zumino matter Lagrangian
International Nuclear Information System (INIS)
Domenech, G.; Buenos Aires Univ. Nacional; Levinas, M.; Buenos Aires Univ. Nacional; Umerez, N.
1989-01-01
We study the macroscopic behaviour of the Wess-Zumino matter multiplet. The Lagrangian and the energy-momentum tensor are obtained in terms of densities and velocities of an interacting fluid in N=1 supergravity background. Equations of motion and conditions for consistency are found. (orig.)
Perturbative QCD lagrangian at large distances and stochastic dimensionality reduction
International Nuclear Information System (INIS)
Shintani, M.
1986-10-01
We construct a Lagrangian for perturbative QCD at large distances within the covariant operator formalism which explains the color confinement of quarks and gluons while maintaining unitarity of the S-matrix. It is also shown that when interactions are switched off, the mechanism of stochastic dimensionality reduction is operative in the system due to exact super-Lorentz symmetries. (orig.)
Cellular studies and interaction mechanisms of extremely low frequency fields
Liburdy, Robert P.
1995-01-01
Worldwide interest in the biological effects of ELF (extremely low frequency, level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand-receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric (E) or the magnetic (B) field, or if combinations of static B and time-varying B fields represent an exposure metric for the cell. This question relates directly to understanding fundamental interaction mechanisms and to the development of a rationale for ELF dose threshold guidelines. The weight of
Twisted-Light-Ion Interaction: The Role of Longitudinal Fields
Quinteiro, G. F.; Schmidt-Kaler, Ferdinand; Schmiegelow, Christian T.
2017-12-01
The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped 40Ca+ ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter.
Lagrangian condensation microphysics with Twomey CCN activation
Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna
2018-01-01
We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation
Lagrangian condensation microphysics with Twomey CCN activation
Directory of Open Access Journals (Sweden)
W. W. Grabowski
2018-01-01
Full Text Available We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the
Computation of wave fields and soil structure interaction
International Nuclear Information System (INIS)
Lysmer, J.W.
1982-01-01
The basic message of the lecture is that the determination of the temporal and spatial variation of the free-field motions is the most important part of any soil-structure interaction analysis. Any interaction motions may be considered as small aberrations superimposed on the free-field motions. The current definition of the soil-structure interaction problem implies that superposition must be used, directly or indirectly, in any rational method of analysis of this problem. This implies that the use of nonlinear procedures in any part of a soil-structure interaction analysis must be questioned. Currently the most important part of the soil-structure interaction analysis, the free-field problem, cannot be solved by nonlinear methods. Hence, it does not seem reasonable to spend a large effort on trying to obtain nonlinear solutions for the interaction part of the problem. Even if such solutions are obtained they cannot legally be superimposed on the free-field motions to obtain the total motions of the structure. This of course does not preclude the possibility that such an illegal procedure may lead to solutions which are close enough for engineering purposes. However, further research is required to make a decision on this issue
Scale-by-scale contributions to Lagrangian particle acceleration
Lalescu, Cristian C.; Wilczek, Michael
2017-11-01
Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.
MatchingTools: A Python library for symbolic effective field theory calculations
Criado, Juan C.
2018-06-01
MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite them in terms of any chosen set of operators.
Phenomenology of the Higgs Effective Lagrangian via FeynRules
Alloul, Adam; Sanz, Verónica
2014-01-01
The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FeynRules and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FeynRules capable to generate model files that can be understood by the MadGraph 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-...
The anomalous chiral Lagrangian of order p6
International Nuclear Information System (INIS)
Bijnens, J.; Talavera, P.
2002-01-01
We construct the effective chiral Lagrangian for chiral perturbation theory in the mesonic odd-intrinsic-parity sector at order p 6 . The Lagrangian contains 24 in principle measurable terms and no contact terms for the general case of N f light flavors, 23 terms for three and 5 for two flavors. In the two flavor case we need a total of 13 terms if an external singlet vector field is included. We discuss and implement the methods used to reduce to a minimal set. The infinite parts needed for renormalization are calculated and presented as well. (orig.)
Complex nonlinear Lagrangian for the Hasegawa-Mima equation
International Nuclear Information System (INIS)
Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.
2005-01-01
The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)
Extended hamiltonian formalism and Lorentz-violating lagrangians
Directory of Open Access Journals (Sweden)
Don Colladay
2017-09-01
Full Text Available A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler–Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.
Extended hamiltonian formalism and Lorentz-violating lagrangians
Colladay, Don
2017-09-01
A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.
Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.
Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N
2015-04-21
Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.
The semi-Lagrangian method on curvilinear grids
Directory of Open Access Journals (Sweden)
Hamiaz Adnane
2016-09-01
Full Text Available We study the semi-Lagrangian method on curvilinear grids. The classical backward semi-Lagrangian method [1] preserves constant states but is not mass conservative. Natural reconstruction of the field permits nevertheless to have at least first order in time conservation of mass, even if the spatial error is large. Interpolation is performed with classical cubic splines and also cubic Hermite interpolation with arbitrary reconstruction order of the derivatives. High odd order reconstruction of the derivatives is shown to be a good ersatz of cubic splines which do not behave very well as time step tends to zero. A conservative semi-Lagrangian scheme along the lines of [2] is then described; here conservation of mass is automatically satisfied and constant states are shown to be preserved up to first order in time.
Effective field theory of interactions on the lattice
DEFF Research Database (Denmark)
Valiente, Manuel; Zinner, Nikolaj T.
2015-01-01
We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling consta...... constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.......We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling...
Superconformal Lagrangian without the need to introduce constraints
International Nuclear Information System (INIS)
Pilot, C.H.
1986-01-01
A field Lagrangian invariant under all the symmetries of the superconformal group has been constructed without the need to introduce constraints on the curvatures. We have thus generalized the action of Townsend, van Nieuwenhuizen, and Kaku. We maintain that any and all constraints on the curvatures should result as a consequence of spontaneous symmetry breaking and not be a priori enforced. 14 refs
Leading-order classical Lagrangians for the nonminimal standard-model extension
Reis, J. A. A. S.; Schreck, M.
2018-03-01
In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.
Gravitational interaction of massless higher-spin fields
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A
1987-04-30
We show that, despite a widespread belief, the gravitational interaction of massless higher-spin fields (s>2) does exist at least in the first nontrivial order. The principal novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. Our construction is based on an infinite-dimensional higher-spin superalgebra proposed previously that leads to an infinite system of all spins s>1.
Structural stability of interaction networks against negative external fields
Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.
2018-04-01
We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.
Depth of Field Effects for Interactive Direct Volume Rendering
Schott, Mathias; Pascal Grosset, A.V.; Martin, Tobias; Pegoraro, Vincent; Smith, Sean T.; Hansen, Charles D.
2011-01-01
In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).
Depth of Field Effects for Interactive Direct Volume Rendering
Schott, Mathias
2011-06-01
In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).
Singular solutions of renormalization group equations and the symmetry of the lagrangian
International Nuclear Information System (INIS)
Kazakov, D.I.; Shirokov, D.V.
1975-01-01
On the basis of solution of the differential renormalization group equations the method is proposed for finding out the Lagrangians possessing some king of internal symmetry. It is shown that in the phase space of the invariant charges the symmetry corresponds to the straight-line singular solution of these equations remaining straight-line when taking into account the higher order corrections. We have studied the model of scalar fields with quartic couplings, as well as the set of models containing scalar, pseudoscalar and spinor fields with Yukawa and quartic interactions. Straight-line singular solutions in the first case correspond to isotopic symmetry only. For the second case they correspond to supersymmetry. No other symmetries have been discovered. For the model containing the gauge fields the solution corresponding to supersymmetry is obtained and it is shown that this is also the only symmetry that can be realized in the given set of fields
Spin and orbital exchange interactions from Dynamical Mean Field Theory
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)
2016-02-15
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.
Effective Lagrangian from superstrings
International Nuclear Information System (INIS)
Cvetic, M.
1989-01-01
This paper presents a method to calculate the structure of the effective potential for four-dimensional vacua of the heterotic superstring with the space-time supersymmetry. The authors spell out the properties of the string vertices as defined in terms of the conformal field theory, the structure of the string amplitudes, in particular those that probe the superpotential terms, and present a method to evaluate such string amplitudes. The authors illustrate the approach by presenting certain results for the (blown-up) orbifolds
Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions
International Nuclear Information System (INIS)
Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.
1979-01-01
Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given
Decoding the hologram: Scalar fields interacting with gravity
Kabat, Daniel; Lifschytz, Gilad
2014-03-01
We construct smeared conformal field theory (CFT) operators which represent a scalar field in anti-de Sitter (AdS) space interacting with gravity. The guiding principle is microcausality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand microcausality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.
Interactive exploratory visualization of 2D vector fields
Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom design glyphs (arrows, lines, etc.) that best reveal patterns of the
Discriminative deep inelastic tests of strong interaction field theories
International Nuclear Information System (INIS)
Glueck, M.; Reya, E.
1979-02-01
It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de
How to detect colour field topologies in hadronic interactions
International Nuclear Information System (INIS)
Andersson, B.; Bengtsson, H.U.
1987-06-01
We discuss the different colour field topologies of QCD interactions, and demonstrate how the existence of two different colour topologies in qg scattering will lead to an experimentally observable asymmetry in the production of K + K - pairs in hadron-hadron collisions. (authors)
Lagrangian Studies of Lateral Mixing
2017-09-19
Final Technical 3. DATES COVERED (From - To) 01/01/2009 – 12/31/2015 4. TITLE AND SUBTITLE Lagrangian Studies of Lateral Mixing 5a. CONTRACT NUMBER...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Lateral Mixing Experiment (LATMIX) focused on mixing and...anomalies. LATMIX2 targeted the wintertime Gulf Stream, where deep mixed layers, strong lateral density gradients (Gulf Stream north wall) and the
Chiral Lagrangians and the SSC
International Nuclear Information System (INIS)
Dawson, S.
1991-09-01
In the event that the SSC does not observe any resonances such as a Higgs boson or a techni-rho meson, we would like to know if the SSC can still discover something about the nature of the electroweak symmetry breaking. We will use chiral Lagrangian techniques to address this question and analyze their utility for studying events containing W and Z gauge bosons at the SSC. 20 refs., 4 figs
Energy released by the interaction of coronal magnetic fields
International Nuclear Information System (INIS)
Sheeley, N.R. Jr.
1976-01-01
Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields in continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared to the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares. (Auth.)
Lagrangian descriptors in dissipative systems.
Junginger, Andrej; Hernandez, Rigoberto
2016-11-09
The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.
Nonlinear interactions of focused resonance cone fields with plasmas
International Nuclear Information System (INIS)
Stenzel, R.L.; Gekelman, W.
1977-01-01
A simple yet novel rf exciter structure has been developed for generating remotely intense rf fields in a magnetoplasma. It is a circular line source of radius R in a plane perpendicularB 0 driven with an rf signal at ω 0 E/sub rf/ 2 /nkT/sub e/>0.2, a strong density depression in the focal region (deltan/n>40%) is observed. The density perturbation modifies the cone angle and field distribution. This nonlinear interaction leads to a rapid growth of ion acoustic wave turbulence and a corresponding random rf field distribution in a broadened focal region. The development of the interaction is mapped in space and time
Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.
Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A
2018-02-20
Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.
International Nuclear Information System (INIS)
McCallum, R. William
2005-01-01
For a uniaxial nanocrystalline magnetic material, the determination of the saturation magnetization, M s , requires measurements of the magnetization at fields which exceed the anisotropy field. For a typical RE-Tm compound, where RE=rare earth and Tm=transition metal, this may require fields above 7 T if the approach to saturation law is used. However for an isotropic material composed of a random distribution of non-interacting uniaxial grains, both M s and the anisotropy filed, H a , may be determined by fitting the Stoner-Wohlfarth (SW) model (Philos. Trans. Roy. Soc. 240 (1948) 599) to the reversible part of the demagnetization curve in the first quadrant. Furthermore, using the mean field interaction model of Callen, Liu and Cullen [2], a quantitative measure of the interaction strength for interacting particles may be determined. In conjunction with an analytical fit to the first quadrant demagnetization curve of the SW model, this allows M s , H a and the mean field interaction constant of a nanocrystalline magnet to be determined from measurements below 5 T. Furthermore, comparison of the model solution for the reversible magnetization with experimental data in the 2nd and 3rd quadrants allows the accurate determination of the switching field distribution. In many cases the hysteresis loop may be accurately described by a normal distribution of switching fields
High-energy behavior of field-strength interactions
International Nuclear Information System (INIS)
Levin, D.N.
1976-01-01
It is known that spontaneously broken gauge theories are the only renormalizable theories of massive spin-one particles with mass dimension less than or equal to 4. This paper describes a search for renormalizable interactions with higher mass dimension. Specifically, we examine the high-energy behavior of a class of models which involve field-strength interactions. Power counting shows that the high-energy behavior of these models is no worse than the naively estimated high-energy behavior of a gauge theory in the U gauge. Therefore, there may be a ''soft'' symmetry-breaking mechanism (for instance, a soft divergence of an antisymmetric tensor current) which enforces renormalizable high-energy behavior in the same way that spontaneously broken gauge invariance guarantees the renormalizability of gauge theories. This hope is supported by the existence of ''gauge theories'' of strings, which describe analogous interactions of strings and field strengths. Unfortunately, this idea is tarnished by explicit calculations in which renormalizability is imposed in the form of unitarity bounds. These unitarity bounds imply that all possible field-strength couplings must be zero and that the remaining interactions describe a spontaneously broken gauge theory. Thus this result supports an earlier conjecture that gauge theories are the only renormalizable theories of massive vector bosons
International Nuclear Information System (INIS)
Gainutdinov, R Kh; Mutygullina, A A
2009-01-01
We discuss the interaction of an atom subject to an intense driving laser field with its own radiation field. In contrast to the states of bare atoms, the energy difference between some dressed states with the same total angular momentum, its projection and parity may be very small. The self-interaction of a combined atom-laser system associated with nonradiative transitions between such states is effectively strong. We show that the contribution to the radiative shift of the sidebands of the Mollow spectrum, which comes from such processes, is very significant and may be much larger than the trivial Lamb shift, which is the simple redistribution of the Lamb shifts of the corresponding bare states. In the final part, we discuss the possibility that in the Mollow spectrum nonlocality of electromagnetic interaction, which in other cases is hidden in the regularization and renormalization procedures, can manifest itself explicitly.
Effective field theory of thermal Casimir interactions between anisotropic particles.
Haussman, Robert C; Deserno, Markus
2014-06-01
We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.
Sampling general N-body interactions with auxiliary fields
Körber, C.; Berkowitz, E.; Luu, T.
2017-09-01
We present a general auxiliary field transformation which generates effective interactions containing all possible N-body contact terms. The strength of the induced terms can analytically be described in terms of general coefficients associated with the transformation and thus are controllable. This transformation provides a novel way for sampling 3- and 4-body (and higher) contact interactions non-perturbatively in lattice quantum Monte Carlo simulations. As a proof of principle, we show that our method reproduces the exact solution for a two-site quantum mechanical problem.
Interaction of neutrons with the matter in the laser field
International Nuclear Information System (INIS)
Zaretskij, D.F.; Lomonosov, V.V.
1980-01-01
The interactions of neutrons with the molecules, atoms and nuclei in the presence of the coherent electromagnetic radiation are considered. There are two effects which are discussed in detail: 1) the ''acceleration'' of thermal neutrons passed through the excited by the resonance laser wave molecular gas; 2) the induced by the laser field the slow neutron capture accompanied by the compound nucleus level excitation. The given effects, if they are experimentally detected, give the possibility to control the neutron flux (spectrum change, polarization, spatial modulation and etc.) and change the interaction cross sections of thermal and resonance neutrons with nuclei due to excitation of p levels of the compound nucleus [ru
Numerical analysis of interacting cracks in biaxial stress field
International Nuclear Information System (INIS)
Kovac, M.; Cizelj, L.
1999-01-01
The stress corrosion cracks as seen for example in PWR steam generator tubing made of Inconel 600 usually produce highly irregular kinked and branched crack patterns. Crack initialization and propagation depends on stress state underlying the crack pattern. Numerical analysis (such as finite element method) of interacting kinked and branched cracks can provide accurate solutions. This paper discusses the use of general-purpose finite element code ABAQUS for evaluating stress fields at crack tips of interacting complex cracks. The results obtained showed reasonable agreement with the reference solutions and confirmed use of finite elements in such class of problems.(author)
Ion Motion in a Plasma Interacting with Strong Magnetic Fields
International Nuclear Information System (INIS)
Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.
1999-01-01
The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized
Reconstructing baryon oscillations: A Lagrangian theory perspective
International Nuclear Information System (INIS)
Padmanabhan, Nikhil; White, Martin; Cohn, J. D.
2009-01-01
Recently Eisenstein and collaborators introduced a method to 'reconstruct' the linear power spectrum from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to better understand what such a method does, and what the resulting power spectra are. We show that reconstruction does not reproduce the linear density field, at second order. We however show that it does reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better modeled as the sum of three different power spectra, each dominating over different wavelength ranges and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced when one considers the reconstructed power spectrum.
A hybrid Lagrangian Voronoi-SPH scheme
Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.
2017-11-01
A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.
S-equivalents lagrangians in generalized mechanics
International Nuclear Information System (INIS)
Negri, L.J.; Silva, Edna G. da.
1985-01-01
The problem of s-equivalent lagrangians is considered in the realm of generalized mechanics. Some results corresponding to the ordinary (non-generalized) mechanics are extended to the generalized case. A theorem for the reduction of the higher order lagrangian description to the usual order is found to be useful for the analysis of generalized mechanical systems and leads to a new class of equivalence between lagrangian functions. Some new perspectives are pointed out. (Author) [pt
Interaction of extremely-low-frequency electromagnetic fields with humans
International Nuclear Information System (INIS)
Tenforde, T.S.
1991-07-01
At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs
A Study of the Flow Field Surrounding Interacting Line Fires
Directory of Open Access Journals (Sweden)
Trevor Maynard
2016-01-01
Full Text Available The interaction of converging fires often leads to significant changes in fire behavior, including increased flame length, angle, and intensity. In this paper, the fluid mechanics of two adjacent line fires are studied both theoretically and experimentally. A simple potential flow model is used to explain the tilting of interacting flames towards each other, which results from a momentum imbalance triggered by fire geometry. The model was validated by measuring the velocity field surrounding stationary alcohol pool fires. The flow field was seeded with high-contrast colored smoke, and the motion of smoke structures was analyzed using a cross-correlation optical flow technique. The measured velocities and flame angles are found to compare reasonably with the predicted values, and an analogy between merging fires and wind-blown flames is proposed.
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Higgs particles interacting via a scalar Dark Matter field
Directory of Open Access Journals (Sweden)
Bhattacharya Yajnavalkya
2016-01-01
Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
On dipole interaction of the oxcillator with a scalar field
International Nuclear Information System (INIS)
Razumov, A.V.; Taranov, A.Yu.
1979-01-01
Dipole interaction of the oscillator with scalar field in one-dimensional case is studied. Solutions of the classical equations of motion are found and the conditions of the boundedness of the classical Hamiltonian from below are obtained. In the quantum theory the problem of choosing the zeroth approximation of perturbation theory in the case when the spectra of the free and complete Hamiltonian do not coincide with each other, is analysed
Structure of pheomenological lagrangians for broken supersymmetry
International Nuclear Information System (INIS)
Uematsu, T.; Zachos, C.K.
1982-01-01
We consider the explicit connection between linear representations of supersymetry and the non-linear realizations associated with the generic effective lagrangians of the Volkov-Akulov type. We specify and illustrate a systematic approach for deriving the appropriate phenomenological lagrangian by transforming a pedagogical linear model, in which supersymmetry is broken at the tree level, into its corresponding non-linear lagrangian, in close analogy to the linear sigma model of pion dynamics. We discuss the significance and some properties of such phenomenological lagrangians. (orig.)
Interacting open Wilson lines from noncommutative field theories
International Nuclear Information System (INIS)
Kiem, Youngjai; Lee, Sangmin; Rey, Soo-Jong; Sato, Haru-Tada
2002-01-01
In noncommutative field theories, it is known that the one-loop effective action describes the propagation of noninteracting open Wilson lines, obeying the flying dipole's relation. We show that the two-loop effective action describes the cubic interaction among 'closed string' states created by open Wilson line operators. Taking d-dimensional λ[Φ 3 ] * theory as the simplest setup, we compute the nonplanar contribution at a low-energy and large noncommutativity limit. We find that the contribution is expressible in a remarkably simple cubic interaction involving scalar open Wilson lines only and nothing else. We show that the interaction is purely geometrical and noncommutative in nature, depending only on the size of each open Wilson line
Long-range interactions in lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.
Long-range interactions in lattice field theory
International Nuclear Information System (INIS)
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations
Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field
DEFF Research Database (Denmark)
Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.
2015-01-01
We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...
H(+) - O(+) two-stream interaction on auroral field lines
International Nuclear Information System (INIS)
Bergmann, R.
1990-01-01
Upflowing beams of hydrogen, oxygen, and minor ion species, and downward accelerated electrons have been observed above several thousand kilometers altitude on evening auroral field lines. The mechanism for electron and ion acceleration is generally accepted to be the presence of a quasi-static electric field with a component parallel to the earth's magnetic field. The thermal energy of the observed beams is much larger than ionospheric ion temperatures indicating that the beams have been heated as they are accelerated upward. This heating is probably due to a two-stream interaction between beams of different mass ions. The beams gain equal energy in the potential drop and so have different average velocities. Their relative streaming initiates an ion-ion two-stream interaction which then mediates a transfer of energy and momentum between the beams and causes thermalization of each beam. The qualitative evidence that supports this scenario is reviewed. Properties of the two-stream instability are presented in order to demonstrate that a calculation of the evolution of ion beams requires a model that includes field-aligned spatial structure. 26 refs
Interactive Editing of GigaSample Terrain Fields
Treib, Marc
2012-05-01
Previous terrain rendering approaches have addressed the aspect of data compression and fast decoding for rendering, but applications where the terrain is repeatedly modified and needs to be buffered on disk have not been considered so far. Such applications require both decoding and encoding to be faster than disk transfer. We present a novel approach for editing gigasample terrain fields at interactive rates and high quality. To achieve high decoding and encoding throughput, we employ a compression scheme for height and pixel maps based on a sparse wavelet representation. On recent GPUs it can encode and decode up to 270 and 730 MPix/s of color data, respectively, at compression rates and quality superior to JPEG, and it achieves more than twice these rates for lossless height field compression. The construction and rendering of a height field triangulation is avoided by using GPU ray-casting directly on the regular grid underlying the compression scheme. We show the efficiency of our method for interactive editing and continuous level-of-detail rendering of terrain fields comprised of several hundreds of gigasamples. © 2012 The Author(s).
The interaction of vacuum arcs with magnetic fields and applications
International Nuclear Information System (INIS)
Gorman, J.G.; Kimblin, C.W.; Slade, P.G.; Voshall, R.E.; Wien, R.E.
1983-01-01
Vacuum arc/magnetic field interactions are reviewed and extended. An axial magnetic field (parallel to current flow) produces a stable and diffuse vacuum arc. These properties have been used to build a reliable dc switch for the Tokamak Fusion Test Reactor at Princeton. The switching duty for this Ohmic Heating Interrupter involves repetitive interruption of 24kA dc against a 27kV recovery voltage. A transverse magnetic field (perpendicular to current flow) produces an unstable arc with an ensuing high arc voltage. This property has been used to complete a metallic return transfer breaker for the Pacific HVDC Intertie, here the switching duty involves interruption of currents up to 2200A dc against an 80kV recovery voltage
Lagrangian fluid description with simple applications in compressible plasma and gas dynamics
International Nuclear Information System (INIS)
Schamel, Hans
2004-01-01
-dimension (1D). In cosmology referring to the pancake model of Zel'dovich and the adhesion model of Gurbatov and Saichev, both assuming a clumping of matter at the intersection points of fluid particle trajectories (i.e. at the caustics), the foam-like large-scale structure of our Universe observed recently by Chandra X-ray observatory may be explained by the 3D convection of weakly interacting dark matter. Recent developments in plasma and nanotechnology - the miniaturization and fabrication of nanoelectronic devices being one example - have reinforced the interest in the quasi-ballistic electron transport in diodes and triodes, a field which turns out to be best treated by the Lagrangian fluid description. It is shown that the well-known space-charge-limited flow given by Child-Langmuir turns out to be incorrect in cases of finite electron injection velocities at the emitting electrode. In that case it is an intrinsic bifurcation scenario which is responsible for current limitation rather than electron reflection at the virtual cathode as intuitively assumed by Langmuir. The inclusion of a Drude friction term in the electron momentum equation can be handled solely by the Lagrangian fluid description. Exploiting the formula in case of field emission it is possible to bridge ballistic and drift-dominated transport. Furthermore, the transient processes in the electron transport triggered by the switching of the anode potential are shown to be perfectly accounted for by means of the Lagrangian fluid description. Finally, by use of the Lagrangian ion fluid equations in case of a two component, current driven plasma we derive a system of two coupled scalar wave equations which involve the specific volume of ions and electrons, respectively. It has a small amplitude strange soliton solution with unusual scaling properties. In case of charge neutrality the existence of two types of collapses are predicted, one being associated with a density excavation, the other one with a density
Lagrangian fluid description with simple applications in compressible plasma and gas dynamics
Schamel, Hans
2004-03-01
). In cosmology referring to the pancake model of Zel'dovich and the adhesion model of Gurbatov and Saichev, both assuming a clumping of matter at the intersection points of fluid particle trajectories (i.e. at the caustics), the foam-like large-scale structure of our Universe observed recently by Chandra X-ray observatory may be explained by the 3D convection of weakly interacting dark matter. Recent developments in plasma and nanotechnology-the miniaturization and fabrication of nanoelectronic devices being one example-have reinforced the interest in the quasi-ballistic electron transport in diodes and triodes, a field which turns out to be best treated by the Lagrangian fluid description. It is shown that the well-known space-charge-limited flow given by Child-Langmuir turns out to be incorrect in cases of finite electron injection velocities at the emitting electrode. In that case it is an intrinsic bifurcation scenario which is responsible for current limitation rather than electron reflection at the virtual cathode as intuitively assumed by Langmuir. The inclusion of a Drude friction term in the electron momentum equation can be handled solely by the Lagrangian fluid description. Exploiting the formula in case of field emission it is possible to bridge ballistic and drift-dominated transport. Furthermore, the transient processes in the electron transport triggered by the switching of the anode potential are shown to be perfectly accounted for by means of the Lagrangian fluid description. Finally, by use of the Lagrangian ion fluid equations in case of a two component, current driven plasma we derive a system of two coupled scalar wave equations which involve the specific volume of ions and electrons, respectively. It has a small amplitude strange soliton solution with unusual scaling properties. In case of charge neutrality the existence of two types of collapses are predicted, one being associated with a density excavation, the other one with a density clumping
Algebraic construction of interacting higher spin field theories
International Nuclear Information System (INIS)
Fougere, F.
1991-10-01
We develop a general framework which we believe may provide some insights into the structure of interacting 'high spin' field theories. A finite or infinite set of classical spin fields is described by means of a field defined on an enlarged spacetime manifold. The free action and its gauge symmetries are gathered into a nilpotent differential operator on this manifold. In particular, the choice of Grassmann-valued extra coordinates leads to theories involving only a finite set of fields, the possible contents (spin multiplicities, degree of reducibility, etc.) of which are classified according to the representations of a unitary algebra. The interacting theory is characterized by a functional of the field on the enlarged manifold. We show that there is among these functionals a natural graded Lie algebra structure allowing one to rewrite the gauge invariance condition of the action in a concise form which is a nonlinear generalization of the nilpotency condition of the free theory. We obtain the general solution of this 'classical master equation' , which can be built recurrently starting form the cubic vertex, and we study its symmetries. Our formalism lends itself to a systematic introduction of additional conditions, such as locality, polynomiality, etc. We write down the general form of the solutions exhibiting a scale invariance. The case of a spin 1 field yields, as a unique solution, Yang-Mills theory. In view of quantization, we show that the solution of the classical master equation straightforwardly provides a solution of the (quantum) Batalin-Vilkoviski master equation. One may then obtain a gauge fixed action in the usual way
International Nuclear Information System (INIS)
Rasolt, M.; Vignale, G.
1992-03-01
We formulate the current-density functional theory for systems in arbitrarily strong magnetic fields. A set of self-consistent equations comparable to the Kohn-Sham equations for ordinary density functional theory is derived, and proved to be gauge-invariant and to satisfy the continuity equation. These equations of Vignale and Rasolt involve the gauge field corresponding to the external magnetic field as well as a new gauge field generated entirely from the many-body interactions. We next extend this gauge theory (following Rasolt and Vignale) to a lattice Lagrangian believed to be appropriate to a tight-binding Hamiltonian in the presence of an external magnetic field. We finally examine the nature of the ground state of a strongly nonuniform electron gas in the presence of this many-body self-induced gauge field
Applications of the representation of the Heisenberg-Euler Lagrangian by means of special functions
International Nuclear Information System (INIS)
Valluri, S.R.; Lamm, D.R.; Mielniczuk, W.J.
1993-01-01
A convenient series representation for the real part of the Heisenberg-Euler Lagrangian density of quantum electrodynamics for arbitrary nonvanishing electric fields, E, and magnetic fields, B, has been previously provided by Mielniczuk. Using this representation, numerical information for the Lagrangian is presented for the range 0 cr ≤ 5 and 0 cr ≤ 10 (subscript cr stands for critical) with the electric and magnetic fields parallel and E cr ∼ 1.7 X 10 16 V cm -1 and B cr ∼ 4.4 X 10 13 G. It was found that for a fixed electric field, the Lagrangian is monotonically increasing with increasing magnetic field strength. However, for a fixed magnetic field, the Lagrangian exhibits a positively valued maximum before turning monotonically decreasing with increasing electric field strength. Further, the series representation is extended to the case of vanishing electric or magnetic field. Numerical results for these special cases are in very close agreement with previous results, which indicated a maximum value for the Lagrangian density for B = 0 at E/E cr ∼ 3. Also, the techniques developed for deriving the real part of the Heisenberg-Euler Lagrangian are applied to the imaginary part to deduce a similar, convenient series representation that agrees with the previous results derived by others for the special case of a vanishing magnetic field. Possible applications of this Lagrangian to quantum chromodynamics are discussed. This series representation will be of use in calculations of a quantum-electrodynamical field energy density in the absence of real charges, and for calculations of polarization and magnetization of the vacuum. More accurate calculations of the cross-section scattering of light by light in the presence of a constant, homogeneous magnetic and (or) electric field are possible with the aid of this series representation. (author)
Interaction of magnetic resonators studied by the magnetic field enhancement
Directory of Open Access Journals (Sweden)
Yumin Hou
2013-12-01
Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.
Dulac, F.; Renard, J. B.; Durand, P.; Denjean, C.; Bourgeois, Q.; Vignelles, D.; Jeannot, M.; Mallet, M.; Verdier, N.
2017-12-01
This study focuses on in situ balloon-borne measurements of mineral dust from summer regional field campaigns in the western Mediterranean basin performed in the framework of ChArMEx (the Chemistry and Aerosol Mediterranean Experiment; see special issue https://www.atmos-chem-phys.net/special_issue334.html). Due to long-range transport from Africa, the lower troposphere over this regional sea is subject to high levels of desert dust with a maximum during the long dry and sunny Mediterranean summer season. Based on developments of boundary-layer pressurized balloons (BLPBs) and of a dedicated optical particle counter named LOAC (Light Optical Aerosol Counter/sizer), we were able to perform original quasi-Lagrangian monitoring of desert dust aerosols over the sea. The strategy combined classical sounding balloons and drifting BLPBs to document both the vertical distribution and long-range transport. A total of 27 LOAC flights were successfully conducted from Minorca Isl. (Spain) or Levant Isl. (France), during 4 Saharan dust transport events, including 10 flights with BLPBs at drifting altitudes between 2.0 and 3.3 km above sea level. The longest flight exceeded 700 km and lasted more than 25 h. Numerous tests and validations of LOAC measurements were performed to qualify the instrument, including comparisons with concurrent airborne measurements, sounding balloons, and remote sensing measurements with an AERONET sun-photometer, and a ground-based and the CALIOP lidar systems. Aerosol optical depths in the balloon vicinity did not exceed about 0.4 but the presence of turbid dust layers was confirmed thanks to dual scattering angle measurements by LOAC allowing the identification of dust particles. LOAC data could generally be fitted by a 3-mode lognormal distribution at roughly 0.2, 4 and 30 µm in modal diameter. Up to about 10-4 dust particles larger than 40 µm per cm3 are reported and no significant evolution of the size distribution was observed during the
A Discrete Approach to Meshless Lagrangian Solid Modeling
Directory of Open Access Journals (Sweden)
Matthew Marko
2017-07-01
Full Text Available The author demonstrates a stable Lagrangian solid modeling method, tracking the interactions of solid mass particles rather than using a meshed grid. This numerical method avoids the problem of tensile instability often seen with smooth particle applied mechanics by having the solid particles apply stresses expected with Hooke’s law, as opposed to using a smoothing function for neighboring solid particles. This method has been tested successfully with a bar in tension, compression, and shear, as well as a disk compressed into a flat plate, and the numerical model consistently matched the analytical Hooke’s law as well as Hertz contact theory for all examples. The solid modeling numerical method was then built into a 2-D model of a pressure vessel, which was tested with liquid water particles under pressure and simulated with smoothed particle hydrodynamics. This simulation was stable, and demonstrated the feasibility of Lagrangian specification modeling for fluid–solid interactions.
Interaction of plasma with magnetic fields in coaxial discharge
Energy Technology Data Exchange (ETDEWEB)
Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))
1991-01-01
Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.
Interaction of plasma with magnetic fields in coaxial discharge
International Nuclear Information System (INIS)
Soliman, H.M.; Masoud, M.M.
1991-01-01
Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs
Optical Near-field Interactions and Forces for Optoelectronic Devices
Kohoutek, John Michael
Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing
Lagrangian Description of Nonadiabatic Particle Motion in Spherical Tori
Energy Technology Data Exchange (ETDEWEB)
R.B. White; Yu.V. Yakovenko; Ya.I. Kolesnichenko
2002-06-21
The ability of a device to provide adiabatic motion of charged particles is crucial for magnetic confinement. As the magnetic field in the present-day spherical tori, e.g., MAST and NSTX, is much lower than in the conventional tokamaks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of importance in these devices, affecting the stochasticity threshold for the interaction of the ions with electromagnetic perturbations. In addition, FLR by itself may result in non-conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a Lagrangian approach to description of the resonant collisionless motion of charged particles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1], where only time-independent perturbations were considered. The approach is used to find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2] and the cyclotron-resonance-induced (CRI) diffusion (for the case of the firs t cyclotron resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the magnetic moment variation caused by FLR is found.
Lagrangian Description of Nonadiabatic Particle Motion in Spherical Tori
International Nuclear Information System (INIS)
White, R.B.; Yakovenko, Yu.V.; Kolesnichenko, Ya.I.
2002-01-01
The ability of a device to provide adiabatic motion of charged particles is crucial for magnetic confinement. As the magnetic field in the present-day spherical tori, e.g., MAST and NSTX, is much lower than in the conventional tokamaks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of importance in these devices, affecting the stochasticity threshold for the interaction of the ions with electromagnetic perturbations. In addition, FLR by itself may result in non-conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a Lagrangian approach to description of the resonant collisionless motion of charged particles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1], where only time-independent perturbations were considered. The approach is used to find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2] and the cyclotron-resonance-induced (CRI) diffusion (for the case of the first cyclotron resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the magnetic moment variation caused by FLR is found
Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems
International Nuclear Information System (INIS)
Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso
2011-01-01
The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)
Colloidal interactions in field-directed self-assembly
Lele, Pushkar P.
This thesis discusses: (1) the fabrication of an experimental tool, namely holographic optical tweezers for simultaneously manipulating spatial locations of multiple particles, (2) development of a framework for interpreting hydrodynamic interactions between multiple particles close to a no-slip surface and comparisons of experimental data with predictive modeling results (Stokesian dynamics simulations) (3) investigations of colloidal particle interactions under external AC fields and the intriguing spontaneous pattern formations in the suspension and, (4) the use of an unconventional assemble-stretch technique for creating novel 2D and 3D crystalline arrays of anisotropically shaped particles, from spherical particle templates. By blinking holographic optical traps, we investigate the hydrodynamic interactions in multi-particle ensembles, influenced by a no-slip surface. The measurements are carried out by screening out electrostatic interactions in the suspension. We observe that with increasing proximity with the surface, the effect of particle-particle hydrodynamic interactions on the short-time self-diffusivities is screened. We use the Stokeslet representation of particles and combine it with the method of images to understand the correlated motion of particles within the ensembles. Analysis of the resultant ensemble eigen-modes reveals that even in dilute suspensions, the effective diffusivities decay as the inverse of the separations, over the range of particle-particle separations we experimented with. The relative modes exhibit dominant contributions from close neighboring particles and the collective modes incorporate long-range contributions from all particles in the ensemble. Our analysis also confirms that for larger number of particles in the ensemble, the contributions from particle-particle interactions increase and in concentrated suspensions they over-ride the strong hydrodynamic screening by the wall. We investigate the microstructure of
Uncertainty quantification for mean field games in social interactions
Dia, Ben Mansour
2016-01-09
We present an overview of mean field games formulation. A comparative analysis of the optimality for a stochastic McKean-Vlasov process with time-dependent probability is presented. Then we examine mean-field games for social interactions and we show that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize couple (marriage). However , if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. Finally we introduce the Wiener chaos expansion for the construction of solution of stochastic differential equations of Mckean-Vlasov type. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and allow to quantify the uncertainty in the optimality system.
Uncertainty quantification for mean field games in social interactions
Dia, Ben Mansour
2016-01-01
We present an overview of mean field games formulation. A comparative analysis of the optimality for a stochastic McKean-Vlasov process with time-dependent probability is presented. Then we examine mean-field games for social interactions and we show that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize couple (marriage). However , if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. Finally we introduce the Wiener chaos expansion for the construction of solution of stochastic differential equations of Mckean-Vlasov type. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and allow to quantify the uncertainty in the optimality system.
Interactions of pulsed electric fields with living organisms
International Nuclear Information System (INIS)
Vezinet, R.; Joly, J.C.; Meyer, O.; Gilbert, C.; Fourrier-Lamer, A.; Silve, A.; Mir, L.M.; Rols, M.P.; Chopinet, L.; Teissie, J.; Roux, D.
2013-01-01
Biologists are more and more involved in the study of the interactions of electromagnetic fields with human body for therapeutics and health applications. In this article we present 4 studies. The first study concerns the interaction between the electromagnetic field and the biochemical reaction of the hydrolysis of the acetylcholine, a primary neurotransmitter of the human body. It has been shown that a progressive slowing-down of the reaction appears when the pulse repetition frequency increases. The second study is dedicated to the effects of electromagnetic pulses at the cell membrane level. We know that electromagnetic pulses can alter the permeability of the cell membrane. We have used rectangular electromagnetic pulses to allow chemicals to enter the cell. In the case of cancer treatment the efficiency of a chemicals like bleomycin can be largely increased. The third study is dedicated to the use of 2 electromagnetic pulses of different duration to optimize gene transfer into the cell nucleus. The last study focuses on the analysis of plant reactions when facing electromagnetic pulses. An experiment performed on a sunflower shows that despite high electric fields no electro-physiological response of the plant has been measured when the sunflower was submitted to electromagnetic pulses
Cohomology for Lagrangian systems and Noetherian symmetries
International Nuclear Information System (INIS)
Popp, O.T.
1989-06-01
Using the theory of sheaves we find some exact sequences describing the locally Lagrangian systems. Using cohomology theory of groups with coefficients in sheaves we obtain some exact sequences describing the Noetherian symmetries. It is shown how the results can be used to find all locally Lagrangian dynamics Noetherian invariant with respect to a given group of kinematical symmetries.(author)
Lagrangian submanifolds and dynamics on Lie algebroids
International Nuclear Information System (INIS)
Leon, Manuel de; Marrero, Juan C; MartInez, Eduardo
2005-01-01
In some previous papers, a geometric description of Lagrangian mechanics on Lie algebroids has been developed. In this topical review, we give a Hamiltonian description of mechanics on Lie algebroids. In addition, we introduce the notion of a Lagrangian submanifold of a symplectic Lie algebroid and we prove that the Lagrangian (Hamiltonian) dynamics on Lie algebroids may be described in terms of Lagrangian submanifolds of symplectic Lie algebroids. The Lagrangian (Hamiltonian) formalism on Lie algebroids permits us to deal with Lagrangian (Hamiltonian) functions not defined necessarily on tangent (cotangent) bundles. Thus, we may apply our results to the projection of Lagrangian (Hamiltonian) functions which are invariant under the action of a symmetry Lie group. As a consequence, we obtain that Lagrange-Poincare (Hamilton-Poincare) equations are the Euler-Lagrange (Hamilton) equations associated with the corresponding Atiyah algebroid. Moreover, we prove that Lagrange-Poincare (Hamilton-Poincare) equations are the local equations defining certain Lagrangian submanifolds of symplectic Atiyah algebroids. (topical review)
Lagrangian properties of particles in turbulence
Toschi, F.; Bodenschatz, E.
2009-01-01
The Lagrangian description of turbulence is characterized by a unique conceptual simplicity and by an immediate connection with the physics of dispersion and mixing. In this article, we report some motivations behind the Lagrangian description of turbulence and focus on the statistical properties of
Directory of Open Access Journals (Sweden)
Nikolai N. Bogolubov
2015-04-01
Full Text Available We review new electrodynamics models of interacting charged point particles and related fundamental physical aspects, motivated by the classical A.M. Ampère magnetic and H. Lorentz force laws electromagnetic field expressions. Based on the Feynman proper time paradigm and a recently devised vacuum field theory approach to the Lagrangian and Hamiltonian, the formulations of alternative classical electrodynamics models are analyzed in detail and their Dirac type quantization is suggested. Problems closely related to the radiation reaction force and electron mass inertia are analyzed. The validity of the Abraham-Lorentz electromagnetic electron mass origin hypothesis is argued. The related electromagnetic Dirac–Fock–Podolsky problem and symplectic properties of the Maxwell and Yang–Mills type dynamical systems are analyzed. The crucial importance of the remaining reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized.
Lagrangian formulation and symmetrical description of liquid dynamics.
Trachenko, K
2017-12-01
Theoretical description of liquids has been primarily based on the hydrodynamic approach and its generalization to the solid-like regime. We show that the same liquid properties can be derived starting from solid-like equations and generalizing them to account for the hydrodynamic flow. Both approaches predict propagating shear waves with the notable gap in k-space. This gives an important symmetry of liquids regarding their description. We subsequently construct a two-field Lagrangian of liquid dynamics where the dissipative hydrodynamic and solid-like terms are treated on equal footing. The Lagrangian predicts two gapped waves propagating in opposite space-time directions. The dissipative and mass terms compete by promoting gaps in k-space and energy, respectively. When bare mass is close to the field hopping frequency, both gaps close and the dissipative term annihilates the bare mass.
Next generation extended Lagrangian first principles molecular dynamics.
Niklasson, Anders M N
2017-08-07
Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.
Interacting fields in real-time AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Botta-Cantcheff, Marcelo; Martínez, Pedro J. [Instituto de Física de La Plata, CCT La Plata, CONICET & Departamento de Física,Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Silva, Guillermo A. [Instituto de Física de La Plata, CCT La Plata, CONICET & Departamento de Física,Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Abdus Salam International Centre for Theoretical Physics, Associate Scheme,Strada Costiera 11, 34151 Trieste (Italy)
2017-03-28
We compute time-ordered 2- and 3-pt correlation functions of CFT scalar operators between generic in/out states. The calculation is holographically carried out by considering a non backreacting AdS scalar field with a λϕ{sup 3} self-interaction term on a combination of Euclidean and Lorentzian AdS sections following the Skenderis-van Rees prescription. We show that, although working in an essentially different set up, the final result for the 3-pt correlators agree with those of Rastelli et al. for Euclidean AdS. By analyzing the inner product between the in/out excited states in the large N approximation, we argue that a cubic bulk interaction deforms the excited states from coherent into squeezed. Finally, a diagrammatic interpretation of the results suggests some general properties for the n-point correlation functions between excited states.
Discriminative deep inelastic tests of strong interaction field theories
International Nuclear Information System (INIS)
Glueck, M.; Reya, E.
1979-02-01
It is demonstrated that recent measurements of F 2 (x,Q 2 ) dx eliminate already all strong interaction field theories which do not include colored quarks as well as colored vector gluons. Detailed studies of scaling violations in F 2 (x,Q 2 ) cannot discriminate between a local gauge invariant theory (QCD) and one which has no local color gauge invariance, i.e. no triple-gluon coupling. This implies that all calculations on scaling violations done so far are insensitive to the gluon self-coupling, the latter might perhaps be delineated with future ep colliding beam facilities. (orig.) [de
A New Finslerian Unified Field Theory of Physical Interactions
Directory of Open Access Journals (Sweden)
Suhendro I.
2009-10-01
Full Text Available In this work, we shall present the foundational structure of a new unified field theory of physical interactions in a geometric world-space endowed with a new kind of Finslerian metric. The intrinsic non-metricity in the structure of our world-geometry may have direct, genuine connection with quantum mechanics, which is yet to be fully explored at present. Building upon some of the previous works of the Author, our ultimate aim here is yet another quantum theory of gravity (in just four space-time dimensions. Our resulting new theory appears to present us with a novel Eulerian (intrinsically motion-dependent world-geometry in which the physical fields originate.
Gravitational self-interactions of a degenerate quantum scalar field
Chakrabarty, Sankha S.; Enomoto, Seishi; Han, Yaqi; Sikivie, Pierre; Todarello, Elisa M.
2018-02-01
We develop a formalism to help calculate in quantum field theory the departures from the description of a system by classical field equations. We apply the formalism to a homogeneous condensate with attractive contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their classical descriptions, such condensates persist forever. We show that in their quantum description, parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector less than some critical value. We calculate, in each case, the time scale over which the homogeneous condensate is depleted and after which a classical description is invalid. We argue that the duration of classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.
Heavy-ion interactions in relativistic mean-field models
International Nuclear Information System (INIS)
Rashdan, M.
1996-01-01
The interaction potential between spherical nuclei and the elastic scattering cross section are calculated within relativistic mean-field (linear and non-linear) models, using a generalized relativistic local density approximation. The nuclear densities are calculated self-consistently from the solution of the relativistic mean-field equations. It is found that both the linear and non-linear models predict the characteristic switching-over phenomenon of the heavy-ion nuclear potential, where the potential gets attraction with increasing energy up to some value where it reverses this behaviour. The non-linear NLC model predicts a deeper potential than the linear LW model. The elastic scattering cross section calculated within the non-linear NLC model is in better agreement with experiments than that calculated within the linear LW model. (orig.)
Field theory of interacting open superstrings of fermionic ghost representation
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Medvedev, P.V.
1987-01-01
Field theory of interacting open superstring in fermionic ghost representation based on anticommuting and commuting ghosts corresponding respectively to world sheet bosonic x μ and fermionic φ μ coordinates is presented. The author have to revise once more the field theory of the free Ramond (R) string and starting from general algebraic point of view they obtain that the number of degrees of freedom in the R and NS (Neveu-Schwartz) sectors equalise themselves permitting to construct a supersymmetric operator. It is proposed to solve a specific equation guaranteeing superinvariance in order to find the R-R-NS and NS-R-R vertices in the term of the NS-NS-NS vertex
Accidental symmetries and the effective Lagrangian of string theory
International Nuclear Information System (INIS)
Ovrut, B.A.
1989-01-01
In this paper the relationship between accidental worldsheet symmetries of the string generating functional and target space invariance groups is discussed. Accidental symmetries are used to derive the invariance groups and effective low energy Lagrangian for the bosonic string, and the heterotic string compactified to four-dimensions on Z N orbifolds. The necessity of a new type of Green-Schwarz mechanism, associated with the auxiliary vector field in the four-dimensional N = 1 supergravity multiplet, is shown using these methods
The shallow water equations in Lagrangian coordinates
International Nuclear Information System (INIS)
Mead, J.L.
2004-01-01
Recent advances in the collection of Lagrangian data from the ocean and results about the well-posedness of the primitive equations have led to a renewed interest in solving flow equations in Lagrangian coordinates. We do not take the view that solving in Lagrangian coordinates equates to solving on a moving grid that can become twisted or distorted. Rather, the grid in Lagrangian coordinates represents the initial position of particles, and it does not change with time. We apply numerical methods traditionally used to solve differential equations in Eulerian coordinates, to solve the shallow water equations in Lagrangian coordinates. The difficulty with solving in Lagrangian coordinates is that the transformation from Eulerian coordinates results in solving a highly nonlinear partial differential equation. The non-linearity is mainly due to the Jacobian of the coordinate transformation, which is a precise record of how the particles are rotated and stretched. The inverse Jacobian must be calculated, thus Lagrangian coordinates cannot be used in instances where the Jacobian vanishes. For linear (spatial) flows we give an explicit formula for the Jacobian and describe the two situations where the Lagrangian shallow water equations cannot be used because either the Jacobian vanishes or the shallow water assumption is violated. We also prove that linear (in space) steady state solutions of the Lagrangian shallow water equations have Jacobian equal to one. In the situations where the shallow water equations can be solved in Lagrangian coordinates, accurate numerical solutions are found with finite differences, the Chebyshev pseudospectral method, and the fourth order Runge-Kutta method. The numerical results shown here emphasize the need for high order temporal approximations for long time integrations
Relativistic electron beam - plasma interaction with intense self-fields
International Nuclear Information System (INIS)
Davidson, R.C.
1984-01-01
The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc
Analysis of interacting quantum field theory in curved spacetime
International Nuclear Information System (INIS)
Birrell, N.D.; Taylor, J.G.
1980-01-01
A detailed analysis of interacting quantized fields propagating in a curved background spacetime is given. Reduction formulas for S-matrix elements in terms of vacuum Green's functions are derived, special attention being paid to the possibility that the ''in'' and ''out'' vacuum states may not be equivalent. Green's functions equations are obtained and a diagrammatic representation for them given, allowing a formal, diagrammatic renormalization to be effected. Coordinate space techniques for showing renormalizability are developed in Minkowski space, for lambdaphi 3 /sub() 4,6/ field theories. The extension of these techniques to curved spacetimes is considered. It is shown that the possibility of field theories becoming nonrenormalizable there cannot be ruled out, although, allowing certain modifications to the theory, phi 3 /sub( 4 ) is proven renormalizable in a large class of spacetimes. Finally particle production from the vacuum by the gravitational field is discussed with particular reference to Schwarzschild spacetime. We shed some light on the nonlocalizability of the production process and on the definition of the S matrix for such processes
One-loop effective lagrangians after matching
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Santiago, J. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Kunszt, Z. [ETH Zuerich, Institute for Theoretical Physics, Zuerich (Switzerland)
2016-05-15
We discuss the limitations of the covariant derivative expansion prescription advocated to compute the one-loop Standard Model (SM) effective lagrangian when the heavy fields couple linearly to the SM. In particular, one-loop contributions resulting from the exchange of both heavy and light fields must be explicitly taken into account through matching because the proposed functional approach alone does not account for them. We review a simple case with a heavy scalar singlet of charge -1 to illustrate the argument. As two other examples where this matching is needed and this functional method gives a vanishing result, up to renormalization of the heavy sector parameters, we re-evaluate the one-loop corrections to the T-parameter due to a heavy scalar triplet with vanishing hypercharge coupling to the Brout-Englert-Higgs boson and to a heavy vector-like quark singlet of charged 2/3 mixing with the top quark, respectively. In all cases we make use of a new code for matching fundamental and effective theories in models with arbitrary heavy field additions. (orig.)
Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence
Schmitt , François G
2005-01-01
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their p...
Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.
Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P
2015-08-01
Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.
Lagrangian formulation of the general relativistic Poynting-Robertson effect
De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio
2018-04-01
We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.
Directory of Open Access Journals (Sweden)
Brian Jonathan Wolk
2017-01-01
Full Text Available This paper introduces an alternative formalism for deriving the Dirac operator and equation. The use of this formalism concomitantly generates a separate operator coupled to the Dirac operator. When operating on a Clifford field, this coupled operator produces field components which are formally equivalent to the field components of Maxwell's electromagnetic field tensor. Consequently, the Lagrangian of the associated coupled field exhibits internal local gauge symmetry. The coupled field Lagrangian is seen to be equivalent to the Lagrangian of Quantum Electrodynamics. Received: 8 November 2016, Accepted: 4 January 2017; Edited by: D. Gomez Dumm; DOI: http://dx.doi.org/10.4279/PIP.090002 Cite as: B J Wolk, Papers in Physics 9, 090002 (2017
High Order Semi-Lagrangian Advection Scheme
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2014-11-01
In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).
Coherent Lagrangian swirls among submesoscale motions.
Beron-Vera, F J; Hadjighasem, A; Xia, Q; Olascoaga, M J; Haller, G
2018-03-05
The emergence of coherent Lagrangian swirls (CLSs) among submesoscale motions in the ocean is illustrated. This is done by applying recent nonlinear dynamics tools for Lagrangian coherence detection on a surface flow realization produced by a data-assimilative submesoscale-permitting ocean general circulation model simulation of the Gulf of Mexico. Both mesoscale and submesoscale CLSs are extracted. These extractions prove the relevance of coherent Lagrangian eddies detected in satellite-altimetry-based geostrophic flow data for the arguably more realistic ageostrophic multiscale flow.
A functional LMO invariant for Lagrangian cobordisms
DEFF Research Database (Denmark)
Cheptea, Dorin; Habiro, Kazuo; Massuyeau, Gwénaël
2008-01-01
Lagrangian cobordisms are three-dimensional compact oriented cobordisms between once-punctured surfaces, subject to some homological conditions. We extend the Le–Murakami–Ohtsuki invariant of homology three-spheres to a functor from the category of Lagrangian cobordisms to a certain category...... of Jacobi diagrams. We prove some properties of this functorial LMO invariant, including its universality among rational finite-type invariants of Lagrangian cobordisms. Finally, we apply the LMO functor to the study of homology cylinders from the point of view of their finite-type invariants....
Regularization of Hamilton-Lagrangian guiding center theories
International Nuclear Information System (INIS)
Correa-Restrepo, D.; Wimmel, H.K.
1985-04-01
The Hamilton-Lagrangian guiding-center (G.C.) theories of Littlejohn, Wimmel, and Pfirsch show a singularity for B-fields with non-vanishing parallel curl at a critical value of vsub(parallel), which complicates applications. The singularity is related to a sudden breakdown, at a critical vsub(parallel), of gyration in the exact particle mechanics. While the latter is a real effect, the G.C. singularity can be removed. To this end a regularization method is defined that preserves the Hamilton-Lagrangian structure and the conservation theorems. For demonstration this method is applied to the standard G.C. theory (without polarization drift). Liouville's theorem and G.C. kinetic equations are also derived in regularized form. The method could equally well be applied to the case with polarization drift and to relativistic G.C. theory. (orig.)
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.
Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan
2015-08-01
Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.
Extension of the chiral perturbation theory meson Lagrangian to order p{sup 6}
Energy Technology Data Exchange (ETDEWEB)
Fearing, H W; Scherer, S
1994-08-01
We have derived the most general chirally invariant Lagrangian L{sub 6} for the meson sector at order p{sup 6}. The result provides an extension of the standard Gasser-Leutwyler Lagrangian L{sub 4} to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The most difficult part of the derivation was developing a systematic strategy so as to get all of the independent terms and eliminate the redundant ones in an efficient way. The equation of motion terms, which are redundant in the sense that they can be transformed away via field transformations, are separated out explicitly. The resulting Lagrangian has been separated into groupings of terms contributing to increasingly more complicated processes, so that one does not have to deal with the full result when calculating p{sup 6} contributions to simple processes. (author). 53 refs., 10 tabs.
Extension of the renormalizability criterion to the case of arbitrary unperturbed Lagrangian
International Nuclear Information System (INIS)
Grozin, A.G.
1979-01-01
Extension of the renormalizability criterium of the perturbation theory is generalized in the case, when an unperturbed lagrangian is not a lagrangian of free fields L 0 . The derivating functional of the Green function, written in the form of a function integral is disintegrated by the perturbed lagrangian L 1 when building the perturbation theory. Described are ultraviolet divergences and possibilities of their elimination in eucledian space. The criterion permits to state extension renormalizability of the perturbation theory for eVery point L 0 and the direction L 1 assigned in this point in linear space of different lagrangians. According to the Weinberg theorem the grade asymptotics of Green functions is not changed at slight shift from the initial point in the supernormalized direction. For any point and any direction the extension of the perturbation theory is supernormalized in this space
Atoms and Ions Interacting with Particles and Fields: Final Report
Energy Technology Data Exchange (ETDEWEB)
Robicheaux, Francis [Auburn Univ., AL (United States)
2014-09-18
This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms with particles and fields. The duration of the grant was the 10 year period from 8/2003 to 8/2013. All of the support from the grant was used to pay salaries of the PI, postdocs, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 65 peer reviewed publications over these 10 years with 8 of the publications in Physical Review Letters; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B, ...). I will disuss the results for the periods of time relevant for each grant period.
Interaction with a field: a simple integrable model with backreaction
Mouchet, Amaury
2008-09-01
The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.
Sensor Interaction as a Source of the Electromagnetic Field Measurement Error
Directory of Open Access Journals (Sweden)
Hartansky R.
2014-12-01
Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.
Gravitational Lagrangians, Mach's Principle, and the Equivalence Principle in an Expanding Universe
Essén, Hanno
2014-08-01
Gravitational Lagrangians as derived by Fock for the Einstein-Infeld-Hoffmann approach, and by Kennedy assuming only a fourth rank tensor interaction, contain long range interactions. Here we investigate how these affect the local dynamics when integrated over an expanding universe out to the Hubble radius. Taking the cosmic expansion velocity into account in a heuristic manner it is found that these long range interactions imply Mach's principle, provided the universe has the critical density, and that mass is renormalized. Suitable higher order additions to the Lagrangians make the formalism consistent with the equivalence principle.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.
Krause, Katharina; Klopper, Wim
2016-01-28
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding
International Nuclear Information System (INIS)
Krause, Katharina; Klopper, Wim
2016-01-01
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian
Deformations of Lagrangian subvarieties of holomorphic symplectic manifolds
Lehn, Christian
2011-01-01
We generalize Voisin's theorem on deformations of pairs of a symplectic manifold and a Lagrangian submanifold to the case of Lagrangian normal crossing subvarieties. Partial results are obtained for arbitrary Lagrangian subvarieties. We apply our results to the study of singular fibers of Lagrangian fibrations.
Field Observations of Coastal Air-Sea Interaction
Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.
2016-12-01
In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2016-02-10
The strength and tensor structure of the Higgs boson's interactions are investigated within an effective field theory framework, which allows new CP-even and CP-odd interactions that can lead to changes in the kinematic properties of the Higgs boson and associated jet spectra. The parameters of the effective field theory are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the $H \\rightarrow \\gamma\\gamma$ decay channel with an integrated luminosity of 20.3 fb$^{-1}$ at $\\sqrt{s}=8$ TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the $H \\rightarrow \\gamma\\gamma$ candidate events in the proton-proton collision data. No significant deviations from the Standard Model are observed and limits on the effective field theory parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model int...
A covariant open bosonic string field theory including the endpoint and middlepoint interaction
International Nuclear Information System (INIS)
Liu, B.G.; Northwest Univ., Xian; Chen, Y.X.
1988-01-01
Extending the usual endpoint and midpoint interactions, we introduce numerous kinds of interactions, labelled by a parameter λ and obtain a non-commutative and associative string field algebra by adding up all interactions. With this algebra we develop a covariant open bosonic string field theory, which reduces to Witten's open bosonic string field theory under a special string length choice. (orig.)
Option volatility and the acceleration Lagrangian
Baaquie, Belal E.; Cao, Yang
2014-01-01
This paper develops a volatility formula for option on an asset from an acceleration Lagrangian model and the formula is calibrated with market data. The Black-Scholes model is a simpler case that has a velocity dependent Lagrangian. The acceleration Lagrangian is defined, and the classical solution of the system in Euclidean time is solved by choosing proper boundary conditions. The conditional probability distribution of final position given the initial position is obtained from the transition amplitude. The volatility is the standard deviation of the conditional probability distribution. Using the conditional probability and the path integral method, the martingale condition is applied, and one of the parameters in the Lagrangian is fixed. The call option price is obtained using the conditional probability and the path integral method.
Lagrangian-similarity diffusion-deposition model
International Nuclear Information System (INIS)
Horst, T.W.
1979-01-01
A Lagrangian-similarity diffusion model has been incorporated into the surface-depletion deposition model. This model predicts vertical concentration profiles far downwind of the source that agree with those of a one-dimensional gradient-transfer model
A mechanistic Eulerian-Lagrangian model for dispersed flow film boiling
International Nuclear Information System (INIS)
Andreani, M.; Yadigaroglu, G.
1991-01-01
In this paper a new mechanistic model of heat transfer in the dispersed flow regime is presented. The usual assumptions that render most of the available models unsuitable for the analysis of the reflooding phase of the LOCA are discussed, and a two-dimensional time-independent numerical model is developed. The gas temperature field is solved in a fixed-grid (Eulerian) mesh, with the droplets behaving as mass and energy sources. The histories of a large number of computational droplets are followed in a Lagrangian frame, considering evaporation, break-up and interactions with the vapor and with the wall. comparisons of calculated wall and vapor temperatures with experimental data are shown for two reflooding tests
Lagrangian Differentiation, Integration and Eigenvalues Problems
International Nuclear Information System (INIS)
Durand, L.
1983-01-01
Calogero recently proposed a new and very powerful method for the solution of Sturm-Liouville eigenvalue problems based on Lagrangian differentiation. In this paper, some results of a numerical investigation of Calogero's method for physical interesting problems are presented. It is then shown that one can 'invert' his differentiation technique to obtain a flexible, factorially convergent Lagrangian integration scheme which should be useful in a variety of problems, e.g. solution of integral equations
The universal lagrangian and the cosmic evolution
International Nuclear Information System (INIS)
El Tahir, A.
1984-08-01
By geometrizing Mach's Universe, we derive the most rational form of a Lagrangian which we, hence, call Universal. It contains both linear and nonlinear terms of the scalar curvature R, with constant coefficients which underlie a certain physical meaning. The metric derivable from this Lagrangian is believed to be far advanced from those derived from general relativity. A wave equation describing the overall evolution of the Universe is obtained and discussed. (author)
Lagrangian based methods for coherent structure detection
Energy Technology Data Exchange (ETDEWEB)
Allshouse, Michael R., E-mail: mallshouse@chaos.utexas.edu [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Peacock, Thomas, E-mail: tomp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2015-09-15
There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.
Effective Lagrangians in elementary particle physics
International Nuclear Information System (INIS)
Trahern, C.G.
1982-01-01
Non-linear effective Lagrangians are constructed to represent the low energy phenomenology of elementary particles. As approximate descriptions of the dynamics of hadrons, these models simulate the expected (but unproven) behavior of more complex theories such as quantum Chromo-dynamics [QCD]. A general formalism for non-linear models was developed in the late 1960's by Coleman, Wess and Zumino. This dissertation utilizes and extends their work by incorporating some of the advances that have been made in the understanding of quantum field theories in the last decade. In particular the significance of spatial boundary conditions for interpreting the ground state behavior of the non-linear models is investigated. In addition the existence of a dual theory for the non-linear model is discussed. For experimental purposes duality refers to the possibility that in different enrgy regimes there may be wholly distinct kinds of excitations in the physical spectrum. Corresponding to these phenomenological distinctions are mutually exclusive mathematical descriptions. A familiar example is the duality of electric and magnetic charge in electro-dynamics. If magnetic charges do exist, they are expected to be extremely massive states that are unobservable up to very high energies. The analysis of such states within electrodynamics shows that one cannot describe both electric and magnetic charges without admitting the presence of singularities in the electric potential. A completely analogous form of duality is found and discussed for the non-linear models
On the existence of singularities in the geometrization of lagrangian dynamics
International Nuclear Information System (INIS)
Amaral, C.M. do; Pitanga, P.
1987-01-01
It is shown that the standard geometric picture of an important class of nonrelativistic Lagrangian motions has the origin of the generalized velocity space as a singular point. This occurs when the motion's generating force has a less than quadratic dependence on the generalized velocities. The importance cases of a gradient force-field and that of Rayleigh force-field are considered as exemples. The corresponding dynamical connections are constructed and present poles of order two one, respectively, at the origin of velocity space. This implies that well-behaved Lagrangian dinamics may originate ill-behaved gauge-fields in configuration space. (author) [pt
On the interaction of color charges
International Nuclear Information System (INIS)
Alekseev, A.I.; Arbuzov, B.A.
1985-01-01
Potential type solutions of the classical equations of Yang-Mills fields are obtained for the theory with the effective Lagrangian which has been formulated earlier in the framework of QCD with the account for the gluon self-interaction in the infrared region. When we consider the problem of the interaction between the colour source ad a probe colour charge, the chromoelectric solution gives the potential with the Coulomb behaviour at infinity
Two interacting spins in external fields. Four-level systems
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G.; Baldiotti, M.C.; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Levin, A.D. [Dexter Research Center (United States)
2007-04-15
In the present article, we consider the so-called two-spin equation that describes four-level quantum systems. Recently, these systems attract attention due to their relation to the problem of quantum computation. We study general properties of the two-spin equation and show that the problem for certain external backgrounds can be identified with the problem of one spin in an appropriate background. This allows one to generate a number of exact solutions for two-spin equations on the basis of already known exact solutions of the one-spin equation. Besides, we present some exact solutions for the two-spin equation with an external background different for each spin but having the same direction. We study the eigenvalue problem for a time-independent spin interaction and a time-independent external background. A possible analogue of the Rabi problem for the two-spin equation is defined. We present its exact solution and demonstrate the existence of magnetic resonances in two specific frequencies, one of them coinciding with the Rabi frequency, and the other depending on the rotating field magnitude. The resonance that corresponds to the second frequency is suppressed with respect to the first one. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Slob, Evert; Weiss, Chester J
2011-08-01
We distinguish between trivial and nontrivial differences in retrieving the real or imaginary parts of the Green's function. Trivial differences come from different Green's function definitions. The energy and lagrangian forms constitute nontrivial differences. Magnetic noise sources suffice to extract the quasistatic electromagnetic-field Earth impulse response in the lagrangian form. This is of interest for Earth subsurface imaging. A numerical example demonstrates that all source vector components are necessary to extract a single-field vector component.
Introduction to weak interactions
International Nuclear Information System (INIS)
Leite Lopes, J.
An account is first given of the electromagnetic interactions of complex, scalar, vector and spinor fields. It is shown that the electromagnetic field may be considered as a gauge field. Yang-Mills fields and the field theory invariant with respect to the non-Abelian gauge transformation group are then described. The construction, owing to this invariance principle, of conserved isospin currents associated with gauge fields is also demonstrated. This is followed by a historical survey of the development of the weak interaction theory, established at first to describe beta disintegration processes by analogy with electrodynamics. The various stages are mentioned from the discovery of principles and rules and violation of principles, such as those of invariance with respect to spatial reflection and charge conjugation to the formulation of the effective current-current Lagrangian and research on the structure of weak currents [fr
International Nuclear Information System (INIS)
Gainutdinov, R.Kh.; Khamadeev, M.A.; Mutygullina, A.A.
2010-01-01
Complete text of publication follows. We discuss various approaches to problem of the electron-positron pair creation in the strong external field. Special interest presents the circuit, in which the interaction of two strong counterpropagating laser beams in vacuum is considered. For the calculation of the probability of the creation the following formula is usually applied: W = 2Im(L (E-H) (ρ L )) = 2m 4 /(2π) 3 ρ L 2 Σ n=1 -∞ 1/n 2 e -nπ /ρ L where ρ L = E L / E cr and E cr = m 2 /e = 1.3 x 10 16 V/cm is the Schwinger field limit. However this expression was obtained even in pioneer works dedicated to vacuum nonlinearity and it based on some approximations. Attempt of the strict analysis has been made in work by introducing the nonlocal form-factor into the Lagrangian. But, as it is well known, such procedure leads to the loss of Lorenz invariance or unitarity. We show that the formalism of generalized quantum dynamic (GQD) opens new opportunities to solve such problems. We show also how it can be made proceeding from nonlocal interaction operator obtained earlier within the framework of the formalism of GQD. Acknowledgements. This work was supported by the Grant of Federal Agency on Education, Russia (Contract number 02.740.11.0428) and by the Grant of Russian President No. NSh 2965.2008.2.
Fingerprints of heavy scales in electroweak effective Lagrangians
Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José
2017-04-01
The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2) L ⊗ SU(2) R → SU(2) L+ R , which couples the known particle fields to heavier states with bosonic quantum numbers J P = 0± and 1±. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.
Fingerprints of heavy scales in electroweak effective Lagrangians
Energy Technology Data Exchange (ETDEWEB)
Pich, Antonio [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, Ignasi [Departamento de Matemáticas, Física y Ciencias Tecnológicas,Universidad CEU Cardenal Herrera, E-46115 Alfara del Patriarca, València (Spain); Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica I, Universidad Complutense de Madrid,E-28040 Madrid (Spain)
2017-04-04
The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, which couples the known particle fields to heavier states with bosonic quantum numbers J{sup P}=0{sup ±} and 1{sup ±}. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.
Dispersion upscaling from a pore scale characterization of Lagrangian velocities
Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy
2013-04-01
Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.
International Nuclear Information System (INIS)
Pokorski, S.
1987-01-01
Quantum field theory forms the present theoretical framework for the understanding of the fundamental interactions of particle physics. This book examines gauge theories and their symmetries with an emphasis on their physical and technical aspects. The author discusses field-theoretical techniques and encourages the reader to perform many of the calculations presented. This book includes a brief introduction to perturbation theory, the renormalization programme, and the use of the renormalization group equation. Several topics of current research interest are covered, including chiral symmetry and its breaking, anomalies, and low energy effective lagrangians and some basics of supersymmetry
Testing of a new dense gas approach in the Lagrangian Dispersion Model SPRAY.
Mortarini, Luca; Alessandrini, Stefano; Ferrero, Enrico; Anfossi, Domenico; Manfrin, Massimiliano
2013-04-01
A new original method for the dispersion of a positively and negatively buoyant plume is proposed. The buoyant pollutant movement is treated introducing a fictitious scalar inside the Lagrangian Stochastic Particle Model SPRAY. The method is based on the same idea of Alessandrini and Ferrero (Phys. A 388:1375-1387, 2009) for the treatment of a background substance entrainment into the plume. In this application, the fictitious scalar is the density and momentum difference between the plume portions and the environment air that naturally takes into account the interaction between the plume and the environment. As a consequence, no more particles than those inside the plume have to be released to simulate the entrainment of the background air temperature. In this way the entrainment is properly simulated and the plume sink is calculated from the local property of the flow. This new approach is wholly Lagrangian in the sense that the Eulerian grid is only used to compute the propriety of a portion of the plume from the particles contained in every cell. No equation of the bulk plume is solved on a fixed grid. To thoroughly test the turbulent velocity field calculated by the model, the latter is compared with a water tank experiment carried out in the TURLAB laboratory in Turin (Italy). A vertical density driven current was created releasing a saline solution (salt and water) in a water tank with no mean flow. The experiment reproduces in physical similarity, based on the density Froud number, the release of a dense gas in the planetary boundary layer and the Particle Image Velocimetry technique has been used to analyze the buoyancy generated velocity field. The high temporal and spatial resolution of the measurements gives a deep insight to the problems of the bouncing of the dense gas and of the creation of the outflow velocity at the ground.
International Nuclear Information System (INIS)
Efimov, G.V.
1976-01-01
The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version
Unification of electromagnetic, strong and weak interaction
International Nuclear Information System (INIS)
Duong Van Phi; Duong Anh Duc
1993-09-01
The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs
Effective Field Theories and Strong Interactions. Final Technical Report
International Nuclear Information System (INIS)
Fleming, Sean
2011-01-01
The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can
Lagrangian formulation of a consistent relativistic guiding center theory
International Nuclear Information System (INIS)
Wimmel, H.K.
1983-02-01
A new relativistic guiding center mechanics is presented that conserves energy (in time-independent fields) and satisfies a Liouville's theorem. The theory reduces to Littlejohn's theory in the non-relativistic limit and agrees to leading orders in epsilon identical rsub(g)/L with the relativistic theory by Morozov and Solov'ev (which generally lacks a Liouville's theorem). The new theory is developed from an appropriate Lagrangian and is supplemented by a collisionless relativistic kinetic equation for the guiding centers. Moment equations for guiding center density and energy density are also derived. (orig.)
Lagrangian Curves on Spectral Curves of Monopoles
International Nuclear Information System (INIS)
Guilfoyle, Brendan; Khalid, Madeeha; Ramon Mari, Jose J.
2010-01-01
We study Lagrangian points on smooth holomorphic curves in TP 1 equipped with a natural neutral Kaehler structure, and prove that they must form real curves. By virtue of the identification of TP 1 with the space LE 3 of oriented affine lines in Euclidean 3-space, these Lagrangian curves give rise to ruled surfaces in E 3 , which we prove have zero Gauss curvature. Each ruled surface is shown to be the tangent lines to a curve in E 3 , called the edge of regression of the ruled surface. We give an alternative characterization of these curves as the points in E 3 where the number of oriented lines in the complex curve Σ that pass through the point is less than the degree of Σ. We then apply these results to the spectral curves of certain monopoles and construct the ruled surfaces and edges of regression generated by the Lagrangian curves.
Interaction between lf electric fields and biological bodies
Directory of Open Access Journals (Sweden)
Češelkoska Vesna C.
2004-01-01
Full Text Available In this paper the Equivalent electrodes method is used for electric field calculation in the proximity of the various biological subjects exposed to an electric field in the LF range. Several results of the electric field intensity on the body surface and numerous graphical results for equipotential and equienergetic curves are presented.
Field dodder life cycle and interaction with host plants
Directory of Open Access Journals (Sweden)
Sarić-Krsmanović Marija
2017-01-01
Full Text Available Field dodder is a parasitic plant that attaches to stems and leaves of broadleaf plants, including weeds, field crops, vegetables and ornamentals, across most agricultural regions of the world. Effective field dodder control is extremely difficult to achieve due to the nature of attachment and close association between the host and the parasite, which require a highly effective and selective herbicide to destroy the parasite without damaging its host. To establish a strategy for controlling parasite growth and restricting the spread of field dodder in crop fields, it is important to learn more about this weed, its life cycle and development.
Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.
Cheng, Ching-An; Huang, Han-Pang
2016-12-01
We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.
Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions
Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.
2018-01-01
In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.
Energy Technology Data Exchange (ETDEWEB)
Chagras, V.
2004-03-15
The aim of this work is to contribute to the numerical modeling of turbulent gas-solid flows in vertical or horizontal non isothermal pipes, which can be found in many industrial processes (pneumatic transport, drying, etc). The model is based on an Eulerian-Lagrangian approach allowing a fine description of the interactions between the two phases (action of the fluid upon the particles (dispersion), action of the particles upon the fluid (two way coupling) and between particles (collisions)), more or less influential according to the characteristics of the flow. The influence of the gas phase turbulence on the particle motion is taken into account using a non-isotropic dispersion model, which allows the generation of velocity and temperature fluctuations of the fluid seen by the particles. The numerical developments brought to the model for vertical and horizontal pipe flow have been validated by comparison with available experimental results from the literature. The sensitivity tests highlight the influence of the dispersion model, collisions and turbulence modulation (direct and non direct modifications ) on the dynamic and thermal behavior of the suspension. The model is able to predict the heat exchanges in the presence of particles for a wide range of flows in vertical and horizontal pipes. However numerical problems still exist in two-way coupling for very small particles and loading ratios above one. This is related to the problems encountered when modeling the coupling terms between the two phases (parameters C{sub {epsilon}}{sub 2} and C{sub {epsilon}}{sub 3} ) involved in the turbulence dissipation balance. (author)
The Mather problem for lower semicontinuous Lagrangians
Gomes, Diogo A.; Terrone, Gabriele
2013-01-01
In this paper we develop the Aubry-Mather theory for Lagrangians in which the potential energy can be discontinuous. Namely we assume that the Lagrangian is lower semicontinuous in the state variable, piecewise smooth with a (smooth) discontinuity surface, as well as coercive and convex in the velocity. We establish existence of Mather measures, various approximation results, partial regularity of viscosity solutions away from the singularity, invariance by the Euler-Lagrange flow away from the singular set, and further jump conditions that correspond to conservation of energy and tangential momentum across the discontinuity. © 2013 Springer Basel.
The Mather problem for lower semicontinuous Lagrangians
Gomes, Diogo A.
2013-08-01
In this paper we develop the Aubry-Mather theory for Lagrangians in which the potential energy can be discontinuous. Namely we assume that the Lagrangian is lower semicontinuous in the state variable, piecewise smooth with a (smooth) discontinuity surface, as well as coercive and convex in the velocity. We establish existence of Mather measures, various approximation results, partial regularity of viscosity solutions away from the singularity, invariance by the Euler-Lagrange flow away from the singular set, and further jump conditions that correspond to conservation of energy and tangential momentum across the discontinuity. © 2013 Springer Basel.
Phenomenology of the Higgs effective Lagrangian via F eynR ules
Alloul, Adam; Fuks, Benjamin; Sanz, Verónica
2014-04-01
The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of F eynR ules and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of F eynR ules capable to generate model files that can be understood by the M adG raph 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions.
A study of the flow field surrounding interacting line fires
Trevor Maynard; Marko Princevac; David R. Weise
2016-01-01
The interaction of converging fires often leads to significant changes in fire behavior, including increased flame length, angle, and intensity. In this paper, the fluid mechanics of two adjacent line fires are studied both theoretically and experimentally. A simple potential flow model is used to explain the tilting of interacting flames towards each other, which...
An integrated model for interaction of electromagnetic fields with biological systems
International Nuclear Information System (INIS)
Apollonio, F.; Liberti, M.; Cavagnaro, M.; D'Inzeo, G.; Tarricone, L.
1999-01-01
In this work is described a methodology for evaluation of interaction of high frequency electromagnetic field. Biological systems via connection of many macroscopic models. In particular the analysis of neuronal membrane exposed to electromagnetic fields [it
Interaction between laser-produced plasma and guiding magnetic field
International Nuclear Information System (INIS)
Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko
2013-01-01
Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)
Experimental investigation of Lagrangian structure functions in turbulence
DEFF Research Database (Denmark)
Berg, Jacob; Ott, Søren; Mann, Jakob
2009-01-01
Lagrangian properties obtained from a particle tracking velocimetry experiment in a turbulent flow at intermediate Reynolds number are presented. Accurate sampling of particle trajectories is essential in order to obtain the Lagrangian structure functions and to measure intermittency at small...
A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows
Felici, Helene Marie
1992-01-01
A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.
The Monotonic Lagrangian Grid for Rapid Air-Traffic Evaluation
Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay
2010-01-01
The Air Traffic Monotonic Lagrangian Grid (ATMLG) is presented as a tool to evaluate new air traffic system concepts. The model, based on an algorithm called the Monotonic Lagrangian Grid (MLG), can quickly sort, track, and update positions of many aircraft, both on the ground (at airports) and in the air. The underlying data structure is based on the MLG, which is used for sorting and ordering positions and other data needed to describe N moving bodies and their interactions. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. Recent upgrades to ATMLG include adding blank place-holders within the MLG data structure, which makes it possible to dynamically change the MLG size and also improves the quality of the MLG grid. Additional upgrades include adding FAA flight plan data, such as way-points and arrival and departure times from the Enhanced Traffic Management System (ETMS), and combining the MLG with the state-of-the-art strategic and tactical conflict detection and resolution algorithms from the NASA-developed Stratway software. In this paper, we present results from our early efforts to couple ATMLG with the Stratway software, and we demonstrate that it can be used to quickly simulate air traffic flow for a very large ETMS dataset.
Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander
2014-04-01
Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random
Genotype X Environment Interaction for Yield in Field Pea Pisum ...
African Journals Online (AJOL)
user
analysis of variance with individual stability regression co- efficient ... environmental score derived from a principal component ... Grain yield analysis was carried .... Analysis of variance for Additive Main effects and Multiple Interaction (AMMI).
Three-dimensional free Lagrangian hydrodynamics
International Nuclear Information System (INIS)
Trease, H.E.
1985-01-01
The purpose of the discussion is to describe the development of a 3-D free Lagrangian hyrodynamics algorithm. The 3-D algorithm is an outgrowth of an earlier 2-D free Lagrange model. Only the more pertinent issues of the free Lagrange algorithm are presented. A complete production code is being developed to support the free Lagrange algorithm described. 4 refs
Effective Lagrangian density in gauge supersymmetry
International Nuclear Information System (INIS)
Chang, S.S.
1976-01-01
In the framework of gauge supersymmetry proposed by Arnowitt and Nath, an effective Lagrangian density is formally rewritten in terms of a spontaneously broken vacuum metric and the remaining perturbative part in the gauge metric tensor. Tensor notations in the superspace are revised so that all sign factors of Grassmann parities appear more systematically
Lagrangian approach in spin-oscillations problem
Directory of Open Access Journals (Sweden)
P.V. Pyshkin
2014-12-01
Full Text Available Lagrangian of electronic liquid in magneto-inhomogeneous micro-conductor has been constructed. A corresponding Euler-Lagrange equation has been solved. It was shown that the described system has eigenmodes of spin polarization and total electric current oscillations. The suggested approach permits to study the spin dynamics in an open-circuit which contains capacitance and/or inductivity.
QUANTIZATION OF NON-LAGRANGIAN SYSTEMS
Czech Academy of Sciences Publication Activity Database
Kochan, Denis
2009-01-01
Roč. 24, 28-29 (2009), s. 5319-5340 ISSN 0217-751X R&D Projects: GA MŠk(CZ) LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : dissipative quantization * non-Lagrangian system * umbilical string Subject RIV: BE - Theoretical Physics Impact factor: 0.941, year: 2009
Gravitational theory with the local quadratic Lagrangian
International Nuclear Information System (INIS)
Tentyukov, M.N.
1992-01-01
It is suggested that the vacuum gravitational equations should be derived from the local Lagrangian containing only first-order derivatives. As an example we demonstrate the properties of the derived equations by studying of the exact spherically-symmetric solutions. 23 refs
Chaotic Lagrangian models for turbulent relative dispersion.
Lacorata, Guglielmo; Vulpiani, Angelo
2017-04-01
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
Valley method versus instanton-induced effective lagrangian up to (E/Espha)8/3
International Nuclear Information System (INIS)
Balitsky, I.; Schaefer, A.
1993-01-01
We compare the two most popular approaches to the problem of instanton-anti-instanton interaction at high energies - the valley method and the effective lagrangian approach - and use them to calculate the next-to-next-to-leading term in the expansion of the 'holy grail' function determining the cross section with baryon number violation in the standard model. (orig.)
Interaction of gravitational waves with magnetic and electric fields
International Nuclear Information System (INIS)
Barrabes, C.; Hogan, P. A.
2010-01-01
The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.
Relating Lagrangian and Hamiltonian Formalisms of LC Circuits
Clemente-Gallardo, Jesús; Scherpen, Jacquelien M.A.
2003-01-01
The Lagrangian formalism earlier defined for (switching) electrical circuits, is adapted to the Lagrangian formalism defined on Lie algebroids. This allows us to define regular Lagrangians and consequently, well-defined Hamiltonian descriptions of arbitrary LC networks. The relation with other
Lagrangian statistics and flow topology in forced two-dimensional turbulence.
Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K
2011-03-01
A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Kan-ichi; Kubo, Reijiro
1974-12-01
The framework of the Nakanishi-Lautrup formalism should be enlarged by introducing a scalar dipole ghost field B(x), which is called gauge on field, together with its pair field. By taking free Lagrangian density, Free-field equations can be described. The vacuum is defined by using a neutral vector field U..mu..(x). The state-vector space is generated by the adjoining conjugates of U..mu..sup((+))(x), and auxiliary fields B(x), B/sub 1/(x) and B/sub 2/(x), which were introduced in the form of the Lagrangian density. The physical states can be defined by the supplementary conditions of the form B/sub 1/sup((+))(x) 1 phys>=B/sub 2/sup((+))(x) 1 phys>=0. It is seen that all the field equations and all the commutators are kept form-invariant, and that the gauge parameter ..cap alpha.. is transformed into ..cap alpha..' given by ..cap alpha..'=..cap alpha..+lambda, with epsilon unchanged. The Lagrangian density is specified only by the gauge invariant parameter epsilon. The gauge structure of theory has universal meaning over whole Abelian-gauge field. C-number gauge transformation and the gauge structure in the presence of interaction are also discussed.
Electroweak chiral Lagrangian from a natural topcolor-assisted technicolor model
International Nuclear Information System (INIS)
Lang Junyi; Jiang Shaozhou; Wang Qing
2009-01-01
Based on previous studies on computing coefficients of the electroweak chiral Lagrangian from C. T. Hill's schematic topcolor-assisted technicolor model, we generalize the calculation to K. Lane's prototype natural topcolor-assisted technicolor model. We find that typical features of the model are qualitatively similar to those of Hill's, but Lane's model prefers a smaller technicolor group and the Z ' mass must be smaller than 400 GeV. Furthermore, the S parameter is around the order of +1, mainly due to the existence of three doublets of techniquarks. We obtain the values for all coefficients of the electroweak chiral Lagrangian up to the order p 4 . Apart from large negative four-fermion coupling values, the extended technicolor impacts on the electroweak chiral Lagrangian coefficients are small, since the techniquark self energy, which determines these coefficients, in general receives almost no influence from the extended technicolor induced four-fermion interactions except for its large momentum tail.
Next Generation Extended Lagrangian Quantum-based Molecular Dynamics
Negre, Christian
2017-06-01
A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.
Hyperon-nucleon interactions - a chiral effective field theory approach
Polinder, H.; Haidenbauer, J.; Meissner, U.G.
2006-01-01
We construct the leading order hyperon–nucleon potential in chiral effective field theory. We show that a good description of the available data is possible and discuss briefly further improvements of this scheme
Podoplanin and the posterior heart field: epicardial-myocardial interaction
Mahtab, Edris Ahmad Faiz
2008-01-01
This thesis introduces the posterior heart field contributing to the venous pole of the heart by epithelial-mesenchymal-transformation of the coelomic epithelium. Based on studying of podoplanin and Sp3 (novel genes in cardiogenesis) wildtype and knockout mouse embryos between stages 9.5-18.5, we postulate that the posterior heart field contributes through mesenchymal and myocardial cell populations. The mesenchymal population is involved in the formation of the proepicardial organ, epicardiu...
Effects of hypersonic field and anharmonic interactions on channelling radiation
International Nuclear Information System (INIS)
George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G
2007-01-01
The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably
Systematics of higher-spin gauge fields
International Nuclear Information System (INIS)
de Wit, B.; Freedman, D.Z.
1980-01-01
Free-field theories for symmetric tensor and tensor-spinor gauge fields have recently been obtained which describe massless particles of arbitrary integer or half-integer spin. An independent discussion of these field theories is given here, based on a hierarchy of generalized Christoffel symbols with simple gauge transformation properties. The necessity of certain constraints on gauge fields and parameters is easily seen. Wave equations and Lagrangians are expressed in terms of the Christoffel symbols, and the independent modes of the system are counted in covariant gauges. Minimal-coupling inconsistency and a combined system of higher-spin boson gauge fields interacting with relativistic particles is discussed
Interaction of neutral particles with strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)
2013-07-01
Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.
Extension of the chiral perturbation theory meson Lagrangian to order p6
International Nuclear Information System (INIS)
Fearing, H.W.; Scherer, S.
1996-01-01
We have constructed the most general chirally invariant Lagrangian scrL 6 for the meson sector at order p 6 . The result provides an extension of the standard Gasser-Leutwyler Lagrangian scrL 4 to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The most difficult part of the construction was developing a systematic strategy so as to get all of the independent terms and eliminate the redundant ones in an efficient way. The claim to have obtained the most general Lagrangian relies on this systematic construction and on the elimination of redundant quantities using relations of which we are aware, rather than on a general formal proof of either completeness or independence. The open-quote open-quote equation-of-motion close-quote close-quote terms, which are redundant in the sense that they can be transformed away via field transformations, are separated out explicitly. The resulting Lagrangian has been separated into groupings of terms contributing to increasingly more complicated processes, so that one does not have to deal with the full result when calculating p 6 contributions to simple processes. copyright 1995 The American Physical Society
L-GRAAL: Lagrangian graphlet-based network aligner.
Malod-Dognin, Noël; Pržulj, Nataša
2015-07-01
Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically and biologically accurate alignments remains a challenge. We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner (L-GRAAL), which directly optimizes both the protein and the interaction functional conservations, using a novel alignment search heuristic based on integer programming and Lagrangian relaxation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs between the networks, as measured by edge-correctness and symmetric sub-structures scores, which allow transferring more functional information across networks. We assess the biological quality of the protein mappings using the semantic similarity of their Gene Ontology annotations and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we introduce for the first time a measure of the semantic similarity of the mapped interactions and show that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate on the PPI networks of baker's yeast and human the ability of L-GRAAL to predict new PPIs. Finally, L-GRAAL's results are the first to show that topological information is more important than sequence information for uncovering functionally conserved interactions. L-GRAAL is coded in C++. Software is available at: http://bio-nets.doc.ic.ac.uk/L-GRAAL/. n.malod-dognin@imperial.ac.uk Supplementary data are available at
A Chern-Simons gauge-fixed Lagrangian in a 'non-canonical' BRST approach
International Nuclear Information System (INIS)
Constantinescu, R; Ionescu, C
2009-01-01
This paper presents a possible path which starts from the extended BRST Hamiltonian formalism and ends with a covariant Lagrangian action, using the equivalence between the two formalisms. The approach allows a simple account of the form of the master equation and offers a natural identification of some 'non-canonical' operators and variables. These are the main items which solve the major difficulty of the extended BRST Lagrangian formalism, i.e., the gauge-fixing problem. The algorithm we propose applies to a non-Abelian Chern-Simons model coupled with Dirac fields
An unconditionally stable fully conservative semi-Lagrangian method
Lentine, Michael
2011-04-01
Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had. © 2011 Elsevier Inc.
Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy
International Nuclear Information System (INIS)
Karami, K; Fahimi, K
2013-01-01
We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)
Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian
Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.
2018-03-01
Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
A new framework for interactive quality assessment with application to light field coding
Viola, Irene; Ebrahimi, Touradj
2017-09-01
In recent years, light field has experienced a surge of popularity, mainly due to the recent advances in acquisition and rendering technologies that have made it more accessible to the public. Thanks to image-based rendering techniques, light field contents can be rendered in real time on common 2D screens, allowing virtual navigation through the captured scenes in an interactive fashion. However, this richer representation of the scene poses the problem of reliable quality assessments for light field contents. In particular, while subjective methodologies that enable interaction have already been proposed, no work has been done on assessing how users interact with light field contents. In this paper, we propose a new framework to subjectively assess the quality of light field contents in an interactive manner and simultaneously track users behaviour. The framework is successfully used to perform subjective assessment of two coding solutions. Moreover, statistical analysis performed on the results shows interesting correlation between subjective scores and average interaction time.
Interactions between electrons in the field of a positive ion
International Nuclear Information System (INIS)
Heideman, A.G.M.; Eck, J. van.
1976-01-01
Recent studies on the (auto)ionization of atoms by means of electron-atom collisions reveal the existence of phenomena probably brought about by post-collision interactions in the vicinity of a positive ion. In this article, a review of the subject is given in relation to the research program of the Utrecht atomic physics group
Constraints on effective Lagrangian of D-branes from non-commutative gauge theory
International Nuclear Information System (INIS)
Okawa, Yuji; Terashima, Seiji
2000-01-01
It was argued that there are two different descriptions of the effective Lagrangian of gauge fields on D-branes by non-commutative gauge theory and by ordinary gauge theory in the presence of a constant B field background. In the case of bosonic string theory, however, it was found in the previous works that the two descriptions are incompatible under the field redefinition which relates the non-commutative gauge field to the ordinary one found by Seiberg and Witten. In this paper we resolve this puzzle to observe the necessity of gauge-invariant but B-dependent correction terms involving metric in the field redefinition which have not been considered before. With the problem resolved, we establish a systematic method under the α' expansion to derive the constraints on the effective Lagrangian imposed by the compatibility of the two descriptions where the form of the field redefinition is not assumed
Spin effects in strong-field laser-electron interactions
International Nuclear Information System (INIS)
Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C
2013-01-01
The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.
Differential geometry based solvation model II: Lagrangian formulation.
Chen, Zhan; Baker, Nathan A; Wei, G W
2011-12-01
Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of
Field-substance interaction and collective oscillation of nuclei
International Nuclear Information System (INIS)
Shermatov, E.N.; Choriev, M.
2004-01-01
Full text: In this work a mechanism of formation of collective excitation in a set of particles, including atomic nuclei, is proposed. According to [1] the energy density of cosmic vacuum significantly exceeds the energy density of an atomic nucleus. In [2] the process of formation of the physical vacuum in surrounding cosmic space was considered. We considered the behavior of a system of particles, which possesses transversal and longitudinal oscillation with frequency ω 0 in the physical or cosmic vacuum. The oscillating influence on the physical vacuum and surrounding particles on a single particle leads to inducing the spins with various directions and magnitudes. This process leads to the formation of oscillating response wave function (RWF) of particles. As a result of a phase coherency among RWF of particles an oscillating self-coordinated field in a set of particles is formed. As a result of realization of the phase coherency among harmonics of RWF of particles there occurs a deformation of the character of distribution of the energy structure of the self-coordinated field, which, finally, transforms into a resonant line. At this occurs a collapse of the RWF of particles there. In terms of these ideas we explained the observed regularities in the self-coordinated field in a set of particles, including the atomic nuclei. It was shown that the giant resonance in spectra of atomic nuclei is a result of manifestation of the self-coordinated field of atomic nuclei. As a result of realization of the phase coherency among harmonics of RWF of atomic nuclei there occurs a collapse of the RWF of particles, and the energy structure of the self-coordinated field of nuclei gains a resonant form, and it is manifested as the giant resonance. In deformable nuclei the RWF of particles possesses two oscillation modes, and that is why in the energy spectrum of the self-coordinated field of nuclei they are manifested as two maximum
Relativistic stability of interacting Fermi gas in a strong magnetic field
International Nuclear Information System (INIS)
Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng
2013-01-01
By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)
International Nuclear Information System (INIS)
Khalil, Sh.M.; El-Sherif, N.; El-Siragy, N.M.; Tanta Univ.; El-Naggar, I.A.; Alexandria Univ.
1985-01-01
Investigation is made for nonlinear interaction between incident radiation and a surface wave in a magnetized plasma layer. Both interacting waves are of P polarization. The generated currents and fields at combination frequencies are obtained analytically. Unlike the S-polarized interacting waves, the magnetic field affects the fundamental waves and leads to an amplification of generated waves when their frequencies approach the cyclotron frequency. (author)
Podoplanin and the posterior heart field : epicardial-myocardial interaction
Mahtab, Edris Ahmad Faiz
2008-01-01
This thesis introduces the posterior heart field contributing to the venous pole of the heart by epithelial-mesenchymal-transformation of the coelomic epithelium. Based on studying of podoplanin and Sp3 (novel genes in cardiogenesis) wildtype and knockout mouse embryos between stages 9.5-18.5, we
Dimensional dependence of exchange interactions at high magnetic fields
International Nuclear Information System (INIS)
Zehnder, U.; Kuhn-Heinrich, B.; Ossau, W.; Waag, A.; Landwehr, G.; Cheng, H.H.; Nicholas, R.J.
1996-01-01
We studied the contribution of the breaking of the antiferromagnetically coupled spin clusters to the total magnetization in thin (CdMn)Te layers as a function of the layer thickness by reflectivity spectroscopy in magnetic fields up to 45 T. The experimental results show that the contribution of the breaking of antiferromagnetically coupled spin clusters is reduced by decreasing layer thickness. (author)
Remote Laboratory and Animal Behaviour: An Interactive Open Field System
Fiore, Lorenzo; Ratti, Giovannino
2007-01-01
Remote laboratories can provide distant learners with practical acquisitions which would otherwise remain precluded. Our proposal here is a remote laboratory on a behavioural test (open field test), with the aim of introducing learners to the observation and analysis of stereotyped behaviour in animals. A real-time video of a mouse in an…
The dark sector from interacting canonical and non-canonical scalar fields
International Nuclear Information System (INIS)
De Souza, Rudinei C; Kremer, Gilberto M
2010-01-01
In this work general models with interactions between two canonical scalar fields and between one non-canonical (tachyon type) and one canonical scalar field are investigated. The potentials and couplings to the gravity are selected through the Noether symmetry approach. These general models are employed to describe interactions between dark energy and dark matter, with the fields being constrained by the astronomical data. The cosmological solutions of some cases are compared with the observed evolution of the late Universe.
Two interacting spins in external fields and application to quantum computation
International Nuclear Information System (INIS)
Baldiotti, M.C.; Gitman, D.M.; Bagrov, V.G.
2009-01-01
We study the four-level system given by two quantum dots immersed in a time-dependent magnetic field, which are coupled to each other by an effective Heisenberg-type interaction. We describe the construction of the corresponding evolution operator in a special case of different time-dependent parallel external magnetic fields. We find a relation between the external field and the effective interaction function. The obtained results are used to analyze the theoretical implementation of a universal quantum gate
Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field
Savelyev, Alexey; MacKerell, Alexander D.
2014-01-01
Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and...
Near-Field Interaction of Closed Cells for Metamaterial Creation
Directory of Open Access Journals (Sweden)
Mironchev Aleksandr
2016-01-01
Full Text Available This article presents the results of numerical and computer modeling of the flat closed conductor with different variants of arrangement. The interaction of the conductors is examined and the results of active and reactive part of the Poynting vector for each structure is presented. According to the results the model with identical parameters for each element was built and examined for the presence of metamaterial properties.
A new Lagrangian method for real gases at supersonic speed
Loh, C. Y.; Liou, Meng-Sing
1992-01-01
With the renewed interest in high speed flights, the real gas effect is of theoretical as well as practical importance. In the past decade, upwind splittings or Godunov-type Riemann solutions have received tremendous attention and as a result significant progress has been made both in the ideal and non-ideal gas. In this paper, we propose a new approach that is formulated using the Lagrangian description, for the calculation of supersonic/hypersonic real gas inviscid flows. This new formulation avoids the grid generation step which is automatically obtained as the solution procedure marches in the 'time-like' direction. As a result, no remapping is required and the accuracy is faithfully maintained in the Lagrangian level. In this paper, we give numerical results for a variety of real gas problems consisting of essential elements in high speed flows, such as shock waves, expansion waves, slip surfaces and their interactions. Finally, calculations for flows in a generic inlet and nozzle are presented.
A Lagrangian mixing frequency model for transported PDF modeling
Turkeri, Hasret; Zhao, Xinyu
2017-11-01
In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.
Lagrangian Statistics and Intermittency in Gulf of Mexico.
Lin, Liru; Zhuang, Wei; Huang, Yongxiang
2017-12-12
Due to the nonlinear interaction between different flow patterns, for instance, ocean current, meso-scale eddies, waves, etc, the movement of ocean is extremely complex, where a multiscale statistics is then relevant. In this work, a high time-resolution velocity with a time step 15 minutes obtained by the Lagrangian drifter deployed in the Gulf of Mexico (GoM) from July 2012 to October 2012 is considered. The measured Lagrangian velocity correlation function shows a strong daily cycle due to the diurnal tidal cycle. The estimated Fourier power spectrum E(f) implies a dual-power-law behavior which is separated by the daily cycle. The corresponding scaling exponents are close to -1.75 and -2.75 respectively for the time scale larger (resp. 0.1 ≤ f ≤ 0.4 day -1 ) and smaller (resp. 2 ≤ f ≤ 8 day -1 ) than 1 day. A Hilbert-based approach is then applied to this data set to identify the possible multifractal property of the cascade process. The results show an intermittent dynamics for the time scale larger than 1 day, while a less intermittent dynamics for the time scale smaller than 1 day. It is speculated that the energy is partially injected via the diurnal tidal movement and then transferred to larger and small scales through a complex cascade process, which needs more studies in the near future.
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Equations of motion of a particle interacting with a scalar field
International Nuclear Information System (INIS)
Sato, N.K.
1984-01-01
The equations of motion of a particle (nucleon) interacting with a escalar (mesonic) field are derived by the energy momentum tensor moments method of Papapetrou. After a detailed study of the mesonic radiation field the expression of the reactive radiation force of the field upon the particle is established. (Author) [pt
Massless Interacting Scalar Fields in de Sitter space
López Nacir, Diana
2016-10-28
We present a method to compute the two-point functions for an $O(N)$ scalar field model in de Sitter spacetime, avoiding the well known infrared problems for massless fields. The method is based on an exact treatment of the Euclidean zero modes and a perturbative one of the nonzero modes, and involves a partial resummation of the leading secular terms. This resummation, crucial to obtain a decay of the correlation functions, is implemented along with a double expansion in an effective coupling constant $\\sqrt\\lambda$ and in $1/N$. The results reduce to those known in the leading infrared approximation and coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large $N$ limit. The new method allows for a systematic calculation of higher order corrections both in $\\sqrt\\lambda$ and in $1/N$.
Dimensional dependence of exchange interactions at high magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Zehnder, U.; Kuhn-Heinrich, B.; Ossau, W.; Waag, A.; Landwehr, G. [Physikalisches Institut der Universitaet Wuerzburg, Wuerzburg (Germany); Cheng, H.H.; Nicholas, R.J. [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom)
1996-12-31
We studied the contribution of the breaking of the antiferromagnetically coupled spin clusters to the total magnetization in thin (CdMn)Te layers as a function of the layer thickness by reflectivity spectroscopy in magnetic fields up to 45 T. The experimental results show that the contribution of the breaking of antiferromagnetically coupled spin clusters is reduced by decreasing layer thickness. (author) 6 refs, 2 refs
Directory of Open Access Journals (Sweden)
Piyush Kumar Jha
2017-10-01
Full Text Available Ice nucleation is a stochastic process and it is very difficult to be controlled. Freezing technologies and more specifically crystallisation assisted by magnetic, electric and electromagnetic fields have the capability to interact with nucleation. Static magnetic field (SMF may affect matter crystallisation; however, this is still under debate in the literature. Static electric field (SEF has a significant effect on crystallisation; this has been evidenced experimentally and confirmed by the theory. Oscillating magnetic field induces an oscillating electric field and is also expected to interact with water crystallisation. Oscillating electromagnetic fields interact with water, perturb and even disrupt hydrogen bonds, which in turn are thought to increase the degree of supercooling and to generate numerous fine ice crystals. Based on the literature, it seems that the frequency has an influence on the above-mentioned phenomena. This review article summarizes the fundamentals of freezing under magnetic, electric and electromagnetic fields, as well as their applicability and potentials within the food industry.
On the Eulerian-Lagrangian Transform in the Statistical Theory of Turbulence
DEFF Research Database (Denmark)
Wandel, C. F:; Kofoed-Hansen, O.
1962-01-01
"Fundamental Problems in Turbulence" Conference Paper (see Abstr. 1962A024007). Two important types of probing of a turbulent velocity field droarr/dtoarr = voarr (voarr constant) and the Lagrangian probing defined by droarr/dtoarr = roarr (roarr t). Explicit expressions are derived for the trans......"Fundamental Problems in Turbulence" Conference Paper (see Abstr. 1962A024007). Two important types of probing of a turbulent velocity field droarr/dtoarr = voarr (voarr constant) and the Lagrangian probing defined by droarr/dtoarr = roarr (roarr t). Explicit expressions are derived...... for the transformation of autocorrelations and power spectra obtained by Eulerian and Lagrangian probing in the case of fully developed isotropic and homogeneous turbulence. The derivations are based on a statistical representation of the turbulent velocity field using the results of the equilibrium theory of turbulence....... The Taylor (1921) hypothesis is verified in the limit of high probing velocities. The Hay-Pasquill (1960) conjecture relating the Lagrangian and Eulerian power spectra results as an approximation to the transformation equations. Application of the results to the theory of turbulent diffusion is indicated....
On bidimensional Lagrangian conformal models
International Nuclear Information System (INIS)
Lazzarini, S.
1990-04-01
The main topic of this thesis is the study of Conformal Field Theories defined on an arbitrary compact Riemann surface without boundary. The Beltrami parametrization of complexe structures endowing such a surface provides a local bidimensional diffeomorphism invariance of the theory and the holomorphic factorization. The perturbative quantization a la Feynman is then constrained by local factorized Ward identities. The renormalization is analysed in the Esptein-Glaser scheme. A first part deals with the simplest free field models where one checks the interesting conjecture that renormalized perturbative expansions could be resumed by a Polyakov's formula which is a Wess-Zumino action for the diffeomorphism anomaly. For a higher genus surface, only a differential version is proposed. The second part of this thesis is devoted to the characterization of some observables of the free bosonic string in the corresponding gauge theory with the aid of the nilpotent Slavnov s-operator. It is conjectured that part of the observables of this theory is labelled by the local cohomology of s modulo d and corresponds to the vertex operators, as it is verified for the tachyon vertex in the conformal gauge [fr
Directory of Open Access Journals (Sweden)
Domingues M. O.
2013-12-01
Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.
The canonical Lagrangian approach to three-space general relativity
Shyam, Vasudev; Venkatesh, Madhavan
2013-07-01
We study the action for the three-space formalism of general relativity, better known as the Barbour-Foster-Ó Murchadha action, which is a square-root Baierlein-Sharp-Wheeler action. In particular, we explore the (pre)symplectic structure by pulling it back via a Legendre map to the tangent bundle of the configuration space of this action. With it we attain the canonical Lagrangian vector field which generates the gauge transformations (3-diffeomorphisms) and the true physical evolution of the system. This vector field encapsulates all the dynamics of the system. We also discuss briefly the observables and perennials for this theory. We then present a symplectic reduction of the constrained phase space.
What If We Had A Magnetograph at Lagrangian L5?
Pevtsov, Alexei A.; Bertello, Luca; MacNeice, Peter; Petrie, Gordon
2016-01-01
Synoptic Carrington charts of magnetic field are routinely used as an input for modelings of solar wind and other aspects of space weather forecast. However, these maps are constructed using only the observations from the solar hemisphere facing Earth. The evolution of magnetic flux on the "farside" of the Sun, which may affect the topology of coronal field in the "nearside," is largely ignored. It is commonly accepted that placing a magnetograph in Lagrangian L5 point would improve the space weather forecast. However, the quantitative estimates of anticipated improvements have been lacking. We use longitudinal magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) to investigate how adding data from L5 point would affect the outcome of two major models used in space weather forecast.
Theory of charged vector mesons interacting with the electromagnetic field
International Nuclear Information System (INIS)
Lee, T.D.; Yang, C.N.
1983-01-01
It is shown that starting from the usual canonical formalism for the electromagnetic interaction of a charged vector meson with arbitrary magnetic moment one is led to a set of rules for Feynman diagrams, which appears to contain terms that are both infinite and noncovariant. These difficulties, however, can be circumvented by introducing a xi-limiting process which depends on a dimensionless positive parameter xi → 0. Furthermore, by using the mathematical artifice of a negative metric the theory becomes renormalizable (for xi > 0)
Functional integral for non-Lagrangian systems
Kochan, Denis
2010-01-01
A novel functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The new approach, which we call "stringy quantization," is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force $-\\kappa[\\dot{q}]^A$. Results for $A = 1$ are compared with those obtained in the approaches by Caldirola-Kanai, Bateman and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.
Lagrangians for generalized Argyres-Douglas theories
Benvenuti, Sergio; Giacomelli, Simone
2017-10-01
We continue the study of Lagrangian descriptions of N=2 Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional N=1 quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the ( A k , A kN + N -1) models. We study in detail how the N=1 chiral rings map to the Coulomb and Higgs Branches of the N=2 CFT's. The three dimensional mirror RG flows are shown to land on the N=4 complete graph quivers. We also compactify to three dimensions the gauge theory dual to ( A 1, D 4), and find the expected Abelianization duality with N=4 SQED with 3 flavors.
An ambitwistor Yang-Mills Lagrangian
International Nuclear Information System (INIS)
Mason, L.J.; Skinner, D.
2006-01-01
We introduce a Chern-Simons Lagrangian for Yang-Mills theory as formulated on ambitwistor space via the Ward, Isenberg, Yasskin, Green, Witten construction. The Lagrangian requires the selection of a codimension-2 Cauchy-Riemann submanifold which is naturally picked out by the choice of space-time reality structure and we focus on the choice of Euclidean signature. The action is shown to give rise to a space-time action that is equivalent to the standard one, but has just cubic vertices. We identify the ambitwistor propagators and vertices and work out their corresponding expressions on space-time and momentum space. It is proposed that this formulation of Yang-Mills theory underlies the recursion relations of Britto, Cachazo, Feng and Witten and provides the generating principle for twistor diagrams for gauge theory
Engineering dynamics from the Lagrangian to simulation
Gans, Roger F
2013-01-01
This engineering dynamics textbook is aimed at beginning graduate students in mechanical engineering and other related engineering disciplines who need training in dynamics as applied to engineering mechanisms. It introduces the formal mathematical development of Lagrangian mechanics (and its corollaries), while solving numerous engineering applications. The author’s goal is to instill an understanding of the basic physics required for engineering dynamics, while providing a recipe (algorithm) for the simulation of engineering mechanisms such as robots. The book is reasonably self-contained so that the practicing engineer interested in this area can also make use of it. This book is made accessible to the widest possible audience by numerous, solved examples and diagrams that apply the principles to real engineering applications. • Provides an applied textbook for intermediate/advanced engineering dynamics courses; • Discusses Lagrangian mechanics in the context of numerous engineering applications...
Scalar and electromagnetic fields in the Kazner metric. Interaction as a mechanism of isotronization
International Nuclear Information System (INIS)
Krechet, V.G.; Shikin, G.N.
1981-01-01
Within the framework of the Willer-de Vitt superspatial quantization the quantum anisotropic cosmological model with interacting, scalar and electromagnetic fields is considered. It is shown that as a result of direct interaction of the scalar and electromagnetic fields isotropization of the model occurs as in the classical case. While comparing the classical and quantum approaches the conclusion is made that in the quantum approach there are states without initial singularity, that fails in the classical approach; both in the quantum and classical approaches there is isotropization of evolution of the interacting field system (in the quantum approach in α, and β), and in both approaches this process is a consequence of direct interaction of the scalar and electromagnetic fields; in the quantum approach, unlike the classical one, there exists isotropization of the considered model at an infinite growth of the scalar field [ru
Covariant Noncommutative Field Theory
Energy Technology Data Exchange (ETDEWEB)
Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2008-07-02
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
Verdonk, Marcel L; Ludlow, R Frederick; Giangreco, Ilenia; Rathi, Prakash Chandra
2016-07-28
The Protein Data Bank (PDB) contains a wealth of data on nonbonded biomolecular interactions. If this information could be distilled down to nonbonded interaction potentials, these would have some key advantages over standard force fields. However, there are some important outstanding issues to address in order to do this successfully. This paper introduces the protein-ligand informatics "force field", PLIff, which begins to address these key challenges ( https://bitbucket.org/AstexUK/pli ). As a result of their knowledge-based nature, the next-generation nonbonded potentials that make up PLIff automatically capture a wide range of interaction types, including special interactions that are often poorly described by standard force fields. We illustrate how PLIff may be used in structure-based design applications, including interaction fields, fragment mapping, and protein-ligand docking. PLIff performs at least as well as state-of-the art scoring functions in terms of pose predictions and ranking compounds in a virtual screening context.
Mass Charge Interactions for Visualizing the Quantum Field
Baer, Wolfgang
Our goal is to integrate the objective and subjective aspects of our personal experience into a single complete theory of reality. To further this endeavor we replace elementary particles with elementary events as the building blocks of an event oriented description of that reality. The simplest event in such a conception is an adaptation of A. Wheeler's primitive explanatory--measurement cycle between internal observations experienced by an observer and their assumed physical causes. We will show how internal forces between charge and mass are required to complete the cyclic sequence of activity. This new formulation of internal material is easier to visualize and map to cognitive experiences than current formulations of sub-atomic physics. In our formulation, called Cognitive Action Theory, such internal forces balance the external forces of gravity-inertia and electricity-magnetism. They thereby accommodate outside influences by adjusting the internal structure of material from which all things are composed. Such accommodation is interpreted as the physical implementation of a model of the external physical world in the brain of a cognitive being or alternatively the response mechanism to external influences in the material of inanimate objects. We adopt the deBroglie-Bohm causal interpretation of QT to show that the nature of space in our model is mathematically equivalent to a field of clocks. Within this field small oscillations form deBroglie waves. This interpretation allows us to visualize the underlying structure of empty space with a charge-mass separation field in equilibrium, and objects appearing in space with quantum wave disturbances to that equilibrium occurring inside material. Space is thereby associated with the internal structure of material and quantum mechanics is shown to be, paraphrasing Heisenberg, the physics of the material that knows the world.
The Mathematics of Charged Particles interacting with Electromagnetic Fields
DEFF Research Database (Denmark)
Petersen, Kim
In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...... in Coulomb gauge and we show that the one-body Maxwell-Schrödinger system as well as the related one-body Maxwell-Pauli system both admit travelling wave solutions....
Near-field interaction of colloid near wavy walls
Luo, Yimin; Serra, Francesca; Wong, Denise; Steager, Edward; Stebe, Kathleen
Anisotropic media can be used to manipulate colloids, in tandem with carefully designed boundary conditions. For example, in bulk nematic liquid crystal, a wall with homeotropic anchoring repels a colloid with the same anchoring; yet by changing the surface topography from planar to concave, one can turn repulsion into attraction. We explore the behaviors of micro-particles with associated topological defects (hedgehogs or Saturn rings) near wavy walls. The walls locally excite disturbance, which decays into bulk. The range of influence is related to the curvature. The distortion can be used to position particles, either directly on the structure or at a distance away, based on the ``splay-matching'' rules. When distortion becomes stronger through the deepening of the well, the splay field created by the wall can prompt transformation from a Saturn ring to a hedgehog. We combine wells of different wavelength and depth to direct colloid movement. We apply a magnetic field to reset the initial position of ferromagnetic colloids and subsequently release them to probe the elastic energy landscape. Our platform enables manipulation, particle selection, and a detailed study of defect structure under the influence of curvature. Army Research Office.
Cubic interaction in extended theories of massless higher-spin fields
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A
1987-08-17
A cubic interaction of all massless higher-spin fields with s greater than or equal to 1 is constructed, based on the extended higher-spin superalgebras suggested previously by one of us (M.V.). This interaction incorporates gravitational and Yang-Mills interactions of massless higher-spin fields, which turn out to be consistent in the cubic order. An essential novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. An explicit form is found for deformed higher-spin gauge transformations leaving the action invariant.
INTERACTION OF IMPULSE ELECTROMAGNETIC FIELDS WITH SURFACES OF METAL SAMPLES
Directory of Open Access Journals (Sweden)
V. V. Pavliouchenko
2006-01-01
Full Text Available Measurements of maximum tangential component of magnetic intensity Hτm have been carried out in the paper. The measurements have been taken on the surface of metal samples according to time of single current pulse rise in the form of semi-sinusoid of a linear current wire. Measurements have been made with the purpose to determine a value of the component according to thickness of samples made of aluminium.Temporary resolution ranges of electric and magnetic properties and defects of sample continuity along the depth have been found.Empirical formulae of dependence Hτm on sample thickness have been derived and their relation with efficient depth penetration of magnetic field into metal has been found.
RF-plasma interactions in the antenna near fields
Energy Technology Data Exchange (ETDEWEB)
Colestock, P.; Greene, G.J.; Hosea, J.C.; Phillips, C.K.; Stevens, J.E.; Ono, M.; Wilson, J.R. (Princeton Univ., NJ (USA). Plasma Physics Lab.); D' Ippolito, D.A.; Myra, J.R. (Lodestar Research Corp., Boulder, CO (USA)); Lehrman, I.S. (Grumman Aerospace Corp., Bethpage, NY (USA))
1990-04-01
An assessment is made of the various linear and nonlinear mechanisms that are likely to play a role in the near-field of Faraday shielded inductive antennas commonly used in ICRF heating experiments. A number of low-level, but potentially important, RF loss mechanisms have been proposed as candidates to explain the observed surface phenomena and impurity production associated with ICRF. These range from edge heating via linear processes, such as surface wave or Bernstein wave generation to a variety of nonlinear phenomena including parametric decay and RF-driven sheath effects. The various proposed mechanisms will be examined in this work in terms of the available experimental data and an evaluation will be made of the scaling of these phenomena to higher density and temperature plasmas. (orig.).
Dynamics of Multibody Systems Near Lagrangian Points
Wong, Brian
This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term
Interaction of a supersonic plasma jet with a coaxial dipole magnetic field
International Nuclear Information System (INIS)
Landes, K.
1975-01-01
A low pressure plasma jet of considerable conductivity can be influenced by a magnetic field. On the other hand the influencing magnetic field is changed by currents induced in the plasma jet. New astrophysical examples of suchlike interaction have been found in the investigation of the moon, where the partially not currentfree solar wind is influenced by locally confined magnetic fields. In the experiment reported, the interaction of a supersonic plasma jet with a coaxial, dipole-shaped magnetic field is investigated. A current is superimposed to the plasma jet. (Auth.)
Ising model with competing axial interactions in the presence of a field
International Nuclear Information System (INIS)
Yokoi, C.S.O.; Salinas, S.R.A.; Coutinho Filho, M.D.
1980-09-01
A layered Ising model is studied with competing interactions between nearest and next-nearest layers in the presence of a magnetic field. The analysis is carried out in the mean-field approximation with one effective field for each layer. The high-temperature region is studied analytically. The low-temperature region is studied numerically. T-H phase diagrams are constructed, which exhibit a variety of modulated phases, for various values of the ratio of the strength of the competing interactions. Numerical evidence of the devil's staircase behavior is found either as a function of temperature or applied magnetic field. (Author) [pt
A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles
Finster, Felix
2011-08-01
In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.
Lagrangian investigations of vorticity dynamics in compressible turbulence
Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji
2017-10-01
In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.
Quantum field theory of photon—Dirac fermion interacting system in graphene monolayer
International Nuclear Information System (INIS)
Nguyen, Bich Ha; Nguyen, Van Hieu
2016-01-01
The purpose of the present work is to elaborate quantum field theory of interacting systems comprising Dirac fermion fields in a graphene monolayer and the electromagnetic field. Since the Dirac fermions are confined in a two-dimensional plane, the interaction Hamiltonian of this system contains the projection of the electromagnetic field operator onto the plane of a graphene monolayer. Following the quantization procedure in traditional quantum electrodynamics we chose to work in the gauge determined by the weak Lorentz condition imposed on the state vectors of all physical states of the system. The explicit expression of the two-point Green function of the projection onto a graphene monolayer of a free electromagnetic field is derived. This two-point Green function and the expression of the interaction Hamiltonian together with the two-point Green functions of free Dirac fermion fields established in our previous work form the basics of the perturbation theory of the above-mentioned interacting field system. As an example, the perturbation theory is applied to the study of two-point Green functions of this interacting system of quantum fields. (paper)
Quantum fields and Poisson processes: Interaction of a cut-off boson field with a quantum particle
International Nuclear Information System (INIS)
Bertrand, J.; Rideau, G.; Gaveau, B.
1985-01-01
The solution of the Schroedinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful. (orig.)
Interaction of rare gas clusters in intense laser field
International Nuclear Information System (INIS)
Dobosz, Sandrine
1998-01-01
Rare gas cluster jet targets have only been scarcely studied in strong laser fields. This is surprising since their properties are particularly appealing. Although considered as a gas phase target, the local density within clusters is comparable to that of the bulk. Intense irradiation of clusters produces a plasma thereby giving rise to strong collisional heating. This explains, in particular, the observation of very high fragment charge states and the generation of X-rays in the keV energy range. The complete set of our experimental results shows that the intra-cluster atoms are first ionised by tunnel ionisation followed by massive electron impact ionisation. Thus, for Xenon clusters, we have observed up to 30-fold charged. The most energetic electrons leave the cluster which contributes to a positive charge build-up on the cluster surface. The plasma expands under the combined action of the Coulomb and kinetic pressures. The contribution of each pressure depends on the cluster size and we show that the Coulomb pressure is prevailing for the smallest sizes. This scenario explains the ejection of fragments with energies of up to lMeV. We have also performed a high resolution X-ray study to explore in situ the properties of the plasma. These studies underline the importance of electron-ion collisions and allow to deterrnine the mean charge states of the emitting ions. Finally, we have developed a model, describing the cluster expansion, which confirms our experimental observations. (author) [fr
International Nuclear Information System (INIS)
Yildiz, A.
1988-01-01
This paper contains information on the following topics: Weak interactions; Field theories; Particle phenomenology; and Cosmology and particle physics. In particular, vector mesons, superstring cosmology, quarkonia systems, and CP-violation are some specific topics discussed. (FL)
Mixed spin Ising model with four-spin interaction and random crystal field
International Nuclear Information System (INIS)
Benayad, N.; Ghliyem, M.
2012-01-01
The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.
Magnetic field of a dipole and the dipole-dipole interaction
International Nuclear Information System (INIS)
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R 3 law for the magnetic field and the 1/R 4 law for the interaction force between two dipoles, as well as their angular dependences
Model of Dirac field interacting with material plane within Symanzik’s approach
Directory of Open Access Journals (Sweden)
Pismak Yu. M.
2016-01-01
Full Text Available The model for the interaction of a spinor field with a material plane is constructed in the framework of the Symanzik’s approach. The characteristics of scattering process of Dirac particles on the plane are calculated. The bounced states localized near the plane are investigated.The model can find application to a wide class of phenomena arising by the interaction of quantum electrodynamics fields with two-dimensional materials.
Quasi-particles and effective mean field in strongly interacting matter
International Nuclear Information System (INIS)
Levai, P.; Ko, C.M.
2010-01-01
We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar σ field by introducing a dynamically generated mass, M(σ), and a self-consistently determined interaction term, B(σ). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
The continuous tower of scalar fields as a system of interacting dark matter–dark energy
International Nuclear Information System (INIS)
Santos, Paulo
2015-01-01
This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter–dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.
Veltman, M.J.G.; Reiff, J.
1969-01-01
Two problems are studied in the paper: (i) the relation between Lagrangian and Feynman rules if the Lagrangian contains derivative couplings and/or vector meson fields and (ii) the behaviour of certain two closed loop diagrams in the perturbation theory of Yang-Mills fields. With respect to ( i ) .
The nucleon-nucleon interaction in the framework of the boson exchange model
International Nuclear Information System (INIS)
Niephaus, G.H.
1984-01-01
The aim of this thesis was the description of the nucleon-nucleon interaction in a microscopically founded model. For this the description of the 2-nucleon problem by an interacting 2-nucleon-pion system was presented. The starting point of our description was a relativistic eigenvalue equation for the system of mesons and two baryons. The interaction of the baryons with the mesons was described by interaction Hamiltonians. By the elimination of antinucleon states by means of a unitary tansformation (Foldy-Wouthuysen transformation) the interaction Hamiltonians for nucleons could be generated for the field-theoretical Lagrangian densities. The Hamiltonians for resonant baryon states were obtained by means of a simplified procedure from the corresponding Lagrangian densities. Because the determination of Lagrangian densities is not unique, for the pion-nucleon coupling two alternative Lagrangian densities were allowed. For the interaction of positive-energy nucleonic states these two coupling yield nearly equal results; the production or annihilation of negative-energy nucleon states (antiparticles) the predictions however are very different. (orig./HSI) [de
Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas
International Nuclear Information System (INIS)
Ida, Katsumi and others
2006-01-01
Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device
Conformal, Riemannian and Lagrangian geometry the 2000 Barrett lectures
Chang, Sun-Yung A; Grove, Karsten; Yang, Paul C; Freire, Alexandre
2002-01-01
Recent developments in topology and analysis have led to the creation of new lines of investigation in differential geometry. The 2000 Barrett Lectures present the background, context and main techniques of three such lines by means of surveys by leading researchers. The first chapter (by Alice Chang and Paul Yang) introduces new classes of conformal geometric invariants, and then applies powerful techniques in nonlinear differential equations to derive results on compactifications of manifolds and on Yamabe-type variational problems for these invariants. This is followed by Karsten Grove's lectures, which focus on the use of isometric group actions and metric geometry techniques to understand new examples and classification results in Riemannian geometry, especially in connection with positive curvature. The chapter written by Jon Wolfson introduces the emerging field of Lagrangian variational problems, which blends in novel ways the structures of symplectic geometry and the techniques of the modern calculus...
Numerical methods for Lagrangian hydrodynamics applied to inertial fusion
International Nuclear Information System (INIS)
Maire, P.H.; Breil, J.; Galera, S.; Schurtz, G.
2009-01-01
CHIC is a code of Lagrangian hydrodynamics and implosion that has been developed since 2003 for the simulation of plasma experiments concerning inertial fusion. The transport of electron energy is assured with the Spitzer-Harm diffusion model with flux limiter. The propagation of the laser beams inside the plasma is computed by an algorithm of 3-dimensional beam launching that takes into account refraction as well as collisional absorption. The self-generated transverse magnetic fields are assessed by a magnetohydrodynamics model that stems from a generalized Ohm's law. The coupling with electron energy transport is assured with Braginskii conduction model. The validation of this code has been performed with various plasma experiments. (A.C.)
Between Laws and Models: Some Philosophical Morals of Lagrangian Mechanics
Butterfield, Jeremy
2004-01-01
I extract some philosophical morals from some aspects of Lagrangian mechanics. (A companion paper will present similar morals from Hamiltonian mechanics and Hamilton-Jacobi theory.) One main moral concerns methodology: Lagrangian mechanics provides a level of description of phenomena which has been largely ignored by philosophers, since it falls between their accustomed levels--``laws of nature'' and ``models''. Another main moral concerns ontology: the ontology of Lagrangian mechanics is bot...
A Chiang-type lagrangian in CP^2
Cannas da Silva, Ana
2018-03-01
We analyse a monotone lagrangian in CP^2 that is hamiltonian isotopic to the standard lagrangian RP^2, yet exhibits a distinguishing behaviour under reduction by one of the toric circle actions, namely it intersects transversally the reduction level set and it projects one-to-one onto a great circle in CP^1. This lagrangian thus provides an example of embedded composition fitting work of Wehrheim-Woodward and Weinstein.
Playing the (Sexual) Field: The Interactional Basis of Systems of Sexual Stratification
Green, Adam Isaiah
2011-01-01
Recently, scholars have used a Bourdieusian theory of practice to analyze systems of sexual stratification, including an examination of sexual fields and sexual (or erotic) capital. While the broad structural features of the sexual field have been a point of focus in this latter research, a systematic analysis of the interactional processes that…
Edge plasmas and plasma/wall interactions in an ignition-class reversed field pinch
International Nuclear Information System (INIS)
Werley, K.A.; Bathke, C.G.; Krakowski, R.A.
1987-01-01
A range of limiter, armor, and divertor options are examined as a means to minimize plasma/wall interactions for a high-power-density, ignition-class reversed field pinch. An open, toroidal-field divertor can operate at maximum powers, while isolating the core plasma from impurities and protecting the wall. 16 refs
Magnetic fields in the solar system planets, moons and solar wind interactions
Wicht, Johannes; Gilder, Stuart; Holschneider, Matthias
2018-01-01
This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet’s magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors an...
Lagrangians for plasmas in drift-fluid approximation
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1996-10-01
For drift waves and related instabilities conservation laws can play a crucial role. In an ideal theory these conservation laws are guaranteed when a Lagrangian can be found from which the equations for the various quantities result by Hamilton's principle. Such a Lagrangian for plasmas in drift-fluid approximation was obtained by a heuristic method in a recent paper by Pfirsch and Correa-Restrepo. In the present paper the same Lagrangian is derived from the exact multi-fluid Lagrangian via an iterative approximation procedure which resembles the standard method usually applied to the equations of motion. That method, however, does not guarantee all the conservation laws to hold. (orig.)
Direct Lagrangian tracking simulations of particles in vertically-developing atmospheric clouds
Onishi, Ryo; Kunishima, Yuichi
2017-11-01
We have been developing the Lagrangian Cloud Simulator (LCS), which follows the so-called Euler-Lagrangian framework, where flow motion and scalar transportations (i.e., temperature and humidity) are computed with the Euler method and particle motion with the Lagrangian method. The LCS simulation considers the hydrodynamic interaction between approaching particles for robust collision detection. This leads to reliable simulations of collision growth of cloud droplets. Recently the activation process, in which aerosol particles become tiny liquid droplets, has been implemented in the LCS. The present LCS can therefore consider the whole warm-rain precipitation processes -activation, condensation, collision and drop precipitation. In this talk, after briefly introducing the LCS, we will show kinematic simulations using the LCS for quasi-one dimensional domain, i.e., vertically elongated 3D domain. They are compared with one-dimensional kinematic simulations using a spectral-bin cloud microphysics scheme, which is based on the Euler method. The comparisons show fairly good agreement with small discrepancies, the source of which will be presented. The Lagrangian statistics, obtained for the first time for the vertical domain, will be the center of discussion. This research was supported by MEXT as ``Exploratory Challenge on Post-K computer'' (Frontiers of Basic Science: Challenging the Limits).
Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot
Energy Technology Data Exchange (ETDEWEB)
Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K., E-mail: kjkumar-gri@rediffmail.com [Nanostructure Lab, Department of Physics, Gandhigram Rural University, Gandhigram-624302 (India); Reuben, Jasper D. [Department of Physics, School of Engineering, Saveetha University, Thandalam, Chennai- 600104 (India)
2015-06-24
The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.
Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot
Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.
2015-06-01
The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.
An entropic solver for ideal Lagrangian magnetohydrodynamics
International Nuclear Information System (INIS)
Bezard, F.; Despres, B.
1999-01-01
In this paper, the authors adapt to the ideal 1D lagrangian MHD equations a class of numerical schemes of order one in time and space presented in an earlier paper and applied to the gas dynamics system. They use some properties of systems of conservation laws with zero entropy flux which describe fluid models invariant by galilean transformation and reversible for regular solutions. These numerical schemes satisfy an entropy inequality under CFL conditions. In the last section, they describe a particular scheme for the MHD equations and show with some numerical applications its robustness and accuracy. The generalization to full Eulerian multidimensional MHD will be the subject of a forthcoming paper
Xiao, K. D.; Zhou, C. T.; Zhang, H.; Huang, T. W.; Li, R.; Qiao, B.; Cao, J. M.; Cai, T. X.; Ruan, S. C.; He, X. T.
2018-01-01
Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten kilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of impo...
Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory
Bars, Itzhak
2010-01-01
In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.
Transitions in turbulent rotating convection: A Lagrangian perspective : A Lagrangian perspective
Rajaei, H.; Joshi, P.R.; Alards, K.M.J.; Kunnen, R.P.J.; Toschi, F.; Clercx, H.J.H.
2016-01-01
Using measurements of Lagrangian acceleration in turbulent rotating convection and accompanying direct numerical simulations, we show that the transition between turbulent states reported earlier [e.g., S. Weiss et al., Phys. Rev. Lett. 105, 224501 (2010)] is a boundary-layer transition between the
Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R
2010-07-14
The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.
International Nuclear Information System (INIS)
Benisti, D.
2011-01-01
This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)
International Nuclear Information System (INIS)
Sun Qing; Hu Xinghua; Liu, W. M.; Xie, X. C.; Ji Anchun
2011-01-01
We investigate optomechanical coupling between one-dimensional interacting bosons and the electromagnetic field in a high-finesse optical cavity. We show that by tuning interatomic interactions, one can realize effective optomechanics with mechanical resonators ranging from side-mode excitations of a Bose-Einstein condensate (BEC) to particle-hole excitations of a Tonks-Girardeau (TG) gas. We propose that this unique feature can be formulated to detect the BEC-TG gas crossover and measure the sine-Gordon transition continuously and nondestructively.
International Nuclear Information System (INIS)
Oliphant, T.A.; Morel, J.E.; Gula, W.P.; Pfeufer, G.W.
1997-01-01
The cell-centered diffusion differencing scheme presented by Morel et al. has been applied to magnetic diffusion associated with Lagrangian hydrodynamic codes. Thus, the method applies to non-orthogonal meshes. Although the present application involves structured meshes, the method applies equally well to unstructured meshes. Morel's example of application is to 2D diffusion using Ficke's law. Thus, a volume integral approach is applied to the divergence operator. In 2D magnetic diffusion symmetry allows the use of an area integral approach involving the field components normal to the area, e.g. A-theta and B-theta. Instead of a divergence of a term proportional to the field gradient a curl of a term proportional to the curl of the field is used. An essential fact that allows this procedure is that the solenoidal property of the magnetic field is automatic. In the case of 3D it is necessary to return to the volumetric integral approach and to use rectangular components of the vector potential. Successful benchmarks have been run in comparison with the 1D code RAVEN. A typical example is that of a metal cylinder being compressed by a magnetic field applied at the outer boundary. So far, the 3D diffusion model has been tested in the orthogonal case and found to preserve the linear, homogeneous solution. Results of these and further tests are presented
Solvent effects on ion-receptor interactions in the presence of an external electric field.
Novák, Martin; Foroutan-Nejad, Cina; Marek, Radek
2016-11-09
In this work we investigated the influence of an external electric field on the arrangement of the solvent shells around ions interacting with a carbon-based receptor. Our survey reveals that the mechanism of interaction between a monoatomic ion and a π-type ion receptor varies by the variation in the solvent polarity, the nature of the ion, and the strength of the external field. The characteristics of the ion-surface interaction in nonpolar solvents are similar to those observed in a vacuum. However, in water, we identified two mechanisms. Soft and polarizable ions preferentially interact with the π-receptor. In contrast, two bonded states were found for hard ions. A fully solvated ion, weakly interacting with the receptor at weak field, and a strong π-complex at the strong-field regime were identified. An abrupt variation in the potential energy surface (PES) associated with the rearrangement of the solvation shell on the surface of the receptor induced by an external field was observed both in implicit and explicit solvent environments. The electric field at which the solvation shell breaks is proportional to the hardness of the ion as has been suggested recently based on experimental observations.
Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique
Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei
2017-12-01
The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.
Statistical scaling of pore-scale Lagrangian velocities in natural porous media.
Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J
2014-08-01
We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.
Perturbative effect of heavy particles in an effective-Lagrangian approach
International Nuclear Information System (INIS)
Hagiwara, T.; Nakazawa, N.
1981-01-01
An effective-Lagrangian approach is summarized to estimate the perturbative effect of heavy-mass particles in the leading-logarithmic approximation: the logarithmic corrections to mass-suppressed amplitudes are given in a concise form. We apply the formalism to a simplified model with two scalar fields where one is heavy and the other is light. We derive an effective Lagrangian by calculating heavy-particle one-loop diagrams. Solving renormalization-group equations derived from the effective Lagrangian by light-particle one-loop corrections, we obtain logarithmic corrections to the mass-suppressed amplitudes. The results are confirmed by explicit two-loop calculation in the full theory, up to order O((1/M 2 )1nM 2 ), where M is a heavy scalar mass. It is found that the boundary condition for solving the renormalization-group equations must be specified by the renormalization at the heavy-particle mass. It must also be emphasized that in an effective-Lagrangian approach minimal subtraction is not a proper method of renormalization. The necessity to adopt the conventional momentum-shell subtraction is stressed. Several applications of this formalism are also mentioned
Sigma decomposition: the CP-odd Lagrangian
Energy Technology Data Exchange (ETDEWEB)
Hierro, I.M. [Dipartimento di Fisica “G. Galilei”, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padua (Italy); Merlo, L. [Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid,Cantoblanco, 28049, Madrid (Spain); Rigolin, S. [Dipartimento di Fisica “G. Galilei”, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padua (Italy)
2016-04-04
In Alonso et al., http://dx.doi.org/10.1007/JHEP12(2014)034, the CP-even sector of the effective chiral Lagrangian for a generic composite Higgs model with a symmetric coset has been constructed, up to four momenta. In this paper, the CP-odd couplings are studied within the same context. If only the Standard Model bosonic sources of custodial symmetry breaking are considered, then at most six independent operators form a basis. One of them is the weak-θ term linked to non-perturbative sources of CP violation, while the others describe CP-odd perturbative couplings between the Standard Model gauge bosons and an Higgs-like scalar belonging to the Goldstone boson sector. The procedure is then applied to three distinct exemplifying frameworks: the original SU(5)/SO(5) Georgi-Kaplan model, the minimal custodial-preserving SO(5)/SO(4) model and the minimal SU(3)/(SU(2)×U(1)) model, which intrinsically breaks custodial symmetry. Moreover, the projection of the high-energy electroweak effective theory to the low-energy chiral effective Lagrangian for a dynamical Higgs is performed, uncovering strong relations between the operator coefficients and pinpointing the differences with the elementary Higgs scenario.
An objective interpretation of Lagrangian quantum mechanics
International Nuclear Information System (INIS)
Roberts, K.V.
1978-01-01
Unlike classical mechanics, the Copenhagen interpretation of quantum mechanics does not provide an objective space-time picture of the actual history of a physical system. This paper suggests how the conceptual foundations of quantum mechanics can be reformulated, without changing the mathematical content of the theory or its detailed agreement with experiment and without introducing any hidden variables, in order to provide an objective, covariant, Lagrangian description of reality which is deterministic and time-symmetric on the microscopic scale. The basis of this description can be expressed either as an action functional or as a summation over Feynman diagrams or paths. The probability laws associated with the quantum-mechanical measurement process, and the asymmetry in time of the principles of macroscopic causality and of the laws of statistical mechanics, are interpreted as consequences of the particular boundary conditions that apply to the actual universe. The objective interpretation does not include the observer and the measurement process among the fundamental concepts of the theory, but it does not entail a revision of the ideas of determinism and of time, since in a Lagrangian theory both initial and final boundary conditions on the action functional are required. (author)
Lagrangian particle method for compressible fluid dynamics
Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang
2018-06-01
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.
Lagrangian descriptors of driven chemical reaction manifolds.
Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto
2017-08-01
The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.
Interaction of biological systems with static and ELF electric and magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Anderson, L.E.; Kelman, B.J.; Weigel, R.J. (eds.)
1987-01-01
Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1992-05-01
Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.
Syrlic: a Lagrangian code to handle industrial problems involving particles and droplets
International Nuclear Information System (INIS)
Peniguel, C.
1997-01-01
Numerous industrial applications require to solve droplets or solid particles trajectories and their effects on the flow. (fuel injection in combustion engine, agricultural spraying, spray drying, spray cooling, spray painting, particles separator, dispersion of pollutant, etc). SYRLIC is being developed to handle the dispersed phase while the continuous phase is tackled by classical Eulerian codes like N3S-EF, N3S-NATUR, ESTET. The trajectory of each droplet is calculated on unstructured grids or structured grids according the Eulerian code with SYRLIC is coupled. The forces applied to each particle are recalculated along each path. The Lagrangian approach treats the convection and the source terms exactly. It is particularly adapted to problems involving a wide range of particles characteristics (diameter, mass, etc). In the near future, wall interaction, heat transfer, evaporation more complex physics, etc, will be included. Turbulent effects will be accounted for by a Langevin equation. The illustration shows the trajectories followed by water droplets (diameter from 1 mm to 4 mm) in a cooling tower. the droplets are falling down due to gravity but are deflected towards the center of the tower because of a lateral wind. It is clear that particles are affected differently according their diameter. The Eulerian flow field used to compute the forces has been generated by N3S-AERO, on an unstructured mesh
International Nuclear Information System (INIS)
Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.
2010-01-01
Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.
Self-dual gauge field, its quantum fluctuations, and interacting fermions
International Nuclear Information System (INIS)
Flory, C.A.
1983-01-01
The quantum fluctuations about a self-dual background field in SU(2) are computed. The background field consists of parallel and equal uniform chromomagnetic and chromoelectric fields. Determination of the gluon fluctuations about this field yields zero modes, which are naturally regularized by the introduction of massless fermions. This regularization makes the integrals over all fluctuations convergent, and allows a simple computation of the vacuum energy which is shown to be lower than the energy of the configuration of zero field strength. The regularization of the zero modes also facilitates the introduction of heavy test charges which can interact with the classical background field and also exchange virtual quanta. The formalism for introducing these heavy test charges could be a good starting point for investigating the relevant physics of the self-dual background field beyond the classical level
Lagrangian mixed layer modeling of the western equatorial Pacific
Shinoda, Toshiaki; Lukas, Roger
1995-01-01
Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.
Perturbative coherence in field theory
International Nuclear Information System (INIS)
Aldrovandi, R.; Kraenkel, R.A.
1987-01-01
A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt
Field’s entropy in the atom–field interaction: Statistical mixture of coherent states
Energy Technology Data Exchange (ETDEWEB)
Zúñiga-Segundo, Arturo [Instituto Politécnico Nacional. ESFM Departamento de Física, Edificio 9 Unidad Profesional Adolfo López Mateos, CP 07738 CDMX (Mexico); Juárez-Amaro, Raúl [Universidad Tecnológica de la Mixteca, Apdo. Postal 71, Huajuapan de León, Oax., 69000 (Mexico); Aguilar-Loreto, Omar [Departamento de Ingenierías, CUCSur, Universidad de Guadalajara CP 48900, Autlán de Navarro, Jal. (Mexico); Moya-Cessa, Héctor M., E-mail: hmmc@inaoep.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840 (Mexico)
2017-04-15
We study the atom–field interaction when the field is in a mixture of coherent states. We show that in this case it is possible to calculate analytically the field entropy for times of the order of twice the collapse time. Such analytical results are done with the help of numerical analysis. We also give an expression in terms of Chebyshev polynomials for power of density matrices. - Highlights: • We calculate the field entropy for times of the order of twice the collapse time. • We give a relation between powers of the density matrices of the subsystems. • Entropy operators for both subsystems are obtained.
A Bernstein type result for special Lagrangian submanifolds
Tsui, Mao-Pei; Wang, Mu-Tao
2002-01-01
Let \\Sigma be a complete minimal Lagrangian submanifold of \\C^n. We identify regions in the Grassmannian of Lagrangian subspaces so that whenever the image of the Gauss map of \\Sigma lies in one of these regions, then \\Sigma is an affine space.
The Lagrangians and Hamiltonians of damped coupled vibrations
International Nuclear Information System (INIS)
Ding Guangtao; Gan Huilan; Zheng Xianfeng; Cui Zhifeng
2012-01-01
In this paper, the analytical mechanization of two kinds of damped coupled vibrations is studied. First, by use of coordinate transformations the equations of motion are transformed into the self-ad- joint form. Secondly, the Lagrangians are obtained according to Engels method. Finally the Lagrangians and Hamiltonians of the original equations are deduced by using the inverse transformation. (authors)
Lagrangian formalism for constrained systems. 2. Gauge symmetries
International Nuclear Information System (INIS)
Pyatov, P.N.
1990-01-01
Using the Lagrangian formalism for constrained systems all gauge symmetries peculiar for a given Lagrangian system and in establishing the relation between them and the constraints are constructed. Besides, the question about the possible dependence of gauge transformations on accelerations and other higher order time derivatives of coordinates is clarified. 14 refs
International Nuclear Information System (INIS)
Sokolov, S.N.; Tret'yak, V.I.
1985-01-01
The Lagrangian relativistic theory in the two-dimensional space-time in the front form of dynamics is formulated and its connections with the predictive mechanics, with the Hamiltonian description, and with the Fokker-type action theory are established. The relations are found in a closed form without using formal expansions. The existence of mathematical limitations on a magnitude of Lagrangians of two-particle interactions is shown
Polarization of electron-positron vacuum by strong magnetic field in theory with fundamental mass
International Nuclear Information System (INIS)
Kadyshevskij, V.G.; ); Rodionov, V.N.
2003-01-01
The exact Lagrangian function of the intensive constant magnetic field, replacing the Heisenberg-Euler Lagrangian in the traditional quantum electrodynamics, is calculated within the frames of the theory with the fundamental mass in the single-loop approximation. It is established that the obtained generalization of the Lagrangian function is substantial by arbitrary values of the magnetic field. The calculated Lagrangian in the weak field coincides with the known Heisenberg-Euler formula. The Lagrangian dependence on the field in the extremely strong fields completely disappears and it tends in this area to the threshold value, which is determined by the fundamental and lepton mass ratio [ru
Inductive approach towards a phenomenologically more satisfactory unififed field theory
International Nuclear Information System (INIS)
Rayski, J.; Rayski, J.M. Jnr.
1985-01-01
A unified field theory constituting a fusion of the ideas of supersymmetries with general relativity and gauge theory is investigated. A Lagrangian formalism is constructed step by step; the last step consists in a marriage with Kaluza's idea of a multidimensional space-time. Our aim is not to achieve a full local supersymmetry in eleven dimensions, but rather to attain a compromise with the symmetries of the fundamental interactions either known phenomenologically, or only suspected to exist in nature
Energy-momentum tensor in the quantum field theory
International Nuclear Information System (INIS)
Azakov, S.I.
1977-01-01
An energy-momentum tensor in the scalar field theory is built. The tensor must satisfy the finiteness requirement of the Green function. The Green functions can always be made finite by renormalizations in the S-matrix by introducing counter terms into the Hamiltonian (or Lagrangian) of the interaction. Such a renormalization leads to divergencies in the Green functions. Elimination of these divergencies requires the introduction of new counter terms, which must be taken into account in the energy-momentum tensor
Hubbard interaction in the arbitrary Chern number insulator: A mean-field study
Energy Technology Data Exchange (ETDEWEB)
Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Cao, Jie [College of Science, Hohai University, Nanjing 210098 (China)
2017-05-10
The low-dimensional electron gas owing topological property has attracted many interests recently. In this work, we study the influence of the electron-electron interaction on the arbitrary Chern number insulator. Using the mean-field method, we approximately solve the Hubbard model in the half-filling case and obtain the phase diagrams in different parametric spaces. We further verify the results by calculating the entanglement spectrum, which contains C chiral modes and corresponds to a real space partitioning. - Highlights: • In this work, we made a mean-field study of the Hubbard interaction in the arbitrary Chern number insulator. • We point out that how the Zeeman splitting, the local magnetization and the Hubbard interaction are intimately related. • The mean-field phase diagrams are obtained in different parametric spaces. • The Chern number phase is demonstrated by calculating the entanglement spectrum.
Interacting fields of arbitrary spin and N > 4 supersymmetric self-dual Yang-Mills equations
International Nuclear Information System (INIS)
Devchand, Ch.; Ogievetsky, V.
1996-06-01
We show that the self-dual Yang-Mills equations afford supersymmetrization to systems of equations invariant under global N-extended super-Poincare transformations for arbitrary values of N, without the limitation (N ≤ 4) applicable to standard non-self-dual Yang-Mills theories. These systems of equations provide novel classically consistent interactions for vector supermultiplets containing fields of spin up to N-2/2. The equations of motion of the component fields of spin greater than 1/2 are interacting variants of the first-order Dirac-Fierz equations for zero rest-mass fields of arbitrary spin. The interactions are governed by conserved currents which are constructed by an iterative procedure. In (arbitrarily extended) chiral superspace, the equations of motion for the (arbitrarily large) self-dual supermultiplet are shown to be completely equivalent to the set of algebraic supercurvature defining the self-dual superconnection. (author). 25 refs
High-quality and interactive animations of 3D time-varying vector fields.
Helgeland, Anders; Elboth, Thomas
2006-01-01
In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.
Quantum theory for magnons and phonons interactions under time-varying magnetic fields
International Nuclear Information System (INIS)
Guerreiro, S.C.
1971-01-01
The magnon-fonon interaction in a ferromagnetic material submited to a time-varying magnetic field is studied by quantum methods. This problem has already been solved by semi-classical methods, and one of its results is that under certain conditions a state of lattice vibrations may be completely converted into spin oscillations. The main proporties of magnetoelastic waves in static magnetic fields and extend the quantum treatment for the time varying magnetic field case is revised. Field operators whose equations of motion are analogous to the classical ones are introduced. Their equations, which appear as a linear system of first order coupled equations, are converted into equations for complex functions by an expansion of the field operators in a time t as linear combinations of the same operators in a time t 0 prior to the variation of the magnetic field. The quantity g vector obtained from the classical solution is quantized and shown to be the linear momentum density of the magnetoelastic system, the quantum field spin density operator is deduced for the two interacting fields, and finally the results are used to study the magnetization and lattice displacement vector fields in the case of a system described by a coherent state of one of its normal modes
Role of particle masses in the magnetic field generation driven by the parity violating interaction
Energy Technology Data Exchange (ETDEWEB)
Dvornikov, Maxim, E-mail: maxdvo@izmiran.ru [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), 142190 Troitsk, Moscow (Russian Federation); Physics Faculty, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk (Russian Federation); II. Institute for Theoretical Physics, University of Hamburg, 149 Luruper Chaussee, D-22761 Hamburg (Germany)
2016-09-10
Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show that the induced current is vanishing in both approaches leading to the zero contribution of massive particles to the generated magnetic field. We discuss the implication of our results for the problem of the magnetic field generation in compact stars.
Numerical methods for Eulerian and Lagrangian conservation laws
Després, Bruno
2017-01-01
This book focuses on the interplay between Eulerian and Lagrangian conservation laws for systems that admit physical motivation and originate from continuum mechanics. Ultimately, it highlights what is specific to and beneficial in the Lagrangian approach and its numerical methods. The two first chapters present a selection of well-known features of conservation laws and prepare readers for the subsequent chapters, which are dedicated to the analysis and discretization of Lagrangian systems. The text is at the frontier of applied mathematics and scientific computing and appeals to students and researchers interested in Lagrangian-based computational fluid dynamics. It also serves as an introduction to the recent corner-based Lagrangian finite volume techniques.
Jacobi equations as Lagrange equations of the deformed Lagrangian
International Nuclear Information System (INIS)
Casciaro, B.
1995-03-01
We study higher-order variational derivatives of a generic Lagrangian L 0 = L 0 (t,q,q). We introduce two new Lagrangians, L 1 and L 2 , associated to the first and second-order deformations of the original Lagrangian L 0 . In terms of these Lagrangians, we are able to establish simple relations between the variational derivatives of different orders of a Lagrangian. As a consequence of these relations the Euler-Lagrange and the Jacobi equations are obtained from a single variational principle based on L 1 . We can furthermore introduce an associated Hamiltonian H 1 = H 1 (t,q,q radical,η,η radical) with η equivalent to δq. If L 0 is independent of time then H 1 is a conserved quantity. (author). 15 refs
Tracking Lagrangian trajectories in position–velocity space
International Nuclear Information System (INIS)
Xu, Haitao
2008-01-01
Lagrangian particle-tracking algorithms are susceptible to intermittent loss of particle images on the sensors. The measured trajectories are often interrupted into short segments and the long-time Lagrangian statistics are difficult to obtain. We present an algorithm to connect the segments of Lagrangian trajectories from common particle-tracking algorithms. Our algorithm tracks trajectory segments in the six-dimensional position and velocity space. We describe the approach to determine parameters in the algorithm and demonstrate the validity of the algorithm with data from numerical simulations and the improvement of long-time Lagrangian statistics on experimental data. The algorithm has important applications in measurements with high particle seeding density and in obtaining multi-particle Lagrangian statistics
International Nuclear Information System (INIS)
Sivan, N.; Levit, S.
1992-01-01
We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)