Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates
2015-06-23
AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14
Kharga, D.; Inotani, D.; Hanai, R.; Ohashi, Y.
2017-06-01
We theoretically investigate the normal state properties of a Bose-Fermi mixture with a strong attractive interaction between Fermi and Bose atoms. We extend the ordinary T-matrix approximation (TMA) with respect to Bose-Fermi pairing fluctuations, to include the Hugenholtz-Pines' relation for all Bose Green's functions appearing in TMA self-energy diagrams. This extension is shown to be essentially important to correctly describe the physical properties of the Bose-Fermi mixture, especially near the Bose-Einstein condensation instability. Using this improved TMA, we clarify how the formation of composite fermions affects Bose and Fermi single-particle excitation spectra, over the entire interaction strength.
Energy Technology Data Exchange (ETDEWEB)
Illuminati, Fabrizio [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Dipartimento di Fisica, Universita di Salerno, and INFM, Unita di Salerno, I-84081 Baronissi SA (Italy); Navez, Patrick [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Institute of Materials Science, Demokritos NCSR, POB 60228, 15310 Athens (Greece); Wilkens, Martin [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany)
1999-08-14
We derive exact thermodynamic identities relating the average number of condensed atoms and the root-mean-square fluctuations determined in different statistical ensembles for the weakly interacting Bose gas confined in a box. This is achieved by introducing the concept of auxiliary partition functions for model Hamiltonians that do conserve the total number of particles. Exploiting such thermodynamic identities, we provide the first, completely analytical prediction of the microcanonical particle number fluctuations in the weakly interacting Bose gas. Such fluctuations, as a function of the volume V of the box are found to behave normally, in contrast with the anomalous scaling behaviour V{sup 4/3} of the fluctuations in the ideal Bose gas. (author). Letter-to-the-editor.
A Simple Model of Bose-Einstein Condensation of Interacting Particles
Poluektov, Yu. M.
2017-03-01
A simple model of Bose-Einstein condensation of interacting particles is proposed. It is shown that in the condensate state the dependence of thermodynamic quantities on the interaction constant does not allow an expansion in powers of the coupling constant. Therefore, it is impossible to pass to the Einstein model of condensation in an ideal Bose gas by means of a limiting passage, setting the interaction constant to zero. The account for the interaction between particles eliminates difficulties in the description of condensation available in the model of an ideal gas, which are connected with the fulfillment of thermodynamic relations and an infinite value of the particle number fluctuation in the condensate phase.
Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction
Directory of Open Access Journals (Sweden)
A.S. Peletminskii
2013-03-01
Full Text Available We study a superfluid Bose system with single-particle and pair condensates on the basis of a half-phenomenological theory of a Bose liquid not involving the weakness of interparticle interaction. The coupled equations describing the equilibrium state of such system are derived from the variational principle for entropy. These equations are analyzed at zero temperature both analytically and numerically. It is shown that the fraction of particles in the single-particle and pair condensates essentially depends on the total density of the system. At densities attainable in condensates of alkali-metal atoms, almost all particles are in the single-particle condensate. The pair condensate fraction grows with increasing total density and becomes dominant. It is shown that at density of liquid helium, the single-particle condensate fraction is less than 10% that agrees with experimental data on inelastic neutron scattering, Monte Carlo calculations and other theoretical predictions. The ground state energy, pressure, and compressibility are found for the system under consideration. The spectrum of single-particle excitations is also analyzed.
Directory of Open Access Journals (Sweden)
Kulchitsky Yuri
2016-01-01
Full Text Available The report on the recent results of soft-QCD with the ATLAS experiment at the LHC is presented. The effect of space-time geometry in the hadronization phase has been studied in the context of Bose-Einstein correlations between charged particles, for determining the size and shape of the source from which particles are emitted. Bose-Einstein correlation parameters are investigated in proton-proton collisions at 0.9 and 7 TeV, up to very high charged particle multiplicities. Measurements of the properties of charged particle production are presented from proton-proton collisions at different centre-of-mass energies in the range of 0.9 to 13 TeV and compared to various Monte Carlo event generator models. Furthermore, particle distributions sensitive to the underlying event have been measured and are compared to theoretical models. The production properties of mesons and baryons are presented and compared to predictions.
Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.
Wang, Jianhui; He, Jizhou; Ma, Yongli
2011-05-01
Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.
Lieb-Thirring Bounds for Interacting Bose Gases
DEFF Research Database (Denmark)
Lundholm, Douglas; Portmann, Fabian; Solovej, Jan Philip
2015-01-01
We study interacting Bose gases and prove lower bounds for the kinetic plus interaction energy of a many-body wave function in terms of its particle density. These general estimates are then applied to various types of interactions, including hard sphere (in 3D) and hard disk (in 2D) as well as a...
Particle number counting statistics in ideal Bose gases
National Research Council Canada - National Science Library
Christoph Weiss; Martin Wilkens
1997-01-01
We discuss the exact particle number counting statistics of degenerate ideal Bose gases in the microcanonical, canonical, and grand-canonical ensemble, respectively, for various trapping potentials...
Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles
Directory of Open Access Journals (Sweden)
Minasyan V.
2011-10-01
Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.
Thermodynamic Properties of a Trapped Interacting Bose Gas
Shi, Hualin; Zheng, Wei-Mou
1996-01-01
A Bose gas in an external potential is studied by means of the local density approximation. Analytical results are derived for the thermodynamic properties of an ideal Bose gas in a generic power-law trapping potential, and their dependence on the mutual interaction of atoms in the case of a non-ideal Bose gas.
Efimov correlations in strongly interacting Bose gases
Hofmann, Johannes; Barth, Marcus
A series of recent hallmark experiments have demonstrated that Bose gases can be created in the strongly interacting unitary limit in the non-degenerate high-temperature regime. These systems display the three-body Efimov effect, which poses a theoretical challenge to compute observables including these relevant three-body correlations. In this talk, I shall present our results for the virial coefficients, the contact parameters, and the momentum distribution of a strongly interacting three-dimensional Bose gas obtained by means of a virial expansion up to third order in the fugacity, which takes into account three-body correlations exactly. Our results characterize the non-degenerate regime of the interacting Bose gas, where the thermal wavelength is smaller than the interparticle spacing but the scattering length may be arbitrarily large. In addition, we provide a calculation of the momentum distribution at unitarity, which displays a universal high-momentum tail with a log-periodic momentum dependence - a direct signature of Efimov physics. In particular, we provide a quantitative description of the momentum distribution at high momentum as measured by the JILA group [Makotyn et al., Nat. Phys. 10, 116 (2014)]. Our results allow the spectroscopy of Efimov states at unitarity.
Bose-Einstein correlations in multiple particle production
Energy Technology Data Exchange (ETDEWEB)
Zalewski, Kacper
1999-03-01
Bose-Einstein correlations are studied in the framework of a class of independent particle production models. This generalizes the studies for a variety of models proposed previously. It is shown that the Bose-Einstein correlations lead for this class of models to Einstein's condensation at sufficiently high density. They also enhance unusual charge distributions and may explain the centauro and anticentauro events reported by cosmic ray physicists. For typical models the correlations cause a shrinking of the momentum distribution of the produced identical particles and an apparent shrinking of the production region.
Bose-Einstein correlations in multiple particle production
Zalewski, Kasper
1999-01-01
Bose-Einstein correlations are studied in the framework of a class of independent particle production models. This generalizes the studies for a variety of models proposed previously. It is shown that the Bose-Einstein correlations lead for this class of models to Einstein's condensation at sufficiently high density. They also enhance unusual charge distributions and may explain the centauro and anticentauro events reported by cosmic ray physicists. For typical models the correlations cause a shrinking of the momentum distribution of the produced identical particles and an apparent shrinking of the production region.
Condensate statistics in interacting and ideal dilute bose gases
Kocharovsky; Kocharovsky; Scully
2000-03-13
We obtain analytical formulas for the statistics, in particular, for the characteristic function and all cumulants, of the Bose-Einstein condensate in dilute weakly interacting and ideal equilibrium gases in the canonical ensemble via the particle-number-conserving operator formalism of Girardeau and Arnowitt. We prove that the ground-state occupation statistics is not Gaussian even in the thermodynamic limit. We calculate the effect of Bogoliubov coupling on suppression of ground-state occupation fluctuations and show that they are governed by a pair-correlation, squeezing mechanism.
Institute of Scientific and Technical Information of China (English)
YU; Xuecai; YE; Yutang; WU; Yunfeng; XIE; Kang; CHENG; Lin
2005-01-01
The critical temperature of Bose-Einstein condensation at minimum momentum state for weakly interacting Bose gases in a power-law potential and the deviation of the critical temperature from ideal bose gas are studied. The effect of interaction on the critical temperature is ascribed to the ratiao α/λc, where α is the scattering length for s wave and λc is de Broglie wavelength at critical temperature. As α/λc<<1/(2π)2, the interaction is negligible. The presented deviation of the critical temperature for three dimensional harmonic potential is well in agreement with recent measurement of critical temperature for 87Rb bose gas trapped in a harmonic well.
Renormalization group approach to the interacting bose fluid
Wiegel, F.W.
1978-01-01
It is pointed out that the method of functional integration provides a very convenient starting point for the renormalization group approach to the interacting Bose gas. Using such methods we show in a general and non-perturbative way that the critical exponents of the Bose gas are identical to
Particle number counting statistics in ideal Bose gases.
Weiss, C; Wilkens, M
1997-11-10
We discuss the exact particle number counting statistics of degenerate ideal Bose gases in the microcanonical, canonical, and grand-canonical ensemble, respectively, for various trapping potentials. We then invoke the Maxwell's Demon ensemble [Navez et el., Phys. Rev. Lett. (1997)] and show that for large total number of particles the root-mean-square fluctuation of the condensate occupation scales n0 / [T=Tc] r N s with scaling exponents r = 3=2, s = 1=2 for the3D harmonic oscillator trapping potential, and r = 1,s= 2=3 for the 3D box. We derive an explicit expression for r and s in terms of spatial dimension D and spectral index sigma of the single-particle energy spectrum. Our predictions also apply to systems where Bose-Einstein condensation does not occur. We point out that the condensate fluctuations in the microcanonical and canonical ensemble respect the principle of thermodynamic equivalence.
Accelerated expansion of a universe containing a self-interacting Bose-Einstein gas
Energy Technology Data Exchange (ETDEWEB)
Izquierdo, German; Besprosvany, Jaime, E-mail: german.izquierdo@gmail.co, E-mail: bespro@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion CientIfica S/N, Ciudad Universitaria, CP 04510, Mexico, Distrito Federal (Mexico)
2010-03-21
Acceleration of the universe is obtained from a model of non-relativistic particles with a short-range attractive interaction, at low enough temperature to produce a Bose-Einstein condensate. Conditions are derived for negative-pressure behavior. In particular, we show that a phantom-accelerated regime at the beginning of the universe solves the horizon problem, consistently with nucleosynthesis.
Critical properties of weakly interacting Bose gases as modified by a harmonic confinement
Reyes-Ayala, I.; Poveda-Cuevas, F. J.; Seman, J. A.; Romero-Rochín, V.
2017-07-01
The critical properties of the phase transition from a normal gas to a Bose-Einstein condensate (superfluid) of a harmonically confined Bose gas are addressed with the knowledge of an equation of state of the underlying homogeneous Bose fluid. It is shown that while the presence of the confinement trap arrests the usual divergences of the isothermal compressibility and heat capacities, the critical behavior manifests itself now in the divergence of derivatives of the mentioned susceptibilities. This result is illustrated with a mean-field like model of an equation of state for the homogeneous particle density as a function of the chemical potential and temperature of the gas. The model assumes the form of an ideal Bose gas in the normal fluid while in the superfluid state a function is proposed such that, both, asymptotically reaches the Thomas-Fermi solution of a weakly interacting Bose gas at large densities and low temperatures and, at the transition, matches the critical properties of the ideal Bose gas. With this model we obtain the global thermodynamics of the harmonically confined gas, from which we analyze its critical properties. We discuss how these properties can be experimentally tested.
Measurement of Genuine Three-Particle Bose-Einstein Correlations in Hadronic Z decay
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2002-01-01
We measure three-particle Bose-Einstein correlations in hadronic Z decay with the L3 detector at LEP. Genuine three-particle Bose-Einstein correlations are observed. By comparing two- and three-particle correlations we find that the data are consistent with fully incoherent pion production.
Interacting Bose gas confined in a Kronig-Penney potential
Rodríguez, O. A.; Solís, M. A.
We analyze the effect of the 1D periodic Kronig-Penney potential, composed of barriers of width b and separated a distance a, over an interacting Bose gas. At T = 0 , the Gross-Pitaevskii equation is solved analytically in terms of the Jacobi elliptic functions for repulsive or attractive interaction between bosons. By applying the boundary conditions for periodic solutions as well as the normalization of the wave function, we arrive to a set of nonlinear equations from which we obtain the density profile and the chemical potential of the condensate as a function of the particle momentum. The profiles for attractive and repulsive interactions are compared with that of the non-interacting case. For attractive interaction we are able to observe a pronounced spatial localization in the middle of every two barriers. We reproduce the well known results when the Kronig-Penney potential becomes a Dirac Comb. We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.
Institute of Scientific and Technical Information of China (English)
HU Guang-Xi; DAI Xian-Xi
2004-01-01
The functional integral approach (FIA) is introduced to study the transition temperature of an imperfect Bose gas in traps.An interacting model in quantum statistical mechanics is presented.With the model we study a Bose gas with attractive interaction trapped in an external potential.We obtain the result that the transition temperature of a trapped Bose gas will slightly shift upwards owing to the attractive interacting force.Successful application of the FIA to Bose systems is demonstrated.
On relativistic particle creation in Bose-Einstein condensates
Sabín, Carlos
2014-01-01
We show that particle creation of Bogoliubov modes in a Bose-Einstein condensate due to the accelerated motion of the trap is a genuinely relativistic effect. To this end we show that Bogoliubov modes can be described by a time rescaling of the Minkowski metric. A consequence of this is that Rindler transformations are perceived by the phonons as generalised Rindler transformations where the speed of light is replaced by the speed of sound, enhancing particle creation at small velocities. Since the non-relativistic limit of a Rindler transformation is just a Galilean transformation entailing no length contraction or time dilation, we show that the effect vanishes in the non-relativistic limit.
Bose-Einstein condensation in a two-component Bose gas with harmonic oscillator interaction
Abulseoud, A. A.; Abbas, A. H.; Galal, A. A.; El-Sherbini, Th M.
2016-07-01
In this article a system containing two species of identical bosons interacting via a harmonic oscillator potential is considered. It is assumed that the number of bosons of each species is the same and that bosons belonging to the same species repel each other while those belonging to different species attract. The Hamiltonian is diagonalized and the energy spectrum of the system is written down. The behaviour of the system in the thermodynamic limit is studied within the framework of the grand canonical ensemble, and thermodynamic parameters, such as the internal energy, entropy and specific heat capacity are calculated. It is shown that the system exhibits a single species Bose-Einstein condensation when the coupling strengths are equal and a dual species condensation when they are different.
A Model for Macroscopic Quantum Tunneling of Bose-Einstein Condensate with Attractive Interaction
Institute of Scientific and Technical Information of China (English)
YAN Ke-Zhu; TAN Wei-Han
2000-01-01
Based on the numerical wave function solutions of neutral atoms with attractive interaction in a harmonic trap, we propose an exactly solvable model for macroscopic quantum tunneling of a Bose condensate with attractive interaction. We calculate the rate of macroscopic quantum tunneling from a metastable condensate state to the collapse state and analyze the stability of the attractive Bose-Einstein condensation.
Fidelity of quantum state for interacting system of light field and atomic Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
Chunjia Huang; Ming Zhou; Fanzhi Kong; Jiayuan Fang; Kewei Mo
2005-01-01
@@ The evolution characteristics of quantum state fidelity in an interacting system of single-mode light field and atomic Bose-Einstein condensate have been studied and the influence of the initial light field intensity and the interaction among atoms of Bose-Einstein condensate on the quantum state fidelity respectively have been discussed.
Bose-Einstein condensation temperature of weakly interacting atoms
Yukalov, V. I.; Yukalova, E. P.
2017-07-01
The critical temperature of Bose-Einstein condensation essentially depends on internal properties of the system as well as on the geometry of a trapping potential. The peculiarities of defining the phase transition temperature of Bose-Einstein condensation for different systems are reviewed, including homogenous Bose gas, trapped Bose atoms, and bosons in optical lattices. The method of self-similar approximants, convenient for calculating critical temperature, is briefly delineated.
Final state interactions in two-particle interferometry
Anchishkin, D V; Renk, P
1998-01-01
We reconsider the influence of two-particle final state interactions (FSI) on two-particle Bose-Einstein interferometry. We concentrate in particular on the problem of particle emission at different times. Assuming chaoticity of the source, we derive a new general expression for the symmetrized two-particle cross section. We discuss the approximations needed to derive from the general result the Koonin-Pratt formula. Introducing a less stringent version of the so-called smoothness approximation we also derive a more accurate formula. It can be implemented into classical event generators and allows to calculate FSI corrected two-particle correlation functions via modified Bose-Einstein "weights".
Ying, Tao; Dalmonte, Marcello; Angelone, Adriano; Mezzacapo, Fabio; Zoller, Peter; Pupillo, Guido
2016-01-01
Quantum phases of matter are usually characterised by broken symmetries. Identifying physical mechanisms and microscopic Hamiltonians that elude this paradigm is one of the key present challenges in many-body physics. Here, we use quantum Monte-Carlo simulations to show that a Bose metal phase, breaking no symmetries, is realized in simple Hubbard models for bosonic particles on a square lattice complemented by soft-shoulder interactions. The Bose metal appears at strong coupling and is separ...
Clusters of bound particles in the derivative δ-function Bose gas
Energy Technology Data Exchange (ETDEWEB)
Basu-Mallick, B., E-mail: bireswar.basumallick@saha.ac.in [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India); Bhattacharyya, Tanaya, E-mail: tanaya.bhattacharyya@googlemail.com [Department of Physics, St. Xavier' s College, 30 Park Street, Kolkata 700 016 (India); Sen, Diptiman, E-mail: diptiman@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560 012 (India)
2013-06-11
In this paper we discuss a novel procedure for constructing clusters of bound particles in the case of a quantum integrable derivative δ-function Bose gas in one dimension. It is shown that clusters of bound particles can be constructed for this Bose gas for some special values of the coupling constant, by taking the quasi-momenta associated with the corresponding Bethe state to be equidistant points on a single circle in the complex momentum plane. We also establish a connection between these special values of the coupling constant and some fractions belonging to the Farey sequences in number theory. This connection leads to a classification of the clusters of bound particles associated with the derivative δ-function Bose gas and allows us to study various properties of these clusters like their size and their stability under the variation of the coupling constant.
Kharga, Digvijay; Inotani, Daisuke; Hanai, Ryo; Ohashi, Yoji
2017-08-01
We theoretically investigate normal-state properties of a gas mixture of single-component bosons and fermions with a hetero-nuclear Feshbach resonance. Including strong hetero-pairing fluctuations associated with the Feshbach resonance, we calculate single-particle density of states, as well as the spectral weight at various interaction strengths. For this purpose, we employ an improved T-matrix approximation (TMA), where the bare Bose Green's function in the non-selfconsistent TMA self-energy is modified so as to satisfy the Hugenholtz-Pines relation at the Bose-Einstein condensation (BEC) temperature TBEC. In the unitary regime at TBEC, we show that hetero-pairing fluctuations couple Fermi atomic excitations with Fermi molecular excitations, as well as with Bose atomic excitations. Although a similar coupling phenomenon by pairing fluctuations is known to give a pseudo-gapped density of states in the unitary regime of a two-component Fermi gas, such a dip structure is found to not appear even in the unitary limit of a Bose-Fermi mixture. It only appears in the strong-coupling regime. Instead, a spectral peak along the molecular dispersion appears in the spectral weight. We also clarify how this coupling phenomenon is seen in the Bose channel. Since a hetero-nuclear Feshbach resonance, as well as the formation of Bose-Fermi molecules, have been realized, our results would be useful for the study of strong-coupling properties of this unique quantum gas.
Conserving Gapless Mean-Field Theory for Weakly Interacting Bose Gases
Kita, Takafumi
2006-04-01
This paper presents a conserving gapless mean-field theory for weakly interacting Bose gases. We first construct a mean-field Luttinger-Ward thermodynamic functional in terms of the condensate wave function \\Psi and the Nambu Green’s function \\hat{G} for the quasiparticle field. Imposing its stationarity respect to \\Psi and \\hat{G} yields a set of equations to determine the equilibrium for general non-uniform systems. They have a plausible property of satisfying the Hugenholtz-Pines theorem to provide a gapless excitation spectrum. Also, the corresponding dynamical equations of motion obey various conservation laws. Thus, the present mean-field theory shares two important properties with the exact theory: “conserving” and “gapless.” The theory is then applied to a homogeneous weakly interacting Bose gas with s-wave scattering length a and particle mass m to clarify its basic thermodynamic properties under two complementary conditions of constant density n and constant pressure p. The superfluid transition is predicted to be first-order because of the non-analytic nature of the order-parameter expansion near Tc inherent in Bose systems, i.e., the Landau-Ginzburg expansion is not possible here. The transition temperature Tc shows quite a different interaction dependence between the n-fixed and p-fixed cases. In the former case Tc increases from the ideal gas value T0 as Tc/T0= 1+ 2.33 an1/3, whereas it decreases in the latter as Tc/T0= 1- 3.84a(m p/2π\\hbar2)1/5. Temperature dependences of basic thermodynamic quantities are clarified explicitly.
Renormalization group theory of the critical properties of the interacting bose fluid
Creswick, Richard J.; Wiegel, F.W.
1982-01-01
Starting from a functional integral representation of the partition function we apply the renormalization group to the interacting Bose fluid. A closed form for the renormalization equation is derived and the critical exponents are calculated in 4-ε dimensions.
Higher-order local and non-local correlations for 1D strongly interacting Bose gas
Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen
2016-05-01
The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb-Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb-Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the many-body physics.
Effect of interaction strength on gap solitons of Bose-Einstein condensates in optical lattices
Institute of Scientific and Technical Information of China (English)
Yang Ru-Shu; Yang Jiang-He
2008-01-01
We have developed a systematic analytical approach to the study on the dynamic properties of the linear and the nonlinear excitations for quasi-one-dimensional Bose-Einstein condensate trapped in optical lattices. A novel linear dispersion relation and an algebraic soliton solution of the condensate are derived analytically under consideration of Bose-Einstein condensate with a periodic potential. By analysing the soliton solution, we find that the interatomic interaction strength has an important effect on soliton dynamic properties of Bose-Einstein condensate.
Self-consistent Keldysh approach to quenches in the weakly interacting Bose-Hubbard model
Lo Gullo, N.; Dell'Anna, L.
2016-11-01
We present a nonequilibrium Green's-functional approach to study the dynamics following a quench in weakly interacting Bose-Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedin's equations for the interacting single-particle Green's function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Green's function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one and two dimensions. In particular, we show how our approach is able to recover the crossover from the ballistic to the diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for one- and two-dimensional BHMs, finding that, surprisingly, at high temperature a ballistic evolution is restored.
On the Bose-Einstein distribution and Bose condensation
2008-01-01
For a system of identical Bose particles sitting on integer energy levels, we give sharp estimates for the convergence of the sequence of occupation numbers to the Bose-Einstein distribution and for the Bose condensation effect.
Institute of Scientific and Technical Information of China (English)
Zhang Xiao-Fei; Zhang Pei; He Wan-Quan; Liu Xun-Xu
2011-01-01
By using a unified theory of the formation of various types of vector-solitons in two-component Bose-Einstein condensates with tunable interactions, we obtain a family of exact vector-soliton solutions for the coupled nonlinear Schr(o)dinger equations. Moreover, the Bogoliubov equation shows that there exists stable dark soliton in specific situations. Our results open up new ways in considerable experimental interest for the quantum control of multi-component Bose-Einstein condensates.
Bose-Einstein Correlations in charged current muon-neutrino interactions in NOMAD
Zei, R
2004-01-01
Bose-Einstein Correlations in one and two dimensions have been studied in charged current muon-neutrino interaction events collected with NOMAD. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov parametrizations. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal sizes is observed.
Bose condensation in (random traps
Directory of Open Access Journals (Sweden)
V.A. Zagrebnov
2009-01-01
Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.
Induced interactions in a superfluid Bose-Fermi mixture
DEFF Research Database (Denmark)
Kinnunen, Jami; Bruun, Georg
2015-01-01
-particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy...... shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi...
Quasi-classical dynamics of interacting Bose condensates
Salgueiro, A N; Sampaio, M D; De Toledo di Piza, A F R
1998-01-01
The dynamics of the composition of uniform Bose condensates involving two species capable of reciprocal interconversion is treated in terms of a collective quasi-spin model. This collective model quickly reduces to classical form towards the thermodynamic limit. Quantum solutions are easily obtained numerically short of this limit which give insight into the dynamically relevant correlation processes.
Partial coherence in the core/halo picture of Bose-Einstein n-particle correlations
Csörgö, T; Schmidt-Sørensen, J; Ster, A
1999-01-01
We study the influence of a possible coherent component in the boson source on the two-, three- and $n$-particle correlation functions in a generalized core/halo type of boson-emitting source. In particular, a simple formula is presented for the strengh of the $n$-particle correlation functions for such systems. Graph rules are obtained to evaluate the correlation functions of arbitrary high order. The importance of experimental determination of the 4-th and 5-th order Bose-Einstein correlation function is emphasized.
Measuring two-particle Bose-Einstein correlations with PHOBOS@RHIC
Energy Technology Data Exchange (ETDEWEB)
Betts, R.; Barton, D.; Carroll, A. [and others
1995-07-15
The authors present results of a simulation of the measurement of two-particle Bose-Einstein correlations in central Au-Au collisions with the PHOBOS detector at RHIC. This measurement is expected to yield information on the relevant time and distance scales in these collisions. As the space-time scale is directly connected with the equation of state governing the evolution of the particle source, this information will be essential in understanding the physics of nucleus-nucleus collisions at RHIC energies. The authors demonstrate that the PHOBOS detector has sufficient resolution and acceptance to distinguish a variety of physics scenarios.
Energy Technology Data Exchange (ETDEWEB)
Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V. E-mail: vincenzo.cavasinni@pi.infn.it; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V. [and others
2004-05-10
Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R{sub G}=1.01{+-}0.05(stat){sup +0.09}{sub -0.06}(sys) fm and for the chaoticity parameter the value {lambda}=0.40{+-}0.03(stat){sup +0.01}{sub -0.06}(sys). Using the Kopylov-Podgoretskii parametrization yields R{sub KP}=2.07{+-}0.04(stat){sup +0.01}{sub -0.14}(sys) fm and {lambda}{sub KP}=0.29{+-}0.06(stat){sup +0.01}{sub -0.04}(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found.
Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R. C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zei, R.; Zuber, K.; Zuccon, P.; NOMAD Collaboration
2004-05-01
Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region RG=1.01±0.05(stat) +0.09-0.06(sys) fm and for the chaoticity parameter the value λ=0.40±0.03(stat) +0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields RKP=2.07±0.04(stat) +0.01-0.14(sys) fm and λKP=0.29±0.06(stat) +0.01-0.04(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found.
Self-Magnetization of charged particles and Bose-Einstein Condensation
Rojas, H P; Cuesta, H M
2004-01-01
We discuss the Bose-Einstein condensation of relativistic vector charged particles in a strong external magnetic field in very dense matter, as may be paired spin-up electrons. We show that for electrons such systems may maintain self-consistently magnetic fields of order in between the interval $10^{10}-10^{13}$ Gauss. This could be the origin of large magnetic fields in some white dwarfs, but may also impose bounds due to the arising of strong anisotropy in the pressures, which may produce a transverse collapse of the star.
Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction
Chavanis, Pierre-Henri
2016-10-01
We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where asMmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to describe the late stages of the collapse dynamics. We also mention the possibility that, instead of forming a black hole
Collective modes of a strongly interacting Bose gas: Probing the Mott transition
M. Snoek
2012-01-01
We analyze the collective modes of a harmonically trapped, strongly interacting Bose gas in an optical lattice in the vicinity of the Mott-insulator transition. For that aim we employ the dynamical Gutzwiller mean-field method, by performing real-time evolution and by solving the equations in linear
Energy Technology Data Exchange (ETDEWEB)
Sakmann, Kaspar
2010-07-21
In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)
Institute of Scientific and Technical Information of China (English)
胡正峰; 杜春光; 李代军; 李师群
2002-01-01
We investigate electromagnetically induced transparency and slow group velocity of light in ultracold Bose gas with a two-photon Raman process. The properties of electromagnetically induced transparency and light speed can be changed by controlling the atomic interaction. Atomic interaction can be used as a knob to control the optical properties of atomic media. This can be realized in experiment by using the Feshbach resonance technique.
Alon, Ofir E.
2017-07-01
A mixture of two kinds of identical bosons, species 1 with N 1 bosons of mass m 1 and species 2 with N 2 bosons of mass m 2, held in a harmonic potential of frequency ω and interacting by harmonic intra-species and inter-species particle-particle interactions of strengths λ1 , λ2 , and λ12 is discussed. This is an exactly-solvable model of a generic mixture of trapped interacting bosons which allows one to investigate and determine analytically properties of interest. To start, closed form expressions for the frequencies, ground-state energy, and wave-function of the mixture are obtained and briefly analyzed as a function of the masses, numbers of particles, and strengths and signs of interactions. To prove Bose-Einstein condensation of the mixture three steps are needed. First, we integrate the all-particle density matrix, employing a four-parameter matrix-recurrence relations, down to the lowest-order intra-species and inter-species reduced density matrices of the mixture. Second, the coupled Gross-Pitaevskii (mean-field) equations of the mixture are solved analytically. Third, we analyze the mixture’s reduced density matrices in the limit of an infinite number of particles of both species 1 and 2 (when the interaction parameters, i.e. the products of the number of particles times the intra-species and inter-species interaction strengths, are held fixed) and prove that: (i) both species 1 and 2 are 100% condensed; (ii) the inter-species reduced density matrix per particle is separable and given by the product of the intra-species reduced density matrices per particle; and (iii) the mixture’s energy per particle, and reduced density matrices and densities per particle all coincide with the Gross-Pitaevskii quantities. Finally, when the infinite-particle limit is taken with respect to, say, species 1 only (with interaction parameters held fixed) we prove that: (iv) only species 1 is 100% condensed and its reduced density matrix and density per particle, as
ELEMENTARY PARTICLE INTERACTIONS
Energy Technology Data Exchange (ETDEWEB)
EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN
2013-07-30
The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NOνA”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.
Lattice-ramp-induced dynamics in an interacting Bose-Bose mixture
J. Wernsdorfer; M. Snoek; W. Hofstetter
2010-01-01
We investigate a bosonic quantum gas consisting of two interacting species in an optical lattice at zero and finite temperature. The equilibrium properties and dynamics of this system are obtained by means of the Gutzwiller mean-field method. In particular we model recent experiments where the ramp-
FK-DLR properties of a quantum multi-type Bose-gas with a repulsive interaction
Energy Technology Data Exchange (ETDEWEB)
Suhov, Y., E-mail: yms@statslab.cam.ac.uk [Statistical Laboratory, DPMMS, University of Cambridge (United Kingdom); Department of Statistics/IME, University of São Paulo (Brazil); IITP, RAS, Moscow (Russian Federation); Stuhl, I., E-mail: izabella@ime.usp.br [University of Debrecen (Hungary); IME, University of São Paulo (Brazil)
2014-08-01
The paper extends earlier results from Suhov and Kelbert [“FK-DLR states of a quantum Bose-gas with a hardcore interaction,” http://arxiv.org/abs/arXiv:1304.0782 ] and Suhov et al. [“Shift-invariance for FK-DLR states of a 2D quantum Bose-gas,” http://arxiv.org/abs/arXiv:1304.4177 ] about infinite-volume quantum bosonic states (FK-DLR states) to the case of multi-type particles with non-negative interactions. (An example is a quantum Widom–Rowlinson model.) Following the strategy from Suhov and Kelbert and Suhov et al., we establish that, for the values of fugacity zϵ(0, 1) and inverse temperature β > 0, finite-volume Gibbs states form a compact family in the thermodynamic limit. Next, in dimension two we show that any limit-point state (an FK-DLR state in the terminology adopted in Suhov and Kelbert and Suhov et al.) is translation-invariant.
Phase Diagram and Phase Separation of a Trapped Interacting Bose-Fermi Gas Mixture
Institute of Scientific and Technical Information of China (English)
MA Yong-Li
2004-01-01
@@ In six different regimes for a spatial phase diagram of a trapped interacting Bose-Fermi gas mixture at low temperatures, we present the conditions for the spatial demixing and separation of bosons and fermions. Starting from a semiclassically thermodynamic model for the local density functional of thermal bosons and fermions,the explicit analytical expressions for the fugacities of bosons and fermions are derived in different regimes by means of a first-order perturbation method in a local-density approximation. The critical values of the fermionboson interaction strength as a function of the fractional composition of fermions have a general feature: increase,extreme and decrease with increasing the fermionic composition slightly above Bose-Einstein critical temperature.
Interference of Atomic Bose-Einstein Condensate Interacting with Laser Field
Institute of Scientific and Technical Information of China (English)
YU Zhao-Xian; JIAO Zhi-Yong; SUN Jin-Zuo
2004-01-01
Interference of an atomic Bose-Einstein condensate interacting with a laser field in a double-well potential with dissipation is investigated. If properly selecting the laser field and the initial states of the atoms in the two wells,we find that the intensity exhibits revivals and collapses. The fidelity of interference is affected by the total number of atoms in the two wells and dissipation.
Creation of ^{39}K Bose-Einstein condensates with tunable interaction
DEFF Research Database (Denmark)
Winter, Nils
2013-01-01
ultracold atoms. Secondly an experimental apparatus for the creation and investigation of ultracold potassium-rubidium mixtures with tunable interactions was constructed and first 39K and 41K Bose-Einstein condensates were created. This experimental apparatus features a dual-species magneto-optical trap...... for laser cooling as well as magnetic and optical traps for evaporative cooling until quantum degeneracy is reached. The optical potential is formed by a focused laser beam and allows to trap the atoms while their scattering length is tuned by an external magnetic field. The apparatus is able create single...... Bose-Einstein condensates and thus accumulate ultracold atoms in a single quantum state enables the construction of model systems which can be precisely controlled. That allows a deeper understanding of complicated quantum systems. Ultracold atoms in optical lattices are an excellent example, since...
Parisi, L.; Giorgini, S.
2017-02-01
We present a theoretical study based upon quantum Monte Carlo methods of the Bose polaron in one-dimensional systems with contact interactions. In this instance of the problem of a single impurity immersed in a quantum bath, the medium is a Lieb-Liniger gas of bosons ranging from the weakly interacting to the Tonks-Girardeau regime, whereas the impurity is coupled to the bath via a different contact potential, producing both repulsive and attractive interactions. Both the case of a mobile impurity, having the same mass as the particles in the medium, and the case of a static impurity with infinite mass are considered. We make use of numerical techniques that allow us to calculate the ground-state energy of the impurity, its effective mass, and the contact parameter between the impurity and the bath. These quantities are investigated as a function of the strength of interactions between the impurity and the bath and within the bath. In particular, we find that the effective mass rapidly increases to very large values when the impurity gets strongly coupled to an otherwise weakly repulsive bath. This heavy impurity hardly moves within the medium, thereby realizing the "self-localization" regime of the Landau-Pekar polaron. Furthermore, we compare our results with predictions of perturbation theory valid for weak interactions and with exact solutions available when the bosons in the medium behave as impenetrable particles.
Nonlinear vortex-phonon interactions in a Bose-Einstein condensate
Mendonça, J. T.; Haas, F.; Gammal, A.
2016-07-01
We consider the nonlinear coupling between an exact vortex solution in a Bose-Einstein condensate and a spectrum of elementary excitations in the medium. These excitations, or Bogoliubov-de Gennes modes, are indeed a special kind of phonons. We treat the spectrum of elementary excitations in the medium as a gas of quantum particles, sometimes also called bogolons. An exact kinetic equation for the bogolon gas is derived, and an approximate form of this equation, valid in the quasi-classical limit, is also obtained. We study the energy transfer between the vortex and the bogolon gas, and establish conditions for vortex instability and damping.
Stability and Chaos of Two Coupled Bose-Einstein Condensates with Three-Body Interaction
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
We study the dynamics of two Bose-Einstein condensates (BECs) tunnel-coupled by a double-well potential.A real three-body interaction term is considered and a two-mode approximation is used to derive two coupled equations,which describe the relative population and relative phase. By solving the equations and analyzing the stability of the system, we find the stable stationary solutions for a constant atomic scattering length. When a periodically time-varying scattering length is applied, Melnikov analysis and numerical calculation demonstrate the existence of chaotic behavior and the dependence of chaos on the three-body interaction parameters.
Electrostatic interaction of soft particles.
Ohshima, Hiroyuki
2015-12-01
Theories of the electrostatic interaction between two soft particles (i.e., particles covered with an ion-penetrable surface layer of polyelectrolytes) in an electrolyte solution are reviewed. Interactions of soft particles after contact of their surface layers are particularly discussed. Interaction in a salt-free medium and the discrete-charge effect are also treated.
Tunneling dynamics of Bose-Einstein condensates with higher-order interactions in optical lattice
Institute of Scientific and Technical Information of China (English)
Tie Lu; Xue Ju-Kui
2011-01-01
The nonlinear Landau-Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed.Within the two-level model,the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained.We finds that the tunneling rate is closely related to the higher-order atomic interaction.Furthermore,the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias.Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained.It is shown that the critical value strongly depends on the modulation parameters (i.e.,the modulation amplitude and frequency) and the strength of periodic potential.
DEFF Research Database (Denmark)
Valiente, Manuel
2012-01-01
We prove the equivalence between the hard-sphere Bose gas and a system with momentum-dependent zero-range interactions in one spatial dimension, which we call extended hard-sphere Bose gas. The two-body interaction in the latter model has the advantage of being a regular pseudopotential. The most......, identified with the hard-sphere diameter only when it is positive. We are then able to obtain, directly in the thermodynamic limit, the ground-state energy of the strongly repulsive Lieb-Liniger gas and, more importantly, the energy of the lowest-lying super Tonks-Girardeau gas state with finite, strongly...... attractive interactions, in perturbation theory from the novel extended hard-sphere Bose gas....
Bose-Einstein condensation with a finite number of particles in a power-law trap
Jaouadi, A.; Telmini, M.; Charron, E.
2011-02-01
Bose-Einstein condensation (BEC) of an ideal gas is investigated, beyond the thermodynamic limit, for a finite number N of particles trapped in a generic three-dimensional power-law potential. We derive an analytical expression for the condensation temperature Tc in terms of a power series in x0=ɛ0/kBTc, where ɛ0 denotes the zero-point energy of the trapping potential. This expression, which applies in Cartesian, cylindrical, and spherical power-law traps, is given analytically at infinite order. It is also given numerically for specific potential shapes as an expansion in powers of x0 up to the second order. We show that, for a harmonic trap, the well-known first-order shift of the critical temperature ΔTc/Tc∝N-1/3 is inaccurate when N⩽105, the next order (proportional to N-1/2) being significant. We also show that finite-size effects on the condensation temperature cancel out in a cubic trapping potential, e.g., V(r)∝r3. Finally, we show that in a generic power-law potential of higher order, e.g., V(r)∝rα with α>3, the shift of the critical temperature becomes positive. This effect provides a large increase of Tc for relatively small atom numbers. For instance, an increase of about +40% is expected with 104 atoms in a V(r)∝r12 trapping potential.
Bose-Einstein Condensates in Optical Lattices with Higher-Order Interactions
Institute of Scientific and Technical Information of China (English)
张爱霞; 薛具奎
2012-01-01
The higher-order interactions of Bose-Einstein condensate in multi-dimensional optical lattices are discussed both analytically and numerically.It is demonstrated that the effects of the higher-order atomic interactions on the sound speed and the stabilities of Bloch waves strongly depend on the lattice strength.In the presence of higher-order effects,tighter and high-dimensional lattices are confirmed to be two positive factors for maintaining the system＇s energetic stability,and the dynamical instability of Bloch waves can take place simultaneously with the energetic instability.In addition,we find that the higher-order interactions exhibit a long-range behavior and the long-lived coherent Bloch oscillations in a tilted optical lattice exist.Our results provide an effective way to probe the higher-order interactions in optical lattices.
Effects of three-body interaction on collective excitation and stability of Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
Peng Ping; Li Guan-Qiang
2009-01-01
This paper investigates the collective excitation and stability of low-dimensional Bose-Einstein condensates with two-and three-body interactions by the variational analysis of the time-dependent Gross-Pitaevskii-Ginzburg equation.The spectrum of the low-energy excitation and the effective potential for the width of the condensate are obtained.The results show that:(i) the repulsive two-body interaction among atoms makes the frequency red-shifted for the internal excitation and the repulsive or attractive three-body interaction always makes it blue-shifted; (ii) the region for the existence of the stable bound states is obtained by identifying the critical value of the two-and three-body interactions.
Cheng, Szu-Cheng; Jheng, Shih-Da
2016-08-01
This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.
Multimode Kapitza-Dirac interferometer on Bose-Einstein condensates with atomic interactions
He, Tianchen; Niu, Pengbin
2017-03-01
The dynamics of multimode interferometers for Bose Einstein condensation (BEC) with atomic interactions confined to a harmonic trap is investigated. At the initial time t = 0, several spatially addressable wave packets (modes) with different momenta are created by the first Kapitza-Dirac pulse. These modes are coherently recombined by the harmonic potential with atomic interactions. The second Kapitza-Dirac pulse splits the evolved modes a second time and separates them along different paths for a second time. The signal to noise ratio is numerically calculated by the Fisher information and the Cramér-Rao lower bound. We find that the small atomic interactions decrease the measurement accuracy for current atom interferometers when measuring the gravitational acceleration. Its impact on measurement precision can be reduced by improving the Kapitza-Dirac strength.
Strongly correlated Bose gases
Chevy, F.; Salomon, C.
2016-10-01
The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.
Massless interacting particles
Energy Technology Data Exchange (ETDEWEB)
Kosyakov, B P [Russian Federal Nuclear Center, Sarov, 607190 Nizhnii Novgorod Region (Russian Federation)], E-mail: kosyakov@vniief.ru
2008-11-21
We show that classical electrodynamics of massless charged particles and the Yang-Mills theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We propose a conformally invariant version of the direct interparticle action theory for these systems.
Bose-Operator Expansions of Tensor Operators in the Theory of Magnetism
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Danielsen, O.
1974-01-01
Using a method of matching corresponding matrix elements, a hermitian Bose-operator expansion of tensor operators of arbitrary rank which transforms all kinematic effects into dynamical interactions between Bose particles is derived. It is shown that the method is a generalization of the Holstein...
Jiang, Shao-Jian; Zhou, Fei
2015-07-01
The stability of Bose gases near resonance has been a puzzling problem in recent years. In this article, we demonstrate that in addition to generating thermal pressure, thermal atoms enhance the repulsiveness of the scale-dependent interactions between condensed atoms due to a renormalization effect and further stabilize the Bose gases. Consequently, we find that, as a precursor of instability, the compressibility develops an anomalous structure as a function of scattering length and is drastically reduced compared with the mean-field value. Furthermore, the density profile of a Bose gas in a harmonic trap is found to develop a flat top near the center. This is due to the anomalous behavior of compressibility and can be a potential smoking gun for probing such an effect.
Chaotic behavior of three interacting vortices in a confined Bose-Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Kyriakopoulos, Nikos [SUPA, Department of Physics and Institute for Complex Systems and Mathematical Biology, King' s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Koukouloyannis, Vassilis [Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Skokos, Charalampos [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Kevrekidis, Panayotis G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-9305 (United States)
2014-06-01
Motivated by recent experimental works, we investigate a system of vortex dynamics in an atomic Bose-Einstein condensate (BEC), consisting of three vortices, two of which have the same charge. These vortices are modeled as a system of point particles which possesses a Hamiltonian structure. This tripole system constitutes a prototypical model of vortices in BECs exhibiting chaos. By using the angular momentum integral of motion, we reduce the study of the system to the investigation of a two degree of freedom Hamiltonian model and acquire quantitative results about its chaotic behavior. Our investigation tool is the construction of scan maps by using the Smaller ALignment Index as a chaos indicator. Applying this approach to a large number of initial conditions, we manage to accurately and efficiently measure the extent of chaos in the model and its dependence on physically important parameters like the energy and the angular momentum of the system.
Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging
Szigeti, Stuart S; Carvalho, Andre R R; Hope, Joseph J
2010-01-01
The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented in \\cite{Szigeti:2009}. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilising a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.
Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging
Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.; Hope, J. J.
2010-10-01
The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.
Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Boev, M. V.; Kovalev, V. M., E-mail: vadimkovalev@isp.nsc.ru [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2015-06-15
We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the critical temperature.
Institute of Scientific and Technical Information of China (English)
WU Lei; ZHANG Jie-Fang
2007-01-01
The modulational instability of Bose-Einstein condensate with three-body interatomic interaction and external harmonic trapping potential is investigated. Both of our analytical and numerical results show that the external potential will either cause the excitation of modulationally unstable modes or restrain the modulationally unstable modes from growing.
Institute of Scientific and Technical Information of China (English)
YU Zhao-Xian; JIAO Zhi-Yong; JIN Shuo; WANG Ji-Suo
2007-01-01
By using of the invariant theory, we study a two energy-level Bose-Einstein condensate interacting with a timedependent laser field, the dynamical and geometric phases are given respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.
Massless interacting particles
Kosyakov, B P
2007-01-01
We show that classical electrodynamics of massless charged particles and the Yang--Mills--Wong theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We propose a version of the direct interparticle action theory for such systems, which offers promise as a useful tool in studying the physics of quark-gluon plasma.
Problem of interactions: electromagnetic particles interaction
Sannikov-Proskuryakov, S S
2001-01-01
The electromagnetic interactions between charged particles are derived on the basis of the particles dynamic theory, proposed in the work of Sannikov. The electromagnetic interactions exist only in the relativistic model of the bihamiltonian system, based on the Heisenberg algebra. Existence of this type of interactions is connected with the U sub e (1)-degeneration of the basic state of the relativistic bihamiltonian system, lying in the basis of the given theory
Quantum Impurity in a One-dimensional Trapped Bose Gas
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.
2015-01-01
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate...... the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases....
Quantum Statistical Behaviors of Interaction of an Atomic Bose-Einstein Condensate with Laser
Institute of Scientific and Technical Information of China (English)
YU Zhao-Xian; JIAO Zhi-Yong
2001-01-01
We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.``
Dynamics and Interaction of Vortex Lines in an Elongated Bose-Einstein Condensate
Serafini, S.; Barbiero, M.; Debortoli, M.; Donadello, S.; Larcher, F.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.
2015-10-01
We study the real-time dynamics of vortices in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are produced via the Kibble-Zurek mechanism in a quench across the BEC transition and they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortices, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.
Interaction of F =2 Spinor Bose Condensate with Driven External Magnetic Fields
Institute of Scientific and Technical Information of China (English)
JIAO Zhi-Yong; TANG Lian; YU Zhao-Xian
2004-01-01
In this letter, we have studied the interaction of F=2 spinor Bose condensate with a combination of staticand sinusoidal magnetic field bl(t) = b0 + bcos(ωt). We find that the tunneling current among spin 0 and spin ±l,spin 0 and spin ±2, spin ±1 and spin ±2 may exhibit the incremental oscillation behavior, which depends on the fieldparameters of the reduced amplitudes of the transverse and the longitudinal magnetic fields respectively. This meansthat the dynamics spin localization can be adjusted experimentally by selecting the less values of the reduced amplitudesof the transverse magnetic field bx/ω and those of the longitudinal magnetic field b/ω.
Interaction of F = 2 Spinor Bose Condensate with Driven External Magnetic Fields
Institute of Scientific and Technical Information of China (English)
JIAOZhi-Yong; TANGLian; YUZhao-Xian
2004-01-01
In this letter, we have studied the interaction of F=2 spinor Bose condensate with a combination of static and sinusoidal magnetic field bt(t) = b0 + bcos(ωt). We find that the tunneling current among spin 0 and spin ±1, spin 0 and spin ±2, spin ±1 and spin ±2 may exhibit the incremental oscillation behavior, which depends on the field parameters of the reduced amplitudes of the transverse and the longitudinal magnetic fields respectively. This means that the dynamics spin localization can be adjusted experimentally by selecting the less values of the reduced amplitudes of the transverse magnetic field bx/ω and those of the longitudinal magnetic field b/ω.
Basic Mean-Field Theory for Bose-Einstein Condensates
Kevrekidis, P. G.; Frantzeskakis, D. J.; Carretero-González, R.
The phenomenon of Bose-Einstein condensation, initially predicted by Bose [1] and Einstein [2, 3] in 1924, refers to systems of particles obeying the Bose statistics. In particular, when a gas of bosonic particles is cooled below a critical transition temperature T c , the particles merge into the Bose-Einstein condensate (BEC), in which a macroscopic number of particles (typically 103 to 106) share the same quantum state. Bose-Einstein condensation is in fact a quantum phase transition, which is connected to the manifestation of fundamental physical phenomena, such as superfluidity in liquid helium and superconductivity in metals (see, e.g., [4] for a relevant discussion and references). Dilute weakly-interacting BECs were first realized experimentally in 1995 in atomic gases, and specifically in vapors of rubidium [5] and sodium [6]. In the same year, first signatures of Bose-Einstein condensation in vapors of lithium were also reported [7] and were later more systematically confirmed [8]. The significance and importance of the emergence of BECs has been recognized through the 2001 Nobel prize in Physics [9, 10]. During the last years there has been an explosion of interest in the physics of BECs. Today, over fifty experimental groups around the world can routinely produce BECs, while an enormous amount of theoretical work has ensued.
Guo, Jin-Li
2015-01-01
The paper proposes a Bose-Einstein hypernetwork model, and studies evolving mechanisms and topological properties of hyperedge hyperdegrees of the hypernetwork. We analyze the model by using a Poisson process theory and a continuous technique, and give a characteristic equation of hyperedge hyperdegrees of the Bose-Einstein hypernetwork. We obtain the stationary average hyperedge hyperdegree distribution of the hypernetwork by the characteristic equation. The paper first studies topological properties of hyperedge hyperdegrees. Bose-Einstein condensation model can be seen as a special case of this kind of hypernetworks. Condensation degree is proposed, in particular, the condensation of particles can be classified according to the condensation degree.
Brownian motion of interacting particles
Energy Technology Data Exchange (ETDEWEB)
Ackerson, B.J.
1976-01-01
Guided by the descriptions which are used to describe noninteracting particles, it is argued that the generalized Smoluchowski equation, including the hydrodynamic interaction and corrections for ion cloud effects may be used to describe interacting particles for the temporal and spatial regimes probed by light beating spectroscopy. This equation is then used to find cumulants of decay of the intermediate scattering function. The generalized Smoluchowski equation is reduced to a simple diffusion equation. The resulting diffusion constant depends upon the interparticle forces and is reminiscent of some early descriptions for interacting systems. The generalized Smoluchowski equation is solved for the model system of a linear chain of colloidal particles interacting via nearest neighbor harmonic couplings. The results for the intermediate scattering function and the static structure factor are very reminiscent of corresponding measurements made for interacting colloidal systems. (GHT)
New particles and interactions
Energy Technology Data Exchange (ETDEWEB)
Ellis, J.
1983-07-01
It is intended to indicate how multiparticle dynamics might serve as a valuable means of advancing our knowledge down the more fundamental line of elementary particle physics. The point of view is taken that the Standard SU(3) x SU(2) x U(1) Model is well established, and is now ripe to be used as a tool for analyzing physics beyond the Standard Model. The tool kit should include reliable and efficient ways of distinguishing gluon jets from quark jets, and of discriminating between t,b,c and light quark jets. What the author considers to be the most topical physics issues arising from the recent confirmation of the Standard Model are reviewed. These include the need for dynamical principles which go beyond the gauge princple, and in particular a satisfactory mechanism for gauge symmetry breaking. Some of the ideas proposed for solving these problems, such as technicolor and supersymmetry (SUSY), are reviewed, together with some of the experimental tests that can be performed. SUSY is examined in detail, and some ways of looking for sparticles in e/sup +/e/sup -/ and anti pp collisions are discussed. The author tries to emphasize the crucial role to be played by the multiparticle jet tools in resolving some hot physics issues. It is seen in particular that the ability to discriminate heavy quark jets with high efficiency will be important, as will be good calorimetry and the ability to select (veto) events with (out) leptons. 57 references. (WHK)
Long-range coherence of interacting Bose gas of dipolar excitons
Energy Technology Data Exchange (ETDEWEB)
Timofeev, V B; Gorbunov, A V; Larionov, A V [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)
2007-07-25
Experiments connected with dipolar exciton Bose condensation in lateral traps are reviewed. Observations of long-range coherence of condensate in ring electrostatic traps in Schottky-diode heterostructures with double and single quantum wells are presented and discussed.
Quantum Dew Formation of quantum liquid in a nonequilibrium Bose gas
Khlebnikov, S Yu
2000-01-01
We consider phase separation in nonequilibrium Bose gas with an attractive interaction between the particles. Using numerical integrations on a lattice, we show that the system evolves into a state that contains drops of Bose-Einstein condensate suspended in uncondensed gas. When the initial gas is sufficiently rarefied, the rate of formation of this quantum dew scales with the initial density as expected for a process governed by two-particle collisions.
Buchman, Omri; Baer, Roi
2017-09-01
The one-body density matrix (OBDM) is a fundamental contraction of the Bose-Einstein condensate wave function, encapsulating its one-body properties. It serves as a major analysis tool with which the condensed component of the density can be identified. Despite its cardinal importance, calculating the ground-state OBDM of trapped interacting bosons is a challenge and to date OBDM calculations have been published only for homogeneous systems or for trapped weakly interacting bosons. In this paper we discuss an approach for computing the OBDM based on a double-walker diffusion Monte Carlo random walk coupled with a stochastic permanent calculation. We here describe the method and study some of its statistical convergence and properties applying it to some model systems.
Institute of Scientific and Technical Information of China (English)
宣恒农; 左苗
2011-01-01
We present three families of exact matter-wave soliton solutions for an effective one-dimension two- component Bose-Einstein condensates （BECs） with tunable interactions, harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons, bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential, periodically modulated harmonic trap potential, and kinklike modulated harmonic trap potential. Through the Feshbach resonance, these dynamics can be realized in experiments by suitable control of time-dependent trap parameters, atomic interactions, and interaction with thermal cloud.
Two particles Bose-Einstein Correlations at 0.9 and 7 TeV with the ATLAS detector
Kulchitsky, Yuri; The ATLAS collaboration
2016-01-01
The report presents studies of Bose--Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\\rm T}$>100 MeV and $|\\eta|$<2.5 in proton-proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the LHC. The integrated luminosities are approximately 7 $\\mu$b$^{-1}$, 190 $\\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Crosta, M.
2012-04-10
We show that the perturbative nonlinearity associated with three-atom interactions, competing with standard two-body repulsive interactions, can change dramatically the evolution of one-dimensional (1D) dispersive shock waves in a Bose-Einstein condensate. In particular, we prove the existence of a rich crossover dynamics, ranging from the formation of multiple shocks regularized by nonlinear oscillations culminating in coexisting dark and antidark matter waves to 1D-soliton collapse. For a given scattering length, all these different regimes can be accessed by varying the density of atoms in the condensate.
Dynamics and Matter-Wave Solitons in Bose-Einstein Condensates with Two- and Three-Body Interactions
Directory of Open Access Journals (Sweden)
Jing Chen
2014-01-01
Full Text Available By means of similarity transformation, this paper proposes the matter-wave soliton solutions and dynamics of the variable coefficient cubic-quintic nonlinear Schrödinger equation arising from Bose-Einstein condensates with time-dependent two- and three-body interactions. It is found that, under the effect of time-dependent two- and three-body interaction and harmonic potential with time-dependent frequency, the density of atom condensates will gradually diminish and finally collapse.
Analogue Cosmological Particle Creation: Quantum Correlations in Expanding Bose Einstein Condensates
Prain, Angus; Liberati, Stefano
2010-01-01
We investigate the structure of quantum correlations in an expanding Bose Einstein Condensate (BEC) through the analogue gravity framework. We consider both a 3+1 isotropically expanding BEC as well as the experimentally relevant case of an elongated, effectively 1+1 dimensional, expanding condensate. In this case we include the effects of inhomogeneities in the condensate, a feature rarely included in the analogue gravity literature. In both cases we link the BEC expansion to a simple model for an expanding spacetime and then study the correlation structure numerically and analytically (in suitable approximations). We also discuss the expected strength of such correlation patterns and experimentally feasible BEC systems in which these effects might be detected in the near future.
Matter and Interactions: A Particle Physics Perspective
Organtini, Giovanni
2011-01-01
In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.
2015-01-01
Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....... to execute a pattern of motion, irrespective of whether the particles are fermions or bosons. A present frontier in both theory and experiment are mixed systems of different species and/or particles with multiple internal degrees of freedom. Here we consider trapped two-component bosons with short...
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems.
Dehkharghani, Amin; Volosniev, Artem; Lindgren, Jonathan; Rotureau, Jimmy; Forssén, Christian; Fedorov, Dmitri; Jensen, Aksel; Zinner, Nikolaj
2015-06-15
Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order to execute a pattern of motion, irrespective of whether the particles are fermions or bosons. A present frontier in both theory and experiment are mixed systems of different species and/or particles with multiple internal degrees of freedom. Here we consider trapped two-component bosons with short-range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems.
Comparison between microscopic methods for finite-temperature Bose gases
DEFF Research Database (Denmark)
Cockburn, S.P.; Negretti, Antonio; Proukakis, N.P.;
2011-01-01
We analyze the equilibrium properties of a weakly interacting, trapped quasi-one-dimensional Bose gas at finite temperatures and compare different theoretical approaches. We focus in particular on two stochastic theories: a number-conserving Bogoliubov (NCB) approach and a stochastic Gross...... on different thermodynamic ensembles (NCB, canonical; SGPE, grand-canonical), they yield the correct condensate statistics in a large Bose-Einstein condensate (BEC) (strong enough particle interactions). For smaller systems, the SGPE results are prone to anomalously large number fluctuations, well known...
Directional depletion interactions in shaped particles
National Research Council Canada - National Science Library
A. Scala; P.G. De Sanctis Lucentini
2014-01-01
... that such particles can be utilized as "artificial atoms" to build new materials. To elucidate the effects of the shape of particles upon the magnitude of entropic interaction, we analyse the entropic interactions of two cut-spheres...
Campbell, Russell; Oppo, Gian-Luca; Borkowski, Mateusz
2015-01-01
The dynamics of static and traveling breathers in two-species Bose-Einstein condensates in a one-dimensional optical lattice is modelled within the tight-binding approximation. Two coupled discrete nonlinear Schrödinger equations describe the interaction of the condensates in two cases of relevance: a mixture of two ytterbium isotopes and a mixture of 87Rb and 41K. Depending on their initial separation, interaction between static breathers of different species can lead to the formation of symbiotic structures and transform one of the breathers from a static into a traveling one. Collisions between traveling and static discrete breathers composed of different species are separated into four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is sufficiently large and repulsive. We provide an explanation of the collision features in terms of the interspecies coupling and the negative effective mass of the discrete breathers.
Bose enhancement and the ridge
Energy Technology Data Exchange (ETDEWEB)
Altinoluk, Tolga [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Armesto, Néstor, E-mail: nestor.armesto@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Beuf, Guillaume [Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel); Kovner, Alex [Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269-3046 (United States); Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel)
2015-12-17
We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.
Bose enhancement and the ridge
Altinoluk, Tolga; Beuf, Guillaume; Kovner, Alex; Lublinsky, Michael
2015-01-01
We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.
Bose enhancement and the ridge
Directory of Open Access Journals (Sweden)
Tolga Altinoluk
2015-12-01
Full Text Available We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
Energy Technology Data Exchange (ETDEWEB)
Albus, A P [Institut fuer Physik, Universitaet Potsdam, D-14469 Potsdam (Germany); Giorgini, S [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy); Illuminati, F [Dipartimento di Fisica, Universita di Salerno, and Istituto Nazionale per la Fisica della Materia, I-84081 Baronissi (Italy); Viverit, L [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy)
2002-12-14
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Superparamagnetic relaxation of weakly interacting particles
DEFF Research Database (Denmark)
Mørup, Steen; Tronc, Elisabeth
1994-01-01
The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...
Mixed-dimensional Bose polaron
Loft, Niels Jakob Søe; Wu, Zhigang; Bruun, G. M.
2017-09-01
A new generation of cold atom experiments trapping atomic mixtures in species-selective optical potentials opens up the intriguing possibility to create systems in which different atoms live in different spatial dimensions. Inspired by this, we investigate a mixed-dimensional Bose polaron consisting of an impurity particle moving in a two-dimensional (2D) layer immersed in a 3D Bose-Einstein condensate (BEC), using a theory that includes the mixed-dimensional vacuum scattering between the impurity and the bosons exactly. We show that similarly to the pure 3D case, this system exhibits a well-defined polaron state for attractive boson-impurity interaction that evolves smoothly into a mixed-dimensional dimer for strong attraction, as well as a well-defined polaron state for weak repulsive interaction, which becomes overdamped for strong interaction. We furthermore find that the properties of the polaron depend only weakly on the gas parameter of the BEC as long as the Bogoliubov theory remains a valid description for the BEC. This indicates that higher-order correlations between the impurity and the bosons are suppressed by the mixed-dimensional geometry in comparison to a pure 3D system, which led us to speculate that the mixed-dimensional polaron has universal properties in the unitarity limit of the impurity-boson interaction.
Infrared Behavior of Dipolar Bose Systems at Low Temperatures
Pastukhov, Volodymyr
2017-01-01
We rigorously discuss the infrared behavior of the uniform three-dimensional dipolar Bose systems. In particular, it is shown that low-temperature physics of the system is controlled by two parameters, namely isothermal compressibility and intensity of the dipole-dipole interaction. By using a hydrodynamic approach, we calculate the spectrum and damping of low-lying excitations and analyze the infrared behavior of the one-particle Green's function. The low-temperature corrections to the anisotropic superfluid density as well as condensate depletion are found. Additionally, we derive equations of the two-fluid hydrodynamics for dipolar Bose systems and calculate velocities of first and second sound.
Bose Einstein condensation of the classical axion field in cosmology?
Davidson, Sacha
2013-01-01
The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a bose einstein condensate. Using classical equations of motion during linear structure formation, we explore whether "gravitational thermalisation" can drive axions to a bose einstein condensate. At linear order in G_N, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. From the anisotropic stress, we estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.
Astier, P.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, Barry J.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, Malcolm; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.J.; Gosset, J.; Gossling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.P.; Meyer, J.P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.M.; Tovey, S.N.; Tran, M.T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Yabsley, Bruce D.; Zaccone, H.; Zei, R.; Zuber, K.; Zuccon, P.
2004-01-01
Bose-Einstein Correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R_G = 1.01+/-0.05(stat)+0.09-0.06(sys) fm and for the chaoticity parameter the value lambda = 0.40+/-0.03(stat)+0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields R_KP = 2.07+/-0.04(stat)+0.01-0.14(sys) fm and lambda_KP = 0.29+/-0.06(stat)+0.01-0.04(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the...
Energy Technology Data Exchange (ETDEWEB)
Li Biao; Li Yuqi [Nonlinear Science Center, Ningbo University, Ningbo 315211 (China); Zhang Xiaofei; Liu, W M, E-mail: biaolee2000@yahoo.com.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2011-09-14
We present two families of one-soliton solutions and three families of two-soliton solutions for a generalized nonlinear Schroedinger equation, which is characterized by the time-dependent scattering length and varying potentials. Then, we investigate the propagation of one-soliton and interactions of two-soliton by some selected control functions. The results show that the intensities of one- and two-soliton first increase rapidly to a peak value, and then decay very slowly to the background value; thus, the lifetimes of both one-soliton and two-soliton in Bose-Einstein condensates can be extended largely at least to the order of the lifetime of a Bose-Einstein condensate in real experiments. Our results open up new ways of considerable experimental interest for the management of matter-wave solitons in Bose-Einstein condensates.
Interacting Bose and Fermi Gases in Low Dimensions and the Riemann Hypothesis
Leclair, André
We apply the S-matrix based finite temperature formalism to nonrelativistic Bose and Fermi gases in 1+1 and 2+1 dimensions. For the (2+1)-dimensional case in the constant scattering length approximation, the free energy is given in terms of Roger's dilogarithm in a way analagous to the thermodynamic Bethe ansatz for the relativistic (1+1)-dimensional case. The 1d fermionic case with a quasiperiodic two-body potential is closely connected with the Riemann hypothesis.
Chavanis, Pierre-Henri
2016-01-01
We develop a hydrodynamic representation of the Klein-Gordon-Maxwell-Einstein equations. These equations combine quantum mechanics, electromagnetism, and general relativity. We consider the case of an arbitrary curved spacetime, the case of weak gravitational fields in a static or expanding background, and the nonrelativistic (Newtonian) limit. The Klein-Gordon-Maxwell-Einstein equations govern the evolution of a complex scalar field, possibly describing self-gravitating Bose-Einstein condensates, coupled to an electromagnetic field. They may find applications in the context of dark matter, boson stars, and neutron stars with a superfluid core.
Analytical method for yrast line states in the interacting two-component Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
解炳昊; 景辉
2002-01-01
The yrast spectrum for the harmonically trapped two-component Bose-Einstein condensate (BEC), omitting thedifference between the two components, has been studied using an analytical method. The energy eigenstates andeigenvalues for L＝0,1,2,3 are given. We illustrate that there are different eigenstate behaviours between the even Land odd L cases for the two-component BEC in two dimensions. Except for symmetric states, there are antisymmetricstates for the permutation of the two components, which cannot reduce to those in a single condensate case when thevalue of L is odd.
Effect of Inter-particle Interactions on Pair Correlations of One-Dimensional Anyon Gases
Li, Yan; He, Zhi
2015-10-01
The pair correlation function of the one-dimensional interacting anyonic system in its ground state is investigated based on the exact Bethe ansatz solution for arbitrary coupling constant () and statistics parameter (). We discuss the effects of the inter-particle interactions and the fractional statistics on the pair correlations in both position and momentum spaces. The pair correlations of anyons with coupling constant c and statistical parameter in position space are identical to that of the Lieb-Liniger Bose model with effective coupling constant . Besides the effect of renormalized coupling, the correlations in momentum space reveal more effects induced by the statistics parameter. The anyonic statistics results in the nonsymmetric correlation when the statistics parameter deviates from 0 (Bose statistics) and (Fermi statistics) for any coupling constant c. The correlations display peaks and dips, representing the bunching and antibunching of atoms, respectively. The correlations show crossover from bunching behavior of bosons to antibunching behavior of fermions as varies from 0 to for arbitrary coupling constant. Besides the fractional effect, we also observe the effects induced by the inter-particle interactions in the momentum correlations. With the increase of the coupling constant, the bunching effect between particles weakens and the antibunching points in the correlations shift.
Matter and Interactions: a particle physics perspective
Organtini, Giovanni
2011-01-01
In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics of elementary particles comprehensible even to high school students, the only prerequisite being the knowledge of the conservation of mechanical energy.
Influence of the Heisenberg Principle on the Ideal Bose Gas
Zheng, Hua; Bonasera, Aldo
2013-01-01
The ideal Bose gas has two major shortcomings: at zero temperature, all the particles 'condense' at zero energy or momentum, thus violating the Heisenberg principle; the second is that the pressure below the critical point is independent of density resulting in zero incompressibility (or infinite isothermal compressibility) which is unphysical. We propose a modification of the ideal Bose gas to take into account the Heisenberg principle. This modification results in a finite (in)compressibility at all temperatures and densities. The main properties of the ideal Bose gas are preserved, i.e. the relation between the critical temperature and density, but the specific heat has a maximum at the critical temperature instead of a discontinuity. Of course interactions are crucial for both cases in order to describe actual physical systems.
Interaction-Assisted Quantum Tunneling of a Bose-Einstein Condensate Out of a Single Trapping Well
Potnis, Shreyas; Ramos, Ramon; Maeda, Kenji; Carr, Lincoln D.; Steinberg, Aephraim M.
2017-02-01
We experimentally study tunneling of Bose-condensed Rb 87 atoms prepared in a quasibound state and observe a nonexponential decay caused by interatomic interactions. A combination of a magnetic quadrupole trap and a thin 1.3 μ m barrier created using a blue-detuned sheet of light is used to tailor traps with controllable depth and tunneling rate. The escape dynamics strongly depend on the mean-field energy, which gives rise to three distinct regimes—classical spilling over the barrier, quantum tunneling, and decay dominated by background losses. We show that the tunneling rate depends exponentially on the chemical potential. Our results show good agreement with numerical solutions of the 3D Gross-Pitaevskii equation.
Kulchitsky, Yuri; The ATLAS collaboration
2017-01-01
The paper presents studies of Bose--Einstein Correlations for pairs of like-sign charged particles measured in the kinematic range $p_T >$ 100 MeV and $|\\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The multiplicity dependence of the Bose--Einstein Correlations parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. The dependence of the Bose--Einstein Correlations parameters on the average transverse momentum of the particle pair is also investigated.
Number-conserving master equation theory for a dilute Bose-Einstein condensate
Schelle, Alexej; Delande, Dominique; Buchleitner, Andreas
2010-01-01
We describe the transition of $N$ weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and non-condensate thermalization, we derive a master equation for the condensate subsystem in the presence of the non-condensate environment under the inclusion of all two body interaction processes. We numerically monitor the condensate particle number distribution during condensate formation, and derive a condition under which the unique equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate is given by a Gibbs-Boltzmann thermal state of $N$ non-interacting atoms.
Chavanis, P H
2011-01-01
We develop the suggestion that dark matter could be a Bose-Einstein condensate. We determine the mass-radius relation of a Newtonian self-gravitating Bose-Einstein condensate with short-range interactions described by the Gross-Pitaevskii-Poisson system. We numerically solve the equation of hydrostatic equilibrium describing the balance between the gravitational attraction and the pressure due to quantum effects (Heisenberg's uncertainty principle) and short-range interactions (scattering). We connect the non-interacting limit to the Thomas-Fermi limit. We also consider the case of attractive self-interaction. We compare the exact mass-radius relation obtained numerically with the approximate analytical relation obtained with a Gaussian ansatz. An overall good agreement is found.
Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach
Directory of Open Access Journals (Sweden)
I.V. Stasyuk
2015-12-01
Full Text Available Phase transitions are investigated in the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations for the case of infinitely small fermion transfer and repulsive on-site boson-fermion interaction. The behavior of the Bose-Einstein condensate order parameter and grand canonical potential is analyzed as functions of the chemical potential of bosons at zero temperature. The possibility of change of order of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams are built.
Boundary-Dependent Chaotic Regions for a Bose-Einstein Condensate Interacting with Laser Field
Institute of Scientific and Technical Information of China (English)
ZHU Qian-Quan; HAI Wen-Hua; DENG Hai-Ming
2007-01-01
Spatial chaos of a Bose-Einstein condensate perturbed by a weak laser standing wave and a weak laser S pulse is studied. By using the perturbed chaotic solution we investigate the new type of Melnikov chaotic regions, which depend on an integration constant CQ determined by the boundary conditions. It is shown that when the |c0| values are small, the chaotic region corresponds to small values of laser wave vector k, and the chaotic region for the larger k values is related to the large |c0| values. The result is confirmed numerically by finding the chaotic and regular orbits on the Poincaré section for the two different parameter regions. Thus, for a fixed c0 the adjustment of k from a small value to large value can transform the chaotic region into the regular one or on the contrary, which suggests a feasible method for eliminating or generating Melnikov chaos.
Interactions between Janus particles and membranes
Ding, Hong-Ming; Ma, Yu-Qiang
2012-02-01
Understanding how nanoparticles interact with cell membranes is of great importance in drug/gene delivery. In this paper, we investigate the interactions between Janus particles and membranes by using dissipative particle dynamics, and find that there exist two different modes (i.e., insertion and engulfment) in the Janus particle-membrane interactions. The initial orientation and properties of Janus particles have an important impact on the interactions. When the hydrophilic part of the particle is close to the membrane or the particle has a larger section area and higher hydrophilic coverage, the particle is more likely to be engulfed by the membrane. We also provide insights into the interactions between Janus particles and membranes containing lipid rafts, and find that a Janus particle could easily detach from a membrane after it is engulfed by the raft. The present study suggests a potential way to translocate Janus particles through membranes, which may give some significant suggestions on future nanoparticle design for drug delivery.
Analysis of particle-wall interactions during particle free fall.
Chein, Reiyu; Liao, Wenyuan
2005-08-01
In this study, the vertical motion of a particle in a quiescent fluid falling toward a horizontal plane wall is analyzed, based on simplified models. Using the distance between the particle and wall as a parameter, the effects of various forces acting on the particle and the particle motion are examined. Without the colloidal and Brownian forces being included, the velocity of small particles is found to be approximately equal to the inverse of the drag force correction function used in this study as the particle approaches the near-wall region. Colloidal force is added to the particle equation of motion as the particle moves a distance comparable to its size. It is found that the particle might become suspended above or deposited onto the wall, depending on the Hamaker constant, the surface potentials of the particle and wall, and the thickness of the electrical double layer (EDL). For strong EDL repulsive force and weaker van der Waals (VDW) attractive force, the particle will become suspended above the wall at a distance at which the particle velocity is zero. This location is referred to as the equilibrium distance. The equilibrium distance is found to increase with increased in EDL thickness when a repulsive force barrier appears in the colloidal force interaction. For the weak EDL repulsive force and strong VDW attractive force case, the particle can become deposited onto the wall without the Brownian motion effect. The Brownian jump length was found to be very small. Many Brownian jumps would be required in a direction toward the wall for a suspended particle to become deposited.
Institute of Scientific and Technical Information of China (English)
Xiong Bo; Liu Xun-Xu
2007-01-01
This paper studies the Josephson-like tunnelling in two-component Bose-Einstein condensates coupled with microwave field, which is in respond to various attractive and repulsive atomic interaction under the various aspect ratio of trapping potential. It is very interesting to find that the dynamic of Josephson-like tunnelling can be controlled from fast damped oscillations to nondamped oscillation, and relative number of atoms changes from asymmetric occupation to symmetric occupation correspondingly.
Quantum quenches to the attractive one-dimensional Bose gas: exact results
Directory of Open Access Journals (Sweden)
Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler
2016-09-01
Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.
Two scales in Bose-Einstein correlations
Energy Technology Data Exchange (ETDEWEB)
Khoze, V.A.; Ryskin, M.G. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Petersburg Nuclear Physics Institute, NRC ' Kurchatov Institute' , Gatchina, Saint Petersburg (Russian Federation); Martin, A.D. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Schegelsky, V.A. [Petersburg Nuclear Physics Institute, NRC ' Kurchatov Institute' , Gatchina, Saint Petersburg (Russian Federation)
2016-04-15
We argue that the secondaries produced in high-energy hadron collisions are emitted by small-size sources distributed over a much larger area in impact parameter space occupied by the interaction amplitude. That is, Bose-Einstein correlation of two emitted identical particles should be described by a 'two-radii' parametrisation ansatz. We discuss the expected energy, charged multiplicity and transverse momentum of the pair (that is, √(s), N{sub ch}, k{sub t}) behaviour of both the small and the large size components. (orig.)
Relativistic Axions from Collapsing Bose Stars
Levkov, D. G.; Panin, A. G.; Tkachev, I. I.
2017-01-01
The substructures of light bosonic (axionlike) dark matter may condense into compact Bose stars. We study the collapse of critical-mass stars caused by attractive self-interaction of the axionlike particles and find that these processes proceed in an unexpected universal way. First, nonlinear self-similar evolution (called "wave collapse" in condensed matter physics) forces the particles to fall into the star center. Second, interactions in the dense center create an outgoing stream of mildly relativistic particles which carries away an essential part of the star mass. The collapse stops when the star remnant is no longer able to support the self-similar infall feeding the collisions. We shortly discuss possible astrophysical and cosmological implications of these phenomena.
Investigation of plasma particle interactions with variable particle sizes
Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell
2015-11-01
In dusty plasmas, the dust particles are subjected to many forces of different origins. Both the gas and plasma directly affect the dust particles through electric fields, neutral drag, ion drag and thermophoretic forces, while the particles themselves interact with one another through a screened coulomb potential, which can be influenced by flowing ions. Recently, micron sized particles have been used as probes to analyze the electric fields in the plasma directly. A proper analysis of the resulting data requires a full understanding of the manner in which these forces couple to the dust particles. In most cases each of the forces exhibit unique characteristics, many of which are partially dependent on the particle size. In this study, five different particle sizes are used to investigate the forces resident in the sheath above the lower electrode of a GEC RF reference cell. The particles are tracked using a high-speed camera, yielding two-dimensional force maps allowing the force on the particles to be described as a polynomial series. It will be shown that the data collected can be analyzed to reveal information about the origins of the various forces. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.
Matter and Elementary Particles : Interactions and Qualities
Bezares Roder, Nils Manuel
2005-01-01
The elementary interactions of nature are discussed, based on the structure of the atom. Elementary particles are categorized by their qualities, especially their spin and statistics, but as well charge and compound forms among others. The connection to CP-behaviour and the different elementary interactions are discussed, as well as some open questions and ideas in modern elementary particle physics.The modern physical understanding of matter is reviewed, parting from Quantum Mechanics and Ge...
Shock Interaction with Random Spherical Particle Beds
Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth
2016-11-01
In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Dynamical theory of photon superradiative emission by nanoscale system of Bose-condensed magnons
Andrianov, Sergey N.; Moiseev, Sergey A.
2017-09-01
We have shown the possibility of non-Dicke superradiance for non-ideal magnon Bose-Einstein condensate (BEC) in a broadband frequency bath. Here, it is found that all the stored energy in the system of Bose-condensed magnons can be irradiated into a short pulse with a time delay caused by the strong frequency modulation of magnons due to direct inter-particle interactions in the Bose-condensed state. The last mechanism radically distinguishes this effect from the well-known Dicke superradiance of two-level atomic ensemble where the delay is connected with enhancement of the inter-atomic correlations due to exchange by virtual photons. In our case, the superradiance is the consequence of Bose-condensation in the coherent state where the particles are coupled by direct interaction. We have discussed the conditions for observation of this effect for Bose-condensed magnons in a solid-state sample with a spatial size smaller comparing with the wavelength of the emitted field. In general, we had shown that this kind of superradiance can proceed in samples with ferromagnetic type interaction. As for the antiferromagnetic ones, the effect of magnon superradiance takes place without delay.
Institute of Scientific and Technical Information of China (English)
2011-01-01
著名音响品牌Bose在中国推出其首款单耳蓝牙通讯耳机——全新Bose Bluetooth蓝牙通讯耳机。这款专为在移动环境中使用手机通话功能而设计的蓝牙耳机，能够提供高质、便捷的移动通讯体验。
Kasamatsu, Kenichi; Eto, Minoru; Nitta, Muneto
2016-01-01
We study the interaction and dynamics of two half-quantized vortices in two-component Bose-Einstein condensates. Using the Padé approximation for the vortex core profile, we calculate the intervortex potential, whose asymptotic form for a large distance has been derived by Eto et al. [Phys. Rev. A 83, 063603 (2011), 10.1103/PhysRevA.83.063603]. Through numerical simulations of the two-dimensional Gross-Pitaevskii equations, we reveal different kinds of dynamical trajectories of the vortices depending on the combinations of signs of circulations and the intercomponent density coupling. Under the adiabatic limit, we derive the equations of motion for the vortex coordinates, in which the motion is caused by the balance between Magnus force and the intervortex forces. The initial velocity of the vortex motion can be explained quantitatively by this point vortex approximation, but understanding the long-time behavior of the dynamics needs more consideration beyond our model.
Charged particle therapy: the physics of interaction.
Lomax, Antony J
2009-01-01
Particle therapy has a long and distinguished history with more than 50,000 patients having been treated, mainly with high-energy proton therapy. Particularly, for proton therapy, there is an increasing interest in exploiting the physical characteristics of charged particles for further improving the potential of radiation therapy. In this article, we review the most important interactions of charged particles with matter and describe the basic physical principles that underlie why particle beams behave the way they do and why such a behavior could bring many benefits in radiation therapy.
Local-field approach to the interaction of an ultracold dense Bose gas with a light field
Krutitsky, K V; Audretsch, J
1999-01-01
The propagation of the electromagnetic field of a laser through a dense Bose gas is examined and nonlinear operator equations for the motion of the center of mass of the atoms are derived. The goal is to present a self-consistent set of coupled Maxwell-Bloch equations for atomic and electromagnetic fields generalized to include the atomic center-of-mass motion. Two effects are considered: The ultracold gas forms a medium for the Maxwell field which modifies its propagation properties. Combined herewith is the influence of the dipole-dipole interaction between atoms which leads to a density dependent shift of the atomic transition frequency. It is expressed in a position dependent detuning and is the reason for the nonlinearity. This results in a direct and physically transparent way from the quantum field theoretical version of the local-field approach to electrodynamics in quantum media. The equations for the matter fields are general. Previously published nonlinear equations are obtained as limiting cases. ...
Multiparticle Bose-Einstein Correlations
Wiedemann, Urs Achim
1998-01-01
Multiparticle symmetrization effects are contributions to the spectra of Bose-symmetrized states which are not the product of pairwise correlations. Usually they are neglected in particle interferometric calculations which aim at determining the geometry of the boson emitting source from the measured momentum distributions. Based on a method introduced by Zajc and Pratt, we give a calculation of all multiparticle symmetrization effects to the one- and two-particle momentum spectra for a Gaussian phase space distribution of emission points. Our starting point is an ensemble of N-particle Bose-symmetrized wavefunctions with specified phase space localization. In scenarios typical for relativistic heavy ion collisions, multiparticle effects steepen the slope of the one-particle spectrum for realistic particle phase space densities by up to 20 MeV, and they broaden the relative momentum dependence of the two-particle correlations. We discuss these modifications and their consequences in quantitative detail. Also,...
Variational approach to the dilute Bose gas
Bijlsma, M.; Stoof, H.T.C.
1997-01-01
We study the weakly interacting Bose gas in both two and three dimensions using a variational approach. In particular we construct the thermodynamic potential of the gas to within ladder approximation and find by minimization an accurate mean-field description of the dilute Bose gas. Using
Bose-Einstein condensation in quantum glasses
2009-01-01
The role of geometrical frustration in strongly interacting bosonic systems is studied with a combined numerical and analytical approach. We demonstrate the existence of a novel quantum phase featuring both Bose-Einstein condensation and spin-glass behaviour. The differences between such a phase and the otherwise insulating "Bose glasses" are elucidated.
2002-01-01
Collective two-color photoassociation of a freely-interacting 87Rb Bose-Einstein condensate is theoretically examined, focusing on stimulated Raman adiabatic passage (STIRAP) from an atomic to a stable molecular condensate. In particular, Drummond et al. [Phys. Rev. A 65, 063619 (2002); cond-mat/0110578] have predicted that particle-particle interactions can limit the efficiency of collective atom-molecule STIRAP, and that optimizing the laser parameters can partially overcome this limitation...
Quantum magnetism in strongly interacting one-dimensional spinor Bose systems
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.
2015-01-01
-range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated...
Relativistic axions from collapsing Bose stars
Levkov, D G; Tkachev, I I
2016-01-01
The substructures of light bosonic (axion-like) dark matter may condense into compact Bose stars. We study collapses of the critical-mass stars caused by attractive self-interaction of the axion-like particles and find that these processes proceed in an unexpected universal way. First, nonlinear self-similar evolution (similar to "wave collapse" in plasma physics) forces the particles to fall into the star center. Second, collisions in the dense center create an outgoing stream of mildly relativistic particles which carries away an essential part of the star mass. The collapse stops when the star remnant is no longer able to support the self-similar infall feeding the collisions. We shortly discuss possible astrophysical and cosmological implications of these phenomena.
Energy Technology Data Exchange (ETDEWEB)
Ajinenko, I.V.; Chliapnikov, P.V. (Inst. for High Energy Physics, Protvino (Russia)); Boettcher, H. (Inst. fuer Hochenergiephysik, Berlin-Zeuthen (Germany)); Botterweck, F.; Charlet, M.; Kittel, W. (Nijmegen Univ. (Netherlands) NIKHEF-H, Nijmegen (Netherlands)); Wolf, E.A. de; Verbeure, F. (Univ. Instelling Antwerp, Wilrijk (Belgium). Dept. of Physics Inter-Univ. Inst. for High Energies, Brussels (Belgium)); Dziunikowska, K.; Kisielewska, D.; Olkiewicz, K. (Academy of Mining and Metallurgy, Cracow (Poland). Inst. of Physics and Nuclear Techniques Inst. of Nuclear Physics, Cracow (Poland)); Endler, A.M.F. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)); Gulkanyan, H.R.; Karamyan, J.K. (Inst. of Physics, Erevan (Armenia)); Rizatdinova, F.K.; Shabalina, E.K.; Smirnova, L.N.; Tikhonova, L.A.; Zotkin, S.A. (Moscow State Univ. (Russia). Nuclear Physics Inst.); Tomaradze, A. (Tbilisi State Univ. (Georgia). Inst. of High Energy Physics)
1993-06-01
A multi-dimensional analysis of two-particle correlations in [pi][sup +] p-interactions at 250 GeV/c shows interesting structure. Particularly strong positive short-range rapidity and azimuthal correlations are observed for low-p[sub T] like sign pairs. This observation is not reproduced by models used for comparison (FRITIOF, DPM, quark gluon (multi)string model). A possible explanation is Bose-Einstein interference not included in these models. (orig.).
Temporal dynamics of Bose-condensed gases
Energy Technology Data Exchange (ETDEWEB)
Trujillo Martinez, Mauricio
2014-03-19
We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein condensates confined in a finite size double-well trap and the non-trivial time evolution of a coherent state placed at the center of a two dimensional optical lattice. For the Josephson oscillations three time scales appear. We find that Josephson junction can sustain multiple undamped oscillations up to a characteristic time scale τ{sub c} without exciting atoms out of the condensates. Beyond the characteristic time scale τ{sub c} the dynamics of the junction are governed by fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between non-condensed particles. In the non-condensed particles dominated regime we observe strong damping of the oscillations due to inelastic collisions, equilibrating the system leading to an effective loss of details of the initial conditions. In addition, we predict that an initially self-trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent state released at the center of a two dimensional optical lattice shows a ballistic expansion with a decreasing expansion velocity for increasing two-body interactions strength and particle number. Additionally, we predict that if the two-body interactions strength exceeds a certain value, a forerunner splits up from the expanding coherent state. We also observe that this system, which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Do Valle Wemans, André; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Tadashi; Maeno Kataoka, Mayuko; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz
2015-01-01
The paper presents studies of Bose--Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\\rm T} >$ 100 MeV and $|\\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\\mu$b$^{-1}$, 190 $\\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Energy Technology Data Exchange (ETDEWEB)
Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Abdallah, J. [Academia Sinica, Taipei (China). Inst. of Physics; Collaboration: ATLAS Collaboration; and others
2015-10-15
The paper presents studies of Bose-EinsteinCorrelations (BEC) for pairs of like-sign charged particles measured in the kinematic range p{sub T} > 100 MeV and vertical stroke η vertical stroke < 2.5 in proton-proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb{sup -1}, 190 μb{sup -1} and 12.4 nb{sup -1} for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated. (orig.)
Internal waves interacting with particles in suspension
Micard, Diane
2016-04-01
Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.
"Strong interaction" for particle physics laboratories
2003-01-01
A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...
Wave-particle Interactions In Rotating Mirrors
Energy Technology Data Exchange (ETDEWEB)
Abraham J. Fetterman and Nathaniel J. Fisch
2011-01-11
Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
A consistent description of kinetics and hydrodynamics of quantum Bose-systems
Directory of Open Access Journals (Sweden)
P.A.Hlushak
2004-01-01
Full Text Available A consistent approach to the description of kinetics and hydrodynamics of many-Boson systems is proposed. The generalized transport equations for strongly and weakly nonequilibrium Bose systems are obtained. Here we use the method of nonequilibrium statistical operator by D.N. Zubarev. New equations for the time distribution function of the quantum Bose system with a separate contribution from both the kinetic and potential energies of particle interactions are obtained. The generalized transport coefficients are determined accounting for the consistent description of kinetic and hydrodynamic processes.
Granular segregation driven by particle interactions.
Lozano, C; Zuriguel, I; Garcimartín, A; Mullin, T
2015-05-01
We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C. All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.
About strong interaction of fundamental particles
Sannikov-Proskuryakov, S S
2002-01-01
We concentrate upon the main properties of strong interaction of hadrons. It is demonstrated that, due to the unusual character of the field propagator in a fiber (at very small distances) where strong interaction is switched on, a new symmetric Green function is used as a field propagator. As a result, the unitary scattering matrix of strong interaction is represented as a T sub s -time ordered chronological exponent. It is shown that the particle skeleton algebra plays an important role in finding the full interaction Lagrangian. Coupling constants of strong interactions are determined. In Appendix, the radiative corrections to the nucleon mass and the masses of eta, pi, KAPPA mesons transferring the strong interactions are calculated.
Institute of Scientific and Technical Information of China (English)
Etienne Wamba; Timoléon C. Kofané; Alidou Mohamadou
2012-01-01
We construct,through a further extension of the tanh-function method,the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction.The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields.The exact solutions obtained include soliton solutions,such as kink and antikink as well as bright,dark,multisolitonic modulated waves.We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.
Cyclotron resonant interactions in cosmic particle accelerators
Terasawa, T; 10.1007/s11214-012-9878-0
2012-01-01
A review is given for cyclotron resonant interactions in space plasmas. After giving a simple formulation for the test particle approach, illustrative examples for resonant interactions are given. It is shown that for obliquely propagating whistler waves, not only fundamental cyclotron resonance, but also other resonances, such as transit-time resonance, anomalous cyclotron resonance, higher-harmonic cyclotron resonance, and even subharmonic resonance can come into play. A few recent topics of cyclotron resonant interactions, such as electron injection in shocks, cyclotron resonant heating of solar wind heavy ions, and relativistic modifications, are also reviewed.
Hyperchaos of two coupled Bose-Einstein condensates with a three-body interaction
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Xia; Zhang Xi-He; Shen Ke
2008-01-01
We investigate the dynamics of two tunnel-coupled Boee-Einstein condensates(BECs)in a double-well potential.The effects of the three-body recombination loss and the feeding of the condensates from the thermal cloud are studied in the case of attractive interatomic interaction.An imaginary three-body interaction term is considered and a two-mode approximation is used to derive three coupled equations which describe the total atomic numbers of the two condensates,the relative population and relative phase respectively.Theoretical analyses and numerical calculations demonstrate the existence of chaotic and hyperchaotic behaviour by using a periodically time-varying scattering length.
Hydrodynamic interaction between particles near elastic interfaces
Daddi-Moussa-Ider, Abdallah
2016-01-01
We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities ...
Interactive visual exploration of a trillion particles
Schatz, Karsten
2017-03-10
We present a method for the interactive exploration of tera-scale particle data sets. Such data sets arise from molecular dynamics, particle-based fluid simulation, and astrophysics. Our visualization technique provides a focus+context view of the data that runs interactively on commodity hardware. The method is based on a hybrid multi-scale rendering architecture, which renders the context as a hierarchical density volume. Fine details in the focus are visualized using direct particle rendering. In addition, clusters like dark matter halos can be visualized as semi-transparent spheres enclosing the particles. Since the detail data is too large to be stored in main memory, our approach uses an out-of-core technique that streams data on demand. Our technique is designed to take advantage of a dual-GPU configuration, in which the workload is split between the GPUs based on the type of data. Structural features in the data are visually enhanced using advanced rendering and shading techniques. To allow users to easily identify interesting locations even in overviews, both the focus and context view use color tables to show data attributes on the respective scale. We demonstrate that our technique achieves interactive performance on a one trillionpar-ticle data set from the DarkSky simulation.
Momentum Distribution in the Unitary Bose Gas from First Principles
Comparin, Tommaso; Krauth, Werner
2016-11-01
We consider a realistic bosonic N -particle model with unitary interactions relevant for Efimov physics. Using quantum Monte Carlo methods, we find that the critical temperature for Bose-Einstein condensation is decreased with respect to the ideal Bose gas. We also determine the full momentum distribution of the gas, including its universal asymptotic behavior, and compare this crucial observable to recent experimental data. Similar to the experiments with different atomic species, differentiated solely by a three-body length scale, our model only depends on a single parameter. We establish a weak influence of this parameter on physical observables. In current experiments, the thermodynamic instability of our model from the atomic gas towards an Efimov liquid could be masked by the dynamical instability due to three-body losses.
Bose polaron problem: Effect of mass imbalance on binding energy
Ardila, L. A. Peña; Giorgini, S.
2016-12-01
By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a Bose-Einstein condensate at T =0 . The focus is on the attractive branch of the Bose polaron and on the role played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass) impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit comparison with the experimental findings of a recent study carried out at JILA.
Thermodynamic equivalence of two-dimensional imperfect attractive Fermi and repulsive Bose gases
Napiórkowski, Marek; Piasecki, Jarosław
2017-06-01
We consider two-dimensional imperfect attractive Fermi and repulsive Bose gases consisting of spinless point particles whose total interparticle interaction energy is represented by a N2/2 V with a =-aF≤0 for fermions and a =aB≥0 for bosons. We show that, in spite of the attraction, the thermodynamics of a d =2 imperfect Fermi gas remains well defined for 0 ≤aF≤a0=h2/2 π m , and is exactly the same as the one of the repulsive imperfect Bose gas with aB=a0-aF . In particular, for aF=a0 one observes the thermodynamic equivalence of the attractive imperfect Fermi gas and the ideal Bose gas.
(Research in elementary particles and interactions). [1992
Energy Technology Data Exchange (ETDEWEB)
Adair, R.; Sandweiss, J.; Schmidt, M.
1992-05-01
Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.
Interaction between colloidal particles. Literature Review
Energy Technology Data Exchange (ETDEWEB)
Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)
2010-02-15
This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports
Observation of interference between two molecular Bose-Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Kohstall, C; Riedl, S; Sanchez Guajardo, E R; Sidorenkov, L A; Hecker Denschlag, J; Grimm, R, E-mail: christoph.kohstall@uibk.ac.at [Institut fuer Experimentalphysik und Zentrum fuer Quantenphysik, Universitaet Innsbruck, 6020 Innsbruck (Austria)
2011-06-15
We have observed the interference between two Bose-Einstein condensates of weakly bound Feshbach molecules of fermionic {sup 6}Li atoms. Two condensates are prepared in a double-well trap and, after release from this trap, overlap in expansion. We detect a clear interference pattern that unambiguously demonstrates the de Broglie wavelength of molecules. We verify that only the condensate fraction shows interference. With increasing interaction strength, the pattern vanishes because elastic collisions during overlap remove particles from the condensate wave function. For strong interaction, the condensates do not penetrate each other as they collide hydrodynamically.
The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line
Tracy, Craig A
2012-01-01
In this paper we find explicit formulas for: (1) Green's function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.
Institute of Scientific and Technical Information of China (English)
YU Zhao-Xian; JIAO Zhi-Yong
2002-01-01
We present a theoretical treatment of dynamics of an atomic Bose-Einstein condensation interacting witha single-mode quantized travelling-wave laser field in a double-well potential. When the atom-field system is initiallyin a coherent state, expressions for the energy exchange between atoms and photons are derived. It is revealed thatatoms in the two wells can be in a self-trapping state when the tunnelling frequency satisfies two specific conditions,in which the resonant and far off-resonant cases are included. It is found that there is an alternating current with twodifferent sinusoidal oscillations between the two wells, but no dc characteristic of the atomic tunnelling current occurs.It should be emphasized that when without the laser field, both the population difference and the atomic tunnellingcurrent are only a single oscillation. But they will respectively become a superposition of two oscillations with differentoscillatory frequencies in the presence of the laser field. For the two oscillations of the population difference, one alwayshas an increment in the oscillatory frequency, the other can have an increment or a decrease under different cases. Theseconclusions are also suitable to those of the atomic tunnelling current. As a possible application, by measurement of theatomic tunnelling current between the two wells, the number of Bose-condensed atoms can be evaluated. lBy properlyselecting the laser field, the expected atomic tunnelling current can be obtained too.
Radiative corrections to Bose condensation
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, A. (Academia de Ciencias de Cuba, La Habana. Inst. de Matematica, Cibernetica y Computacion)
1985-04-01
The Bose condensation of the scalar field in a theory behaving in the Coleman-Weinberg mode is considered. The effective potential of the model is computed within the semiclassical approximation in a dimensional regularization scheme. Radiative corrections are shown to introduce certain ..mu..-dependent ultraviolet divergences in the effective potential coming from the Many-Particle theory. The weight of radiative corrections in the dynamics of the system is strongly modified by the charge density.
Visualizing the Efimov Correlation in Bose Polarons
Sun, Mingyuan; Zhai, Hui; Cui, Xiaoling
2017-07-01
The Bose polaron is a quasiparticle of an impurity dressed by surrounding bosons. In few-body physics, it is known that two identical bosons and a third distinguishable particle can form a sequence of Efimov bound states in the vicinity of interspecies scattering resonance. On the other hand, in the Bose polaron system with an impurity atom embedded in many bosons, no signature of Efimov physics has been reported in the existing spectroscopy measurements to date. In this Letter, we propose that a large mass imbalance between a light impurity and heavy bosons can help produce visible signatures of Efimov physics in such a spectroscopy measurement. Using the diagrammatic approach in the virial expansion to include three-body effects from pair-wise interactions, we determine the impurity self-energy and its spectral function. Taking the 6Li - 133Cs system as a concrete example, we find two visible Efimov branches in the polaron spectrum, as well as their hybridizations with the attractive polaron branch. We also discuss the general scenarios for observing the signature of Efimov physics in polaron systems. This work paves the way for experimentally exploring intriguing few-body correlations in a many-body system in the near future.
Energy Technology Data Exchange (ETDEWEB)
Bostedt, C; van Buuren, T; Willey, T M; Terminello, L J
2004-09-27
The change in the electronic structure of germanium nanocrystals is investigated as their concentration is increased from non-interacting, individual particles to assembled arrays of particles. The electronic structure of the individual nanoclusters shows clear effects due to quantum confinement which are lost in the concentrated assemblies of bare particles. When the surface of the individual particles is passivated, they retain their quantum confinement properties also upon assembly. These effects are interpreted in terms of a particle - particle interaction model.
Rindler-Daller, Tanja
2012-01-01
If cosmological cold dark matter (CDM) consists of light enough bosonic particles that their phase-space density exceeds unity, they will comprise a Bose-Einstein condensate (BEC). The nature of this BEC-CDM as a quantum fluid may then distinguish it dynamically from the standard form of CDM involving a collisionless gas of non-relativistic particles that interact purely gravitationally. We summarize some of the dynamical properties of BEC-CDM that may lead to observable signatures in galactic halos and present some of the bounds on particle mass and self-interaction coupling strength that result from a comparison with observed galaxies.
Planckian Interacting Massive Particles as Dark Matter
Garny, Mathias; Sandora, McCullen; Sloth, Martin S.
2016-03-01
The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01 Mp is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.
Planckian Interacting Massive Particles as Dark Matter.
Garny, Mathias; Sandora, McCullen; Sloth, Martin S
2016-03-11
The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.
Entropic Ratchet transport of interacting active Brownian particles
Energy Technology Data Exchange (ETDEWEB)
Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)
2014-11-21
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.
Sandin, P.; Ögren, M.; Gulliksson, M.; Smyrnakis, J.; Magiropoulos, M.; Kavoulakis, G. M.
2017-01-01
Motivated by numerous experiments on Bose-Einstein condensed atoms which have been performed in tight trapping potentials of various geometries [elongated and/or toroidal (annular)], we develop a general method which allows us to reduce the corresponding three-dimensional Gross-Pitaevskii equation for the order parameter into an effectively one-dimensional equation, taking into account the interactions (i.e., treating the width of the transverse profile variationally) and the curvature of the trapping potential. As an application of our model we consider atoms which rotate in a toroidal trapping potential. We evaluate the state of lowest energy for a fixed value of the angular momentum within various approximations of the effectively one-dimensional model and compare our results with the full solution of the three-dimensional problem, thus getting evidence for the accuracy of our model.
Sandin, P; Gulliksson, M; Smyrnakis, J; Magiropoulos, M; Kavoulakis, G M
2016-01-01
Motivated by numerous experiments on Bose-Einstein condensed atoms which have been performed in tight trapping potentials of various geometries (elongated and/or toroidal/annular), we develop a general method which allows us to reduce the corresponding three-dimensional Gross-Pitaevskii equation for the order parameter into an effectively one-dimensional equation, taking into account the interactions (i.e., treating the width of the transverse profile variationally) and the curvature of the trapping potential. As an application of our model we consider atoms which rotate in a toroidal trapping potential. We evaluate the state of lowest energy for a fixed value of the angular momentum within various approximations of the effectively one-dimensional model and compare our results with the full solution of the three-dimensional problem, thus getting evidence for the accuracy of our model.
Stability of self-gravitating Bose-Einstein-Condensates
Schroven, Kris; Lämmerzahl, Claus
2015-01-01
We study the ground state and the first three radially excited states of a self-gravitating Bose-Einstein- Condensate with respect to the influence of two external parameters, the total mass and the strength of interactions between particles. For this we use the so-called Gross-Pitaevskii-Newton system. In this context we especially determine the case of very high total masses where the ground state solutions of the Gross-Pitaevskii- Newton system can be approximated with the Thomas-Fermi limit. Furthermore, stability properties of the computed radially excited states are examined by applying arguments of the catastrophe theory.
Stability of self-gravitating Bose-Einstein condensates
Schroven, Kris; List, Meike; Lämmerzahl, Claus
2015-12-01
We study the ground state and the first three radially excited states of a self-gravitating Bose-Einstein condensate with respect to the influence of two external parameters, the total mass and the strength of interactions between particles. For this we use the so-called Gross-Pitaevskii-Newton system. In this context we especially determine the case of very high total masses where the ground state solutions of the Gross-Pitaevskii-Newton system can be approximated with the Thomas-Fermi limit. Furthermore, stability properties of the computed radially excited states are examined by applying arguments of the catastrophe theory.
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
Acoustic interaction forces between small particles in an ideal fluid
Silva, Glauber T
2014-01-01
We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair-interaction potentials with no restriction on the inter-particle distance. The theory is applied to studies of the acoustic interaction force on a particle suspension in either standing or traveling plane waves. The results show aggregation regions along the wave propagation direction, while particles may attract or repel each other in the transverse direction. In addition, a mean-field approximation is developed to describe ...
Planckian Interacting Massive Particles as Dark Matter
DEFF Research Database (Denmark)
Garny, Mathias; Sandora, McCullen; Sloth, Martin S.
2016-01-01
. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle......, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode...... as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark...
Shock Particle Interaction - Fully Resolved Simulations and Modeling
Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth
2016-11-01
Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
"Charged" phonons in an external field: a QED analog with Bose-Einstein condensates
Leizerovitch, Shay
2016-01-01
We propose a method for using ultracold atomic Bose-Einstein condensates, to form an analog model of a relativistic massive field that carries "charge" and interacts with an external non-dynamical gauge field. Such a "scalar QED" analog model, may be useful for simulating certain of QFT involving charged particles. In particular, the Schwinger pair-creation of "charged" phonons in a constant external field, and vacuum instability.
He, Yan-Zhang; Liu, Yi-Min; Bao, Cheng-Guang
2017-08-01
The coupled Gross-Pitaevskii equations for two-species BEC have been solved analytically under the Thomas-Fermi approximation (TFA). Based on the analytical solution, two formulae are derived to relate the particle numbers NA and NB with the root mean square radii of the two kinds of atoms. Only the case that both kinds of atoms have nonzero distribution at the center of an isotropic trap is considered. In this case the TFA has been found to work nicely. Thus, the two formulae are applicable and are useful for the evaluation of NA and NB .
Bose-Einstein Condensation: Where Many Become One and So There is Plenty of Room at the Bottom
Kumar, N.
Classically identical particles become quantum mechanically indistinguishable. Satyendra Nath Bose taught us, in 1924, how to correctly count the distinct microstates for the indistinguishables, and for a gas of light quanta (later photons), whose number is not conserved, e.g. can vary with temperature, he gave a proper derivation of Planck's law of black body radiation. Einstein, in 1925, generalized the Bose statistics to a quantum gas of material particles whose number is now fixed, or conserved, e.g. 4He, and thus opened a new direction in condensed matter physics: He showed that for low enough temperatures (˜1 Kelvin and below), a oscopic number of the particles must accumulate in the lowest one-particle state. This degenerate gas with an extensively occupied single one-particle state is the Bose-Einstein condensate, now called BEC. (Fragmented BEC involving a multiplicity of internal states of non-scalar Bose atoms is, however, also realizable now.) Initially thought to be a pathology of an ideal non-interacting Bose system, the BEC turned out to be robust against interactions. Thus, the Bose-Einstein condensation is a quantum phase transition, but one with a difference — it is a purely quantum statistical effect, and requires no inter-particle interaction for its occurrence. Indeed, it happens in spite of it. The condensate fraction, however, diminishes with increasing interaction strength — to less than ten per cent for 4He. The BEC turned out to underlie superfluidity, namely that the superfluid may flow through finest atomic capillaries without any viscosity. Interaction, however, seems essential to superfluidity. But, the precise connection between BEC and the superfluidity remains elusive. Thus, for example, we may have superfluidity in two-dimensions where there is no condensate! Seventy years later now, the BEC has come alive with the breakthrough in 1995 when near-ideal BEC was created in dilute alkali gases of 87Rb and 23Na atoms cooled in the
Kengne, E.; Lakhssassi, A.; Vaillancourt, R.; Liu, Wu-Ming
2012-12-01
We present a double-mapping method (D-MM), a natural combination of a similarity with F-expansion methods, for obtaining general solvable nonlinear evolution equations. We focus on variable-coefficients complex Ginzburg-Landau equations (VCCGLE) with multi-body interactions. We show that it is easy by this method to find a large class of exact solutions of Gross-Pitaevskii and Gross-Pitaevskii-Ginzburg equations. We apply the D-MM to investigate the dynamics of Bose-Einstein condensation with two- and three-body interactions. As a surprising result, we obtained that it is very easy to use the built D-MM to obtain a large class of exact solutions of VCCGLE with two-body interactions via a generalized VCCGLE with two- and three-body interactions containing cubic-derivative terms. The results show that the proposed method is direct, concise, elementary, and effective, and can be a very effective and powerful mathematical tool for solving many other nonlinear evolution equations in physics.
A geometrothermodynamic approach to ideal quantum gases and Bose-Einstein condensates
Quevedo, Hernando
2015-01-01
We analyze in the context of geometrothermodynamics the behavior of ideal quantum gases which satisfy either the Fermi statistics or the Bose statistics. Although the corresponding Hamiltonian does not contain a potential, indicating the lack of classical thermodynamic interaction, we show that the curvature of the equilibrium space is non-zero, and can be interpreted as a measure of the effective quantum interaction between the gas particles. In the limiting case of a classical Boltzmann gas, we show that the equilibrium space becomes flat, as expected from the physical viewpoint. In addition, we derive a thermodynamic fundamental equation for the Bose-Einstein condensation and, using the Ehrenfest scheme, we show that it can be considered as a first order phase transition which in the equilibrium space corresponds to a curvature singularity. This result indicates that the curvature of the equilibrium space can be used to measure the thermodynamic interaction in classical and quantum systems.
Directory of Open Access Journals (Sweden)
T. Hada
Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading
Pseudopotentials of the particles interactions in complex plasmas
Energy Technology Data Exchange (ETDEWEB)
Ramazanov, T. S.; Moldabekov, Zh. A.; Dzhumagulova, K. N.; Muratov, M. M. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty 050012 (Kazakhstan)
2011-10-15
This article discusses the effective interaction potentials in a complex dusty plasma. The interaction of electrons with atoms and the interaction between dusty particles are studied by the method of the dielectric response function. In the effective interaction, potential between electron and atom the quantum effects of diffraction were taken into account. On the curve of the interaction potential between dust particles under certain conditions the oscillations can be observed.
Kucharek, Harald; Galvin, Antoinette; Farrugia, Charles; Klecker, Berndt; Pogorelov, Nikolai
2016-04-01
Wave-particle interactions, ion acceleration, and magnetic turbulence are closely interlinked and the physical processes may occur on different scales. These scales range from the kinetic scale to the macro-scale (MHD-scale). These processes are likely universal and the same basic processes occur at the Earth's environment, at the Earth's bow shock, the solar wind, and around the heliosphere. Undoubtedly, the Earth's environment as well as the close interplanetary space are the best plasma environments to study these processes using satellite measurements. Recently, ACE, STEREO, IBEX and Voyager observations clearly showed that turbulence and wave-particle interactions and turbulence are extremely important in interplanetary space and in the heliosphere. Using data from STEREO, Wind, we have investigated the spectral properties of suprathermal ion distributions. The results show that spectral slopes are very variable and depend on the plasma properties. We have also performed 3D hybrid simulations and studied particle dynamics. These simulations show that the particle dynamics in the turbulent magnetic wave field is Levy-Flight like which leads to a kappa distribution, which is often found in various space environments. This result is very significant of future mission such as THOR and IMAP and current operating missions such as STEREO, IBEX, and MMS.
Analysis of the dynamic interaction between SVOCs and airborne particles
DEFF Research Database (Denmark)
Liu, Cong; Shi, Shanshan; Weschler, Charles J.
2013-01-01
A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...... uncertainty when predicting SVOC concentrations and assessing exposures to these compounds. In this study, we have developed a dimensionless description for the dynamic interaction between SVOCs and organic particles. A better criterion to judge whether the internal resistance (diffusion in and out...
Internal bremsstrahlung of strongly interacting charged particles
Energy Technology Data Exchange (ETDEWEB)
Kurgalin, S. D. [Voronezh State University (Russian Federation); Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Churakova, T. A. [Voronezh State University (Russian Federation)
2016-11-15
A universal theoretical model intended for calculating internal-bremsstrahlung spectra is proposed. In this model, which can be applied to describing nuclear decays of various type (such as alpha decay, cluster decay, and proton emission), use is made of realistic nucleus–nucleus potentials. Theoretical internal-bremsstrahlung spectra were obtained for the alpha decay of the {sup 214}Po nucleus, as well as for the decay of the {sup 222}Ra nucleus via the emission of a {sup 14}C cluster and for the decay of the {sup 113}Cs nucleus via proton emission, and the properties of these spectra were studied. The contributions of various regions (internal, subbarrier, and external) to the internal-bremsstrahlung amplitude were analyzed in detail. It is shown that the contribution of the internal region to the amplitude for internal bremsstrahlung generated in nuclear decay via proton emission is quite large, but that this is not so for alpha decay and decay via cluster emission. Thus, a process in which strong interaction of nuclear particles affects the internal-bremsstrahlung spectrum if found.
Planckian Interacting Massive Particles as Dark Matter
Garny, Mathias; Sloth, Martin S
2016-01-01
The Standard Model could be self-consistent up to the Planck scale according to the present measurements of the Higgs mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the Standard Model through Planck suppressed higher dimensional operators. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar...
Particle-fluid interaction forces as the source of acceleration PDF invariance in particle size
Meller, Yosef
2014-01-01
The conditions allowing particle suspension in turbulent flow are of interest in many applications, but understanding them is complicated both by the nature of turbulence and by the interaction of flow with particles. Observations on small particles indicate an invariance of acceleration PDFs of small particles independent of size. We show to be true the postulated role of particle/fluid interaction forces in maintaining suspension. The 3D-PTV method, applied for two particle phases (tracers and inertial particles) simultaneously, was used to obtain velocity and acceleration data, and through the use of the particle's equation of motion the magnitude of forces representing either the flow or the particle interaction were derived and compared. The invariance of PDFs is shown to extend to the component forces, and lift forces are shown to be significant.
On the concentration properties of Interacting particle processes
Del Moral, Pierre; Wu, Liming
2011-01-01
These lecture notes present some new concentration inequalities for Feynman-Kac particle processes. We analyze different types of stochastic particle models, including particle profile occupation measures, genealogical tree based evolution models, particle free energies, as well as backward Markov chain particle models. We illustrate these results with a series of topics related to computational physics and biology, stochastic optimization, signal processing and bayesian statistics, and many other probabilistic machine learning algorithms. Special emphasis is given to the stochastic modeling and the quantitative performance analysis of a series of advanced Monte Carlo methods, including particle filters, genetic type island models, Markov bridge models, interacting particle Markov chain Monte Carlo methodologies.
Einstein, Bose and Bose-Einstein Statistics
Wali, Kameshwar C.
2005-05-01
In June 1924, a relatively unknown Satyendra Nath Bose from Dacca, India, wrote a letter to Einstein beginning with ``Respected Sir, I have ventured to send you the accompanying article for your perusal. I am anxious to know what you think of it. You will see that I have ventured to deduce the coefficient 8πυ^2/c^3 in Planck's law independent of the classical electrodynamics, only assuming that the ultimate elementary regions in Phase-space have the content h^3. I do not know sufficient German to translate the paper. If you think the paper worth publication, I shall be grateful if you arrange for its publication in Zeitschrift für Physik.'' Einstein did translate the article himself and got it published. He wrote to Ehrenfest: ``The Indian Bose has given a beautiful derivation of Planck's law, including the constant [i.e.8πυ^2/c^3].'' Einstein extended the ideas of Bose that implied, among other things, a new statistics for the light-quanta to the molecules of an ideal gas and wrote to Ehrenfest, `from a certain temperature on, the molecules ``condense'' without attractive forces, that is, they accumulate at zero velocity. The theory is pretty, but is there also some truth to it?' Abraham Pais has called Bose's paper ``the fourth and the last revolutionary papers of the old quantum theory.'' My paper will present the works of Bose and Einstein in their historical perspective and the eventual birth of the new quantum Bose-Einstein statistics.
Centrifugal Effects in a Bose-Einstein Condensate
Kuklov, A B; Levine, A M; Schreiber, W M; Birman, J L; Birman, Joseph L.
1996-01-01
Single particle states in the atomic trap employing the rotating magnetic field are found using the full time-dependent instantaneous trapping potential. These states are compared with those of the effective time-averaged potential. We show that the trapping is possible when the frequency of the rotations exceeds some threshold. Slightly above this threshold the weakly interacting gas of the trapped atoms acquires the properties of a quasi-1D system in the frame rotating together with the field. The role of the atom-atom interaction in changing the ideal gas solution is discussed. We show that in the limit of large numbers of particles the rotating field whose angular frequency is appropriately modulated can be utilized as a driving force principally for the center of mass motion as well as for the angular momentum $L = 2$ normal modes of the Bose condensate. A mechanism of quantum evaporation forced by the rotating field is analyzed.
Acoustic interaction forces between small particles in an ideal fluid
DEFF Research Database (Denmark)
Silva, Glauber T.; Bruus, Henrik
2014-01-01
from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...
Measurements of Bose-Einstein correlations with the ATLAS detector
Sykora, Ivan; The ATLAS collaboration
2015-01-01
The Bose-Einstein correlations provide a unique opportunity for detailed understanding of space-time characteristics of the hadronization region, for determining the size and shape of the source from which particles are emitted and for interpreting quark confinement effects. The correlations lead to enhancement in production of identical bosons that are close in phase space. The ATLAS collaboration has performed a measurement of Bose-Einstein correlations of pairs of charged particles with transverse momentum greater than 100 MeV in p-p collisions at 900 GeV and 7 TeV. Bose-Einstein correlation parameters are investigated up to very high charged-particle multiplicities. The dependence of the Bose-Einstein correlation parameters on the average transverse momentum per pair is also investigated.
Gotsman, E; Maor, U
2016-01-01
In the framework of our model of soft interactions at high energy based on CGC/saturation approach,we show that Bose-Einstein correlations of identical gluons lead to large values of $v_n$. We demonstrate how three dimensional scales of high energy interactions: hadron radius, typical size of the wave function in diffractive production of small masses (size of the constituent quark), and the saturation momentum, influence the values of BE correlations, and in particular, the values of $v_n$. Our calculation shows that the structure of the `dressed' Pomeron leads to values of $v_n$ which are close to experimental values for proton-proton scattering, 20\\% smaller than the observed values for proton-lead collisions, and close to lead-lead collisions for 0-10\\% centrality. Bearing this result in mind, we conclude that it is premature to consider, that the appearance of long range rapidity azimuthal correlations are due only to the hydrodynamical behaviour of the quark-gluon plasma.
Hydrodynamics of a unitary Bose gas
Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran
2016-05-01
In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.
Bose-Einstein condensation of the classical axion field in cosmology?
Energy Technology Data Exchange (ETDEWEB)
Davidson, Sacha; Elmer, Martin, E-mail: s.davidson@ipnl.in2p3.fr, E-mail: m.elmer@ipnl.in2p3.fr [IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi, Villeurbanne cedex, 69622 (France)
2013-12-01
The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. To quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.
Interaction of free charged particles with a chirped electromagnetic pulse
Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.
2004-01-01
We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM ch
SIMP (Strongly Interacting Massive Particle) Search
Teplitz, V L; Olness, F I; Stroynowski, R; Teplitz, Vigdor L.; Mohapatra, Rabindra N.; Olness, Fred; Stroynowski, Ryszard
2000-01-01
We consider laboratory experiments that can detect stable, neutral stronglyinteracting massive particles (SIMPs). We explore the SIMP annihilation crosssection from its minimum value (restricted by cosmological bounds) to the barnrange, and vary the mass values from a GeV to a TeV. We also consider the prospects and problems of detecting such particles at theTevatron.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Elementary Particle Interactions with CMS at LHC
Energy Technology Data Exchange (ETDEWEB)
Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)
2016-07-31
The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.
Elementary Particle Interactions with CMS at LHC
Energy Technology Data Exchange (ETDEWEB)
Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)
2016-07-31
The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.
Directory of Open Access Journals (Sweden)
Böyükata M.
2014-03-01
Full Text Available Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point.
Quantum spin dynamics in a spin-orbit-coupled Bose-Einstein condensate
Poon, Ting Fung Jeffrey; Liu, Xiong-Jun
2016-06-01
Spin-orbit-coupled bosons can exhibit rich equilibrium phases at low temperature and in the presence of particle-particle interactions. In the case with a 1D synthetic spin-orbit interaction, it has been observed that the ground state of a Bose gas can be a normal phase, stripe phase, or magnetized phase in different parameter regimes. The magnetized states are doubly degenerate and consist of a many-particle two-state system. In this work, we investigate the nonequilibrium quantum dynamics by switching on a simple one-dimensional optical lattice potential as external perturbation to induce resonant couplings between the magnetized phases, and predict a quantum spin dynamics which cannot be obtained in the single-particle systems. In particular, due to particle-particle interactions, the transition of the Bose condensate from one magnetized phase to the other is forbidden when the external perturbation strength is less than a critical value, and a full transition can occur only when the perturbation exceeds such critical strength. This phenomenon manifests itself a dynamical phase transition, with the order parameter defined by the time-averaged magnetization over an oscillation period, and the critical point behavior being exactly solvable. The thermal fluctuations are also considered in detail. From numerical simulations and exact analytic studies we show that the predicted many-body effects can be well observed with the current experiments.
Energy exchange in systems of particles with nonreciprocal interaction
Energy Technology Data Exchange (ETDEWEB)
Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2015-10-15
A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.
Ding, Mingnan; Liang, Yihao; Xing, Xiangjun
2016-10-01
In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).
Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate
DEFF Research Database (Denmark)
Jørgensen, Nils B.; Wacker, Lars; Skalmstang, Kristoffer Theis
2016-01-01
The behavior of a mobile impurity particle interacting with a quantum-mechanical medium is of fundamental importance in physics. Due to the great flexibility of atomic gases, our understanding of the impurity problem has improved dramatically since it was realized experimentally in a particularly...... for an impurity interacting with a Bose-Einstein condensate (BEC). We measure the energy of the impurity both for attractive and repulsive interactions with the BEC, and find excellent agreement with theories that incorporate three-body correlations, both in the weak-coupling limits and across unitarity. Our...
Dynamical correlation functions of the 1D Bose gas (Lieb Liniger model)
Caux, Jean-Sebastien; Calabrese, Pasquale
2007-03-01
The momentum- and frequency-dependent correlation functions (one-body and density-density) of the one-dimensional interacting Bose gas (Lieb-Liniger model) are obtained for any value (repulsive or attractive) of the interaction parameter. In the repulsive regime, we use the Algebraic Bethe Ansatz and the ABACUS method to reconstruct the correlators to high accuracy for systems with finite but large numbers of particles. For attractive interactions, the correlations are computed analytically. Our results are discussed, with particular emphasis on their applications to quasi-one-dimensional atomic gases.
Electrostatic interactions between particles through heterogeneous fluid phases.
Kang, Dong Woo; Lee, Mina; Kim, Kyung Hak; Xia, Ming; Im, Sang Hyuk; Park, Bum Jun
2017-09-27
We investigated the electrostatic interactions between particles acting through heterogeneous fluid phases. An oil lens system floating on the surface of water was used to trap particles at different fluid-fluid interfaces. The inner particles are located at the centrosymmetrically curved oil-water interface inside the oil lens while satellite particles are located at the curved air-water interface, separated by a particular distance from the triple phase boundary. The satellite particles are likely to be captured in an energy minimum state due to electrostatic repulsions by the inner particles balanced with the gravity-induced potential energy. As the size of the oil lens decreases upon evaporation, the satellite particles escape from the gravitational confinement at a critical moment. The self-potential values of the inner particles and the satellite particles were calculated by employing an energy balance and the experimentally obtained geometric parameter values. It was found that the self-potential values of the inner particles decrease as oil evaporates over time and that the magnitude of the self-potential of the satellite particles is a hundred times larger than that of the inner particles. These results demonstrate significant effects of the thickness and shape of the nonpolar superphase on the electrostatic interactions between the particles trapped at different fluid-fluid interfaces.
Switching Behaviour of Magnetic Particles with Dipolar Interaction
Institute of Scientific and Technical Information of China (English)
XU Chen; HUI Pak-Ming; CHOW Chow-Wang; LI Zhen-Ya
2005-01-01
We study the switching in the magnetic moments of interacting magnetic particles. The dynamics of the magneticmoments is governed by a coupled set of Landau-Lifshitz-Gilbert equations. The magnetic particles are assumed to be spherical in shape, single domain, and have uniaxial anisotropy. Effects of dipolar interaction between the particles, anisotropy energy, an applied switching field with finite spatial extent and a small bias field are considered. When the separation between the particles is small, the dipolar field is significant and it affects the reversal of the magnetic moments. The final configuration attained depends sensitively on the decaying length of the switching field, the inter-particle separation, and the initial configuration. A bias field tends to suppress the effects of a spatially decaying switching field and dipolar interaction between neighbouring particles.
Dynamical instability in the S =1 Bose-Hubbard model
Asaoka, Rui; Tsuchiura, Hiroki; Yamashita, Makoto; Toga, Yuta
2016-01-01
We study the dynamical instabilities of superfluid flows in the S =1 Bose-Hubbard model. The time evolution of each spin component in a condensate is calculated based on the dynamical Gutzwiller approximation for a wide range of interactions, from a weakly correlated regime to a strongly correlated regime near the Mott-insulator transition. Owing to the spin-dependent interactions, the superfluid flow of the spin-1 condensate decays at a different critical momentum from a spinless case when the interaction strength is the same. We furthermore calculate the dynamical phase diagram of this model and clarify that the obtained phase boundary has very different features depending on whether the average number of particles per site is even or odd. Finally, we analyze the density and spin modulations that appear in association with the dynamical instability. We find that spin modulations are highly sensitive to the presence of a uniform magnetic field.
Vortex dynamics in coherently coupled Bose-Einstein condensates
Calderaro, Luca; Massignan, Pietro; Wittek, Peter
2016-01-01
In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This description is rewritten in terms of forces arising from the interaction with other vortices. Two such positive straight vortices experience a repulsive interaction and precess in a positive (anticlockwise) sense around their common centroid. A similar picture applies to vortices in a two-component two-dimensional uniform Bose-Einstein condensate (BEC) coherently coupled through rf Rabi fields. Unlike the classical case, however, the rf Rabi coupling induces an attractive interaction and two such vortices with positive signs now rotate in the negative (clockwise) sense. Pairs of counter-rotating vortices are instead found to translate with uniform velocity perpendicular to the line joining their cores. This picture is extended to a single vortex in a two-component trapped BEC. Although two uniform vortex-free components experience familiar Rabi oscillations of particle-number difference, such behavior is absent ...
Dalafi, A.; Naderi, M. H.
2016-12-01
We theoretically investigate the dispersive interaction of a Bose-Einstein condensate (BEC) trapped inside an optomechanical cavity with a moving end mirror in the presence of the laser phase noise (LPN) as well as the atomic collisions. We assume that the effective frequency of the optical mode is much greater than those of the mechanical and the Bogoliubov modes of the movable mirror and the BEC. In the adiabatic approximation where the damping rate of the cavity is faster than those of the other modes, the system behaves as an effective two-mode model in which the atomic and mechanical modes are coupled to each other through the mediation of the optical field by an effective coupling parameter. We show that in the effective two-mode model, the LPN appears as a classical stochastic pump term which drives the amplitude quadratures of the mechanical and the Bogoliubov modes. It is also shown that a strong stationary mirror-atom entanglement can be established just in the dispersive and Doppler regimes where the two modes come into resonance with each other and the effect of the LPN gets very small.
Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.
Berrada, T; van Frank, S; Bücker, R; Schumm, T; Schaff, J-F; Schmiedmayer, J
2013-01-01
Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.
Bose-Hubbard Hamiltonian: Quantum chaos approach
Kolovsky, Andrey R.
2016-03-01
We discuss applications of the theory of quantum chaos to one of the paradigm models of many-body quantum physics — the Bose-Hubbard (BH) model, which describes, in particular, interacting ultracold Bose atoms in an optical lattice. After preliminary, pure quantum analysis of the system we introduce the classical counterpart of the BH model and the governing semiclassical equations of motion. We analyze these equations for the problem of Bloch oscillations (BOs) of cold atoms where a number of experimental results are available. The paper is written for nonexperts and can be viewed as an introduction to the field.
Adiabatic Wave-Particle Interaction Revisited
Dewar, R L; 10.1585/pfr.4.001
2009-01-01
In this paper we calculate and visualize the dynamics of an ensemble of electrons trapping in an electrostatic wave of slowly increasing amplitude, illustrating that, despite disordering of particles in angle during the trapping transition as they pass close to X-points, there is still an adiabatic invariant for the great majority of particles that allows the long-time distribution function to be predicted. Possible application of this approach to recent work on the nonlinear frequency shift of a driven wave is briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Wang Haiqiao
1997-04-01
The thesis is based on the data analysis and detector development of the EMU01/CERN, E863/BNL and UA1/CERN experiments. Particle fluctuations are studied with the scaled factorial moments in the fragmentation region of oxygen induced emulsion interactions from 3.7 to 200 A GeV. The intermittency indices show an energy independent behaviour in the target and projectile regions of pseudorapidity. In order to study the origin of the fluctuations, jet-like and ring-like substructures of particles produced in the azimuthal plane are investigated for the S - Au, S - Em and O - Em interactions at 200 A GeV. The study shows that the two particle azimuthal correlations can be well understood if Bose-Einstein correlations and {gamma}-conversion are included. A nuclear rescattering model, which incorporates the FRITIOF model, has been developed. The model can well describe multiplicity distributions of slow recoiling protons, evaporation particles and their correlations with particles produced in high energy heavy ion collisions. In order to improve the measurements of Pb induced collisions, an automatic system based on the CCD technique and image processing was developed. This system has been used to measure densities of the particles produced. Mini-jet production is studied using the UA1 1987 minimum bias data sample for p (anti) interaction at s{sup 1/2} 0 630 GeV. The study shows that the transverse energy distribution of mini-jets is in good agreement with the QCD prediction. The angular distributions of two leading jets show the behaviour of elastic scattering of partons with gluon exchange. 86 refs.
Mackie, M; Mackie, Matt; Javanainen, Juha
2002-01-01
We theoretically examine collective two-color photoassociation of a 87Rb Bose-Einstein condensate, focusing on stimulated Raman adiabatic passage (STIRAP) from atoms to molecules. In particular, Drummond et al. [Phys. Rev. A 65, 063619 (2002); cond-mat/0110578] have predicted that particle-particle interactions limit the efficiency of atom-molecule conversion to around forty percent. We demonstrate that mean-field shifts can be sidelined by switching to modest densities, and that STIRAP subsequently proceeds at near-unit efficiency.
Modified uncertainty principle from the free expansion of a Bose-Einstein Condensate
Castellanos, Elías
2015-01-01
We develop an analytical and numerical analysis of the free expansion of a Bose-Einstein condensate, in which we assume that the single particle energy spectrum is deformed due to a possible quantum structure of space time. Also we consider the presence of inter particle interactions in order to study more realistic and specific scenarios. The modified free velocity expansion of the condensate leads in a natural way to a modification of the uncertainty principle, which allows us to investigate some possible features of the Planck scale regime in low-energy earth-based experiments.
Computation of Capillary Interactions among Many Particles at Free Surface
Fujita, Masahiro; Koike, Osamu; Yamaguchi, Yukio
2013-03-01
We have developed a new computational method to efficiently estimate capillary interactions among many moving particles at a free surface. A novelty of the method is the immersed free surface (IFS) model that transforms the surface tension exerted on a three-phase contact line on a particle surface into the surface tension exerted on an artificially created virtual free surface in the particle. Using the IFS model along with a level set method and an immersed boundary method, we have reasonably simulated a capillary-force-induced self-assembly of particles that is common in coating-drying of particle suspension.
Collapse of a Bose gas: Kinetic approach
Indian Academy of Sciences (India)
Shyamal Biswas
2012-08-01
We have analytically explored the temperature dependence of critical number of particales for the collapse of a harmonically trapped attractively interacting Bose gas below the condensation point by introducing a kinetic approach within the Hartee-Fock approximation. The temperature dependence obtained by this easy approach is consistant with that obtained from the scaling theory.
Wang, Junwu; Hoef, van der M.A.; Kuipers, J.A.M.
2009-01-01
Discrete particle simulations are by now well established as an effective tool to study the mechanics of complex gas-solid flows in gas-fluidized beds. In this study, a state-of-the-art discrete particle model is used to explore the role of particle-particle interactions in bubbling gas-fluidized be
Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow
DEFF Research Database (Denmark)
Salewski, Mirko; Fuchs, Laszlo
2008-01-01
decreases by more than 40% in the dense particle region in the near-field of the jet due to the introduction of aerodynamic four-way coupling. The jet of monodisperse particles therefore penetrates further into the crossflow in this case. The strength of the counterrotating vortex pair (CVP) and turbulence...... is applied to simulate monodisperse, rigid, and spherical particles injected into crossflow as an idealization of a spray jet in crossflow. A domain decomposition technique reduces the computational cost of the aerodynamic particle interaction model. It is shown that the average drag on such particles...... particles under such conditions is suggested. In this idealized atomizing mixture, the effect of aerodynamic four-way coupling reverses: The aerodynamic particle interaction results in a stronger CVP and enhances turbulence levels....
Collective Dynamics of Interacting Particles in Unsteady Flows
Abedi, Maryam
2014-01-01
We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a long-range attractive and a short-range repulsive potential field known as Morse potential. We assume Stokesian drag force between particles and their carrier fluid, and find analytic single-peaked traveling solutions for the spatial density of particles in the catastrophic phase. In steady flow conditions the streaming velocity of particles is identical to their carrier fluid, but we show that particle streaming is asynchronous with an unsteady carrier fluid. Using linear perturbation analysis, the stability of traveling solutions is investigated in unsteady conditions. It is shown that the resulting dispersion relation is an integral equation of the Fredholm type, and yields two general families of stable modes: singular modes whose eigenvalues form a continuous spectrum, and a finite number of discrete global modes. Dependi...
Variational study of polarons in Bose-Einstein condensates
2014-01-01
We use a class of variational wave functions to study the properties of an impurity in a Bose-Einstein condensate, i.e. the "Bose polaron". The impurity interacts with the condensate through a contact interaction, which can be tuned by a Feshbach resonance. We find a stable attractive polaron branch that evolves continuously across the resonance to a tight-binding diatomic molecule deep in the positive scattering length side. A repulsive polaron branch with finite lifetime is also observed an...
INTERACTING MANY-PARTICLE SYSTEMS OF DIFFERENT PARTICLE TYPES CONVERGE TO A SORTED STATE
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby; Starke, Jens; Hummel, N.
2010-01-01
system converges by self-organized pattern formation to a sorted state where particles of the same type share a common position and those of different types are separated from each other. This is proved in the sense that we show that the property of being sorted is asymptotically stable and all other......We consider a model class of interacting many-particle systems consisting of different types of particles defined by a gradient flow. The corresponding potential expresses attractive and repulsive interactions between particles of the same type and different types, respectively. The introduced...
A field theory characterization of interacting adiabatic particles in cosmology
Arteaga, Daniel
2008-01-01
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time-evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
A field theory characterization of interacting adiabatic particles in cosmology
Energy Technology Data Exchange (ETDEWEB)
Arteaga, Daniel [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: darteaga@ub.edu
2008-08-07
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
Ferroelectricity by Bose-Einstein condensation in a quantum magnet.
Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H
2016-09-26
The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl3, leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.
Ferroelectricity by Bose-Einstein condensation in a quantum magnet
Kimura, S.; Kakihata, K.; Sawada, Y.; Watanabe, K.; Matsumoto, M.; Hagiwara, M.; Tanaka, H.
2016-09-01
The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl3, leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.
Charged particle interaction with a chirped electromagnetic pulse
Khachatryan, A.G.; Boller, K.-J.; Goor, van F.A.
2003-01-01
It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.
Parametric resonance and particle stochastic interactions with a periodic medium
Pinheiro, Mario J
2015-01-01
A non-markovian stochastic model shows the emergence of structures in the medium, a self-organization characterized by a relationship between particle's energy, driven frequency $\\omega$ and a frequency of interaction with the medium $\
Electrostatic interactions of colloidal particles at vanishing ionic strength.
Sainis, Sunil K; Merrill, Jason W; Dufresne, Eric R
2008-12-02
Electrostatic interactions of colloidal particles are typically screened by mobile ions in the solvent. We measure the forces between isolated pairs of colloidal polymer microspheres as the density of bulk ions vanishes. The ionic strength is controlled by varying the concentration of surfactant (NaAOT) in a nonpolar solvent (hexadecane). While interactions are well-described by the familiar screened-Coulomb form at high surfactant concentrations, they are experimentally indistinguishable from bare Coulomb interactions at low surfactant concentration. Interactions are strongest just above the critical micelle concentration, where particles can obtain high surface potentials without significant screening, kappaa renormalization, we are able to construct a simple thermodynamic model capturing the role of reverse micelles in charging the particle surface. These measurements provide novel access to electrostatic forces in the limit where the particle size is much less than the screening length, which is relevant not just to the nonpolar suspensions described here, but also to aqueous suspensions of nanoparticles.
Fundamental Particles and Interactions. A Wall Chart of Modern Physics.
Achor, William T.; And Others
1988-01-01
Discusses a wall chart, "The Standard Model of Fundamental Particles and Interactions," for use in introductory physics courses at either high school or college level. Describes the chart development process, introduction and terminology of particle physics, components of the chart, and suggestions for using the chart, booklet, and…
Magnetostriction and exchange effects in trapped dipolar Bose and Fermi gases
Baillie, D; Blakie, P. B.
2012-01-01
We examine the magnetostrictive position and momentum space distortions that occur in harmonically confined dipolar Bose and Fermi gases. Direct interactions give rise to position space magnetostriction and exchange interactions give rise to momentum space magnetostriction. While the position space magnetostriction is similar in Bose and Fermi systems, the momentum space magnetostriction is markedly different: the Bose gas momentum distribution distorts in the opposite sense to that of the Fe...
Kartsev, PF
2003-01-01
We present the results of an exact numeric simulation of N one-dimensional bosons with attractive delta-functional interaction in a rotating ring. We prove that even at intermediate values of N, the system can be described by conventional methods of weakly interacting gas, the dimensionless paramete
Stochastic transport of interacting particles in periodically driven ratchets
Savel'Ev, Sergey; Marchesoni, Fabio; Nori, Franco
2004-12-01
An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential U(x+l)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable when the distance a between particles is much less than the interaction length λ , i.e., a particle interacts with many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is applied to an ensemble of locally (a≪λ≪l) interacting (either repelling or attracting) particles placed in an asymmetric one-dimensional substrate potential, either with an oscillating temperature (temperature rachet) or driven by an ac force (rocked ratchet). In both cases we focus on the high-frequency limit. For the temperature ratchet, we find that the net current is typically suppressed (or can even be inverted) with increasing density of the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a critical value of the particle density, above which a finite fraction of the particles starts condensing in a liquidlike state near the substrate minima. The dependence of the net transport current on the particle density and the interparticle potential is analyzed in detail for different values of the ratchet parameters.
Interaction of plasma vortices with resonant particles
DEFF Research Database (Denmark)
Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.
1990-01-01
Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime they poss......Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....
Static interaction between electrically polarisable particles in vacuo
Coïsson, R
2015-01-01
The static interaction of a point charge and a polarisable particle and between two polarisable particles is discussed in vacuo, and force and energy considerations are made. In particular a critical distance is shown (in principle) to appear in the two-dipole case, where the polarisation is self- sustained, and above which it disappears and below which it tends to explode. In the case of a polarisable particle with a nonzero charge interacting with a charge (of the same sign) there is a distance where repulsion and attraction are balanced.
Pair interaction of bilayer-coated nanoscopic particles
Institute of Scientific and Technical Information of China (English)
Zhang Qi-Yi
2009-01-01
The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placcd on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphilcs, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery.
Ground state and excitations of a Bose gas: From a harmonic trap to a double well
Energy Technology Data Exchange (ETDEWEB)
Japha, Y. [Department of Physics, Ben-Gurion University, Beer-Sheva 84105 (Israel); Band, Y. B. [Departments of Chemistry and Electro-Optics, and Ilse Katz Center for Nano-Science, Ben-Gurion University, Beer-Sheva 84105 (Israel)
2011-09-15
We determine the low-energy properties of a trapped Bose gas split in two by a potential barrier over the whole range of barrier heights and asymmetry between the wells. For either weak or strong coupling between the wells, our two-mode theory yields a two-site Bose-Hubbard Hamiltonian with the tunneling, interaction, and bias parameters calculated simply using an explicit form of two mode functions. When the potential barrier is relatively low, most of the particles occupy the condensate mode and our theory reduces to a two-mode version of the Bogoliubov theory, which gives a satisfactory estimate of the spatial shape and energy of the lowest collective excitation. When the barrier is high, our theory generalizes the standard two-site Bose-Hubbard model into the case of asymmetric modes, and correctly predicts a full separation of the modes in the limit of strong separation of the wells. We provide explicit analytic forms for the number squeezing and coherence as a function of particle number and temperature. We compare our theory to other two-mode theories for bosons in a double well and discuss their validity in different parameter regimes.
Spinor bose gases in cubic optical lattice
Energy Technology Data Exchange (ETDEWEB)
Mobarak, Mohamed Saidan Sayed Mohamed
2014-01-27
In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the
Identified Particle Correlations at RHIC: Medium Interactions & Modified Fragmentation
Sickles, Anne
2007-01-01
Azimuthal angle two particle correlations have been shown to be a powerful probe for extracting novel features of jet induced correlations produced in Au+Au collisions at RHIC. At intermediate $p_T$, 2-5GeV/c, the jets have been shown to be significantly modified in both their particle composition and their angular distribution compared to p+p collisions. Two-particle angular correlations with identified particles provide sensitive probes of both the interactions between hard scattered partons and the medium. The systematics of these correlations are essential to understanding the physics of intermediate $p_T$ in heavy ion collisions.
Distribution function approach to irreversible adsorption of interacting colloidal particles
Faraudo, Jordi; Bafaluy, Javier
2000-01-01
A statistical-mechanical description of the irreversible adsorption of interacting colloidal particles is developed. Our approach describes in a consistent way the interaction of particles from the bulk with adsorbed particles during the transport process towards the adsorbing surface. The macroscopic physical quantities corresponding to the actual process are expressed as averages over simpler auxiliary processes which proceed in the presence of a fixed number n of adsorbed particles. The adsorption rate verifies a generalized Langmuir equation, in which the kinetic resistance (the inverse of the kinetic coefficient) is expressed as the sum of a diffusional resistance and a resistance due to interaction with adsorbed particles during the transport process (blocking effect). Contrary to previous approaches, the blocking effect is not due to geometrical exclusion, instead it measures how the transport from the bulk is affected by the adsorbed particles. From the general expressions obtained, we have derived coverage expansions for the adsorption rate and the surface correlation function. The theory is applied to the case of colloidal particles interacting through DLVO potentials. This form of the kinetic coefficient is shown to be in agreement with recent experimental results, in which RSA fails.
Turbulence-radiation interactions in a particle-laden flow
Frankel, Ari; Pouransari, Hadi; Iaccarino, Gianluca; Mani, Ali
2014-11-01
Turbulent fluctuations in a radiatively participating medium can significantly alter the mean heat transfer characteristics in a manner that current RANS models cannot accurately capture. While turbulence-radiation interaction has been studied extensively in traditional combustion systems, such interactions have not yet been studied in the context of particle-laden flows. This work is motivated by applications in particle-based solar receivers in which external radiation is primarily absorbed by a dispersed phase and conductively exchanged with the carrier fluid. Direct numerical simulations of turbulence with Lagrangian particles subject to a collimated radiation source are performed with a flux-limited diffusion approximation to radiative transfer. The dependence of the turbulence-radiation interaction statistics on the particle Stokes number will be demonstrated. Supported by PSAAP II.
Simulation of Au particle interaction on graphene sheets
Mcleod, A.; Vernon, K. C.; Rider, A. E.; Ostrikov, K.
2013-09-01
The interaction of Au particles with few layer graphene is of interest for the formation of the next generation of sensing devices 1. In this paper we investigate the coupling of single gold nanoparticles to a graphene sheet, and multiple gold nanoparticles with a graphene sheet using COMSOL Multiphysics. By using these simulations we are able to determine the electric field strength and associated hot-spots for various gold nanoparticle-graphene systems. The Au nanoparticles were modelled as 8 nm diameter spheres on 1.5 nm thick (5 layers) graphene, with properties of graphene obtained from the refractive index data of Weber 2 and the Au refractive index data from Palik 3. The field was incident along the plane of the sheet with polarisation tested for both s and p. The study showed strong localised interaction between the Au and graphene with limited spread; however the double particle case where the graphene sheet separated two Au nanoparticles showed distinct interaction between the particles and graphene. An offset was introduced (up to 4 nm) resulting in much reduced coupling between the opposed particles as the distance apart increased. Findings currently suggest that the graphene layer has limited interaction with incident fields with a single particle present whilst reducing the coupling region to a very fine area when opposing particles are involved. It is hoped that the results of this research will provide insight into graphene-plasmon interactions and spur the development of the next generation of sensing devices.
Energy Technology Data Exchange (ETDEWEB)
Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)
2015-10-28
Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of
Inter-particle Interactions in Composites of Antiferromagnetic Nanoparticles
DEFF Research Database (Denmark)
Frandsen, Cathrine; Mørup, Steen
2003-01-01
We have prepared mixtures of alpha-Fe2O3, CoO, and NiO nanoparticles by drying aqueous suspensions of the particles. The magnetic properties were studied by Mossbauer spectroscopy. The measurements showed that interactions with CoO particles suppress the superparamagnetic relaxation of both alpha......-Fe2O3 and Fe-57-doped NiO particles. The effect of NiO particles on alpha-FeA particles was a shorter relaxation time and an induced Morin transition, which usually is absent in alpha-Fe2O3 nanoparticles. Spectra of alpha-Fe2O3 particles, prepared by drying suspensions with added Co2+ and Ni2+ ions......, showed that the suspension medium can affect the magnetic properties of the alpha-FeA particles significantly, but not in the same way as the CoO or NiO nanoparticles. Therefore, a strong inter-particle exchange interaction between particles of different materials seems to be responsible for the magnetic...
A Model of Elementary Particle Interactions
Khan, I
2000-01-01
There is a second kind of light which does not interact with our electrons. However it interacts with some of our protons (p) and some of our neutrons (n) which are both of two kinds: protons (p, p`), neutrons (n`, n) differing in the two kinds of charges (Q1, Q2) associated with the two kinds of light. p [p`] and n` [n] have (Q1, Q2) values equal to (1, 1) [(1, 0)] and (0, 0) [(0, 1)] respectively. There is also a second kind of electron (Q2 =1, Q1= 0), equal in mass to our electron (Q1 = -1, Q2= 0), which does not interact with our (the first) kind of light. Three major scenarios S1, S2 and X4 arise. In S1, matter in the solar system on large scales is predominantly neutralized in both kinds of charges and the weak forces of attraction among the sun and planets are due to a fundamental force of nature. However in this scenario we must postulate that human consciousness is locked on to chemical reactions in the retina involving the first kind of light and the first kind of electrons only. It is oblivious to ...
Wali, Kameshwar C.
2005-04-01
In June 1924, a relatively unknown Satyendra Nath Bose from Dacca, India, wrote a letter to Einstein beginning with ``Respected Sir, I have ventured to send you the accompanying article for your perusal. I am anxious to know what you think of it. You will see that I have ventured to deduce the coefficient 8πυ^2/c^3 in Planck's law independent of the classical electrodynamics, only assuming that the ultimate elementary regions in Phase-space have the content h^3. I do not know sufficient German to translate the paper. If you think the paper worth publication, I shall be grateful if you arrange for its publication in Zeitschrift für Physik.'' Einstein did translate the article himself and got it published. He wrote to Ehrenfest: ``The Indian Bose has given a beautiful derivation of Planck's law, including the constant [i.e.8πυ^2/c^3].'' Einstein extended the ideas of Bose that implied, among other things, a new statistics for the light-quanta to the molecules of an ideal gas and wrote to Ehrenfest, `from a certain temperature on, the molecules ``condense'' without attractive forces, that is, they accumulate at zero velocity. The theory is pretty, but is there also some truth to it?' Abraham Pais has called Bose's paper ``the fourth and the last revolutionary papers of the old quantum theory.'' My paper will present the works of Bose and Einstein in their historical perspective and the eventual birth of the new quantum Bose-Einstein statistics.
Probabilistic approach to nonlinear wave-particle resonant interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Brownian dynamics simulations with hard-body interactions: Spherical particles
Behringer, Hans; 10.1063/1.4761827
2012-01-01
A novel approach to account for hard-body interactions in (overdamped) Brownian dynamics simulations is proposed for systems with non-vanishing force fields. The scheme exploits the analytically known transition probability for a Brownian particle on a one-dimensional half-line. The motion of a Brownian particle is decomposed into a component that is affected by hard-body interactions and into components that are unaffected. The hard-body interactions are incorporated by replacing the affected component of motion by the evolution on a half-line. It is discussed under which circumstances this approach is justified. In particular, the algorithm is developed and formulated for systems with space-fixed obstacles and for systems comprising spherical particles. The validity and justification of the algorithm is investigated numerically by looking at exemplary model systems of soft matter, namely at colloids in flow fields and at protein interactions. Furthermore, a thorough discussion of properties of other heurist...
Gallet, Basile; Nazarenko, Sergey; Dubrulle, Bérengère
2015-07-01
In field theory, particles are waves or excitations that propagate on the fundamental state. In experiments or cosmological models, one typically wants to compute the out-of-equilibrium evolution of a given initial distribution of such waves. Wave turbulence deals with out-of-equilibrium ensembles of weakly nonlinear waves, and is therefore well suited to address this problem. As an example, we consider the complex Klein-Gordon equation with a Mexican-hat potential. This simple equation displays two kinds of excitations around the fundamental state: massive particles and massless Goldstone bosons. The former are waves with a nonzero frequency for vanishing wave number, whereas the latter obey an acoustic dispersion relation. Using wave-turbulence theory, we derive wave kinetic equations that govern the coupled evolution of the spectra of massive and massless waves. We first consider the thermodynamic solutions to these equations and study the wave condensation transition, which is the classical equivalent of Bose-Einstein condensation. We then focus on nonlocal interactions in wave-number space: we study the decay of an ensemble of massive particles into massless ones. Under rather general conditions, these massless particles accumulate at low wave number. We study the dynamics of waves coexisting with such a strong condensate, and we compute rigorously a nonlocal Kolmogorov-Zakharov solution, where particles are transferred nonlocally to the condensate, while energy cascades towards large wave numbers through local interactions. This nonlocal cascading state constitutes the intermediate asymptotics between the initial distribution of waves and the thermodynamic state reached in the long-time limit.
Gallet, Basile; Nazarenko, Sergey; Dubrulle, Bérengère
2015-07-01
In field theory, particles are waves or excitations that propagate on the fundamental state. In experiments or cosmological models, one typically wants to compute the out-of-equilibrium evolution of a given initial distribution of such waves. Wave turbulence deals with out-of-equilibrium ensembles of weakly nonlinear waves, and is therefore well suited to address this problem. As an example, we consider the complex Klein-Gordon equation with a Mexican-hat potential. This simple equation displays two kinds of excitations around the fundamental state: massive particles and massless Goldstone bosons. The former are waves with a nonzero frequency for vanishing wave number, whereas the latter obey an acoustic dispersion relation. Using wave-turbulence theory, we derive wave kinetic equations that govern the coupled evolution of the spectra of massive and massless waves. We first consider the thermodynamic solutions to these equations and study the wave condensation transition, which is the classical equivalent of Bose-Einstein condensation. We then focus on nonlocal interactions in wave-number space: we study the decay of an ensemble of massive particles into massless ones. Under rather general conditions, these massless particles accumulate at low wave number. We study the dynamics of waves coexisting with such a strong condensate, and we compute rigorously a nonlocal Kolmogorov-Zakharov solution, where particles are transferred nonlocally to the condensate, while energy cascades towards large wave numbers through local interactions. This nonlocal cascading state constitutes the intermediate asymptotics between the initial distribution of waves and the thermodynamic state reached in the long-time limit.
Convergence Time Analysis of Particle Swarm Optimization Based on Particle Interaction
Directory of Open Access Journals (Sweden)
Chao-Hong Chen
2011-01-01
Full Text Available We analyze the convergence time of particle swarm optimization (PSO on the facet of particle interaction. We firstly introduce a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our results, numerical experiments are executed on benchmark functions with a regular PSO program.
Simulations of Shock Wave Interaction with a Particle Cloud
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'
2016-11-01
Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Maxwell, R; Ata, S; Wanless, E J; Moreno-Atanasio, R
2012-09-01
Three dimensional Discrete Element Method (DEM) computer simulations have been carried out to analyse the kinetics of collision of multiple particles against a stationary bubble and the sliding of the particles over the bubble surface. This is the first time that a computational analysis of the sliding time and particle packing arrangements of multiple particles on the surface of a bubble has been carried out. The collision kinetics of monodisperse (33 μm in radius) and polydisperse (12-33 μm in radius) particle systems have been analysed in terms of the time taken by 10%, 50% and 100% of the particles to collide against the bubble. The dependencies of these collision times on the strength of hydrophobic interactions follow relationships close to power laws. However, minimal sensitivity of the collision times to particle size was found when linear and square relationships of the hydrophobic force with particles radius were considered. The sliding time for single particles has corroborated published theoretical expressions. Finally, a good qualitative comparison with experiments has been observed with respect to the particle packing at the bottom of the bubble after sliding demonstrating the usefulness of computer simulations in the studies of particle-bubble systems.
Dipolar Excitations of a Trapped Bose-Fermi Mixture
Institute of Scientific and Technical Information of China (English)
FUXiao-Wei; LIUXia-Ji; HUHui; LIShi-Qun
2004-01-01
We study the dipolar excitation of a trapped Bose-Fermi mixture at zero temperature, by using a scalingansatz formalism and Thomas-Fermi approximation at mean-field level. We show that both frequencies of the low-lying and high-lying modes are strongly affected by the Bose-Fermi interaction. Possible implication of our results to the recent experiment has been commented.
Dipolar Excitations of a Trapped Bose-Fermi Mixture
Institute of Scientific and Technical Information of China (English)
FU Xiao-Wei; LIU Xia-Ji; HU Hui; LI Shi-Qun
2004-01-01
We study the dipolar excitation of a trapped Bose-Fermi mixture at zero temperature, by using a scaling ansatz formalism and Thomas-Fermi approximation at mean-field level. We show that both frequencies of the low-lying and high-lying modes are strongly affected by the Bose-Fermi interaction. Possible implication of our results to the recent experiment has been commented.
Bose-Einstein Condensation in low dimensionality
Nho, Kwangsik; Landau, D. P.
2006-03-01
Using path integral Monte Carlo simulation methods[1], we have studied properties of Bose-Einstein Condensates harmonically trapped in low dimemsion. Each boson has a hard-sphere potential whose core radius equals its corresponding scattering length. We have tightly confined the motion of trapped particles in one or more direction by increasing the trap anisotropy in order to simulate lower dimensional atomic gases. We have investigated the effect of both the temperature and the dimemsionality on the energetics and structural properties such as the total energy, the density profile, and the superfluid fraction. Our results show that the physics of low dimensional bosonic systems is very different from that of their three dimensional counterparts[2]. The superfluid fraction for a quasi-2D boson gas decreases faster than that for both a quasi-1D system[3] and a true 3D system with increasing temperature. The superfluid fraction decreases gradually as the two-body interaction strength increases although it shows no noticable dependence for both a quasi-1D system and a true 3D system. [1] K. Nho and D. P. Landau, Phys. Rev. A. 70, 53614 (2004).[2] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133 (1966);1.5inP. C. Hohenberg, Phys. Rev. 158, 383 (1967).[3] K. Nho and D. Blume, Phys. Rev. Lett. 95, 193601 (2005).
Interaction measurement of particles bound to a lipid membrane
Sarfati, Raphael; Dufresne, Eric
2015-03-01
The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.
Simulation of hydrodynamically interacting particles confined by a spherical cavity
Aponte-Rivera, Christian; Zia, Roseanna N.
2016-06-01
We present a theoretical framework to model the behavior of a concentrated colloidal dispersion confined inside a spherical cavity. Prior attempts to model such behavior were limited to a single enclosed particle and attempts to enlarge such models to two or more particles have seen limited success owing to the challenges of accurately modeling many-body and singular hydrodynamic interactions. To overcome these difficulties, we have developed a set of hydrodynamic mobility functions that couple particle motion with hydrodynamic traction moments that, when inverted and combined with near-field resistance functions, form a complete coupling tensor that accurately captures both the far-field and near-field physics and is valid for an arbitrary number of spherical particles enclosed by a spherical cavity of arbitrary relative size a /R , where a and R are the particle and cavity size, respectively. This framework is then utilized to study the effect of spherical confinement on the self- and entrained motion of the colloids, for a range of particle-to-cavity size ratios. The self-motion of a finite-size enclosed particle is studied first, recovering prior results published in the literature: The hydrodynamic mobility of the particle is greatest at the center of the cavity and decays as (a /R ) /(1 -y2) , where y is the particle distance to the cavity center. Near the cavity wall, the no-slip surfaces couple strongly and mobility along the cavity radius vanishes as ξ ≡R -(a +y ) , where y is center-to-center distance from particle to cavity. Corresponding motion transverse to the cavity radius vanishes as [ln(1/ξ ) ] -1. The effect of confinement on entrainment of a particle in the flow created by the motion of others is also studied, where we find that confinement exerts a qualitative effect on the strength and anisotropy of entrainment of a passive particle dragged by the flow of a forced particle. As expected, entrainment strength decays with increased distance
The impact of surface properties on particle-interface interactions
Wang, Anna; Kaz, David; McGorty, Ryan; Manoharan, Vinothan N.
2013-03-01
The propensity for particles to bind to oil-water interfaces was first noted by Ramsden and Pickering over a century ago, and has been attributed to the huge reduction in surface energy when a particle breaches an oil-water interface and straddles it at its equilibrium height. Since then materials on a variety of length scales have been fabricated using particles at interfaces, from Pickering emulsions to Janus particles. In these applications, it is simply assumed that the particle sits at its hugely energetically favourable equilibrium position. However, it was recently shown that the relaxation of particles towards their equilibrium position is logarithmic in time and could take months, much longer than typical experiments. Here we investigate how surface charge and particle 'hairiness' impact the interaction between micron-sized particles and oil-water interfaces, and explore a molecular kinetic theory model to help understand these results. We use digital holographic microscopy to track micron-sized particles as they approach an oil-water interface with a resolution of 2 nm in all three dimensions at up to thousands of frames per second.
Soft wall effects on interacting particles in billiards.
Oliveira, H A; Manchein, C; Beims, M W
2008-10-01
The effect of physically realizable wall potentials (soft walls) on the dynamics of two interacting particles in a one-dimensional (1D) billiard is examined numerically. The 1D walls are modeled by the error function and the transition from hard to soft walls can be analyzed continuously by varying the softness parameter sigma . For sigma-->0 the 1D hard wall limit is obtained and the corresponding wall force on the particles is the delta function. In this limit the interacting particle dynamics agrees with previous results obtained for the 1D hard walls. We show that the two interacting particles in the 1D soft walls model is equivalent to one particle inside a soft right triangular billiard. Very small values of sigma substantiously change the dynamics inside the billiard and the mean finite-time Lyapunov exponent decreases significantly as the consequence of regular islands which appear due to the low-energy double collisions (simultaneous particle-particle-1D wall collisions). The rise of regular islands and sticky trajectories induced by the 1D wall softness is quantified by the number of occurrences of the most probable finite-time Lyapunov exponent. On the other hand, chaotic motion in the system appears due to the high-energy double collisions. In general we observe that the mean finite-time Lyapunov exponent decreases when sigma increases, but the number of occurrences of the most probable finite-time Lyapunov exponent increases, meaning that the phase-space dynamics tends to be more ergodiclike. Our results suggest that the transport efficiency of interacting particles and heat conduction in periodic structures modeled by billiards will strongly be affected by the smoothness of physically realizable walls.
DUAL CHARACTERS OF INTERACTION BETWEEN PARTICLES AND FLUID
Institute of Scientific and Technical Information of China (English)
Yong Jin; Yao Wang; Yi Cheng; Xiaotao Bi
2005-01-01
The unique characteristics of gas-solids two-phase flow and fluidization in terms of the flow structures and the apparent behavior of particles and fluid-particle interactions are closely linked to physical properties of the particles, operating conditions and bed configurations. Fluidized beds behave quite differently when solid properties, gas velocities or vessel geometries are varied. An understanding of hydrodynamic changes and how they, in turn, influence the transfer and reaction characteristics of chemical and thermal operations by variations in gas-solid contact, residence time, solid circulation and mixing and gas distribution is very important for the proper design and scale-up of fluidized bed reactors. In this paper, rather than attempting a comprehensive survey, we concentrate on examining some important positive and negative impacts of particle sizes, bubbles, clusters and column walls on the physical and chemical aspects of chemical reactor performance from the engineering application point of view with the aim of forming an adequate concept for guiding the design of multiphase fluidized bed chemical reactors.One unique phenomenon associated with particle size is that fluidized bed behavior does not always vary monotonically with changing the average particle size. Different behaviors of particles with difference sizes can be well understood by analyzing the relationship between particle size and various forces. For both fine and coarse particles, too narrow a distribution is generally not favorable for smooth fluidization. A too wide size distribution, on the other hand, may lead to particle segregation and high particle elutriation. Good fluidization performance can be established with a proper size distribution in which inter-particle cohesive forces are reduced by the lubricating effect of fine particles on coarse particles for Type A, B and D particles or by the spacing effect of coarse particles or aggregates for Type C powders.Much emphasis
Electroweak interaction of particles with accelerated matter and astrophysical applications
Dvornikov, Maxim
2015-01-01
The description of physical processes in accelerated frames opens a window to numerous new phenomena. One can encounter these effects both in the subatomic world and on a macroscale. In the present work we review our recent results on the study of the electroweak interaction of particles with an accelerated background matter. In our analysis we choose the noninertial comoving frame, where matter is at rest. Our study is based on the solution of the Dirac equation, which exactly takes into account both the interaction with matter and the nonintertial effects. First, we study the interaction of ultrarelativistic neutrinos, electrons and quarks with the rotating matter. We consider the influence of the matter rotation on the resonance in neutrino oscillations and the generation of anomalous electric current of charged particles along the rotation axis. Then, we study the creation of neutrino-antineutrino pairs in a linearly accelerated matter. The applications of the obtained results for elementary particle phys...
Transition of a mesoscopic bosonic gas into a Bose-Einstein condensat
Schelle, Alexej
2011-01-01
The condensate number distribution during the transition of a dilute, weakly interacting gas of N=200 bosonic atoms into a Bose-Einstein condensate is modeled within number conserving master equation theory of Bose-Einstein condensation. Initial strong quantum fluctuations occuring during the exponential cycle of condensate growth reduce in a subsequent saturation stage, before the Bose gas finally relaxes towards the Gibbs-Boltzmann equilibrium.
Transition of a mesoscopic bosonic gas into a Bose-Einstein condensate
2011-01-01
The condensate number distribution during the transition of a dilute, weakly interacting gas of N=200 bosonic atoms into a Bose-Einstein condensate is modeled within number conserving master equation theory of Bose-Einstein condensation. Initial strong quantum fluctuations occuring during the exponential cycle of condensate growth reduce in a subsequent saturation stage, before the Bose gas finally relaxes towards the Gibbs-Boltzmann equilibrium.
Entanglement Properties in Two-Component Bose-Einstein Condensate
Jiang, Di-You
2016-10-01
We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.
Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus
Energy Technology Data Exchange (ETDEWEB)
Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology
1997-10-01
In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction
Efimov-driven phase transitions of the unitary Bose gas.
Piatecki, Swann; Krauth, Werner
2014-03-20
Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.
Wave-particle interactions in the outer radiation belts
Agapitov, O V; Artemyev, A V; Mourenas, D; Krasnoselskikh, V V
2015-01-01
Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (fraction of a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed. {\\bf Key words:} the radiation belts, wave-particle interaction, plasma waves and instabilities
Interaction of aerosol particles with a standing wave optical field
Curry, John J.
2016-09-01
Trajectories of spherical dielectric particles carried across an optical standing wave by a flowing medium are investigated. Trajectories are determined by a three-dimensional Monte Carlo calculation that includes drag forces, Brownian motion, and optical gradient forces. We analyze the case of polystyrene particles with radii of order 100 nm carried across a Gaussian-mode standing wave by slowly flowing air. Particles are injected into the flowing air from a small source area such as the end of a capillary tube. Different sizes are dispersed continuously in space on the opposite side of the standing wave, demonstrating a practical way to sort particles. Certain discrete values of particle size show no interaction with the optical field, independent of intensity. These particles can be sorted with exceptionally high resolution. For example, particles with radii of 275 nm can be sorted with 1 nm resolution. This sorting scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. The Monte Carlo results are in agreement with those obtained by a much simpler, and faster, fluid calculation based on effective velocities and effective diffusion coefficients, both obtained by averaging trajectories over multiple fringes of the optical field.
Hydrodynamics of interaction of particles (including cells) with surfaces
Duszyk, Marek; Doroszewski, Jan
particle velocity perpendicular to the streamline direction. This phenomenon is the cause of the lateral migration of particles. Neutrally buoyant rigid particles migrate to a certain concentrical region situated between the tube axis and the wall (tubular pinch region). Deformable neutrally buoyant particles migrate towards the tube axis, and deformable non-neutrally buoyant particles may move either toward the tube axis or toward the wall. In the research on the influence of the flow delimiting surface on the motion of particles in suspension a considerable progress has recently been made. However, the phenomena in this field are extremely complex. At present, two main types of approach may be distinguished. On a microscopic level direct interactions between particles and surfaces are analyzed. A macroscopic approach consists in treating particle suspension as fluid, and overall influence of the surface on its properties are studied. A comprehensive theory linking these two levels has not yet emerged.
Kocharovsky, V. V.; Scully, Marlan O.; Zhu, Shi-Yao; Suhail Zubairy, M.
2000-02-01
A nonequilibrium approach to the dynamics and statistics of the condensate of an ideal N-atom Bose gas cooling via interaction with a thermal reservoir using the canonical ensemble is developed. We derive simple analytical expressions for the canonical partition function and equilibrium distribution of the number of atoms in the ground state of a trap under different approximations, and compare them with exact numerical results. The N-particle constraint associated with the canonical ensemble is usually a burden. In the words of Kittel, ``in the investigation of the Bose-Einstein...laws it is very inconvenient to impose the restriction that the number of particles in the subsystem shall be held constant.'' But in the present approach, based on the analogy between a second-order phase transition and laser threshold behavior, the N-particle constraint makes the problem easier. We emphasize that the present work provides another example of a case in which equilibrium (detailed balance) solutions to nonequilibrium equations of motion provide a useful supplementary approach to conventional statistical mechanics. We also discuss some dynamical and mesoscopic aspects of Bose-Einstein condensation. The conclusion is that the present analytical (but approximate) results, based on a nonequilibrium approach, are in excellent agreement with exact (but numerical) results. The present analysis has much in common with the quantum theory of the laser.
Mali, Provash; Mukhopadhyay, Amitabha; Sarkar, Soumya; Singh, Gurmukh
2014-05-01
Presence of unusual azimuthal structures in the particle emission data obtained from the 28Si-Ag/Br interaction at 14.5A GeV and from the 32S-Ag/Br interaction at 200A GeV, are investigated in the framework of the Cherenkov gluon emission and/or Mach shock wave formation in nuclear/partonic medium. Nuclear photographic emulsion technique is used to collect the experimental data. The experiment is compared with the predictions of two simulations, namely (i) the Relativistic Quantum Molecular Dynamics (RQMD) and (ii) the Ultra-relativistic Quantum Molecular Dynamics (UrQMD). A charge reassignment algorithm is implemented over the outputs of the simulations to mimic the Bose-Einstein correlation (BEC) effect. Our analysis confirms presence of jet-like structures in both experiments beyond statistical noise. Such structures are more pronounced in the 32S data than in the 28Si data.
Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis
Energy Technology Data Exchange (ETDEWEB)
Perez-Garcia, V.M.; Michinel, H.; Cirac, J.; Lewenstein, M.; Zoller, P. [Departamento de Matematicas, Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)]|[Departamento de Fisica Aplicada, E. U. Optica e Optometria, Universidade de Santiago de Compostela, 15706 Santiago de Compostela (Spain)]|[Departamento de Fisica Aplicada, Facultad de CC. Quimicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)]|[Comissariat a l`Energie Atomique, DSM/DRECAM/SPAM, Centre d`Etudes de Saclay, 91191 Gif-sur-Yvette (France)]|[Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)
1996-12-01
We solve the time-dependent Gross-Pitaevskii equation by a variational ansatz to calculate the excitation spectrum of a Bose-Einstein condensate in a trap. The trial wave function is a Gaussian which allows an essentially analytical treatment of the problem. Our results reproduce numerical calculations over the whole range from small to large particle numbers, and agree exactly with the Stringari results in the strong interaction limit. Excellent agreement is obtained with the recent JILA experiment and predictions for the negative scattering length case are also made. {copyright} {ital 1996 The American Physical Society.}
Modified uncertainty principle from the free expansion of a Bose-Einstein condensate
Castellanos, Elías; Escamilla-Rivera, Celia
2017-01-01
In this paper, we present a theoretical and numerical analysis of the free expansion of a Bose-Einstein condensate, where we assume that the single particle energy spectrum is deformed due to a possible quantum structure of spacetime. Also, we consider the presence of interparticle interactions in order to study more realistic and specific scenarios. The modified free velocity expansion of the condensate leads in a natural way to a modification of the uncertainty principle, which allows us to investigate some possible features of the Planck scale regime in low-energy earth-based experiments.
Bose Fermi Supersymmetry with Bogoliubov transforms in Cosmology
Patwardhan, A
2006-01-01
Field theory including Supersymmetry and Bose Fermi Symmetry is an active subject of particle physics and cosmology. Recent and expected observational evidence gives indicators for the creation and destruction of normal and supersymmetric dark matter in the universe. This paper uses Bogoliubov transforms in supersymmetric and Bose Fermi form for obtaining the vaccuum expectation values at any two times in cosmological and black hole geometries. The isotropic Robertson Walker and slightly anisotropic Bianchi I geometry mode functions have a differential equation form analogous to the supersymmetric Hamiltonian. The condition for mixed and distinct representations for bosonic and fermionic fields of normal and supersymmetric partner particles are found.
Quantum backreaction of quantum fluid in Bose-Einstein condensates
Institute of Scientific and Technical Information of China (English)
Xu Yan; Xiong Zu-Zhou; Chen Bing; Li Zhao-Xin; Tan Lei
2009-01-01
In this paper, with the full field operator φ expressed in terms of a particle-number-conserving mean-field ansatz, we investigate the dynamical behaviour of Bose-Einstein eondensates from microscopic physics. Including the firstorder term correction from single-particle excitation and the remaining higher-order term correction from collective excitations simultaneously, we obtain the formulation for a closed local expression of quantum backreaetion Q, and discuss the influence on static Bose-Einstein condensates. Even though the quantum backreaction is small, it still has some influence on its dynamics.
Directed Transport of Interacting Particle Systems: Recent Progress
Institute of Scientific and Technical Information of China (English)
ZHENG Zhi-Gang
2005-01-01
Recent developments in studies of directed transport processes in interacting particle systems are retrospected. Due to the interactions among elements, the directed transport process exhibits complicated and novel cooperative dynamics. We considered various possibilities in achieving ratchet motion by breaking different symmetries of many-body systems. It is shown that the directional transport can even be induced by breaking the coupling symmetry and the spatiotemporal symmetries.
Tsurutani, B. T.; Zhang, L. D.; Mason, G. L.; Lakhina, G. S.; Hada, T.; Arballo, J. K.; Zwickl, R. D.
2002-04-01
Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths l
Fermi-to-Bose crossover in a trapped quasi-2D gas of fermionic atoms
Turlapov, A. V.; Kagan, M. Yu
2017-09-01
The physics of many-body systems where particles are restricted to move in two spatial dimensions is challenging and even controversial: on one hand, neither long-range order nor Bose condensation may appear in infinite uniform 2D systems at finite temperature, on the other hand this does not prohibit superfluidity or superconductivity. Moreover, 2D superconductors, such as cuprates, are among the systems with the highest critical temperatures. Ultracold atoms are a platform for studying 2D physics. Unique from other physical systems, quantum statistics may be completely changed in an ultracold gas: an atomic Fermi gas may be smoothly crossed over into a gas of Bose molecules (or dimers) by tuning interatomic interactions. We review recent experiments where such crossover has been demonstrated, as well as critical phenomena in the Fermi-to-Bose crossover. We also present simple theoretical models describing the gas at different points of the crossover and compare the data to these and more advanced models.
Particle Swarm Optimization With Interswarm Interactive Learning Strategy.
Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui
2016-10-01
The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.
A single particle effective potential for interacting positron and positronium
Zubiaga, A; Puska, M
2013-01-01
We have studied small systems composed by an atom and a positron or a positronium atom. We have used many-body quantum mechanical calculations to describe the correlation effects of light particles. Explicitly correlated gaussian for the basis functions and a stochastical variational optimization method has allowed to obtain accurate wavefunctions and energies. We have discussed the chemistry of positrons in those systems by means of analyzing the densities of the light particles (electrons and positrons). During the discussion, we propose an effective potential that describes the properties of the positron in those systems, valid also when it forms a Ps cluster. The effective potential is a mean field description of the interaction of the positron that can be used to calculate the distribution of the positron and its interaction energy. This potential can be a step forward for an accurate single particle description of the positron in cases when it forms positronium, specially molecular soft matter.
Noisy quantum walks of two indistinguishable interacting particles
Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Piilo, Jyrki; Maniscalco, Sabrina; Paris, Matteo G. A.; Bordone, Paolo
2017-02-01
We investigate the dynamics of continuous-time two-particle quantum walks on a one-dimensional noisy lattice. Depending on the initial condition, we show how the interplay between particle indistinguishability and interaction determines distinct propagation regimes. A realistic model for the environment is considered by introducing non-Gaussian noise as time-dependent fluctuations of the tunneling amplitudes between adjacent sites. We observe that the combined effect of particle interaction and fast noise (weak coupling with the environment) provides a faster propagation compared to the noiseless case. This effect can be understood in terms of the band structure of the Hubbard model, and a detailed analysis as a function of both noise and system parameters is presented.
Bounds on halo-particle interactions from interstellar calorimetry
Chivukula, Sekhar R.; Cohen, Andrew G.; Dimopoulos, Savas; Walker, Terry P.
1990-01-01
It is shown that the existence of neutral interstellar clouds constrains the interaction of any particulate dark-matter candidate with atomic hydrogen to be quite small. Even for a halo particle of mass 1 PeV (10 to the 6 GeV), it is shown that the cross section with hydrogen must be smaller than the typical atomic cross section that is expected for a positively charged particle bound to an electron. The argument presented is that if the clouds are in equilibrium, then the rate at which energy is deposited by collisions with dark-matter particles must be smaller than the rate at which the cloud can cool. This argument is used to constrain the interaction cross section of dark matter with hydrogen. Remarks are made on the general viability of charged dark matter. Comments are also made on a bound which derives from the dynamical stability of the halo.
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya, Yajnavalkya; Darewych, Jurij
2016-07-01
We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
DLVO interaction energies between hollow spherical particles and collector surfaces
The surface element integration technique was used to systematically study Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies/forces between hollow spherical particles (HPs) and a planar surface or two intercepting half planes under different ionic strength conditions. The inner and outer ...
Particle Mesh Ewald's Method and Non-Interacting Dyon Gas
Kiamari, Motahareh
2016-01-01
We study the free energy of a quark-antiquark pair near the deconfinement temperature by particle mesh Ewald's method for non-interacting dyon ensemble. We show that the free energy of the quark-antiquark pair increases linearly by increasing the distance between them. However, close to the deconfinement temperature some signs of string breaking are observed.
Interaction Potential between Parabolic Rotator and an Outside Particle
Directory of Open Access Journals (Sweden)
Dan Wang
2014-01-01
Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.
Particle acceleration by ultra-intense laser-plasma interactions
Nakajima, K
2002-01-01
The mechanism of particle acceleration by ultra-increase laser-plasma interaction is explained. Laser light can generate very high electric field by focusing with electromagnetic field matched phase with frequency. 1018 W/cm sup 2 laser light produce about 3 TV/m electric field. Many laser accelerators, which particle acceleration method satisfies phase matching particle and electric field, are proposed. In these accelerators, the Inverse Cherenkov Accelerator, Inverse FEL Accelerator and Laser-Plasma Accelerator are explained. Three laser-plasma acceleration mechanisms: Plasma Beat Wave Accelerator, Laser Wake-Field Accelerator (LWFA) and Self-Modulated LWFA, showed particle acceleration by experiments. By developing a high speed Z pinch capillary-plasma optical waveguide, 2.2 TW and 90 fs laser pulse could be propagated 2 cm at 40 mu m focusing radius in 1999. Dirac acceleration or ultra-relativistic ponderomotive acceleration mechanism can increase energy exponentially. (S.Y.)
Simultaneous Eye Tracking and Blink Detection with Interactive Particle Filters
Directory of Open Access Journals (Sweden)
Mohan M. Trivedi
2008-04-01
Full Text Available We present a system that simultaneously tracks eyes and detects eye blinks. Two interactive particle filters are used for this purpose, one for the closed eyes and the other one for the open eyes. Each particle filter is used to track the eye locations as well as the scales of the eye subjects. The set of particles that gives higher confidence is defined as the primary set and the other one is defined as the secondary set. The eye location is estimated by the primary particle filter, and whether the eye status is open or closed is also decided by the label of the primary particle filter. When a new frame comes, the secondary particle filter is reinitialized according to the estimates from the primary particle filter. We use autoregression models for describing the state transition and a classification-based model for measuring the observation. Tensor subspace analysis is used for feature extraction which is followed by a logistic regression model to give the posterior estimation. The performance is carefully evaluated from two aspects: the blink detection rate and the tracking accuracy. The blink detection rate is evaluated using videos from varying scenarios, and the tracking accuracy is given by comparing with the benchmark data obtained using the Vicon motion capturing system. The setup for obtaining benchmark data for tracking accuracy evaluation is presented and experimental results are shown. Extensive experimental evaluations validate the capability of the algorithm.
Plasma–Surface Interactions Under High Heat and Particle Fluxes
Directory of Open Access Journals (Sweden)
Gregory De Temmerman
2013-01-01
Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.
How to model the interaction of charged Janus particles
Hieronimus, Reint; Raschke, Simon; Heuer, Andreas
2016-08-01
We analyze the interaction of charged Janus particles including screening effects. The explicit interaction is mapped via a least square method on a variable number n of systematically generated tensors that reflect the angular dependence of the potential. For n = 2 we show that the interaction is equivalent to a model previously described by Erdmann, Kröger, and Hess (EKH). Interestingly, this mapping is for n = 2 not able to capture the subtleties of the interaction for small screening lengths. Rather, a larger number of tensors has to be used. We find that the characteristics of the Janus type interaction plays an important role for the aggregation behavior. We obtained cluster structures up to the size of 13 particles for n = 2 and 36 and screening lengths κ-1 = 0.1 and 1.0 via Monte Carlo simulations. The influence of the screening length is analyzed and the structures are compared to results for an electrostatic-type potential and for the multipole-expanded Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We find that a dipole-like potential (EKH or dipole DLVO approximation) is not able to sufficiently reproduce the anisotropy effects of the potential. Instead, a higher order expansion has to be used to obtain cluster structures that are compatible with experimental observations. The resulting minimum-energy clusters are compared to those of sticky hard sphere systems. Janus particles with a short-range screened interaction resemble sticky hard sphere clusters for all considered particle numbers, whereas for long-range screening even very small clusters are structurally different.
Are Quasiparticles and Phonons Identical in Bose-Einstein Condensates?
Tsutsui, Kazumasa; Kato, Yusuke; Kita, Takafumi
2016-12-01
We study an interacting spinless Bose-Einstein condensate to clarify theoretically whether the spectra of its quasiparticles (one-particle excitations) and collective modes (two-particle excitations) are identical, as concluded by Gavoret and Nozières [http://doi.org/10.1016/0003-4916(64)90200-3" xlink:type="simple">Ann. Phys. (N.Y.) 28, 349 (1964)]. We derive analytic expressions for their first and second moments so as to extend the Bijl-Feynman formula for the peak of the collective-mode spectrum to its width (inverse lifetime) and also to the one-particle channel. The obtained formulas indicate that the width of the collective-mode spectrum manifestly vanishes in the long-wavelength limit, whereas that of the quasiparticle spectrum apparently remains finite. We also evaluate the peaks and widths of the two spectra numerically for a model interaction potential in terms of the Jastrow wave function optimized by a variational method. It is thereby found that the width of the quasiparticle spectrum increases towards a constant as the wavenumber decreases. This marked difference in the spectral widths implies that the two spectra are distinct. In particular, the lifetime of the quasiparticles remains finite even in the long-wavelength limit.
The PHOCUS Project: Particle Interactions in the Polar Summer Mesosphere
Gumbel, J.; Hedin, J.; Khaplanov, M.
2012-12-01
On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE) observed by the Esrange lidar and the ESRAD MST radar. The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Starting out from first ideas in 2005, PHOCUS has developed into a comprehensive venture that connects to a number of new and renewed scientific questions. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. This presentation gives an overview of the campaign and scientific results. The backbone of the campaign was a sounding rocket with 18 instruments from 8 scientific groups in Sweden, Norway, Germany, Austria and the USA. Atmospheric composition and ice particle properties were probed by a set of optical instruments from Stockholm University, in collaboration with the University in Trondheim. Exciting new instrument developments concerned microwave radiometers for in situ measurements of water vapour at 183 and 558 GHz by Chalmers University of Technology. Charged particles were probed by impact detectors from the University of Colorado, the University of Tromsø and the Leibniz Institute of Atmospheric Physics (IAP), complemented by direct particle sampling from Stockholm University. The neutral and charged background state of the atmosphere was quantified by the Technical University Graz, IAP, and the Norwegian Defence Research Establishment. Important ground-based instrumentation included the Esrange lidar, the ESRAD MST radar, the SkiYMET meteor radar and EISCAT.
Characteristics of Wave-Particle Interaction in a Hydrogen Plasma
Institute of Scientific and Technical Information of China (English)
HE Hui-Yong; CHEN Liang-Xu; LI Jiang-Fan
2008-01-01
We study the characteristics of cyclotron wave-particle interaction in a typical hydrogen plasma. The numerical calculations of minimum resonant energy Emin, resonant wave frequency w, and pitch angle diffusion coefficient Dαα for interactions between R-mode/L-mode and electrons/protons are presented. It is found that Emin decreases with ω for R-mode/electron, L-mode/proton and L-mode/electron interactions, but increase with w for R-mode/proton interaction. It is shown that both R-mode and L-mode waves can efficiently scatter energetic (10 keV～100 keV) electrons and protons and cause precipitation loss at L=4, indicating that perhaps waveparticle interaction is a serious candidate for the ring current decay.
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
Energy Technology Data Exchange (ETDEWEB)
Castejon, F.; Eguilior, S.
2003-07-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.
Small oscillations of two interacting particles in a magnetic field
del Pino, L. A.; Curilef, S.
2016-11-01
The classical behavior of two interacting particles in the presence of a uniform magnetic field is studied in the small oscillations approximation. Using the Lagrangian formalism, the equations of motion are derived, as are their solutions and constants of motion. Normal modes of oscillations and their corresponding normal coordinates are obtained that strongly depend on the initial condition; therefore, we observe that the oscillation along the line that joins the particles is non-isochronous. In addition, particular attention has been paid to the planar motion, without the pseudomomentum component parallel to the magnetic field, where one longitudinal mode and two transversal modes are obtained.
Interaction of Macro-particles with LHC proton beam
Zimmermann, F; Xagkoni, A
2010-01-01
We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.
On the configuration of systems of interacting particle with minimum potential energy per particle
Ventevogel, W.J.; Nijboer, B.R.A.
1979-01-01
In continuation of previous work we extend the class of two-body potentials, either repulsive or of generalized Lennard-Jones type, for which it can be proved that among all configurations of an infinite one-dimensional system of interacting particles (with fixed density in the case of repulsive int
Gas interaction effects on lunar bonded particles and their implications
Mukherjee, N. R.
1976-01-01
Results are reported for an experimental investigation of gas-interaction effects on different Apollo 11 and Apollo 12 lunar-soil samples containing bonded particles. In the experiments, lunar fines were exposed to pure O2, pure water vapor, HCl, NH3, N2, HCOOH, and CH3NH2, in order to observe whether bonded particles would separate. In addition, repeated gas adsorption/desorption measurements were performed to determine the nature and reactive properties of the particle surfaces, and surface areas were measured for comparison with analogous terrestrial samples to determine whether the surface areas of highly radiation-damaged particles were larger or smaller. It is found that N2 is apparently ineffective in separating bonded particles and that the ratio of Apollo 11 to Apollo 12 bonded particles separated by a particular gas exposure ranges from 2.5 to 3.0. Possible reasons for differences in material surface properties at the two Apollo sites are considered, and it is concluded that material from a certain depth at some other site was transported to the Apollo 12 site and mixed with the original material in recent years (considerably less than 2000 years ago).
Quantum particle interacting with a metallic particle: Spectra from quantum Langevin theory
Loh, W. M. Edmund; Ooi, C. H. Raymond
2017-01-01
The effect of a nearby metallic particle on the quantum optical properties of a quantum particle in the four-level double Raman configuration is studied using the quantum Langevin approach. We obtain analytical expressions for the correlated quantum fields of Stokes and anti-Stokes photons emitted from the system and perform analysis on how the interparticle distance, the direction of observation or detection, the strengths of controllable laser fields, the presence of surface plasmon resonance, and the number density of the quantum particle affect the quantum spectra of the Stokes and anti-Stokes fields. We explore the physics behind the quantum-particle-metallic-nanoparticle interaction within the dipole approximation, that is, when the interparticle distance is much larger than the sizes of the particles. Our results show the dependence of the spectra on the interparticle distance in the form of oscillatory behavior with damping as the interparticle distance increases. At weaker laser fields the enhancement of quantum fields which manifests itself in the form of a Fano dip in the central peak of the spectra becomes significant. Also, the quantum-particle-metallic-nanoparticle coupling, which is affected by the size of the metallic nanoparticle and the number density of the quantum particle, changes the angular dependence of the spectra by breaking the angular rotational symmetry. In the presence of surface plasmon resonance the oscillatory dependence of the spectra on the interparticle distance and angles of observation becomes even stronger due to the plasmonic enhancement effect.
Self-diffusion in a system of interacting Langevin particles.
Dean, D S; Lefèvre, A
2004-06-01
The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature beta and the particle density rho. The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small beta and rhobeta constants. The one-loop result can also be resummed using a semiphenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.
Simulation of the interaction between Alfven waves and fast particles
Energy Technology Data Exchange (ETDEWEB)
Feher, Tamas Bela
2014-02-18
There is a wide variety of Alfven waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this wave-particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of Alfven waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the Alfven waves is derived by combining the reduced MHD equations. The Alfven wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the Alfven waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer
Brackett, Jeremy; Newman, Joseph; De Silva, Theja N.
2016-10-01
We study an effective fermion model on a square lattice to investigate the cooperation and competition of superconductivity and anti-ferromagnetism. In addition to particle tunneling and on-site interaction, a bosonic excitation mediated attractive interaction is also included in the model. We assume that the attractive interaction is mediated by spin fluctuations and excitations of Bose-Einstein condensation (BEC) in electronic systems and Bose-Fermi mixtures on optical lattices, respectively. Using an effective mean-field theory to treat both superconductivity and anti-ferromagnetism at equal footing, we study a single effective model relevant for both systems within the Landau energy functional approach and a linearized theory. Within our approaches, we find possible co-existence of superconductivity and anti-ferromagnetism for both electronic and cold-atomic models. Our linearized theory shows while spin fluctuations favor d-wave superconductivity and BEC excitations favor s-wave superconductivity.
Electromagnetic and gravitational interactions of the spinning particle
Ünal, Nuri
2006-09-01
We consider the invariance of the spinning free particle Lagrangian under the global coordinate transformations for the classical model of the electron with internal degrees of freedom and obtain the conservation of the energy-momentum, total angular momentum, and electric charge. The local gauge transformations give the electromagnetic and gravitational interactions of the spinning particle in the Riemann-Cartan space from the generalized spin connections. We show that the covariant constancy of the Dirac matrices gives; (i) the form invariance of the classical equations of motion, except the gravitational force terms in nongeodesic equation, (ii) the conservation of the electromagnetic current, (iii) the quantum Hamiltonian and equations of motion from the classical ones without the quantum ordering corrections, and (iv) the minimal coupling of the gravitation with the spinning particle in the Hamiltonian and in wave equations in the Riemann-Cartan space-time.
Quantum breathing mode of interacting particles in harmonic traps
Bauch, Sebastian; Hochstuhl, David; Balzer, Karsten; Bonitz, Michael
2010-04-01
The breathing mode - the uniform radial expansion and contraction of a system of interacting particles - is analyzed. Extending our previous work [Bauch et al 2009 Phys. Rev. B. 80 054515] we present a systematic analysis of the breathing mode for fermions with an inverse power law interaction potential w(r) ~ r-dwith d = 1,2,3 in the whole range of coupling parameters. The results thus cover the range from the ideal "gas" to the Wigner crystal-like state. In addition to exact results for two particles obtained from a solution of the time-dependent Schrödinger equation we present results for N = 4,6 from multiconfiguration time-dependent Hartree-Fock simulations.
[Research in elementary particles and interactions]. Technical progress report
Energy Technology Data Exchange (ETDEWEB)
Adair, R.; Sandweiss, J.; Schmidt, M.
1992-05-01
Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.
Interfacial interactions between plastic particles in plastics flotation.
Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian
2015-12-01
Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.
Interaction mechanism of non-metallic particles with crystallization front
Directory of Open Access Journals (Sweden)
Żak P. L.
2017-03-01
Full Text Available The process of steel solidification in the CCS mould is accompanied by a number of phenomena relating to the formation of non-metallic phase, as well as the mechanism of its interaction with the existing precipitations and the advancing crystallization front. In the solidification process the non-metallic inclusions may be absorbed or repelled by the moving front. As a result a specific distribution of non-metallic inclusions is obtained in the solidified ingot, and their distribution is a consequence of these processes. The interaction of a non-metallic inclusion with the solidification front was analyzed for alumina, for different values of the particle radius. The simulation was performed with the use of own computer program. Each time a balance of forces acting on a particle in its specific position was calculated. On this basis the change of position of alumina particle in relation to the front was defined for a specific radius and original location of the particle with respect to the front.
Higgs particles interacting via a scalar Dark Matter field
Directory of Open Access Journals (Sweden)
Bhattacharya Yajnavalkya
2016-01-01
Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
Constrained Traffic of Particles on Complex Networks
Institute of Scientific and Technical Information of China (English)
MENG Qing-Kuan; ZHU Jian-Yang
2011-01-01
We study the traffic of particles on complex networks under constraints. The constraints we propose are the different interactions between particles and the limited capability of node holding particles. We give the grand partition function of the system and find the distributions of particles at the dynamically balanced point.Then,we investigate the internal relations among the theories of classical statistics,quantum statistics and the zero range process.Finally,we find the finite temperature of Bose-Einstein condensation.Numerical results verify our theoretical expectations.
Turbulence-particle interactions under surface gravity waves
Paskyabi, Mostafa Bakhoday
2016-11-01
The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ɛ turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.
Surface charge features of kaolinite particles and their interactions
Gupta, Vishal
Kaolinite is both a blessing and a curse. As an important industrial mineral commodity, kaolinite clays are extensively used in the paper, ceramic, paint, plastic and rubber industries. In all these applications the wettability, aggregation, dispersion, flotation and thickening of kaolinite particles are affected by its crystal structure and surface properties. It is therefore the objective of this research to investigate selected physical and surface chemical properties of kaolinite, specifically the surface charge of kaolinite particles. A pool of advanced analytical techniques such as XRD, XRF, SEM, AFM, FTIR and ISS were utilized to investigate the morphological and surface chemistry features of kaolinite. Surface force measurements revealed that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH8. Based on electrophoresis measurements, the apparent iso-electric point for kaolinite particles was determined to be less than pH 3. In contrast, the point of zero charge was determined to be pH 4.5 by titration techniques, which corresponds to the iso-electric point of between pH 4 and 5 as determined by surface force measurements. Results from kaolinite particle interactions indicate that the silica face--alumina face interaction is dominant for kaolinite particle aggregation at low and intermediate pH values, which explains the maximum shear yield stress at pH 5-5.5. Lattice resolution images reveal the hexagonal lattice structure of these two face surfaces of kaolinite. Analysis of the silica face of kaolinite showed that the center of the hexagonal ring of oxygen atoms is vacant, whereas the alumina face showed that the hexagonal surface lattice ring of hydroxyls surround another hydroxyl in the center of the ring. High resolution transmission electron microscopy investigation of kaolinite has indicated that kaolinite is indeed composed of silica/alumina bilayers
Calculations of Bose-Einstein correlations from Relativistic Quantum Molecular Dynamics
Energy Technology Data Exchange (ETDEWEB)
Sullivan, J.P.; Berenguer, M.; Fields, D.E.; Jacak, B.V.; Sarabura, M.; Simon-Gillo, J.; Sorge, H.; van Hecke, H. [Los Alamos National Lab., NM (United States); Pratt, S. [Michigan State Univ., East Lansing, MI (United States)
1993-10-01
Bose-Einstein correlation functions which are in good agreement with pion data can be calculated from an event generator. Here pion and (preliminary) kaon data from CERN experiment NA44 are compared to the calculations. The dynamics of 200 GeV/nucleon {sup 32}S + Pb collisions are calculated, without correlations due to interference patterns of a many-body wavefunction for identical particles, using the Relativistic Quantum Molecular Dynamics model (RQMD). The model is used to generate the phase-space coordinates of the emitted hadrons at the time they suffer their last strong interaction (freeze-out). Using the freeze-out position and momentum of pairs of randomly selected identical particles, a two-particle symmetrized wave-function is calculated and used to add two-body correlations. Details of the technique have been described previously. The method is similar to that used in the Spacer program.
Braibant, Sylvie; Spurio, Maurizio
2012-01-01
This volume is an exercises and solutions manual that complements the book "Particles and Fundamental Interactions" by Sylvie Braibant, Giorgio Giacomelli, and Maurizio Spurio. It aims to give additional intellectual stimulation for students in experimental particle physics. It will be a helpful companion in the preparation of a written examination, but also it provides a means to gaining a deeper understanding of high energy physics. The problems proposed are sometimes true and important research questions, which are described and solved in a step-by-step manner. In addition to the problems and solutions, this book offers fifteen Supplements that give further insight into topical subjects related to particle accelerators, signal and data acquisition systems and computational methods to treat them.
Probing a scattering resonance in Rydberg molecules with a Bose-Einstein condensate
Schlagmüller, Michael; Nguyen, Huan; Lochead, Graham; Engel, Felix; Böttcher, Fabian; Westphal, Karl M; Kleinbach, Kathrin S; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H
2015-01-01
We present spectroscopy of a single Rydberg atom excited within a Bose-Einstein condensate. We not only observe the density shift as discovered by Amaldi and Segre in 1934, but a line shape which changes with the principal quantum number n. The line broadening depends precisely on the interaction potential energy curves of the Rydberg electron with the neutral atom perturbers. In particular, we show the relevance of the triplet p-wave shape resonance in the Rydberg electron-Rb(5S) scattering, which significantly modifies the interaction potential. With a peak density of 5.5x10^14 cm^-3, and therefore an inter-particle spacing of 1300 a0 within a Bose-Einstein condensate, the potential energy curves can be probed at these Rydberg ion - neutral atom separations. We present a simple microscopic model for the spectroscopic line shape by treating the atoms overlapped with the Rydberg orbit as zero-velocity, uncorrelated, point-like particles, with binding energies associated with their ion-neutral separation, and ...
Solvable model of a trapped mixture of Bose-Einstein condensates
Klaiman, Shachar; Streltsov, Alexej I.; Alon, Ofir E.
2017-01-01
A mixture of two kinds of identical bosons held in a harmonic potential and interacting by harmonic particle-particle interactions is discussed. This is an exactly-solvable model of a mixture of two trapped Bose-Einstein condensates which allows us to examine analytically various properties. Generalizing the treatments in Cohen and Lee (1985) and Osadchii and Muraktanov (1991), closed form expressions for the mixture's frequencies and ground-state energy and wave-function, and the lowest-order densities are obtained and analyzed for attractive and repulsive intra-species and inter-species particle-particle interactions. A particular mean-field solution of the corresponding Gross-Pitaevskii theory is also found analytically. This allows us to compare properties of the mixture at the exact, many-body and mean-field levels, both for finite systems and at the limit of an infinite number of particles. We discuss the renormalization of the mixture's frequencies at the mean-field level. Mainly, we hereby prove that the exact ground-state energy per particle and lowest-order intra-species and inter-species densities per particle converge at the infinite-particle limit (when the products of the number of particles times the intra-species and inter-species interaction strengths are held fixed) to the results of the Gross-Pitaevskii theory for the mixture. Finally and on the other end, we use the mixture's and each species' center-of-mass operators to show that the Gross-Pitaevskii theory for mixtures is unable to describe the variance of many-particle operators in the mixture, even in the infinite-particle limit. The variances are computed both in position and momentum space and the respective uncertainty products compared and discussed. The role of the center-of-mass separability and, for generically trapped mixtures, inseparability is elucidated when contrasting the variance at the many-body and mean-field levels in a mixture. Our analytical results show that many
Pacakova, B.; Mantlikova, A.; Niznansky, D.; Kubickova, S.; Vejpravova, J.
2016-05-01
Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ({{E}\\text{d-\\text{d}}} ) scaled with each other and increased with increasing {{≤ft({{d}\\text{XRD}}/r\\right)}3} , where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of {{E}\\text{d-\\text{d}}} acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.
Bose-Einstein condensation in an ultra-hot gas of pumped magnons.
Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard
2014-03-11
Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.
Solar energetic particle interactions with the Venusian atmosphere
Energy Technology Data Exchange (ETDEWEB)
Plainaki, Christina; Grassi, Davide [INAF-IAPS, Rome (Italy); Paschalis, Pavlos; Mavromichalaki, Helen [National and Kapodistrian Univ., Athens (Greece). Nuclear and Particle Physics Dept.; Andriopoulou, Maria [Austrian Academy of Sciences, Graz (Austria). Space Research Science Inst.
2016-11-01
In the context of planetary space weather, we estimate the ion production rates in the Venusian atmosphere due to the interactions of solar energetic particles (SEPs) with gas. The assumed concept for our estimations is based on two cases of SEP events, previously observed in near-Earth space: the event in October 1989 and the event in May 2012. For both cases, we assume that the directional properties of the flux and the interplanetary magnetic field configuration would have allowed the SEPs' arrival at Venus and their penetration to the planet's atmosphere. For the event in May 2012, we consider the solar particle properties (integrated flux and rigidity spectrum) obtained by the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al., 2010, 2014) applied previously for the Earth case and scaled to the distance of Venus from the Sun. For the simulation of the actual cascade in the Venusian atmosphere initiated by the incoming particle fluxes, we apply the DYASTIMA code, a Monte Carlo (MC) application based on the Geant4 software (Paschalis et al., 2014). Our predictions are afterwards compared to other estimations derived from previous studies and discussed. Finally, we discuss the differences between the nominal ionization profile due to galactic cosmic-ray-atmosphere interactions and the profile during periods of intense solar activity, and we show the importance of understanding space weather conditions on Venus in the context of future mission preparation and data interpretation.
Bond rupture between colloidal particles with a depletion interaction
Energy Technology Data Exchange (ETDEWEB)
Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716 (United States)
2016-05-15
The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measured force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.
Wu, Bin; Lu, Wei
2017-08-01
This paper develops a multi-scale mechanical-electrochemical model which enables fully coupled mechanics and electrochemistry at both particle and electrode levels. At the particle level, solid diffusion is modeled using a generalized chemical potential to capture the effects of mechanical stress and phase transformation. At the electrode level, the stress arising from particle interaction is incorporated in a continuum model. This particle interaction stress is in addition to the traditional concept of intercalation stress inside isolated particles. The particle and continuum electrode levels are linked by the particle interaction stress as loads on the particle surface, and by consideration of stress on the electrochemical reaction rate on the particle surface. The effect of mechanical stress on electrochemical reaction results in a stress-dependent over-potential between particle and electrolyte. Stress gradient in an electrode leads to inhomogeneous intercalation/deintercalation currents for particles depending on their interaction stress with neighbors, resulting in stress gradient induced inhomogeneous state of charge. Conversely, non-uniform intercalation/deintercalation currents in an electrode lead to stress between particles. With this model we have an important finding: an electrochemically inactive region in an electrode causes stress built-up. This model provides a powerful tool to address various problems such as fracture in-between particles.
Water interaction with laboratory-simulated fossil fuel combustion particles.
Popovicheva, O B; Kireeva, E D; Shonija, N K; Khokhlova, T D
2009-10-01
To clarify the impact of fossil fuel combustion particles' composition on their capacity to take up water, we apply a laboratory approach in which the method of deposition of compounds, identified in the particulate coverage of diesel and aircraft engine soot particles, is developed. It is found that near-monolayer organic/inorganic coverage of the soot particles may be represented by three groups of fossil fuel combustion-derived particulate matter with respect to their Hansh's coefficients related to hydrophilic properties. Water adsorption measurements show that nonpolar organics (aliphatic and aromatic hydrocarbons) lead to hydrophobization of the soot surface. Acidic properties of organic compounds such as those of oxidized PAHs, ethers, ketones, aromatic, and aliphatic acids are related to higher water uptake, whereas inorganic acids and ionic compounds such as salts of organic acids are shown to be responsible for soot hydrophilization. This finding allows us to quantify the role of the chemical identity of soot surface compounds in water uptake and the water interaction with fossil fuel combustion particles in the humid atmosphere.
Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.
Zheng, Wei; Zhai, Hui
2014-12-31
In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.
Quantum filaments in dipolar Bose-Einstein condensates
Wächtler, F.; Santos, L.
2016-06-01
Collapse in dipolar Bose-Einstein condensates may be arrested by quantum fluctuations. Due to the anisotropy of the dipole-dipole interactions, the dipole-driven collapse induced by soft excitations is compensated by the repulsive Lee-Huang-Yang contribution resulting from quantum fluctuations of hard excitations, in a similar mechanism as that recently proposed for Bose-Bose mixtures. The arrested collapse results in self-bound filamentlike droplets, providing an explanation for the intriguing results of recent dysprosium experiments. Arrested instability and droplet formation are general features directly linked to the nature of the dipole-dipole interactions, and should hence play an important role in all future experiments with strongly dipolar gases.
Universal dynamics in a Unitary Bose Gas
Klauss, Catherine; Xie, Xin; D'Incao, Jose; Jin, Deborah; Cornell, Eric
2016-05-01
We investigate the dynamics of a unitary Bose gas with an 85 Rb BEC, specifically to determine whether the dynamics scale universally with density. We find that the initial density affects both the (i) projection of the strongly interacting many-body wave-function onto the Feshbach dimer state when the system is rapidly ramped to a weakly interacting value of the scattering length a and (ii) the overall decay rate to deeper bound states. We will present data on both measurements across two orders of magnitude in density, and will discuss how the data illustrate the competing roles of universality and Efimov physics.
Anderson localization in Bose-Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Modugno, Giovanni, E-mail: modugno@lens.unifi.i [LENS and Dipartimento di Fisica, Universita di Firenze, and INO-CNR Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy)
2010-10-01
The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose-Einstein condensates of ultracold atoms in disordered potentials have opened a new window for studying fundamental phenomena related to disorder. In particular, we direct our attention to recent experimental studies on Anderson localization and on the interplay of disorder and weak interactions. These realize a very promising starting point for a deeper understanding of the complex behaviour of interacting, disordered systems.
Event-chain Monte Carlo algorithms for three- and many-particle interactions
Harland, J.; Michel, M.; Kampmann, T. A.; Kierfeld, J.
2017-02-01
We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.
Acceleration and Particle Field Interactions of Cosmic Rays I: Formalism
Tawfik, A; Ghoneim, M T; Hady, A A
2010-01-01
The acceleration of cosmic rays is conjectured to be the output from various interactions with the electromagnetic fields in astrophysical bodies, like magnetic matter clumps, and from the well-known shock and stochastic Fermi mechanism. The latter apparently does not depend on the particle's charge, quantitatively. Therefore, the motion of the charged particle parallel to magnetic field $\\mathbf{B}$ and under the influence of the force $\\mathbf{F}$. is assumed to be composed in an acceleration by non-magnetic force $\\mathbf{F}_{\\parallel}$ and gyromotion along $\\mathbf{B}$, plus a drift in direction of $\\mathbf{F}_{\\perp}$. In this letter, the model and its formalism are introduced. Also various examples for drift and accelerating forces are studied.
Quantum dynamics and topological excitations in interacting dipolar particles
Rey, Ana
2016-05-01
Dipole-dipole interactions, long-range and anisotropic interactions that arise due to the virtual exchange of photons, are of fundamental importance in optical physics, and are enabling a range of new quantum technologies including quantum networks and optical lattice atomic clocks. In this talk I will first discuss how arrays of dipolar particles with a simple J = 0- J = 1 internal level structure can naturally host topological and chiral excitations including Weyl quasi-particles. Weyl fermions were first predicted to exist in the context of high energy physics but only recently have been observed in solid state systems. I will discuss a proposal of using Mott insulators of Sr atoms to observe and probe the Weyl excitation spectrum and its non-trivial chirality. Finally I will report on a recent experiment done at JILA which validates the underlying microscopic model that predicts the existence of these excitations. The experiment measured the collective emission from a coherently driven gas of ultracold 88 Sr atoms and observed a highly directional and anisotropic emission intensity and a substantial broadening of the atomic spectral lines. All of the measurements are well reproduced by the theoretical model. These investigations open the door for the exploration of novel quantum many-body systems involving strongly interacting atoms and photons, and are useful guides for further developments of optical atomic clocks and other applications involving dense atomic ensembles. AFOSR, MURI-AFOSR, ARO,NSF-PHY-1521080, JILA-NSF-PFC-1125844.
Interaction of tallow and hay particle size on ruminal parameters.
Lewis, W D; Bertrand, J A; Jenkins, T C
1999-07-01
Four nonlactating ruminally cannulated Holstein cows were used in a 4 x 4 Latin square experiment with 4 21-d periods to determine if the effects of dietary fat would be affected by hay particle length. Treatments consisted of two levels of tallow (0 and 5%) and two hay particle lengths (short-cut and long-cut) in a 2 x 2 factorial. Diets contained alfalfa hay, corn silage, and concentrate [1:1:2, dry matter (DM) basis] fed as a total mixed ration (TMR) once per day. Samples of the 0 and 5% tallow TMR were ground and incubated in situ in polyester bags for 24 and 48 h. Ruminal samples were taken on day 21 at 0800 h and at 2-h intervals until 1600 h. The total tract digestibilities of acid detergent fiber (ADF) and neutral detergent fiber (NDF) were not affected by tallow or by hay by tallow interactions. There was a trend for tallow to improve total tract digestibility of crude protein (CP) (70.2 vs. 74.7%). After 48 h of ruminal incubation, tallow significantly decreased the digestibilities of DM, ADF, and NDF. No hay length by tallow interactions for DM, NDF, ADF or CP digestibilities occurred after 24 or 48 h. Tallow increased concentrations of propionate and decreased concentrations of acetate and valerate and the acetate-to-propionate ratio. Total volatile fatty acids increased when tallow was added to diets with short-cut hay, which suggests that when unprotected fat is added to diets with a high level of hay, a short-cut hay length may be advantageous. This result may be due to shorter rumen retention time of feed particles, which reduces the time for fatty acids to exert antimicrobial effects. Or, it may because the increased surface area of the hay particle provides more area for microbial attachment and increased fermentation.
Renewable corn flour has a significant reinforcement effect in natural rubber. The corn flour was hydrolyzed and microfluidized to reduce its particle size. Greater than 90% of the hydrolyzed corn flour had an average size of ~300 nm, a reduction of 33 times compared to unhydrolyzed corn flour. Comp...
Bose-Einstein condensation in the relativistic ideal Bose gas.
Grether, M; de Llano, M; Baker, George A
2007-11-16
The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.
Study of the Interaction of Fluxes of Annihilating Particles
Nazarov, A. A.; Feropontova, N. M.
2015-12-01
A study of interacting particle fluxes in the form of an infinite linear queueing system with positive and negative requests is presented for different types of such systems. For the first class of systems with exponential service a stationary probability distribution of the number of positive requests in the system has been found. For the second class of systems, for the case of arbitrary service, the study is performed by the method of asymptotic analysis. Asymptotic equivalence of the systems under consideration is demonstrated.
3d particle simulations on ultra short laser interaction
Energy Technology Data Exchange (ETDEWEB)
Nishihara, Katsunobu; Okamoto, Takashi; Yasui, Hidekazu [Osaka Univ., Suita (Japan). Inst. of Laser Engineering
1998-03-01
Two topics related to ultra short laser interaction with matter, linear and nonlinear high frequency conductivity of a solid density hydrogen plasma and anisotropic self-focusing of an intense laser in an overdense plasma, have been investigated with the use of 3-d particle codes. Frequency dependence of linear conductivity in a dense plasma is obtained, which shows anomalous conductivity near plasma frequency. Since nonlinear conductivity decreases with v{sub o}{sup -3}, where v{sub o} is a quivering velocity, an optimum amplitude exists leading to a maximum electron heating. Anisotropic self-focusing of a linear polarized intense laser is observed in an overdense plasma. (author)
DEFF Research Database (Denmark)
Meaz, T; Koch, C. Bender; Mørup, Steen
1996-01-01
Ultrafine particles of feroxyhyte (delta-FeOOH) have been studied by Mossbauer spectroscopy. Coating of the particles with oleic acid results in a decrease of the superparamagnetic blocking temperature, whereas pressing the particles with a uniaxial pressure of 1.3 GPa leads to an increase...... of the blocking temperature. The results suggest that the interaction between the ferrimagnetic particles leads to ordering of the magnetic moments below a critical temperature, which depends on the strength of the interaction. Measurements at 5 K in a large magnetic field show that the particles have a non...
Light weakly interacting particles. Constraints and connection to dark matter
Energy Technology Data Exchange (ETDEWEB)
Andreas, Sarah
2013-07-15
The so far unknown particle nature of dark matter is a main motivation for extending the Standard Model of particle physics. A recently promoted approach to solving this puzzle is the concept of hidden sectors. Since the interactions of such sectors with the visible sector are very weak, so are the current experimental bounds. Hidden sectors might even contain sub-GeV scale particles that have so far escaped detection. In this thesis, we study the phenomenology of Weakly Interacting Slim Particles (WISPs) as well as their connection to dark matter in different Standard Model extensions. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), a light CPodd Higgs, arising from spontaneous breaking of approximate symmetries, represents an example of a WISP. Light gauge bosons of an extra U(1) symmetry in a hidden sector are other well motivated candidates for WISPs and called hidden photons. Such light hidden photons appear naturally in supersymmetry or string theory and might resolve the observed deviation in the muon anomalous magnetic moment from predictions. Moreover, scenarios in which hidden sector dark matter interacts via a light hidden photon with the visible sector exhibit appealing features in view of recent astrophysical anomalies. We study how the coupling of the CP-odd Higgs A{sup 0} to fermions can be constrained by current measurements for the case where the A{sup 0} is lighter than two muons. Analysing measurements of different rare and radiative meson decays, the muon anomalous magnetic moment as well as results from beam dump and reactor experiments, we severely constrain the CP-odd Higgs to be heavier than 210 MeV or to couple to fermions four orders of magnitude weaker than the Standard Model Higgs. These results apply more generally to the coupling of an axion-like particle to matter. Hidden photons can be constrained by experiments since they couple to charged Standard Model particles via kinetic mixing with the ordinary photon. We derive
Bose-Einstein Condensation and Free DKP field
Casana, R; Pimentel, B M; Valverde, J S
2003-01-01
The thermodynamical partition function of the Duffin-Kemmer-Petiau theory is evaluated using the imaginary-time formalism of quantum field theory at finite temperature and path integral methods. The DKP partition function displays two features: (i) full equivalence with the partition function for charged scalar particles and charged massive spin 1 particles; and (ii) the zero mode sector which is essential to reproduce the well-known relativistic Bose-Einstein condensation for both theories.
Bose-Einstein condensation and free DKP field
Energy Technology Data Exchange (ETDEWEB)
Casana, R.; Fainberg, V.Ya.; Pimentel, B.M.; Valverde, J.S
2003-09-15
The thermodynamical partition function of the Duffin-Kemmer-Petiau theory is evaluated using the imaginary-time formalism of quantum field theory at finite temperature and path integral methods. The DKP partition function displays two features: (i) full equivalence with the partition function for charged scalar particles and charged massive spin 1 particles; and (ii) the zero mode sector which is essential to reproduce the well-known relativistic Bose-Einstein condensation for both theories.
Bose-Einstein condensation and free DKP field
Casana, R.; Fainberg, V. Ya.; Pimentel, B. M.; Valverde, J. S.
2003-09-01
The thermodynamical partition function of the Duffin-Kemmer-Petiau theory is evaluated using the imaginary-time formalism of quantum field theory at finite temperature and path integral methods. The DKP partition function displays two features: (i) full equivalence with the partition function for charged scalar particles and charged massive spin 1 particles; and (ii) the zero mode sector which is essential to reproduce the well-known relativistic Bose-Einstein condensation for both theories.
Vesaratchanon, Jan S; Nikolov, Alex; Wasan, Darsh T
2008-06-01
The sedimentation velocities and concentration profiles of low-charge, monodisperse hydroxylate latex particle suspensions were investigated experimentally as a function of the particle concentration to study the effects of the collective particle interactions on suspension stability. We used the Kossel diffraction technique to measure the particle concentration profile and sedimentation rate. We conducted the sedimentation experiments using three different particle sizes. Collective hydrodynamic interactions dominate the particle-particle interactions at particle concentrations up to 6.5 vol%. However, at higher particle concentrations, additional collective particle-particle interactions resulting from the self-depletion attraction cause particle aggregation inside the suspension. The collective particle-particle interaction forces play a much more important role when relatively small particles (500 nm in diameter or less) are used. We developed a theoretical model based on the statistical particle dynamics simulation method to examine the role of the collective particle interactions in concentrated suspensions in the colloidal microstructure formation and sedimentation rates. The theoretical results agree with the experimentally-measured values of the settling velocities and concentration profiles.
Schegelsky, V A
2016-01-01
Bose-Einstein correlations in proton-proton collisions at the LHC are well descried by the formula with two different scales. It is shown for the first time that the pions are produced by few small size sources distributed over a much larger area in impact parameter space occupied by the interaction amplitude. The dependence of the two radii obtained in this procedure on the charged particle density and the mean transverse momentum of the pion/hadron in the correlated pair are discussed.
Vortex dynamics in coherently coupled Bose-Einstein condensates
Calderaro, Luca; Fetter, Alexander L.; Massignan, Pietro; Wittek, Peter
2017-02-01
In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This description is rewritten in terms of forces arising from the interaction with other vortices. Two such positive straight vortices experience a repulsive interaction and precess in a positive (anticlockwise) sense around their common centroid. A similar picture applies to vortices in a two-component, two-dimensional uniform Bose-Einstein condensate (BEC) coherently coupled through rf Rabi fields. Unlike the classical case, however, the rf Rabi coupling induces an attractive interaction and two such vortices with positive signs now rotate in the negative (clockwise) sense. Pairs of counter-rotating vortices are instead found to translate with uniform velocity perpendicular to the line joining their cores. This picture is extended to a single vortex in a two-component trapped BEC. Although two uniform vortex-free components experience familiar Rabi oscillations of particle-number difference, such behavior is absent for a vortex in one component because of the nonuniform vortex phase. Instead the coherent Rabi coupling induces a periodic vorticity transfer between the two components.
Quantum chaos and thermalization in isolated systems of interacting particles
Energy Technology Data Exchange (ETDEWEB)
Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2016-04-15
This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.
Phonon-like excitations in the two-state Bose-Hubbard model
Directory of Open Access Journals (Sweden)
I.V. Stasyuk
2015-12-01
Full Text Available The spectrum of phonon-like collective excitations in the system of Bose-atoms in optical lattice (more generally, in the system of quantum particles described by the Bose-Hubbard model is investigated. Such excitations appear due to displacements of particles with respect to their local equilibrium positions. The two-level model taking into account the transitions of bosons between the ground state and the first excited state in potential wells, as well as interaction between them, is used. Calculations are performed within the random phase approximation in the hard-core boson limit. It is shown that excitation spectrum in normal phase consists of the one exciton-like band, while in the phase with BE condensate an additional band appears. The positions, spectral weights and widths of bands strongly depend on chemical potential of bosons and temperature. The conditions of stability of a system with respect to the lowering of symmetry and displacement modulation are discussed.
Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I
2006-04-07
We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.
Light-induced nonlinear effects on dispersion relation of ultracold Bose gas
Institute of Scientific and Technical Information of China (English)
胡正峰; 杜春光; 李师群
2003-01-01
We have investigated the optical properties of A-configuration ultracold dense Bose gas interacting with two laser pulses, which usually result in electromagnetically induced transparency. With the nonrelativistic quantum electrodynamics and taking into account the atomic dipole-dipole interaction and local field effect, we have derived the Maxwell-Bloch equations of the system. The dispersion relation of an ultracold Bose gas has been obtained and the light-induced nonlinear effects have been analysed. The light-induced nonlinear effects are different from the effects induced by two-body collision of Bose-Einstein condensation atoms which have a frequency shift of transparent window.
Light—induced nonlinear effects of dispersion relation of ultracold Bose gas
Institute of Scientific and Technical Information of China (English)
HuZheng-Feng; DuChunGuang; LiShi-Qun
2003-01-01
We have investigated the optical properties of A-configuration ultracold dense Bose gas interacting with two laser pulses, which usually result in electromagnetically induced transparency. With the nonrelativistic quantum electrodynamics and taking into account the atomic dipole-dipole interaction and local field effect, we have derived the Maxwell-Bloch equations of the system. The dispersion relation of an ultracold Bose gas has been obtained and the light-induced nonlinear effects have been analysed. The light-induced nonlinear effects are different from the effects induced by two-body collision of Bose-Einstein condensation atoms which have a frequency shift of transparent window.
Anisotropic expansion of a thermal dipolar Bose gas
Tang, Yijun; Burdick, Nathaniel Q; DiSciacca, Jack M; Petrov, Dmitry S; Lev, Benjamin L
2016-01-01
We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.
Anisotropic Expansion of a Thermal Dipolar Bose Gas.
Tang, Y; Sykes, A G; Burdick, N Q; DiSciacca, J M; Petrov, D S; Lev, B L
2016-10-07
We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the postexpansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.
Dark Lump Excitations in Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
黄国翔; 朱善华
2002-01-01
Key Laboratory for Optical and Magnetic Resonance Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062We investigate the dynamics of two-dimensional matter-wave pulses in a Bose-Einstein condensate with diskshaped traps. For the case ofrepulsive atom-atom interactions, a Kadomtsev-Petviashvili equation with positive dispersion is derived using the method of multiple scales. The results show that it is possible to excite dark lump-like two-dimensional nonlinear excitations in the Bose-Einstein condensate.
Anisotropic Expansion of a Thermal Dipolar Bose Gas
Tang, Y.; Sykes, A. G.; Burdick, N. Q.; DiSciacca, J. M.; Petrov, D. S.; Lev, B. L.
2016-10-01
We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the postexpansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.
Primordial Universe with radiation and Bose-Einstein condensate
Alvarenga, F G; Fracalossi, R; Freitas, R C; Gonçalves, S V B; Monerat, G A; Oliveira-Neto, G; Silva, E V Corrêa
2016-01-01
In this work we derive a scenario where the early Universe consists of radiation and the Bose-Einstein condensate. We have included in our analysis the possibility of gravitational self-interaction due to the Bose-Einstein condensate being attractive or repulsive. After presenting the general structure of our model, we proceed to compute the finite-norm wave packet solutions to the Wheeler-DeWitt equation. The behavior of the scale factor is studied by applying the many-worlds interpretation of quantum mechanics. At the quantum level the cosmological model, in both attractive and repulsive cases, is free from the Big Bang singularity.
Directory of Open Access Journals (Sweden)
I.V. Stasyuk
2012-10-01
Full Text Available The Bose-Einstein condensation in the hard-core boson limit (HCB of the Bose-Hubbard model with two local states and the particle hopping in the excited band only is investigated. For the purpose of considering the non-ergodicity, a single-particle spectral density is calculated in the random phase approximation by means of the temperature boson Green functions. The non-ergodic contribution to the momentum distribution function of particles (connected with the static density fluctuations increases significantly and becomes comparable with the ergodic contribution in the superfluid phase near the tricritical point.
Bose-Bose mixtures with synthetic spin-orbit coupling in optical lattices
He, Liang; Ji, Anchun; Hofstetter, Walter
2015-08-01
We investigate the ground-state properties of Bose-Bose mixtures with Rashba-type spin-orbit (SO) coupling in a square lattice. The system displays rich physics from the deep Mott insulator (MI) all the way to the superfluid (SF) regime. In the deep MI regime, exotic spin-ordered phases arise due to the effective Dzyaloshinskii-Moriya type of superexchange interactions. By employing the nonperturbative bosonic dynamical mean-field theory (BDMFT), we numerically study and establish the stability of these magnetic phases against increasing hopping amplitude. We show that as hopping is increased across the MI to SF transition, exotic superfluid phases with magnetic textures emerge. In particular, we identify an exotic spin-spiral magnetic texture with spatial period 3 in the superfluid close to the MI-SF transition.
Energy Technology Data Exchange (ETDEWEB)
De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, Santo André, SP, 09210-170 (Brazil)
2014-03-01
We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.
Gravitational Waves as a New Probe of Bose-Einstein Condensate Dark Matter
Dev, P S Bhupal; Ohmer, Sebastian
2016-01-01
There exists a class of ultralight Dark Matter (DM) models which could form a Bose-Einstein condensate (BEC) in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC DM halo intervening along the line of sight of a gravitational wave (GW) signal could induce an observable change in the speed of GW, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GW as a new probe of the BEC DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC DM parameter space can be effectively probed by our new method in the near future.
Weakly interacting massive particle-nucleus elastic scattering response
Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.
2014-06-01
Background: A model-independent formulation of weakly interacting massive particle (WIMP)-nucleon scattering was recently developed in Galilean-invariant effective field theory. Purpose: Here we complete the embedding of this effective interaction in the nucleus, constructing the most general elastic nuclear cross section as a factorized product of WIMP and nuclear response functions. This form explicitly defines what can and cannot be learned about the low-energy constants of the effective theory—and consequently about candidate ultraviolet theories of dark matter—from elastic scattering experiments. Results: We identify those interactions that cannot be reliably treated in a spin-independent/spin-dependent (SI/SD) formulation: For derivative- or velocity-dependent couplings, the SI/SD formulation generally mischaracterizes the relevant nuclear operator and its multipolarity (e.g., scalar or vector) and greatly underestimates experimental sensitivities. This can lead to apparent conflicts between experiments when, in fact, none may exist. The new nuclear responses appearing in the factorized cross section are related to familiar electroweak nuclear operators such as angular momentum l⃗(i) and the spin-orbit coupling σ⃗(i).l⃗(i). Conclusions: To unambiguously interpret experiments and to extract all of the available information on the particle physics of dark matter, experimentalists will need to (1) do a sufficient number of experiments with nuclear targets having the requisite sensitivities to the various operators and (2) analyze the results in a formalism that does not arbitrarily limit the candidate operators. In an appendix we describe a code that is available to help interested readers implement such an analysis.
The τ-model of Bose-Einstein Correlations: Some recent results
Directory of Open Access Journals (Sweden)
Metzger Wesley J.
2016-01-01
Full Text Available Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays and in 7 TeV pp minimum bias interactions are investigated within the framework of the τ-model.
One-dimensional Bose gas on an atom chip
van Amerongen, A.H.
2008-01-01
We describe experiments investigating the (coherence) properties of a finite-temperature one-dimensional (1D) Bose gas with repulsive interactions. The confining magnetic field is generated with a micro-electronic circuit. This microtrap for atoms or `atom chip' is particularly suited to generate a
Investigating tunable KRb gases and Bose-Einstein condensates
DEFF Research Database (Denmark)
Jørgensen, Nils Byg
2015-01-01
We present the production of dual-species Bose-Einstein condensates of 39K and 87Rb with tunable interactions. A dark spontaneous force optical trap was used for 87Rb to reduce the losses in 39K originating from light-assisted collisions in the magneto optical trapping phase. Using sympathetic...
Hydrodynamic excitations in a Bose-Einstein condensate
Meppelink, R|info:eu-repo/dai/nl/304842370
2009-01-01
The field of Bose-Einstein condensation (BEC) in dilute atomic gases provides a fruitful playground to test well-developed theories of quantum fluids. Research using BECs can address open questions relating to the many-body aspects of two-component quantum liquids, namely the interaction between the
Renormalization group theory of the three dimensional dilute Bose gas
Bijlsma, M.; Stoof, H.T.C.
1996-01-01
We study the three-dimensional atomic Bose gas using renormalization group techniques. Using our knowledge of the microscopic details of the interatomic interaction, we determine the correct initial values of our renormalization group equations and thus obtain also information on nonuniversal
Hydrodynamic excitations in a Bose-Einstein condensate
Meppelink, R
2009-01-01
The field of Bose-Einstein condensation (BEC) in dilute atomic gases provides a fruitful playground to test well-developed theories of quantum fluids. Research using BECs can address open questions relating to the many-body aspects of two-component quantum liquids, namely the interaction between the
Polaron in Bose-Einstein-Condensation System
Institute of Scientific and Technical Information of China (English)
HUANG Bei-Bing; WAN Shao-Long
2009-01-01
We consider the motion of an impurity in a Bose-Einstein condensate system at T=0 K with the contact interactions for boson-boson and boson-impurity.Under the forward-scattering approximation,we obtain a Fr(o)hlich-like Hamiltonian for this system,which means that a polaron can be formed.The effective mass,the phonon number and the energy to form a polaron are obtained.We also discuss the validity of the forwardscattering approximation for this system.
Raman scattering investigation of VOCs in interaction with ice particles
Facq, Sébastien; Oancea, Adriana; Focsa, Cristian; Chazallon, Bertrand
2010-05-01
Cirrus clouds that form in the Earth's upper troposphere (UT) are known to play a significant role in the radiation budget and climate [1]. These clouds that cover about 35% of the Earth's surface [2] are mainly composed of small ice particles that can provide surfaces for trace gas interactions [3]. Volatile Organic Compounds (VOCs) are present in relative high abundance in the UT [4][5]. They promote substantial sources of free OH radicals that are responsible for driving photochemical cycles in the atmosphere. Their presence can both influence the oxidizing capacity and the ozone budget of the atmosphere. VOCs can interact with ice particles via different trapping processes (adsorption, diffusion, freezing, and co-deposition, i.e., incorporation of trace gases during growing ice conditions) which can result in the perturbation of the chemistry and photochemistry of the UT. Knowledge of the incorporation processes of VOCs in ice particles is important in order to understand and predict their impact on the ice particles structure and reactivity and more generally on the cirrus cloud formation. This proceeds via the in-situ characterization of the ice condensed phase in a pressure and temperature range of the UT. An important mechanism of UT cirrus cloud formation is the heterogeneous ice freezing process. In this study, we examine and characterize the interaction of a VOC, i.e., ethanol (EtOH) with ice particles during freezing. Vibrational spectra of water O-H and EtOH C-H spectral regions are analysed using confocal micro-Raman spectroscopy. Information at the molecular level on the surface structure can be derived from accompanying changes observed in band shapes and vibrational mode frequencies. Depending of the EtOH content, different crystalline phases have been identified and compared to hydrates previously reported for the EtOH-water system. Particular attention is paid on the effect of EtOH aqueous solutions cooling rate and droplet sizes on the phases
Symmetry breaking of particle trajectories due to magnetic interactions in a dilute suspension
Energy Technology Data Exchange (ETDEWEB)
Cunha, F.R., E-mail: frcunha@unb.br [Vortex Laboratory of Fluid Mechanics of Complex Flows and Departamento de Engenharia Mecanica, Faculdade de Tecnologia, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasilia, DF (Brazil); Gontijo, R.G., E-mail: rafaelgabler@gmail.com [Vortex Laboratory of Fluid Mechanics of Complex Flows and Departamento de Engenharia Mecanica, Faculdade de Tecnologia, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasilia, DF (Brazil); Sobral, Y.D., E-mail: ydsobral@unb.br [Vortex Laboratory of Fluid Mechanics of Complex Flows and Departamento de Matematica, Instituto de Ciencias Exatas, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasilia, DF (Brazil)
2013-01-15
This work presents a numerical study of the relative trajectories of two magnetic particles interacting in a dilute suspension. The suspension is composed of magnetic spherical particles of different radius and density immersed in a Newtonian fluid. The particles settle relative to one another under the action of gravity and, when in close proximity, exert on each other magnetic force and torque due to their permanent magnetization. The equations of motion for both translation and rotation of the particles are solved and particle inertia is included in the calculation. The numerical simulations are based on the direct computations of the hydrodynamic and of the magnetic interactions between the rigid particles in the regime of non-zero Stokes number. A detailed study of the relative trajectories of two magnetic particles in a dilute suspension allows us to explore irreversible interactions that lead to particle aggregation and particle migration induced by the breaking of the time reversibility of the creeping flow due to magnetic effects. The calculation shows that the rotation of the particles produced by magnetic interactions change significantly the dynamics of collisions of magnetic particle. - Highlights: Black-Right-Pointing-Pointer Relative trajectories of magnetic particles. Black-Right-Pointing-Pointer Magnetic interactions of particles under a gravity field. Black-Right-Pointing-Pointer Magnetic interactions break relative trajectories reversibility. Black-Right-Pointing-Pointer Particle Rotation decrease the rate of aggregation. Black-Right-Pointing-Pointer Dispersion in a magnetic suspension due to magnetic interactions.
Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.
Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A; den Toonder, Jaap M J; Anderson, Patrick D
2016-02-01
We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.
Foamy Virus Protein—Nucleic Acid Interactions during Particle Morphogenesis
Hamann, Martin V.; Lindemann, Dirk
2016-01-01
Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786
Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement
Institute of Scientific and Technical Information of China (English)
HAO Ya-Jiang
2011-01-01
We investigate the ground-state density distributions of interacting one-dimensional Bose gases with anisotropic transversal confinement.Combining the exact ground state energy density of homogeneous bose gases with local density approximation,we determine the density distribution in each interacting regime for different anisotropic parameters.It is shown that the transversal anisotropic parameter changes the density distribution obviously,and the observed density profiles on each orientation exhibit a difference of a factor.
Survey of composite particle models of electroweak interaction
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Mahiko
1992-05-01
Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t{sub R}-quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, {sub t}{sub 2}/4{pi} = 0.1 for m{sub t} = 200 GeV, is too small for a coupling of a composite particle.
Soft particle production in very high energy hadron interactions
Ebr, Jan; Nečesal, Petr; Ridky, Jan
2017-04-01
Indications of a discrepancy between simulations and data on the number of muons in cosmic ray (CR) showers exist over a large span of energies. We focus in particular on the excess of multi-muon bundles observed by the DELPHI detector at LEP and on the excess in the muon number in general reported by the Pierre Auger Observatory. Even though the primary CR energies relevant for these experiments differ by orders of magnitude, we can find a single mechanism which can simultaneously increase predicted muon counts for both, while not violating constraints from accelerators or from the longitudinal shower development as observed by the Pierre Auger Observatory. We present a brief motivation and describe a practical implementation of such a model, based on the addition of soft particles to interactions above a chosen energy threshold. Results of an extensive set of simulations show the behavior of this model in various parts of a simplified parameter space.
Inclusive particle production in. pi. /sup -/n interactions
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H.; Doroba, K.; Kossakowski, R.; Tkaczyk, S.; Wroblewski, A.K.; Zieminski, A.; Kisielewska, D.; Muryn, B.; Pawlik, B.; Zielinski, W.
1981-01-01
Results on inclusive particle production in ..pi../sup -/n interactions at 21, 205 and 360 GeV/c are presented. The invariant cross sections in both neutron fragmentation and central regions are found to be equal within errors to the corresponding cross sections for ..pi../sup +/p collisions and exhibit the same energy dependence. A strong energy dependence of the invariant cross section ratios of negative and positive pions is observed. There is also an indication of transverse momentum dependence of these ratios. The ..pi../sup -/..pi..sup(+-) correlations in the neutron fragmentation region show little variation with energy and are in agreement with the predictions of the naive quark recombination scheme.
Soft Particle Production in Very High Energy Hadron Interactions
Ebr, Jan; Ridky, Jan
2016-01-01
Indications of a discrepancy between simulations and data on the number of muons in cosmic ray (CR) showers exist over a large span of energies. We focus in particular on the excess of multi-muon bundles observed by the DELPHI detector at LEP and on the excess in the muon number in general reported by the Pierre Auger Observatory. Even though the primary CR energies relevant for these experiments differ by orders of magnitude, we can find a single mechanism which can simultaneously increase predicted muon counts for both, while not violating constraints from accelerators or from the longitudinal shower development as observed by the Pierre Auger Observatory. We present a brief theoretical motivation and describe a practical implementation of such a model, based on the addition of soft particles to interactions above a chosen energy threshold. Results of an extensive set of simulations show the behavior of this model in various parts of a simplified parameter space.
Atoms and Ions Interacting with Particles and Fields: Final Report
Energy Technology Data Exchange (ETDEWEB)
Robicheaux, Francis [Auburn Univ., AL (United States)
2014-09-18
This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms with particles and fields. The duration of the grant was the 10 year period from 8/2003 to 8/2013. All of the support from the grant was used to pay salaries of the PI, postdocs, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 65 peer reviewed publications over these 10 years with 8 of the publications in Physical Review Letters; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B, ...). I will disuss the results for the periods of time relevant for each grant period.
Strongly interacting particles on an anisotropic kagome lattice
Energy Technology Data Exchange (ETDEWEB)
Hotta, Chisa; Pollmann, Frank, E-mail: chisa@cc.kyoto-su.ac.j [Kyoto Sangyo University, Department of Physics, Faculty of Science, Kyoto 603-8555, Japan Department of Physics, University of California, Berkeley, CA94720 (United States)
2009-01-01
We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.
Strongly interacting particles on an anisotropic kagome lattice
Hotta, Chisa; Pollmann, Frank
2009-01-01
We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.
Random matrix theory, interacting particle systems and integrable systems
Forrester, Peter
2014-01-01
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications in physics, engineering, multivariate statistics and beyond. This volume is based on a Fall 2010 MSRI program which generated the solution of long-standing questions on universalities of Wigner matrices and beta-ensembles and opened new research directions especially in relation to the KPZ universality class of interacting particle systems and low-rank perturbations. The book contains review articles and research contributions on all these topics, in addition to other core aspects of random matrix theory such as integrability and free probability theory. It will give both established and new researchers insights into the most recent advances in the field and the connections among many subfields.
Wave "Coherency" and Implications for Wave-Particle Interactions
Tsurutani, Bruce; Singh Lakhina, Gurbax; Bhanu, Remya; Lee, Lou-Chuang
2016-07-01
Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency, quasi-coherency and incoherency for a variety of magnetospheric plasma waves. We will show how to measure coherency/quasicoherency quantitatively for electromagnetic whistler mode chorus, electromagnetic ion cyclotron (EMIC) waves, plasmaspheric hiss and linearly polarized magnetosonic waves. If plasma waves are coherent, their interactions with resonant particles will be substantially different. Specific examples will be used to show that the pitch angle scattering rates for energetic charged particles is roughly 3 orders of magnitude faster than the Kennel-Petschek diffusion (which assumes incoherent waves) rate. We feel that this mechanism is the only one that can explain ~ 0.1- 0.5 s bremsstrahlung x-ray microbursts.
Dynamics of particle--turbulence interaction at the dissipative scales
Bocanegra Evans, Humberto; Dam, Nico; van de Water, Willem; JM Burgerscentrum Collaboration; COST Action, Particles in Turbulence Collaboration
2013-11-01
We present results of a novel phosphorescent tagging technique that is particularly suited to study particle-laden flows. Using phosphorescent droplets we probe the dynamics of particle-turbulence interaction at the dissipative length scales. We create a cloud of droplets within a chamber capable of generating homogeneous, isotropic turbulence with zero-mean flow. The droplets have Stokes number St ~ 1 , and the flow is intensely turbulent, with Reynolds number Reλ ~ 500 . Using a frequency-tripled Nd:YAG laser, we can tag a variety of volumes, such as thin slabs or thin, pencil-like cylinders. The droplets in these volumes glow during a few Kolmogorov times. By tracking the fate of pencil-shaped clouds using a fast (5 kHz) camera, we come to the surprising conclusion that they disperse faster than fluid elements, with a spreading rate reaching a maximum at St ~ 2 . Sheets of tagged droplets display preferential concentration at work; we discuss statistical quantities that can capture these events. This project is funded by Fundamenteel Onderzoek der Materie (FOM).
Scattering resonances and two-particle bound states of the extended Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Valiente, M; Petrosyan, D [Institute of Electronic Structure and Laser, FORTH, 71110 Heraklion, Crete (Greece)
2009-06-28
We present a complete derivation of two-particle states of the one-dimensional extended Bose-Hubbard model involving attractive or repulsive on-site and nearest-neighbour interactions. We find that this system possesses scattering resonances and two families of energy-dependent interaction-bound states which are not present in the Hubbard model with the on-site interaction alone. (fast track communication)
The particle interaction effects in the field-cooled and zero-field-cooled magnetization processes
Papusoi Jr, C.
1999-01-01
The present theories explaining the mechanism of particle interaction within a fine particle system driven by the thermal agitation assign the increase of the interaction strength either to an increase of the particle anisotropy due to the environment reaction to its dipole moment, or to the occurre
Impurity in a Bose-Einstein Condensate and the Efimov Effect
Levinsen, Jesper; Parish, Meera M.; Bruun, Georg M.
2015-09-01
We investigate the zero-temperature properties of an impurity particle interacting with a Bose-Einstein condensate (BEC), using a variational wave function that includes up to two Bogoliubov excitations of the BEC. This allows one to capture three-body Efimov physics, as well as to recover the first nontrivial terms in the weak-coupling expansion. We show that the energy and quasiparticle residue of the dressed impurity (polaron) are significantly lowered by three-body correlations, even for weak interactions where there is no Efimov trimer state in a vacuum. For increasing attraction between the impurity and the BEC, we observe a smooth crossover from atom to Efimov trimer, with a superposition of states near the Efimov resonance. We furthermore demonstrate that three-body loss does not prohibit the experimental observation of these effects. Our results thus suggest a route to realizing Efimov physics in a stable quantum many-body system for the first time.
A theorem on the single particle energy in a Fermi gas with interaction
Hugenholtz, N.M.; Hove, Léon van
1958-01-01
This paper investigates single particle properties in a Fermi gas with interaction at the absolute zero of temperature. In such a system a single particle energy has only a meaning for particles of momentum k close to the Fermi momentum kF. These single particle states are metastable with a life-tim
A theorem on the single particle energy in a Fermi gas with interaction
Hugenholtz, N.M.; Hove, Léon van
1958-01-01
This paper investigates single particle properties in a Fermi gas with interaction at the absolute zero of temperature. In such a system a single particle energy has only a meaning for particles of momentum k close to the Fermi momentum kF. These single particle states are metastable with a
Colecchia, Federico
2014-01-01
The contamination, or background, from uninteresting low-energy strong interactions is a major issue for data analysis at the Large Hadron Collider. In the light of the challenges associated with the upcoming higher-luminosity scenarios, methods of assigning weights to individual particles have recently started to be used with a view to rescaling the particle four-momentum vectors. We propose a different approach whereby the weights are instead employed to reshape the particle-level kinematic distributions in the data. We use this method to estimate the number of neutral particles originating from low-energy strong interactions in different kinematic regions inside individual collision events. Given the parallel nature of this technique, we anticipate the possibility of using it as part of particle-by-particle event filtering procedures at the reconstruction level at future high-luminosity hadron collider experiments.
Energy Technology Data Exchange (ETDEWEB)
Agababyan, N.M. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Ajinenko, I.V.; Atayan, M.R. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Boettcher, H. (Inst. fuer Hochenergiephysik, Berlin-Zeuthen (Germany)); Botterweck, F.; Charlet, M.; Chliapnikov, P.V.; Wolf, E.A. de (Univ. Instelling Antwerpen, Wilrijk (Belgium) Inter-Univ. Inst. for High Energies, VUB/ULB, Brussels (Belgium)); Dziunikowska, K. (Inst. of Physics and Nuclear Techniques of the Academy of Mining and Metallurgy and Inst. of Nuclear Physics, Krakow (Poland)); Endler, A.M.F.; Garutchava, Z.C.; Gulkanyan, H.R. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Hakobyan, R.Sh. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Kisielewska, D. (Inst. of Physics and Nuclear Techniques of the Academy of Mining and Metallurgy and Inst. of Nuclear Physics, Krakow (Poland)); Kittel, W.; Mehrabyan, S.S. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Olkiewicz, K. (Inst. of Physics and Nuclear Techniques of the Academ; EHS/NA22 Collaboration
1993-08-01
The correlation of negative particles at small momentum difference and its dependence on multiplicity and on kinematical cuts is studied in [pi][sup +]p-interactions at 250 GeV/c. In terms of the Kopylov-Podgoretskii parametrization, an average radius of the pion emitting region of r[sub K]=1.59[+-]0.14 fm and a life-time (or emission depth) [tau]=0.83[+-]0.25 fm are found. The Lorentz invariant parametrization of Goldhaber gives r[sub G]=0.85[+-]0.04 fm. Assuming two different sources of pions, their radii are estimated as r[sub 1]=1.75[+-]0.25 fm and r[sub 2]=0.60[+-]0.08 fm. An angular and multiplicity dependence of the space-time size of the source is observed. The source is elongated along the collision axis and has larger size r[sub K] at higher multiplicities. The radius r[sub K] decreases with increasing pion pair momentum. The size of the emitting region appears to be larger for low rapidity pions than for pions from the fragmentation region. No evidence is found for a unique reference frame, where the pion source is motionless for each [pi][sup +]p collision, i.e. where the space-time size of the source is definitely smaller than in any other frame. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico-Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)
2016-11-15
In the framework of our model of soft interactions at high energy based on the CGC/saturation approach, we show that Bose-Einstein correlations of identical gluons lead to large values of v{sub n}. We demonstrate how three dimensional scales of high energy interactions, hadron radius, typical size of the wave function in diffractive production of small masses (size of the constituent quark), and the saturation momentum, influence the values of BE correlations, and in particular, the values of v{sub n}. Our calculation shows that the structure of the 'dressed' Pomeron leads to values of v{sub n} which are close to experimental values for proton-proton scattering, 20 % smaller than the observed values for proton-lead collisions and close to lead-lead collisions for 0-10 % centrality. Bearing this result in mind, we conclude that it is premature to consider that the appearance of long range rapidity azimuthal correlations are due only to the hydrodynamical behaviour of the quark-gluon plasma. (orig.)
Feebly Interacting Dark Matter Particle as the Inflaton
Tenkanen, Tommi
2016-01-01
We present a scenario where a $Z_2$-symmetric scalar field $\\phi$ first drives cosmic inflation, then reheats the Universe but remains out-of-equilibrium itself, and finally comprises the observed dark matter abundance, produced by particle decays \\`{a} la freeze-in mechanism. We work model-independently without specifying the interactions of the scalar field besides its self-interaction coupling, $\\lambda\\phi^4$, non-minimal coupling to gravity, $\\xi\\phi^2R$, and coupling to another scalar field, $g\\phi^2\\sigma^2$. We find the scalar field $\\phi$ serves both as the inflaton and a dark matter candidate if $10^{-9}\\lesssim \\lambda\\lesssim g\\lesssim 10^{-7}$ and $3 \\rm{keV} \\lesssim m_{\\rm \\phi}\\lesssim 85 \\rm{MeV}$ for $\\xi=\\mathcal{O}(1)$. Such a small value of the non-minimal coupling is also found to be of the right magnitude to produce the observed curvature perturbation amplitude within the scenario. We also discuss how the model may be distinguished from other inflationary models of the same type by the ...
Feebly interacting dark matter particle as the inflaton
Tenkanen, Tommi
2016-09-01
We present a scenario where a Z 2-symmetric scalar field ϕ first drives cosmic inflation, then reheats the Universe but remains out-of-equilibrium itself, and finally comprises the observed dark matter abundance, produced by particle decays à la freeze-in mechanism. We work model-independently without specifying the interactions of the scalar field besides its self-interaction coupling, λϕ 4, non-minimal coupling to gravity, ξϕ 2 R, and coupling to another scalar field, gϕ 2 σ 2. We find the scalar field ϕ serves both as the inflaton and a dark matter candidate if 10-9 ≲ λ ≲ g ≲ 10-7 and 3 keV ≲ m ϕ ≲ 85 MeV for ξ ={O}(1) . Such a small value of the non-minimal coupling is also found to be of the right magnitude to produce the observed curvature perturbation amplitude within the scenario. We also discuss how the model may be distinguished from other inflationary models of the same type by the next generation CMB satellites.
Particle swarm optimization with scale-free interactions.
Directory of Open Access Journals (Sweden)
Chen Liu
Full Text Available The particle swarm optimization (PSO algorithm, in which individuals collaborate with their interacted neighbors like bird flocking to search for the optima, has been successfully applied in a wide range of fields pertaining to searching and convergence. Here we employ the scale-free network to represent the inter-individual interactions in the population, named SF-PSO. In contrast to the traditional PSO with fully-connected topology or regular topology, the scale-free topology used in SF-PSO incorporates the diversity of individuals in searching and information dissemination ability, leading to a quite different optimization process. Systematic results with respect to several standard test functions demonstrate that SF-PSO gives rise to a better balance between the convergence speed and the optimum quality, accounting for its much better performance than that of the traditional PSO algorithms. We further explore the dynamical searching process microscopically, finding that the cooperation of hub nodes and non-hub nodes play a crucial role in optimizing the convergence process. Our work may have implications in computational intelligence and complex networks.
Variational studies of exotic bose liquid, spin liquid, and magnetic phases
Tay, Tiamhock
The strong interest in strongly correlated systems in condensed matter physics has continued unabated for the past few decades. In recent years, the number of novel, exotic quantum phases found in theoretical studies has seen a phenomenal rise. Among those interesting quantum states are bose liquids and spin liquids, where strong quantum fluctuations have prevented the systems from developing a long range order. Our work in this thesis seeks to further the understanding of frustrated systems. In the study of a hard-core boson model with ring-only exchange interactions on a square lattice, we obtain concrete numerical realization of the unconventional Exciton Bose Liquid (EBL) phase, which possesses interesting properties such as a "Bose surface'' which resembles the Fermi surface in a metal, as well as unusual thermodynamic properties such as a T log T dependence for specific heat. An equally important result from this work is the demonstration that the widely used Gutzwiller projection on slave-particle wave functions may generally fail to capture the correct long wavelength physics in the respective systems. For the Heisenberg antiferromagnet on the kagome lattice, which is a promising candidate for realizing a spin-disordered ground state, our variational study shows that the projected Schwinger boson wave function is energetically better than the Dirac spin liquid wave function when a small antiferromagnetic second-neighbor spin coupling is added to the nearest-neighbor model. We also study the anisotropic triangular Heisenberg antiferromagnetic in magnetic field, and find simple, yet accurate wave functions for various regions of the surprisingly rich phase diagram, thus providing insights into the energetics of the competing phases in this interesting model. Finally, our work also highlights permanent-type wave functions as potentially useful constructions in variational studies of systems with short-ranged correlations, e.g., a Mott insulator and a gapped
DEFF Research Database (Denmark)
Pedersen, Michael Stanley; Mørup, Steen; Linderoth, S.;
1997-01-01
Ultrafine magnetic particles consisting of a metastable iron-mercury alloy in Hg have been investigated by Mossbauer spectroscopy and magnetization measurements. It was found that the magnetic particles interact strongly, and around 100 K there is a transition from a superparamagnetic state to a ...
Bose-Einstein correlation within the framework of hadronic mechanics
Energy Technology Data Exchange (ETDEWEB)
Burande, Chandrakant S. [Vilasrao Deshmukh College of Engineering and Technology, Mouda, India-441104, Email: csburande@gmail.com (India)
2015-03-10
The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon. Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are prohibited by the basic axioms of relativistic quantum mechanics, such as that for the vacuum expectation values. Moreover, correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point correlation function derived by Santilli is perfectly matched with experimental data at high energy.
Bose-Bose mixtures in reduced dimensions
Energy Technology Data Exchange (ETDEWEB)
Minardi, F; Barontini, G; Catani, J; Lamporesi, G; Inguscio, M [LENS and Universita di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Nishida, Y, E-mail: minardi@lens.unifi.it [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2011-01-10
The two-body scattering is greatly modified in reduced dimensions. With ultracold atoms, low dimensional configurations are routinely accessible thanks to the use of optical lattices which allow confinements sufficiently strong to freeze the motion along chosen directions. With two different atomic species, we use a species-selective optical potential, in the form of a standing wave, to confine only one species in 2D disks and study the scattering between particles existing in different dimensions, i.e., we realize a 2D-3D mix-dimensional configuration, reminiscent of a brane world. We review the scattering theory specific to this configuration and derive an effective scattering length {alpha}{sub eff} in terms of the free-space scattering length {alpha} and the confinement parameters. We detect experimentally the enhancement of inelastic collisions arising at particular values of {alpha} and relate these values to the divergences of {alpha}{sub eff}. Unlike the confinement-induced resonances predicted and observed for identical particles, our mixed-dimensional resonances occur in a series of several resonances, because the relative and centre-of-mass motion are coupled.
Lubrication analysis of interacting rigid cylindrical particles in confined shear flow
Energy Technology Data Exchange (ETDEWEB)
Cardinaels, R., E-mail: R.M.Cardinaels@tue.nl [Polymer Technology, Department of Mechanical Engineering, TU Eindhoven, Den Dolech 2, 5612 AZ, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Soft Matter Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, BE3001 Leuven (Belgium); Department of Mechanical and Aerospace Engineering, Princeton University, D328 Engineering Quadrangle, Princeton, New Jersey 08544 (United States); Stone, H. A., E-mail: H.A.Stone@Princeton.edu [Department of Mechanical and Aerospace Engineering, Princeton University, D328 Engineering Quadrangle, Princeton, New Jersey 08544 (United States)
2015-07-15
Lubrication analysis is used to determine analytical expressions for the elements of the resistance matrix describing the interaction of two rigid cylindrical particles in two-dimensional shear flow in a symmetrically confined channel geometry. The developed model is valid for non-Brownian particles in a low-Reynolds-number flow between two sliding plates with thin gaps between the two particles and also between the particles and the walls. Using this analytical model, a comprehensive overview of the dynamics of interacting cylindrical particles in shear flow is presented. With only hydrodynamic interactions, rigid particles undergo a reversible interaction with no cross-streamline migration, irrespective of the confinement value. However, the interaction time of the particle pair substantially increases with confinement, and at the same time, the minimum distance between the particle surfaces during the interaction substantially decreases with confinement. By combining our purely hydrodynamic model with a simple on/off non-hydrodynamic attractive particle interaction force, the effects of confinement on particle aggregation are qualitatively mapped out in an aggregation diagram. The latter shows that the range of initial relative particle positions for which aggregation occurs is increased substantially due to geometrical confinement. The interacting particle pair exhibits tangential and normal lubrication forces on the sliding plates, which will contribute to the rheology of confined suspensions in shear flow. Due to the combined effects of the confining walls and the particle interaction, the particle velocities and resulting forces both tangential and perpendicular to the walls exhibit a non-monotonic evolution as a function of the orientation angle of the particle pair. However, by incorporating appropriate scalings of the forces, velocities, and doublet orientation angle with the minimum free fraction of the gap height and the plate speed, master curves for
Experimental Studies of Elementary Particle Interactions at High Energies
Energy Technology Data Exchange (ETDEWEB)
Goulianos, Konstantin [The Rockefeller University
2013-07-31
This is the final report of a program of research on ``Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate
Bose gases in one-dimensional harmonic trap
Indian Academy of Sciences (India)
JI-XUAN HOU; JING YANG
2016-10-01
Thermodynamic quantities, occupation numbers and their fluctuations of a one-dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in microcanonical ensemble. The visible difference of the ground state occupation number in grand-canonical ensemble and microcanonical ensemble is found to decrease by power law as the number of particles increases.
Bose-Einstein correlations in WW pair production at LEP
Van Remortel, N
2003-01-01
This paper presents an overview of the latest results from the L3 and DELPHI collaborations concerning the measurement of Bose-Einstein correlations between identical bosons coming from different W's in fully hadronic WW decays. Using the same method, L3 sees no indication of any inter-W BEC effect, while DELPHI reports an indication of inter-W BEC between like-charged particles of the order of three standard deviations.
Delay of biomass pyrolysis by gas–particle interaction
Russo, E; Kuerten, Johannes G.M.; Geurts, Bernardus J.
We apply a biomass pyrolysis model, based on the model developed by Haseli et al. , which can be used in combination with Direct Numerical Simulation. The pyrolysis model is combined with a model for particle tracking to simulate 3D turbulent particle-laden channel flow with biomass particles
Raduta, A A; Simkovic, F; Faessler, A; Faessler, Amand
2001-01-01
A model many-body Hamiltonian describing an heterogenous system of paired protons and paired neutrons and interacting among themselves through monopole particle-hole and monopole particle-particle interactions is used to study the double beta decay of Fermi type. The states are described by time dependent approaches choosing as trial functions coherent states of the symmetry groups underlying the model Hamiltonian. One formalism, VP1, is fully equivalent with the standard pnQRPA and therefore fails at a critical value of the particle-particle interaction strength while another one, VP2, corresponds to a two step BCS treatment, i.e. the proton quasiparticles are paired with the neutron quasiparticles. In this way a harmonic description for the double beta transition amplitude is provided for any strength of the particle-particle interaction. The approximation quality is judged by comparing the actual results with the exact result as well as with those corresponding to various truncations of the boson expanded ...
Directory of Open Access Journals (Sweden)
Yazan Haddad
2016-04-01
Full Text Available Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated, MAN127 (polyvinylpyrrolidone-coated, MAN158 (phosphate-coated, and MAN164 (tripolyphosphate-coated. All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of −0.22 mV under binding conditions (high ionic strength, low pH, and dehydration. A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.
Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech
2016-04-20
Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.
Tunneling Dynamics of Two-Species Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
YANG Li-Min; YU Zhao-Xian; JIAO Zhi-Yong
2003-01-01
We have studied the tunneling dynamics of two-species Bose-Einstein condensates. It is shown that the population difference and the Josephson-like tunneling current between the two condensates exhibit oscillation behaviors and there exists macroscopic quantum self-trapping, which strongly depends on the initial state, interatomic nonlinear self-interaction, interspecies nonlinear interaction, and the total number of atoms in the two condensates.
Metastability of Bose and Fermi gases on the upper branch
LeClair, André; Roditi, Itzhak; Squires, Joshua
2016-12-01
We study three-dimensional Bose and Fermi gases in the upper branch, a phase defined by the absence of bound states in the repulsive interaction regime, within an approximation that considers only two-body interactions. Employing a formalism based on the S matrix, we derive useful analytic expressions that hold on the upper branch in the weak coupling limit. We determine upper branch phase diagrams for both bosons and fermions with techniques valid for arbitrary positive scattering length.
Low energy charged particles interacting with amorphous solid water layers
Energy Technology Data Exchange (ETDEWEB)
Horowitz, Yonatan; Asscher, Micha [Institute of Chemistry, Hebrew University of Jerusalem, Edmund J. Safra Campus, Givat-Ram, Jerusalem 91904 (Israel)
2012-04-07
The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.
Low energy charged particles interacting with amorphous solid water layers
Horowitz, Yonatan; Asscher, Micha
2012-04-01
The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 μA) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 ± 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.
Acceleration and Particle Field Interactions of Cosmic Rays II: Calculations
Tawfik, A; Ghoneim, M T; Hady, A
2010-01-01
Based on the generic acceleration model, which suggests different types of electromagnetic interactions between the cosmic charged particles and the different configurations of the electromagnetic (plasma) fields, the ultra high energy cosmic rays are studied. The plasma fields are assumed to vary, spatially and temporally. The well-known Fermi accelerations are excluded. Seeking for simplicity, it is assumed that the energy loss due to different physical processes is negligibly small. The energy available to the plasma sector is calculated in four types of electromagnetic fields. It has been found that the drift in a time--varying magnetic field is extremely energetic. The energy scale widely exceeds the Greisen-Zatsepin-Kuzmin (GZK) cutoff. The polarization drift in a time--varying electric field is also able to raise the energy of cosmic rays to an extreme value. It can be compared with the Hillas mechanism. The drift in a spatially--varying magnetic field is almost as strong as the polarization drift. The...
Shock-cloud interaction and particle acceleration in SN 1006
Miceli, M; Dubner, G; Decourchelle, A; Orlando, S; Bocchino, F
2014-01-01
The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment, though interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the HI maps show an isolated cloud (southwestern cloud) having the same velocity as the northwestern cloud and whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive HI data, obtained combining single dish and interferometric observations. We found that the best-fit value of the N_H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The amount of the N_H variations corresponds p...
Consistent thermodynamic framework for interacting particles by neglecting thermal noise.
Nobre, Fernando D; Curado, Evaldo M F; Souza, Andre M C; Andrade, Roberto F S
2015-02-01
An effective temperature θ, conjugated to a generalized entropy s(q), was introduced recently for a system of interacting particles. Since θ presents values much higher than those of typical room temperatures T≪θ, the thermal noise can be neglected (T/θ≃0) in these systems. Moreover, the consistency of this definition, as well as of a form analogous to the first law of thermodynamics, du=θds(q)+δW, were verified lately by means of a Carnot cycle, whose efficiency was shown to present the usual form, η=1-(θ(2)/θ(1)). Herein we explore further the heat contribution δQ=θds(q) by proposing a way for a heat exchange between two such systems, as well as its associated thermal equilibrium. As a consequence, the zeroth principle is also established. Moreover, we consolidate the first-law proposal by following the usual procedure for obtaining different potentials, i.e., applying Legendre transformations for distinct pairs of independent variables. From these potentials we derive the equation of state, Maxwell relations, and define response functions. All results presented are shown to be consistent with those of standard thermodynamics for T>0.
Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator
Asjad, Muhammad; 10.1103/PhysRevA.84.033606
2011-01-01
We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.
Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.
2017-01-01
Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.
Shock Waves in a Bose-Einstein Condensate
Kulikov, Igor; Zak, Michail
2005-01-01
A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.
Vortex patterns in moderately rotating Bose-condensed gas
Imran, Mohd; Ahsan, M. A. H.
2017-02-01
Using exact diagonalization, we investigate the many-body ground state for regular vortex patterns in a rotating Bose-condensed gas of N spinless particles, confined in a quasi-two-dimensional harmonic trap and interacting repulsively via finite-range Gaussian potential. The N-body Hamiltonian matrix is diagonalized in given subspaces of quantized total angular momentum L z , to obtain the lowest-energy eigenstate. Further, the internal structure of these eigenstates is analyzed by calculating the corresponding conditional probability distribution. Specifically, the quantum mechanically stable as well as unstable states in a co-rotating frame are examined in the moderately rotating regime corresponding to angular momenta 4N≤slant {L}zimpressed rotation, the patterns of singly quantized vortices are formed, shaping into canonical polygons with a central vortex at the trap center. The internal structure of unstable states reveals the mechanism of entry, nucleation and pattern formation of vortices with structural phase transition, as the condensate goes from one stable vortical state to the other. The stable polygonal vortex patterns having discrete p-fold rotational symmetry with p = 5 and p = 6 are observed. The hexagonal vortex pattern with p = 6 symmetry is a precursor to the triangular vortex lattice of singly quantized vortices in the thermodynamic limit. For unstable states, quantum melting of vortex patterns due to uncertainty in positions of individual vortices, is also briefly discussed.
Confinement versus Bose-Einstein condensation
Langfeld, K
2004-01-01
The deconfinement phase transition at high baryon densities and low temperatures evades a direct investigation by means of lattice gauge calculations. In order to make this regime of QCD accessible by computer simulations, two proposal are made: (i) A Lattice Effective Theory (LET) is designed which incorporates gluon and diquark fields. The deconfinement transition takes place when the diquark fields undergo Bose-Einstein condensation. (ii) Rather than using eigenstates of the particle number operator, I propose to perform simulations for a fixed expectation value of the baryonic Noether current. This approach changes the view onto the finite density regime, but evades the sign and overlap problems. The latter proposal is exemplified for the LET: Although the transition from the confinement to the condensate phase is first order in the coupling constant space at zero baryon densities, the transition at finite densities appears to be a crossover.
Tunneling Dynamics Between Atomic and Molecular Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
CHEN Chang-Yong
2004-01-01
Tunneling dynamics of multi-atomic molecules between atomic and multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated.It is indicated that the tunneling in the two Bose-Einstein condensates depends on not only the inter-atomic-molecular nonlinear interactions and the initial number of atoms in these condensates,but also the tunneling coupling between the atomic condensate and the multi-atomic molecular condensate.It is discovered that besides oscillating tunneling current between the atomic condensate and the multi-atomic molecular condensate,the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance:a macroscopic quantum self-trapping effect.The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied.It is shown that de-coherence suppresses the multi-atomic molecular tunneling.Moreover,the conception of the molecular Bose-Einstein condensate,which is different from the conventional single-atomic Bose-Einstein condensate,is specially emphasized in this paper.
Approaching Bose-Einstein Condensation
Ferrari, Loris
2011-01-01
Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…
Mott criticality and pseudogap in Bose-Fermi mixtures.
Altman, Ehud; Demler, Eugene; Rosch, Achim
2012-12-07
We study the Mott transition of a mixed Bose-Fermi system of ultracold atoms in an optical lattice, where the number of (spinless) fermions and bosons adds up to one atom per lattice, n(F)+n(B)=1. For weak interactions, a Fermi surface coexists with a Bose-Einstein condensate while for strong interaction the system is incompressible but still characterized by a Fermi surface of composite fermions. At the critical point, the spectral function of the fermions A(k,ω) exhibits a pseudogapped behavior, rising as |ω| at the Fermi momentum, while in the Mott phase it is fully gapped. Taking into account the interaction between the critical modes leads at very low temperatures either to p-wave pairing or the transition is driven weakly first order. The same mechanism should also be important in antiferromagnetic metals with a small Fermi surface.
An experimental study of particle-bubble interaction and attachment in flotation
Sanchez Yanez, Aaron
2017-05-01
The particle-bubble interaction is found in industrial applications with the purpose of selective separation of materials especially in the mining industry. The separation is achieved with the use of bubbles that collect particles depending on their hydrophobicity. There are few experimental studies involving a single interaction between a bubble and a particle. The purpose of this work is to understand this interaction by the study of a single bubble interacting with a single particle. Experiments were conducted using ultra-pure water, glass particles and air bubbles. Single interactions of particles with bubbles were observed using two high speed cameras. The cameras were placed perpendicular to each other allowing to reconstruct the three-dimensional position of the particle, the bubble and the particle-bubble aggregate. A single size of particle was used varying the size for the bubbles. It was found that the attachment of a particle to a bubble depends on its degree of hydrophobicity and on the relative position of the particle and the bubble before they encounter.
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.
Dynamical simulation of fluidized beds - hydrodynamically interacting granular particles
Ichiki, K; Ichiki, Kengo; Hayakawa, Hisao
1995-01-01
A numerical simulation of a gas-fluidized bed is performed without introduction of any empirical parameters. Realistic bubbles and slugs are observed in our simulation. It is found that the convective motion of particles is important for the bubbling phase and there is no convection in the slugging phase. From the simulation results, non-Gaussian distributions are found in the particle velocities and the relation between the deviation from Gaussian and the local density of particles is suggested. It is also shown that the power spectra of particle velocities obey power laws. A brief explanation on the relationship between the simulation results and the Kolmogorov scaling argument is discussed.
Spin-Curvature Interaction for Particles of Rest Mass Zero
Cordwell, William Robert
Using a W.K.B. approximation, equations of motion are derived for integral spin particles of zero rest mass. The equations are similar to Papapetrou's equations. A modified, extended W.K.B. approximation is used to derive the equations for half-integral spin particles. The equations are applied to particles travelling down the axis of a spinning black hole, and to particles in a stationary, weak field spacetime. The results agree with frequency cut-offs and linear polarization rotation results found by various other methods. Some previously known polarization results for electromagnetic waves are extended to other spins.
Spin-curvature interaction for particles of rest mass zero
Energy Technology Data Exchange (ETDEWEB)
Cordwell, W.R.
1984-01-01
Using a WKB approximation, equations of motion are derived for integral spin particles of zero rest mass. The equations are similar to Papapetrou's equations. A modified, extended WKB approximation is used to derive the equations for half-integral spin particles. The equations are applied to particles travelling down the axis of a spinning black hole, and to particles in a stationary, weak-field spacetime. The results agree with frequency cut-offs and linear polarization rotation results found by various other methods. Some previously known polarization results for electromagnetic waves are extended to other spins.
The spin evolution of spin-3 52Cr Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
situ Shu-Ping; He Yan-Zhang
2011-01-01
This paper studies theoretically the spin evolution of a Bose-Einstein condensate starting from a mixture of two or three groups of 52Cr (spin-3) atoms in an optical trap. The initial state is so chosen that the condensate has total magnetization zero so that the system does not distinguish up and down. It is assumed that the system is very dilute (particle number is very small), the temperature is very low, and the frequency of the harmonic trap is large enough.In these situations, the deviation caused by the neglect of the dipole-dipole interaction and by using the single-mode approximation is reduced. A theoretical calculation beyond the mean field theory is performed and the numerical results are helpful for the evaluation of the unknown strength go.
Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates.
Ilo-Okeke, Ebubechukwu O; Byrnes, Tim
2014-06-13
We introduce a theoretical framework for single-shot phase contrast imaging (PCI) measurements of spinor Bose-Einstein condensates (BECs). Our model allows for the simple calculation of the quantum backaction resulting from the measurement, and the amount of information that is read out. We find that there is an optimum time Gτ ∼ 1/N for the light-matter interaction (G is the ac Stark shift frequency, N is the number of particles in the BEC), where the maximum amount of information can be read out from the BEC. A universal information-disturbance tradeoff law ε(F)ε(G) ∝ 1/N(2) is found where ε(F) is the amount of backaction and ε(G) is the estimation error. The PCI measurement can also be found to be a direct probe of the quantum fluctuations of the BEC, via the noise of the PCI signal.
Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates
Ilo-Okeke, Ebubechukwu O
2014-01-01
We introduce a theoretical framework for single-shot phase contrast imaging (PCI) measurements of spinor Bose-Einstein condensates. Our model allows for the simple calculation of the quantum backaction resulting from the measurement, and the amount of information that is read out. We find that there is an optimum time $ G\\tau \\sim 1/N $ for the light-matter interaction ($G $ is the ac Stark shift frequency, $ N $ is the number of particles in the BEC), where the maximum amount of information can be read out from the BEC. A universal information-disturbance tradeoff law $ \\epsilon_F \\epsilon_G \\propto 1/N^2 $ is found where $ \\epsilon_F $ is the amount of backaction and $ \\epsilon_G $ is the estimation error. The PCI measurement can also be found to be a direct probe of the quantum fluctuations of the BEC, via the noise of the PCI signal.
Composite-boson approach to molecular Bose-Einstein condensates in mixtures of ultracold Fermi gases
Bouvrie, P. Alexander; Tichy, Malte C.; Roditi, Itzhak
2017-02-01
We show that an ansatz based on independent composite bosons [Phys. Rep. 463, 215 (2008), 10.1016/j.physrep.2007.11.003] accurately describes the condensate fraction of molecular Bose-Einstein condensates in ultracold Fermi gases. The entanglement between the fermionic constituents of a single Feshbach molecule then governs the many-particle statistics of the condensate, from the limit of strong interaction to close to unitarity. This result strengthens the role of entanglement as the indispensable driver of composite-boson behavior. The condensate fraction of fermion pairs at zero temperature that we compute matches excellently previous results obtained by means of fixed-node diffusion Monte Carlo methods and the Bogoliubov depletion approximation. This paves the way towards the exploration of the BEC-BCS crossover physics in mixtures of cold Fermi gases with an arbitrary number of fermion pairs as well as the implementation of Hong-Ou-Mandel-like interference experiments proposed within coboson theory.
Classical and quantum filaments in the ground state of trapped dipolar Bose gases
Cinti, Fabio; Boninsegni, Massimo
2017-07-01
We study, by quantum Monte Carlo simulations, the ground state of a harmonically confined dipolar Bose gas with aligned dipole moments and with the inclusion of a repulsive two-body potential of varying range. Two different limits can clearly be identified, namely, a classical one in which the attractive part of the dipolar interaction dominates and the system forms an ordered array of parallel filaments and a quantum-mechanical one, wherein filaments are destabilized by zero-point motion, and eventually the ground state becomes a uniform cloud. The physical character of the system smoothly evolves from classical to quantum mechanical as the range of the repulsive two-body potential increases. An intermediate regime is observed in which ordered filaments are still present, albeit forming different structures from the ones predicted classically; quantum-mechanical exchanges of indistinguishable particles across different filaments allow phase coherence to be established, underlying a global superfluid response.
Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice
Tarkhov, Andrei E.; Wimberger, Sandro; Fine, Boris V.
2017-08-01
We propose theoretically an experimentally realizable method to demonstrate the Lyapunov instability and to extract the value of the largest Lyapunov exponent for a chaotic many-particle interacting system. The proposal focuses specifically on a lattice of coupled Bose-Einstein condensates in the classical regime describable by the discrete Gross-Pitaevskii equation. We suggest to use imperfect time reversal of the system's dynamics known as the Loschmidt echo, which can be realized experimentally by reversing the sign of the Hamiltonian of the system. The routine involves tracking and then subtracting the noise of virtually any observable quantity before and after the time reversal. We support the theoretical analysis by direct numerical simulations demonstrating that the largest Lyapunov exponent can indeed be extracted from the Loschmidt echo routine. We also discuss possible values of experimental parameters required for implementing this proposal.
Multibody interactions of actuated magnetic particles used as fluid drivers in microchannels
Derks, R.J.S.; Frijns, A.J.H.; Prins, M.W.J.; Dietzel, A.H.
2010-01-01
The forced motion of superparamagnetic particles and their multibody interactions are studied in view of the application as integrated fluid drivers in microchannel systems. Previous studies on particle manipulation in open fluid volumes serve as our starting point for the analysis of particle dynam
Multibody interactions of actuated magnetic particles used as fluid drivers in microchannels
Derks, R.J.S.; Frijns, A.J.H.; Prins, M.W.J.; Dietzel, A.H.
2010-01-01
The forced motion of superparamagnetic particles and their multibody interactions are studied in view of the application as integrated fluid drivers in microchannel systems. Previous studies on particle manipulation in open fluid volumes serve as our starting point for the analysis of particle
Chaotic delocalization of two interacting particles in the classical Harper model
Shepelyansky, Dima L.
2016-06-01
We study the problem of two interacting particles in the classical Harper model in the regime when one-particle motion is absolutely bounded inside one cell of periodic potential. The interaction between particles breaks integrability of classical motion leading to emergence of Hamiltonian dynamical chaos. At moderate interactions and certain energies above the mobility edge this chaos leads to a chaotic propulsion of two particles with their diffusive spreading over the whole space both in one and two dimensions. At the same time the distance between particles remains bounded by one or two periodic cells demonstrating appearance of new composite quasi-particles called chaons. The effect of chaotic delocalization of chaons is shown to be rather general being present for Coulomb and short range interactions. It is argued that such delocalized chaons can be observed in experiments with cold atoms and ions in optical lattices.
The model of the mechanical interaction of particles with the combustion products in a nozzle
Teterev, A. V.; Mandrik, P. A.; Misuchenko, N. I.; Rudak, L. V.
2017-07-01
This article describes the development of model of interaction of condensed particles with the gas flow in the Laval nozzle. Conducted parametric calculations have shown that the interaction of particles with the combustion products, even with a relatively small volume content may lead to a qualitative change in the internal flow in the Laval nozzle, and thereby influence the characteristics of the nozzle.
Atomic data for controlled fusion research. Volume III. Particle interactions with surfaces
Energy Technology Data Exchange (ETDEWEB)
Thomas, E.W.
1985-02-01
This report provides a handbook of data concerning particle solid interactions that are relevant to plasma-wall interactions in fusion devices. Published data have been collected, assessed, and represented by a single functional relationship which is presented in both tabular and graphical form. Mechanisms reviewed here include sputtering, secondary electron emission, particle reflection, and trapping.
Gas-particle interactions in dense gas-fluidised beds
Li, J.; Kuipers, J.A.M.
2003-01-01
The occurrence of heterogeneous flow structures in gas-particle flows seriously affects gas¿solid contacting and transport processes in dense gas-fluidized beds. A computational study, using a discrete particle method based on Molecular Dynamics techniques, has been carried out to explore the
Cellular interactions of surface modified nanoporous silicon particles
Bimbo, Luis M.; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B.; Hirvonen, Jouni; Airaksinen, Anu J.; Santos, Hélder A.
2012-05-01
In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, 125I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi
Competing particle systems evolving by interacting Levy processes
Shkolnikov, Mykhaylo
2010-01-01
We consider finite and infinite systems of particles on the real line and half-line evolving in continuous time. Hereby, the particles are driven by i.i.d. Levy processes endowed with rank-dependent drift and diffusion coefficients. In the finite systems we show that the processes of gaps in the respective particle configurations possess unique invariant distributions and prove the convergence of the gap processes to the latter in the total variation distance, assuming a bound on the jumps of the Levy processes. In the infinite case we show that the gap process of the particle system on the half-line is tight for appropriate initial conditions and same drift and diffusion coefficients for all particles. Applications of such processes include the modelling of capital distributions among the ranked participants in a financial market, the stability of certain stochastic queueing and storage networks and the study of the Sherrington-Kirkpatrick model of spin glasses.
Coherent tunneling of atoms from Bose-condensed gases at finite temperatures
Luxat, David L.; Griffin, Allan
2002-04-01
Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear-response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-Einstein condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett, and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u2 and v2 amplitudes.
Bose-Hubbard model on a checkerboard superlattice
Iskin, Menderes
2011-05-01
We study the ground-state phases of the Bose-Hubbard model on a checkerboard superlattice in two dimensions, including the superfluid phase and the Mott and charge-density-wave insulators. First, we discuss the single-particle Hofstadter problem, and show that the presence of a checkerboard superlattice gives rise to a magnetic flux-independent energy gap in the excitation spectrum. Then, we consider the many-particle problem, and derive an analytical mean-field expression for the superfluid-Mott and superfluid-charge-density-wave insulator phase transition boundaries. Finally, since the phase diagram of the Bose-Hubbard model on a checkerboard superlattice is in many ways similar to that of the extended Bose-Hubbard model, we comment on the effects of magnetic field on the latter model, and derive an analytical mean-field expression for the superfluid-insulator phase transition boundaries as well. This work is supported by Marie Curie International Reintegration Grant (FP7-PEOPLE-IRG-2010-268239).
Institute of Scientific and Technical Information of China (English)
ZHANG Zhi-Dong; ZHANG Yan-Jun; SUN Zong-Li
2006-01-01
@@ Two-particle cluster theory is applied to study the biaxial nematic phase formed by biaxial molecules interacting with a simplified model proposed by Sonnet et al. [Phys. Rev. E 67 (2003) 061701]. For the temperature dependences of the internal energy per particle and of the order parameters, the two-particle theory yields an improved result compared with mean field theory. Concerning the phase diagram, the two-particle theory gives the numerical result in qualitative agreement with the mean field theory.
Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.
Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian
2016-05-01
In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures.
Sloth, Marianne; Bilde, Merete; Mikkelsen, Kurt V.
2003-06-01
A quantum mechanical/molecular mechanical aerosol model is developed to describe the interaction between gas phase molecules and atmospheric particles. The model enables the calculation of interaction energies and time-dependent properties. We use the model to investigate how a succinic acid molecule interacts with an aqueous particle. We show how the interaction energies and linear response properties (excitation energies, transition moments, and polarizabilities) depend on the distance between aerosol particle and molecule and on their relative orientation. The results are compared with those obtained previously using a dielectric continuum model [Sloth et al., J. Phys. Chem. (submitted)].
Particle interaction in oscillatory Couette and Poiseuille flows
Fathi, Nima; Ingber, Marc; Vorobieff, Peter
2013-11-01
In oscillating Poiseuille flows of relatively dense suspensions, the direction of particle migration changes with the amplitude of oscillation. High amplitudes produce migration toward low shear rate regions of the flow, and vice versa, low oscillation amplitude results in particle migration toward the high shear rate region. We demonstrate that a similar behavior can be observed in a two-particle system, where it can be physically interpreted more easily, and discuss numerical modeling and experimental studies of oscillatory Poiseuille and Couette flows. This research is supported by the National Science Foundation and (in part) by a gift from the Procter & Gamble Company.
Scalar field as a Bose-Einstein condensate?
Energy Technology Data Exchange (ETDEWEB)
Castellanos, Elías; Escamilla-Rivera, Celia [Mesoamerican Centre for Theoretical Physics (ICTP regional headquarters in Central America, the Caribbean and Mexico), Universidad Autónoma de Chiapas, Carretera Zapata Km. 4, Real del Bosque (Terán), 29040, Tuxtla Gutiérrez, Chiapas (Mexico); Macías, Alfredo [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Mexico D.F. 09340 (Mexico); Núñez, Darío, E-mail: ecastellanos@mctp.mx, E-mail: cescamilla@mctp.mx, E-mail: amac@xanum.uam.mx, E-mail: nunez@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510 (Mexico)
2014-11-01
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.
Bose-Einstein Correlations and the Tau-Model
Metzger, W J; Csörgő, T; Kittel, W
2011-01-01
Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using a L\\'evy stable distribution in conjunction with a model where a particle's momentum is highly correlated with its space-time point of production, the tau model. However, a small but significant elongation of the particle emission region is observed in the Longitudinal Center of Mass frame, which is not accommodated in the tau model. This is investigated using an ad hoc modification of the tau model.
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.
MATHEMATICAL ANALYSIS OF THE COLLAPSE IN BOSE-EINSTEIN CONDENSATE
Institute of Scientific and Technical Information of China (English)
Li Xiaoguang; Zhang Jian; Wu Yonghong
2009-01-01
In this article, the authors consider the collapse solutions of Cauchy problem for the nonlinear Schrodinger equation iψt +1/2Δψ-1/2ω2|x|2ψ+ |ψ|2+|ψ|2ψ=0, x∈R2, which models the Bose-Einstein condensate with attractive interactions. The authors establish the lower bound of collapse rate as t→T. Furthermore, the L2-concentration property of the radially symmetric collapse solutions is obtained.
Properties of strongly dipolar Bose gases beyond the Born approximation
Ołdziejewski, Rafał
2016-01-01
Strongly dipolar Bose gases can form liquid droplets stabilized by quantum fluctuations. In theoretical description of this phenomenon, low energy scattering amplitude is utilized as an effective potential. We show that for magnetic atoms corrections with respect to Born approximation arise, and derive modified pseudopotential using realistic interaction model. We discuss the resulting changes in collective mode frequencies and droplet stability diagram. Our results are relevant for recent experiments with erbium and dysprosium atoms.
The Weak-Coupling of Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
ZHOU Xiao-Ji; MA Zao-Yuan; CHEN Xu-Zong; WANG Yi-Qiu
2003-01-01
The coherent characteristics of four trapped Bose-Einstein condensates (BEC) conjunct one by one in aring shape which is divided by two far off-resonant lasers, are studied. Four coupled Gross-Pitaevskii equations are usedto describe the dynamics of the system. Two kinds of self-trapping effects are discussed in the coupled BECs, and thephase diagrams for different initial conditions and different coupling strengths are discussed. This study can be used todetermine interaction parameters between atoms in BEC.
The one-dimensional extended Bose-Hubbard model
Indian Academy of Sciences (India)
Ramesh V Pai; Rahul Pandit
2003-10-01
We use the finite-size, density-matrix-renormalization-group (DMRG) method to obtain the zero-temperature phase diagram of the one-dimensional, extended Bose-Hubbard model, for mean boson density ρ = 1, in the - plane ( and are respectively, onsite and nearest-neighbour repulsive interactions between bosons). The phase diagram includes superfluid (SF), bosonic-Mott-insulator (MI), and mass-density-wave (MDW) phases. We determine the natures of the quantum phase transitions between these phases.
Energy Technology Data Exchange (ETDEWEB)
Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I. [College of Engineering, Arkansas State University, Jonesboro, Arkansas 72467 (United States); Sheppard, C. J. [College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467 (United States)
2016-04-14
Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.
Quantum Dynamics of Ultracold Bose Polarons
Shchadilova, Yulia E.; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene
2016-09-01
We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the impurity is noninteracting and the final state is strongly interacting with the host atoms. We compare results of different theoretical approaches including a single excitation expansion, a self-consistent T -matrix method, and a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong fluctuations lead to a broad, incoherent absorption spectrum where no quasiparticle peak can be assigned.
Munteanu, B; Harb, F; Rieu, J P; Berthier, Y; Tinland, B; Trunfio-Sfarghiu, A-M
2014-08-01
This study shows the interactions of charged particles with mixed supported lipid bilayers (SLB) as biomimetic pulmonary surfactants. We tested two types of charged particles: positively charged and negatively charged particles. Two parameters were measured: adsorption density of particles on the SLB and the diffusion coefficient of lipids by FRAPP techniques as a measure of interaction strength between particles and lipids. We found that positively charged particles do not adsorb on the bilayer, probably due to the electrostatic repulsion between positively charged parts of the lipid head and the positive groups on the particle surface, therefore no variation in diffusion coefficient of lipid molecules was observed. On the contrary, the negatively charged particles, driven by electrostatic interactions are adsorbed onto the supported bilayer. The adsorption of negatively charged particles increases with the zeta-potential of the particle. Consecutively, the diffusion coefficient of lipids is reduced probably due to binding onto the lipid heads which slows down their Brownian motion. The results are directly relevant for understanding the interactions of particulate matter with pulmonary structures which could lead to pulmonary surfactant inhibition or deficiency causing severe respiratory distress or pathologies.
Fabry, Thomas; Feral, Bruno
2013-01-01
Intervention planning is crucial for maintenance operations in particle accelerator environments with ionizing radiation, during which the radiation dose contracted by maintenance workers should be reduced to a minimum. In this context, we discuss the visualization aspects of a new software tool, which integrates interactive exploration of a scene depicting an accelerator facility augmented with residual radiation level simulations, with the visualization of intervention data such as the followed trajectory and maintenance tasks. The visualization of each of these aspects has its effect on the final predicted contracted radiation dose. In this context, we explore the possible benefits of a user study, with the goal of enhancing the visual conditions in which the intervention planner using the software tool is minimizing the radiation dose.
Can a particle interacting with a scalar field reach the speed of light\\?
Vollick, Dan N.
1995-09-01
The motion of a particle interacting with a scalar field is examined. It is shown that the effective mass of the particle is a linear function of the scalar field and that the particle reaches the speed of light when its effective mass goes to zero if scalar field radiation is neglected. The equation of motion for the particle including radiation reaction has the same form as the Lorentz-Dirac equation. The radiation emitted diverges as the particle approaches the speed of light and prevents the particle from becoming luminal. The energy-momentum tensor for the particle and field is calculated and it is shown that there exists an interaction energy-momentum tensor which allows for violations of the weak energy condition.
Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
Moniri, S. M.; Yavari, H.; Darsheshdar, E.
2016-12-01
By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose-Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional (2D) case, the results for the Landau damping due to the Bose-Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.
Particle and Field Symmetries and Noncommutative Geometry
Patwardhan, A
2003-01-01
The development of Noncommutative Geometry is creating a reworking and new possibilities in physics. This paper identifies some of the commutation and derivation structures that arise in particle and field interactions and fundamental symmetries. The requirements of coexisting structures, and their consistency, produce a mathematical framework that underlies a fundamental physics theory. Among other developments in Quantum theory of particles and fields are the symmetries of gauge fields and the Fermi-Bose symmetry of particles. These involve a gauge covariant derivation and the action functionals; and commutation algebras and Bogoliubov transforms. The non commutative Theta form introduces an additional and fundamental structure. This paper obtains the interrelations of various structures, and the conditions for the symmetries of Fermionic/Bosonic particles interacting with Yang Mills gauge fields. Many example physical systems are being solved, and the mathematical formalism is being created to understand t...
The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap
Directory of Open Access Journals (Sweden)
Metsch B. Ch.
2010-04-01
Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Eﬁmov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].
Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere
Institute of Scientific and Technical Information of China (English)
ZONG QiuGang; WANG YongFu; YANG Biao; FU SuiYan; PU ZuYin; XIE Lun; Theodore A. FRITZ
2008-01-01
The global distribution properties of Ultra Low Frequency wave (ULF) in the inner magnetospgere and its interactions with energetic particles, such as the wave-particle resonance, modulation, and particle acceleration, are active topics in space physics research. These problems are fundamentally important issues to understand the energy transport from the solar wind into the magnetosphere. In this paper we briefly reviewed the recent research progress on ULF wave and its interactions with energetic particles in the inner magnetosphere; furthermore, we suggested some open questions for future study.
Simulations of Energetic Particles Interacting with Nonlinear Anisotropic Dynamical Turbulence
Heusen, Martin
2016-01-01
We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bend...
Simulations of Energetic Particles Interacting with Dynamical Magnetic Turbulence
Hussein, M.; Shalchi, A.
2016-02-01
We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B0 = 0.5.
Mott transition in a two-leg Bose-Hubbard ladder under an artificial magnetic field
Keleş, Ahmet; Oktel, M. Ö.
2015-01-01
We consider the Bose-Hubbard model on a two-leg ladder under an artificial magnetic field and investigate the superfluid-to-Mott insulator transition in this setting. Recently, this system has been experimentally realized [M. Atala et al., Nature Phys. 10, 588 (2014), 10.1038/nphys2998], albeit in a parameter regime that is far from the Mott transition boundary. Depending on the strength of the magnetic field, the single-particle spectrum has either a single ground state or two degenerate ground states. The transition between these two phases is reflected in the many-particle properties. We first investigate these phases through the Bogoliubov approximation in the superfluid regime and calculate the transition boundary for weak interactions. For stronger interactions the system is expected to form a Mott insulator. We calculate the Mott transition boundary as a function of the magnetic field and interleg coupling with mean-field theory, strong-coupling expansion, and density matrix renormalization group (DMRG). Finally, using the DMRG, we investigate the particle-hole excitation gaps of this system at different filling factors and find peaks at simple fractions, indicating the possibility of correlated phases.
Dispersive approaches for three-particle final state interaction
Energy Technology Data Exchange (ETDEWEB)
Guo, Peng; Szczepaniak, Adam P. [Indiana University, Physics Department, Bloomington, IN (United States); Indiana University, Center For Exploration of Energy and Matter, Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Danilkin, I.V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2015-10-15
In this work, we present different representations of the Khuri-Treiman equation and discuss advantages and disadvantages of each representation. In particular we focus on the inversion technique proposed by Pasquier, which, even though developed a long time ago, has not been used in modern analyses of data on three particle decays. We apply the method to a toy model and compare the sensitivity of this and alternative solution methods to the left-hand cut contribution. We also discuss the meaning and applicability of Watson's theorem when three particles in final states are involved. (orig.)
Dorfner, F.; Heidrich-Meisner, F.
2016-06-01
We study properties of the single-site reduced density matrix in the Bose-Bose resonance model as a function of system parameters. This model describes a single-component Bose gas with a resonant coupling to a diatomic molecular state, here defined on a lattice. A main goal is to demonstrate that the eigenstates of the single-site reduced density matrix have structures that are characteristic for the various quantum phases of this system. Since the Hamiltonian conserves only the global particle number but not the number of bosons and molecules individually, these eigenstates, referred to as optimal modes, can be nontrivial linear combinations of bare eigenstates of the molecular and boson particle number. We numerically analyze the optimal modes and their weights, the latter giving the importance of the corresponding state, in the ground state of the Bose-Bose resonance model. We find that the single-site von Neumann entropy is sensitive to the location of the phase boundaries. We explain the structure of the optimal modes and their weight spectra using perturbation theory and via a comparison to results for the single-component Bose-Hubbard model. We further study the dynamical evolution of the optimal modes and of the single-site entanglement entropy in two quantum quenches that cross phase boundaries of the model and show that these quantities are thermal in the steady state. For our numerical calculations, we use the density-matrix renormalization group method for ground-state calculations and time evolution in a Krylov subspace for the quench dynamics as well as exact diagonalization.
Modelling of the crystallization front – particles interactions in ZnAl/(SiCp composites
Directory of Open Access Journals (Sweden)
M. Szucki
2015-04-01
Full Text Available The presented work focuses on solid particle interactions with the moving crystallization front during a solidification of the metal matrix composite. The current analyses were made for silicon carbide particles and ZnAl alloy with different additions of aluminium. It was found, that the chemical composition of the metal matrix influences the behaviour of SiC particles. At the same time calculations of the forces acting on a single particle near the crystallization front were performed. For each alloy type the critical conditions that determine whether particle will be absorbed or pushed, were specified.
Masuda, Kyoko
2011-01-01
This study examines the development of interactional competence (Hall, 1993, 1995) by English-speaking learners of Japanese as a foreign language (JFL) in a study abroad setting, as indexed by their use of the interactionally significant particle "ne." The analysis is based on a comparison of (a) 6 sets of conversations between JFL learners and…
Abbas, Micheline; Bossis, Georges
2017-06-01
In applications where magnetic particles are used to detect and dose targeted molecules, it is of major importance to prevent particle clustering and aggregation during the capture stage in order to maximize the capture rate. Elongated ferromagnetic particles can be more interesting than spherical ones due to their large magnetic moment, which facilitates their separation by magnets or the detection by optical measurement of their orientation relaxation time. Under alternating magnetic field, the rotational dynamics of elongated ferromagnetic particles results from the balance between magnetic torque that tends to align the particle axis with the field direction and viscous torque. As for their translational motion, it results from a competition between direct magnetic particle-particle interactions and solvent-flow-mediated hydrodynamic interactions. Due to particle anisotropy, this may lead to intricate translation-rotation couplings. Using numerical simulations and theoretical modeling of the system, we show that two ellipsoidal magnetic particles, initially in a head-to-tail attractive configuration resulting from their remnant magnetization, can repel each other due to hydrodynamic interactions when alternating field is operated. The separation takes place in a range of low frequencies fc 1magnetic field to particle magnetization strength, whereas fc 1 tends to zero when this ratio increases.
The Mathematics of Charged Particles interacting with Electromagnetic Fields
DEFF Research Database (Denmark)
Petersen, Kim
In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...
The Mathematics of Charged Particles interacting with Electromagnetic Fields
DEFF Research Database (Denmark)
Petersen, Kim
In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...
Interactions between goethite particles subjected to heat treatment
DEFF Research Database (Denmark)
Madsen, Daniel Esmarch; Hansen, Mikkel Fougt; Koch, C.B.;
2008-01-01
We have studied the effect of heating on the magnetic properties of particles of nanocrystalline goethite by use of Mossbauer spectroscopy. Heating at 150 degrees C for 24 h leads to a change in the quadrupole shift in the low-temperature spectra, indicating a rotation of the sublattice magnetiza...
Quantum dynamics of a particle interacting with a double barrier
Energy Technology Data Exchange (ETDEWEB)
Cacciari, Ilaria [Istituto di Fisica Applicata ' Nello Carrara' del Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Lantieri, Marco [Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche, Sezione di Firenze, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Moretti, Paolo [Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche, Sezione di Firenze, via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy)
2007-10-12
Following a previously developed method, the problem of a particle scattered by a double barrier is studied. Instead of the simple transmission or reflection, the more difficult case of the arrival in the region between the barriers is considered and solved explicitly by using matrix methods.
Nonlinear Wave in a Disc-Shaped Bose-Einstein Condensate
Institute of Scientific and Technical Information of China (English)
DUAN Wen-Shan; CHEN Jian-Hong; YANG Hong-Juan; SHI Yu-Ren; WANG Hong-Yan
2006-01-01
@@ We discuss the possible nonlinear wavesof atomic matter wave in a Bose-Einstein condensate. One and two of two-dimensional (2D) dark solitons in the Bose-Einstein condensed system are investigated. A rich dynamics is studied for the interactions between two solitons. The interaction profiles of two solitons are greatly different if the angle between them are different. If the angle is small enough, the maximum amplitude during the interaction between two solitons is even less than that of a single soliton. However, if the angle is large enough, the maximum amplitude of two solitons can gradually attend to the sum of two soliton amplitudes.
Knocking on surfaces : interactions of hyperthermal particles with metal surfaces
Ueta, Hirokazu
2010-01-01
The study of gas-surface interaction dynamics is important both for the fundamental knowledge it provides and also to aid the development of applications involving processes such as sputtering, plasma etching and heterogeneous catalysis. Elementary steps in the interactions, such as chemical reactio
Thermalization of a quenched Bose-Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Posazhennikova, Anna [Royal Holloway, University of London (United Kingdom); Trujillo-Martinez, Mauricio; Kroha, Johann [Universitaet Bonn (Germany)
2015-07-01
The experimental realization and control of quantum systems isolated from the environment, in ultracold atomic gases relaunched the interest in the fundamental non-equilibrium problem of how a finite system approaches thermal equilibrium. Despite intensive research there is still no conclusive answer to this question. We investigate theoretically how a quenched Bose-Josephson junction, where the Josephson coupling is switched on instantaneously, approaches its stationary state. We use the field theoretical approach for bosons out of equilibrium in a trap with discrete levels, developed by us previously. In this approach the operators for Bose-Einstein condensate (BEC) particles are treated on mean-field level, while excitations of the Bose gas in higher trap levels are treated fully quantum-mechanically. This leads to coupled equations of motion for the BEC amplitudes (Gross-Pitaevskii equation) and the quasiparticle propagators. The inelastic quasiparticle collisions responsible for the system relaxation during the time-dependent evolution are described within self-consistent second-order approximation.
Soliton resonance in bose-einstein condensate
Zak, Michail; Kulikov, I.
2002-01-01
A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.
Initial stages of Bose-Einstein condensation
Stoof, H.T.C.
1997-01-01
We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic Bose gas. This quantum theory has the important advantage that both the kinetic and coherent stages of the nucleation process can be described in a unified way by a single Fokker-Planck equation.
Initial stages of Bose-Einstein condensation
Stoof, H.T.C.
2001-01-01
We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic Bose gas. This quantum theory confirms the results of the semiclassical treatment, but has the important advantage that both the kinetic and coherent stages of the nucleation process can now be describe
Condensate formation in a Bose gas
Stoof, H.T.C.
1995-01-01
Using magnetically trapped atomic hydrogen as an example, we investigate the prospects of achieving Bose-Einstein condensation in a dilute Bose gas. We show that, if gas is quenched sufficiently far into the critical region of the phase transition, the typical time scale for the nucleation of the co
Thermodynamics of ultracold Bose gases at a dimensional crossover
Labouvie, Ralf; Vogler, Andreas; Guarrera, Vera; Ott, Herwig
2013-05-01
We have studied the thermodynamics of ultracold Bose gases in the crossover from a three-dimensional to a one-dimensional regime. In our experiment, we use a focused electron-beam to probe in situ atomic density distributions with high temporal and spatial resolution. Starting with a Bose-Einstein-Condensate in a single beam optical dipole trap we can create one-dimensional systems by loading the atoms in a two-dimensional blue-detuned optical lattice. With increasing strength of the lattices we go from a three-dimensional into a one-dimensional system. Furthermore we tune the interaction strengths of the one-dimensional quantum-gases from weak (quasi-condensate) to strong (Tonks-Girardeau). By measuring the density profiles and applying an inverse Abel-Transformation we extract the equation of states of these systems and characterize the crossover from the three-dimensional to the one-dimensional regime.
Sideband Rabi spectroscopy of finite-temperature trapped Bose gases
Allard, Baptiste; Schmied, Roman; Treutlein, Philipp
2016-01-01
We use Rabi spectroscopy to explore the low-energy excitation spectrum of a finite-temperature Bose gas of rubidium atoms across the phase transition to a Bose-Einstein condensate (BEC). To record this spectrum, we coherently drive the atomic population between two spin states. A small relative displacement of the spin-specific trapping potentials enables sideband transitions between different motional states. The intrinsic non-linearity of the motional spectrum, mainly originating from two-body interactions, makes it possible to resolve and address individual excitation lines. Together with sensitive atom-counting, this constitutes a feasible technique to count single excited atoms of a BEC and to determine the temperature of nearly pure condensates. As an example, we show that for a nearly pure BEC of N = 800 atoms the first excited state has a population of less than 5 atoms, corresponding to an upper bound on the temperature of 30 nK.
Landau criterion for an anisotropic Bose-Einstein condensate
Yu, Zeng-Qiang
2017-03-01
In this work we discuss the Landau criterion for anisotropic superfluidity. To this end we consider a pointlike impurity moving in a uniform Bose-Einstein condensate with either interparticle dipole-dipole interaction or Raman-induced spin-orbit coupling. In both cases we find that the Landau critical velocity vc is generally smaller than the sound velocity in the moving direction. Beyond vc, the energy dissipation rate is explicitly calculated via a perturbation approach. In the plane-wave phase of a spin-orbit-coupled Bose gas, the dissipationless motion is suppressed by the Raman coupling even in the direction orthogonal to the recoil momentum. Our predictions can be tested in the experiments with ultracold atoms.
Fast thermalization and Helmholtz oscillations of an ultracold Bose gas.
Papoular, D J; Pitaevskii, L P; Stringari, S
2014-10-24
We analyze theoretically the transport properties of a weakly interacting ultracold Bose gas enclosed in two reservoirs connected by a constriction. We assume that the transport of the superfluid part is hydrodynamic, and we describe the ballistic transport of the normal part using the Landauer-Büttiker formalism. Modeling the coupled evolution of the phase, atom number, and temperature mismatches between the reservoirs, we predict that Helmholtz (plasma) oscillations can be observed at nonzero temperatures below Tc. We show that, because of its strong compressibility, the Bose gas is characterized by a fast thermalization compared to the damping time for plasma oscillations, accompanied by a fast transfer of the normal component. This fast thermalization also affects the gas above Tc, where we present a comparison to the ideal fermionic case. Moreover, we outline the possible realization of a superleak through the inclusion of a disordered potential.
Bose-Einstein condensation in dilute atomic gases
Arlt, J.; Bongs, K.; Sengstock, K.; Ertmer, W.
2002-02-01
Bose-Einstein condensation is one of the most curious and fascinating phenomena in physics. It lies at the heart of such intriguing processes as superfluidity and superconductivity. However, in most cases, only a small part of the sample is Bose-condensed and strong interactions are present. A weakly interacting, pure Bose-Einstein condensate (BEC) has therefore been called the "holy grail of atomic physics". In 1995 this grail was found by producing almost pure BECs in dilute atomic gases. We review the experimental development that led to the realization of BEC in these systems and explain how BECs are now routinely produced in about 25 laboratories worldwide. The tremendous experimental progress of the past few years is outlined and a number of recent experiments show the current status of the field. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00114-001-0277-8.
Castellanos, Elias
2012-01-01
We deduce the relation between the critical temperature associated to the U(1) symmetry breaking of scalar fields with one--loop correction potential immersed in a thermal bath, and the condensation temperature of the aforementioned system in the thermodynamic limit, within the semiclassical approximation for a weakly interacting bosonic gas with a positive coupling constant. Additionally, we show that the shift in the condensation temperature caused by the coupling constant is independent of the thermal bath.
Atomic Tunnelling Dynamics of Two Squeezed Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
LI Jin-Hui; KUANG Le-Man
2003-01-01
In this paper, tunnelling dynamics of squeezed Bose-Einstein condensates (BEC's) in the presence of the nonlinear self-interaction of each species, the interspecies nonlinear interaction, and the Josephson-like tunnelling interaction is investigated by using the second quantization approach. The influence of BEC squeezing on macroscopic quantum self-trapping (MQST) and quantum coherent atomic tunnelling is analyzed in detail. It is shown that the MQST and coherent atomic tunnelling between two squeezed BEC's can be manipulated through changing squeezing amplitude and squeezing phase of BEC squeezed states.
Optimal interactions of light with magnetic and electric resonant particles
Colom, Remi; Bonod, Nicolas; Stout, Brian
2015-01-01
This work studies the limits of far and near-field electromagnetic response of sub-wavelength scatterers, like the unitary limit and of lossless scatterers, and the ideal absorption limit of lossy particles. These limit behaviors are described in terms of analytic formulas that approximate finite size effects while rigorously including radiative corrections. This analysis predicts the electric and/or magnetic limit responses of both metallic and dielectric nanoparticles while quantitatively describing near-field enhancements.
Interaction of neutrons with alpha particles: A tribute to Heinz Barschall
Hoop, B
2015-01-01
As a tribute to our teacher and mentor on the occasion of his centennial celebration, we provide a brief historical overview and a summary of sustained interest in the topic of interaction of neutrons with alpha particles.
Multiscale GasKinetics/Particle (MGP) Simulation for Rocket Plume/Lunar Dust Interactions Project
National Aeronautics and Space Administration — A Multiscale GasKinetic/Particle (MGP) computational method is proposed to simulate the plume-crater-interaction/dust-impingement(PCIDI) problem. The MGP method...
Energy Technology Data Exchange (ETDEWEB)
Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.
1992-10-01
Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.