WorldWideScience

Sample records for interaction component models

  1. Interactions between photodegradation components

    Directory of Open Access Journals (Sweden)

    Abdollahi Yadollah

    2012-09-01

    Full Text Available Abstract Background The interactions of p-cresol photocatalytic degradation components were studied by response surface methodology. The study was designed by central composite design using the irradiation time, pH, the amount of photocatalyst and the p-cresol concentration as variables. The design was performed to obtain photodegradation % as actual responses. The actual responses were fitted with linear, two factor interactions, cubic and quadratic model to select an appropriate model. The selected model was validated by analysis of variance which provided evidences such as high F-value (845.09, very low P-value (2 = 0.999, adjusted R-squared (Radj2 = 0.998, predicted R-squared (Rpred2 = 0.994 and the adequate precision (95.94. Results From the validated model demonstrated that the component had interaction with irradiation time under 180 min of the time while the interaction with pH was above pH 9. Moreover, photocatalyst and p-cresol had interaction at minimal amount of photocatalyst (p-cresol. Conclusion These variables are interdependent and should be simultaneously considered during the photodegradation process, which is one of the advantages of the response surface methodology over the traditional laboratory method.

  2. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  3. Three-component model of solar wind--interstellar medium interaction: some numerical results

    International Nuclear Information System (INIS)

    Baranov, V.; Ermakov, M.; Lebedev, M.

    1981-01-01

    A three-component (electrons, protons, H atoms) model for the interaction between the local interstellar medium and the solar wind is considered. A numerical analysis has been performed to determine how resonance charge exchange in interstellar H atoms that have penetrated the solar wind would affect the two-shock model developed previously by Baranov et al. In particular, if n/sub Hinfinity//n/sub e/infinity>10 (n/sub Hinfinity/, n/sub e/infinity denote the number density of H atoms and electrons in the local ISM) the inner shock may approach the sun as closely as the outer planetary orbits

  4. Verification of the component accuracy prediction obtained by physical modelling and the elastic simulation of the die/component interaction

    DEFF Research Database (Denmark)

    Ravn, Bjarne Gottlieb; Andersen, Claus Bo; Wanheim, Tarras

    2001-01-01

    There are three demands on a component that must undergo a die-cavity elasticity analysis. The demands to the product are specified as: (i) to be able to measure the loading profile which results in elestic die-cavity deflections; (ii) to be able to compute the elestic deflections using FE; (iii...

  5. Attractive component in the nucleon-nucleon interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Nyman, E.M.; Riska, D.O.

    1986-01-01

    The spin- and isospin-independent part of the nulceon-nucleon interaction in the Skyrme model is shown to contain a weak attractive intermediate-range term in addition to the well-known short-range repulsion. The attraction is a consequence of the rotational degree of freedom of a skyrmion in the presence of the field of another one, and can be thought of as an enhancement of the moment of inertia of each skyrmion. While the attractive term is dominant at large distances it is not sufficiently strong for nuclear binding. (orig.)

  6. Explanation components as interactive tools

    Energy Technology Data Exchange (ETDEWEB)

    Wahlster, W.

    1983-01-01

    The ability to explain itself is probably the most important criterion of the user-friendliness of interactive systems. Explanation aids in the form of simple help functions do not meet this criterion. The reasons for this are outlined. More promising is an explanation component which can give the user intelligible and context-oriented explanations. The essential requirement for this is the development of knowledge-based interactive systems using artificial intelligence methods and techniques. The authors report on experiences with the development of explanation components, in particular a number of examples from the HAM-ANS project. 12 references.

  7. Gelation in a model 1-component system with adhesive hard-sphere interactions

    Science.gov (United States)

    Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman

    2012-02-01

    Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).

  8. Condition Prediction Model and Component Interaction Fault Tree for Heat Distribution Systems

    National Research Council Canada - National Science Library

    Marsh, Charles

    2001-01-01

    .... Frequent, detailed inspection is largely impractical, and components are subject to complex, obscure interdependencies that can create seemingly unrelated distresses virtually anywhere in the system...

  9. I. A model for the magnetic equation of state of liquid 3He. II. An induced interaction model for a two-component Fermi liquid

    International Nuclear Information System (INIS)

    Sanchez-Castro, C.R.

    1988-01-01

    This dissertation is divided in six chapters. Chapter 1 is an introduction to the rest of the dissertation. In it, the author presents the different models for the magnetic equation state of liquid 3 He, a derivation of the induced interaction equations for a one component Fermi liquid, and discuss the basic hamiltonian describing the heavy fermion compounds. In Chapter 2 and Chapter 3, he presents a complete discussion of the thermodynamics and Landau theory of a spin polarized Fermi liquid. A phenomenological model is then developed to predict the polarization dependence of the longitudinal Landau parameters in liquid 3 He. This model predicts a new magnetic equation of state and the possibility of liquid 3 He being 'nearly metamagnetic' at high pressures. Chapter 4 contains a microscopic calculation of the magnetic field dependence of the Landau parameters in a strongly correlated Fermi system using the induced interaction model. The system he studied consists of a single component Fermi liquid with parabolic energy bands, and a large on-site repulsive interaction. In Chapter 5, he presents a complete discussion of the Landau theory of a two component Fermi liquid. Then, he generalizes the induced interaction equations to calculate Landau parameters and scattering amplitudes for an arbitrary, spin polarized, two component Fermi liquid. The resulting equations are used to study a model for the heavy fermion Fermi liquid state: a two band electronic system with an antiferromagnetic interaction between the two bands. Chapter 6 contains the concluding remarks of the dissertation

  10. The permeability characteristics and interaction of main components from Si-Ni-San in a MDCK epithelial cell monolayer model.

    Science.gov (United States)

    Chen, Ruonan; Shen, Chenlin; Xu, Qingqing; Liu, Yaru; Li, Bo; Huang, Cheng; Ma, Taotao; Meng, Xiaoming; Wu, Maomao; Li, Jun

    2017-07-26

    1. Si-Ni-San (SNS) possesses extensive therapeutic effects, however, the extent to which main components are absorbed and the mechanisms involved are controversial. 2. In this study, MDCK cell model was used to determine the permeability characteristics and interaction between the major components of Si-Ni-San, including saikosaponin a, paeoniflorin, naringin and glycyrrhizic acid. 3. The transport of the major components was concentration-dependent in both directions. Moreover, the transport of paeoniflorin, naringin and glycyrrhizic acid was significantly reduced at 4°C or in the presence of NaN3. Additionally, the efflux of paeoniflorin and naringin were apparently reduced in the presence of P-gp inhibitor verapamil. The transport of glycyrrhizic acid was clearly inhibited by the inhibitors of MRP2, indicating that MRP2 may be involved in the transport of glycyrrhizic acid. However, the results indicated that saikosaponin a was absorbed mainly by passive diffusion. Furthermore, the combined incubation of four major components had a powerful sorbefacient effect than a single drug used alone which may be regulated by tight junctions. 4. Taken together, our study provides useful information for pharmacological applications of Si-Ni-San and offers new insights into this ancient decoction for further researches, especially in drug synergism.

  11. Influence of electron-phonon interaction on soliton mediated spin-charge conversion effects in two-component polymer model

    International Nuclear Information System (INIS)

    Sergeenkov, S.; Moraes, F.; Furtado, C.; Araujo-Moreira, F.M.

    2010-01-01

    By mapping a Hubbard-like model describing a two-component polymer in the presence of strong enough electron-phonon interactions (κ) onto the system of two coupled nonlinear Schroedinger equations with U(2) symmetry group, some nontrivial correlations between topological solitons mediated charge Q and spin S degrees of freedom are obtained. Namely, in addition to a charge fractionalization and reentrant like behavior of both Q(κ) and S(κ), the model also predicts a decrease of soliton velocity with κ as well as spin-charge conversion effects which manifest themselves through an explicit S(Q,Ω) dependence (with Ω being a mixing angle between spin-up and spin-down electron amplitudes). A possibility to observe the predicted effects in low-dimensional systems with charge and spin soliton carriers is discussed.

  12. Component Composition Using Feature Models

    DEFF Research Database (Denmark)

    Eichberg, Michael; Klose, Karl; Mitschke, Ralf

    2010-01-01

    interface description languages. If this variability is relevant when selecting a matching component then human interaction is required to decide which components can be bound. We propose to use feature models for making this variability explicit and (re-)enabling automatic component binding. In our...... approach, feature models are one part of service specifications. This enables to declaratively specify which service variant is provided by a component. By referring to a service's variation points, a component that requires a specific service can list the requirements on the desired variant. Using...... these specifications, a component environment can then determine if a binding of the components exists that satisfies all requirements. The prototypical environment Columbus demonstrates the feasibility of the approach....

  13. Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2017-01-01

    Intraocular Pressure (IOP) is defined as the pressure of aqueous in the eye. It has been reported that the normal range of IOP should be within the 10-20 mmHg with an average of 15.50 mmHg among the ophthalmologists. Keratoconus is an anti-inflammatory eye disorder that debilitated cornea unable to reserve the normal structure contrary to the IOP in the eye. Consequently, the cornea would bulge outward and invoke a conical shape following by distorted vision. In addition, it is known that any alterations in the structure and composition of the lens and cornea would exceed a change of the eye ball as well as the mechanical and optical properties of the eye. Understanding the precise alteration of the eye components' stresses and deformations due to different IOPs could help elucidate etiology and pathogenesis to develop treatments not only for keratoconus but also for other diseases of the eye. In this study, at three different IOPs, including 10, 20, and 30 mmHg the stresses and deformations of the human eye components were quantified using a Three-Dimensional (3D) computational Fluid-Structure Interaction (FSI) model of the human eye. The results revealed the highest amount of von Mises stress in the bulged region of the cornea with 245 kPa at the IOP of 30 mmHg. The lens was also showed the von Mises stress of 19.38 kPa at the IOPs of 30 mmHg. In addition, by increasing the IOP from 10 to 30 mmHg, the radius of curvature in the cornea and lens was increased accordingly. In contrast, the sclera indicated its highest stress at the IOP of 10 mmHg due to over pressure phenomenon. The variation of IOP illustrated a little influence in the amount of stress as well as the resultant displacement of the optic nerve. These results can be used for understanding the amount of stresses and deformations in the human eye components due to different IOPs as well as for clarifying significant role of IOP on the radius of curvature of the cornea and the lens.

  14. Developing a Model Component

    Science.gov (United States)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  15. Interaction between main components in wind farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Koldby, Erik

    and the simplicity of the measurement methods using the device makes it a good candidate for performing black-box modelling of multiports whenever such models are not available from the manufacturers. Parametric variation method developed for EMT simulations in ATP-EMTP is a good tool for performing large...... with Frequency Domain Severity Factor proved to be a robust tool in assessing stresses on electric components arising from transient phenomena in offshore wind farms, including the voltage magnitude and frequency of oscillations. Quarter-wave resonance frequency is a good approximation of resonance frequency...... as well as performing parametric variation studies. Methods and tools were developed and shown to perform and estimate the severity of a potential mid- and high- frequency interaction between electric components in OWFs by robust sensitivity analysis in commercial EMT simulation tool. Performing...

  16. A two-component model of host–parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest contro

    NARCIS (Netherlands)

    Grasman, J.; Herwaarden, van O.A.; Hemerik, L.; Lenteren, van J.C.

    2001-01-01

    A two-component differential equation model is formulated for a host–parasitoid interaction. Transient dynamics and population crashes of this system are analysed using differential inequalities. Two different cases can be distinguished: either the intrinsic growth rate of the host population is

  17. Dark degeneracy and interacting cosmic components

    International Nuclear Information System (INIS)

    Aviles, Alejandro; Cervantes-Cota, Jorge L.

    2011-01-01

    We study some properties of the dark degeneracy, which is the fact that what we measure in gravitational experiments is the energy-momentum tensor of the total dark sector, and any split into components (as in dark matter and dark energy) is arbitrary. In fact, just one dark fluid is necessary to obtain exactly the same cosmological and astrophysical phenomenology as the ΛCDM model. We work explicitly the first-order perturbation theory and show that beyond the linear order the dark degeneracy is preserved under some general assumptions. Then we construct the dark fluid from a collection of interacting fluids. Finally, we try to break the degeneracy with a general class of couplings to baryonic matter. Nonetheless, we show that these interactions can also be understood in the context of the ΛCDM model as between dark matter and baryons. For this last investigation we choose two independent parametrizations for the interactions, one inspired by electromagnetism and the other by chameleon theories. Then, we constrain them with a joint analysis of CMB and supernovae observational data.

  18. Two-component dressed-bag model for NN interaction: deuteron structure and phase shifts up to 1 GeV

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Obukhovsky, I.T.; Pomerantsev, V.N.; Faessler, A.

    2002-01-01

    A two-component model is developed for the intermediate-range NN interaction based on a new mechanism with an intermediate symmetric six-quark bag 'dressed' by σ and other fields. To calculate the transition amplitude, the microscopic six-quark shell-model in combination with the 3 P 0 -quark pion production mechanism is used. As a result, an effective energy-dependent NN interaction is constructed. The new quark-meson model for the NN interaction has been demonstrated to result in a new type of NN tensor force at intermediate ranges, which is crucially important for the treatment of tensor mixing at intermediate energies. The suggested model is able to describe NN phase shifts in a broad energy range from low energy up to 1 GeV, and the deuteron structure. The generalization of the model results in new spin-orbit 2N and 3N forces and new meson-exchange currents induced by intermediate dressed bag components, and also in the enhancement of a collective σ-field in nuclei. (author)

  19. Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Pedersen, Thomas

    2015-01-01

    This paper presents an offline approach to analyzing feature interactions in embedded systems. The approach consists of a systematic process to gather the necessary information about system components and their models. The model is first specified in terms of predicates, before being refined to t...... to timed automata. The consistency of the model is verified at different development stages, and the correct linkage between the predicates and their semantic model is checked. The approach is illustrated on a use case from home automation....

  20. Component Reification in Systems Modelling

    DEFF Research Database (Denmark)

    Bendisposto, Jens; Hallerstede, Stefan

    When modelling concurrent or distributed systems in Event-B, we often obtain models where the structure of the connected components is specified by constants. Their behaviour is specified by the non-deterministic choice of event parameters for events that operate on shared variables. From a certain......? These components may still refer to shared variables. Events of these components should not refer to the constants specifying the structure. The non-deterministic choice between these components should not be via parameters. We say the components are reified. We need to address how the reified components get...... reflected into the original model. This reflection should indicate the constraints on how to connect the components....

  1. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate...... in the immunological defense system and could be involved in the pathological process of amyloidosis that leads to formation of amyloid deposits seen in different types of tissues. Udgivelsesdato: 2000-Jan-14...

  2. Components, processes and interactions in the biosphere

    International Nuclear Information System (INIS)

    2010-12-01

    This report describes the processes and interactions between components in the biosphere that may be important in a safety assessment for radioactive waste disposal. The processes are general, i.e. they can be used in all safety analyses for underground repositories and are not specific to a particular method or location. Processes related to the geosphere and specific repository types (e.g. the KBS-3 method) can be found in /Skagius et al. 1995, SKB 2001, 2006, 2010a/. This report describes a biosphere interaction matrix that has been used in support of SR-Site and that can be used in future safety assessments. The work of defining and characterising processes in the biosphere is ongoing and many persons from different disciplines have been involved in the identification and characterisation of processes

  3. Components, processes and interactions in the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report describes the processes and interactions between components in the biosphere that may be important in a safety assessment for radioactive waste disposal. The processes are general, i.e. they can be used in all safety analyses for underground repositories and are not specific to a particular method or location. Processes related to the geosphere and specific repository types (e.g. the KBS-3 method) can be found in /Skagius et al. 1995, SKB 2001, 2006, 2010a/. This report describes a biosphere interaction matrix that has been used in support of SR-Site and that can be used in future safety assessments. The work of defining and characterising processes in the biosphere is ongoing and many persons from different disciplines have been involved in the identification and characterisation of processes

  4. Accounting for components interactions in the differential importance measure

    International Nuclear Information System (INIS)

    Zio, Enrico; Podofillini, Luca

    2006-01-01

    A limitation of the importance measures (IMs) currently used in reliability and risk analyses is that they rank only individual components or basic events whereas they are not directly applicable to combinations or groups of components or basic events. To partially overcome this limitation, recently, the differential importance measure (DIM), has been introduced for use in risk-informed decision making. The DIM is a first-order sensitivity measure that ranks the parameters of the risk model according to the fraction of total change in the risk that is due to a small change in the parameters' values, taken one at a time. However, it does not account for the effects of interactions among components. In this paper, a second-order extension of the DIM, named DIM II , is proposed for accounting of the interactions of pairs of components when evaluating the change in system performance due to changes of the reliability parameters of the components. A numerical application is presented in which the informative contents of DIM and DIM II are compared. The results confirm that in certain cases when second-order interactions among components are accounted for, the importance ranking of the components may differ from that produced by a first-order sensitivity measure

  5. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    We recently reported the identification of human calumenin, a novel Ca(2+) binding, transformation-sensitive and secreted protein [Vorum et al. (1998) Biochim. Biophys. Acta 1386, 121-131; Vorum et al. (1999) Exp. Cell Res. 248, 473-481] belonging to the family of multiple EF-hand proteins...... with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate...... in the immunological defense system and could be involved in the pathological process of amyloidosis that leads to formation of amyloid deposits seen in different types of tissues. Udgivelsesdato: 2000-Jan-14...

  6. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd

  7. Binding interactions between suberin monomer components and pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Olivella, M.À., E-mail: angels.olivella@udg.edu [Department of Chemical Engineering, Escola Politècnica Superior, Universitat de Girona, Maria Aurèlia Capmany, 61, 17071 Girona (Spain); Bazzicalupi, C.; Bianchi, A. [Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino (Italy); Río, J.C. del [Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 1052, 41080 Seville (Spain); Fiol, N.; Villaescusa, I. [Department of Chemical Engineering, Escola Politècnica Superior, Universitat de Girona, Maria Aurèlia Capmany, 61, 17071 Girona (Spain)

    2015-09-15

    Understanding the role of biomacromolecules and their interactions with pollutants is a key for elucidating the sorption mechanisms and making an accurate assessment of the environmental fate of pollutants. The knowledge of the sorption properties of the different constituents of these biomacromolecules may furnish a significant contribution to this purpose. Suberin is a very abundant biopolymer in higher plants. In this study, suberin monomers isolated from cork were analyzed by thermally-assisted methylation with tetramethylammonium hydroxide (TMAH) in a pyrolysis unit coupled to gas chromatography–mass spectrometry (GC/MS). The isolated monomer mixture was used to study the sorption of three pesticides (isoproturon, methomyl and oxamyl). The modes of pesticide–sorbent interactions were analyzed by means of two modeling calculations, the first one representing only the mixture of suberin monomers used in the sorption study, and the second one including glycerol to the mixture of suberin monomers, as a building block of the suberin molecule. The results indicated that the highest sorption capacity exhibited by the sorbent was for isoproturon (33%) being methomyl and oxamyl sorbed by the main suberin components to a lesser extent (3% and < 1%, respectively). In addition to van der Waals interactions with the apolar region of sorbent and isoproturon, modeling calculations evidenced the formation of a hydrogen bond between the isoproturon NH group and a carboxylic oxygen atom of a suberin monomer. In the case of methomyl and oxamyl only weak van der Waals interactions stabilize the pesticide–sorbent adducts. The presence of glycerol in the model provoked significant changes in the interactions with isoproturon and methomyl. - Highlights: • Suberin has low affinity to retain pesticides of aliphatic character. • Suberin has a moderate affinity to adsorb isoproturon. • Modeling calculations show that apolar portion of suberin interacts with isoproturon.

  8. Binding interactions between suberin monomer components and pesticides

    International Nuclear Information System (INIS)

    Olivella, M.À.; Bazzicalupi, C.; Bianchi, A.; Río, J.C. del; Fiol, N.; Villaescusa, I.

    2015-01-01

    Understanding the role of biomacromolecules and their interactions with pollutants is a key for elucidating the sorption mechanisms and making an accurate assessment of the environmental fate of pollutants. The knowledge of the sorption properties of the different constituents of these biomacromolecules may furnish a significant contribution to this purpose. Suberin is a very abundant biopolymer in higher plants. In this study, suberin monomers isolated from cork were analyzed by thermally-assisted methylation with tetramethylammonium hydroxide (TMAH) in a pyrolysis unit coupled to gas chromatography–mass spectrometry (GC/MS). The isolated monomer mixture was used to study the sorption of three pesticides (isoproturon, methomyl and oxamyl). The modes of pesticide–sorbent interactions were analyzed by means of two modeling calculations, the first one representing only the mixture of suberin monomers used in the sorption study, and the second one including glycerol to the mixture of suberin monomers, as a building block of the suberin molecule. The results indicated that the highest sorption capacity exhibited by the sorbent was for isoproturon (33%) being methomyl and oxamyl sorbed by the main suberin components to a lesser extent (3% and < 1%, respectively). In addition to van der Waals interactions with the apolar region of sorbent and isoproturon, modeling calculations evidenced the formation of a hydrogen bond between the isoproturon NH group and a carboxylic oxygen atom of a suberin monomer. In the case of methomyl and oxamyl only weak van der Waals interactions stabilize the pesticide–sorbent adducts. The presence of glycerol in the model provoked significant changes in the interactions with isoproturon and methomyl. - Highlights: • Suberin has low affinity to retain pesticides of aliphatic character. • Suberin has a moderate affinity to adsorb isoproturon. • Modeling calculations show that apolar portion of suberin interacts with isoproturon.

  9. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  10. Protein-Ligand Empirical Interaction Components for Virtual Screening.

    Science.gov (United States)

    Yan, Yuna; Wang, Weijun; Sun, Zhaoxi; Zhang, John Z H; Ji, Changge

    2017-08-28

    A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.

  11. Integrating environmental component models. Development of a software framework

    NARCIS (Netherlands)

    Schmitz, O.

    2014-01-01

    Integrated models consist of interacting component models that represent various natural and social systems. They are important tools to improve our understanding of environmental systems, to evaluate cause–effect relationships of human–natural interactions, and to forecast the behaviour of

  12. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  13. An analytical model for interactive failures

    International Nuclear Information System (INIS)

    Sun Yong; Ma Lin; Mathew, Joseph; Zhang Sheng

    2006-01-01

    In some systems, failures of certain components can interact with each other, and accelerate the failure rates of these components. These failures are defined as interactive failure. Interactive failure is a prevalent cause of failure associated with complex systems, particularly in mechanical systems. The failure risk of an asset will be underestimated if the interactive effect is ignored. When failure risk is assessed, interactive failures of an asset need to be considered. However, the literature is silent on previous research work in this field. This paper introduces the concepts of interactive failure, develops an analytical model to analyse this type of failure quantitatively, and verifies the model using case studies and experiments

  14. Modelling Livestock Component in FSSIM

    NARCIS (Netherlands)

    Thorne, P.J.; Hengsdijk, H.; Janssen, S.J.C.; Louhichi, K.; Keulen, van H.; Thornton, P.K.

    2009-01-01

    This document summarises the development of a ruminant livestock component for the Farm System Simulator (FSSIM). This includes treatments of energy and protein transactions in ruminant livestock that have been used as a basis for the biophysical simulations that will generate the input production

  15. Modeling the degradation of nuclear components

    International Nuclear Information System (INIS)

    Stock, D.; Samanta, P.; Vesely, W.

    1993-01-01

    This paper describes component level reliability models that use information on degradation to predict component reliability, and which have been used to evaluate different maintenance and testing policies. The models are based on continuous time Markov processes, and are a generalization of reliability models currently used in Probabilistic Risk Assessment. An explanation of the models, the model parameters, and an example of how these models can be used to evaluate maintenance policies are discussed

  16. Model reduction by weighted Component Cost Analysis

    Science.gov (United States)

    Kim, Jae H.; Skelton, Robert E.

    1990-01-01

    Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called 'component cost' to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. A reduced-order model of the given system may be obtained by deleting those components that have the smallest component costs. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. Closed-form analytical expressions of component costs are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems. A numerical example for MINIMAST system is presented.

  17. Models for integrated components coupled with their EM environment

    NARCIS (Netherlands)

    Ioan, D.; Schilders, W.H.A.; Ciuprina, G.; Meijs, van der N.P.; Schoenmaker, W.

    2008-01-01

    Abstract: Purpose – The main aim of this study is the modelling of the interaction of on-chip components with their electromagnetic environment. Design/methodology/approach – The integrated circuit is decomposed in passive and active components interconnected by means of terminals and connectors

  18. The interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.; Arima, A.

    1987-01-01

    The book gives an account of some of the properties of the interacting boson model. The model was introduced in 1974 to describe in a unified way the collective properties of nuclei. The book presents the mathematical techniques used to analyse the structure of the model. The mathematical framework of the model is discussed in detail. The book also contains all the formulae that have been developed throughout the years to account for collective properties of nuclei. These formulae can be used by experimentalists to compare their data with the predictions of the model. (U.K.)

  19. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  20. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI......). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...

  1. Functional Modeling of Neural-Glia Interaction

    DEFF Research Database (Denmark)

    Postnov, D.E.; Brazhe, N.A.; Sosnovtseva, Olga

    2012-01-01

    Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network.......Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network....

  2. Interaction between Science Teaching Orientation and Pedagogical Content Knowledge Components

    Science.gov (United States)

    Demirdögen, Betül

    2016-01-01

    The purpose of this case study is to delve into the complexities of how preservice science teachers' science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the…

  3. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  4. Tweaking the Four-Component Model

    Science.gov (United States)

    Curzer, Howard J.

    2014-01-01

    By maintaining that moral functioning depends upon four components (sensitivity, judgment, motivation, and character), the Neo-Kohlbergian account of moral functioning allows for uneven moral development within individuals. However, I argue that the four-component model does not go far enough. I offer a more accurate account of moral functioning…

  5. Pump Component Model in SPACE Code

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kyoung Doo

    2010-08-01

    This technical report describes the pump component model in SPACE code. A literature survey was made on pump models in existing system codes. The models embedded in SPACE code were examined to check the confliction with intellectual proprietary rights. Design specifications, computer coding implementation, and test results are included in this report

  6. Overview of the model component in ECOCLIM

    DEFF Research Database (Denmark)

    Geels, Camilla; Boegh, Eva; Bendtsen, J

    and atmospheric models. We will use the model system to 1) quantify the potential effects of climate change on ecosystem exchange of GHG and 2) estimate the impacts of changes in management practices including land use change and nitrogen (N) loads. Here the various model components will be introduced...

  7. Interaction of dispersed cubic phases with blood components

    DEFF Research Database (Denmark)

    Bode, J C; Kuntsche, Judith; Funari, S S

    2013-01-01

    The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated. Part...... activity of cubic phases based on monoolein and poloxamer 188, on soy phosphatidylcholine, glycerol dioleate and polysorbate 80 or the parenteral fat emulsion Lipofundin MCT 20%....

  8. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Kruzic, Jamie J [Oregon State Univ., Corvallis, OR (United States); Siegmund, Thomas [Purdue Univ., West Lafayette, IN (United States); Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2018-03-20

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially available finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.

  9. Electromagnetic interactions in relativistic infinite component wave equations

    International Nuclear Information System (INIS)

    Gerry, C.C.

    1979-01-01

    The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group

  10. Identification of genetic components involved in Lotus-endophyte interactions

    DEFF Research Database (Denmark)

    Zgadzaj, Rafal Lukasz

    of growth hormones or nitrogen fixation. However, the genes involved in plant-endophyte interactions and bacterial accomodation within plant tissues are not known. In order to shed some light on such processes, an approach “one host-one endophyte” was chosen. The focus on a single plant species and a single......Endophytes are microorganisms capable of colonising plant tissues without inducing host defense responses. They have a large impact on plants, since they can modulate plant responses to pathogens, herbivores and environmental stress. They can also induce plant growth promotion through synthesis...... bacterial strain aimed at obtaining a reliable and easy to handle system for plant-microsymbiont interaction research. Two different methods were tested for their usefulness in identification of genetic components involved in plant-endophyte interactions. The first method was based on measuring growth...

  11. bioWidgets: data interaction components for genomics.

    Science.gov (United States)

    Fischer, S; Crabtree, J; Brunk, B; Gibson, M; Overton, G C

    1999-10-01

    The presentation of genomics data in a perspicuous visual format is critical for its rapid interpretation and validation. Relatively few public database developers have the resources to implement sophisticated front-end user interfaces themselves. Accordingly, these developers would benefit from a reusable toolkit of user interface and data visualization components. We have designed the bioWidget toolkit as a set of JavaBean components. It includes a wide array of user interface components and defines an architecture for assembling applications. The toolkit is founded on established software engineering design patterns and principles, including componentry, Model-View-Controller, factored models and schema neutrality. As a proof of concept, we have used the bioWidget toolkit to create three extendible applications: AnnotView, BlastView and AlignView.

  12. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components...... in a wind turbine experience highly dynamic and time-varying loads. These components may fail due to wear or fatigue, and this can lead to unplanned shutdown repairs that are very costly. The design by deterministic methods using safety factors is generally unable to account for the many uncertainties. Thus......, a reliability assessment should be based on probabilistic methods where stochastic modeling of failures is performed. This thesis focuses on probabilistic models and the stochastic modeling of the fatigue life of the wind turbine drivetrain. Hence, two approaches are considered for stochastic modeling...

  13. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e + e - storage ring will be included

  14. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.; Wonka, Peter; Mueller, P.

    2015-01-01

    that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify

  15. A principal components model of soundscape perception.

    Science.gov (United States)

    Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta

    2010-11-01

    There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.

  16. Thermochemical modelling of multi-component systems

    International Nuclear Information System (INIS)

    Sundman, B.; Gueneau, C.

    2015-01-01

    Computational thermodynamic, also known as the Calphad method, is a standard tool in industry for the development of materials and improving processes and there is an intense scientific development of new models and databases. The calculations are based on thermodynamic models of the Gibbs energy for each phase as a function of temperature, pressure and constitution. Model parameters are stored in databases that are developed in an international scientific collaboration. In this way, consistent and reliable data for many properties like heat capacity, chemical potentials, solubilities etc. can be obtained for multi-component systems. A brief introduction to this technique is given here and references to more extensive documentation are provided. (authors)

  17. Independent Component Analysis in Multimedia Modeling

    DEFF Research Database (Denmark)

    Larsen, Jan

    2003-01-01

    largely refers to text, images/video, audio and combinations of such data. We review a number of applications within single and combined media with the hope that this might provide inspiration for further research in this area. Finally, we provide a detailed presentation of our own recent work on modeling......Modeling of multimedia and multimodal data becomes increasingly important with the digitalization of the world. The objective of this paper is to demonstrate the potential of independent component analysis and blind sources separation methods for modeling and understanding of multimedia data, which...

  18. Interaction of stochastic boundary layer with plasma facing components

    International Nuclear Information System (INIS)

    Nguyen, F.; Ghendrih, P.; Grosman, A.

    1997-01-01

    To alleviate the plasma-wall interaction problems in magnetic confinement devices, a stochastic layer is used at the edge of the Tore Supra tokamak (ergodic divertor). A very important point is to determine the power deposition on the plasma facing components. Two different kinds of transport can be identified in such a configuration: Stochastic transport surrounding the confined plasma, with a random walk process, and scrape-off layer (SOL) like transport, a laminar transport, near the plasma facing components. The laminar regime is investigated in terms of a simple criterion, namely that the power deposition is proportional to the radial penetration of the laminar zone flux tubes over a finite parallel length. The magnetic connection properties of the first wall components are then determined. The connection lengths are quantified with two characteristic scales. The larger corresponds to one poloidal turn and appears to be the characteristic parallel length for laminar transport. A field line tracing code MASTOC (magnetic stochastic configuration) is used to computer the complex topology and the statistics of the connection in the real tokamak geometry. The numerical simulations are then compared with the experimental heat deposition on the modules and neutralizer plates of the Tore Supra ergodic divertor. Good agreement is found. Further evidence of laminar transport is also provided by the tangential view of such structures revealed from H α structures in detached plasma experiments. (author). 27 refs, 14 figs

  19. PCA: Principal Component Analysis for spectra modeling

    Science.gov (United States)

    Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas

    2012-07-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

  20. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos

    2012-07-01

    We present an approach to synthesizing shapes from complex domains, by identifying new plausible combinations of components from existing shapes. Our primary contribution is a new generative model of component-based shape structure. The model represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation that can be effectively learned without supervision from a set of compatibly segmented shapes. We evaluate the model on a number of shape datasets with complex structural variability and demonstrate its application to amplification of shape databases and to interactive shape synthesis. © 2012 ACM 0730-0301/2012/08-ART55.

  1. The interaction between bitumen matrix and chemical components of radioactive wastes of WWER type

    International Nuclear Information System (INIS)

    Selucky, P.; Sazavsky, P.; Peka, V.; Krupka, M.

    2000-01-01

    The interaction between bitumen matrix and chemical components of WWER type radioactive wastes was studied. So called ''cold'' model bitumen products were prepared and compared with real products using macroDTA method. On the basis of obtained curves, the evaluation of bitumen product fire risks was performed with the aim to minimize risks of bituminization process. (authors)

  2. Lunar dust transport and potential interactions with power system components

    International Nuclear Information System (INIS)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers

  3. Lunar dust transport and potential interactions with power system components

    Energy Technology Data Exchange (ETDEWEB)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers.

  4. Data and information needs for WPP testing and component modeling

    International Nuclear Information System (INIS)

    Kuhn, W.L.

    1987-01-01

    The modeling task of the Waste Package Program (WPP) is to develop conceptual models that describe the interactions of waste package components with their environment and the interactions among waste package components. The task includes development and maintenance of a database of experimental data, and statistical analyses to fit model coefficients, test the significance of the fits, and propose experimental designs. The modeling task collaborates with experimentalists to apply physicochemical principles to develop the conceptual models, with emphasis on the subsequent mathematical development. The reason for including the modeling task in the predominantly experimental WPP is to keep the modeling of component behavior closely associated with the experimentation. Whenever possible, waste package degradation processes are described in terms of chemical reactions or transport processes. The integration of equations for assumed or calculated repository conditions predicts variations with time in the repository. Within the context of the waste package program, the composition and rate of arrival of brine to the waste package are environmental variables. These define the environment to be simulated or explored during waste package component and interactions testing. The containment period is characterized by rapid changes in temperature, pressure, oxygen fugacity, and salt porosity. Brine migration is expected to be most rapid during this period. The release period is characterized by modest and slowly changing temperatures, high pressure, low oxygen fugacity, and low porosity. The need is to define the scenario within which waste package degradation calculations are to be made and to quantify the rate of arrival and composition of the brine. Appendix contains 4 vugraphs

  5. Major component analysis of dynamic networks of physiologic organ interactions

    International Nuclear Information System (INIS)

    Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P

    2015-01-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)

  6. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    Science.gov (United States)

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  7. INTERACTIONAL-GNOSTIC COMPONENT IN THE STRUCTURE OF GENERAL HUMANITARIAN BASIS OF EDUCATION

    OpenAIRE

    Tamara M. ELKANOVA

    2015-01-01

    The interactional-gnostic component of author's conceptual and theoretical model of general humanitarian basis of education provides integration at the level of development of different in the ontologic ways of knowledge of the world, training in associative and figurative thinking, translation from objective external language into internal language of figurative and conceptual models of reality, strengthening of attention to axiological notional content of the received knowledge, formation o...

  8. Pool scrubbing models for iodine components

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K [Battelle Ingenieurtechnik GmbH, Eschborn (Germany)

    1996-12-01

    Pool scrubbing is an important mechanism to retain radioactive fission products from being carried into the containment atmosphere or into the secondary piping system. A number of models and computer codes has been developed to predict the retention of aerosols and fission product vapours that are released from the core and injected into water pools of BWR and PWR type reactors during severe accidents. Important codes in this field are BUSCA, SPARC and SUPRA. The present paper summarizes the models for scrubbing of gaseous Iodine components in these codes, discusses the experimental validation, and gives an assessment of the state of knowledge reached and the open questions which persist. The retention of gaseous Iodine components is modelled by the various codes in a very heterogeneous manner. Differences show up in the chemical species considered, the treatment of mass transfer boundary layers on the gaseous and liquid sides, the gas-liquid interface geometry, calculation of equilibrium concentrations and numerical procedures. Especially important is the determination of the pool water pH value. This value is affected by basic aerosols deposited in the water, e.g. Cesium and Rubidium compounds. A consistent model requires a mass balance of these compounds in the pool, thus effectively coupling the pool scrubbing phenomena of aerosols and gaseous Iodine species. Since the water pool conditions are also affected by drainage flow of condensate water from different regions in the containment, and desorption of dissolved gases on the pool surface is determined by the gas concentrations above the pool, some basic limitations of specialized pool scrubbing codes are given. The paper draws conclusions about the necessity of coupling between containment thermal-hydraulics and pool scrubbing models, and proposes ways of further simulation model development in order to improve source term predictions. (author) 2 tabs., refs.

  9. Pool scrubbing models for iodine components

    International Nuclear Information System (INIS)

    Fischer, K.

    1996-01-01

    Pool scrubbing is an important mechanism to retain radioactive fission products from being carried into the containment atmosphere or into the secondary piping system. A number of models and computer codes has been developed to predict the retention of aerosols and fission product vapours that are released from the core and injected into water pools of BWR and PWR type reactors during severe accidents. Important codes in this field are BUSCA, SPARC and SUPRA. The present paper summarizes the models for scrubbing of gaseous Iodine components in these codes, discusses the experimental validation, and gives an assessment of the state of knowledge reached and the open questions which persist. The retention of gaseous Iodine components is modelled by the various codes in a very heterogeneous manner. Differences show up in the chemical species considered, the treatment of mass transfer boundary layers on the gaseous and liquid sides, the gas-liquid interface geometry, calculation of equilibrium concentrations and numerical procedures. Especially important is the determination of the pool water pH value. This value is affected by basic aerosols deposited in the water, e.g. Cesium and Rubidium compounds. A consistent model requires a mass balance of these compounds in the pool, thus effectively coupling the pool scrubbing phenomena of aerosols and gaseous Iodine species. Since the water pool conditions are also affected by drainage flow of condensate water from different regions in the containment, and desorption of dissolved gases on the pool surface is determined by the gas concentrations above the pool, some basic limitations of specialized pool scrubbing codes are given. The paper draws conclusions about the necessity of coupling between containment thermal-hydraulics and pool scrubbing models, and proposes ways of further simulation model development in order to improve source term predictions. (author) 2 tabs., refs

  10. Computational needs for modelling accelerator components

    International Nuclear Information System (INIS)

    Hanerfeld, H.

    1985-06-01

    The particle-in-cell MASK is being used to model several different electron accelerator components. These studies are being used both to design new devices and to understand particle behavior within existing structures. Studies include the injector for the Stanford Linear Collider and the 50 megawatt klystron currently being built at SLAC. MASK is a 2D electromagnetic code which is being used by SLAC both on our own IBM 3081 and on the CRAY X-MP at the NMFECC. Our experience with running MASK illustrates the need for supercomputers to continue work of the kind described. 3 refs., 2 figs

  11. Integrated modelling of the edge plasma and plasma facing components

    International Nuclear Information System (INIS)

    Coster, D.P.; Bonnin, X.; Mutzke, A.; Schneider, R.; Warrier, M.

    2007-01-01

    Modelling of the interaction between the edge plasma and plasma facing components (PFCs) has tended to place more emphasis on either the plasma or the PFCs. Either the PFCs do not change with time and the plasma evolution is studied, or the plasma is assumed to remain static and the detailed interaction of the plasma and the PFCs are examined, with no back-reaction on the plasma taken into consideration. Recent changes to the edge simulation code, SOLPS, now allow for changes in both the plasma and the PFCs to be considered. This has been done by augmenting the code to track the time-development of the properties of plasma facing components (PFCs). Results of standard mixed-materials scenarios (base and redeposited C; Be) are presented

  12. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae

    2008-01-01

    Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics...... of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical...... constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems) is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI), University of Southern Denmark. Once specified, the software model has...

  13. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  14. Strong interactions - quark models

    International Nuclear Information System (INIS)

    Goto, M.; Ferreira, P.L.

    1979-01-01

    The variational method is used for the PSI and upsilon family spectra reproduction from the quark model, through several phenomenological potentials, viz.: linear, linear plus coulomb term and logarithmic. (L.C.) [pt

  15. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies

    Directory of Open Access Journals (Sweden)

    Qiu JX

    2015-02-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou,3 Zhi-Xu He,4 Xueji Zhang,5 Shu-Feng Zhou,3 Shengrong Zhu11Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of ChinaAbstract: Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, ß-bisabolene, ß-sesquiphelandrene, 6-gingerdione, (--zingiberene, and methyl-6-isogingerol and human cytochrome P450 (CYP 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A

  16. Search for a tensor component in the weak interaction Hamiltonian

    CERN Document Server

    Soti, Gergely

    The search for physics beyond the standard model can, besides in high-energy experiments such as the ones at the LHC accelerator, also be carried out at lower energies. Measurements of correlation coefficients in neutron and nuclear b decay constitute a reliable and model-independent method for such efforts. The topic of this thesis is the precision measurement of the beta asymmetry parameter A. It was measured in the decay of 67Cu, which proceeds via a pure Gamow-Teller b transition, thus its A parameter is sensitive to possible tensor type currents in the weak interaction. The experiment was performed at the NICOLE setup in ISOLDE (CERN), using the technique of low temperature nuclear orientation. The b particles were observed with custom made planar high purity germanium detectors operating at around 10 K. The beta asymmetry of 68Cu was measured on-line for normalization purposes. Geant4 simulations were used to gain control over systematic effects such as electron scattering on the particle detectors. As...

  17. Integration of Simulink Models with Component-based Software Models

    Directory of Open Access Journals (Sweden)

    MARIAN, N.

    2008-06-01

    Full Text Available Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behavior as a means of computation, communication and constraints, using computational blocks and aggregates for both discrete and continuous behavior, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI, University of Southern Denmark. Once specified, the software model has to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behavior, and the transformation of the software system into the S

  18. Evaluation of the RELAP5/MOD3 multidimensional component model

    International Nuclear Information System (INIS)

    Tomlinson, E.T.; Rens, T.E.; Coffield, R.D.

    1994-01-01

    Accurate plenum predictions, which are directly related to the mixing models used, are an important plant modeling consideration because of the consequential impact on basic transient performance calculations for the integrated system. The effect of plenum is a time shift between inlet and outlet temperature changes to the particular volume. Perfect mixing, where the total volume interacts instantaneously with the total inlet flow, does not occur because of effects such as inlet/outlet nozzle jetting, flow stratification, nested vortices within the volume and the general three-dimensional velocity distribution of the flow field. The time lag which exists between the inlet and outlet flows impacts the predicted rate of temperature change experienced by various plant system components and this impacts local component analyses which are affected by the rate of temperature change. This study includes a comparison of two-dimensional plenum mixing predictions using CFD-FLOW3D, RELAP5/MOD3 and perfect mixing models. Three different geometries (flat, square and tall) are assessed for scalar transport times using a wide range of inlet velocity and isothermal conditions. In addition, the three geometries were evaluated for low flow conditions with the inlet flow experiencing a large step temperature decrease. A major conclusion from this study is that the RELAP5/MOD3 multidimensional component model appears to be adequately predicting plenum mixing for a wide range of thermal-hydraulic conditions representative of plant transients

  19. Interacting Quintessence Dark Energy Models in Lyra Manifold

    International Nuclear Information System (INIS)

    Khurshudyan, M.; Myrzakulov, R.; Sadeghi, J.; Farahani, H.; Pasqua, Antonio

    2014-01-01

    We consider two-component dark energy models in Lyra manifold. The first component is assumed to be a quintessence field while the second component may be a viscous polytropic gas, a viscous Van der Waals gas, or a viscous modified Chaplygin gas. We also consider the possibility of interaction between components. By using the numerical analysis, we study some cosmological parameters of the models and compare them with observational data.

  20. Modelling of molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.; Benjamin, A.S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data

  1. Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces.

    Science.gov (United States)

    Lee, Dominic J O'

    2015-04-15

    Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.

  2. Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces

    International Nuclear Information System (INIS)

    Lee, Dominic J

    2015-01-01

    Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev–Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments. (paper)

  3. Collaborative Encoding and Memory Accuracy: Examining the Effects of Interactive Components of Co-Construction Processes

    Science.gov (United States)

    Foley, Mary Ann; Fried, Adina Rachel; Cowan, Emily; Bays, Rebecca Brooke

    2014-01-01

    In 2 experiments, the effect of collaborative encoding on memory was examined by testing 2 interactive components of co-construction processes. One component focused on the nature of the interactive exchange between collaborators: As the partners worked together to create descriptions about ways to interact with familiar objects, constraints were…

  4. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  5. Conditioned place preference for social interaction in rats: contribution of sensory components.

    Science.gov (United States)

    Kummer, Kai; Klement, Sabine; Eggart, Vincent; Mayr, Michael J; Saria, Alois; Zernig, Gerald

    2011-01-01

    A main challenge in the therapy of drug dependent individuals is to help them reactivate interest in non-drug-associated activities. We previously developed a rat experimental model based on the conditioned place preference (CPP) paradigm in which only four 15-min episodes of social interaction with a gender- and weight-matched male Sprague Dawley rat (1) reversed CPP from cocaine to social interaction despite continuing cocaine training and (2) prevented the reinstatement of cocaine CPP. In the present study, we investigated which of the sensory modalities of the composite stimulus "social interaction" contributes most to the rats' preference for it. If touch was limited by steel bars spaced at a distance of 2 cm and running across the whole length of a partitioning, CPP was still acquired, albeit to a lesser degree. If both rats were placed on the same side of a partitioning, rats did not develop CPP for social interaction. Thus, decreasing the available area for social interaction from 750 to 375 cm(2) prevented the acquisition of CPP to social interaction despite the fact that animals could touch each other more intensely than through the bars of the partitioning. When touch was fully restricted by a glass screen dividing the conditioning chambers, and the only sensory modalities left were visual and olfactory cues, place preference shifted to place aversion. Overall, our findings indicate that the major rewarding sensory component of the composite stimulus "social interaction" is touch (taction).

  6. The joy of interactive modeling

    Science.gov (United States)

    Donchyts, Gennadii; Baart, Fedor; van Dam, Arthur; Jagers, Bert

    2013-04-01

    The conventional way of working with hydrodynamical models usually consists of the following steps: 1) define a schematization (e.g., in a graphical user interface, or by editing input files) 2) run model from start to end 3) visualize results 4) repeat any of the previous steps. This cycle commonly takes up from hours to several days. What if we can make this happen instantly? As most of the research done using numerical models is in fact qualitative and exploratory (Oreskes et al., 1994), why not use these models as such? How can we adapt models so that we can edit model input, run and visualize results at the same time? More and more, interactive models become available as online apps, mainly for demonstration and educational purposes. These models often simplify the physics behind flows and run on simplified model geometries, particularly when compared with state-of-the-art scientific simulation packages. Here we show how the aforementioned conventional standalone models ("static, run once") can be transformed into interactive models. The basic concepts behind turning existing (conventional) model engines into interactive engines are the following. The engine does not run the model from start to end, but is always available in memory, and can be fed by new boundary conditions, or state changes at any time. The model can be run continuously, per step, or up to a specified time. The Hollywood principle dictates how the model engine is instructed from 'outside', instead of the model engine taking all necessary actions on its own initiative. The underlying techniques that facilitate these concepts are introspection of the computation engine, which exposes its state variables, and control functions, e.g. for time stepping, via a standardized interface, such as BMI (Peckam et. al., 2012). In this work we have used a shallow water flow model engine D-Flow Flexible Mesh. The model was converted from executable to a library, and coupled to the graphical modelling

  7. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  8. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  9. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  10. Modeling of interaction effects in granular systems

    International Nuclear Information System (INIS)

    El-Hilo, M.; Shatnawy, M.; Al-Rsheed, A.

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(ΔE) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(ΔE) can easily give a temperature-independent behavior of S(T) when these changes give a 1/ΔE behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur and the loops are only predicted when the interaction field is positive. From these predictions, minor loops will form when the interaction field is strong enough to magnetize some moments during the recoil process back to zero field. Thus, these minor loops are originated from interaction driving irreversible changes along the recoil curve and the irreversible component of magnetization has no direct influence on the formation of these minor loops

  11. On dark degeneracy and interacting models

    International Nuclear Information System (INIS)

    Carneiro, S.; Borges, H.A.

    2014-01-01

    Cosmological background observations cannot fix the dark energy equation of state, which is related to a degeneracy in the definition of the dark sector components. Here we show that this degeneracy can be broken at perturbation level by imposing two observational properties on dark matter. First, dark matter is defined as the clustering component we observe in large scale structures. This definition is meaningful only if dark energy is unperturbed, which is achieved if we additionally assume, as a second condition, that dark matter is cold, i.e. non-relativistic. As a consequence, dark energy models with equation-of-state parameter −1 ≤ ω < 0 are reduced to two observationally distinguishable classes with ω = −1, equally competitive when tested against observations. The first comprises the ΛCDM model with constant dark energy density. The second consists of interacting models with an energy flux from dark energy to dark matter

  12. Interacting boson model with surface delta interaction between nucleons

    International Nuclear Information System (INIS)

    Druce, C.; Moszkowski, S.A.

    1984-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. The authors have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson proton-boson interaction for the case of degenerate orbits

  13. Introduction to interacting boson model

    International Nuclear Information System (INIS)

    Goutte, D.

    1986-01-01

    A very simple presentation of the interacting boson model is first given. The two computerized models which are presented allow, with few parameters, to reproduce an impressive quantity of data characterizing the deformed nuclei. Their excitation spectra, the reduced transition probabilities, the quadrupolar moments, the two nucleon transfer experiment results, ... Then a specific application of the model is given: radial extension reproduction of nuclear functions. It is shown first how the electron inelastic scattering allows to measure observables related to these radial functions, the transition charge densities, then, on some examples, how the model allows to reproduce them [fr

  14. Interactions between milk protein ingredients and other milk components during processing

    DEFF Research Database (Denmark)

    Liu, Guanchen

    research in our group shown that, both MWP and NWP can give a higher viscosity and denser microstructure compared to WPC when used as fat replacer in low-fat yoghurt. In the thesis, we investigated how these two types of commercial whey protein particles interact with other milk components and how...... these interactions affect final acidified milk products. By detecting the properties of the whey protein aggregates, MWP and NWP showed low native whey protein content, low free thiol content and high surface hydrophobicity and were relatively stable at high temperature in the 5 % pure dispersions. When MWP and NWP...... were added to non-fat milk model systems (5% protein in total) and processed into chemically (glucono-delta-lactone) acidified milk gels, the formation of disulfide-linked structures was closely related to the increased particle size of heated milk model systems and the rheological behavior...

  15. Component Based System Framework for Dynamic B2B Interaction

    NARCIS (Netherlands)

    Hu jinmin, Jinmin; Grefen, P.W.P.J.

    Business-to-Business (B2B) collaboration is becoming a pivotal way to bring today's enterprises to success in the dynamically changing e-business environment. Though many business-to-business protocols are developed to support B2B interaction, none are generally accepted. A B2B system should support

  16. IPython: components for interactive and parallel computing across disciplines. (Invited)

    Science.gov (United States)

    Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.

    2013-12-01

    Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.

  17. Generalized structured component analysis a component-based approach to structural equation modeling

    CERN Document Server

    Hwang, Heungsun

    2014-01-01

    Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...

  18. Two-component mixture cure rate model with spline estimated nonparametric components.

    Science.gov (United States)

    Wang, Lu; Du, Pang; Liang, Hua

    2012-09-01

    In some survival analysis of medical studies, there are often long-term survivors who can be considered as permanently cured. The goals in these studies are to estimate the noncured probability of the whole population and the hazard rate of the susceptible subpopulation. When covariates are present as often happens in practice, to understand covariate effects on the noncured probability and hazard rate is of equal importance. The existing methods are limited to parametric and semiparametric models. We propose a two-component mixture cure rate model with nonparametric forms for both the cure probability and the hazard rate function. Identifiability of the model is guaranteed by an additive assumption that allows no time-covariate interactions in the logarithm of hazard rate. Estimation is carried out by an expectation-maximization algorithm on maximizing a penalized likelihood. For inferential purpose, we apply the Louis formula to obtain point-wise confidence intervals for noncured probability and hazard rate. Asymptotic convergence rates of our function estimates are established. We then evaluate the proposed method by extensive simulations. We analyze the survival data from a melanoma study and find interesting patterns for this study. © 2011, The International Biometric Society.

  19. Interactions among the components of the interleukin-10 receptor complex.

    Science.gov (United States)

    Krause, Christopher D; Mei, Erwen; Mirochnitchenko, Olga; Lavnikova, Natasha; Xie, Junxia; Jia, Yiwei; Hochstrasser, Robin M; Pestka, Sidney

    2006-02-10

    We used fluorescence resonance energy transfer previously to show that the interferon-gamma (IFN-gamma) receptor complex is a preformed entity mediated by constitutive interactions between the IFN-gammaR2 and IFN-gammaR1 chains, and that this preassembled entity changes its structure after the treatment of cells with IFN-gamma. We applied this technique to determine the structure of the interleukin-10 (IL-10) receptor complex and whether it undergoes a similar conformational change after treatment of cells with IL-10. We report that, like the IFN-gamma receptor complex, the IL-10 receptor complex is preassembled: constitutive but weaker interactions occur between the IL-10R1 and IL-10R2 chains, and between two IL-10R2 chains. The IL-10 receptor complex undergoes no major conformational changes when cells are treated with cellular or Epstein-Barr viral IL-10. Receptor complex preassembly may be an inherent feature of Class 2 cytokine receptor complexes.

  20. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  1. Dynamic interaction of components, structure, and foundation of nuclear power facilities

    International Nuclear Information System (INIS)

    Pajuhesh, J.; Hadjian, A.H.

    1977-01-01

    A solution is formulated for the dynamic analysis of structures and components with different stiffness and damping characteristics, including the consideration of soil-structure interaction effects. Composite structures are often analysed approximately, in particular with regards to damping. For example, the reactor and other equipment in nuclear power plant structures are often analysed by assuming them uncoupled from the supporting structures. To achieve a better accuracy, the coupled system is hereby analysed as a composite component-structure-soil system. To demonstrate the assembly technique, two examples are considered: (a) a steel structure sitting on a concrete stem and linked by a steel bridge to another concrete structure, and (b) an actual model of a nuclear power plant containment structure. (Auth.)

  2. Interaction of radium with freshwater sediments and their mineral components Pt. 4

    International Nuclear Information System (INIS)

    Benes, P.; Strejc, P.

    1986-01-01

    A radiotracer method was used for investigating the adsorption and desorption of radium on stream sediments under conditions similar to those prevailing in waste and surface waters. The effects of pH, ionic strength and Casup(2+) or SOsub(4)sup(2+) ions were studied. The results were compared with analogous data characterizing radium interaction with model solids representing components of the sediments. It was found that the adsorption affinity of the sediments for radium cannot be easily derived from their composition or other properties. No simple correlation with specific surface area, organic matter, oxidic coatings or other components of the sediments was observed. However, an exceptional role of barite (barium sulfate) in the sediments was noted. (author)

  3. Facilitative and competitive interaction components among New England salt marsh plants

    Directory of Open Access Journals (Sweden)

    John F. Bruno

    2017-11-01

    Full Text Available Intra- and interspecific interactions can be broken down into facilitative and competitive components. The net interaction between two organisms is simply the sum of these counteracting elements. Disentangling the positive and negative components of species interactions is a critical step in advancing our understanding of how the interaction between organisms shift along physical and biotic gradients. We performed a manipulative field experiment to quantify the positive and negative components of the interactions between a perennial forb, Aster tenuifolius, and three dominant, matrix-forming grasses and rushes in a New England salt marsh. Specifically, we asked whether positive and negative interaction components: (1 are unique or redundant across three matrix-forming species (two grasses; Distichlis spicata and Spartina patens, and one rush; Juncus gerardi, and (2 change across Aster life stages (seedling, juvenile, and adult. For adult Aster the strength of the facilitative component of the matrix-forb interaction was stronger than the competitive component for two of the three matrix species, leading to net positive interactions. There was no statistically significant variation among matrix species in their net or component effects. We found little difference in the effects of J. gerardi on Aster at later life-history stages; interaction component strengths did not differ between juveniles and adults. However, mortality of seedlings in neighbor removal plots was 100%, indicating a particularly strong and critical facilitative effect of matrix species on this forb during the earliest life stages. Overall, our results indicate that matrix forming grasses and rushes have important, yet largely redundant, positive net effects on Aster performance across its life cycle. Studies that untangle various components of interactions and their contingencies are critical to both expanding our basic understanding of community organization, and predicting

  4. Three-dimensional fluid-structure interaction dynamics of a pool-reactor in-tank component

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    The safety evaluation of reactor-components often involves the analysis of various types of fluid/structural components interacting in three-dimensional space. For example, in the design of a pool-type reactor several vital in-tank components such as the primary pumps and the intermediate heat exchangers are contained within the primary tank. Typically, these components are suspended from the deck structure and largely submersed in the sodium pool. Because of this positioning these components are vulnerable to structural damage due to pressure wave propagation in the tank during a CDA. In order to assess the structural integrity of these components it is necessary to perform a dynamic analysis in three-dimensional space which accounts for the fluid-structure coupling. A model is developed which has many of the salient features of this fluid-structural component system

  5. BUSINESS TRANSFER ECOSYSTEM IN CROATIA - MISSING COMPONENTS AND INTERACTIONS

    Directory of Open Access Journals (Sweden)

    Alpeza Mirela

    2016-10-01

    Full Text Available Business transfer is an important issue that the European Commission has been actualising since the early 1990s, when the first recommendations for the improvement of national business transfer ecosystems of the EU countries were created. Neglecting business transfer as a critical phase in the development of a company can have significant negative implications for companies, their owners and wide network of stakeholders. Business transfer is a particularly important topic for the Croatian economy where more than 5,300 businesses with around 57,000 employees represent a risk group whose owners underestimate the complexity and longevity of the business transfer process. The aim of this paper is to analyse the structure and quality of the business transfer ecosystem in Croatia. For this purpose, secondary research and a qualitative study in the form of interviews with representatives of key stakeholders were conducted. The Croatian business transfer ecosystem is benchmarked to the national business transfer ecosystems of Spain, Finland, Sweden and France, based on the data collected through the EU project BTAR. The research results indicate low level of development, interconnection and complementarity of individual components of the business transfer ecosystem in Croatia. Policy recommendations for improving the quality of the business transfer ecosystem in Croatia were identified.

  6. Dynamic interactions of components, structure, and foundation of nuclear power facilities

    International Nuclear Information System (INIS)

    Pajuhesh, J.; Hadjian, A.H.

    1977-01-01

    A solution is formulated for the dynamic analysis of structures and components with different stiffness and damping characteristics, including the consideration of soil-structure interaction effects. Composite structures are often analysed approximately, in particular with regards to damping. For example, the reactor and other equipment in nuclear power plant structures are often analysed by assuming them uncoupled from the supporting structures. To achieve a better accuracy, the coupled system is hereby analysed as a composite component-structure-soil system. Although derivation of mass and stiffness matrices for the component-structure-soil system is a simple problem, the determination of the damping characteristics of such a system is more complex. This emphasis on the proper evaluation of system damping is warranted on the grounds that, when resonance conditions occur, the response amplitude is governed to a significant degree by the system damping. The damping information is usually available for each sub-structure separately with its based fixed or devoid of rigid-body modes of motion. The rigid-body motions are often free of damping resistance but sometimes, such as in the case of soil-structure interaction, or in the case of aerodynamic resistance, are uniquely defined. The composite damping matrix for the complete structure is hereby derived from the above-mentioned information. Thus, the damping matrix is first obtained for the free-free model of each sub-structure (the model containing the structural degrees of freedom together with rigid-body modes of motion), and then the submatrices for the free-free models are assembled to form the composite damping matrix in acccordance with an assembly technique relating the sub-structure coordinates to the global coordinates of the composite structure

  7. Tritium permeation model for plasma facing components

    Science.gov (United States)

    Longhurst, G. R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.

  8. Tritium permeation model for plasma facing components

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included

  9. [Analytic methods for seed models with genotype x environment interactions].

    Science.gov (United States)

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by

  10. Nitrogen component in nonpoint source pollution models

    Science.gov (United States)

    Pollutants entering a water body can be very destructive to the health of that system. Best Management Practices (BMPs) and/or conservation practices are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid...

  11. Modeling photoionization of aqueous DNA and its components.

    Science.gov (United States)

    Pluhařová, Eva; Slavíček, Petr; Jungwirth, Pavel

    2015-05-19

    Radiation damage to DNA is usually considered in terms of UVA and UVB radiation. These ultraviolet rays, which are part of the solar spectrum, can indeed cause chemical lesions in DNA, triggered by photoexcitation particularly in the UVB range. Damage can, however, be also caused by higher energy radiation, which can ionize directly the DNA or its immediate surroundings, leading to indirect damage. Thanks to absorption in the atmosphere, the intensity of such ionizing radiation is negligible in the solar spectrum at the surface of Earth. Nevertheless, such an ionizing scenario can become dangerously plausible for astronauts or flight personnel, as well as for persons present at nuclear power plant accidents. On the beneficial side, ionizing radiation is employed as means for destroying the DNA of cancer cells during radiation therapy. Quantitative information about ionization of DNA and its components is important not only for DNA radiation damage, but also for understanding redox properties of DNA in redox sensing or labeling, as well as charge migration along the double helix in nanoelectronics applications. Until recently, the vast majority of experimental and computational data on DNA ionization was pertinent to its components in the gas phase, which is far from its native aqueous environment. The situation has, however, changed for the better due to the advent of photoelectron spectroscopy in liquid microjets and its most recent application to photoionization of aqueous nucleosides, nucleotides, and larger DNA fragments. Here, we present a consistent and efficient computational methodology, which allows to accurately evaluate ionization energies and model photoelectron spectra of aqueous DNA and its individual components. After careful benchmarking, the method based on density functional theory and its time-dependent variant with properly chosen hybrid functionals and polarizable continuum solvent model provides ionization energies with accuracy of 0.2-0.3 e

  12. How Many Separable Sources? Model Selection In Independent Components Analysis

    DEFF Research Database (Denmark)

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though....../Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from...... might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian....

  13. Modified holographic Ricci dark energy coupled to interacting dark matter and a non-interacting baryonic component

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, Luis P.; Richarte, Martin G. [Universidad de Buenos Aires, IFIBA, CONICET, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2013-01-15

    We examine a Friedmann-Robertson-Walker universe filled with interacting dark matter, modified holographic Ricci dark energy (MHRDE), and a decoupled baryonic component. The estimations of the cosmic parameters with Hubble data lead to an age of the universe of 13.17 Gyr and show that the MHRDE is free from the cosmic-age problem at low redshift (0{<=}z{<=}2) in contrast to holographic Ricci dark energy (HRDE) case. We constrain the parameters with the Union2 data set and contrast with the Hubble data. We also study the behavior of dark energy at early times by taking into account the severe bounds found at recombination era and/or at big bang nucleosynthesis. The inclusion of a non-interacting baryonic matter forces that the amount of dark energy at z{sub t} {proportional_to} O(1) changes abruptly implying that {Omega} {sub x} (z {approx_equal}1100)=0.03, so the bounds reported by the forecast of Planck and CMBPol experiments are more favored for the MHRDE model than in the case of HRDE cutoff. For the former model, we also find that at high redshift the fraction of dark energy varies from 0.006 to 0.002, then the amount of {Omega} {sub x} at the big bang nucleosynthesis era does not disturb the observed helium abundance in the universe provided that the bound {Omega} {sub x} (z {approx_equal}10 {sup 10}) <0.21 is hold. (orig.)

  14. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  15. Modeling money demand components in Lebanon using autoregressive models

    International Nuclear Information System (INIS)

    Mourad, M.

    2008-01-01

    This paper analyses monetary aggregate in Lebanon and its different component methodology of AR model. Thirteen variables in monthly data have been studied for the period January 1990 through December 2005. Using the Augmented Dickey-Fuller (ADF) procedure, twelve variables are integrated at order 1, thus they need the filter (1-B)) to become stationary, however the variable X 1 3,t (claims on private sector) becomes stationary with the filter (1-B)(1-B 1 2) . The ex-post forecasts have been calculated for twelve horizons and for one horizon (one-step ahead forecast). The quality of forecasts has been measured using the MAPE criterion for which the forecasts are good because the MAPE values are lower. Finally, a pursuit of this research using the cointegration approach is proposed. (author)

  16. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae; Top, Søren

    2008-01-01

    , communication and constraints, using computational blocks and aggregates for both discrete and continuous behaviour, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite...... to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set...... of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behaviour, and the transformation of the software system into the S-functions. The general aim of this work is the improvement of multi-disciplinary development of embedded systems with the focus on the relation...

  17. Public health component in building information modeling

    Science.gov (United States)

    Trufanov, A. I.; Rossodivita, A.; Tikhomirov, A. A.; Berestneva, O. G.; Marukhina, O. V.

    2018-05-01

    A building information modelling (BIM) conception has established itself as an effective and practical approach to plan, design, construct, and manage buildings and infrastructure. Analysis of the governance literature has shown that the BIM-developed tools do not take fully into account the growing demands from ecology and health fields. In this connection, it is possible to offer an optimal way of adapting such tools to the necessary consideration of the sanitary and hygienic specifications of materials used in construction industry. It is proposed to do it through the introduction of assessments that meet the requirements of national sanitary standards. This approach was demonstrated in the case study of Revit® program.

  18. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  19. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Hassanein, A.

    2002-01-01

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices

  20. Earthquake analysis with nonlinear soil-structure interaction and nonlinear supports of components

    International Nuclear Information System (INIS)

    Hansson, V.

    1990-01-01

    For the determination of the seismic response of a structure the soil-structure interaction in most cases is modelled by a mass-spring-damper-system. Normally design concepts for components and piping are based on linear calculations and stress limitations. A concept for a reactor building for the HTR 100 consisted of a relatively high structure compared with the dimensions of the foundation. The structure was comparatively deep embedded in the soil, so here the embedment influences significantly the soil-structure interaction. The assembly of reactor vessel, heat exchanger and circulators has a height of about 37 m. Supports are arranged at different levels. Due to temperature deformations of the vessel and of the support constructions small gaps at the supports may only be avoided by complicated constructions of the supports. Nonlinear analyses were performed for soil, building and component with all supports. The finite element analyses used time histories. In order to describe the radiation damping the hysteresis of the soil with 1 percent material damping was considered. Nonlinearities in the interface of soil and foundation and due to gaps and friction at the supports were taken into account. The stiffness of the support constructions influences reactions and accelerations to a high extent. Properly chosen stiffnesses of the support constructions lead to a behaviour similar to linear elastic behaviour. 13 figs

  1. How Many Separable Sources? Model Selection In Independent Components Analysis

    Science.gov (United States)

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  2. Interactive virtual mock-ups for Remote Handling compatibility assessment of heavy components

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: j.vanoosterhout@differ.nl [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M.; Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk 6 (Netherlands); Ronden, D.M.S.; Baar, M. de [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •Specific ITER components require RHCA on hardware mock-ups. •Hardware mock-ups are expensive and have a long lead time. •Interactive Virtual Reality mock-ups are readily available and easily adapted. •This paper analysis and proposes improvements to simulator capabilities. -- Abstract: ITER standards Tesini (2009) require hardware mock-ups to validate the Remote Handling (RH) compatibility of RH class 1- and critical class 2-components. Full-scale mock-ups of large ITER components are expensive, have a long lead time and lose their relevance in case of design changes. Interactive Virtual Reality simulations with real time rigid body dynamics and contact interaction allow for RH Compatibility Assessment during the design iterations. This paper explores the use of interactive virtual mock-ups to analyze the RH compatibility of heavy component handling and maintenance. It infers generic maintenance operations from the analysis and proposes improvements to the simulator capabilities.

  3. Interactive virtual mock-ups for Remote Handling compatibility assessment of heavy components

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Heemskerk, C.J.M.; Koning, J.F.; Ronden, D.M.S.; Baar, M. de

    2014-01-01

    Highlights: •Specific ITER components require RHCA on hardware mock-ups. •Hardware mock-ups are expensive and have a long lead time. •Interactive Virtual Reality mock-ups are readily available and easily adapted. •This paper analysis and proposes improvements to simulator capabilities. -- Abstract: ITER standards Tesini (2009) require hardware mock-ups to validate the Remote Handling (RH) compatibility of RH class 1- and critical class 2-components. Full-scale mock-ups of large ITER components are expensive, have a long lead time and lose their relevance in case of design changes. Interactive Virtual Reality simulations with real time rigid body dynamics and contact interaction allow for RH Compatibility Assessment during the design iterations. This paper explores the use of interactive virtual mock-ups to analyze the RH compatibility of heavy component handling and maintenance. It infers generic maintenance operations from the analysis and proposes improvements to the simulator capabilities

  4. Understanding science teacher enhancement programs: Essential components and a model

    Science.gov (United States)

    Spiegel, Samuel Albert

    Researchers and practioners alike recognize that "the national goal that every child in the United States has access to high-quality school education in science and mathematics cannot be realized without the availability of effective professional development of teachers" (Hewson, 1997, p. 16). Further, there is a plethora of reports calling for the improvement of professional development efforts (Guskey & Huberman, 1995; Kyle, 1995; Loucks-Horsley, Hewson, Love, & Stiles, 1997). In this study I analyze a successful 3-year teacher enhancement program, one form of professional development, to: (1) identify essential components of an effective teacher enhancement program; and (2) create a model to identify and articulate the critical issues in designing, implementing, and evaluating teacher enhancement programs. Five primary sources of information were converted into data: (1) exit questionnaires, (2) exit surveys, (3) exit interview transcripts, (4) focus group transcripts, and (5) other artifacts. Additionally, a focus group was used to conduct member checks. Data were analyzed in an iterative process which led to the development of the list of essential components. The Components are categorized by three organizers: Structure (e.g., science research experience, a mediator throughout the program), Context (e.g., intensity, collaboration), and Participant Interpretation (e.g., perceived to be "safe" to examine personal beliefs and practices, actively engaged). The model is based on: (1) a 4-year study of a successful teacher enhancement program; (2) an analysis of professional development efforts reported in the literature; and (3) reflective discussions with implementors, evaluators, and participants of professional development programs. The model consists of three perspectives, cognitive, symbolic interaction, and organizational, representing different viewpoints from which to consider issues relevant to the success of a teacher enhancement program. These

  5. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  6. Efficient transfer of sensitivity information in multi-component models

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Rabiti, Cristian

    2011-01-01

    In support of adjoint-based sensitivity analysis, this manuscript presents a new method to efficiently transfer adjoint information between components in a multi-component model, whereas the output of one component is passed as input to the next component. Often, one is interested in evaluating the sensitivities of the responses calculated by the last component to the inputs of the first component in the overall model. The presented method has two advantages over existing methods which may be classified into two broad categories: brute force-type methods and amalgamated-type methods. First, the presented method determines the minimum number of adjoint evaluations for each component as opposed to the brute force-type methods which require full evaluation of all sensitivities for all responses calculated by each component in the overall model, which proves computationally prohibitive for realistic problems. Second, the new method treats each component as a black-box as opposed to amalgamated-type methods which requires explicit knowledge of the system of equations associated with each component in order to reach the minimum number of adjoint evaluations. (author)

  7. Combination of {sup 13}C/{sup 113}Cd NMR, potentiometry, and voltammetry in characterizing the interactions between Cd and two models of the main components of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lenoble, V. [IFRE PMSE 112, CEREGE (UMR 6635 CNRS/Universite Paul Cezanne), Aix-en-Provence (France); Universite du Sud Toulon Var, Laboratoire PROTEE, La Garde Cedex (France); Garnier, C. [Universite du Sud Toulon Var, Laboratoire PROTEE, La Garde Cedex (France); Universite Bordeaux I, ISM-LPTC (UMR CNRS 5255), Talence (France); Masion, A.; Garnier, J.M. [IFRE PMSE 112, CEREGE (UMR 6635 CNRS/Universite Paul Cezanne), Aix-en-Provence (France); Ziarelli, F. [CNRS, Federation des Sciences Chimiques de Marseille, Spectropole, Marseille cedex 20 (France)

    2008-01-15

    This work allowed the characterization of the Cd-binding sites of two compounds taken as models for exudates, the main components of soil organic matter (SOM). The studied compounds were exopolysaccharides (EPS), specifically exudates of roots (polygalacturonic acid) and of soil bacteria (Phytagel). Potentiometric acid-base titrations were performed and fitting of the obtained results indicated the presence of two main classes of acidic sites, defined by their pK{sub a} values, for both EPS but of a different nature when comparing the two compounds. The two studied exopolysaccharides presented different acidic/basic site ratios: 0.15 for Phytagel and 0.76 for polygalacturonic acid. Spectroscopic techniques ({sup 13}C/{sup 113}Cd NMR, FTIR) distinguished different Cd surroundings for each of the studied EPS, which is in agreement with the titration results. Furthermore, these analyses indicated the presence of -COOH and -OH groups in various proportions for each exopolysaccharide, which should be linked to their reactivity towards cadmium. Cadmium titrations (voltammetric measurements) also differentiated different binding sites for each compound and allowed the determination of the strength of the Cd-binding site of the EPS. Fitting of the results of such voltammetric measurements was performed using PROSECE (Programme d'Optimisation et de Speciation Chimique dans l'Environnement), a software coupling chemical speciation calculation and binding parameter optimization. The fitting, taking into account the Cd{sup 2+}/H{sup +} competition towards exopolysaccharides, confirmed the acid-base titrations and spectroscopic analyses by revealing two classes of binding sites: (i) one defined as a strong complexant regarding its Cd{sup 2+}-EPS association (logK = 9-10.4) and with basic functionality regarding H{sup +}-EPS association (pK{sub a} = 11.3-11.7), and (ii) one defined as a weak complexant (logK = 7.1-8.2) and with acidic functionality (pK{sub a} = 3

  8. Interaction of Defensins with Model Cell Membranes

    Science.gov (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  9. Gaze-based interaction with public displays using off-the-shelf components

    DEFF Research Database (Denmark)

    San Agustin, Javier; Hansen, John Paulin; Tall, Martin Henrik

    Eye gaze can be used to interact with high-density information presented on large displays. We have built a system employing off-the-shelf hardware components and open-source gaze tracking software that enables users to interact with an interface displayed on a 55” screen using their eye movement...

  10. Component based modelling of piezoelectric ultrasonic actuators for machining applications

    International Nuclear Information System (INIS)

    Saleem, A; Ahmed, N; Salah, M; Silberschmidt, V V

    2013-01-01

    Ultrasonically Assisted Machining (UAM) is an emerging technology that has been utilized to improve the surface finishing in machining processes such as turning, milling, and drilling. In this context, piezoelectric ultrasonic transducers are being used to vibrate the cutting tip while machining at predetermined amplitude and frequency. However, modelling and simulation of these transducers is a tedious and difficult task. This is due to the inherent nonlinearities associated with smart materials. Therefore, this paper presents a component-based model of ultrasonic transducers that mimics the nonlinear behaviour of such a system. The system is decomposed into components, a mathematical model of each component is created, and the whole system model is accomplished by aggregating the basic components' model. System parameters are identified using Finite Element technique which then has been used to simulate the system in Matlab/SIMULINK. Various operation conditions are tested and performed to demonstrate the system performance

  11. Components in models of learning: Different operationalisations and relations between components

    Directory of Open Access Journals (Sweden)

    Mirkov Snežana

    2013-01-01

    Full Text Available This paper provides the presentation of different operationalisations of components in different models of learning. Special emphasis is on the empirical verifications of relations between components. Starting from the research of congruence between learning motives and strategies, underlying the general model of school learning that comprises different approaches to learning, we have analyzed the empirical verifications of factor structure of instruments containing the scales of motives and learning strategies corresponding to these motives. Considering the problems in the conceptualization of the achievement approach to learning, we have discussed the ways of operational sing the goal orientations and exploring their role in using learning strategies, especially within the model of the regulation of constructive learning processes. This model has served as the basis for researching learning styles that are the combination of a large number of components. Complex relations between the components point to the need for further investigation of the constructs involved in various models. We have discussed the findings and implications of the studies of relations between the components involved in different models, especially between learning motives/goals and learning strategies. We have analyzed the role of regulation in the learning process, whose elaboration, as indicated by empirical findings, can contribute to a more precise operationalisation of certain learning components. [Projekat Ministarstva nauke Republike Srbije, br. 47008: Unapređivanje kvaliteta i dostupnosti obrazovanja u procesima modernizacije Srbije i br. 179034: Od podsticanja inicijative, saradnje i stvaralaštva u obrazovanju do novih uloga i identiteta u društvu

  12. Interaction between clay-based shaft seal components and crystalline host rock

    International Nuclear Information System (INIS)

    Priyanto, D.; Dixon, D.; Man, A.

    2010-01-01

    would experience smaller displacement. A linear elastic model is used to simulate mechanical behaviour of unfractured rock and concrete components. The unfractured rock has a Young's modulus (E) and Poisson's ratio (ν) of approximately 60 GPa and 0.25, respectively, while the concrete has approximately 36 GPa and 0.25, respectively. Lower E is used to describe the mechanical properties of the FZ. Based on the range of measured rock hydraulic conductivity at the URL, the distribution of the hydraulic conductivity (K) for the unfractured rock is 10 -13 to 10 -12 m/s, while the FZ has a higher K value (10 -10 to 10 -9 m/s). The concrete seals (CS) in the shaft seal to be modelled are defined as being composed of low-heat high-performance concrete (LHHPC) of the type used in the Tunnel Sealing Experiment (TSX) and the Enhanced Sealing Project (ESP). The K value of the LHHPC from the in situ measurement is approximately 10 -10 to 10 -13 m/s. This H-M numerical modelling is solved using a computer code (e.g. FLAC) and the results show the evolution of pore fluid pressure, degree of saturation, dry density, and total stress of each shaft seal component. The discussion focuses on the interaction of the clay-based sealing components (BS and DBF) and the host rock. (authors)

  13. Measurement error models with interactions

    Science.gov (United States)

    Midthune, Douglas; Carroll, Raymond J.; Freedman, Laurence S.; Kipnis, Victor

    2016-01-01

    An important use of measurement error models is to correct regression models for bias due to covariate measurement error. Most measurement error models assume that the observed error-prone covariate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document}) is a linear function of the unobserved true covariate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document}) plus other covariates (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document}) in the regression model. In this paper, we consider models for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document} that include interactions between \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document}. We derive the conditional distribution of

  14. Role of antisymmetric spin-orbit component in effective interactions in the sd-shell

    International Nuclear Information System (INIS)

    Yoshinada, K.

    1981-10-01

    The antisymmetric spin-orbit interaction (ALS) proposed for sd-shell nuclei is investigated. It is shown that the centroid energy of the d sub(5/2) - d sub(3/2) interactions plays a crucial role in reproducing the excited band spectra of A = 18 - 24 nuclei. An empirical effective interaction without ALS component is proposed to reproduce the observed spectra of light sd-shell nuclei. (author)

  15. Feature-based component model for design of embedded systems

    Science.gov (United States)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  16. Revealing the Structural Complexity of Component Interactions of Topic-Specific PCK when Planning to Teach

    Science.gov (United States)

    Mavhunga, Elizabeth

    2018-04-01

    Teaching pedagogical content knowledge (PCK) at a topic-specific level requires clarity on the content-specific nature of the components employed, as well as the specific features that bring about the desirable depth in teacher explanations. Such understanding is often hazy; yet, it influences the nature of teacher tasks and learning opportunities afforded to pre-service teachers in a teaching program. The purpose of this study was twofold: firstly, to illuminate the emerging complexity when content-specific components of PCK interact when planning to teach a chemistry topic; and secondly, to identify the kinds of teacher tasks that promote the emergence of such complexity. Data collected were content representations (CoRes) in chemical equilibrium accompanied by expanded lesson outlines from 15 pre-service teachers in their final year of study towards a first degree in teaching (B Ed). The analysis involved extraction of episodes that exhibited component interaction by using a qualitative in-depth analysis method. The results revealed the structure in which the components of PCK in a topic interact among each other to be linear, interwoven, or a combination of the two. The interwoven interactions contained multiple components that connected explanations on different aspects of a concept, all working in a complementary manner. The most sophisticated component interactions emerged from teacher tasks on descriptions of a lesson sequence and a summary of a lesson. Recommendations in this study highlight core practices for making pedagogical transformation of topic content knowledge more accessible.

  17. Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo

    KAUST Repository

    Martinez, Josue G.; Liang, Faming; Zhou, Lan; Carroll, Raymond J.

    2010-01-01

    model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order

  18. Flowfield and Radiation Analysis of Missile Exhaust Plumes Using a Turbulent-Chemistry Interaction Model

    National Research Council Canada - National Science Library

    Calhoon, W. H; Kenzakowski, D. C

    2000-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulent-chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  19. Specificity of interactions among the DNA-packaging machine components of T4-related bacteriophages.

    Science.gov (United States)

    Gao, Song; Rao, Venigalla B

    2011-02-04

    Tailed bacteriophages use powerful molecular motors to package the viral genome into a preformed capsid. Packaging at a rate of up to ∼2000 bp/s and generating a power density twice that of an automobile engine, the phage T4 motor is the fastest and most powerful reported to date. Central to DNA packaging are dynamic interactions among the packaging components, capsid (gp23), portal (gp20), motor (gp17, large "terminase"), and regulator (gp16, small terminase), leading to precise orchestration of the packaging process, but the mechanisms are poorly understood. Here we analyzed the interactions between small and large terminases of T4-related phages. Our results show that the gp17 packaging ATPase is maximally stimulated by homologous, but not heterologous, gp16. Multiple interaction sites are identified in both gp16 and gp17. The specificity determinants in gp16 are clustered in the diverged N- and C-terminal domains (regions I-III). Swapping of diverged region(s), such as replacing C-terminal RB49 region III with that of T4, switched ATPase stimulation specificity. Two specificity regions, amino acids 37-52 and 290-315, are identified in or near the gp17-ATPase "transmission" subdomain II. gp16 binding at these sites might cause a conformational change positioning the ATPase-coupling residues into the catalytic pocket, triggering ATP hydrolysis. These results lead to a model in which multiple weak interactions between motor and regulator allow dynamic assembly and disassembly of various packaging complexes, depending on the functional state of the packaging machine. This might be a general mechanism for regulation of the phage packaging machine and other complex molecular machines.

  20. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    International Nuclear Information System (INIS)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested

  1. Interacting boson model with surface delta interaction between nucleons: Structure and interaction of bosons

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Moszkowski, S.A.

    1986-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. We have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson-proton-boson interaction for the case of degenerate orbits. A connection is made between these coefficients and the parameters of the interaction boson model Hamiltonian. A link between the latter parameters and the single boson energies is suggested.

  2. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  3. Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model

    International Nuclear Information System (INIS)

    Stotler, D.P.

    2005-01-01

    The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model

  4. Exploring component-based approaches in forest landscape modeling

    Science.gov (United States)

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  5. Option valuation with the simplified component GARCH model

    DEFF Research Database (Denmark)

    Dziubinski, Matt P.

    We introduce the Simplified Component GARCH (SC-GARCH) option pricing model, show and discuss sufficient conditions for non-negativity of the conditional variance, apply it to low-frequency and high-frequency financial data, and consider the option valuation, comparing the model performance...

  6. Study of the Deformation/Interaction Model: How Interactions Increase the Reaction Barrier

    Directory of Open Access Journals (Sweden)

    Zhiling Liang

    2018-01-01

    Full Text Available The interactions (including weak interactions between dienophiles and dienes play an important role in the Diels-Alder reaction. To elucidate the influence of these interactions on the reactivity, a popular DFT functional and a variational DFT functional corrected with dispersion terms are used to investigate different substituent groups incorporated on the dienophiles and dienes. The bond order is used to track the trajectory of the cycloaddition reaction. The deformation/interaction model is used to obtain the interaction energy from the reactant complex to the inflection point until reaching the saddle point. The interaction energy initially increases with a decrease in the interatomic distance, reaching a maximum value, but then decreases when the dienophiles and dienes come closer. Reduced density gradient and chemical energy component analysis are used to analyse the interaction. Traditional transition state theory and variational transition state theory are used to obtain the reaction rates. The influence of tunneling on the reaction rate is also discussed.

  7. Are All Program Elements Created Equal? Relations Between Specific Social and Emotional Learning Components and Teacher-Student Classroom Interaction Quality.

    Science.gov (United States)

    Abry, Tashia; Rimm-Kaufman, Sara E; Curby, Timothy W

    2017-02-01

    School-based social and emotional learning (SEL) programs are presented to educators with little understanding of the program components that have the greatest leverage for improving targeted outcomes. Conducted in the context of a randomized controlled trial, the present study used variation in treatment teachers' (N = 143) implementation of four core components of the Responsive Classroom approach to examine relations between each component and the quality of teachers' emotional, organizational, and instructional interactions in third, fourth, and fifth grade classrooms (controlling for pre-intervention interaction quality and other covariates). We also examined the extent to which these relations varied as a function of teachers' baseline levels of interaction quality. Indices of teachers' implementation of Morning Meeting, Rule Creation, Interactive Modeling, and Academic Choice were derived from a combination of teacher-reported surveys and classroom observations. Ratings of teacher-student classroom interactions were aggregated across five observations conducted throughout the school year. Structural path models indicated that teachers' use of Morning Meeting and Academic Choice related to higher levels of emotionally supportive interactions; Academic Choice also related to higher levels of instructional interactions. In addition, teachers' baseline interaction quality moderated several associations such that the strongest relations between RC component use and interaction quality emerged for teachers with the lowest baseline interaction quality. Results highlight the value of examining individual program components toward the identification of program active ingredients that can inform intervention optimization and teacher professional development.

  8. [Evaluate drug interaction of multi-components in Morus alba leaves based on α-glucosidase inhibitory activity].

    Science.gov (United States)

    Ji, Tao; Su, Shu-Lan; Guo, Sheng; Qian, Da-Wei; Ouyang, Zhen; Duan, Jin-Ao

    2016-06-01

    Column chromatography was used for enrichment and separation of flavonoids, alkaloids and polysaccharides from the extracts of Morus alba leaves; glucose oxidase method was used with sucrose as the substrate to evaluate the multi-components of M. alba leaves in α-glucosidase inhibitory models; isobole method, Chou-Talalay combination index analysis and isobolographic analysis were used to evaluate the interaction effects and dose-effect characteristics of two components, providing scientific basis for revealing the hpyerglycemic mechanism of M. alba leaves. The components analysis showed that flavonoid content was 5.3%; organic phenolic acids content was 10.8%; DNJ content was 39.4%; and polysaccharide content was 18.9%. Activity evaluation results demonstrated that flavonoids, alkaloids and polysaccharides of M. alba leaves had significant inhibitory effects on α-glucosidase, and the inhibitory rate was increased with the increasing concentration. Alkaloids showed most significant inhibitory effects among these three components. Both compatibility of alkaloids and flavonoids, and the compatibility of alkaloids and polysaccharides demonstrated synergistic effects, but the compatibility of flavonoids and polysaccharides showed no obvious synergistic effects. The results have confirmed the interaction of multi-components from M. alba leaves to regulate blood sugar, and provided scientific basis for revealing hpyerglycemic effectiveness and mechanism of the multi-components from M. alba leaves. Copyright© by the Chinese Pharmaceutical Association.

  9. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components.

    Science.gov (United States)

    Burgain, J; Scher, J; Francius, G; Borges, F; Corgneau, M; Revol-Junelles, A M; Cailliez-Grimal, C; Gaiani, C

    2014-11-01

    This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Interaction Modeling at PROS Research Center

    OpenAIRE

    Panach , José ,; Aquino , Nathalie; PASTOR , Oscar

    2011-01-01

    Part 1: Long and Short Papers; International audience; This paper describes how the PROS Research Center deals with interaction in the context of a model-driven approach for the development of information systems. Interaction is specified in a conceptual model together with the structure and behavior of the system. Major achievements and current research challenges of PROS in the field of interaction modeling are presented.

  11. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  12. Superfluid drag in the two-component Bose-Hubbard model

    Science.gov (United States)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  13. Dark energy interacting with dark matter and a third fluid: Possible EoS for this component

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco

    2011-01-01

    A cosmological model of dark energy interacting with dark matter and another general component of the universe is considered. The equations for the coincidence parameters r and s, which represent the ratios between dark energy and dark matter and the other cosmic fluid respectively, are analyzed in terms of the stability of stationary solutions. The obtained general results allow to shed some light on the equations of state of the three interacting fluids, due to the constraints imposed by the stability of the solutions. We found that for an interaction proportional to the sum of the dark energy density and the third fluid density, the hypothetical fluid must have positive pressure, which leads naturally to a cosmological scenario with radiation, unparticle or even some form of warm dark matter as the third interacting fluid.

  14. Dark energy interacting with dark matter and a third fluid: Possible EoS for this component

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman, E-mail: ncruz@lauca.usach.c [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile); Lepe, Samuel, E-mail: slepe@ucv.c [Instituto de Fisica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Pena, Francisco, E-mail: fcampos@ufro.c [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)

    2011-05-09

    A cosmological model of dark energy interacting with dark matter and another general component of the universe is considered. The equations for the coincidence parameters r and s, which represent the ratios between dark energy and dark matter and the other cosmic fluid respectively, are analyzed in terms of the stability of stationary solutions. The obtained general results allow to shed some light on the equations of state of the three interacting fluids, due to the constraints imposed by the stability of the solutions. We found that for an interaction proportional to the sum of the dark energy density and the third fluid density, the hypothetical fluid must have positive pressure, which leads naturally to a cosmological scenario with radiation, unparticle or even some form of warm dark matter as the third interacting fluid.

  15. Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components

    OpenAIRE

    McPherson, DL; Starr, A

    1993-01-01

    Binaural interaction occurs in the auditory evoked potentials when the sum of the monaural auditory evoked potentials are not equivalent to the binaural evoked auditory potentials. Binaural interaction of the early- (0-10 ms), middle- (10-50 ms) and long-latency (50-200 ms) auditory evoked potentials was studied in 17 normal young adults. For the early components, binaural interaction was maximal at 7.35 ms accounting for a reduction of 21% of the amplitude of the binaural evoked potentials. ...

  16. Three-wave interaction in two-component quadratic nonlinear lattices

    DEFF Research Database (Denmark)

    Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth

    1999-01-01

    We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation known...... from three-wave interaction is reproduced in the lattice and that exact phase matching of parametric processes can be obtained in non-phase-matched lattices by tilting the interacting plane waves with respect to each other. [S1063-651X(99)15110-9]....

  17. Interactive Model-Centric Systems Engineering (IMCSE) Phase Two

    Science.gov (United States)

    2015-02-28

    109 Backend Implementation...as cell-phone GPS data offers unprecedented tracking of commuting, mobility , and navigation patterns within the urban environment. And yet many...Task 4 develops a service API to collect and query results across model executions. Task 5 implements the backend components to interact 160 Forio

  18. [Studies on the interaction of blood components with ultra-smooth polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, T.H. [New Mexico Univ., Albuquerque, NM (United States). School of Medicine

    1989-04-17

    This report is in three parts, though each is briefly described data is provided. The three parts address (1) radioiodination of human thrombin and fibrinogen; (2) interaction of blood components with ultra- smooth polymer surfaces; and (3) initial studies of Tecoflex and treated Tecoflex cups with normal serum samples.

  19. Towards a Component Based Model for Database Systems

    Directory of Open Access Journals (Sweden)

    Octavian Paul ROTARU

    2004-02-01

    Full Text Available Due to their effectiveness in the design and development of software applications and due to their recognized advantages in terms of reusability, Component-Based Software Engineering (CBSE concepts have been arousing a great deal of interest in recent years. This paper presents and extends a component-based approach to object-oriented database systems (OODB introduced by us in [1] and [2]. Components are proposed as a new abstraction level for database system, logical partitions of the schema. In this context, the scope is introduced as an escalated property for transactions. Components are studied from the integrity, consistency, and concurrency control perspective. The main benefits of our proposed component model for OODB are the reusability of the database design, including the access statistics required for a proper query optimization, and a smooth information exchange. The integration of crosscutting concerns into the component database model using aspect-oriented techniques is also discussed. One of the main goals is to define a method for the assessment of component composition capabilities. These capabilities are restricted by the component’s interface and measured in terms of adaptability, degree of compose-ability and acceptability level. The above-mentioned metrics are extended from database components to generic software components. This paper extends and consolidates into one common view the ideas previously presented by us in [1, 2, 3].[1] Octavian Paul Rotaru, Marian Dobre, Component Aspects in Object Oriented Databases, Proceedings of the International Conference on Software Engineering Research and Practice (SERP’04, Volume II, ISBN 1-932415-29-7, pages 719-725, Las Vegas, NV, USA, June 2004.[2] Octavian Paul Rotaru, Marian Dobre, Mircea Petrescu, Integrity and Consistency Aspects in Component-Oriented Databases, Proceedings of the International Symposium on Innovation in Information and Communication Technology (ISIICT

  20. The nucleon-nucleon spin-orbit interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Riska, D.O.; Dannbom, K.

    1987-01-01

    The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component

  1. Near term and long term materials issues and development needs for plasma interactive components

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1986-01-01

    Plasma interactive components (PICs), including the first wall, limiter blades, divertor collector plates, halo scrapers, and RF launchers, are exposed to high particle fluxes that can result in high sputtering erosion rates and high heat fluxes. In addition, the materials in reactors are exposed to high neutron fluxes which will degrade the bulk properties. This severe environment will limit the materials and designs which can be used in fusion devices. In order to provide a reasonable degree of confidence that plasma interactive components will operate successfully, a comprehensive development program is needed. Materials research and development plays a key role in the successful development of PICs. The range of operating conditions along with a summary of the major issues for materials development is described. The areas covered include plasma/materials interactions, erosion/redeposition, baseline materials properties, fabrication, and irradiation damage effects. Candidate materials and materials development needs in the near term and long term are identified

  2. Interactions between cask components and content of packaging for the transport of radioactive material during drop tests

    International Nuclear Information System (INIS)

    Quercetti, T.; Ballheimer, V.; Zeisler, P.; Mueller, K.

    2003-01-01

    This paper describes the analytical, numerical and experimental investigations on the phenomenon of interactions between cask components and content of packages for the transport of radioactive material during drop tests required according to the IAEA Regulations for the Safe Transport of Radioactive Material. Radial and axial gaps between cask components and content are usually necessary for thermal reasons but larger gaps can exist because of the geometrical dimensions of the specified content. Consequently interactions between content and cask components (lid system, cask body, etc.) are possible and can not be excluded during drop tests. Interactions in this context are relative movements between cask and content which are mainly due to elastic spring effects after releasing the cask for the free drop. These relative movements can cause interior collisions between content and cask during the main impact of the package onto the unyielding target. Drop tests with various types of Type A and Type B packages fully instrumented with strain gauges and accelerometers showed that these interactions respectively interior collisions can be considerable relating to high forces acting on cask lids, lid bolts and the content. Of course the real quantitative consequences of the interactions depend upon different conditions, among others the drop orientation, the design characteristics of the impact limiters, the dimensions of the gaps, the material characteristics of the contents, etc. . In order to investigate more precisely the phenomenon of interactions BAM carried out finite element calculations for the named casks using the ABAQUS/ Standard and ABAQUS/ Explicit computer code comparing them with results obtained from experiments. Additionally, tests with a simplified model instrumented with accelerometers were carried out accompanied by finite element calculations and analytical calculations using MATHEMATICA. The investigations on the mentioned phenomena of interaction

  3. Semantic models for adaptive interactive systems

    CERN Document Server

    Hussein, Tim; Lukosch, Stephan; Ziegler, Jürgen; Calvary, Gaëlle

    2013-01-01

    Providing insights into methodologies for designing adaptive systems based on semantic data, and introducing semantic models that can be used for building interactive systems, this book showcases many of the applications made possible by the use of semantic models.Ontologies may enhance the functional coverage of an interactive system as well as its visualization and interaction capabilities in various ways. Semantic models can also contribute to bridging gaps; for example, between user models, context-aware interfaces, and model-driven UI generation. There is considerable potential for using

  4. Using Interaction Scenarios to Model Information Systems

    DEFF Research Database (Denmark)

    Bækgaard, Lars; Bøgh Andersen, Peter

    The purpose of this paper is to define and discuss a set of interaction primitives that can be used to model the dynamics of socio-technical activity systems, including information systems, in a way that emphasizes structural aspects of the interaction that occurs in such systems. The primitives...... a number of case studies that indicate that interaction primitives can be useful modeling tools for supplementing conventional flow-oriented modeling of business processes....... are based on a unifying, conceptual definition of the disparate interaction types - a robust model of the types. The primitives can be combined and may thus represent mediated interaction. We present a set of visualizations that can be used to define multiple related interactions and we present and discuss...

  5. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  6. Fragmentary model of exchange interactions

    CERN Document Server

    Kotov, V M

    2000-01-01

    This article makes attempt to refusal from using neutrino for explanation continuous distribution of beta particle energy by conversion to characteristic exchange interaction particles in nucleolus. It is taking formulation for nuclear position with many different fragments. It is computing half-value period of spontaneous fission of heavy nucleolus. (author)

  7. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Salem, Ahmed Sultan; Di Renzo, Marco; Alouini, Mohamed-Slim

    2016-01-01

    to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks

  8. Modeling the evaporation of sessile multi-component droplets

    NARCIS (Netherlands)

    Diddens, C.; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Wijshoff, H.M.A.

    2017-01-01

    We extended a mathematical model for the drying of sessile droplets, based on the lubrication approximation, to binary mixture droplets. This extension is relevant for e.g. inkjet printing applications, where ink consisting of several components are used. The extension involves the generalization of

  9. Incremental principal component pursuit for video background modeling

    Science.gov (United States)

    Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt

    2017-03-14

    An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.

  10. Do Knowledge-Component Models Need to Incorporate Representational Competencies?

    Science.gov (United States)

    Rau, Martina Angela

    2017-01-01

    Traditional knowledge-component models describe students' content knowledge (e.g., their ability to carry out problem-solving procedures or their ability to reason about a concept). In many STEM domains, instruction uses multiple visual representations such as graphs, figures, and diagrams. The use of visual representations implies a…

  11. Hybrid time/frequency domain modeling of nonlinear components

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth

    2007-01-01

    This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...

  12. The modeling of predator-prey interactions

    OpenAIRE

    Muhammad Shakil; H. A. Wahab; Muhammad Naeem, et al.

    2015-01-01

    In this paper, we aim to study the interactions between the territorial animals like foxes and the rabbits. The territories for the foxes are considered to be the simple cells. The interactions between predator and its prey are represented by the chemical reactions which obey the mass action law. In this sense, we apply the mass action law for predator prey models and the quasi chemical approach is applied for the interactions between the predator and its prey to develop the modeled equations...

  13. Modeling multimodal human-computer interaction

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.

    2004-01-01

    Incorporating the well-known Unified Modeling Language into a generic modeling framework makes research on multimodal human-computer interaction accessible to a wide range off software engineers. Multimodal interaction is part of everyday human discourse: We speak, move, gesture, and shift our gaze

  14. Gravitational interactions of integrable models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1995-10-01

    We couple non-linear σ-models to Liouville gravity, showing that integrability properties of symmetric space models still hold for the matter sector. Using similar arguments for the fermionic counterpart, namely Gross-Neveu-type models, we verify that such conclusions must also hold for them, as recently suggested. (author). 18 refs

  15. MODELING OF SYSTEM COMPONENTS OF EDUCATIONAL PROGRAMS IN HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    E. K. Samerkhanova

    2016-01-01

    Full Text Available Based on the principles of System Studies, describes the components of the educational programs of the control system. Educational Program Management is a set of substantive, procedural, resource, subject-activity, efficiently and evaluation components, which ensures the integrity of integration processes at all levels of education. Ensuring stability and development in the management of educational programs is achieved by identifying and securing social norms, the status of the educational institution program managers to ensure the achievement of modern quality of education.Content Management provides the relevant educational content in accordance with the requirements of the educational and professional standards; process control ensures the efficient organization of rational distribution process flows; Resource Management provides optimal distribution of personnel, information and methodological, material and technical equipment of the educational program; contingent management provides subject-activity interaction of participants of the educational process; quality control ensures the quality of educational services.

  16. Sparse Principal Component Analysis in Medical Shape Modeling

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus

    2006-01-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of sufficiently small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA...

  17. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    AlAmmouri, Ahmad

    2016-07-26

    Stochastic geometry (SG) has been widely accepted as a fundamental tool for modeling and analyzing cellular networks. However, the fading models used with SG analysis are mainly confined to the simplistic Rayleigh fading, which is extended to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks with generalized two-ray (GTR) fading channel. The GTR fading explicitly accounts for two DSCs in addition to the diffuse components and offers high flexibility to capture diverse fading channels that appear in realistic outdoor/indoor wireless communication scenarios. It also encompasses the famous Rayleigh and Rician fading as special cases. To this end, the prominent effect of DSCs is highlighted in terms of average spectral efficiency. © 2016 IEEE.

  18. Cognitive components underpinning the development of model-based learning.

    Science.gov (United States)

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A

    2017-06-01

    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Molecular structure and interactions of nucleic acid components in nanoparticles: ab initio calculations

    International Nuclear Information System (INIS)

    Rubin, Yu.V.; Belous, L.F.

    2012-01-01

    Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.

  20. Models for describing the thermal characteristics of building components

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik

    2008-01-01

    , for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family....... The characteristics of each type of model are highlighted. Some available software tools for each of the methods described will be mentioned. A case study also demonstrating the difference between linear and nonlinear models is considered....... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends...

  1. Formal Model-Driven Engineering: Generating Data and Behavioural Components

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang

    2012-12-01

    Full Text Available Model-driven engineering is the automatic production of software artefacts from abstract models of structure and functionality. By targeting a specific class of system, it is possible to automate aspects of the development process, using model transformations and code generators that encode domain knowledge and implementation strategies. Using this approach, questions of correctness for a complex, software system may be answered through analysis of abstract models of lower complexity, under the assumption that the transformations and generators employed are themselves correct. This paper shows how formal techniques can be used to establish the correctness of model transformations used in the generation of software components from precise object models. The source language is based upon existing, formal techniques; the target language is the widely-used SQL notation for database programming. Correctness is established by giving comparable, relational semantics to both languages, and checking that the transformations are semantics-preserving.

  2. Deep Predictive Models in Interactive Music

    OpenAIRE

    Martin, Charles P.; Ellefsen, Kai Olav; Torresen, Jim

    2018-01-01

    Automatic music generation is a compelling task where much recent progress has been made with deep learning models. In this paper, we ask how these models can be integrated into interactive music systems; how can they encourage or enhance the music making of human users? Musical performance requires prediction to operate instruments, and perform in groups. We argue that predictive models could help interactive systems to understand their temporal context, and ensemble behaviour. Deep learning...

  3. Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo

    KAUST Repository

    Martinez, Josue G.

    2010-06-01

    The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.

  4. A minimal model for two-component dark matter

    International Nuclear Information System (INIS)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z_2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  5. Evaluating fugacity models for trace components in landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Shafi, Sophie [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Sweetman, Andrew [Department of Environmental Science, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Hough, Rupert L. [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Smith, Richard [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Rosevear, Alan [Science Group - Waste and Remediation, Environment Agency, Reading RG1 8DQ (United Kingdom); Pollard, Simon J.T. [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)]. E-mail: s.pollard@cranfield.ac.uk

    2006-12-15

    A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95 300 {mu}g m{sup -3}; 43 {mu}g m{sup -3}) fell within measured ranges observed in gas from landfills (24 300-180 000 {mu}g m{sup -3}; 20-70 {mu}g m{sup -3}). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas. - Fugacity for trace component in landfill gas.

  6. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  7. A Component-Based Modeling and Validation Method for PLC Systems

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2014-05-01

    Full Text Available Programmable logic controllers (PLCs are complex embedded systems that are widely used in industry. This paper presents a component-based modeling and validation method for PLC systems using the behavior-interaction-priority (BIP framework. We designed a general system architecture and a component library for a type of device control system. The control software and hardware of the environment were all modeled as BIP components. System requirements were formalized as monitors. Simulation was carried out to validate the system model. A realistic example from industry of the gates control system was employed to illustrate our strategies. We found a couple of design errors during the simulation, which helped us to improve the dependability of the original systems. The results of experiment demonstrated the effectiveness of our approach.

  8. A Method for Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Le Guilly, Thibaut; Ravn, Anders Peter

    2015-01-01

    This paper presents a method to check for feature interactions in a system assembled from independently developed concurrent processes as found in many reactive systems. The method combines and refines existing definitions and adds a set of activities. The activities describe how to populate the ...... the definitions with models to ensure that all interactions are captured. The method is illustrated on a home automation example with model checking as analysis tool. In particular, the modelling formalism is timed automata and the analysis uses UPPAAL to find interactions....

  9. Scale modeling flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response

  10. Porous models for wave-seabed interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, Dong-Sheng [Shanghai Jiaotong Univ., SH (China)

    2013-02-01

    Detailed discussion about the phenomenon of wave-seabed interactions. Novel models for wave-induced seabed response. Intensive theoretical derivations for wave-seabed interactions. Practical examples for engineering applications. ''Porous Models for Wave-seabed Interactions'' discusses the Phenomenon of wave-seabed interactions, which is a vital issue for coastal and geotechnical engineers involved in the design of foundations for marine structures such as pipelines, breakwaters, platforms, etc. The most important sections of this book will be the fully detailed theoretical models of wave-seabed interaction problem, which are particularly useful for postgraduate students and junior researchers entering the discipline of marine geotechnics and offshore engineering. This book also converts the research outcomes of theoretical studies to engineering applications that will provide front-line engineers with practical and effective tools in the assessment of seabed instability in engineering design.

  11. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  12. The Color Mutation Model for soft interaction

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1998-01-01

    A comprehensive model for soft interaction is presented. It overcomes all the shortcomings of the existing models - in particular, the failure of Fritiof and Venus models in predicting the correct multiplicity fluctuations as observed in the intermittency data. The Color Mutation Model incorporates all the main features of hadronic interaction: eikonal formalism, parton model, evolution in color space according to QCD, branching of color neutral clusters, contraction due to confinement forces, dynamical self-similarity, resonance production, and power-law behavior of factorial moments. (author)

  13. N-barN interaction theoretical models

    International Nuclear Information System (INIS)

    Loiseau, B.

    1991-12-01

    In the framework of antinucleon-nucleon interaction theoretical models, our present understanding on the N-barN interaction is discussed, either from quark- or/and meson- and baryon-degrees of freedom, by considering the N-barN annihilation into mesons and the N-barN elastic and charge-exchange scattering. (author) 52 refs., 11 figs., 2 tabs

  14. Numerical modeling of magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, Onno

    2001-01-01

    This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic

  15. Discrete choice models for commuting interactions

    DEFF Research Database (Denmark)

    Rouwendal, Jan; Mulalic, Ismir; Levkovich, Or

    An emerging quantitative spatial economics literature models commuting interactions by a gravity equation that is mathematically equivalent to a multinomial logit model. This model is widely viewed as restrictive because of the independence of irrelevant alternatives (IIA) property that links sub...

  16. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  17. Dynamics of Entanglement in Qubit-Qutrit with x-Component of DM Interaction

    International Nuclear Information System (INIS)

    Sharma, Kapil K.; Pandey, S.N.

    2016-01-01

    In this present paper, we study the entanglement dynamics in qubit A-qutrit B pair under x component of Dzyaloshinshkii–Moriya interaction (D x ) by taking an auxiliary qubit C. Here, we consider an entangled qubit-qutrit pair initially prepared in two parameter qubit-qutrit states and one auxiliary qubit prepared in pure state interacts with the qutrit of the pair through DM interaction. We trace away the auxiliary qubit and calculate the reduced dynamics in qubit A-qutrit B pair to study the influence of the state of auxiliary qubit C and D x on entanglement. We find that the state (probability amplitude) of auxiliary qubit does not influence the entanglement, only D x influences the same. The phenomenon of entanglement sudden death (ESD) induced by D x has also been observed. We also present the affected and unaffected two parameter qubit-qutrit states by D x . (paper)

  18. Interaction effects between internal governance mechanisms on the components of initial returns during the IPO

    Directory of Open Access Journals (Sweden)

    Mediha Mezhoud

    2012-12-01

    Full Text Available Our work provides an analysis of the interaction effects between internal governance mechanisms on the components of initial returns during the listing period. The application of multivariate regressions on a sample of 110 IPO French companies during 2005-2010, has allowed us to conclude that the different interactions between these mechanisms significantly influence the level of under / overpricing. Indeed, the positive relationship between internal governance mechanisms and overpricing reflects a substitutability relationship. In contrast, the complementarity effect comes from the negative relationship characterizing the combination of governance mechanisms and the underpricing. Thus, the interactions effects between institutional ownership, board structure and under / overpricing are not conforming to the existence of a complementarity or substitutability relationship between these variables given the absence of a significant combination between these variables

  19. Syndetic model of fundamental interactions

    Directory of Open Access Journals (Sweden)

    Ernest Ma

    2015-02-01

    Full Text Available The standard model of quarks and leptons is extended to connect three outstanding issues in particle physics and astrophysics: (1 the absence of strong CP nonconservation, (2 the existence of dark matter, and (3 the mechanism of nonzero neutrino masses, and that of the first family of quarks and leptons, all in the context of having only one Higgs boson in a renormalizable theory. Some phenomenological implications are discussed.

  20. Electron scattering in the interacting boson model

    NARCIS (Netherlands)

    Dieperink, AEL; Iachello, F; Rinat, A; Creswell, C

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 ÷ states inthe transitional Sm-Nd region are discussed

  1. Modelling raster-based monthly water balance components for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ulmen, C.

    2000-11-01

    The terrestrial runoff component is a comparatively small but sensitive and thus significant quantity in the global energy and water cycle at the interface between landmass and atmosphere. As opposed to soil moisture and evapotranspiration which critically determine water vapour fluxes and thus water and energy transport, it can be measured as an integrated quantity over a large area, i.e. the river basin. This peculiarity makes terrestrial runoff ideally suited for the calibration, verification and validation of general circulation models (GCMs). Gauging stations are not homogeneously distributed in space. Moreover, time series are not necessarily continuously measured nor do they in general have overlapping time periods. To overcome this problems with regard to regular grid spacing used in GCMs, different methods can be applied to transform irregular data to regular so called gridded runoff fields. The present work aims to directly compute the gridded components of the monthly water balance (including gridded runoff fields) for Europe by application of the well-established raster-based macro-scale water balance model WABIMON used at the Federal Institute of Hydrology, Germany. Model calibration and validation is performed by separated examination of 29 representative European catchments. Results indicate a general applicability of the model delivering reliable overall patterns and integrated quantities on a monthly basis. For time steps less then too weeks further research and structural improvements of the model are suggested. (orig.)

  2. Accelerator system for producing two-component beams for studies of interactive surface effects

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.; Ekern, R.; Hess, D.C.

    1977-01-01

    For studies of interactive surface effects caused by the simultaneous bombardment of targets by both chemically active and inactive ion species (e.g., D + and He + , respectively) a two beam component accelerator facility was placed in operation. One component, consisting of light ions (e.g., H, D, He) is accelerated by a 2-MV Van de Graaff accelerator which provides a mass analyzed and focussed beam for the energy range from approximately 100-keV to 2-MeV (for singly charged ions). The other component is a beam of light ions in the energy range from approximately 10-keV to 100-keV. This is furnished by a 100-kV dc accelerator system which provides a mass analyzed focussed beam. This beam is guided into the beam line of the Van de Graaff accelerator electrostatically, and with the aid of beam steerers it is made to be co-axial with the Van de Graaff generated beam. The angle of incidence becomes hereby a free parameter for the interaction of the mixed beams with a surface. For each beam component, current densities of 650 μA cm -2 on target can readily be obtained. In order to reduce carbon contamination of the irradiated targets significantly, stainless steel beam lines have been used together with a combination of turbomolecular pumps and ion-sublimation pumps.A total pressure of 2 to 3 x 10 -8 torr in the beam lines and of 2 x 10 -9 torr in the target chamber can be obtained readily. Experimental results on the surface damage of Ni bombarded simultaneously with He + and D + ions are presented. The importance of such studies of interactive surface effects for the controlled thermonuclear fusion program are discussed

  3. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    Science.gov (United States)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  4. Mathematical models for plant-herbivore interactions

    Science.gov (United States)

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  5. Three-Component Forward Modeling for Transient Electromagnetic Method

    Directory of Open Access Journals (Sweden)

    Bin Xiong

    2010-01-01

    Full Text Available In general, the time derivative of vertical magnetic field is considered only in the data interpretation of transient electromagnetic (TEM method. However, to survey in the complex geology structures, this conventional technique has begun gradually to be unsatisfied with the demand of field exploration. To improve the integrated interpretation precision of TEM, it is necessary to study the three-component forward modeling and inversion. In this paper, a three-component forward algorithm for 2.5D TEM based on the independent electric and magnetic field has been developed. The main advantage of the new scheme is that it can reduce the size of the global system matrix to the utmost extent, that is to say, the present is only one fourth of the conventional algorithm. In order to illustrate the feasibility and usefulness of the present algorithm, several typical geoelectric models of the TEM responses produced by loop sources at air-earth interface are presented. The results of the numerical experiments show that the computation speed of the present scheme is increased obviously and three-component interpretation can get the most out of the collected data, from which we can easily analyze or interpret the space characteristic of the abnormity object more comprehensively.

  6. Vector-Interaction-Enhanced Bag Model

    Science.gov (United States)

    Cierniak, Mateusz; Klähn, Thomas; Fischer, Tobias; Bastian, Niels-Uwe

    2018-02-01

    A commonly applied quark matter model in astrophysics is the thermodynamic bag model (tdBAG). The original MIT bag model approximates the effect of quark confinement, but does not explicitly account for the breaking of chiral symmetry, an important property of Quantum Chromodynamics (QCD). It further ignores vector repulsion. The vector-interaction-enhanced bag model (vBag) improves the tdBAG approach by accounting for both dynamical chiral symmetry breaking and repulsive vector interactions. The latter is of particular importance to studies of dense matter in beta-equilibriumto explain the two solar mass maximum mass constraint for neutron stars. The model is motivated by analyses of QCD based Dyson-Schwinger equations (DSE), assuming a simple quark-quark contact interaction. Here, we focus on the study of hybrid neutron star properties resulting from the application of vBag and will discuss possible extensions.

  7. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  8. IQGAP1 is a novel CXCR2-interacting protein and essential component of the "chemosynapse".

    Directory of Open Access Journals (Sweden)

    Nicole F Neel

    Full Text Available Chemotaxis is essential for a number of physiological processes including leukocyte recruitment. Chemokines initiate intracellular signaling pathways necessary for chemotaxis through binding seven transmembrane G protein-couple receptors. Little is known about the proteins that interact with the intracellular domains of chemokine receptors to initiate cellular signaling upon ligand binding. CXCR2 is a major chemokine receptor expressed on several cell types, including endothelial cells and neutrophils. We hypothesize that multiple proteins interact with the intracellular domains of CXCR2 upon ligand stimulation and these interactions comprise a "chemosynapse", and play important roles in transducing CXCR2 mediated signaling processes.In an effort to define the complex of proteins that assemble upon CXCR2 activation to relay signals from activated chemokine receptors, a proteomics approach was employed to identify proteins that co-associate with CXCR2 with or without ligand stimulation. The components of the CXCR2 "chemosynapse" are involved in processes ranging from intracellular trafficking to cytoskeletal modification. IQ motif containing GTPase activating protein 1 (IQGAP1 was among the novel proteins identified to interact directly with CXCR2. Herein, we demonstrate that CXCR2 co-localizes with IQGAP1 at the leading edge of polarized human neutrophils and CXCR2 expressing differentiated HL-60 cells. Moreover, amino acids 1-160 of IQGAP1 directly interact with the carboxyl-terminal domain of CXCR2 and stimulation with CXCL8 enhances IQGAP1 association with Cdc42.Our studies indicate that IQGAP1 is a novel essential component of the CXCR2 "chemosynapse".

  9. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  10. Identification of Aspergillus fumigatus Surface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets.

    Science.gov (United States)

    Rambach, Günter; Blum, Gerhard; Latgé, Jean-Paul; Fontaine, Thierry; Heinekamp, Thorsten; Hagleitner, Magdalena; Jeckström, Hanna; Weigel, Günter; Würtinger, Philipp; Pfaller, Kristian; Krappmann, Sven; Löffler, Jürgen; Lass-Flörl, Cornelia; Speth, Cornelia

    2015-10-01

    Platelets were recently identified as a part of innate immunity. They are activated by contact with Aspergillus fumigatus; putative consequences include antifungal defense but also thrombosis, excessive inflammation, and thrombocytopenia. We aimed to identify those fungal surface structures that mediate interaction with platelets. Human platelets were incubated with Aspergillus conidia and hyphae, isolated wall components, or fungal surface mutants. Interaction was visualized microscopically; activation was quantified by flow cytometry of specific markers. The capacity of A. fumigatus conidia to activate platelets is at least partly due to melanin, because this effect can be mimicked with "melanin ghosts"; a mutant lacking melanin showed reduced platelet stimulating potency. In contrast, conidial hydrophobin masks relevant structures, because an A. fumigatus mutant lacking the hydrophobin protein induced stronger platelet activation than wild-type conidia. A. fumigatus hyphae also contain surface structures that interact with platelets. Wall proteins, galactomannan, chitin, and β-glucan are not the relevant hyphal components; instead, the recently identified fungal polysaccharide galactosaminogalactan potently triggered platelet activation. Conidial melanin and hydrophobin as well as hyphal galactosaminogalactan represent important pathogenicity factors that modulate platelet activity and thus might influence immune responses, inflammation, and thrombosis in infected patients. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Brewing and volatiles analysis of three tea beers indicate a potential interaction between tea components and lager yeast.

    Science.gov (United States)

    Rong, Lei; Peng, Li-Juan; Ho, Chi-Tang; Yan, Shou-He; Meurens, Marc; Zhang, Zheng-Zhu; Li, Da-Xiang; Wan, Xiao-Chun; Bao, Guan-Hu; Gao, Xue-Ling; Ling, Tie-Jun

    2016-04-15

    Green tea, oolong tea and black tea were separately introduced to brew three kinds of tea beers. A model was designed to investigate the tea beer flavour character. Comparison of the volatiles between the sample of tea beer plus water mixture (TBW) and the sample of combination of tea infusion and normal beer (CTB) was accomplished by triangular sensory test and HS-SPME GC-MS analysis. The PCA of GC-MS data not only showed a significant difference between volatile features of each TBW and CTB group, but also suggested some key compounds to distinguish TBW from CTB. The results of GC-MS showed that the relative concentrations of many typical tea volatiles were significantly changed after the brewing process. More interestingly, the behaviour of yeast fermentation was influenced by tea components. A potential interaction between tea components and lager yeast could be suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Relativistic direct interaction and hadron models

    International Nuclear Information System (INIS)

    Biswas, T.

    1984-01-01

    Direct interaction theories at a nonrelativistic level have been used successfully in several areas earlier (e.g. nuclear physics). But for hadron spectroscopy relativistic effects are important and hence the need for a relativistic direct interaction theory arises. It is the goal of this thesis to suggest such a theory which has the simplicity and the flexibility required for phenomenological model building. In general the introduction of relativity in a direct interaction theory is shown to be non-trivial. A first attempt leads to only an approximate form for allowed interactions. Even this is far too complex for phenomenological applicability. To simplify the model an extra spacelike particle called the vertex is introduced in any set of physical (timelike) particles. The vertex model is successfully used to fit and to predict experimental data on hadron spectra, γ and psi states fit very well with an interaction function inspired by QCD. Light mesons also fit reasonably well. Better forms of hyperfine interaction functions would be needed to improve the fitting of light mesons. The unexpectedly low pi meson mass is partially explained. Baryon ground states are fitted with unprecedented accuracy with very few adjustable parameters. For baryon excited states it is shown that better QCD motivated interaction functions are needed for a fit. Predictions for bb states in e + e - experiments are made to assist current experiments

  13. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    Directory of Open Access Journals (Sweden)

    G. Strauch

    2009-10-01

    Full Text Available For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i the origin of water, (ii water quality, (iii relations of surface and groundwater.

    Applying the complex multi-isotopic and hydrochemical methodology to the water components of the Huasco and Limarí basins, a differentiation of water components concerning subsurface flow and river water along the catchment area and by anthropogenic impacts are detected. Sulphate and nitrate concentrations indicate remarkable input from mining and agricultural activities along the river catchment.

    The 2H-18O relations of river water and groundwater of both catchments point to the behaviour of river waters originated in an arid to semi-arid environment.

    Consequently, the groundwater from several production wells in the lower parts of the catchments is related to the rivers where the wells located, however, it can be distinguished from the river water. Using the hydrological water balance and the isotope mixing model, the interaction between surface and subsurface flows and river flow is estimated.

  14. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    Science.gov (United States)

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  15. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  16. Interacting p- Boson model with isospin

    International Nuclear Information System (INIS)

    Chen, C.H.-T.

    A description of collective states in self-conjugate nuclei is proposed, both odd-odd and even-even, in terms of an interacting isoscalar p-boson model. Within this model, two limiting cases can be identified with the anharmonic vibrator and axial rotor limits of the classical geometrical description. (Author) [pt

  17. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  18. The Spiral-Interactive Program Evaluation Model.

    Science.gov (United States)

    Khaleel, Ibrahim Adamu

    1988-01-01

    Describes the spiral interactive program evaluation model, which is designed to evaluate vocational-technical education programs in secondary schools in Nigeria. Program evaluation is defined; utility oriented and process oriented models for evaluation are described; and internal and external evaluative factors and variables that define each…

  19. Structure and effective interactions in three-component hard sphere liquids.

    Science.gov (United States)

    König, A; Ashcroft, N W

    2001-04-01

    Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.

  20. An introduction to the interacting boson model

    International Nuclear Information System (INIS)

    Iachello, F.

    1981-01-01

    This chapter introduces an alternative, algebraic, description of the properties of nuclei with several particles outside the closed shells. Focuses on the group theory of the interacting boson model. Discusses the group structure of the boson Hamiltonian; subalgebras; the classification of states; dynamical symmetry; electromagnetic transition rates; transitional classes; and general cases. Omits a discussion of the latest developments (e.g., the introduction of proton and neutron degrees of freedom); the spectra of odd-A nuclei; and the bosonfermion model. Concludes that the major new feature of the interacting boson model is the introduction and systematic exploitation of algebraic techniques, which allows a simple and detailed description of many nuclear properties

  1. Multi-physics fluid-structure interaction modelling software

    CSIR Research Space (South Africa)

    Malan, AG

    2008-11-01

    Full Text Available -structure interaction modelling software AG MALAN AND O OXTOBY CSIR Defence, Peace, Safety and Security, PO Box 395, Pretoria, 0001 Email: amalan@csir.co.za – www.csir.co.za Internationally leading aerospace company Airbus sponsored key components... of the development of the CSIR fl uid-structure interaction (FSI) software. Below are extracts from their evaluation of the devel- oped technology: “The fi eld of FSI covers a massive range of engineering problems, each with their own multi-parameter, individual...

  2. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  3. Interacting ghost dark energy models with variable G and Λ

    Science.gov (United States)

    Sadeghi, J.; Khurshudyan, M.; Movsisyan, A.; Farahani, H.

    2013-12-01

    In this paper we consider several phenomenological models of variable Λ. Model of a flat Universe with variable Λ and G is accepted. It is well known, that varying G and Λ gives rise to modified field equations and modified conservation laws, which gives rise to many different manipulations and assumptions in literature. We will consider two component fluid, which parameters will enter to Λ. Interaction between fluids with energy densities ρ1 and ρ2 assumed as Q = 3Hb(ρ1+ρ2). We have numerical analyze of important cosmological parameters like EoS parameter of the composed fluid and deceleration parameter q of the model.

  4. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    Science.gov (United States)

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  5. Multisite Interactions in Lattice-Gas Models

    Science.gov (United States)

    Einstein, T. L.; Sathiyanarayanan, R.

    For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.

  6. Cranking model and attenuation of Coriolis interaction

    International Nuclear Information System (INIS)

    Lyutorovich, N.A.

    1987-01-01

    Description of rotational bands of odd deformed nuclei in the self-consistent Cranking model (SCM) is given. Causes of attenuation of the Coriolis interaction in the nuclei investigated are studied, and account of bound of one-particle degrees of freedom with rotation of the Hartree-Fock-Bogolyubov (HFB) self-consistent method is introduced additionally to SCM for qualitative agreement with experimental data. Merits and shortages of SCM in comparison with the quadruparticle-rotor (QR) model are discussed. All know ways for constructing the Hamiltonian QR model (or analog of such Hamiltonian) on the basis of the microscopic theory are shown to include two more approximations besides others: quasi-particle-rotational interaction leading to pair break is taken into account in the second order of the perturbation theory; some exchange diagrams are neglected among diagrams of the second order according to this interaction. If one makes the same approximations in SCM instead of HFB method, then the dependence of level energies on spin obtained in this case is turned out to be close to the results of the QR model. Besides, the problem on renormalization of matrix elements of quasi-rotational interaction occurs in such nonself-consistent approach as in the QR model. In so far as the similar problem does not occur in SCM, one can make the conclusion that the problem of attenuation of Coriolis interaction involves the approximations given above

  7. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  8. Two-component scattering model and the electron density spectrum

    Science.gov (United States)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  9. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  10. Flexible Multibody Systems Models Using Composite Materials Components

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambr'osio, Jorge A. C.; Leal, Rog'erio Pereira

    2004-01-01

    The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method

  11. Sparse principal component analysis in medical shape modeling

    Science.gov (United States)

    Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus

    2006-03-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.

  12. Cumulative organic anion transporter-mediated drug-drug interaction potential of multiple components in salvia miltiorrhiza (danshen) preparations.

    Science.gov (United States)

    Wang, Li; Venitz, Jürgen; Sweet, Douglas H

    2014-12-01

    To evaluate organic anion transporter-mediated drug-drug interaction (DDI) potential for individual active components of Danshen (Salvia miltiorrhiza) vs. combinations using in vitro and in silico approaches. Inhibition profiles for single Danshen components and combinations were generated in stably-expressing human (h)OAT1 and hOAT3 cells. Plasma concentration-time profiles for compounds were estimated from in vivo human data using an i.v. two-compartment model (with first-order elimination). The cumulative DDI index was proposed as an indicator of DDI potential for combination products. This index was used to evaluate the DDI potential for Danshen injectables from 16 different manufacturers and 14 different lots from a single manufacturer. The cumulative DDI index predicted in vivo inhibition potentials, 82% (hOAT1) and 74% (hOAT3), comparable with those observed in vitro, 72 ± 7% (hOAT1) and 81 ± 10% (hOAT3), for Danshen component combinations. Using simulated unbound Cmax values, a wide range in cumulative DDI index between manufacturers, and between lots, was predicted. Many products exhibited a cumulative DDI index > 1 (50% inhibition). Danshen injectables will likely exhibit strong potential to inhibit hOAT1 and hOAT3 function in vivo. The proposed cumulative DDI index might improve prediction of DDI potential of herbal medicines or pharmaceutical preparations containing multiple components.

  13. Modeling for thermodynamic activities of components in simulated reprocessing solutions

    International Nuclear Information System (INIS)

    Sasahira, Akira; Hoshikawa, Tadahiro; Kawamura, Fumio

    1992-01-01

    Analyses of chemical reactions have been widely carried out for soluble fission products encountered in nuclear fuel reprocessing. For detailed analyses of reactions, a prediction of the activity or activity coefficient for nitric acid, water, and several nitrates of fission products is needed. An idea for the predicted nitric acid activity was presented earlier. The model, designated the hydration model, does not predict the nitrate activity. It did, however, suggest that the activity of water would be a function of nitric acid activity but not the molar fraction of water. If the activities of nitric acid and water are accurately predicted, the activity of the last component, nitrate, can be calculated using the Gibbs-Duhem relation for chemical potentials. Therefore, in this study, the earlier hydration model was modified to evaluate the water activity more accurately. The modified model was experimentally examined in stimulated reprocessing solutions. It is concluded that the modified model was suitable for water activity, but further improvement was needed for the activity evaluation of nitric acid in order to calculate the nitrate activity

  14. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  15. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  16. A new model for predicting thermodynamic properties of ternary metallic solution from binary components

    International Nuclear Information System (INIS)

    Fang Zheng; Zhang Quanru

    2006-01-01

    A model has been derived to predict thermodynamic properties of ternary metallic systems from those of its three binaries. In the model, the excess Gibbs free energies and the interaction parameter ω 123 for three components of a ternary are expressed as a simple sum of those of the three sub-binaries, and the mole fractions of the components of the ternary are identical with the sub-binaries. This model is greatly simplified compared with the current symmetrical and asymmetrical models. It is able to overcome some shortcomings of the current models, such as the arrangement of the components in the Gibbs triangle, the conversion of mole fractions between ternary and corresponding binaries, and some necessary processes for optimizing the various parameters of these models. Two ternary systems, Mg-Cu-Ni and Cd-Bi-Pb are recalculated to demonstrate the validity and precision of the present model. The calculated results on the Mg-Cu-Ni system are better than those in the literature. New parameters in the Margules equations expressing the excess Gibbs free energies of three binary systems of the Cd-Bi-Pb ternary system are also given

  17. Interaction of serum amyloid P component with hexanoyl bis(d-proline) (CPHPC)

    Energy Technology Data Exchange (ETDEWEB)

    Kolstoe, Simon E. [University College London, Rowland Hill Street, London NW3 2PF (United Kingdom); Jenvey, Michelle C. [University of Southampton, Southampton SO17 1BJ (United Kingdom); Purvis, Alan [Imperial College London, London SW7 2AZ (United Kingdom); Light, Mark E. [University of Southampton, Southampton SO17 1BJ (United Kingdom); Thompson, Darren [University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom); Hughes, Peter; Pepys, Mark B.; Wood, Stephen P., E-mail: s.wood@ucl.ac.uk [University College London, Rowland Hill Street, London NW3 2PF (United Kingdom)

    2014-08-01

    Serum amyloid P component is a pentameric plasma glycoprotein that recognizes and binds to amyloid fibres in a calcium-dependent fashion and is likely to contribute to their deposition and persistence in vivo. Five molecules of the drug CPHPC avidly cross-link pairs of protein pentamers and the decameric complex is rapidly cleared in vivo. Crystal structures of the protein in complex with a bivalent drug and cadmium ions, which improve crystal quality, allow the definition of the preferred bound drug isomers. Under physiological conditions, the pentameric human plasma protein serum amyloid P component (SAP) binds hexanoyl bis(d-proline) (R-1-(6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl) pyrrolidine-2-carboxylic acid; CPHPC) through its d-proline head groups in a calcium-dependent interaction. Cooperative effects in binding lead to a substantial enhancement of affinity. Five molecules of the bivalent ligand cross-link and stabilize pairs of SAP molecules, forming a decameric complex that is rapidly cleared from the circulation by the liver. Here, it is reported that X-ray analysis of the SAP complex with CPHPC and cadmium ions provides higher resolution detail of the interaction than is observed with calcium ions. Conformational isomers of CPHPC observed in solution by HPLC and by X-ray analysis are compared with the protein-bound form. These are discussed in relation to the development of CPHPC to provide SAP depletion for the treatment of amyloidosis and other indications.

  18. Evaluation of two novel leptospiral proteins for their interaction with human host components.

    Science.gov (United States)

    Silva, Lucas P; Fernandes, Luis G V; Vieira, Monica L; de Souza, Gisele O; Heinemann, Marcos B; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O

    2016-07-01

    Pathogenic species of the genus Leptospira are the etiological agents of leptospirosis, the most widespread zoonosis. Mechanisms involved in leptospiral pathogenesis are not well understood. By data mining the genome sequences of Leptospira interrogans we have identified two proteins predicted to be surface exposed, LIC10821 and LIC10064. Immunofluorescence and proteinase K assays confirmed that the proteins are exposed. Reactivity of the recombinant proteins with human sera has shown that rLIC10821, but not rLIC10064, is recognized by antibodies in confirmed leptospirosis serum samples, suggesting its expression during infection. The rLIC10821 was able to bind laminin, in a dose-dependent fashion, and was called Lsa37 (leptospiral surface adhesin of 37 kDa). Studies with human plasma components demonstrated that rLIC10821 interacts with plasminogen (PLG) and fibrinogen (Fg). The binding of Lsa37 with PLG generates plasmin when PLG activator was added. Fibrin clotting reduction was observed in a thrombin-catalyzed reaction, when Fg was incubated with Lsa37, suggesting that this protein may interfere in the coagulation cascade during the disease. Although LIC10064 protein is more abundant than the corresponding Lsa37, binding activity with all the components tested was not detected. Thus, Lsa37 is a novel versatile adhesin that may mediate Leptospira-host interactions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Utilitarian supersymmetric gauge model of particle interactions

    International Nuclear Information System (INIS)

    Ma, Ernest

    2010-01-01

    A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.

  20. Vibrio cholerae interactions with Mytilus galloprovincialis hemocytes mediated by serum components.

    Directory of Open Access Journals (Sweden)

    Laura eCanesi

    2013-12-01

    Full Text Available Edible bivalves (e.g., mussels, oysters can accumulate large amount of bacteria in their tissues and act as passive carriers of pathogens to humans. Bacterial persistence inside bivalves depends, at least in part, on hemolymph anti-bacterial activity that is exerted by both serum soluble factors and phagocytic cells (i.e., the hemocytes. It was previously shown that Mytilus galloprovincialis hemolymph serum contains opsonins that mediate D-mannose-sensitive interactions between hemocytes and V. cholerae O1 El Tor bacteria that carry the Mannose–Sensitive Hemagglutinin (MSHA. These opsonins enhance phagocytosis and killing of vibrios by facilitating their binding to hemocytes. Since V. cholerae strains not carrying the MSHA ligand (O1 classical, non O1/O139 are present in coastal water and can be entrapped by mussels, we studied whether in mussel serum, in addition to opsonins directed towards MSHA, other components can mediate opsonization of these bacteria. By comparing interactions of O1 classical and non O1/O139 strains with hemocytes in ASW and serum, it was found that M. galloprovincialis serum contains components that increase by at approximately two fold their adhesion to, association with and killing by hemocytes. Experiments conducted with high and low molecular mass fractions obtained by serum ultrafiltration indicated that these compounds have molecular mass higher than 5000 Da. Serum exposure to high temperature (80°C abolished its opsonizing capability suggesting that the involved serum active components are of protein nature. Further studies are needed to define the chemical properties and specificity of both the involved bacterial ligands and hemolymph opsonins. This information will be central not only to better understand V. cholerae ecology, but also to improve current bivalve depuration practices and properly protect human health.

  1. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  2. Interactive Visual Analysis within Dynamic Ocean Models

    Science.gov (United States)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  3. Literature review of models on tire-pavement interaction noise

    Science.gov (United States)

    Li, Tan; Burdisso, Ricardo; Sandu, Corina

    2018-04-01

    Tire-pavement interaction noise (TPIN) becomes dominant at speeds above 40 km/h for passenger vehicles and 70 km/h for trucks. Several models have been developed to describe and predict the TPIN. However, these models do not fully reveal the physical mechanisms or predict TPIN accurately. It is well known that all the models have both strengths and weaknesses, and different models fit different investigation purposes or conditions. The numerous papers that present these models are widely scattered among thousands of journals, and it is difficult to get the complete picture of the status of research in this area. This review article aims at presenting the history and current state of TPIN models systematically, making it easier to identify and distribute the key knowledge and opinions, and providing insight into the future research trend in this field. In this work, over 2000 references related to TPIN were collected, and 74 models were reviewed from nearly 200 selected references; these were categorized into deterministic models (37), statistical models (18), and hybrid models (19). The sections explaining the models are self-contained with key principles, equations, and illustrations included. The deterministic models were divided into three sub-categories: conventional physics models, finite element and boundary element models, and computational fluid dynamics models; the statistical models were divided into three sub-categories: traditional regression models, principal component analysis models, and fuzzy curve-fitting models; the hybrid models were divided into three sub-categories: tire-pavement interface models, mechanism separation models, and noise propagation models. At the end of each category of models, a summary table is presented to compare these models with the key information extracted. Readers may refer to these tables to find models of their interest. The strengths and weaknesses of the models in different categories were then analyzed. Finally

  4. Physical interaction between components of DNA mismatch repair and nucleotide excision repair

    International Nuclear Information System (INIS)

    Bertrand, P.; Tishkoff, D.X.; Filosi, N.; Dasgupta, R.; Kolodner, R.D.

    1998-01-01

    Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as 'bait,' and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes

  5. Modelling Safe Interface Interactions in Web Applications

    Science.gov (United States)

    Brambilla, Marco; Cabot, Jordi; Grossniklaus, Michael

    Current Web applications embed sophisticated user interfaces and business logic. The original interaction paradigm of the Web based on static content pages that are browsed by hyperlinks is, therefore, not valid anymore. In this paper, we advocate a paradigm shift for browsers and Web applications, that improves the management of user interaction and browsing history. Pages are replaced by States as basic navigation nodes, and Back/Forward navigation along the browsing history is replaced by a full-fledged interactive application paradigm, supporting transactions at the interface level and featuring Undo/Redo capabilities. This new paradigm offers a safer and more precise interaction model, protecting the user from unexpected behaviours of the applications and the browser.

  6. New aspects of the interacting boson model

    International Nuclear Information System (INIS)

    Nadzakov, E.G.; Mikhajlov, I.N.

    1987-01-01

    In the framework of the boson space extension called interacting multiboson model: conserving the model basic dynamic symmetries, the s p d f boson model is considered. It does not destruct the intermediate mass nuclei simple description, and at the same time includes the number of levels and transitions, inaccessible to the usual s d boson model. Its applicability, even in a brief version, to the recently observed asymmetric nuclear shape effect in the Ra-Th-U region (and in other regions) with possible octupole and dipole deformation is demonstrated. It is done by reproducing algebraically the yrast lines of nuclei with vibrational, transitional and rotational spectra

  7. Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH

    DEFF Research Database (Denmark)

    Knecht, Stefan; Jensen, Hans Jørgen Aagaard; Fleig, Timo

    2010-01-01

    We present a parallel implementation of a large-scale relativistic double-group configuration interaction CIprogram. It is applicable with a large variety of two- and four-component Hamiltonians. The parallel algorithm is based on a distributed data model in combination with a static load balanci...

  8. On combined gravity gradient components modelling for applied geophysics

    International Nuclear Information System (INIS)

    Veryaskin, Alexey; McRae, Wayne

    2008-01-01

    Gravity gradiometry research and development has intensified in recent years to the extent that technologies providing a resolution of about 1 eotvos per 1 second average shall likely soon be available for multiple critical applications such as natural resources exploration, oil reservoir monitoring and defence establishment. Much of the content of this paper was composed a decade ago, and only minor modifications were required for the conclusions to be just as applicable today. In this paper we demonstrate how gravity gradient data can be modelled, and show some examples of how gravity gradient data can be combined in order to extract valuable information. In particular, this study demonstrates the importance of two gravity gradient components, Txz and Tyz, which, when processed together, can provide more information on subsurface density contrasts than that derived solely from the vertical gravity gradient (Tzz)

  9. Modelling safety of multistate systems with ageing components

    Energy Technology Data Exchange (ETDEWEB)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna [Gdynia Maritime University, Department of Mathematics ul. Morska 81-87, Gdynia 81-225 Poland (Poland)

    2016-06-08

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive “m out of n: F” is presented as well.

  10. Modelling safety of multistate systems with ageing components

    International Nuclear Information System (INIS)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    2016-01-01

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive “m out of n: F” is presented as well.

  11. Component vibration of VVER-reactors - diagnostics and modelling

    International Nuclear Information System (INIS)

    Altstadt, E.; Scheffler, M.; Weiss, F.-P.

    1995-01-01

    Flow induced vibrations of reactor pressure vessel (RPV) internals (control element and core barrel motions) at VVER-440 reactors have led to the development of dedicated methods for on-line monitoring. These methods need a certain developed stage of the faults to be detected. To achieve a real sensitive early detection of mechanical faults of RPV internals, a theoretical vibration model was developed based on finite elements. The model comprises the whole primary circuit including the steam generators (SG). By means of that model all eigenfrequencies up to 30 Hz and the corresponding mode shapes were calculated for the normal vibration behaviour. Moreover the shift of eigenfrequencies and of amplitudes due to the degradation or to the failure of internal clamping and spring elements could be investigated, showing that a recognition of such degradations even inside the RPV is possible by pure excore vibration measurements. A true diagnostic, that is the identification of the failed component, might become possible because different faults influence different and well separated eigenfrequencies. (author)

  12. Unblockable Compositions of Software Components

    DEFF Research Database (Denmark)

    Dong, Ruzhen; Faber, Johannes; Liu, Zhiming

    2012-01-01

    We present a new automata-based interface model describing the interaction behavior of software components. Contrary to earlier component- or interface-based approaches, the interface model we propose specifies all the non-blockable interaction behaviors of a component with any environment...... composition of interface models preserves unblockable sequences of provided services....

  13. Modelling hadronic interactions in HEP MC generators

    CERN Document Server

    Skands, Peter

    2015-01-01

    HEP event generators aim to describe high-energy collisions in full exclusive detail. They combine perturbative matrix elements and parton showers with dynamical models of less well-understood phenomena such as hadronization, diffraction, and the so-called underlying event. We briefly summarise some of the main concepts relevant to the modelling of soft/inclusive hadron interactions in MC generators, in particular PYTHIA, with emphasis on questions recently highlighted by LHC data.

  14. Interacting dark energy model and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Pritikana; Haldar, Sourav; Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2017-12-15

    In the background of the homogeneous and isotropic FLRW model, the thermodynamics of the interacting DE fluid is investigated in the present work. By studying the thermodynamical parameters, namely the heat capacities and the compressibilities, both thermal and mechanical stability are discussed and the restrictions on the equation of state parameter of the dark fluid are analyzed. (orig.)

  15. Intuitionistic preference modeling and interactive decision making

    CERN Document Server

    Xu, Zeshui

    2014-01-01

    This book offers an in-depth and comprehensive introduction to the priority methods of intuitionistic preference relations, the consistency and consensus improving procedures for intuitionistic preference relations, the approaches to group decision making based on intuitionistic preference relations, the approaches and models for interactive decision making with intuitionistic fuzzy information, and the extended results in interval-valued intuitionistic fuzzy environments.

  16. QSO evolution in the interaction model

    International Nuclear Information System (INIS)

    De Robertis, M.

    1985-01-01

    QSO evolution is investigated according to the interaction hypothesis described most recently by Stockton (1982), in which activity results from an interaction between two galaxies resulting in the transfer of gas onto a supermassive black hole (SBH) at the center of at least one participant. Explicit models presented here for interactions in cluster environments show that a peak QSO population can be formed in this way at zroughly-equal2--3, with little activity prior to this epoch. Calculated space densities match those inferred from observations for this epoch. Substantial density evolution is expected in such models, since, after virialization, conditions in the cores of rich clusters lead to the depletion of gas-rich systems through ram-pressure stripping. Density evolution parameters of 6--12 are easily accounted for. At smaller redshifts, however, QSOs should be found primarily in poor clusters or groups. Probability estimates provided by this model are consistent with local estimates for the observed number of QSOs per interaction. Significant luminosity-dependent evolution might also be expected in these models. It is suggested that the mean SBH mass increases with lookback time, leading to a statistical brightening with redshift. Undoubtedly, both forms of evolution contribute to the overall QSO luminosity function

  17. Sphericity in the interacting boson model

    International Nuclear Information System (INIS)

    Ogata, H.

    1977-01-01

    The interacting boson model (IBM) of Arima and Iachello is examined. The transition between the rotational and vibrational modes of even-even nuclei is presented as a function of a sphericity parameter, which is determined primarily from yrast band spectra. The backbending feature is reasonably reproduced. (author)

  18. Electron scattering in the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.; Iachello, F.; Creswell, C.

    1978-01-01

    It is suggested that the interacting boson model be used in the analysis of electron scattering data. Qualitative features of the expected behavior of the inelastic excitation of some 2 + states in the transitional Sm-Nd region are discussed. (Auth.)

  19. Interacting dark energy model and thermal stability

    International Nuclear Information System (INIS)

    Bhandari, Pritikana; Haldar, Sourav; Chakraborty, Subenoy

    2017-01-01

    In the background of the homogeneous and isotropic FLRW model, the thermodynamics of the interacting DE fluid is investigated in the present work. By studying the thermodynamical parameters, namely the heat capacities and the compressibilities, both thermal and mechanical stability are discussed and the restrictions on the equation of state parameter of the dark fluid are analyzed. (orig.)

  20. A fashion model with social interaction

    Science.gov (United States)

    Nakayama, Shoichiro; Nakamura, Yasuyuki

    2004-06-01

    In general, it is difficult to investigate social phenomena mathematically or quantitatively due to non-linear interactions. Statistical physics can provide powerful methods for studying social phenomena with interactions, and could be very useful for them. In this study, we take a focus on fashion as a social phenomenon with interaction. The social interaction considered here are “bandwagon effect” and “snob effect.” In the bandwagon effect, the correlation between one's behavior and others is positive. People feel fashion weary or boring when it is overly popular. This is the snob effect. It is assumed that the fashion phenomenon is formed by the aggregation of individual's binary choice, that is, the fashion is adopted or not. We formulate the fashion phenomenon as the logit model, which is based on the random utility theory in social science, especially economics. The model derived here basically has the similarity with the pioneering model by Weidlich (Phys. Rep. 204 (1991) 1), which was derived from the master equation, the Langevin equation, or the Fokker-Planck equation. This study seems to give the behavioral or behaviormetrical foundation to his model. As a result of dynamical analysis, it is found that in the case that both the bandwagon effect and the snob effect work, periodic or chaotic behavior of fashion occurs under certain conditions.

  1. Statistical pairwise interaction model of stock market

    Science.gov (United States)

    Bury, Thomas

    2013-03-01

    Financial markets are a classical example of complex systems as they are compound by many interacting stocks. As such, we can obtain a surprisingly good description of their structure by making the rough simplification of binary daily returns. Spin glass models have been applied and gave some valuable results but at the price of restrictive assumptions on the market dynamics or they are agent-based models with rules designed in order to recover some empirical behaviors. Here we show that the pairwise model is actually a statistically consistent model with the observed first and second moments of the stocks orientation without making such restrictive assumptions. This is done with an approach only based on empirical data of price returns. Our data analysis of six major indices suggests that the actual interaction structure may be thought as an Ising model on a complex network with interaction strengths scaling as the inverse of the system size. This has potentially important implications since many properties of such a model are already known and some techniques of the spin glass theory can be straightforwardly applied. Typical behaviors, as multiple equilibria or metastable states, different characteristic time scales, spatial patterns, order-disorder, could find an explanation in this picture.

  2. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Directory of Open Access Journals (Sweden)

    Tin Nguyen

    Full Text Available MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  3. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    Science.gov (United States)

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  4. BWR Refill-Reflood Program, Task 4.7 - model development: TRAC-BWR component models

    International Nuclear Information System (INIS)

    Cheung, Y.K.; Parameswaran, V.; Shaug, J.C.

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation

  5. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane.

    Science.gov (United States)

    Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri

    2007-06-29

    Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.

  6. Effects and interactions of medium components on laccase from a marine-derived fungus using response surface methodology

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza-Ticlo, D.; Garg, S.; Raghukumar, C.

    The effects of various synthetic medium components and their interactions with each other ultimately impact laccase production in fungi. This was studied using a laccase-hyper-producing marine-derived basidiomycete, Cerrena unicolor MTCC 5159...

  7. The Wang-Meng interacting model and the gravitational collapse

    International Nuclear Information System (INIS)

    Campos, Miguel de

    2013-01-01

    Full text: Several alternatives have appear in the literature to supply the accelerated process of universal expansion, and the simplest possibility is to consider the inclusion of a cosmological constant. The inclusion can be realized in both sides of the Einstein field equations, furnishing different physical interpretations in accord with the side of the Einstein field equations where the Λ is added. Considering the inclusion of the cosmological constant in the energy momentum tensor, this additional content is generally interpreted as the energy storage on the vacuum state of all fields in the universe. The inclusion of a vacuum component in the universal fluid furnishes an excellent description of the observed universe, but from the theoretical point of view we do not understand why the vacuum energy is so small and of the same order of magnitude of the matter density (cosmological constant problem). Depending on the point of view of the cosmological constant problem, competing approaches were developed considering a dynamical cosmological 'constant'. A more richer possibility is to consider a non-gravitational interaction models, where the interaction can occur between the dark components, the ordinary matter, and they do not evolve separately. The coupling between dark matter and dark energy has been considered in the literature in a three different ways: dark matter decaying to dark energy; dark energy decaying to dark matter; interacting in both directions. Wang and Meng (CQG 22, 283,2005) considered an alternative to the usual approach for the decay law of the Λ-term assuming the effect of the vacuum in the matter expansion rate. The simple manner adopt by the authors unified several current models that includes a vacuum decaying component interacting with matter content. The vacuum component alters the dynamics of the universal expansion process, then is a natural question: how is the influence of the vacuum energy in the gravitational collapse with a

  8. Genotype x environment interactions for yield components of broomcorn [Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Sikora Vladimir

    2000-01-01

    Full Text Available The aim of this investigation was to study the ecological stability of yield components (weight of undressed and trashed panicle and seed weight per panicle in fourteen varieties of broomcorn. Our current varieties was compared with our old, Hungarian and American varieties. Investigations were carried out under field conditions in a micro trial set up in a randomized block design providing five replications in seven ecologically different years. Stability parameters were computed using the model of Eberhart and Russell (1966. The results of this investigation showed that the genotypes differed in stability parameters for the characters studied. Variety Sava show good stability in all growing conditions. Variety Neoplanta plus was adapted to favorable and variety Reform to unfavorable conditions. Varieties with best performances in regard to yield components did not also show best stability. .

  9. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components...

  10. Understanding and modelling Man-Machine Interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1991-01-01

    This paper gives an overview of the current state of the art in man machine systems interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to design and analysis of Man-Machine Interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans and their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (author)

  11. Understanding and modelling man-machine interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1996-01-01

    This paper gives an overview of the current state of the art in man-machine system interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to the design and analysis of man-machine interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans an their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (orig.)

  12. Exploring a minimal two-component p53 model

    International Nuclear Information System (INIS)

    Sun, Tingzhe; Zhu, Feng; Shen, Pingping; Yuan, Ruoshi; Xu, Wei

    2010-01-01

    The tumor suppressor p53 coordinates many attributes of cellular processes via interlocked feedback loops. To understand the biological implications of feedback loops in a p53 system, a two-component model which encompasses essential feedback loops was constructed and further explored. Diverse bifurcation properties, such as bistability and oscillation, emerge by manipulating the feedback strength. The p53-mediated MDM2 induction dictates the bifurcation patterns. We first identified irradiation dichotomy in p53 models and further proposed that bistability and oscillation can behave in a coordinated manner. Further sensitivity analysis revealed that p53 basal production and MDM2-mediated p53 degradation, which are central to cellular control, are most sensitive processes. Also, we identified that the much more significant variations in amplitude of p53 pulses observed in experiments can be derived from overall amplitude parameter sensitivity. The combined approach with bifurcation analysis, stochastic simulation and sampling-based sensitivity analysis not only gives crucial insights into the dynamics of the p53 system, but also creates a fertile ground for understanding the regulatory patterns of other biological networks

  13. Modeling and validation of existing VAV system components

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada)

    2004-07-01

    The optimization of supervisory control strategies and local-loop controllers can improve the performance of HVAC (heating, ventilating, air-conditioning) systems. In this study, the component model of the fan, the damper and the cooling coil were developed and validated against monitored data of an existing variable air volume (VAV) system installed at Montreal's Ecole de Technologie Superieure. The measured variables that influence energy use in individual HVAC models included: (1) outdoor and return air temperature and relative humidity, (2) supply air and water temperatures, (3) zone airflow rates, (4) supply duct, outlet fan, mixing plenum static pressures, (5) fan speed, and (6) minimum and principal damper and cooling and heating coil valve positions. The additional variables that were considered, but not measured were: (1) fan and outdoor airflow rate, (2) inlet and outlet cooling coil relative humidity, and (3) liquid flow rate through the heating or cooling coils. The paper demonstrates the challenges of the validation process when monitored data of existing VAV systems are used. 7 refs., 11 figs.

  14. Geometrical analysis of the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.

    1983-01-01

    The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)

  15. Localisation in a Growth Model with Interaction

    Science.gov (United States)

    Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.

    2018-05-01

    This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.

  16. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    Science.gov (United States)

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo

    2016-01-01

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970

  17. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    Directory of Open Access Journals (Sweden)

    Jaime Cuevas

    2017-01-01

    Full Text Available The phenomenon of genotype × environment (G × E interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects ( u that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP and Gaussian (Gaussian kernel, GK. The other model has the same genetic component as the first model ( u plus an extra component, f, that captures random effects between environments that were not captured by the random effects u . We used five CIMMYT data sets (one maize and four wheat that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u   and   f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u .

  18. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

    Science.gov (United States)

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo

    2017-01-05

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.

  19. A Reusable Component for Communication and Data Synchronization in Mobile Distributed Interactive Applications

    Directory of Open Access Journals (Sweden)

    Abdul Malik Khan

    2010-10-01

    Full Text Available In Distributed Interactive Applications (DIA such as multiplayer games, where many participants are involved in a same game session and communicate through a network, they may have an inconsistent view of the virtual world because of the communication delays across the network. This issue becomes even more challenging when communicating through a cellular network while executing the DIA client on a mobile terminal. Consistency maintenance algorithms may be used to obtain a uniform view of the virtual world. These algorithms are very complex and hard to program and therefore, the implementation and the future evolution of the application logic code become difficult. To solve this problem, we propose an approach where the consistency concerns are handled separately by a distributed component called a Synchronization Medium, which is responsible for the communication management as well as the consistency maintenance. We present the detailed architecture of the Synchronization Medium and the generic interfaces it offers to DIAs. We evaluate our approach both qualitatively and quantitatively. We first demonstrate that the Synchronization Medium is a reusable component through the development of two game applications, a car racing game and a space war game. A performance evaluation then shows that the overhead introduced by the Synchronization Medium remains acceptable.

  20. Protecting LHC IP1/IP5 Components Against Radiation Resulting from Colliding Beam Interactions

    CERN Document Server

    Mokhov, N V; Kerby, J S; Strait, J B

    2003-01-01

    Beam-induced energy deposition in the LHC high luminosity interaction region (IR) components due to both pp collisions and beam loss in the IR vicinity is a significant challenge for the design of the high luminosity insertions. It was shown in our previous studies that a set of absorbers would reduce both the peak power density and total heat load to tolerable levels. In this paper the results of further optimization and comprehensive MARS calculations are summarized for the LHC lattice, version 6.4, for the updated IP1 and IP5 layouts and a baseline pp-collision source term. Power density, power dissipation, particle fluxes and spectra, accumulated dose and residual dose rates are studied in the components of the inner triplets including their TAS absorbers, the TAN neutral beam absorbers, separation dipoles, and quadrupoles of the outer triplets and possible collimators there. Results are given for the nominal luminosity of 1034 cm-2 s-1. The current design is proved to provide the best safety margin under...

  1. Parameter estimation of component reliability models in PSA model of Krsko NPP

    International Nuclear Information System (INIS)

    Jordan Cizelj, R.; Vrbanic, I.

    2001-01-01

    In the paper, the uncertainty analysis of component reliability models for independent failures is shown. The present approach for parameter estimation of component reliability models in NPP Krsko is presented. Mathematical approaches for different types of uncertainty analyses are introduced and used in accordance with some predisposed requirements. Results of the uncertainty analyses are shown in an example for time-related components. As the most appropriate uncertainty analysis proved the Bayesian estimation with the numerical estimation of a posterior, which can be approximated with some appropriate probability distribution, in this paper with lognormal distribution.(author)

  2. Tire-soil interaction model for turning (steered) tires

    Science.gov (United States)

    Karafiath, L. L.

    1985-07-01

    A review of the experimental information on the development of lateral forces on tires traveling at an angle to their center plane is presented and the usefulness of the consideration of the lateral forces for the development of an analytical model is evaluated. Major components of the lateral force have been identified as the forces required to balance the tractive force and the drawbar pull vectorially. These are the shear stresses developing in the contact area and the horizontal component of the normal stresses acting on the in-ground portion or the curved side walls of the tire. The tire-soil interaction model for steady state straight travel has been expanded to include the necessary algorithms for the calculation of these lateral forces. The pattern of tractive force-slip and longitudinal-lateral force relationships is in general agreement with experiments.

  3. Evaluation of Algorithms for Photon Depth of Interaction Estimation for the TRIMAGE PET Component

    Science.gov (United States)

    Camarlinghi, Niccolò; Belcari, Nicola; Cerello, Piergiorgio; Pennazio, Francesco; Sportelli, Giancarlo; Zaccaro, Emanuele; Del Guerra, Alberto

    2016-02-01

    The TRIMAGE consortium aims to develop a multimodal PET/MR/EEG brain scanner dedicated to the early diagnosis of schizophrenia and other mental health disorders. The TRIMAGE PET component features a full ring made of 18 detectors, each one consisting of twelve 8 ×8 Silicon PhotoMultipliers (SiPMs) tiles coupled to two segmented LYSO crystal matrices with staggered layers. The identification of the pixel where a photon interacted is performed on-line at the front-end level, thus allowing the FPGA board to emit fully digital event packets. This allows to increase the effective bandwidth, but imposes restrictions on the complexity of the algorithms to be implemented. In this work, two algorithms, whose implementation is feasible directly on an FPGA, are presented and evaluated. The first algorithm is driven by physical considerations, while the other consists in a two-class linear Support Vector Machine (SVM). The validation of the algorithm performance is carried out by using simulated data generated with the GAMOS Monte Carlo. The obtained results show that the achieved accuracy in layer identification is above 90% for both the proposed approaches. The feasibility of tagging and rejecting events that underwent multiple interactions within the detector is also discussed.

  4. Applications of snake venom components to modulate integrin activities in cell-matrix interactions

    Science.gov (United States)

    Marcinkiewicz, Cezary

    2013-01-01

    Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology. PMID:23811033

  5. Simplifying and upscaling water resources systems models that combine natural and engineered components

    Science.gov (United States)

    McIntyre, N.; Keir, G.

    2014-12-01

    Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.

  6. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    International Nuclear Information System (INIS)

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L.

    1984-01-01

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics

  7. Modeling of interaction effects in granular systems

    CERN Document Server

    El-Hilo, M; Al-Rsheed, A

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(DELTA E) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(DELTA E) can easily give a temperature-independent behavior of S(T) when these changes give a 1/DELTA E behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur an...

  8. A two-particle exchange interaction model

    International Nuclear Information System (INIS)

    Lyubina, Julia; Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich

    2010-01-01

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation δM(H m ) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H m not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called δM-plot depends on whether the sample is ac-field or thermally demagnetised.

  9. A two-particle exchange interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia, E-mail: j.lyubina@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany); Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany)

    2010-10-15

    The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation {delta}M(H{sub m}) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H{sub m} not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called {delta}M-plot depends on whether the sample is ac-field or thermally demagnetised.

  10. Modeling plasma/material interactions during a tokamak disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1994-10-01

    Disruptions in tokamak reactors are still of serious concern and present a potential obstacle for successful operation and reliable design. Erosion of plasma-facing materials due to thermal energy dump during a disruption can severely limit the lifetime of these components, therefore diminishing the economic feasibility of the reactor. A comprehensive disruption erosion model which takes into account the interplay of major physical processes during plasma-material interaction has been developed. The initial burst of energy delivered to facing-material surfaces from direct impact of plasma particles causes sudden ablation of these materials. As a result, a vapor cloud is formed in front of the incident plasma particles. Shortly thereafter, the plasma particles are stopped in the vapor cloud, heating and ionizing it. The energy transmitted to the material surfaces is then dominated by photon radiation. It is the dynamics and the evolution of this vapor cloud that finally determines the net erosion rate and, consequently, the component lifetime. The model integrates with sufficient detail and in a self-consistent way, material thermal evolution response, plasma-vapor interaction physics, vapor hydrodynamics, and radiation transport in order to realistically simulate the effects of a plasma disruption on plasma-facing components. Candidate materials such as beryllium and carbon have been analyzed. The dependence of the net erosion rate on disruption physics and various parameters was analyzed and is discussed

  11. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each m...

  12. Evaluation of a Mathematical Model for Single Component Adsorption Equilibria with Reference to the Prediction of Multicomponent Adsorption Equilibria

    DEFF Research Database (Denmark)

    Krøll, Annette Elisabeth; Marcussen, Lis

    1997-01-01

    An equilibrium equation for pure component adsorption is compared to experiments and to the vacancy solution theory. The investigated equilibrium equation is a special case of a model for prediction of multicomponent adsorption equilibria.The vacancy solution theory for multicomponent systems...... requires binary experimental data for determining the interaction parameters of the Wilson equation; thus a large number of experiments are needed. The multicomponent equilibria model which is investigated for single component systems in this work is based on pure component data only. This means...... that the requirement for experimental data is reduced significantly.The two adsorption models are compared, using experimental pure gas adsorption data found in literature. The results obtained by the models are in close agreement for pure component equilibria and they give a good description of the experimental data...

  13. Connected Component Model for Multi-Object Tracking.

    Science.gov (United States)

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  14. Modeling of intracerebral interictal epileptic discharges: Evidence for network interactions.

    Science.gov (United States)

    Meesters, Stephan; Ossenblok, Pauly; Colon, Albert; Wagner, Louis; Schijns, Olaf; Boon, Paul; Florack, Luc; Fuster, Andrea

    2018-06-01

    The interictal epileptic discharges (IEDs) occurring in stereotactic EEG (SEEG) recordings are in general abundant compared to ictal discharges, but difficult to interpret due to complex underlying network interactions. A framework is developed to model these network interactions. To identify the synchronized neuronal activity underlying the IEDs, the variation in correlation over time of the SEEG signals is related to the occurrence of IEDs using the general linear model. The interdependency is assessed of the brain areas that reflect highly synchronized neural activity by applying independent component analysis, followed by cluster analysis of the spatial distributions of the independent components. The spatiotemporal interactions of the spike clusters reveal the leading or lagging of brain areas. The analysis framework was evaluated for five successfully operated patients, showing that the spike cluster that was related to the MRI-visible brain lesions coincided with the seizure onset zone. The additional value of the framework was demonstrated for two more patients, who were MRI-negative and for whom surgery was not successful. A network approach is promising in case of complex epilepsies. Analysis of IEDs is considered a valuable addition to routine review of SEEG recordings, with the potential to increase the success rate of epilepsy surgery. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Two-component network model in voice identification technologies

    Directory of Open Access Journals (Sweden)

    Edita K. Kuular

    2018-03-01

    Full Text Available Among the most important parameters of biometric systems with voice modalities that determine their effectiveness, along with reliability and noise immunity, a speed of identification and verification of a person has been accentuated. This parameter is especially sensitive while processing large-scale voice databases in real time regime. Many research studies in this area are aimed at developing new and improving existing algorithms for presentation and processing voice records to ensure high performance of voice biometric systems. Here, it seems promising to apply a modern approach, which is based on complex network platform for solving complex massive problems with a large number of elements and taking into account their interrelationships. Thus, there are known some works which while solving problems of analysis and recognition of faces from photographs, transform images into complex networks for their subsequent processing by standard techniques. One of the first applications of complex networks to sound series (musical and speech analysis are description of frequency characteristics by constructing network models - converting the series into networks. On the network ontology platform a previously proposed technique of audio information representation aimed on its automatic analysis and speaker recognition has been developed. This implies converting information into the form of associative semantic (cognitive network structure with amplitude and frequency components both. Two speaker exemplars have been recorded and transformed into pertinent networks with consequent comparison of their topological metrics. The set of topological metrics for each of network models (amplitude and frequency one is a vector, and together  those combine a matrix, as a digital "network" voiceprint. The proposed network approach, with its sensitivity to personal conditions-physiological, psychological, emotional, might be useful not only for person identification

  16. Microscopic foundation of the interacting boson model

    International Nuclear Information System (INIS)

    Arima, Akito

    1994-01-01

    A microscopic foundation of the interacting boson model is described. The importance of monopole and quadrupole pairs of nucleons is emphasized. Those pairs are mapped onto the s and d bosons. It is shown that this mapping provides a good approximation in vibrational and transitional nuclei. In appendix, it is shown that the monopole pair of electrons plays possibly an important role in metal clusters. (orig.)

  17. Interactive Procedural Modelling of Coherent Waterfall Scenes

    OpenAIRE

    Emilien , Arnaud; Poulin , Pierre; Cani , Marie-Paule; Vimont , Ulysse

    2015-01-01

    International audience; Combining procedural generation and user control is a fundamental challenge for the interactive design of natural scenery. This is particularly true for modelling complex waterfall scenes where, in addition to taking charge of geometric details, an ideal tool should also provide a user with the freedom to shape the running streams and falls, while automatically maintaining physical plausibility in terms of flow network, embedding into the terrain, and visual aspects of...

  18. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2015-11-01

    Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.

  19. Nonlinear interaction model of subsonic jet noise.

    Science.gov (United States)

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  20. Modeling Users' Experiences with Interactive Systems

    CERN Document Server

    Karapanos, Evangelos

    2013-01-01

    Over the past decade the field of Human-Computer Interaction has evolved from the study of the usability of interactive products towards a more holistic understanding of how they may mediate desired human experiences.  This book identifies the notion of diversity in usersʼ experiences with interactive products and proposes methods and tools for modeling this along two levels: (a) interpersonal diversity in usersʽ responses to early conceptual designs, and (b) the dynamics of usersʼ experiences over time. The Repertory Grid Technique is proposed as an alternative to standardized psychometric scales for modeling interpersonal diversity in usersʼ responses to early concepts in the design process, and new Multi-Dimensional Scaling procedures are introduced for modeling such complex quantitative data. iScale, a tool for the retrospective assessment of usersʼ experiences over time is proposed as an alternative to longitudinal field studies, and a semi-automated technique for the analysis of the elicited exper...

  1. A participatory systems approach to modeling social, economic, and ecological components of bioenergy

    International Nuclear Information System (INIS)

    Buchholz, Thomas S.; Volk, Timothy A.; Luzadis, Valerie A.

    2007-01-01

    Availability of and access to useful energy is a crucial factor for maintaining and improving human well-being. Looming scarcities and increasing awareness of environmental, economic, and social impacts of conventional sources of non-renewable energy have focused attention on renewable energy sources, including biomass. The complex interactions of social, economic, and ecological factors among the bioenergy system components of feedstock supply, conversion technology, and energy allocation have been a major obstacle to the broader development of bioenergy systems. For widespread implementation of bioenergy to occur there is a need for an integrated approach to model the social, economic, and ecological interactions associated with bioenergy. Such models can serve as a planning and evaluation tool to help decide when, where, and how bioenergy systems can contribute to development. One approach to integrated modeling is by assessing the sustainability of a bioenergy system. The evolving nature of sustainability can be described by an adaptive systems approach using general systems principles. Discussing these principles reveals that participation of stakeholders in all components of a bioenergy system is a crucial factor for sustainability. Multi-criteria analysis (MCA) is an effective tool to implement this approach. This approach would enable decision-makers to evaluate bioenergy systems for sustainability in a participatory, transparent, timely, and informed manner

  2. Oil transformation sector modelling: price interactions

    International Nuclear Information System (INIS)

    Maurer, A.

    1992-01-01

    A global oil and oil product prices evolution model is proposed that covers the transformation sector incidence and the final user price establishment together with price interactions between gaseous and liquid hydrocarbons. High disparities among oil product prices in the various consumer zones (North America, Western Europe, Japan) are well described and compared with the low differences between oil supply prices in these zones. Final user price fluctuations are shown to be induced by transformation differences and competition; natural gas market is also modelled

  3. Some dynamical aspects of interacting quintessence model

    Science.gov (United States)

    Choudhury, Binayak S.; Mondal, Himadri Shekhar; Chatterjee, Devosmita

    2018-04-01

    In this paper, we consider a particular form of coupling, namely B=σ (\\dot{ρ _m}-\\dot{ρ _φ }) in spatially flat (k=0) Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time. We perform phase-space analysis for this interacting quintessence (dark energy) and dark matter model for different numerical values of parameters. We also show the phase-space analysis for the `best-fit Universe' or concordance model. In our analysis, we observe the existence of late-time scaling attractors.

  4. Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction

    International Nuclear Information System (INIS)

    Wang, Xin; Tang, Xiaohan; Yang, Xiaoyi

    2017-01-01

    Highlights: • Pyrolysis experiments were conducted by model compounds of algal components. • Interaction affected little bio-crude yield of model compounds co-pyrolysis. • Some interaction pathways between microalgae components were recommended. • N-heterocyclic compounds were further pyrolysis products of Maillard reaction products. • Surfactant synthesis (lipid-amino acids and lipid-glucose) between algal components. - Abstract: Pyrolysis is one of important pathways to convert microalgae to liquid biofuels and key components of microalgae have different chemical composition and structure, which provides a barrier for large-scale microalgae-based liquid biofuel application. Microalgae component pyrolysis mechanism should be researched to optimal pyrolysis process parameters. In this study, single pyrolysis and co-pyrolysis of microalgal components (model compounds castor oil, soybean protein and glucose) were conducted to reveal interaction between them by thermogrametric analysis and bio-crude evaluation. Castor oil (model compound of lipid) has higher pyrolysis temperature than other model compounds and has the maximum contribution to bio-crude formation. Bio-crude from soybean protein has higher N-heterocyclic compounds as well as phenols, which could be important aromatic hydrocarbon source during biorefineries and alternative aviation biofuel production. Potential interaction pathways based on model compounds are recommended including further decomposition of Maillard reaction products (MRPs) and surfactant synthesis, which indicate that glucose played an important role on pyrolysis of microalgal protein and lipid components. The results should provide necessary information for microalgae pyrolysis process optimization and large-scale pyrolysis reactor design.

  5. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  6. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  7. New trends in interaction, virtual reality and modeling

    CERN Document Server

    Penichet, Victor MR; Gallud, José A

    2013-01-01

    The interaction between a user and a device forms the foundation of today's application design.Covering the following topics: * A suite of five structural principles helping designers to structure their mockups;* An agile method for exploiting desktop eye tracker equipment in combination with mobile devices;* An approach to explore large-scale collections based on classification systems;* A framework based on the use of modeling and components composition techniques to simplify the development of organizational collaborative systems;* A low-cost virtual reality system that provides highly sati

  8. Model validation and calibration based on component functions of model output

    International Nuclear Information System (INIS)

    Wu, Danqing; Lu, Zhenzhou; Wang, Yanping; Cheng, Lei

    2015-01-01

    The target in this work is to validate the component functions of model output between physical observation and computational model with the area metric. Based on the theory of high dimensional model representations (HDMR) of independent input variables, conditional expectations are component functions of model output, and the conditional expectations reflect partial information of model output. Therefore, the model validation of conditional expectations tells the discrepancy between the partial information of the computational model output and that of the observations. Then a calibration of the conditional expectations is carried out to reduce the value of model validation metric. After that, a recalculation of the model validation metric of model output is taken with the calibrated model parameters, and the result shows that a reduction of the discrepancy in the conditional expectations can help decrease the difference in model output. At last, several examples are employed to demonstrate the rationality and necessity of the methodology in case of both single validation site and multiple validation sites. - Highlights: • A validation metric of conditional expectations of model output is proposed. • HDRM explains the relationship of conditional expectations and model output. • An improved approach of parameter calibration updates the computational models. • Validation and calibration process are applied at single site and multiple sites. • Validation and calibration process show a superiority than existing methods

  9. Evaluation of algorithms for photon depth of interaction estimation for the TRIMAGE PET component

    Energy Technology Data Exchange (ETDEWEB)

    Camarlinghi, Niccolo; Belcari, Nicola [University of Pisa (Italy); Cerello, Piergiorgio [University of Torino (Italy); Sportelli, Giancarlo [University of Pisa (Italy); Pennazio, Francesco [University of Torino (Italy); Zaccario, Emanuele; Del Guerra, Alberto [University of Pisa (Italy)

    2015-05-18

    The TRIMAGE consortium aims to develop a multimodal PET/MR/EEG brain scanner dedicated to the early diagnosis of schizophrenia and other mental health disorders. The PET component features a full ring made of 18 detectors, each one consisting of twelve 8x8 Silicon PhotoMultipliers (SiPMs) tiles coupled to two segmented LYSO crystal matrices with staggered layers. In each module, the crystals belonging to the bottom layer are coupled one to one to the SiPMs, while each crystal of the top layer is coupled to four crystals of the bottom layer. This configuration allows to increase the crystal thickness while reducing the depth of interaction uncertainty, as photons interacting in different layers are expected to produce different light patterns on the SiPMs. The PET scanner will implement the pixel/layer identification on a front-end FPGA. This will allow increasing the effective bandwidth, setting at the same time restrictions on the complexity of the algorithms to be implemented. In this work two algorithms whose implementation is feasible directly on an FPGA are presented and evaluated. The first algorithm implements a method based on adaptive thresholding, while the other uses a linear Support Vector Machine (SVM) trained to distinguish the light pattern coming from two different layers. The validation of the algorithm performance is carried out by using simulated data generated with the GAMOS Monte Carlo. The obtained results show that the achieved accuracy in layer and pixel identification is above the 90% for both the proposed approaches.

  10. Ferromagnetic Potts models with multisite interaction

    Science.gov (United States)

    Schreiber, Nir; Cohen, Reuven; Haber, Simi

    2018-03-01

    We study the q -state Potts model with four-site interaction on a square lattice. Based on the asymptotic behavior of lattice animals, it is argued that when q ≤4 the system exhibits a second-order phase transition and when q >4 the transition is first order. The q =4 model is borderline. We find 1 /lnq to be an upper bound on Tc, the exact critical temperature. Using a low-temperature expansion, we show that 1 /(θ lnq ) , where θ >1 is a q -dependent geometrical term, is an improved upper bound on Tc. In fact, our findings support Tc=1 /(θ lnq ) . This expression is used to estimate the finite correlation length in first-order transition systems. These results can be extended to other lattices. Our theoretical predictions are confirmed numerically by an extensive study of the four-site interaction model using the Wang-Landau entropic sampling method for q =3 ,4 ,5 . In particular, the q =4 model shows an ambiguous finite-size pseudocritical behavior.

  11. An ontology for component-based models of water resource systems

    Science.gov (United States)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  12. Pre-relaxation in weakly interacting models

    Science.gov (United States)

    Bertini, Bruno; Fagotti, Maurizio

    2015-07-01

    We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.

  13. Insight to the interaction of the dihydrolipoamide acetyltransferase (E2) core with the peripheral components in the Escherichia coli pyruvate dehydrogenase complex via multifaceted structural approaches.

    Science.gov (United States)

    Chandrasekhar, Krishnamoorthy; Wang, Junjie; Arjunan, Palaniappa; Sax, Martin; Park, Yun-Hee; Nemeria, Natalia S; Kumaran, Sowmini; Song, Jaeyoung; Jordan, Frank; Furey, William

    2013-05-24

    Multifaceted structural approaches were undertaken to investigate interaction of the E2 component with E3 and E1 components from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), as a representative of the PDHc from Gram-negative bacteria. The crystal structure of E3 at 2.5 Å resolution reveals similarity to other E3 structures and was an important starting point for understanding interaction surfaces between E3 and E2. Biochemical studies revealed that R129E-E2 and R150E-E2 substitutions in the peripheral subunit-binding domain (PSBD) of E2 greatly diminished PDHc activity, affected interactions with E3 and E1 components, and affected reductive acetylation of E2. Because crystal structures are unavailable for any complete E2-containing complexes, peptide-specific hydrogen/deuterium exchange mass spectrometry was used to identify loci of interactions between 3-lipoyl E2 and E3. Two peptides from the PSBD, including Arg-129, and three peptides from E3 displayed statistically significant reductions in deuterium uptake resulting from interaction between E3 and E2. Of the peptides identified on E3, two were from the catalytic site, and the third was from the interface domain, which for all known E3 structures is believed to interact with the PSBD. NMR clearly demonstrates that there is no change in the lipoyl domain structure on complexation with E3. This is the first instance where the entire wild-type E2 component was employed to understand interactions with E3. A model for PSBD-E3 binding was independently constructed and found to be consistent with the importance of Arg-129, as well as revealing other electrostatic interactions likely stabilizing this complex.

  14. Insight to the Interaction of the Dihydrolipoamide Acetyltransferase (E2) Core with the Peripheral Components in the Escherichia coli Pyruvate Dehydrogenase Complex via Multifaceted Structural Approaches*

    Science.gov (United States)

    Chandrasekhar, Krishnamoorthy; Wang, Junjie; Arjunan, Palaniappa; Sax, Martin; Park, Yun-Hee; Nemeria, Natalia S.; Kumaran, Sowmini; Song, Jaeyoung; Jordan, Frank; Furey, William

    2013-01-01

    Multifaceted structural approaches were undertaken to investigate interaction of the E2 component with E3 and E1 components from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), as a representative of the PDHc from Gram-negative bacteria. The crystal structure of E3 at 2.5 Å resolution reveals similarity to other E3 structures and was an important starting point for understanding interaction surfaces between E3 and E2. Biochemical studies revealed that R129E-E2 and R150E-E2 substitutions in the peripheral subunit-binding domain (PSBD) of E2 greatly diminished PDHc activity, affected interactions with E3 and E1 components, and affected reductive acetylation of E2. Because crystal structures are unavailable for any complete E2-containing complexes, peptide-specific hydrogen/deuterium exchange mass spectrometry was used to identify loci of interactions between 3-lipoyl E2 and E3. Two peptides from the PSBD, including Arg-129, and three peptides from E3 displayed statistically significant reductions in deuterium uptake resulting from interaction between E3 and E2. Of the peptides identified on E3, two were from the catalytic site, and the third was from the interface domain, which for all known E3 structures is believed to interact with the PSBD. NMR clearly demonstrates that there is no change in the lipoyl domain structure on complexation with E3. This is the first instance where the entire wild-type E2 component was employed to understand interactions with E3. A model for PSBD-E3 binding was independently constructed and found to be consistent with the importance of Arg-129, as well as revealing other electrostatic interactions likely stabilizing this complex. PMID:23580650

  15. The interpretation of the intensity of components of laser scattering by interaction with matter

    Science.gov (United States)

    Fidanovski, Z.; Srećković, M.; Ostojić, S.; Ilić, J.; Merkle, M.

    2012-05-01

    The measurement of scattered light properties offers many optical, acoustic, dielectric, thermodynamic data about the scattering medium. Brillouin spectroscopy with various modifications and different laser types has been a measurement technique in acoustics for a long time, but it is still important as an autonomous technique. It enables more detailed and exhaustive knowledge of the acoustic and optical properties of matter. A series of Rayleigh-Brillouin spectra are recorded for a set of organic solvents and phytol. The equipment used in spectra recordings enables the measurement of four components of scattered laser intensity Ihh, Ihv, Ivv and Ivh. The ratios of the linewidth, as well as shifts, are determined for Rayleigh-Brillouin spectra. According to them, the hypersound velocity and absorption coefficients can be calculated. There is much software for data processing obtained in laser interaction with matter, with different programming tools. An analysis of spectra is performed, i.e. an examination of which distribution (Gaussian or Lorentzian) better explains the experimentally obtained diagrams.

  16. Material interactions between system components and glass product melts in a ceramic melter

    International Nuclear Information System (INIS)

    Knitter, R.

    1989-07-01

    The interactions of the ceramic and metallic components of a ceramic melter for the vitrification of High Active Waste were investigated with simulated glass product melts in static crucible tests at 1000 0 C and 1150 0 C. Corrosion of the fusion-cast Al 2 O 3 -ZrO 2 -SiO 2 - and Al 2 O 3 -ZrO 2 -SiO 2 -Cr 2 O 3 -refractories (ER 1711 and ER 2161) is characterized by homogeneous chemical dissolution and diffusion through the glass matrix of the refractory. The resulting boundary compositions lead to characteristic modification and formation of phases, not only inside the refractory but also in the glass melt. The attack of the electrode material, a Ni-Cr-Fe-alloy Inconel 690, by the glass melt takes place via grain boundaries and leads to the oxidation of Cr and growth of Cr 2 O 3 -crystals at the boundary layer. Noble metals, added to the glass melt can form solid solutions with the alloy with varying compositions. (orig.) [de

  17. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    Science.gov (United States)

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  18. Interactions between baryon octets by quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, S. [Suzuka National College of Technology, Suzuka, Mie (Japan); Fujiwara, Y. [Kyoto Univ., Faculty of Science, Kyoto (Japan); Suzuki, Y. [Niigata Univ., Faculty of Science, Niigata (Japan); Kohno, M. [Kyushu Dental College, Kita-kyushu, Fukuoka (Japan)

    2003-03-01

    Interactions between the baryon octets are studied by using the two spin flavor SU{sub 6} quark models, namely fss2 and FSS. In all channels, results that can be systematically understood along with the flavor symmetry are obtained. Effect of the channel coupling in the {sup 1}S{sub 0} state of the system of strangeness-2 shows a tendency to be weak in the system of isospin 0 while strong in the system of isospin 1. It is shown that this tendency is due to the competitive contributions of the color magnetic term and the effective meson exchange potential to the transition potential. Flavor symmetry breaking weakens both the repulsive force in the short range and the attractive force in the intermediate range. It is revealed that the overall qualitative behavior is determined as the result of the competitive effect of those interactions. (S. Funahashi)

  19. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos; Chaudhuri, Siddhartha; Koller, Daphne; Koltun, Vladlen

    2012-01-01

    represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation

  20. Measurement and Modelling of MIC Components Using Conductive Lithographic Films

    OpenAIRE

    Shepherd, P. R.; Taylor, C.; Evans l, P. S. A.; Harrison, D. J.

    2001-01-01

    Conductive Lithographic Films (CLFs) have previously demonstrated useful properties in printed mi-crowave circuits, combining low cost with high speed of manufacture. In this paper we examine the formation of various passive components via the CLF process, which enables further integration of printed microwave integrated circuits. The printed components include vias, resistors and overlay capacitors, and offer viable alternatives to traditional manufacturing processes for Microwave Inte-grate...

  1. The interacting boson-fermion model

    International Nuclear Information System (INIS)

    Iachello, F.; Van Isacker, P.

    1990-01-01

    The interacting boson-fermion model has become in recent years the standard model for the description of atomic nuclei with an odd number of protons and/or neutrons. This book describes the mathematical framework on which the interacting boson-fermion model is built and presents applications to a variety of situations encountered in nuclei. The book addresses both the analytical and the numerical aspects of the problem. The analytical aspect requires the introduction of rather complex group theoretic methods, including the use of graded (or super) Lie algebras. The first (and so far only) example of supersymmetry occurring in nature is also discussed. The book is the first comprehensive treatment of the subject and will appeal to both theoretical and experimental physicists. The large number of explicit formulas for level energies, electromagnetic transition rates and intensities of transfer reactions presented in the book provide a simple but detailed way to analyze experimental data. This book can also be used as a textbook for advanced graduate students

  2. Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components.

    Science.gov (United States)

    Guo, Jianhua; Chen, Baoliang

    2014-08-19

    Few studies have investigated the effects of structural heterogeneity (particularly the interactions of silicon and carbon) on the mechanisms for the recalcitrance of biochar. In this study, the molecular mechanisms for the recalcitrance of biochars derived from rice straw at 300, 500, and 700 °C (named RS300, RS500, and RS700, respectively) were elucidated. Short-term (24 h) and long-term (240 h) oxidation kinetics experiments were conducted under different concentrations of H2O2 to distinguish the stable carbon pools in the biochars. We discovered that the stabilities of the biochars were influenced not only by their aromaticity but also through possible protection by silicon encapsulation, which is regulated by pyrolysis temperatures. The aromatic components and recalcitrance of the biochars increased with increasing pyrolysis temperatures. The morphologies of the carbon forms in all of the biochars were also greatly associated with those of silica. Silica-encapsulation protection only occurred for RS500, not for RS300 and RS700. In RS300, carbon and silica were both amorphous, and they were easily decomposed by H2O2. The separation of crystalline silica from condensed aromatic carbon in RS700 eliminated the protective role of silicon on carbon. The effect of the biochar particle size on the stability of the biochar was greatly influenced by C-Si interactions and by the oxidation intensities. A novel silicon-and-carbon-coupled framework model was proposed to guide biochar carbon sequestration.

  3. Radiation-induced structural transitions in composite materials with strong interaction of polymer components

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Koztaeva, U.P.

    2002-01-01

    In earlier papers the internal friction (IF) method was applied to studies of structural relaxation in different types of polymer-based composite materials (glass-cloth, paper-based and foiled laminates impregnated by epoxy and phenolic resins) irradiated by 2 MeV electrons in the dose range of 0.1-50.0 MGy. Selectivity and high sensibility of the internal friction method allowed to distinguish glassy transitions in different structural components of the composites. The relaxation processes observed were identified and attributed to structural alterations in the polymer filler, the binder and the boundary layers. It was shown that changes in the parameters of relaxation maximums during irradiation can be considered as quantitative characteristics for the degree of radiation-induced degradation or cross-linking of polymer molecules. This paper deals with specific features of IF spectra in paper-based laminates where both the filler fibers and the binder are strongly interacting polymers. Anisotropy of viscous and elastic properties is very weak for this kind of materials, so that IF measurements give nearly the same result independently on the filler fiber orientation in the sample. The main reasons for it are the rigid chain structure of fillers (polyethylene-terephthalate and cellulose) and the good adhesion strengthened by diffusion of the epoxy or phenolic binder to defect regions of the filler.The IF temperature dependence observed in paper-based laminates is represented by superposition of two very broad relaxation maximums associated with transitions from glassy to high-elastic state in structural components, each based on one of the polymers. The inflection points characteristic for IF temperature dependence in paper-based laminates give a reason to treat them as a superposition of α-peaks associated with transitions from glassy to high-elastic state in structural components of a composite based on the binder and the filler, respectively. Another

  4. Plasma-wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification

    Science.gov (United States)

    Brezinsek, S.; Coenen, J. W.; Schwarz-Selinger, T.; Schmid, K.; Kirschner, A.; Hakola, A.; Tabares, F. L.; van der Meiden, H. J.; Mayoral, M.-L.; Reinhart, M.; Tsitrone, E.; Ahlgren, T.; Aints, M.; Airila, M.; Almaviva, S.; Alves, E.; Angot, T.; Anita, V.; Arredondo Parra, R.; Aumayr, F.; Balden, M.; Bauer, J.; Ben Yaala, M.; Berger, B. M.; Bisson, R.; Björkas, C.; Bogdanovic Radovic, I.; Borodin, D.; Bucalossi, J.; Butikova, J.; Butoi, B.; Čadež, I.; Caniello, R.; Caneve, L.; Cartry, G.; Catarino, N.; Čekada, M.; Ciraolo, G.; Ciupinski, L.; Colao, F.; Corre, Y.; Costin, C.; Craciunescu, T.; Cremona, A.; De Angeli, M.; de Castro, A.; Dejarnac, R.; Dellasega, D.; Dinca, P.; Dittmar, T.; Dobrea, C.; Hansen, P.; Drenik, A.; Eich, T.; Elgeti, S.; Falie, D.; Fedorczak, N.; Ferro, Y.; Fornal, T.; Fortuna-Zalesna, E.; Gao, L.; Gasior, P.; Gherendi, M.; Ghezzi, F.; Gosar, Ž.; Greuner, H.; Grigore, E.; Grisolia, C.; Groth, M.; Gruca, M.; Grzonka, J.; Gunn, J. P.; Hassouni, K.; Heinola, K.; Höschen, T.; Huber, S.; Jacob, W.; Jepu, I.; Jiang, X.; Jogi, I.; Kaiser, A.; Karhunen, J.; Kelemen, M.; Köppen, M.; Koslowski, H. R.; Kreter, A.; Kubkowska, M.; Laan, M.; Laguardia, L.; Lahtinen, A.; Lasa, A.; Lazic, V.; Lemahieu, N.; Likonen, J.; Linke, J.; Litnovsky, A.; Linsmeier, Ch.; Loewenhoff, T.; Lungu, C.; Lungu, M.; Maddaluno, G.; Maier, H.; Makkonen, T.; Manhard, A.; Marandet, Y.; Markelj, S.; Marot, L.; Martin, C.; Martin-Rojo, A. B.; Martynova, Y.; Mateus, R.; Matveev, D.; Mayer, M.; Meisl, G.; Mellet, N.; Michau, A.; Miettunen, J.; Möller, S.; Morgan, T. W.; Mougenot, J.; Mozetič, M.; Nemanič, V.; Neu, R.; Nordlund, K.; Oberkofler, M.; Oyarzabal, E.; Panjan, M.; Pardanaud, C.; Paris, P.; Passoni, M.; Pegourie, B.; Pelicon, P.; Petersson, P.; Piip, K.; Pintsuk, G.; Pompilian, G. O.; Popa, G.; Porosnicu, C.; Primc, G.; Probst, M.; Räisänen, J.; Rasinski, M.; Ratynskaia, S.; Reiser, D.; Ricci, D.; Richou, M.; Riesch, J.; Riva, G.; Rosinski, M.; Roubin, P.; Rubel, M.; Ruset, C.; Safi, E.; Sergienko, G.; Siketic, Z.; Sima, A.; Spilker, B.; Stadlmayr, R.; Steudel, I.; Ström, P.; Tadic, T.; Tafalla, D.; Tale, I.; Terentyev, D.; Terra, A.; Tiron, V.; Tiseanu, I.; Tolias, P.; Tskhakaya, D.; Uccello, A.; Unterberg, B.; Uytdenhoven, I.; Vassallo, E.; Vavpetič, P.; Veis, P.; Velicu, I. L.; Vernimmen, J. W. M.; Voitkans, A.; von Toussaint, U.; Weckmann, A.; Wirtz, M.; Založnik, A.; Zaplotnik, R.; PFC contributors, WP

    2017-11-01

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W

  5. A MODEL FOR DIFFUSION CONTROLLED BIOAVAILABILITY OF CRUDE OIL COMPONENTS

    Science.gov (United States)

    Crude oil is a complex mixture of several different structural classes of compounds including alkanes, aromatics, heterocyclic polar compounds, and asphaltenes. The rate and extent of microbial degradation of crude oil depends on the interaction between the physical and biochemi...

  6. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  7. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    Science.gov (United States)

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential

  8. Interaction of Mastoparan with Model Membranes

    Science.gov (United States)

    Haloot, Justin

    2010-10-01

    The use of antimicrobial agents began during the 20th century to reduce the effects of infectious diseases. Since the 1990s, antimicrobial resistance has become an ever-increasing global problem. Our laboratory recently found that small antimicrobial peptides (AMPs) have potent antimicrobial activity against a wide range of Gram-negative and Gram-positive organisms including antibiotic resistant organisms. These AMPs are potential therapeutic agents against the growing problem of antimicrobial resistance. AMPs are small peptides produced by plants, insects and animals. Several hypotheses concede that these peptides cause some type of structural perturbations and increased membrane permeability in bacteria however, how AMPs kill bacteria remains unclear. The goal of this study was to design an assay that would allow us to evaluate and monitor the pore forming ability of an AMP, Mastoparan, on model membrane structures called liposomes. Development of this model will facilitate the study of how mastoparan and related AMPs interact with the bacterial membrane.

  9. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  10. An interactive program for pharmacokinetic modeling.

    Science.gov (United States)

    Lu, D R; Mao, F

    1993-05-01

    A computer program, PharmK, was developed for pharmacokinetic modeling of experimental data. The program was written in C computer language based on the high-level user-interface Macintosh operating system. The intention was to provide a user-friendly tool for users of Macintosh computers. An interactive algorithm based on the exponential stripping method is used for the initial parameter estimation. Nonlinear pharmacokinetic model fitting is based on the maximum likelihood estimation method and is performed by the Levenberg-Marquardt method based on chi 2 criterion. Several methods are available to aid the evaluation of the fitting results. Pharmacokinetic data sets have been examined with the PharmK program, and the results are comparable with those obtained with other programs that are currently available for IBM PC-compatible and other types of computers.

  11. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    Science.gov (United States)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  12. Effects of non-structural components and soil-structure interaction on the seismic response of framed structures

    Science.gov (United States)

    Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice

    2017-04-01

    In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  13. Repetition-based Interactive Facade Modeling

    KAUST Repository

    AlHalawani, Sawsan

    2012-07-01

    Modeling and reconstruction of urban environments has gained researchers attention throughout the past few years. It spreads in a variety of directions across multiple disciplines such as image processing, computer graphics and computer vision as well as in architecture, geoscience and remote sensing. Having a virtual world of our real cities is very attractive in various directions such as entertainment, engineering, governments among many others. In this thesis, we address the problem of processing a single fa cade image to acquire useful information that can be utilized to manipulate the fa cade and generate variations of fa cade images which can be later used for buildings\\' texturing. Typical fa cade structures exhibit a rectilinear distribution where in windows and other elements are organized in a grid of horizontal and vertical repetitions of similar patterns. In the firt part of this thesis, we propose an efficient algorithm that exploits information obtained from a single image to identify the distribution grid of the dominant elements i.e. windows. This detection method is initially assisted with the user marking the dominant window followed by an automatic process for identifying its repeated instances which are used to define the structure grid. Given the distribution grid, we allow the user to interactively manipulate the fa cade by adding, deleting, resizing or repositioning the windows in order to generate new fa cade structures. Having the utility for the interactive fa cade is very valuable to create fa cade variations and generate new textures for building models. Ultimately, there is a wide range of interesting possibilities of interactions to be explored.

  14. Suitability of the Binaural Interaction Component for Interaural Electrode Pairing of Bilateral Cochlear Implants.

    Science.gov (United States)

    Hu, Hongmei; Kollmeier, Birger; Dietz, Mathias

    2016-01-01

    Although bilateral cochlear implants (BiCIs) have succeeded in improving the spatial hearing performance of bilateral CI users, the overall performance is still not comparable with normal hearing listeners. Limited success can be partially caused by an interaural mismatch of the place-of-stimulation in each cochlea. Pairing matched interaural CI electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, or spatial release from masking. It has been shown in animal experiments that the magnitude of the binaural interaction component (BIC) derived from the wave-eV decreases for increasing interaural place of stimulation mismatch. This motivated the investigation of the suitability of an electroencephalography-based objective electrode-frequency fitting procedure based on the BIC for BiCI users. A 61 channel monaural and binaural electrically evoked auditory brainstem response (eABR) recording was performed in 7 MED-EL BiCI subjects so far. These BiCI subjects were directly stimulated at 60% dynamic range with 19.9 pulses per second via a research platform provided by the University of Innsbruck (RIB II). The BIC was derived for several interaural electrode pairs by subtracting the response from binaural stimulation from their summed monaural responses. The BIC based pairing results are compared with two psychoacoustic pairing methods: interaural pulse time difference sensitivity and interaural pitch matching. The results for all three methods analyzed as a function of probe electrode allow for determining a matched pair in more than half of the subjects, with a typical accuracy of ± 1 electrode. This includes evidence for statistically significant tuning of the BIC as a function of probe electrode in human subjects. However, results across the three conditions were sometimes not consistent. These discrepancies will be discussed in the light of pitch plasticity versus less plastic

  15. The Binaural Interaction Component in Barn Owl (Tyto alba) Presents few Differences to Mammalian Data.

    Science.gov (United States)

    Palanca-Castan, Nicolas; Laumen, Geneviève; Reed, Darrin; Köppl, Christine

    2016-12-01

    The auditory brainstem response (ABR) is an evoked potential that reflects the responses to sound by brainstem neural centers. The binaural interaction component (BIC) is obtained by subtracting the sum of the monaural ABR responses from the binaural response. Its latency and amplitude change in response to variations in binaural cues. The BIC is thus thought to reflect the activity of binaural nuclei and is used to non-invasively test binaural processing. However, any conclusions are limited by a lack of knowledge of the relevant processes at the level of individual neurons. The aim of this study was to characterize the ABR and BIC in the barn owl, an animal where the ITD-processing neural circuits are known in great detail. We recorded ABR responses to chirps and to 1 and 4 kHz tones from anesthetized barn owls. General characteristics of the barn owl ABR were similar to those observed in other bird species. The most prominent peak of the BIC was associated with nucleus laminaris and is thus likely to reflect the known processes of ITD computation in this nucleus. However, the properties of the BIC were very similar to previously published mammalian data and did not reveal any specific diagnostic features. For example, the polarity of the BIC was negative, which indicates a smaller response to binaural stimulation than predicted by the sum of monaural responses. This is contrary to previous predictions for an excitatory-excitatory system such as nucleus laminaris. Similarly, the change in BIC latency with varying ITD was not distinguishable from mammalian data. Contrary to previous predictions, this behavior appears unrelated to the known underlying neural delay-line circuitry. In conclusion, the generation of the BIC is currently inadequately understood and common assumptions about the BIC need to be reconsidered when interpreting such measurements.

  16. ROOTSTOCK-SCION INTERACTION: 1. EFFECT ON THE YIELD COMPONENTS OF CABERNET SAUVIGNON GRAPEVINE

    Directory of Open Access Journals (Sweden)

    ALBERTO MIELE

    Full Text Available ABSTRACT The interaction between rootstock, scion and environment can induce different responses to the grapevine physiology. Thus, the aim of this study was to determine the rootstock effect on the yield components of Cabernet Sauvignon (CS grapevine grown in the Serra Gaúcha viticultural region. The experimental design was completely randomized blocks, with 15 treatments, three replicates and ten vines per plot. The results show that all variables evaluated were significantly affected by the year and the rootstock. The CS/Solferino was among other combinations influenced by the year and had higher significant yield/ vine. Indeed, it was higher than that CS/Rupestris du Lot, CS/101-14 Mgt., CS/3309 C, CS/5BB K, CS/161- 49 C, CS/1103 P. and CS/Isabel. The number of clusters/bud, per burst bud and per vine and the weight of clusters were affected by the rootstock as well. Pruning weight/vine, yield/pruning weight, leaf area/vine, leaf area index and leaf area/fresh fruit weight are variables related to the physiology of grapevine which were also affected by the rootstock. In general, rootstocks had adapted well to the environment where the experiment was carried out, giving vigor and high yield to Cabernet Sauvignon grapevine, which means that they may be used by grape growers in this region. However, the choice of the right rootstock depends on various aspects, such as those related to the soil characteristics, climate conditions, grape varieties, and even clones, and production purposes.

  17. Marginal and Interaction Effects in Ordered Response Models

    OpenAIRE

    Debdulal Mallick

    2009-01-01

    In discrete choice models the marginal effect of a variable of interest that is interacted with another variable differs from the marginal effect of a variable that is not interacted with any variable. The magnitude of the interaction effect is also not equal to the marginal effect of the interaction term. I present consistent estimators of both marginal and interaction effects in ordered response models. This procedure is general and can easily be extended to other discrete choice models. I ...

  18. Ecological, psychological, and cognitive components of reading difficulties: testing the component model of reading in fourth graders across 38 countries.

    Science.gov (United States)

    Chiu, Ming Ming; McBride-Chang, Catherine; Lin, Dan

    2012-01-01

    The authors tested the component model of reading (CMR) among 186,725 fourth grade students from 38 countries (45 regions) on five continents by analyzing the 2006 Progress in International Reading Literacy Study data using measures of ecological (country, family, school, teacher), psychological, and cognitive components. More than 91% of the differences in student difficulty occurred at the country (61%) and classroom (30%) levels (ecological), with less than 9% at the student level (cognitive and psychological). All three components were negatively associated with reading difficulties: cognitive (student's early literacy skills), ecological (family characteristics [socioeconomic status, number of books at home, and attitudes about reading], school characteristics [school climate and resources]), and psychological (students' attitudes about reading, reading self-concept, and being a girl). These results extend the CMR by demonstrating the importance of multiple levels of factors for reading deficits across diverse cultures.

  19. Seismic induced nonlinear rotor-bearing-casing interaction of rotating nuclear components

    International Nuclear Information System (INIS)

    Choy, F.K.; Padovan, J.; Li, W.H.

    1989-01-01

    The study of the dynamics of turbomachinery during seismic events has been of continuous interest to both researchers and designers of large rotating equipment. Failure in such equipment, especially those associated with nuclear power generation, can lead to catastrophic consequences. Hence, there is a general trend for corporations to overdesign the equipment without any indepth understanding of the dynamical performance of the machine under extreme operating conditions. The overall objective of this paper are fourfold, namely: (1) To study the nonlinear dynamics of rotor-bearing casing system during rub interactions; (2) To examine the effects of suddenly induced imbalance and base motion in the global dynamical behavior of the system; (3) To develop engineering insights through the modal parameters in both time and frequency domain; (4) To generate signature analysis on rub forces for pattern recognition. These goals are achieved through the development of a modal impact model. Accuracy and efficiency of this transient model are maintained using a self-adaptive integration scheme

  20. Modeling mechanical interactions between cancerous mammary acini

    Science.gov (United States)

    Wang, Jeffrey; Liphardt, Jan; Rycroft, Chris

    2015-03-01

    The rules and mechanical forces governing cell motility and interactions with the extracellular matrix of a tissue are often critical for understanding the mechanisms by which breast cancer is able to spread through the breast tissue and eventually metastasize. Ex vivo experimentation has demonstrated the the formation of long collagen fibers through collagen gels between the cancerous mammary acini responsible for milk production, providing a fiber scaffolding along which cancer cells can disorganize. We present a minimal mechanical model that serves as a potential explanation for the formation of these collagen fibers and the resultant motion. Our working hypothesis is that cancerous cells induce this fiber formation by pulling on the gel and taking advantage of the specific mechanical properties of collagen. To model this system, we employ a new Eulerian, fixed grid simulation method to model the collagen as a nonlinear viscoelastic material subject to various forces coupled with a multi-agent model to describe individual cancer cells. We find that these phenomena can be explained two simple ideas: cells pull collagen radially inwards and move towards the tension gradient of the collagen gel, while being exposed to standard adhesive and collision forces.

  1. Interaction of calcium silicate hydrates (C-S-H), the main components of cement, with alkaline chlorides, analogy with clays

    International Nuclear Information System (INIS)

    Viallis-Terrisse, H.

    2000-01-01

    This work, belonging to a more general study on the structure and reactivity of cement, deals with the experimental and theoretical analysis of the interaction of alkaline chlorides with calcium silicate hydrates (C-S-H), the main components of cement paste. The interaction of alkaline cations with C-S-H is interfacial, involving both electrostatic and surface complexation mechanisms. The C-S-H surface is constituted of silanol sites, partially dissociated due to the high pH of the interstitial solution. The calcium ions, present in large amounts in the equilibrium solution of C-S-H, constitute potential determining ions for the C-S-H surface. The alkaline ions seem to compete with calcium for the same surface sites. The adsorption isotherms show that caesium presents a better affinity than sodium and lithium for the C-S-H surface. Moreover, solid-state NMR suggests that caesium forms with the surface sites inner-sphere complexes, whereas sodium seems to keep its hydration sphere. These results are in agreement with zeta potential measurements, which let suppose a specific adsorption of caesium ions, and an indifferent behaviour of both other alkaline ions. A model for the C-S-H surface was proposed, from the electric double layer model, and mass action laws expressing the complexation of the different ionic species with the silanol sites. The whole study relies on a structural analogy with smectites, some clays presenting well-known cationic adsorption properties. The structural similarity between both minerals is enhanced by some similarities of reactivity, though significant behaviour differences could also be noted. (author)

  2. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.; Long, N.; Swindler, A.

    2012-05-01

    This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

  3. Interactions of Model Cell Membranes with Nanoparticles

    Science.gov (United States)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  4. New approaches to the modelling of multi-component fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S

    2015-02-25

    The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components.

  5. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  6. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  7. Implementing components of the routines-based model

    OpenAIRE

    McWilliam, Robin; Fernández Valero, Rosa

    2015-01-01

    The MBR is comprised of 17 components that can generally be grouped into practices related to (a) functional assessment and intervention planning (for example, Routines-Based Interview), (b) organization of services (including location and staffing), (c) service delivery to children and families (using a consultative approach with families and teachers, integrated therapy), (d) classroom organization (for example, classroom zones), and (e) supervision and training through ch...

  8. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

    KAUST Repository

    Li, Yehua

    2010-06-01

    We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

  9. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

    KAUST Repository

    Li, Yehua; Wang, Naisyin; Carroll, Raymond J.

    2010-01-01

    We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

  10. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  11. Effect of Model Selection on Computed Water Balance Components

    NARCIS (Netherlands)

    Jhorar, R.K.; Smit, A.A.M.F.R.; Roest, C.W.J.

    2009-01-01

    Soil water flow modelling approaches as used in four selected on-farm water management models, namely CROPWAT. FAIDS, CERES and SWAP, are compared through numerical experiments. The soil water simulation approaches used in the first three models are reformulated to incorporate ail evapotranspiration

  12. Scalable Power-Component Models for Concept Testing

    Science.gov (United States)

    2011-08-17

    motor speed can be either positive or negative dependent upon the propelling or regenerative braking scenario. The simulation provides three...the machine during generation or regenerative braking . To use the model, the user modifies the motor model criteria parameters by double-clicking... SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN

  13. Effects of interactive instructional techniques in a web-based peripheral nervous system component for human anatomy.

    Science.gov (United States)

    Allen, Edwin B; Walls, Richard T; Reilly, Frank D

    2008-02-01

    This study investigated the effects of interactive instructional techniques in a web-based peripheral nervous system (PNS) component of a first year medical school human anatomy course. Existing data from 9 years of instruction involving 856 students were used to determine (1) the effect of web-based interactive instructional techniques on written exam item performance and (2) differences between student opinions of the benefit level of five different types of interactive learning objects used. The interactive learning objects included Patient Case studies, review Games, Simulated Interactive Patients (SIP), Flashcards, and unit Quizzes. Exam item analysis scores were found to be significantly higher (p < 0.05) for students receiving the instructional treatment incorporating the web-based interactive learning objects than for students not receiving this treatment. Questionnaires using a five-point Likert scale were analysed to determine student opinion ratings of the interactive learning objects. Students reported favorably on the benefit level of all learning objects. Students rated the benefit level of the Simulated Interactive Patients (SIP) highest, and this rating was significantly higher (p < 0.05) than all other learning objects. This study suggests that web-based interactive instructional techniques improve student exam performance. Students indicated a strong acceptance of Simulated Interactive Patient learning objects.

  14. Modeling dynamics of biological and chemical components of aquatic ecosystems

    International Nuclear Information System (INIS)

    Lassiter, R.R.

    1975-05-01

    To provide capability to model aquatic ecosystems or their subsystems as needed for particular research goals, a modeling strategy was developed. Submodels of several processes common to aquatic ecosystems were developed or adapted from previously existing ones. Included are submodels for photosynthesis as a function of light and depth, biological growth rates as a function of temperature, dynamic chemical equilibrium, feeding and growth, and various types of losses to biological populations. These submodels may be used as modules in the construction of models of subsystems or ecosystems. A preliminary model for the nitrogen cycle subsystem was developed using the modeling strategy and applicable submodels. (U.S.)

  15. Geodynamo Modeling of Core-Mantle Interactions

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  16. Interaction of elaiophylin with model bilayer membrane

    Science.gov (United States)

    Genova, J.; Dencheva-Zarkova, M.

    2017-01-01

    Elaiophylin is a new macrodiolide antibiotic, which is produced by the Streptomyces strains [1]. It displays biological activities against Gram-positive bacteria and fungi. The mode of action of this antibiotic has been attributed to an alteration of the membrane permeability. When this antibiotic is inserted into the bilayer membranes destabilization of the membrane and formation of ion-penetrable channels is observed. The macrodiolide antibiotic forms stable cation selective ion channels in synthetic lipid bilayer membranes. The aim of this work was to study the interactions of Elaiophylin with model bilayer membranes and to get information on the mechanical properties of lipid bilayers in presence of this antibiotic. Patch-clamp technique [2] were used in the study

  17. Neutron matter with a model interaction

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2000-01-01

    An infinite system of neutrons interacting by a model pair potential is considered. We investigate a case when this potential is sufficiently strong attractive, so that its scattering length a tends to infinity, a →-∞. It appeared, that if the structure of the potential is simple enough, including no finite parameters, reliable evidences can be presented that such a system is completely unstable at any finite density. The incompressibility as a function of the density is negative, reaching zero value when the density tends to zero. If the potential contains a sufficiently strong repulsive core then the system possesses an equilibrium density. The main features of a theory describing such systems are considered. (orig.)

  18. Neutron matter with a model interaction

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; A.F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Shaginyan, V.R. [Petersburg Institute of Nuclear Physics, 188350 Gatchina (Russian Federation); Department of Physics, University of Washington, Seattle, WA 98195 (United States)

    2000-05-01

    An infinite system of neutrons interacting by a model pair potential is considered. We investigate a case when this potential is sufficiently strong attractive, so that its scattering length a tends to infinity, a {yields}-{infinity}. It appeared, that if the structure of the potential is simple enough, including no finite parameters, reliable evidences can be presented that such a system is completely unstable at any finite density. The incompressibility as a function of the density is negative, reaching zero value when the density tends to zero. If the potential contains a sufficiently strong repulsive core then the system possesses an equilibrium density. The main features of a theory describing such systems are considered. (orig.)

  19. sdg Interacting boson model: two nucleon transfer

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1996-01-01

    A brief overview of the sdg interacting boson model (sdg IBM) is given. The two examples: (i) spectroscopic properties (spectra, B(E2)s, B(E4)s etc) of the rotor-γ unstable transitional Os-Pt isotopes and (ii) the analytical formulation of two nucleon transfer spectroscopic factors and sum-rule quantities are described in detail. They demonstrate that sdg IBM can be employed for systematic description of spectroscopic properties of nuclei and that large number of analytical formulas, which facilitate rapid analysis of data and provide a clear insight into the underlying structures, can be derived using sdg IBM dynamical symmetries respectively. (author). 24 refs., 5 figs., 3 tabs

  20. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shigeyoshi, E-mail: syamamot@lets.chukyo-u.ac.jp [School of International Liberal Studies, Chukyo University, 101-2 Yagoto-Honmachi, Showa-ku, Nagoya 466-8666 (Japan); Tatewaki, Hiroshi [Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota 470-0393 (Japan); Graduate School of Natural Sciences, Nagoya City University, Aichi 467-8501 (Japan)

    2015-03-07

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f{sup 9})(6s{sup 2})(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f{sup 10})(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T{sub 0} = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f{sup 9})(6s)(6p), but these configurations are not consistent with the large R{sub e}’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f{sup 10})(6p{sub 3/2,1/2}), (4f{sup 10})(6p{sub 3/2,3/2}), and (4f{sup 9})(6s)(6p{sub 3/2,1/2}) at around 3 eV. The former two states have larger R{sub e} (3.88 a.u.) than the third, so that it is reasonable to assign (4f{sup 10})(6p{sub 3/2,1/2}) to [19.3]8.5 and (4f{sup 10})(6p{sub 3/2,3/2}) to [20.3]8.5.

  1. Usability testing of interaction components: taking the message exchange as a measure of usability

    NARCIS (Netherlands)

    Brinkman, W.P.; Haakma, R.; Bouwhuis, D.G.; Jacob, R.J.K.; Limbourg, Q; Vanderdonckt, J.

    2004-01-01

    Component-based Software Engineering (CBSE) is concerned with the development of systems from reusable parts (components), and the development and maintenance of these parts. This study addresses the issue of usability testing in a CBSE environment, and specifically automatically measuring the

  2. CORCON: a computer program for modelling molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete is being developed to provide a capability for making quantitative estimates of reactor fuel-melt accidents. The principal phenomenological models, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. A code test comparison calculation is discussed

  3. A Performance Enhanced Interactive Learning Workshop Model as a Supplement for Organic Chemistry Instruction

    Science.gov (United States)

    Phillips, Karen E. S.; Grose-Fifer, Jilliam

    2011-01-01

    In this study, the authors describe a Performance Enhanced Interactive Learning (PEIL) workshop model as a supplement for organic chemistry instruction. This workshop model differs from many others in that it includes public presentations by students and other whole-class-discussion components that have not been thoroughly investigated in the…

  4. CLIMLAB: a Python-based software toolkit for interactive, process-oriented climate modeling

    Science.gov (United States)

    Rose, B. E. J.

    2015-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The IPython notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields. However CLIMLAB is well suited to be deployed as a computational back-end for a graphical gaming environment based on earth-system modeling.

  5. A three-component, hierarchical model of executive attention

    OpenAIRE

    Whittle, Sarah; Pantelis, Christos; Testa, Renee; Tiego, Jeggan; Bellgrove, Mark

    2017-01-01

    Executive attention refers to the goal-directed control of attention. Existing models of executive attention distinguish between three correlated, but empirically dissociable, factors related to selectively attending to task-relevant stimuli (Selective Attention), inhibiting task-irrelevant responses (Response Inhibition), and actively maintaining goal-relevant information (Working Memory Capacity). In these models, Selective Attention and Response Inhibition are moderately strongly correlate...

  6. Economic Modeling as a Component of Academic Strategic Planning.

    Science.gov (United States)

    MacKinnon, Joyce; Sothmann, Mark; Johnson, James

    2001-01-01

    Computer-based economic modeling was used to enable a school of allied health to define outcomes, identify associated costs, develop cost and revenue models, and create a financial planning system. As a strategic planning tool, it assisted realistic budgeting and improved efficiency and effectiveness. (Contains 18 references.) (SK)

  7. Component vibration of VVER-reactors - diagnostics and modelling

    International Nuclear Information System (INIS)

    Altstadt, E.; Scheffler, M.; Weiss, F.P.

    1994-01-01

    The model comprises the whole primary circuit, including steam generators, loops, coolant pumps, main isolating valves and certainly the reactor pressure vessel and its internals. It was developed using the finite-element-code ANSYS. The model has a modular structure, so that various operational and assembling states can easily be considered. (orig./DG)

  8. PyCatch: Component based hydrological catchment modelling

    NARCIS (Netherlands)

    Lana-Renault, N.; Karssenberg, D.J.

    2013-01-01

    Dynamic numerical models are powerful tools for representing and studying environmental processes through time. Usually they are constructed with environmental modelling languages, which are high-level programming languages that operate at the level of thinking of the scientists. In this paper we

  9. CFD approach to modeling of core-concrete interaction

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: A large attention is given to research behavior of concrete structures at high mechanical and thermal loadings, which those suffer at the severe accidents on Nuclear Power Plants with core melting and falling of the molten corium mass into reactor shaft. There are enough programs for analysis of heat and mass transfer processes at interaction of the molten corium with concrete. Most known among them CORCON and WECHSL, which were developed more than twenty years ago, allow considering a quasi-stationary phase decomposition of concrete and the some transition regimes. In opposing to the mentioned codes a new more generalized mathematical model and software are developed for modeling of a wide range of the heat and mass transfer processes under study of the molten core-concrete interaction. The developed mathematical model is based on the Navier-Stokes equations with variable properties with taking into account of a density jump under melting of concrete together with a heat transfer equation. The offered numerical technique is based on modern algorithms with small scheme diffusion, whose discrete approximations are constructed with use of finite-volume methods and the fully staggered grids. The developed software corresponds to modern level of development of computers and takes into account all phenomenology, used by mentioned codes, and allows to simulate the such phenomena and processes as: multidimensional heat transfer in concrete for modeling of transients for an intermediate thermal flux to concrete; direct erosion of concrete at a quasi-stationary regime of interaction with molten fuel masses; heat and mass transfer in corium and convective intermixing in a melt of corium with taking into account of its stratification on two layers of the metal and oxide components and heat transfer by radiation in a cavity of the reactor shaft; change physical properties of corium at concrete decomposition and release in corium of its

  10. An Advanced N -body Model for Interacting Multiple Stellar Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brož, Miroslav [Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-18000 Praha 8 (Czech Republic)

    2017-06-01

    We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal, a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).

  11. Improved predictive model for n-decane kinetics across species, as a component of hydrocarbon mixtures.

    Science.gov (United States)

    Merrill, E A; Gearhart, J M; Sterner, T R; Robinson, P J

    2008-07-01

    n-Decane is considered a major component of various fuels and industrial solvents. These hydrocarbon products are complex mixtures of hundreds of components, including straight-chain alkanes, branched chain alkanes, cycloalkanes, diaromatics, and naphthalenes. Human exposures to the jet fuel, JP-8, or to industrial solvents in vapor, aerosol, and liquid forms all have the potential to produce health effects, including immune suppression and/or neurological deficits. A physiologically based pharmacokinetic (PBPK) model has previously been developed for n-decane, in which partition coefficients (PC), fitted to 4-h exposure kinetic data, were used in preference to measured values. The greatest discrepancy between fitted and measured values was for fat, where PC values were changed from 250-328 (measured) to 25 (fitted). Such a large change in a critical parameter, without any physiological basis, greatly impedes the model's extrapolative abilities, as well as its applicability for assessing the interactions of n-decane or similar alkanes with other compounds in a mixture model. Due to these limitations, the model was revised. Our approach emphasized the use of experimentally determined PCs because many tissues had not approached steady-state concentrations by the end of the 4-h exposures. Diffusion limitation was used to describe n-decane kinetics for the brain, perirenal fat, skin, and liver. Flow limitation was used to describe the remaining rapidly and slowly perfused tissues. As expected from the high lipophilicity of this semivolatile compound (log K(ow) = 5.25), sensitivity analyses showed that parameters describing fat uptake were next to blood:air partitioning and pulmonary ventilation as critical in determining overall systemic circulation and uptake in other tissues. In our revised model, partitioning into fat took multiple days to reach steady state, which differed considerably from the previous model that assumed steady-state conditions in fat at 4 h post

  12. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter

    2016-01-01

    This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets that are automati......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...... that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates....

  13. Multiparticle production in a two-component dual parton model

    International Nuclear Information System (INIS)

    Aurenche, P.; Bopp, F.W.; Capella, A.; Kwiecinski, J.; Maire, M.; Ranft, J.; Tran Thanh Van, J.

    1992-01-01

    The dual parton model (DPM) describes soft and semihard multiparticle production. The version of the DPM presented in this paper includes soft and hard mechanisms as well as diffractive processes. The model is formulated as a Monte Carlo event generator. We calculate in this model, in the energy range of the hadron colliders, rapidity distributions and the rise of the rapidity plateau with the collision energy, transverse-momentum distributions and the rise of average transverse momenta with the collision energy, multiplicity distributions in different pseudorapidity regions, and transverse-energy distributions. For most of these quantities we find a reasonable agreement with experimental data

  14. Institute for Multiscale Modeling of Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham

    2009-12-26

    The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.

  15. Estimating spatial and temporal components of variation in count data using negative binomial mixed models

    Science.gov (United States)

    Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.

    2013-01-01

    Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.

  16. Comprehensive FDTD modelling of photonic crystal waveguide components

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Borel, Peter Ingo; Frandsen, Lars Hagedorn

    2004-01-01

    Planar photonic crystal waveguide structures have been modelled using the finite-difference-time-domain method and perfectly matched layers have been employed as boundary conditions. Comprehensive numerical calculations have been performed and compared to experimentally obtained transmission...

  17. New methods for the characterization of pyrocarbon; The two component model of pyrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Luhleich, H.; Sutterlin, L.; Hoven, H.; Nickel, H.

    1972-04-19

    In the first part, new experiments to clarify the origin of different pyrocarbon components are described. Three new methods (plasma-oxidation, wet-oxidation, ultrasonic method) are presented to expose the carbon black like component in the pyrocarbon deposited in fluidized beds. In the second part, a two component model of pyrocarbon is proposed and illustrated by examples.

  18. A Nonlinear Model for Gene-Based Gene-Environment Interaction

    Directory of Open Access Journals (Sweden)

    Jian Sa

    2016-06-01

    Full Text Available A vast amount of literature has confirmed the role of gene-environment (G×E interaction in the etiology of complex human diseases. Traditional methods are predominantly focused on the analysis of interaction between a single nucleotide polymorphism (SNP and an environmental variable. Given that genes are the functional units, it is crucial to understand how gene effects (rather than single SNP effects are influenced by an environmental variable to affect disease risk. Motivated by the increasing awareness of the power of gene-based association analysis over single variant based approach, in this work, we proposed a sparse principle component regression (sPCR model to understand the gene-based G×E interaction effect on complex disease. We first extracted the sparse principal components for SNPs in a gene, then the effect of each principal component was modeled by a varying-coefficient (VC model. The model can jointly model variants in a gene in which their effects are nonlinearly influenced by an environmental variable. In addition, the varying-coefficient sPCR (VC-sPCR model has nice interpretation property since the sparsity on the principal component loadings can tell the relative importance of the corresponding SNPs in each component. We applied our method to a human birth weight dataset in Thai population. We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using the Bonferroni correction method and one suggestive interaction. The model performance was further evaluated through simulation studies. Our model provides a system approach to evaluate gene-based G×E interaction.

  19. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  20. LYSIMETER - A UNIQUE TOOL FOR MONITORING THE INTERACTIONS AMONG THE COMPONENTS OF ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ivan Matušek

    2016-06-01

    Full Text Available Modern lysimeter facilities in connection with meteorological stations allow monitoring and evaluation of mutual basic components of the environment, such as water, air, soil and vegetation. Water is the most important component of the ecosystem and the component which connects all the other components. Therefore, we need to know the basic distribution and water balance in the different components of the environment to be able to interpret some processes in nature. Rainfall, which is the primary source of vital processes in the soil, is formed in the air. The amount of precipitation that gets into the soil and into the groundwater is affected by weather conditions. Primary distribution of rainwater is divided between infiltration, surface runoff, transpiration and evapotranspiration. The amount of water infiltrated into the soil and then evaporated by solar activity or activities of plants can be identified primarily by monitoring changes in weight. For this monitoring we use weighable lysimeter. This equipment with the monolith size of surface area 1 m2 and the depth of 1.5 m is able to follow online updates of weight of the 2 ton body with an accuracy of 100 g. When we add to quantification of leakages through the bottom layer, we obtain a comprehensive record of rainfall at the time in the natural environment of the individual components. The obtained data can be further interpreted in terms of the needs of hydrology, agriculture, and environmental studies, and according to the purpose and objectives for which we want to use them.

  1. A componential model of human interaction with graphs: 1. Linear regression modeling

    Science.gov (United States)

    Gillan, Douglas J.; Lewis, Robert

    1994-01-01

    Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.

  2. A Bayesian Analysis of Unobserved Component Models Using Ox

    Directory of Open Access Journals (Sweden)

    Charles S. Bos

    2011-05-01

    Full Text Available This article details a Bayesian analysis of the Nile river flow data, using a similar state space model as other articles in this volume. For this data set, Metropolis-Hastings and Gibbs sampling algorithms are implemented in the programming language Ox. These Markov chain Monte Carlo methods only provide output conditioned upon the full data set. For filtered output, conditioning only on past observations, the particle filter is introduced. The sampling methods are flexible, and this advantage is used to extend the model to incorporate a stochastic volatility process. The volatility changes both in the Nile data and also in daily S&P 500 return data are investigated. The posterior density of parameters and states is found to provide information on which elements of the model are easily identifiable, and which elements are estimated with less precision.

  3. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  4. Modeling of a remote inspection system for NSSS components

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Kim, Jae Hee; Lee, Jae Cheol

    2003-03-01

    Safety inspection for safety-critical unit of nuclear power plant has been processed using off-line technology. Thus we can not access safety inspection system and inspection data via network such as internet. We are making an on-line control and data access system based on WWW and JAVA technologies which can be used during plant operation to overcome these problems. Users can access inspection systems and inspection data only using web-browser. This report discusses about analysis of the existing remote system and essential techniques such as Web, JAVA, client/server model, and multi-tier model. This report also discusses about a system modeling that we have been developed using these techniques and provides solutions for developing an on-line control and data access system

  5. Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response.

    Science.gov (United States)

    Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander

    2016-08-01

    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.

  6. Study of interaction between protein and main active components in Citrus aurantium L. by optical spectroscopy

    International Nuclear Information System (INIS)

    Sun Yantao; Zhang Haitao; Sun Ye; Zhang Yupu; Liu He; Cheng Jianhua; Bi Shuyun; Zhang Hanqi

    2010-01-01

    The interaction between flavonoids and proteins was investigated by fluorescence and absorption spectroscopy. The binding parameters of drugs with proteins were obtained according to the corrected fluorescence data by an improved calculation method. The ΔH, ΔS and ΔG obtained indicate that the van der Waals or hydrogen bond, electrostatic force and hydrophobic forces all play a role in the interaction of drugs with proteins. Based on Foerster's theory, the binding average distance r between the protein and drug was evaluated and found to be less than 3 nm. The interaction of drug-metal ion complexes and proteins was also investigated.

  7. Magnetic fusion energy plasma interactive and high heat flux components. Volume III. Strategy for international collaborations in the areas of plasma materials interactions and high heat flux materials and components development

    International Nuclear Information System (INIS)

    Gauster, W.B.; Bauer, W.; Roberto, J.B.; Post, D.E.

    1984-01-01

    The purpose of this summary is to assess opportunities for such collaborations in the specific areas of Plasma Materials Interaction and High Heat Flux Materials and Components Development, and to aid in developing a strategy to take advantage of them. After some general discussion of international collaborations, we summarize key technical issues and the US programs to address them. Then follows a summary of present collaborations and potential opportunities in foreign laboratories

  8. Three-Component Dust Models for Interstellar Extinction C ...

    Indian Academy of Sciences (India)

    without standard' method were used to constrain the dust characteristics in the mean ISM (RV = 3.1), ... Interstellar dust models have evolved as the observational data have advanced, and the most popular dust ... distribution comes from the IRAS observation which shows an excess of 12 μ and. 25 μ emission from the ISM ...

  9. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  10. Matrix models with Penner interaction inspired by interacting ...

    Indian Academy of Sciences (India)

    distribution of structure with temperature calculated from the NL model .... where φi are the random Hermitian matrices of size (N × N) placed at each base position ..... PB thanks UGC for research fellowships and ND thanks CSIR Project No.

  11. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  12. Study on the interaction between active components from traditional Chinese medicine and plasma proteins.

    Science.gov (United States)

    Jiao, Qishu; Wang, Rufeng; Jiang, Yanyan; Liu, Bin

    2018-05-04

    Traditional Chinese medicine (TCM), as a unique form of natural medicine, has been used in Chinese traditional therapeutic systems over two thousand years. Active components in Chinese herbal medicine are the material basis for the prevention and treatment of diseases. Research on drug-protein binding is one of the important contents in the study of early stage clinical pharmacokinetics of drugs. Plasma protein binding study has far-reaching influence on the pharmacokinetics and pharmacodynamics of drugs and helps to understand the basic rule of drug effects. It is important to study the binding characteristics of the active components in Chinese herbal medicine with plasma proteins for the medical science and modernization of TCM. This review summarizes the common analytical methods which are used to study the active herbal components-protein binding and gives the examples to illustrate their application. Rules and influence factors of the binding between different types of active herbal components and plasma proteins are summarized in the end. Finally, a suggestion on choosing the suitable technique for different types of active herbal components is provided, and the prospect of the drug-protein binding used in the area of TCM research is also discussed.

  13. Component-based modeling of systems for automated fault tree generation

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2009-01-01

    One of the challenges in the field of automated fault tree construction is to find an efficient modeling approach that can support modeling of different types of systems without ignoring any necessary details. In this paper, we are going to represent a new system of modeling approach for computer-aided fault tree generation. In this method, every system model is composed of some components and different types of flows propagating through them. Each component has a function table that describes its input-output relations. For the components having different operational states, there is also a state transition table. Each component can communicate with other components in the system only through its inputs and outputs. A trace-back algorithm is proposed that can be applied to the system model to generate the required fault trees. The system modeling approach and the fault tree construction algorithm are applied to a fire sprinkler system and the results are presented

  14. Research on development model of nuclear component based on life cycle management

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    At present the development process of nuclear component, even nuclear component itself, is more and more supported by computer technology. This increasing utilization of the computer and software has led to the faster development of nuclear technology on one hand and also brought new problems on the other hand. Especially, the combination of hardware, software and humans has increased nuclear component system complexities to an unprecedented level. To solve this problem, Life Cycle Management technology is adopted in nuclear component system. Hence, an intensive discussion on the development process of a nuclear component is proposed. According to the characteristics of the nuclear component development, such as the complexities and strict safety requirements of the nuclear components, long-term design period, changeable design specifications and requirements, high capital investment, and satisfaction for engineering codes/standards, the development life-cycle model of nuclear component is presented. The development life-cycle model is classified at three levels, namely, component level development life-cycle, sub-component development life-cycle and component level verification/certification life-cycle. The purposes and outcomes of development processes are stated in detailed. A process framework for nuclear component based on system engineering and development environment of nuclear component is discussed for future research work. (authors)

  15. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies.

    Science.gov (United States)

    Fornaguera, Cristina; Calderó, Gabriela; Mitjans, Montserrat; Vinardell, Maria Pilar; Solans, Conxita; Vauthier, Christine

    2015-04-14

    The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising alternative for delivery of drugs to specific cells. However, studies on their interaction with diverse blood components using different techniques are still lacking. Therefore, in the present work, the interaction of PLGA nanoparticles with blood components was described using different complementary techniques. The influence of different encapsulated compounds/functionalizing agents on these interactions was also reported. It is worth noting that all these techniques can be simply performed, without the need for highly sophisticated apparatus or skills. Moreover, their transference to industries and application of quality control could be easily performed. Serum albumin was adsorbed onto all types of tested nanoparticles. The saturation concentration was dependent on the nanoparticle size. In contrast, fibrinogen aggregation was dependent on nanoparticle surface charge. The complement activation was also influenced by the nanoparticle functionalization; the presence of a functionalizing agent increased complement activation, while the addition of an encapsulated compound only caused a slight increase. None of the nanoparticles influenced the coagulation cascade at low concentrations. However, at high concentrations, cationized nanoparticles did activate the coagulation cascade. Interactions of nanoparticles with erythrocytes did not reveal any hemolysis. Interactions of PLGA nanoparticles with blood proteins depended both on the nanoparticle properties and the protein studied. Independent of their loading/surface functionalization, PLGA nanoparticles did not influence the coagulation cascade and did not induce hemolysis of erythrocytes; they could be defined as safe concerning induction of embolization and cell lysis.

  16. Five-component propagation model for steam explosion analysis

    International Nuclear Information System (INIS)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun

    1999-01-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  17. Component-oriented approach to the development and use of numerical models in high energy physics

    International Nuclear Information System (INIS)

    Amelin, N.S.; Komogorov, M.Eh.

    2002-01-01

    We discuss the main concepts of a component approach to the development and use of numerical models in high energy physics. This approach is realized as the NiMax software system. The discussed concepts are illustrated by numerous examples of the system user session. In appendix chapter we describe physics and numerical algorithms of the model components to perform simulation of hadronic and nuclear collisions at high energies. These components are members of hadronic application modules that have been developed with the help of the NiMax system. Given report is served as an early release of the NiMax manual mainly for model component users

  18. Interaction between clay-based sealing components and crystalline host rock

    Science.gov (United States)

    Priyanto, D. G.; Dixon, D. A.; Man, A. G.

    The results of hydraulic-mechanical (H-M) numerical simulation of a shaft seal installed at a fracture zone (FZ) in a crystalline host rock using the finite element method are presented. The primary function of a shaft seal is to limit short-circuiting of the groundwater flow regime via the shaft in a deep geological repository. Two different stages of system evolution were considered in this numerical modelling. Stage 1 simulates the groundwater flow into an open shaft, prior to seal installation. Stage 2 simulates the groundwater flow into the shaft seal after seal installation. Four different cases were completed to: (i) evaluate H-M response due to the interaction between clay-based sealing material and crystalline host rock in the shaft seal structure; (ii) quantify the effect of the different times between the completion of the shaft excavation and the completion of shaft seal installation on the H-M response; and (iii) define the potential effects of different sealing material configurations. Shaft sealing materials include the bentonite-sand mixture (BSM), dense backfill (DBF), and concrete plug (CP). The BSM has greater swelling capacity and lower hydraulic conductivity ( K) than the DBF. The results of these analyses show that the decrease of the pore water pressure is concentrated along the fracture zone (FZ), which has the greatest K. As the time increases, the greatest decrease in pore water pressure is found around the FZ. Following FZ isolation and the subsequent filling of the shaft with water as it floods, the pore water pressure profile tends to recover back to the initial conditions prior to shaft excavation. The majority of the fluids that ultimately saturate the centre of the shaft seal flow radially inwards from the FZ. The time between the completion of the shaft excavation and the completion of shaft seal installation has a significant effect on the saturation time. A shorter time can reduce the saturation time. Since most of the inflow

  19. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis

    2000-01-01

    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  20. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    International Nuclear Information System (INIS)

    Carl Stern; Martin Lee

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models

  1. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    CERN Document Server

    Carl-Stern

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models.

  2. Three Fundamental Components of the Autopoiesic Leadership Model

    Directory of Open Access Journals (Sweden)

    Mateja Kalan

    2017-06-01

    Full Text Available Research Question (RQ: What type of leadership could be developed upon transformational leadership? Purpose: The purpose of the research was to create a new leadership style. Its variables can be further developed upon transformational leadership variables. Namely, this leadership style is known as a successful leadership style in successful organisations. Method: In the research of published papers from scientific databases, we relied on the triangulation of theories. To clarify the research question, we have researched different authors, who based their research papers on different hypotheses. In some articles, hypotheses were even contradictory. Results: Through the research, we have concluded that authors often changed certain variables when researching the topic of transformational leadership. We have correlated these variables and developed a new model, naming it autopoiesic leadership. Its main variables are (1 goal orientation, (2 emotional sensitivity, and (3 manager’s flexibility in organisations. Organisation: Our research can have a positive effect on managers in terms of recognising the importance of selected variables. Practical application of autopoiesic leadership can imply more efficiency in business processes of a company, increasing its financial performance. Society: Autopoiesic leadership is a leadership style that largely influences the use of the individual’s internal resources. Thus, she or he becomes internally motivated, and this is the basis for quality work. This strengthens employees’ social aspect which consequently also has a positive effect on their life outside the organisational system, i.e. their family and broader living environment. Originality: In the worldwide literature, we have noticed the concept autopoiesis in papers about management subjects, but the autopoiesic leadership model has not been developed so far. Limitations / Future Research: We based our research on the triangulation of theories

  3. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    Jan 5, 2016 ... We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments.

  4. Designing and Implementing an Interactive Social Robot from Off-the-shelf Components

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Thomsen, Nicolai Bæk; Duan, Xiaodong

    2015-01-01

    people feel comfortable in its presence. All electrical components are standard off-the-shelf commercial products making a replication possible. Furthermore, the software is based on Robot Operating Software (ROS) and is made freely available.We present our experience with the design and discuss possible...

  5. Modelling insights on the partition of evapotranspiration components across biomes

    Science.gov (United States)

    Fatichi, Simone; Pappas, Christoforos

    2017-04-01

    Recent studies using various methodologies have found a large variability (from 35 to 90%) in the ratio of transpiration to total evapotranspiration (denoted as T:ET) across biomes or even at the global scale. Concurrently, previous results suggest that T:ET is independent of mean precipitation and has a positive correlation with Leaf Area Index (LAI). We used the mechanistic ecohydrological model, T&C, with a refined process-based description of soil resistance and a detailed treatment of canopy biophysics and ecophysiology, to investigate T:ET across multiple biomes. Contrary to observation-based estimates, simulation results highlight a well-constrained range of mean T:ET across biomes that is also robust to perturbations of the most sensitive parameters. Simulated T:ET was confirmed to be independent of average precipitation, while it was found to be uncorrelated with LAI across biomes. Higher values of LAI increase evaporation from interception but suppress ground evaporation with the two effects largely cancelling each other in many sites. These results offer mechanistic, model-based, evidence to the ongoing research about the range of T:ET and the factors affecting its magnitude across biomes.

  6. Functionalized anatomical models for EM-neuron Interaction modeling

    Science.gov (United States)

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2016-06-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.

  7. Linguistic steganography on Twitter: hierarchical language modeling with manual interaction

    Science.gov (United States)

    Wilson, Alex; Blunsom, Phil; Ker, Andrew D.

    2014-02-01

    This work proposes a natural language stegosystem for Twitter, modifying tweets as they are written to hide 4 bits of payload per tweet, which is a greater payload than previous systems have achieved. The system, CoverTweet, includes novel components, as well as some already developed in the literature. We believe that the task of transforming covers during embedding is equivalent to unilingual machine translation (paraphrasing), and we use this equivalence to de ne a distortion measure based on statistical machine translation methods. The system incorporates this measure of distortion to rank possible tweet paraphrases, using a hierarchical language model; we use human interaction as a second distortion measure to pick the best. The hierarchical language model is designed to model the speci c language of the covers, which in this setting is the language of the Twitter user who is embedding. This is a change from previous work, where general-purpose language models have been used. We evaluate our system by testing the output against human judges, and show that humans are unable to distinguish stego tweets from cover tweets any better than random guessing.

  8. Virtual Models Linked with Physical Components in Construction

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch

    The use of virtual models supports a fundamental change in the working practice of the construction industry. It changes the primary information carrier (drawings) from simple manually created depictions of the building under construction to visually realistic digital representations that also...... engineering and business development in an iterative and user needs centred system development process. The analysis of future business perspectives presents an extensive number of new working processes that can assist in solving major challenges in the construction industry. Three of the most promising...... practices and development of new ontologies. Based on the experiences gained in this PhD project, some of the important future challenges are also to show the benefits of using modern information and communication technology to practitioners in the construction industry and to communicate this knowledge...

  9. Potyvirus helper component-proteinase self-interaction in the yeast two-hybrid system and delineation of the interaction domain involved.

    Science.gov (United States)

    Urcuqui-Inchima, S; Walter, J; Drugeon, G; German-Retana, S; Haenni, A L; Candresse, T; Bernardi, F; Le Gall, O

    1999-05-25

    Using the yeast two-hybrid system, a screen was performed for possible interactions between the proteins encoded by the 5' region of potyviral genomes [P1, helper component-proteinase (HC-Pro), and P3]. A positive self-interaction involving HC-Pro was detected with lettuce mosaic virus (LMV) and potato virus Y (PVY). The possibility of heterologous interaction between the HC-Pro of LMV and of PVY was also demonstrated. No interaction involving either the P1 or the P3 proteins was detected. A series of ordered deletions from either the N- or C-terminal end of the LMV HC-Pro was used to map the domain involved in interaction to the 72 N-terminal amino acids of the protein, a region known to be dispensable for virus viability but necessary for aphid transmission. A similar but less detailed analysis mapped the interacting domain to the N-terminal half of the PVY HC-Pro. Copyright 1999 Academic Press.

  10. Reliability analysis of nuclear component cooling water system using semi-Markov process model

    International Nuclear Information System (INIS)

    Veeramany, Arun; Pandey, Mahesh D.

    2011-01-01

    Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.

  11. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  12. Improving the representation of river-groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model

    KAUST Repository

    Zampieri, Matteo; Serpetzoglou, Efthymios; Anagnostou, Emmanouil N.; Nikolopoulos, Efthymios I.; Papadopoulos, Anastasios

    2012-01-01

    Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions

  13. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    International Nuclear Information System (INIS)

    Reynolds, Jacob G.

    2013-01-01

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH 4 H 2 O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H 2 O, NaOH, and NaAl(OH) 4 are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components

  14. Modelling the effect of mixture components on permeation through skin.

    Science.gov (United States)

    Ghafourian, T; Samaras, E G; Brooks, J D; Riviere, J E

    2010-10-15

    A vehicle influences the concentration of penetrant within the membrane, affecting its diffusivity in the skin and rate of transport. Despite the huge amount of effort made for the understanding and modelling of the skin absorption of chemicals, a reliable estimation of the skin penetration potential from formulations remains a challenging objective. In this investigation, quantitative structure-activity relationship (QSAR) was employed to relate the skin permeation of compounds to the chemical properties of the mixture ingredients and the molecular structures of the penetrants. The skin permeability dataset consisted of permeability coefficients of 12 different penetrants each blended in 24 different solvent mixtures measured from finite-dose diffusion cell studies using porcine skin. Stepwise regression analysis resulted in a QSAR employing two penetrant descriptors and one solvent property. The penetrant descriptors were octanol/water partition coefficient, logP and the ninth order path molecular connectivity index, and the solvent property was the difference between boiling and melting points. The negative relationship between skin permeability coefficient and logP was attributed to the fact that most of the drugs in this particular dataset are extremely lipophilic in comparison with the compounds in the common skin permeability datasets used in QSAR. The findings show that compounds formulated in vehicles with small boiling and melting point gaps will be expected to have higher permeation through skin. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.396. The chemical space of the dataset was compared with that of the known skin permeability datasets and gaps were identified for future skin permeability measurements. Copyright 2010 Elsevier B.V. All rights reserved.

  15. A review of typical thermal fatigue failure models for solder joints of electronic components

    Science.gov (United States)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  16. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    Science.gov (United States)

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  17. Quantum dynamics modeled by interacting trajectories

    Science.gov (United States)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  18. TOWARD TUNGSTEN PLASMA-FACING COMPONENTS IN KSTAR: RESEARCH ON PLASMA-METAL WALL INTERACTION

    Czech Academy of Sciences Publication Activity Database

    Hong, S.-H.; Kim, K.M.; Song, J.-H.; Bang, E.-N.; Kim, H.-T.; Lee, K.-S.; Litnovsky, A.; Hellwig, M.; Seo, D.C.; Lee, H.H.; Kang, C.S.; Lee, H.-Y.; Hong, J.-H.; Bak, J.-G.; Kim, H.-S.; Juhn, J.-W.; Son, S.-H.; Kim, H.-K.; Douai, D.; Grisolia, C.; Wu, J.; Luo, G.-N.; Choe, W.-H.; Komm, Michael; van den Berg, M.; De Temmerman, G.; Pitts, R.

    2015-01-01

    Roč. 68, č. 1 (2015), s. 36-43 ISSN 1536-1055. [International Conference on Open Magnetic Systems for Plasma Confinement (OS 2014)/10./. Daejeon, 26.08.2014-29.08.2014] Institutional support: RVO:61389021 Keywords : Plasma-metal wall interaction * Tungsten technology Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.799, year: 2015 http://dx.doi.org/10.13182/FST14-897

  19. Components interaction in timber framed masonry structures subjected to lateral forces

    Directory of Open Access Journals (Sweden)

    Andreea DUTU

    2012-07-01

    Full Text Available Structures with timber framed masonry represent a special typology that is frequently found in Europe and other countries of the world. They are traditional buildings, non-engineered, which showed an unexpected redundancy during earthquakes where reinforced concrete buildings (improperly constructed collapsed. In the paper, aspects regarding the interaction between timber elements and masonry are mainly addressed, that were observed both in experimental studies, but also in the in situ seismic behavior of this type of structure during important earthquakes.

  20. Insulin Biosynthetic Interaction Network Component, TMEM24, Facilitates Insulin Reserve Pool Release

    Directory of Open Access Journals (Sweden)

    Anita Pottekat

    2013-09-01

    Full Text Available Insulin homeostasis in pancreatic β cells is now recognized as a critical element in the progression of obesity and type II diabetes (T2D. Proteins that interact with insulin to direct its sequential synthesis, folding, trafficking, and packaging into reserve granules in order to manage release in response to elevated glucose remain largely unknown. Using a conformation-based approach combined with mass spectrometry, we have generated the insulin biosynthetic interaction network (insulin BIN, a proteomic roadmap in the β cell that describes the sequential interacting partners of insulin along the secretory axis. The insulin BIN revealed an abundant C2 domain-containing transmembrane protein 24 (TMEM24 that manages glucose-stimulated insulin secretion from a reserve pool of granules, a critical event impaired in patients with T2D. The identification of TMEM24 in the context of a comprehensive set of sequential insulin-binding partners provides a molecular description of the insulin secretory pathway in β cells.

  1. Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Petrosyan, D.; Valiente, M.

    2015-01-01

    We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...

  2. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    Science.gov (United States)

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.

  3. MetExploreViz: web component for interactive metabolic network visualization.

    Science.gov (United States)

    Chazalviel, Maxime; Frainay, Clément; Poupin, Nathalie; Vinson, Florence; Merlet, Benjamin; Gloaguen, Yoann; Cottret, Ludovic; Jourdan, Fabien

    2017-09-15

    MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyze omics data in a biochemical context. Documentation and link to GIT code repository (GPL 3.0 license)are available at this URL: http://metexplore.toulouse.inra.fr/metexploreViz/doc /. Tutorial is available at this URL. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Experiment planning using high-level component models at W7-X

    International Nuclear Information System (INIS)

    Lewerentz, Marc; Spring, Anett; Bluhm, Torsten; Heimann, Peter; Hennig, Christine; Kühner, Georg; Kroiss, Hugo; Krom, Johannes G.; Laqua, Heike; Maier, Josef; Riemann, Heike; Schacht, Jörg; Werner, Andreas; Zilker, Manfred

    2012-01-01

    Highlights: ► Introduction of models for an abstract description of fusion experiments. ► Component models support creating feasible experiment programs at planning time. ► Component models contain knowledge about physical and technical constraints. ► Generated views on models allow to present crucial information. - Abstract: The superconducting stellarator Wendelstein 7-X (W7-X) is a fusion device, which is capable of steady state operation. Furthermore W7-X is a very complex technical system. To cope with these requirements a modular and strongly hierarchical component-based control and data acquisition system has been designed. The behavior of W7-X is characterized by thousands of technical parameters of the participating components. The intended sequential change of those parameters during an experiment is defined in an experiment program. Planning such an experiment program is a crucial and complex task. To reduce the complexity an abstract, more physics-oriented high-level layer has been introduced earlier. The so-called high-level (physics) parameters are used to encapsulate technical details. This contribution will focus on the extension of this layer to a high-level component model. It completely describes the behavior of a component for a certain period of time. It allows not only defining simple value ranges but also complex dependencies between physics parameters. This can be: dependencies within components, dependencies between components or temporal dependencies. Component models can now be analyzed to generate various views of an experiment. A first implementation of such an analyze process is already finished. A graphical preview of a planned discharge can be generated from a chronological sequence of component models. This allows physicists to survey complex planned experiment programs at a glance.

  5. I-SG : Interactive Search Grouping - Search result grouping using Independent Component Analysis

    DEFF Research Database (Denmark)

    Lauritsen, Thomas; Kolenda, Thomas

    2002-01-01

    We present a computational simple and efficient approach to unsupervised grouping the search result from any search engine. Along with each group a set of keywords are found to annotate the contents. This approach leads to an interactive search trough a hierarchial structure that is build online....... It is the users task to improve the search, trough expanding the search query using the topic keywords representing the desired groups. In doing so the search engine limits the space of possible search results, virtually moving down in the search hierarchy, and so refines the search....

  6. A new model for reliability optimization of series-parallel systems with non-homogeneous components

    International Nuclear Information System (INIS)

    Feizabadi, Mohammad; Jahromi, Abdolhamid Eshraghniaye

    2017-01-01

    In discussions related to reliability optimization using redundancy allocation, one of the structures that has attracted the attention of many researchers, is series-parallel structure. In models previously presented for reliability optimization of series-parallel systems, there is a restricting assumption based on which all components of a subsystem must be homogeneous. This constraint limits system designers in selecting components and prevents achieving higher levels of reliability. In this paper, a new model is proposed for reliability optimization of series-parallel systems, which makes possible the use of non-homogeneous components in each subsystem. As a result of this flexibility, the process of supplying system components will be easier. To solve the proposed model, since the redundancy allocation problem (RAP) belongs to the NP-hard class of optimization problems, a genetic algorithm (GA) is developed. The computational results of the designed GA are indicative of high performance of the proposed model in increasing system reliability and decreasing costs. - Highlights: • In this paper, a new model is proposed for reliability optimization of series-parallel systems. • In the previous models, there is a restricting assumption based on which all components of a subsystem must be homogeneous. • The presented model provides a possibility for the subsystems’ components to be non- homogeneous in the required conditions. • The computational results demonstrate the high performance of the proposed model in improving reliability and reducing costs.

  7. Modelling microbial interactions and food structure in predictive microbiology

    NARCIS (Netherlands)

    Malakar, P.K.

    2002-01-01

    Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.

    Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of

  8. Rumen bacteria: interaction with particulate dietary components and response to dietary variation.

    Science.gov (United States)

    Cheng, K J; Akin, D E; Costerton, J W

    1977-02-01

    The bovine rumen resembles many other ecosystems in that its component bacterial cells are universally surrounded and protected by extracellular structures. The most common form of these structures is a fibrous carbohydrate slime that extends away from the cell and may mediate the attachment of the bacterium to a surface. This attachment is relatively specific and it may occur at the surface of the rumen epithelium or on the cell walls of a specific tissue within the plant-derived food of the animal. The production of the extracellular slime is under nutritional control and slime may be overproduced when soluble carbohydrates are available in high concentration. This overproduction results in cell-cell adhesion among the rumen bacteria with the eventual formation of slime-enclosed microcolonies and, in extreme cases, the generation of sufficient viscosity to cause feedlot bloat.

  9. Interactions among spectral components of radiation in the growth responses of rice, tomato and strawberry

    International Nuclear Information System (INIS)

    Inada, K.; Matsuno, A.

    1985-01-01

    Effects of spectral components and their ratios of radiation on simultaneous growth responses were investigated with rice, tomato and strawberry plants exposed to lights with a high fluence rate (350 or 408 μmol m -2 s -1 , 400-700 nm) during every daytime. Both elongation growth and Ieaf area development in rice and strawberry were promoted by red (R) but inhibited by blue (B) component depending on the each fluence rate. However, leaf area in tomato responded in opposite direction to these. The elongation growth was remarkably increased with the fluence rate of far-red (FR) in tomato and strawberry, but not in rice. These responses were lineary increased, except FR and UV effects, with logarithmic R/B ratio in rice and strawberry but not in tomato. A very low R/FR ratio caused a strong promotion of both elongation and leaf area in tomato, while it promoted petiole elengation but inhibited leaf area development in strawberry. The elongation and leaf area development responded to R/FR in reverse way between rice and strawberry. Chlorophyll content of leaves was generally decreased with the increase of logarithmic R/B ratio in all the species. Areal weight of leaf and dry weight increment/leaf area were more or less increased with R/B and R/ FR ratios, Dry weight increment varied with the spectral ratios in almost the same way as leaf area, suggesting that spectral dependence of photosynthetic production was not much different between the species. Some discussions were made on the photoreceptor pigments involved in the elongation growth and leaf area development, and on the selection of light quantity to ensure a normal growth of each plant species

  10. Open Interactivity: A Model for Audience Agency

    Directory of Open Access Journals (Sweden)

    Charlotte Gould

    2018-04-01

    Full Text Available Artists have increasingly acknowledged the role of the audience as collaborators both in the construction of meaning (Bathes, 1977, through subjective experience (Dewey, 1934 and in contributing to the creative act by externalising the work. (Duchamp Lucy Lippard identifies 1966-72 as a period where artists turned increasingly towards the audience, representing a "dematerialization of the art object" (Lippard, 1997 through "Happenings" and "Fluxus" movements. Digital media has facilitated this trajectory, implicit in the interactive computer interface (Manovich, 2005, but interactivity per se may offer no more than a series of choices put forward by the artist (Daniels, 2011. Interactivity represents interplay between artist and audience (Dinka, 1996 and is potentially a process of audience empowerment to offer agency, defined as real and creative choice (Browning, 1964. Public screen installation "Peoples Screen" Guangzhou, linking China to Perth Australia (Sermon & Gould, 2015 offered a partnership between artist and audience to co-create content though playful narratives and active engagement in a drama that unfolds using improvisation and play. Initially visitors enjoy observing the self on the screen but audiences quickly start to interact with the environment and other participants. Immersed in play they lose a sense of the self (Callois, 2011 and enter a virtual third space where possibilities for creativity and direction of play are limitless. The self becomes an avatar where the audience can inhabit "the other" thereby exploring alternative realities through ludic play, promoting tolerance and empathy and developing collective memory.

  11. Modelling interactions in grass-clover mixtures

    NARCIS (Netherlands)

    Nassiri Mahallati, M.

    1998-01-01

    The study described in this thesis focuses on a quantitative understanding of the complex interactions in binary mixtures of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) under cutting. The first part of the study describes the dynamics of growth, production

  12. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    International Nuclear Information System (INIS)

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick steel canister horizontally emplaced in a drift, and a backfill of highly compacted sodium bentonite. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. Solubility limits and speciation of important actinides and the fission product technetium in the bentonite pore water are then calculated. The model is based on available experimental data on the interaction of sodium bentonite and groundwater and represents means of extrapolation from laboratory data to repository conditions. The basic reactions between sodium bentonite and groundwater are described by an ion-exchange model for sodium, potassium, magnesium, and calcium. The model assumes equilibrium with calcite as long as sufficient carbonates remain in the bentonite, as well as quartz saturation. It is calculated that the pore water of compacted sodium bentonite saturated with Swiss Reference Groundwater will have a pH value of 9.7 and a free carbonate activity of 8x10 -4 M. The long-term situation is modelled by the assumption that the near-field of a deep repository behaves like a mixing tank. In this way, an attempt is made to account for the continuous water exchange between the near-field and the host rock. It is found that sodium bentonite will be slowly converted to calcium bentonite. This conversion is roughly estimated to be completed after 2 million years

  13. Guided interaction exploration in artifact-centric process models

    NARCIS (Netherlands)

    van Eck, M.L.; Sidorova, N.; van der Aalst, W.M.P.

    2017-01-01

    Artifact-centric process models aim to describe complex processes as a collection of interacting artifacts. Recent development in process mining allow for the discovery of such models. However, the focus is often on the representation of the individual artifacts rather than their interactions. Based

  14. Exploring agricultural production systems and their fundamental components with system dynamics modeling

    Science.gov (United States)

    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex wa...

  15. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sö ren; Jarząbek, Michał; Hadrich, Torsten; Michels, Dominik L.; Palubicki, Wojciech

    2017-01-01

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical

  16. Interactions between lignosulphonates and the components of the lead-acid battery. Part 1. Adsorption isotherms

    Science.gov (United States)

    Myrvold, Bernt O.

    The expander performs at least five different tasks in the battery. It is a fluidiser for the negative paste. It controls the formation stage of the battery. It controls the shape and size of the lead sulphate crystals formed upon discharge, and thus prevents the sintering of the active mass. It controls the rate of the lead to lead sulphate oxidation during discharge. Finally, it affects the charge acceptance. To gain more understanding of these different effects the interaction between lead, lead(II) oxide, lead(IV) oxide, lead sulphate, barium sulphate and carbon black and the experimental lignosulphonate (LS) expander UP-414 has been investigated. We also compared with Vanisperse A and several other lignosulphonates, to elucidate the mechanisms operating. In most cases, we have studied concentration ranges that are both higher and lower than those normally encountered in batteries. There is no adsorption of lignosulphonates to pure lead surfaces. Adsorption to lead sulphate is a slow process. In the presence of lead ions lignosulphonates will also adsorb to lead. The adsorption to lead(II) oxide is a fast process, and a strong adsorption occurs. In all these cases, it is preferably the high molecular weight fraction that interacts with the solid surfaces. Lead ions leaching from the surface complexes with lignosulphonates to give a more hydrophobic species. This allows the normally negatively charged lignosulphonate to adsorb to the negatively charged substrates. The lignosulphonates have an ability to complex lead ions and keep them solvated. This confirms previous observations of the lignosulphonates ability to promote the dissolution-precipitation mechanism for lead sulphate formation on the expense of the solid-state reaction.

  17. Five challenges in modelling interacting strain dynamics

    DEFF Research Database (Denmark)

    Wikramaratna, Paul S; Kurcharski, Adam; Gupta, Sunetra

    2015-01-01

    population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity...

  18. Contemporary Ecological Interactions Improve Models of Past Trait Evolution.

    Science.gov (United States)

    Hutchinson, Matthew C; Gaiarsa, Marília P; Stouffer, Daniel B

    2018-02-20

    Despite the fact that natural selection underlies both traits and interactions, evolutionary models often neglect that ecological interactions may, and in many cases do, influence the evolution of traits. Here, we explore the interdependence of ecological interactions and functional traits in the pollination associations of hawkmoths and flowering plants. Specifically, we develop an adaptation of the Ornstein-Uhlenbeck model of trait evolution that allows us to study the influence of plant corolla depth and observed hawkmoth-plant interactions on the evolution of hawkmoth proboscis length. Across diverse modelling scenarios, we find that the inclusion of contemporary interactions can provide a better description of trait evolution than the null expectation. Moreover, we show that the pollination interactions provide more-likely models of hawkmoth trait evolution when interactions are considered at increasingly finescale groups of hawkmoths. Finally, we demonstrate how the results of best-fit modelling approaches can implicitly support the association between interactions and trait evolution that our method explicitly examines. In showing that contemporary interactions can provide insight into the historical evolution of hawkmoth proboscis length, we demonstrate the clear utility of incorporating additional ecological information to models designed to study past trait evolution.

  19. Modelling the interactions between animal venom peptides and membrane proteins.

    Science.gov (United States)

    Hung, Andrew; Kuyucak, Serdar; Schroeder, Christina I; Kaas, Quentin

    2017-12-01

    The active components of animal venoms are mostly peptide toxins, which typically target ion channels and receptors of both the central and peripheral nervous system, interfering with action potential conduction and/or synaptic transmission. The high degree of sequence conservation of their molecular targets makes a range of these toxins active at human receptors. The high selectivity and potency displayed by some of these toxins have prompted their use as pharmacological tools as well as drugs or drug leads. Molecular modelling has played an essential role in increasing our molecular-level understanding of the activity and specificity of animal toxins, as well as engineering them for biotechnological and pharmaceutical applications. This review focuses on the biological insights gained from computational and experimental studies of animal venom toxins interacting with membranes and ion channels. A host of recent X-ray crystallography and electron-microscopy structures of the toxin targets has contributed to a dramatic increase in the accuracy of the molecular models of toxin binding modes greatly advancing this exciting field of study. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    component dark matter model with real singlet scalars confronting GeV -ray excess from galactic centre and Fermi bubble. Debasish Majumdar Kamakshya Prasad Modak Subhendu Rakshit. Special: Cosmology Volume 86 Issue ...

  1. Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this project is model-based design (MBD) tools for predicting the performance and useful life of commercial-off-the-shelf (COTS) components and...

  2. New approaches to the modelling of multi-component fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S; Elwardany, Ahmed E; Heikal, Morgan R

    2015-01-01

    numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model

  3. Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    Yasser M. Kadah

    2010-01-01

    Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.

  4. Detailed finite element method modeling of evaporating multi-component droplets

    Energy Technology Data Exchange (ETDEWEB)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    2017-07-01

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet. Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.

  5. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Carmeliet, Jan

    2007-01-01

    While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary...

  6. A proposed centralised distribution model for the South African automotive component industry

    Directory of Open Access Journals (Sweden)

    Micheline J. Naude

    2009-12-01

    Full Text Available Purpose: This article explores the possibility of developing a distribution model, similar to the model developed and implemented by the South African pharmaceutical industry, which could be implemented by automotive component manufacturers for supply to independent retailers. Problem Investigated: The South African automotive components distribution chain is extensive with a number of players of varying sizes, from the larger spares distribution groups to a number of independent retailers. Distributing to the smaller independent retailers is costly for the automotive component manufacturers. Methodology: This study is based on a preliminary study of an explorative nature. Interviews were conducted with a senior staff member from a leading automotive component manufacturer in KwaZulu Natal and nine participants at a senior management level at five of their main customers (aftermarket retailers. Findings: The findings from the empirical study suggest that the aftermarket component industry is mature with the role players well established. The distribution chain to the independent retailer is expensive in terms of transaction and distribution costs for the automotive component manufacturer. A proposed centralised distribution model for supply to independent retailers has been developed which should reduce distribution costs for the automotive component manufacturer in terms of (1 the lowest possible freight rate; (2 timely and controlled delivery; and (3 reduced congestion at the customer's receiving dock. Originality: This research is original in that it explores the possibility of implementing a centralised distribution model for independent retailers in the automotive component industry. Furthermore, there is a dearth of published research on the South African automotive component industry particularly addressing distribution issues. Conclusion: The distribution model as suggested is a practical one and should deliver added value to automotive

  7. Interacting holographic dark energy models: a general approach

    Science.gov (United States)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  8. User Interaction Modeling and Profile Extraction in Interactive Systems: A Groupware Application Case Study †

    Science.gov (United States)

    Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L.

    2017-01-01

    A relevant goal in human–computer interaction is to produce applications that are easy to use and well-adjusted to their users’ needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system. PMID:28726762

  9. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  10. Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the Binaural Interaction Component (BIC).

    Science.gov (United States)

    Ozdamar, Ozcan; Bohorquez, Jorge; Mihajloski, Todor; Yavuz, Erdem; Lachowska, Magdalena

    2011-01-01

    Electrophysiological indices of auditory binaural beats illusions are studied using late latency evoked responses. Binaural beats are generated by continuous monaural FM tones with slightly different ascending and descending frequencies lasting about 25 ms presented at 1 sec intervals. Frequency changes are carefully adjusted to avoid any creation of abrupt waveform changes. Binaural Interaction Component (BIC) analysis is used to separate the neural responses due to binaural involvement. The results show that the transient auditory evoked responses can be obtained from the auditory illusion of binaural beats.

  11. Revealing the equivalence of two clonal survival models by principal component analysis

    International Nuclear Information System (INIS)

    Lachet, Bernard; Dufour, Jacques

    1976-01-01

    The principal component analysis of 21 chlorella cell survival curves, adjusted by one-hit and two-hit target models, lead to quite similar projections on the principal plan: the homologous parameters of these models are linearly correlated; the reason for the statistical equivalence of these two models, in the present state of experimental inaccuracy, is revealed [fr

  12. A model-based software development methodology for high-end automotive components

    NARCIS (Netherlands)

    Ravanan, Mahmoud

    2014-01-01

    This report provides a model-based software development methodology for high-end automotive components. The V-model is used as a process model throughout the development of the software platform. It offers a framework that simplifies the relation between requirements, design, implementation,

  13. Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2015-01-01

    Proteins originating from natural sources may constitute a novel type of material for use in drug delivery. However, thorough understanding of the behavior and effects of such a material when processed into a matrix together with a drug is crucial prior to further development into a drug product....... In the present study the potential of using bioactive electrospun fish sarcoplasmic proteins (FSP) as a carrier matrix for small therapeutic proteins was demonstrated in relation to the interactions with biological components of the intestinal tract. The inherent structural and chemical properties of FSP...... as a biomaterial facilitated interactions with cells and enzymes found in the gastrointestinal tract and displayed excellent biocompatibility. More specifically, insulin was efficiently encapsulated into FSP fibers maintaining its conformation, and subsequent controlled release was obtained in simulated intestinal...

  14. Aging/Systems Interaction Study, Component Residual Lifetime Evaluation and Feasibility of Relicensing. Progress report, FY 1985

    International Nuclear Information System (INIS)

    Close, J.A.; Jacobs, P.T.; Korth, G.E.; Mudlin, J.M.; Server, W.L.; Spaletta, H.W.

    1985-10-01

    This report documents the work performed on four research tasks in Fiscal Year 1985 (FY-1985) which were part of the Aging/Systems Interaction Study, Component Residual Lifetime Evaluation and Feasibility of Relicensing Project. The technical and management/institutional objectives for the project are described, followed by a description of the results of each task. The work on Task 1 involved identifying and prioritizing new research activities for the Nuclear Regulatory Commission (NRC) Nuclear Plant Aging Research (NPAR) Program. A proposed methodology and plan for aging-system interaction studies was developed in Task 2. The description of Task 3 work comprises a summary of nuclear plant life extension activities in the US, the technical basis associated with the residual life of metallic materials and a proposed plan for research on residual life assessment. Task 4 describes the initial evaluation of selected Standard Review Plan (NUREG-0800) sections to investigate the feasibility of relicensing. 14 refs., 13 figs., 20 tabs

  15. Electrophysiological correlates of social information processing for detecting agents in social interaction scenes: P200 and N250 components

    Directory of Open Access Journals (Sweden)

    Crivelli Davide

    2016-04-01

    Full Text Available According to interaction theories, the detection of situated agents and the understanding of their intentions and mental states are mediated by smart perceptual and embodied mechanisms. While the network supporting agency-attribution, action understanding, and grasping of others’ mental state is quite known, the actual mental chronometry of such social perception processes is still not clear. We then designed an exploratory study to investigate electrophysiological correlates (ERPs and source localization of information-processing for the detection of potential agents in realistic interaction scenes. Morphological and statistical analyses of electrophysiological data highlighted that the manipulation the nature of a potential agent, the gesture it executed and the relative position of an interagent was differently associated to the modulation of specific relevant middle-latency ERP components, labelled as P200 and N250, and of their relative intra-cortical current density distribution within the first 300 ms from the appearance of the stimulus.

  16. Trophic interactions among the heterotrophic components of plankton in man-made peat pools

    Directory of Open Access Journals (Sweden)

    Michał Niedźwiecki

    2017-03-01

    Full Text Available Man-made peat pools are permanent freshwater habitats developed due to non-commercial man-made peat extraction. Yet, they have not been widely surveyed in terms of ecosystem functioning, mainly regarding the complexity of heterotrophic components of the plankton. In this study we analysed distribution and trophic interrelations among heterotrophic plankton in man-made peat pools located in different types of peatbogs. We found that peat pools showed extreme differences in environmental conditions that occurred to be important drivers of distribution of microplankton and metazooplankton. Abundance of bacteria and protozoa showed significant differences, whereas metazooplankton was less differentiated in density among peat pools. In all peat pools stress-tolerant species of protozoa and metazoa were dominant. In each peat pool five trophic functional groups were distinguished. The abundance of lower functional trophic groups (bacteria, heterotrophic nanoflagellates (HNF and ciliates feeding on bacteria and HNF was weakly influenced by environmental drivers and was highly stable in all peat pool types. Higher functional trophic groups (naupli, omnivorous and carnivorous ciliates, cladocerans, adult copepods and copepodites were strongly influenced by environmental variables and exhibited lower stability. Our study contributes to comprehensive knowledge of the functioning of peat bogs, as our results have shown that peat pools are characterized by high stability of the lowest trophic levels, which can be crucial for energy transfer and carbon flux through food webs.

  17. Stability equation and two-component Eigenmode for domain walls in scalar potential model

    International Nuclear Information System (INIS)

    Dias, G.S.; Graca, E.L.; Rodrigues, R. de Lima

    2002-08-01

    Supersymmetric quantum mechanics involving a two-component representation and two-component eigenfunctions is applied to obtain the stability equation associated to a potential model formulated in terms of two coupled real scalar fields. We investigate the question of stability by introducing an operator technique for the Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS states on two domain walls in a scalar potential model with minimal N 1-supersymmetry. (author)

  18. Seismic assessment and performance of nonstructural components affected by structural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jieun; Althoff, Eric; Sezen, Halil; Denning, Richard; Aldemir, Tunc [Ohio State University, Columbus (United States)

    2017-03-15

    Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

  19. Five challenges in modelling interacting strain dynamics

    Directory of Open Access Journals (Sweden)

    Paul S. Wikramaratna

    2015-03-01

    Full Text Available Population epidemiological models where hosts can be infected sequentially by different strains have the potential to help us understand many important diseases. Researchers have in recent years started to develop and use such models, but the extra layer of complexity from multiple strains brings with it many technical challenges. It is therefore hard to build models which have realistic assumptions yet are tractable. Here we outline some of the main challenges in this area. First we begin with the fundamental question of how to translate from complex small-scale dynamics within a host to useful population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity accumulates over multiple exposures.

  20. Molecular interaction and energy transfer between human serum albumin and bioactive component Aloe dihydrocoumarin

    Science.gov (United States)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Li, Lin; Tang, Ya-Lin

    2008-10-01

    Aloe dihydrocoumarin is an antioxidant and a candidate of immunomodulatory drug on the immune system and can balance physiological reactive oxygen species (ROS) levels which may be useful to maintain homeostasis. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydrocoumarin with human serum albumin (HSA) has been investigated by fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydrocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. A Förster type fluorescence resonance energy transfer mechanism is involved in this quenching of Trp fluorescence by Aloe dihydrocoumarin. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydrocoumarin with HSA causes a conformational change of the protein, with the loss of α-helix stability and the gain of β-sheet and β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FT-IR experiments along with the docking studies suggest that Aloe dihydrocoumarin binds to residues located in subdomain IIA of HSA.

  1. Supersymmetric models of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Egoryan, Eh.; Slavnov, A.A.

    1978-01-01

    Examples of realistic supergauge lepton models based on the SU(2)xU(1) and SU(2)xSU(2)xU(1) groups are considered. These models do not contradict to up-to-date experimental data, give a natural explanation for the Higgs mechanism and predict the existence of heavy leptons. The first model predicts the conservation of parity, the second one predicts parity breaking in atomic processes

  2. Software Tools For Large Scale Interactive Hydrodynamic Modeling

    NARCIS (Netherlands)

    Donchyts, G.; Baart, F.; van Dam, A; Jagers, B; van der Pijl, S.; Piasecki, M.

    2014-01-01

    Developing easy-to-use software that combines components for simultaneous visualization, simulation and interaction is a great challenge. Mainly, because it involves a number of disciplines, like computational fluid dynamics, computer graphics, high-performance computing. One of the main

  3. Modeling complex and multi-component food systems in molecular dynamics simulations on the example of chocolate conching.

    Science.gov (United States)

    Greiner, Maximilian; Sonnleitner, Bettina; Mailänder, Markus; Briesen, Heiko

    2014-02-01

    Additional benefits of foods are an increasing factor in the consumer's purchase. To produce foods with the properties the consumer demands, understanding the micro- and nanostructure is becoming more important in food research today. We present molecular dynamics (MD) simulations as a tool to study complex and multi-component food systems on the example of chocolate conching. The process of conching is chosen because of the interesting challenges it provides: the components (fats, emulsifiers and carbohydrates) contain diverse functional groups, are naturally fluctuating in their chemical composition, and have a high number of internal degrees of freedom. Further, slow diffusion in the non-aqueous medium is expected. All of these challenges are typical to food systems in general. Simulation results show the suitability of present force fields to correctly model the liquid and crystal density of cocoa butter and sucrose, respectively. Amphiphilic properties of emulsifiers are observed by micelle formation in water. For non-aqueous media, pulling simulations reveal high energy barriers for motion in the viscous cocoa butter. The work for detachment of an emulsifier from the sucrose crystal is calculated and matched with detachment of the head and tail groups separately. Hydrogen bonding is shown to be the dominant interaction between the emulsifier and the crystal surface. Thus, MD simulations are suited to model the interaction between the emulsifier and sugar crystal interface in non-aqueous media, revealing detailed information about the structuring and interactions on a molecular level. With interaction parameters being available for a wide variety of chemical groups, MD simulations are a valuable tool to understand complex and multi-component food systems in general. MD simulations provide a substantial benefit to researchers to verify their hypothesis in dynamic simulations with an atomistic resolution. Rapid rise of computational resources successively

  4. The n-component cubic model and flows: subgraph break-collapse method

    International Nuclear Information System (INIS)

    Essam, J.W.; Magalhaes, A.C.N. de.

    1988-01-01

    We generalise to the n-component cubic model the subgraph break-collapse method which we previously developed for the Potts model. The relations used are based on expressions which we recently derived for the Z(λ) model in terms of mod-λ flows. Our recursive algorithm is similar, for n = 2, to the break-collapse method for the Z(4) model proposed by Mariz and coworkers. It allows the exact calculation for the partition function and correlation functions for n-component cubic clusters with n as a variable, without the need to examine all of the spin configurations. (author) [pt

  5. Quark-model study of the hadron structure and the hadron-hadron interaction

    International Nuclear Information System (INIS)

    Valcarce, A; Caramés, T F; Vijande, J; Garcilazo, H

    2011-01-01

    Recent results of hadron spectroscopy and hadron-hadron interaction within a quark model framework are reviewed. Higher order Fock space components are considered based on new experimental data on low-energy hadron phenomenology. The purpose of this study is to obtain a coherent description of the low-energy hadron phenomenology to constrain QCD phenomenological models and try to learn about low-energy realizations of the theory.

  6. Supporting inquiry and modelling with interactive drawings

    NARCIS (Netherlands)

    van Joolingen, Wouter

    2012-01-01

    Creating models is at the heart of any scientific endeavor and therefore should have a place in science curricula. However, creating computer-based models faces resistance in early science education because of the difficulty to create the formal representations required by computational systems. In

  7. THERMOCHEMISTRY OF INTERACTION REACTIONS FOR SODIUM AND ALUMINUM SULPHATES WITH COMPONENTS OF HYDRATING PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    P. I. Yukhnevskiy

    2018-01-01

    Full Text Available Chemical additives are widely used in the technology of concrete with the purpose to solve various problems and sulphate-containing additives-electrolytes are also used as accelerators for setting and hardening of cement. Action mechanism of additive accelerators for setting and hardening of cement is rather complicated and can not be considered as well-established. An influence of sulfate-containing additives such as sodium sulfate is reduced to acceleration of cement silicate phase hydration by increasing ionic strength of the solution. In addition to it, exchange reactions of anion additive with portlandite phase (Ca(OH2 and aluminate phases of hardening cement have a significant effect on hardening process that lead to formation of readily soluble hydroxides and hardly soluble calcium salts. The influence of sulfate-containing additives on properties of water cement paste and cement stone is quite diverse and depends on salt concentration and cation type. For example, the action of the aluminum sulphate additive becomes more complicated if the additive is subjected to hydrolysis in water, which is aggravated in an alkaline medium of the water cement paste. Formation of hydrolysis products and their reaction with aluminate phases and cement portlandite lead to a significant acceleration of setting. Thus, despite the similarity of additives ensuring participation of anions in the exchange reactions, the mechanism of their influence on cement setting and hardening varies rather significantly. The present paper considers peculiar features concerning the mechanism of interaction of sodium and aluminum sulfate additives in cement compositions from the viewpoint of thermochemistry. Thermochemical equations for reactions of sulfate-containing additives with phases of hydrated cement clinker have been given in the paper. The paper contains description how to calculate thermal effects of chemical reactions and determine an influence of the formed

  8. Models of πNN interactions

    International Nuclear Information System (INIS)

    Lee, T.S.H.

    1988-01-01

    A πNN model inspired by Quantum Chromodynamics is presented. The model gives an accurate fit to the most recent Arndt NN phase shifts up to 1 GeV and can be applied to study intermediate- and high-energy nuclear reactions. 20 refs., 2 figs

  9. Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID Families.

    Directory of Open Access Journals (Sweden)

    Jessica J R Hudson

    2011-02-01

    Full Text Available The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1. In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins.

  10. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  11. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M; Venaelaeinen, A; Tourula, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  12. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    Science.gov (United States)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  13. Astronomical bounds on a cosmological model allowing a general interaction in the dark sector

    Science.gov (United States)

    Pan, Supriya; Mukherjee, Ankan; Banerjee, Narayan

    2018-06-01

    Non-gravitational interaction between two barotropic dark fluids, namely the pressureless dust and the dark energy in a spatially flat Friedmann-Lemaître-Robertson-Walker model, has been discussed. It is shown that for the interactions that are linear in terms the energy densities of the dark components and their first order derivatives, the net energy density is governed by a second-order differential equation with constant coefficients. Taking a generalized interaction, which includes a number of already known interactions as special cases, the dynamics of the universe is described for three types of the dark energy equation of state, namely that of interacting quintessence, interacting vacuum energy density, and interacting phantom. The models have been constrained using the standard cosmological probes, Supernovae Type Ia data from joint light curve analysis and the observational Hubble parameter data. Two geometric tests, the cosmographic studies, and the Om diagnostic have been invoked so as to ascertain the behaviour of the present model vis-a-vis the Λ-cold dark matter model. We further discussed the interacting scenarios taking into account the thermodynamic considerations.

  14. ADDIE Model Application Promoting Interactive Multimedia

    Science.gov (United States)

    Baharuddin, B.

    2018-02-01

    This paper presents the benefits of interactive learning in a vocational high school, which is developed by Research and Developmet (R&D) method. The questionnaires, documentations, and instrument tests are used to obtain data and it is analyzed by descriptive statistic. The results show the students’ competence is generated up to 80.00 %, and the subject matter aspects of the content is up to 90.00 %. The learning outcomes average is 85. This type media fulfils the proposed objective which can enhance the learning outcome.

  15. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    Science.gov (United States)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  16. Observations and models of star formation in the tidal features of interacting galaxies

    International Nuclear Information System (INIS)

    Wallin, J.F.; Schombert, J.M.; Struck-Marcell, C.

    1990-01-01

    Multi-color surface photometry (BVri) is presented for the tidal features in a sample of interacting galaxies. Large color variations are found between the morphological components and within the individual components. The blue colors in the primary and the tidal features are most dramatic in B-V, and not in V-i, indicating that star formation instead of metallicity or age dominates the colors. Color variations between components is larger in systems shortly after interaction begins and diminishes to a very low level in systems which are merged. Photometric models for interacting systems are presented which suggest that a weak burst of star formation in the tidal features could cause the observed color distributions. Dynamical models indicate that compression occurs during the development of tidal features causing an increase in the local density by a factor of between 1.5 and 5. Assuming this density increase can be related to the star formation rate by a Schmidt law, the density increases observed in the dynamical models may be responsible for the variations in color seen in some of the interacting systems. Limitations of the dynamical models are also discussed

  17. Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors

    KAUST Repository

    Simpson, Daniel

    2017-04-06

    In this paper, we introduce a new concept for constructing prior distributions. We exploit the natural nested structure inherent to many model components, which defines the model component to be a flexible extension of a base model. Proper priors are defined to penalise the complexity induced by deviating from the simpler base model and are formulated after the input of a user-defined scaling parameter for that model component, both in the univariate and the multivariate case. These priors are invariant to repa-rameterisations, have a natural connection to Jeffreys\\' priors, are designed to support Occam\\'s razor and seem to have excellent robustness properties, all which are highly desirable and allow us to use this approach to define default prior distributions. Through examples and theoretical results, we demonstrate the appropriateness of this approach and how it can be applied in various situations.

  18. Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors

    KAUST Repository

    Simpson, Daniel; Rue, Haavard; Riebler, Andrea; Martins, Thiago G.; Sø rbye, Sigrunn H.

    2017-01-01

    In this paper, we introduce a new concept for constructing prior distributions. We exploit the natural nested structure inherent to many model components, which defines the model component to be a flexible extension of a base model. Proper priors are defined to penalise the complexity induced by deviating from the simpler base model and are formulated after the input of a user-defined scaling parameter for that model component, both in the univariate and the multivariate case. These priors are invariant to repa-rameterisations, have a natural connection to Jeffreys' priors, are designed to support Occam's razor and seem to have excellent robustness properties, all which are highly desirable and allow us to use this approach to define default prior distributions. Through examples and theoretical results, we demonstrate the appropriateness of this approach and how it can be applied in various situations.

  19. Modeling of Interactions of Ablated Plumes

    National Research Council Canada - National Science Library

    Povitsky, Alex

    2008-01-01

    Heat transfer modulation between the gas flow and the Thermal Protection Shield (TPS) that occurs because of ejection of under-expanded pyrolysis gases through the cracks in the TPS is studied by numerical modeling...

  20. Some dynamical aspects of interacting quintessence model

    Indian Academy of Sciences (India)

    Binayak S Choudhury

    2018-03-16

    Mar 16, 2018 ... Accelerated expansion of the Universe; quintessence; dynamical system; Friedmann–Lemaitre–. Robertson–Walker ... accepted theoretical model. One of the .... Thus, quintessence loses its self-strength and gives dark matter.

  1. A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway.

    Science.gov (United States)

    Salašová, Alena; Yokota, Chika; Potěšil, David; Zdráhal, Zbyněk; Bryja, Vítězslav; Arenas, Ernest

    2017-07-11

    Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. Our study shows for the first time that LRRK2 activates the WNT

  2. Preliminary model for core/concrete interactions

    International Nuclear Information System (INIS)

    Murfin, W.B.

    1977-08-01

    A preliminary model is described for computing the rate of penetration of concrete by a molten LWR core. Among the phenomena included are convective stirring of the melt by evolved gases, admixture of concrete decomposition products to the melt, chemical reactions, radiative heat loss, and variation of heat transfer coefficients with local pressure. The model is most applicable to a two-phase melt (metallic plus oxidic) having a fairly high metallic content

  3. Vector condensate model of electroweak interactions

    International Nuclear Information System (INIS)

    Cynolter, G.; Pocsik, G.

    1997-01-01

    Motivated by the fact that the Higgs is not seen, a new version of the standard model is proposed where the scalar doublet is replaced by a vector doublet and its neutral member forms a nonvanishing condensate. Gauge fields are coupled to the new vector fields B in a gauge invariant way leading to mass terms for the gauge fields by condensation. The model is presented and some implications are discussed. (K.A.)

  4. Pedagogical Interaction in High School, the Structural and Functional Model of Pedagogical Interaction

    Science.gov (United States)

    Semenova, Larissa A.; Kazantseva, Anastassiya I.; Sergeyeva, Valeriya V.; Raklova, Yekaterina M.; Baiseitova, Zhanar B.

    2016-01-01

    The study covers the problems of pedagogical technologies and their experimental implementation in the learning process. The theoretical aspects of the "student-teacher" interaction are investigated. A structural and functional model of pedagogical interaction is offered, which determines the conditions for improving pedagogical…

  5. Approaches to modelling hydrology and ecosystem interactions

    Science.gov (United States)

    Silberstein, Richard P.

    2014-05-01

    As the pressures of industry, agriculture and mining on groundwater resources increase there is a burgeoning un-met need to be able to capture these multiple, direct and indirect stresses in a formal framework that will enable better assessment of impact scenarios. While there are many catchment hydrological models and there are some models that represent ecological states and change (e.g. FLAMES, Liedloff and Cook, 2007), these have not been linked in any deterministic or substantive way. Without such coupled eco-hydrological models quantitative assessments of impacts from water use intensification on water dependent ecosystems under changing climate are difficult, if not impossible. The concept would include facility for direct and indirect water related stresses that may develop around mining and well operations, climate stresses, such as rainfall and temperature, biological stresses, such as diseases and invasive species, and competition such as encroachment from other competing land uses. Indirect water impacts could be, for example, a change in groundwater conditions has an impact on stream flow regime, and hence aquatic ecosystems. This paper reviews previous work examining models combining ecology and hydrology with a view to developing a conceptual framework linking a biophysically defensable model that combines ecosystem function with hydrology. The objective is to develop a model capable of representing the cumulative impact of multiple stresses on water resources and associated ecosystem function.

  6. Model compounds for heavy crude oil components and tetrameric acids: Characterization and interfacial behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Nordgaard, Erland Loeken

    2009-07-01

    The tendency during the past decades in the quality of oil reserves shows that conventional crude oil is gradually being depleted and the demand being replaced by heavy crude oils. These oils contain more of a class high-molecular weight components termed asphaltenes. This class is mainly responsible for stable water-in-crude oil emulsions. Both heavy and lighter crude oils in addition contain substantial amounts of naphthenic acids creating naphthenate deposits in topside facilities. The asphaltene class is defined by solubility and consists of several thousand different structures which may behave differently in oil-water systems. The nature of possible sub fractions of the asphaltene has been received more attention lately, but still the properties and composition of such is not completely understood. In this work, the problem has been addressed by synthesizing model compounds for the asphaltenes, on the basis that an acidic function incorporated could be crucial. Such acidic, poly aromatic surfactants turned out to be highly inter facially active as studied by the pendant drop technique. Langmuir monolayer compressions combined with fluorescence of deposited films indicated that the interfacial activity was a result of an efficient packing of the aromatic cores in the molecules, giving stabilizing interactions at the o/w interface. Droplet size distributions of emulsions studied by PFG NMR and adsorption onto hydrophilic silica particles demonstrated the high affinity to o/w interfaces and that the efficient packing gave higher emulsion stability. Comparing to a model compound lacking the acidic group, it was obvious that sub fractions of asphaltenes that contain an acidic, or maybe similar hydrogen bonding functions, could be responsible for stable w/o emulsions. Indigenous tetrameric acids are the main constituent of calcium naphthenate deposits. Several synthetic model tetra acids have been prepared and their properties have been compared to the indigenous

  7. Ferromagnetic interaction model of activity level in workplace communication

    Science.gov (United States)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  8. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  9. A gamma-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model.

    Science.gov (United States)

    González, M M; Dingus, B L; Kaneko, Y; Preece, R D; Dermer, C D; Briggs, M S

    2003-08-14

    Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.

  10. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    International Nuclear Information System (INIS)

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick steel canister horizontally emplaced in a drift, and a backfill of highly compacted sodium bentonite. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. Solubility limits and speciation of important actinides and the fission product technetium in the bentonite pore water are then calculated. The model is based on available experimental data on the interaction of sodium bentonite and groundwater and represents means of extrapolation from laboratory data to repository conditions. The modelled composition of the pore water of compacted sodium bentonite, as well as the various compositions resulting from the long-term extrapolation, are used to estimate radionuclide solubilities in the near-field of a deep repository. From the chemical point of view, calcium bentonite seems to be more stable than sodium bentonite in the presence of Swiss Reference Groundwater. Since the effect of calcium bentonite on the groundwater chemical composition will be considerably less marked than that of sodium bentonite, especially with respect to key parameters for the nuclide speciation like carbonate concentration and pH, the use of calcium bentonite instead of sodium bentonite will improve the reliability in the prediction of source terms for radionuclide transport in the geosphere. (author)

  11. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  12. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    Science.gov (United States)

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Statistical Model for Soliton Particle Interaction in Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans; Truelsen, J.

    1986-01-01

    A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....

  14. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Gesztesy, F.; Seba, P.

    1987-01-01

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  15. A comparative study of the proposed models for the components of the national health information system.

    Science.gov (United States)

    Ahmadi, Maryam; Damanabi, Shahla; Sadoughi, Farahnaz

    2014-04-01

    National Health Information System plays an important role in ensuring timely and reliable access to Health information, which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system - for better planning and management influential factors of performanceseems necessary, therefore, in this study different attitudes towards components of this system are explored comparatively. This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process and output. In this context, search for information using library resources and internet search were conducted, and data analysis was expressed using comparative tables and qualitative data. The findings showed that there are three different perspectives presenting the components of national health information system Lippeveld and Sauerborn and Bodart model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008, and Gattini's 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities and equipment. Plus, in the "process" section from three models, we pointed up the actions ensuring the quality of health information system, and in output section, except for Lippeveld Model, two other models consider information products and use and distribution of information as components of the national health information system. the results showed that all the three models have had a brief discussion about the

  16. A discrimination-association model for decomposing component processes of the implicit association test.

    Science.gov (United States)

    Stefanutti, Luca; Robusto, Egidio; Vianello, Michelangelo; Anselmi, Pasquale

    2013-06-01

    A formal model is proposed that decomposes the implicit association test (IAT) effect into three process components: stimuli discrimination, automatic association, and termination criterion. Both response accuracy and reaction time are considered. Four independent and parallel Poisson processes, one for each of the four label categories of the IAT, are assumed. The model parameters are the rate at which information accrues on the counter of each process and the amount of information that is needed before a response is given. The aim of this study is to present the model and an illustrative application in which the process components of a Coca-Pepsi IAT are decomposed.

  17. OSCAR2000 : a multi-component 3-dimensional oil spill contingency and response model

    International Nuclear Information System (INIS)

    Reed, M.; Daling, P.S.; Brakstad, O.G.; Singsaas, I.; Faksness, L.-G.; Hetland, B.; Ekrol, N.

    2000-01-01

    Researchers at SINTEF in Norway have studied the weathering of surface oil. They developed a realistic model to analyze alternative spill response strategies. The model represented the formation and composition of the water-accommodated fraction (WAF) of oil for both treated and untreated oil spills. As many as 25 components, pseudo-components, or metabolites were allowed for the specification of oil. Calculations effected using OSCAR were verified in great detail on numerous occasions. The model made it possible to determine rather realistically the dissolution, transformation, and toxicology of dispersed oil clouds, as well as evaporation, emulsification, and natural dispersion. OSCAR comprised a data-based oil weathering model, a three-dimensional oil trajectory and chemical fates model, an oil spill combat model, exposure models for birds, marine mammals, fish and ichthyoplankton. 17 refs., 1 tab., 11 figs

  18. Structural assessment of aerospace components using image processing algorithms and Finite Element models

    DEFF Research Database (Denmark)

    Stamatelos, Dimtrios; Kappatos, Vassilios

    2017-01-01

    Purpose – This paper presents the development of an advanced structural assessment approach for aerospace components (metallic and composites). This work focuses on developing an automatic image processing methodology based on Non Destructive Testing (NDT) data and numerical models, for predicting...... the residual strength of these components. Design/methodology/approach – An image processing algorithm, based on the threshold method, has been developed to process and quantify the geometric characteristics of damages. Then, a parametric Finite Element (FE) model of the damaged component is developed based...... on the inputs acquired from the image processing algorithm. The analysis of the metallic structures is employing the Extended FE Method (XFEM), while for the composite structures the Cohesive Zone Model (CZM) technique with Progressive Damage Modelling (PDM) is used. Findings – The numerical analyses...

  19. Model of the fine-grain component of martian soil based on Viking lander data

    International Nuclear Information System (INIS)

    Nussinov, M.D.; Chernyak, Y.B.; Ettinger, J.L.

    1978-01-01

    A model of the fine-grain component of the Martian soil is proposed. The model is based on well-known physical phenomena, and enables an explanation of the evolution of the gases released in the GEX (gas exchange experiments) and GCMS (gas chromatography-mass spectrometer experiments) of the Viking landers. (author)

  20. Individual differences in anxiety responses to stressful situations : A three-mode component analysis model

    NARCIS (Netherlands)

    Van Mechelen, Iven; Kiers, Henk A.L.

    1999-01-01

    The three-mode component analysis model is discussed as a tool for a contextualized study of personality. When applied to person x situation x response data, the model includes sets of latent dimensions for persons, situations, and responses as well as a so-called core array, which may be considered