WorldWideScience

Sample records for intensity-modulated arc therapy

  1. Intensity-modulated arc therapy simplified

    International Nuclear Information System (INIS)

    Wong, Eugene; Chen, Jeff Z.; Greenland, Jonathan

    2002-01-01

    Purpose: We present a treatment planning strategy for intensity-modulated radiation therapy using gantry arcs with dynamic multileaf collimator, previously termed intensity-modulated arc therapy (IMAT). Methods and Materials: The planning strategy is an extension of the photon bar arc and asymmetric arc techniques and is classified into three levels of complexity, with increasing number of gantry arcs. This principle allows us to generalize the analysis of the number of arcs required for intensity modulation for a given treatment site. Using a phantom, we illustrate how the current technique is more flexible than the photon bar arc technique. We then compare plans from our strategy with conventional three-dimensional conformal treatment plans for three sites: prostate (prostate plus seminal vesicles), posterior pharyngeal wall, and chest wall. Results: Our strategy generates superior IMAT treatment plans compared to conventional three-dimensional conformal plans. The IMAT plans spare critical organs well, and the trade-off for simplicity is that the dose uniformity in the target volume may not rival that of true inverse treatment plans. Conclusions: The analyses presented in this paper give a better understanding of IMAT plans. Our strategy is easier to understand and more efficient in generating plans than inverse planning systems; our plans are also simpler to modify, and quality assurance is more intuitive

  2. Comparison study of intensity modulated arc therapy using single or multiple arcs to intensity modulated radiation therapy for high-risk prostate cancer

    International Nuclear Information System (INIS)

    Ashamalla, Hani; Tejwani, Ajay; Parameritis, Loannis; Swamy, Uma; Luo, Pei Ching; Guirguis, Adel; Lavaf, Amir

    2013-01-01

    Intensity modulated arc therapy (IMAT) is a form of intensity modulated radiation therapy (IMRT) that delivers dose in single or multiple arcs. We compared IMRT plans versus single-arc field (1ARC) and multi-arc fields (3ARC) IMAT plans in high-risk prostate cancer. Sixteen patients were studied. Prostate (PTV P ), right pelvic (PTV RtLN ) and left pelvic lymph nodes (PTV LtLN ), and organs at risk were contoured. PTVP, PTV RtLN , and PTV LtLN received 50.40 Gy followed by a boost to PTV B of 28.80 Gy. Three plans were per patient generated: IMRT, 1ARC, and 3ARC. We recorded the dose to the PTV, the mean dose (D MEAN ) to the organs at risk, and volume covered by the 50% isodose. Efficiency was evaluated by monitor units (MU) and beam on time (BOT). Conformity index (CI), Paddick gradient index, and homogeneity index (HI) were also calculated. Average Radiation Therapy Oncology Group CI was 1.17, 1.20, and 1.15 for IMRT, 1ARC, and 3ARC, respectively. The plans' HI were within 1% of each other. The D MEAN of bladder was within 2% of each other. The rectum D MEAN in IMRT plans was 10% lower dose than the arc plans (p < 0.0001). The GI of the 3ARC was superior to IMRT by 27.4% (p = 0.006). The average MU was highest in the IMRT plans (1686) versus 1ARC (575) versus 3ARC (1079). The average BOT was 6 minutes for IMRT compared to 1.3 and 2.9 for 1ARC and 3ARC IMAT (p < 0.05). For high-risk prostate cancer, IMAT may offer a favorable dose gradient profile, conformity, MU and BOT compared to IMRT.

  3. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    International Nuclear Information System (INIS)

    Hoover, Douglas A.; Chen, Jeff Z.; MacFarlane, Michael; Wong, Eugene; Battista, Jerry J.

    2015-01-01

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT

  4. Dosimetric analysis of testicular doses in prostate intensity-modulated and volumetric-modulated arc radiation therapy at different energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha; Efe, Esma

    2016-01-01

    The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from the intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.

  5. Aperture modulated arc therapy

    International Nuclear Information System (INIS)

    Crooks, S M; Wu, Xiaodong; Takita, C; Watzich, M; Xing Lei

    2003-01-01

    We show that it is possible to translate an intensity modulated radiation therapy (IMRT) treatment plan and deliver it as a single arc. This technique is referred to in this paper as aperture modulation arc therapy (AMAT). During this arc, the MLC leaves do not conform to the projection of the target PTV and the machine output of the accelerator has a constant value. Dose was calculated using the CORVUS 4.0 IMRT system, which uses a pencil beam dose algorithm, and treatments were delivered using a Varian 2100C/D Clinac. Results are presented for a head and neck and a prostate case, showing the equivalence of the IMRT and the translated AMAT delivery. For a prostate AMAT delivery, coronal plane film dose for the IMRT and AMAT deliveries agreed within 7.19 ± 6.62%. For a meningioma the coronal plane dose distributions were similar to a value of 4.6 ± 6.62%. Dose to the isocentre was measured as being within 2% of the planned value in both cases

  6. Intensity-modulated photon arc therapy for treatment of pleural mesothelioma

    International Nuclear Information System (INIS)

    Tobler, Matt; Watson, Gordon; Leavitt, Dennis

    2002-01-01

    Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We have developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord

  7. A comparative study of standard intensity-modulated radiotherapy and RapidArc planning techniques for ipsilateral and bilateral head and neck irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pursley, Jennifer, E-mail: jpursley@mgh.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Damato, Antonio L.; Czerminska, Maria A.; Margalit, Danielle N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Sher, David J. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States); Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX (United States); Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, MA (United States)

    2017-04-01

    The purpose of this study was to investigate class solutions using RapidArc volumetric-modulated arc therapy (VMAT) planning for ipsilateral and bilateral head and neck (H&N) irradiation, and to compare dosimetric results with intensity-modulated radiotherapy (IMRT) plans. A total of 14 patients who received ipsilateral and 10 patients who received bilateral head and neck irradiation were retrospectively replanned with several volumetric-modulated arc therapy techniques. For ipsilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the contralateral parotid, two 260° or 270° arcs, and two 210° arcs. For bilateral neck irradiation, the volumetric-modulated arc therapy techniques included two 360° arcs, two 360° arcs with avoidance sectors around the shoulders, and 3 arcs. All patients had a sliding-window-delivery intensity-modulated radiotherapy plan that was used as the benchmark for dosimetric comparison. For ipsilateral neck irradiation, a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid was dosimetrically comparable to intensity-modulated radiotherapy, with improved conformity (conformity index = 1.22 vs 1.36, p < 0.04) and lower contralateral parotid mean dose (5.6 vs 6.8 Gy, p < 0.03). For bilateral neck irradiation, 3-arc volumetric-modulated arc therapy techniques were dosimetrically comparable to intensity-modulated radiotherapy while also avoiding irradiation through the shoulders. All volumetric-modulated arc therapy techniques required fewer monitor units than sliding-window intensity-modulated radiotherapy to deliver treatment, with an average reduction of 35% for ipsilateral plans and 67% for bilateral plans. Thus, for ipsilateral head and neck irradiation a volumetric-modulated arc therapy technique using two 360° arcs with avoidance sectors around the contralateral parotid is

  8. Treatment planning study comparing proton therapy, RapidArc and intensity modulated radiation therapy for a synchronous bilateral lung cancer case

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2014-03-01

    Full Text Available Purpose: The main purpose of this study is to perform a treatment planning study on a synchronous bilateral non-small cell lung cancer case using three treatment modalities: uniform scanning proton therapy, RapidArc, and intensity modulated radiation therapy (IMRT. Methods: The maximum intensity projection (MIP images obtained from the 4 dimensional-computed tomography (4DCT scans were used for delineation of tumor volumes in the left and right lungs. The average 4D-CT was used for the treatment planning among all three modalities with identical patient contouring and treatment planning goal. A proton therapy plan was generated in XiO treatment planning system (TPS using 2 fields for each target. For a comparative purpose, IMRT and RapidArc plans were generated in Eclipse TPS. Treatment plans were generated for a total dose of 74 CGE or Gy prescribed to each planning target volume (PTV (left and right with 2 CGE or Gy per fraction. In IMRT and RapidArc plans, normalization was done based on PTV coverage values in proton plans. Results: The mean PTV dose deviation from the prescription dose was lower in proton plan (within 3.4%, but higher in IMRT (6.5% to 11.3% and RapidArc (3.8% to 11.5% plans. Proton therapy produced lower mean dose to the total lung, heart, and esophagus when compared to IMRT and RapidArc. The relative volume of the total lung receiving 20, 10, and 5 CGE or Gy (V20, V10, and V5, respectively were lower using proton therapy than using IMRT, with absolute differences of 9.71%, 22.88%, and 39.04%, respectively. The absolute differences in the V20, V10, and V5 between proton and RapidArc plans were 4.84%, 19.16%, and 36.8%, respectively, with proton therapy producing lower dosimetric values. Conclusion: Based on the results presented in this case study, uniform scanning proton therapy has a dosimetric advantage over both IMRT and RapidArc for a synchronous bi-lateral NSCLC, especially for the normal lung tissue, heart, and

  9. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  10. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  11. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    International Nuclear Information System (INIS)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  12. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    Science.gov (United States)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  13. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    International Nuclear Information System (INIS)

    Nithya, L.; Arulraj, Kumar; Rathinamuthu, Sasikumar; Pandey, Manish Bhushan; Nambi Raj, N. Arunai

    2014-01-01

    The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC) intensity modulated radiation therapy (IMRT) plans with volumetric modulated arc therapy (VMAT) plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV) for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI) and the conformity index (CI) of the PTV 70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV) cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU) required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases. (author)

  14. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC intensity modulated radiation therapy (IMRT plans with volumetric modulated arc therapy (VMAT plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI and the conformity index (CI of the PTV 70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases.

  15. Comparison of volumetric modulated arc therapy and intensity modulated radiation therapy for whole brain hippocampal sparing treatment plans based on radiobiological modeling

    Directory of Open Access Journals (Sweden)

    Ethan Kendall

    2018-01-01

    Full Text Available Introduction: In this article, we report the results of our investigation on comparison of radiobiological aspects of treatment plans with linear accelerator-based intensity-modulated radiation therapy and volumetric-modulated arc therapy for patients having hippocampal avoidance whole-brain radiation therapy. Materials and Methods: In this retrospective study using the dose-volume histogram, we calculated and compared biophysical indices of equivalent uniform dose, tumor control probability, and normal tissue complication probability (NTCP for 15 whole-brain radiotherapy patients. Results and Discussions: Dose-response models for tumors and critical structures were separated into two groups: mechanistic and empirical. Mechanistic models formulate mathematically with describable relationships while empirical models fit data through empirical observations to appropriately determine parameters giving results agreeable to those given by mechanistic models. Conclusions: Techniques applied in this manuscript could be applied to any other organs or types of cancer to evaluate treatment plans based on radiobiological modeling.

  16. Volumetric Modulated Arc Therapy (VMAT) Treatment Planning for Superficial Tumors

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    The physician's planning objective is often a uniform dose distribution throughout the planning target volume (PTV), including superficial PTVs on or near the surface of a patient's body. Varian's Eclipse treatment planning system uses a progressive resolution optimizer (PRO), version 8.2.23, for RapidArc dynamic multileaf collimator volumetric modulated arc therapy planning. Because the PRO is a fast optimizer, optimization convergence errors (OCEs) produce dose nonuniformity in the superficial area of the PTV. We present a postsurgical cranial case demonstrating the recursive method our clinic uses to produce RapidArc treatment plans. The initial RapidArc treatment plan generated using one 360 o arc resulted in substantial dose nonuniformity in the superficial section of the PTV. We demonstrate the use of multiple arcs to produce improved dose uniformity in this region. We also compare the results of this superficial dose compensation method to the results of a recursive method of dose correction that we developed in-house to correct optimization convergence errors in static intensity-modulated radiation therapy treatment plans. The results show that up to 4 arcs may be necessary to provide uniform dose to the surface of the PTV with the current version of the PRO.

  17. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    International Nuclear Information System (INIS)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B; Anuradha, C

    2015-01-01

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  18. SU-E-T-309: Dosimetric Comparison of Simultaneous Integrated Boost Treatment Plan Between Intensity Modulated Radiotherapies (IMRTs), Dual Arc Volumetric Modulated Arc Therapy (DA-VMAT) and Single Arc Volumetric Modulated Arc Therapy (SA-VMAT) for Nasopharyngeal Carcinoma (NPC)

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R; Janardhan, N; Bhavani, P; Surendran, J; Saranganathan, B; Ibrahim, S; Jhonson, B; Madhuri, B [Omega Hospitals, Hyderabad, Telangana (India); Anuradha, C [Vit University, Vellore, Tamil Nadu (India)

    2015-06-15

    Purpose: To compare the plan quality and performance of Simultaneous Integrated Boost (SIB) Treatment plan between Seven field (7F) and Nine field(9F) Intensity Modulated Radiotherapies and Single Arc (SA) and Dual Arc (DA) Volumetric Modulated Arc Therapy( VMAT). Methods: Retrospective planning study of 16 patients treated in Elekta Synergy Platform (mlci2) by 9F-IMRT were replanned with 7F-IMRT, Single Arc VMAT and Dual Arc VMAT using CMS, Monaco Treatment Planning System (TPS) with Monte Carlo simulation. Target delineation done as per Radiation Therapy Oncology Protocols (RTOG 0225&0615). Dose Prescribed as 70Gy to Planning Target Volumes (PTV70) and 61Gy to PTV61 in 33 fraction as a SIB technique. Conformity Index(CI), Homogeneity Index(HI) were used as analysis parameter for Target Volumes as well as Mean dose and Max dose for Organ at Risk(OAR,s).Treatment Delivery Time(min), Monitor unit per fraction (MU/fraction), Patient specific quality assurance were also analysed. Results: A Poor dose coverage and Conformity index (CI) was observed in PTV70 by 7F-IMRT among other techniques. SA-VMAT achieved poor dose coverage in PTV61. No statistical significance difference observed in OAR,s except Spinal cord (P= 0.03) and Right optic nerve (P=0.03). DA-VMAT achieved superior target coverage, higher CI (P =0.02) and Better HI (P=0.03) for PTV70 other techniques (7F-IMRT/9F-IMRT/SA-VMAT). A better dose spare for Parotid glands and spinal cord were seen in DA-VMAT. The average treatment delivery time were 5.82mins, 6.72mins, 3.24mins, 4.3mins for 7F-IMRT, 9F-IMRT, SA-VMAT and DA-VMAT respectively. Significance difference Observed in MU/fr (P <0.001) and Patient quality assurance pass rate were >95% (Gamma analysis (Γ3mm, 3%). Conclusion: DA-VAMT showed better target dose coverage and achieved better or equal performance in sparing OARs among other techniques. SA-VMAT offered least Treatment Time than other techniques but achieved poor target coverage. DA-VMAT offered

  19. Optimization approaches to volumetric modulated arc therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Bortfeld, Thomas; Craft, David [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Alber, Markus [Department of Medical Physics and Department of Radiation Oncology, Aarhus University Hospital, Aarhus C DK-8000 (Denmark); Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg D-69120 (Germany); Bokrantz, Rasmus [RaySearch Laboratories, Stockholm SE-111 34 (Sweden); Chen, Danny [Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Men, Chunhua [Department of Research, Elekta, Maryland Heights, Missouri 63043 (United States); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Papp, Dávid [Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Romeijn, Edwin [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Salari, Ehsan [Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, Kansas 67260 (United States)

    2015-03-15

    Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.

  20. Verification of Dosimetric Commissioning Accuracy of Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Delivery using Task Group-119 Guidelines.

    Science.gov (United States)

    Kaviarasu, Karunakaran; Nambi Raj, N Arunai; Hamid, Misba; Giri Babu, A Ananda; Sreenivas, Lingampally; Murthy, Kammari Krishna

    2017-01-01

    The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119). TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7-9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5). Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC-13) ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119.

  1. Helical Tomotherapy Versus Single-Arc Intensity-Modulated Arc Therapy: A Collaborative Dosimetric Comparison Between Two Institutions

    International Nuclear Information System (INIS)

    Rong Yi; Tang, Grace; Welsh, James S.; Mohiuddin, Majid M.; Paliwal, Bhudatt; Yu, Cedric X.

    2011-01-01

    Purpose: Both helical tomotherapy (HT) and single-arc intensity-modulated arc therapy (IMAT) deliver radiation using rotational beams with multileaf collimators. We report a dual-institution study comparing dosimetric aspects of these two modalities. Methods and Materials: Eight patients each were selected from the University of Maryland (UMM) and the University of Wisconsin Cancer Center Riverview (UWR), for a total of 16 cases. Four cancer sites including brain, head and neck (HN), lung, and prostate were selected. Single-arc IMAT plans were generated at UMM using Varian RapidArc (RA), and HT plans were generated at UWR using Hi-Art II TomoTherapy. All 16 cases were planned based on the identical anatomic contours, prescriptions, and planning objectives. All plans were swapped for analysis at the same time after final approval. Dose indices for targets and critical organs were compared based on dose-volume histograms, the beam-on time, monitor units, and estimated leakage dose. After the disclosure of comparison results, replanning was done for both techniques to minimize diversity in optimization focus from different operators. Results: For the 16 cases compared, the average beam-on time was 1.4 minutes for RA and 4.8 minutes for HT plans. HT provided better target dose homogeneity (7.6% for RA and 4.2% for HT) with a lower maximum dose (110% for RA and 105% for HT). Dose conformation numbers were comparable, with RA being superior to HT (0.67 vs. 0.60). The doses to normal tissues using these two techniques were comparable, with HT showing lower doses for more critical structures. After planning comparison results were exchanged, both techniques demonstrated improvements in dose distributions or treatment delivery times. Conclusions: Both techniques created highly conformal plans that met or exceeded the planning goals. The delivery time and total monitor units were lower in RA than in HT plans, whereas HT provided higher target dose uniformity.

  2. Dosimetric comparison between step-shoot intensity-modulated radiotherapy and volumetric-modulated arc therapy for upper thoracic and cervical esophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Min; Li, Qilin; Ning, Zhonghua; Gu, Wendong; Huang, Jin; Mu, Jinming; Pei, Honglei, E-mail: hongleipei@126.com

    2016-07-01

    To compare and analyze the dosimetric characteristics of volumetric modulated arc therapy (VMAT) vs step-shoot intensity-modulated radiation therapy (sIMRT) for upper thoracic and cervical esophageal carcinoma. Single-arc VMAT (VMAT1), dual-arc VMAT (VMAT2), and 7-field sIMRT plans were designed for 30 patients with upper thoracic or cervical esophageal carcinoma. Planning target volume (PTV) was prescribed to 50.4 Gy in 28 fractions, and PTV1 was prescribed to 60 Gy in 28 fractions. The parameters evaluated included dose homogeneity and conformality, dose to organs at risk (OARs), and delivery efficiency. (1) In comparison to sIMRT, VMAT provided a systematic improvement in PTV1 coverage. The homogeneity index of VMAT1 was better than that of VMAT2. There were no significant differences among sIMRT, VMAT1, and VMAT2 in PTV coverage. (2) VMAT1 and VMAT2 reduced the maximum dose of spinal cord as compared with sIMRT (p < 0.05). The rest dose-volume characteristics of OARs were similar. (3) Monitor units of VMAT2 and VMAT1 were more than sIMRT. However, the treatment time of VMAT1, VMAT2, and sIMRT was (2.0 ± 0.2), (2.8 ± 0.3), and (9.8 ± 0.8) minutes, respectively. VMAT1 was the fastest, and the difference was statistically significant. In the treatment of upper thoracic and cervical esophageal carcinoma by the AXESSE linac, compared with 7-field sIMRT, VMAT showed better PTV1 coverage and superior spinal cord sparing. Single-arc VMAT had similar target volume coverage and the sparing of OAR to dual-arc VMAT, with shortest treatment time and highest treatment efficiency in the 3 kinds of plans.

  3. The GLAaS algorithm for portal dosimetry and quality assurance of RapidArc, an intensity modulated rotational therapy

    International Nuclear Information System (INIS)

    Nicolini, Giorgia; Vanetti, Eugenio; Clivio, Alessandro; Fogliata, Antonella; Korreman, Stine; Bocanek, Jiri; Cozzi, Luca

    2008-01-01

    To expand and test the dosimetric procedure, known as GLAaS, for amorphous silicon detectors to the RapidArc intensity modulated arc delivery with Varian infrastructures and to test the RapidArc dosimetric reliability between calculation and delivery. The GLAaS algorithm was applied and tested on a set of RapidArc fields at both low (6 MV) and high (18 MV) beam energies with a PV-aS1000 detector. Pilot tests for short arcs were performed on a 6 MV beam associated to a PV-aS500. RapidArc is a novel planning and delivery method in the category of intensity modulated arc therapies aiming to deliver highly modulated plans with variable MLC shapes, dose rate and gantry speed during rotation. Tests were repeated for entire (360 degrees) gantry rotations on composite dose plans and for short partial arcs (of ~6 or 12 degrees) to assess GLAaS and RapidArc mutual relationships on global and fine delivery scales. The gamma index concept of Low and the Modulation Index concept of Webb were applied to compare quantitatively TPS dose matrices and dose converted PV images. The Gamma Agreement Index computed for a Distance to Agreement of 3 mm and a Dose Difference (ΔD) of 3% was, as mean ± 1 SD, 96.7 ± 1.2% at 6 MV and 94.9 ± 1.3% at 18 MV, over the field area. These findings deteriorated slightly is ΔD was reduced to 2% (93.4 ± 3.2% and 90.1 ± 3.1%, respectively) and improved with ΔD = 4% (98.3 ± 0.8% and 97.3 ± 0.9%, respectively). For all tests a grid of 1 mm and the AAA photon dose calculation algorithm were applied. The spatial resolution of the PV-aS1000 is 0.392 mm/pxl. The Modulation Index for calculations resulted 17.0 ± 3.2 at 6 MV and 15.3 ± 2.7 at 18 MV while the corresponding data for measurements were: 18.5 ± 3.7 and 17.5 ± 3.7. Partial arcs findings were (for ΔD = 3%): GAI = 96.7 ± 0.9% for 6° rotations and 98.0 ± 1.1% for 12° rotations. The GLAaS method can be considered as a valid Quality Assurance tool for the verification of RapidArc fields

  4. Verification of dosimetric commissioning accuracy of intensity modulated radiation therapy and volumetric modulated arc therapy delivery using task Group-119 guidelines

    Directory of Open Access Journals (Sweden)

    Karunakaran Kaviarasu

    2017-01-01

    Full Text Available Aim: The purpose of this study is to verify the accuracy of the commissioning of intensity-modulated radiation therapy (IMRT and volumetric-modulated arc therapy (VMAT based on the recommendation of the American Association of Physicists in Medicine Task Group 119 (TG-119. Materials and Methods: TG-119 proposes a set of clinical test cases to verify the accuracy of IMRT planning and delivery system. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two-arc VMAT technique for both 6 MV and 15 MV photon beams. The template plans of TG-119 were optimized and calculated by Varian Eclipse Treatment Planning System (version 13.5. Dose prescription and planning objectives were set according to the TG-119 goals. The point dose (mean dose to the contoured chamber volume at the specified positions/locations was measured using compact (CC-13 ion chamber. The composite planar dose was measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b. The per-field relative gamma was measured using electronic portal imaging device in a way similar to the routine pretreatment patient-specific quality assurance. Results: Our planning results are compared with the TG-119 data. Point dose and fluence comparison data where within the acceptable confident limit. Conclusion: From the obtained data in this study, we conclude that the commissioning of IMRT and VMAT delivery were found within the limits of TG-119.

  5. Results of the quality control treatments plans in volume arc therapy modulated for thirty treated patients

    International Nuclear Information System (INIS)

    Fenoglietto, P.; Ailleres, N.; Simeon, S.; Santoro, L.; Dubois, J.B.; Azria, D.

    2009-01-01

    The intensity modulated radiotherapy (I.M.R.T.) provided by voluminal arc therapy was implemented at the Val d'Aurelle regional center against cancer in november 2008. In May 2009 more than 30 patients have benefited from this technique in our institution and for each of them, the dosimetry planing has been checked under the accelerator before the treatment. The analysis of these results of measures under accelerators equipped of 120 leave collimators and for optimizations realised with the Rapid-arc computer code from Varian. The issue of a treatment in intensity modulation by voluminal arc therapy gives satisfying results falling within the range of those previously found in conventional I.M.R.T.. Besides, the quality control is faster because of lesser number of beams to verify. (N.C.)

  6. A comprehensive formulation for volumetric modulated arc therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dan; Lyu, Qihui; Ruan, Dan; O’Connor, Daniel; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90024 (United States)

    2016-07-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a widely employed radiation therapy technique, showing comparable dosimetry to static beam intensity modulated radiation therapy (IMRT) with reduced monitor units and treatment time. However, the current VMAT optimization has various greedy heuristics employed for an empirical solution, which jeopardizes plan consistency and quality. The authors introduce a novel direct aperture optimization method for VMAT to overcome these limitations. Methods: The comprehensive VMAT (comVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term to penalize the difference between the optimized dose and the prescribed dose, as well as an anisotropic total variation term to promote piecewise continuity in the fluence maps, preparing it for direct aperture optimization. A level set function was used to describe the aperture shapes and the difference between aperture shapes at adjacent angles was penalized to control MLC motion range. A proximal-class optimization solver was adopted to solve the large scale optimization problem, and an alternating optimization strategy was implemented to solve the fluence intensity and aperture shapes simultaneously. Single arc comVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme case, a lung (LNG) case, and two head and neck cases—one with three PTVs (H&N{sub 3PTV}) and one with foue PTVs (H&N{sub 4PTV})—to test the efficacy. The plans were optimized using an alternating optimization strategy. The plans were compared against the clinical VMAT (clnVMAT) plans utilizing two overlapping coplanar arcs for treatment. Results: The optimization of the comVMAT plans had converged within 600 iterations of the block minimization algorithm. comVMAT plans were able to consistently reduce the dose to all organs-at-risk (OARs) as compared to the clnVMAT plans. On average, comVMAT plans reduced the max and mean OAR dose by 6

  7. Temporal characterization and in vitro comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, Conor K; Hounsell, Alan R [Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast (United Kingdom); Butterworth, Karl T; Trainor, Colman; O' Sullivan, Joe M; Prise, Kevin M, E-mail: conor.mcgarry@belfasttrust.hscni.net [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast (United Kingdom)

    2011-04-21

    A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

  8. Temporal characterization and in vitro comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)

    International Nuclear Information System (INIS)

    McGarry, Conor K; Hounsell, Alan R; Butterworth, Karl T; Trainor, Colman; O'Sullivan, Joe M; Prise, Kevin M

    2011-01-01

    A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

  9. Kilovoltage Intrafraction Monitoring for Prostate Intensity Modulated Arc Therapy: First Clinical Results

    International Nuclear Information System (INIS)

    Ng, Jin Aun; Booth, Jeremy T.; Poulsen, Per R.; Fledelius, Walther; Worm, Esben Schjødt; Eade, Thomas; Hegi, Fiona; Kneebone, Andrew; Kuncic, Zdenka; Keall, Paul J.

    2012-01-01

    Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). Methods and Materials: Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiring kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced ≥3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. Results: KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of ≥3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. Conclusions: KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.

  10. A retrospective planning analysis comparing intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) using two optimization algorithms for the treatment of early-stage prostate cancer

    International Nuclear Information System (INIS)

    Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M

    2013-01-01

    The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time

  11. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy.

    Science.gov (United States)

    Zach, Leor; Tsvang, Lev; Alezra, Dror; Ben Ayun, Maoz; Harel, Ran

    2016-01-01

    Spine stereotactic radiosurgery (SRS) delivers an accurate and efficient high radiation dose to vertebral metastases in 1-5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT) to static beam intensity modulated radiotherapy (IMRT) for spine SRS. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV). The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose). All evaluated parameters favored the VMAT plan over the IMRT plans. D min in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p DSC) was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value < 0.01), and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p < 0.001). In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  12. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    International Nuclear Information System (INIS)

    Martin, Jeffrey M.; Handorf, Elizabeth A.; Price, Robert A.; Cherian, George; Buyyounouski, Mark K.; Chen, David Y.; Kutikov, Alexander; Johnson, Matthew E.; Ma, Chung-Ming Charlie; Horwitz, Eric M.

    2015-01-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality

  13. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Handorf, Elizabeth A. [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA (United States); Price, Robert A.; Cherian, George [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chen, David Y.; Kutikov, Alexander [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Johnson, Matthew E.; Ma, Chung-Ming Charlie [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Horwitz, Eric M., E-mail: eric.horwitz@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-10-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.

  14. Intrafraction Motion in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer: Intensity Modulated Radiation Therapy Versus Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Maddalena M.G.; Peulen, Heike M.U.; Belderbos, Josè S.A.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl

    2016-06-01

    Purpose: Stereotactic body radiation therapy (SBRT) for early-stage inoperable non-small cell lung cancer (NSCLC) patients delivers high doses that require high-precision treatment. Typically, image guidance is used to minimize day-to-day target displacement, but intrafraction position variability is often not corrected. Currently, volumetric modulated arc therapy (VMAT) is replacing intensity modulated radiation therapy (IMRT) in many departments because of its shorter delivery time. This study aimed to evaluate whether intrafraction variation in VMAT patients is reduced in comparison with patients treated with IMRT. Methods and Materials: NSCLC patients (197 IMRT and 112 VMAT) treated with a frameless SBRT technique to a prescribed dose of 3 × 18 Gy were evaluated. Image guidance for both techniques was identical: pretreatment cone beam computed tomography (CBCT) (CBCT{sub precorr}) for setup correction followed immediately before treatment by postcorrection CBCT (CBCT{sub postcorr}) for verification. Then, after either a noncoplanar IMRT technique or a VMAT technique, a posttreatment (CBCT{sub postRT}) scan was acquired. The CBCT{sub postRT} and CBCT{sub postcorr} scans were then used to evaluate intrafraction motion. Treatment delivery times, systematic (Σ) and random (σ) intrafraction variations, and associated planning target volume (PTV) margins were calculated. Results: The median treatment delivery time was significantly reduced by 20 minutes (range, 32-12 minutes) using VMAT compared with noncoplanar IMRT. Intrafraction tumor motion was significantly larger for IMRT in all directions up to 0.5 mm systematic (Σ) and 0.7 mm random (σ). The required PTV margins for IMRT and VMAT differed by less than 0.3 mm. Conclusion: VMAT-based SBRT for NSCLC was associated with significantly shorter delivery times and correspondingly smaller intrafraction motion compared with noncoplanar IMRT. However, the impact on the required PTV margin was small.

  15. Quantitative comparison of volumetric modulated arc therapy and intensity modulated radiotherapy plan quality in sino-nasal cancer

    International Nuclear Information System (INIS)

    Sankaralingam, Marimuthu; Glegg, Martin; Smith, Suzanne; James, Allan; Rizwanullah, Mohammed

    2012-01-01

    The aim of this study was to compare various dosimetric parameters of dynamic mlc intensity modulated radiotherapy (IMRT) plans with volumetric modulated arc therapy (VMAT) plans for sino-nasal cancers, which are rare and complex tumors to treat with radiotherapy. IMRT using five fields, coplanar in the sagittal plane and VMAT employing two coplanar arc plans were created for five patients. The plans were assessed by comparing Conformity Index and Sigma Index (dose homogeneity) in the Planning Target Volume (PTV) and through comparison of dose-volume characteristics to the following organs at risk (OARs): Spinal cord, brainstem, eye, ipsilateral and contralateral optic nerve and the volume of brain receiving 10% of the prescribed dose (V 10% ). The total monitor units required to deliver the plan were also compared. Conformity Index was found to be superior in VMAT plans for three patients and in IMRT plans for two patients. Dose homogeneity within the PTV was better with VMAT plans for all five cases. The mean difference in Sigma Index was 0.68%. There was no significant difference in dose between IMRT and VMAT plans for any of the OARs assessed in these patients. The monitor units were significantly reduced in the VMAT plan in comparison to the IMRT plan for four out of five patients, with mean reduction of 66%. It was found in this study that for the treatment of sino-nasal cancer, VMAT produced minimal, and statistically insignificant improvement in dose homogeneity within the PTV when compared with IMRT. VMAT plans were delivered using significantly fewer monitor units. We conclude in this study that VMAT does not offer significant improvement of treatment for sino-nasal cancer over the existing IMRT techniques, but the findings may change with a larger sample of patients in this rare condition. (author)

  16. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy

    Directory of Open Access Journals (Sweden)

    Leor Zach

    2016-01-01

    Full Text Available Purpose. Spine stereotactic radiosurgery (SRS delivers an accurate and efficient high radiation dose to vertebral metastases in 1–5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT to static beam intensity modulated radiotherapy (IMRT for spine SRS. Methods and Materials. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV. The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose. Results. All evaluated parameters favored the VMAT plan over the IMRT plans. Dmin in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p<0.001, the Dice Similarity Coefficient (DSC was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value<0.01, and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p<0.001. Conclusions. In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  17. SU-E-T-166: Evaluation of Integral Dose in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Head and Neck Cancer Patient

    Energy Technology Data Exchange (ETDEWEB)

    Al-Basheer, A; Hunag, J; Kaminski, J; Dasher, B; Howington, J; Stewart, J; Martin, D; Kong, F; Jin, J [Georgia Regents University, Augusta, GA (Georgia)

    2014-06-01

    Purpose: Volumetric Modulated Arc Therapy (VMAT) usually achieves higher conformity of radiation doses to targets and less delivery time than Intensity Modulated Radiation Therapy (IMRT). We hypothesized that VMAT will increase integral dose (ID) to patients which will decrease the count of white blood count (WBC) lymphocytes, and consequently has a subsequent impact on the immune system. The purpose of this study is to evaluate the ID to patients undergoing IMRT and VMAT for Head and Neck cancers and its impact on the immune system. Methods: As a pilot study, 30 head and neck patients who received 9-fields IMRT or 3-arcs Radip-Arcbased VMAT were included in this study. Ten of these patients who received the VMAT plans were re-planned using IMRT with the same objectives. ID was calculated for all cases. All patients also had a baseline WBC obtained prior to treatment, and 3 sets of labs drawn during the course of radiation treatment. Results: For the 10 re-planned patients, the mean ID was 13.3 Gy/voxel (range 10.2–17.5 Gy/voxel) for the 9-fields IMRT plans, and was 15.9 Gy/voxel (range 12.4-20.9 Gy/voxel) for the 3-Arc VMAT plan (p=0.01). The integral dose was significant correlated with reducing WBC count during RT even when controlling for concurrent chemotherapy (R square =0.56, p=0.008). Conclusion: Although VMAT can deliver higher radiation dose conformality to targets, this benefit is achieved generally at the cost of greater integral doses to normal tissue outside the planning target volume (PTV). Lower WBC counts during RT were associated with higher Integral doses even when controlling for concurrent chemotherapy. This study is ongoing in our Institution to exam the impact of integral doses and WBC on overall survival.

  18. Automatic interactive optimization for volumetric modulated arc therapy planning

    International Nuclear Information System (INIS)

    Tol, Jim P; Dahele, Max; Peltola, Jarkko; Nord, Janne; Slotman, Ben J; Verbakel, Wilko FAR

    2015-01-01

    Intensity modulated radiotherapy treatment planning for sites with many different organs-at-risk (OAR) is complex and labor-intensive, making it hard to obtain consistent plan quality. With the aim of addressing this, we developed a program (automatic interactive optimizer, AIO) designed to automate the manual interactive process for the Eclipse treatment planning system. We describe AIO and present initial evaluation data. Our current institutional volumetric modulated arc therapy (RapidArc) planning approach for head and neck tumors places 3-4 adjustable OAR optimization objectives along the dose-volume histogram (DVH) curve that is displayed in the optimization window. AIO scans this window and uses color-coding to differentiate between the DVH-lines, allowing it to automatically adjust the location of the optimization objectives frequently and in a more consistent fashion. We compared RapidArc AIO plans (using 9 optimization objectives per OAR) with the clinical plans of 10 patients, and evaluated optimal AIO settings. AIO consistency was tested by replanning a single patient 5 times. Average V95&V107 of the boost planning target volume (PTV) and V95 of the elective PTV differed by ≤0.5%, while average elective PTV V107 improved by 1.5%. Averaged over all patients, AIO reduced mean doses to individual salivary structures by 0.9-1.6Gy and provided mean dose reductions of 5.6Gy and 3.9Gy to the composite swallowing structures and oral cavity, respectively. Re-running AIO five times, resulted in the aforementioned parameters differing by less than 3%. Using the same planning strategy as manually optimized head and neck plans, AIO can automate the interactive Eclipse treatment planning process and deliver dosimetric improvements over existing clinical plans

  19. Bladder radiotherapy treatment: A retrospective comparison of 3-dimensional conformal radiotherapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it [Department of Radiotherapy Physics, Royal Free Hospital, London (United Kingdom); Kuthpady, Shrinivas [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom); Anderson, Anne; Best, Bronagh [Department of Radiotherapy Physics, Royal Free Hospital, London (United Kingdom); Waqar, Saleem; Chowdhury, Subhra [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom)

    2017-04-01

    To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results. Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.

  20. Volumetric modulated arc therapy: IMRT in a single gantry arc

    International Nuclear Information System (INIS)

    Otto, Karl

    2008-01-01

    In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg. of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship

  1. Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Hermann, Christian; Flentje, Michael; Guckenberger, Matthias

    2013-01-01

    Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior–posterior direction, with systematic (∑) and random (σ) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%±19.8% of treatment time. Real-time tracking reduced prostate motion to ∑=0.01 mm and σ = 0.55 mm in the anterior–posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%±4.6% and 99.7%±0.4% of the time, respectively. Without real-time tracking, pass rates based on a γ index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

  2. SU-E-T-338: Dosimetric Study of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) for Stereotactic Body Radiation Therapy (SBRT) in Early Stage Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I; Quinn, K; Seebach, A; Wang, H [OSF Saint Anthony Medical Center, Rockford, IL (United States); Yah, R [University of Illinois College of Medicine at Rockford, Rockford, IL (United States)

    2015-06-15

    Purpose: This study evaluates the dosimetric differences using volumetric modulated arc therapy (VMAT) in patients previously treated with intensity modulated radiation therapy IMRT for stereotactic body radiotherapy (SBRT) in early stage lung cancer. Methods: We evaluated 9 consecutive medically inoperable lung cancer patients at the start of the SBRT program who were treated with IMRT from November 2010 to October 2011. These patients were treated using 6 MV energy. The 9 cases were then re-planned with VMAT performed with arc therapy using 6 MV flattening filter free (FFF) energy with the same organs at risk (OARS) constraints. Data collected for the treatment plans included target coverage, beam on time, dose to OARS and gamma pass rate. Results: Five patients were T1N0 and four patients were T2N0 with all tumors less than 5 cm. The average GTV was 13.02 cm3 (0.83–40.87) and average PTV was 44.65 cm3 (14.06–118.08). The IMRT plans had a mean of 7.2 angles (6–9) and 5.4 minutes (3.6–11.1) per plan. The VMAT plans had a mean of 2.8 arcs (2–3) and 4.0 minutes (2.2–6.0) per plan. VMAT had slightly more target coverage than IMRT with average increase in D95 of 2.68% (1.24–5.73) and D99 of 3.65% (0.88–8.77). VMAT produced lower doses to all OARs. The largest reductions were in maximum doses to the spinal cord with an average reduction of 24.1%, esophagus with an average reduction of 22.1%, and lung with an average reduction in the V20 of 16.3% The mean gamma pass rate was 99.8% (99.2–100) at 3 mm and 3% for VMAT with comparable values for IMRT. Conclusion: These findings suggest that using VMAT for SBRT in early stage lung cancer is superior to IMRT in terms of dose coverage, OAR dose and a lower treatment delivery time with a similar gamma pass rate.

  3. Programmable segmented volumetric modulated arc therapy for respiratory coordination in pancreatic cancer

    International Nuclear Information System (INIS)

    Wu, Jian-Kuen; Wu, Chien-Jang; Cheng, Jason Chia-Hsien

    2012-01-01

    We programmably divided long-arc volumetric modulated arc therapy (VMAT) into split short arcs, each taking less than 30 s for respiratory coordination. The VMAT plans of five pancreatic cancer patients were modified; the short-arc plans had negligible dose differences and satisfied the 3%/3-mm gamma index on a MapCHECK-2 device.

  4. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Pawlik, Timothy M. [Department of Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Ford, Eric [Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA (United States); Herman, Joseph M., E-mail: jherma15@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States)

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  5. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  6. Evaluation of a mixed beam therapy for post-mastectomy breast cancer patients: bolus electron conformal therapy combined with intensity modulated photon radiotherapy and volumetric modulated photon arc therapy.

    Science.gov (United States)

    Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth

    2018-05-10

    The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. The impact of leaf width and plan complexity on DMLC tracking of prostate intensity modulated arc therapy

    DEFF Research Database (Denmark)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per Rugaard

    2013-01-01

    Purpose: Intensity modulated arc therapy (IMAT) is commonly used to treat prostate cancer. The purpose of this study was to evaluate the impact of leaf width and plan complexity on dynamic multileaf collimator (DMLC) tracking for prostate motion management during IMAT treatments.Methods: Prostate...... IMAT plans were delivered with either a high-definition MLC (HDMLC) or a Millennium MLC (M-MLC) (0.25 and 0.50 cm central leaf width, respectively), with and without DMLC tracking, to a dosimetric phantom that reproduced four prostate motion traces. The plan complexity was varied by applying leaf....... The corresponding pass rates without tracking were 87.6% (range 76.2%-94.7%) and 91.1% (range 81.4%-97.6%), respectively. Decreased plan complexity improved the pass rate when static target measurements were used as reference, but not with the planned dose as reference. The main cause of tracking errors was leaf...

  8. Dosimetric comparison of helical tomotherapy, intensity-modulated radiation therapy, volumetric-modulated arc therapy, and 3-dimensional conformal therapy for the treatment of T1N0 glottic cancer

    International Nuclear Information System (INIS)

    Ekici, Kemal; Pepele, Eda K.; Yaprak, Bahaddin; Temelli, Oztun; Eraslan, Aysun F.; Kucuk, Nadir; Altınok, Ayse Y.; Sut, Pelin A.; Alpak, Ozlem D.; Colak, Cemil; Mayadagli, Alpaslan

    2016-01-01

    Various radiotherapy planning methods for T1N0 laryngeal cancer have been proposed to decrease normal tissue toxicity. We compare helical tomotherapy (HT), linac-based intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and 3-D conformal radiotherapy (3D-CRT) techniques for T1N0 laryngeal cancer. Overall, 10 patients with T1N0 laryngeal cancer were selected and evaluated. Furthermore, 10 radiotherapy treatment plans have been created for all 10 patients, including HT, IMRT, VMAT, and 3D-CRT. IMRT, VMAT, and HT plans vs 3D-CRT plans consistently provided superior planning target volume (PTV) coverage. Similar target coverage was observed between the 3 IMRT modalities. Compared with 3D-CRT, IMRT, HT, and VMAT significantly reduced the mean dose to the carotid arteries. VMAT resulted in the lowest mean dose to the submandibular and thyroid glands. Compared with 3D-CRT, IMRT, HT, and VMAT significantly increased the maximum dose to the spinal cord It was observed that the 3 IMRT modalities studied showed superior target coverage with less variation between each plan in comparison with 3D-CRT. The 3D-CRT plans performed better at the D max of the spinal cord. Clinical investigation is warranted to determine if these treatment approaches would translate into a reduction in radiation therapy–induced toxicities.

  9. Dosimetric comparison of volumetric modulated arc therapy (VMAT), DMlC (Dynamic IMRT), and 3DCRT in left breast cancer after breast conserving surgery receiving left breast irradiation

    International Nuclear Information System (INIS)

    Pratibha, Bauskar; Vibhay, Pareek; Rajendra, Bhalavat; Chandra, Manish

    2016-01-01

    Previous studies have demonstrated that the risk of ischemic heart disease is increased as a result of exposure to ionizing radiation in women treated for breast cancer. Alternative radiation techniques, such as dynamic intensity-modulated radiation therapy (DMLC), volumetric-modulated arc therapy (VMAT), have been shown to improve dosimetric parameters of the heart and substructures. However, these techniques have not been compared with each other to potentially guide treatment decisions. Volumetric modulated arc therapy (VMAT) is a novel extension of conventional intensity-modulated radiotherapy (c-IMRT), in which an optimized three dimensional dose distribution may be delivered in a single gantry rotation. VMAT is the predecessor to Rapid-Arc (Varian Medical System). This study uses VMAT, DMLC and 3DCRT to compare target volume coverage and doses to organs at risk (OARs), especially lung and heart doses, using these three techniques in whole breast irradiation after breast conserving surgery in left breast cancer cases

  10. Dual-gated volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Fahimian, Benjamin; Wu, Junqing; Wu, Huanmei; Geneser, Sarah; Xing, Lei

    2014-01-01

    Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging radiation therapy modality for treatment of tumors affected by respiratory motion. However, gating significantly prolongs the treatment time, as delivery is only activated during a single respiratory phase. To enhance the efficiency of gated VMAT delivery, a novel dual-gated VMAT (DG-VMAT) technique, in which delivery is executed at both exhale and inhale phases in a given arc rotation, is developed and experimentally evaluated. Arc delivery at two phases is realized by sequentially interleaving control points consisting of MUs, MLC sequences, and angles of VMAT plans generated at the exhale and inhale phases. Dual-gated delivery is initiated when a respiration gating signal enters the exhale window; when the exhale delivery concludes, the beam turns off and the gantry rolls back to the starting position for the inhale window. The process is then repeated until both inhale and exhale arcs are fully delivered. DG-VMAT plan delivery accuracy was assessed using a pinpoint chamber and diode array phantom undergoing programmed motion. DG-VMAT delivery was experimentally implemented through custom XML scripting in Varian’s TrueBeam™ STx Developer Mode. Relative to single gated delivery at exhale, the treatment time was improved by 95.5% for a sinusoidal breathing pattern. The pinpoint chamber dose measurement agreed with the calculated dose within 0.7%. For the DG-VMAT delivery, 97.5% of the diode array measurements passed the 3%/3 mm gamma criterion. The feasibility of DG-VMAT delivery scheme has been experimentally demonstrated for the first time. By leveraging the stability and natural pauses that occur at end-inspiration and end-exhalation, DG-VMAT provides a practical method for enhancing gated delivery efficiency by up to a factor of two

  11. Automated Volumetric Modulated Arc Therapy Treatment Planning for Stage III Lung Cancer: How Does It Compare With Intensity-Modulated Radio Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Enzhuo M. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Joe Y.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Xia Tingyi [Department of Radiation Oncology, Beijing 301 Hospital, Beijing (China); Yuan Zhiyong [Department of Radiation Oncology, Tianjin Medical University Cancer Hospital and Institute, Tianjin (China); Liu Hui [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Zhongshan University Hospital, Guangzhou (China); Li, Xiaoqiang; Wages, Cody A.; Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhang Xiaodong, E-mail: xizhang@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-09-01

    Purpose: To compare the quality of volumetric modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) plans generated by an automated inverse planning system with that of dosimetrist-generated IMRT treatment plans for patients with stage III lung cancer. Methods and Materials: Two groups of 8 patients with stage III lung cancer were randomly selected. For group 1, the dosimetrists spent their best effort in designing IMRT plans to compete with the automated inverse planning system (mdaccAutoPlan); for group 2, the dosimetrists were not in competition and spent their regular effort. Five experienced radiation oncologists independently blind-reviewed and ranked the three plans for each patient: a rank of 1 was the best and 3 was the worst. Dosimetric measures were also performed to quantitatively evaluate the three types of plans. Results: Blind rankings from different oncologists were generally consistent. For group 1, the auto-VMAT, auto-IMRT, and manual IMRT plans received average ranks of 1.6, 2.13, and 2.18, respectively. The auto-VMAT plans in group 1 had 10% higher planning tumor volume (PTV) conformality and 24% lower esophagus V70 (the volume receiving 70 Gy or more) than the manual IMRT plans; they also resulted in more than 20% higher complication-free tumor control probability (P+) than either type of IMRT plans. The auto- and manual IMRT plans in this group yielded generally comparable dosimetric measures. For group 2, the auto-VMAT, auto-IMRT, and manual IMRT plans received average ranks of 1.55, 1.75, and 2.75, respectively. Compared to the manual IMRT plans in this group, the auto-VMAT plans and auto-IMRT plans showed, respectively, 17% and 14% higher PTV dose conformality, 8% and 17% lower mean lung dose, 17% and 26% lower mean heart dose, and 36% and 23% higher P+. Conclusions: mdaccAutoPlan is capable of generating high-quality VMAT and IMRT treatment plans for stage III lung cancer. Manual IMRT plans could achieve quality

  12. Automated Volumetric Modulated Arc Therapy Treatment Planning for Stage III Lung Cancer: How Does It Compare With Intensity-Modulated Radio Therapy?

    International Nuclear Information System (INIS)

    Quan, Enzhuo M.; Chang, Joe Y.; Liao Zhongxing; Xia Tingyi; Yuan Zhiyong; Liu Hui; Li, Xiaoqiang; Wages, Cody A.; Mohan, Radhe; Zhang Xiaodong

    2012-01-01

    Purpose: To compare the quality of volumetric modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) plans generated by an automated inverse planning system with that of dosimetrist-generated IMRT treatment plans for patients with stage III lung cancer. Methods and Materials: Two groups of 8 patients with stage III lung cancer were randomly selected. For group 1, the dosimetrists spent their best effort in designing IMRT plans to compete with the automated inverse planning system (mdaccAutoPlan); for group 2, the dosimetrists were not in competition and spent their regular effort. Five experienced radiation oncologists independently blind-reviewed and ranked the three plans for each patient: a rank of 1 was the best and 3 was the worst. Dosimetric measures were also performed to quantitatively evaluate the three types of plans. Results: Blind rankings from different oncologists were generally consistent. For group 1, the auto-VMAT, auto-IMRT, and manual IMRT plans received average ranks of 1.6, 2.13, and 2.18, respectively. The auto-VMAT plans in group 1 had 10% higher planning tumor volume (PTV) conformality and 24% lower esophagus V70 (the volume receiving 70 Gy or more) than the manual IMRT plans; they also resulted in more than 20% higher complication-free tumor control probability (P+) than either type of IMRT plans. The auto- and manual IMRT plans in this group yielded generally comparable dosimetric measures. For group 2, the auto-VMAT, auto-IMRT, and manual IMRT plans received average ranks of 1.55, 1.75, and 2.75, respectively. Compared to the manual IMRT plans in this group, the auto-VMAT plans and auto-IMRT plans showed, respectively, 17% and 14% higher PTV dose conformality, 8% and 17% lower mean lung dose, 17% and 26% lower mean heart dose, and 36% and 23% higher P+. Conclusions: mdaccAutoPlan is capable of generating high-quality VMAT and IMRT treatment plans for stage III lung cancer. Manual IMRT plans could achieve quality

  13. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes [Gemeinschaftspraxis fuer Strahlentherapie Singen-Friedrichshafen, Singen (Germany)

    2011-12-15

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle {sup copyright} planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% {gamma} criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  14. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes

    2011-01-01

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle copyright planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% γ criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  15. Whole abdomen radiation therapy in ovarian cancers: a comparison between fixed beam and volumetric arc based intensity modulation

    Directory of Open Access Journals (Sweden)

    Clivio Alessandro

    2010-11-01

    Full Text Available Abstract Purpose A study was performed to assess dosimetric characteristics of volumetric modulated arcs (RapidArc, RA and fixed field intensity modulated therapy (IMRT for Whole Abdomen Radiotherapy (WAR after ovarian cancer. Methods and Materials Plans for IMRT and RA were optimised for 5 patients prescribing 25 Gy to the whole abdomen (PTV_WAR and 45 Gy to the pelvis and pelvic nodes (PTV_Pelvis with Simultaneous Integrated Boost (SIB technique. Plans were investigated for 6 MV (RA6, IMRT6 and 15 MV (RA15, IMRT15 photons. Objectives were: for both PTVs V90% > 95%, for PTV_Pelvis: Dmax Results IMRT and RapidArc resulted comparable for target coverage. For PTV_WAR, V90% was 99.8 ± 0.2% and 93.4 ± 7.3% for IMRT6 and IMRT15, and 98.4 ± 1.7 and 98.6 ± 0.9% for RA6 and RA15. Target coverage resulted improved for PTV_Pelvis. Dose homogeneity resulted slightly improved by RA (Uniformity was defined as U5-95% = D5%-D95%/Dmean. U5-95% for PTV_WAR was 0.34 ± 0.05 and 0.32 ± 0.06 (IMRT6 and IMRT15, 0.30 ± 0.03 and 0.26 ± 0.04 (RA6 and RA15; for PTV_Pelvis, it resulted equal to 0.1 for all techniques. For organs at risk, small differences were observed between the techniques. MU resulted 3130 ± 221 (IMRT6, 2841 ± 318 (IMRT15, 538 ± 29 (RA6, 635 ± 139 (RA15; the average measured treatment time was 18.0 ± 0.8 and 17.4 ± 2.2 minutes (IMRT6 and IMRT15 and 4.8 ± 0.2 (RA6 and RA15. GAIIMRT6 = 97.3 ± 2.6%, GAIIMRT15 = 94.4 ± 2.1%, GAIRA6 = 98.7 ± 1.0% and GAIRA15 = 95.7 ± 3.7%. Conclusion RapidArc showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT.

  16. Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma. A dosimetric comparison

    Energy Technology Data Exchange (ETDEWEB)

    Adeberg, S.; Debus, J. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, Heidelberg (Germany); Harrabi, S.B.; Bougatf, N.; Rieber, J.; Koerber, S.A.; Herfarth, K.; Rieken, S. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Bernhardt, D.; Syed, M.; Sprave, T.; Mohr, A. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Abdollahi, A. [University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Haberer, T. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Combs, S.E. [Technische Universitaet Muenchen, Department of Radiation Oncology, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institut fuer Innovative Radiotherapie (iRT), Department of Radiation Sciences (DRS), Neuherberg (Germany)

    2016-11-15

    The prognosis for high-grade glioma (HGG) patients is poor; thus, treatment-related side effects need to be minimized to conserve quality of life and functionality. Advanced techniques such as proton radiation therapy (PRT) and volumetric-modulated arc therapy (VMAT) may potentially further reduce the frequency and severity of radiogenic impairment. We retrospectively assessed 12 HGG patients who had undergone postoperative intensity-modulated proton therapy (IMPT). VMAT and 3D conformal radiotherapy (3D-CRT) plans were generated and optimized for comparison after contouring crucial neuronal structures important for neurogenesis and neurocognitive function. Integral dose (ID), homogeneity index (HI), and inhomogeneity coefficient (IC) were calculated from dose statistics. Toxicity data were evaluated. Target volume coverage was comparable for all three modalities. Compared to 3D-CRT and VMAT, PRT showed statistically significant reductions (p < 0.05) in mean dose to whole brain (-20.2 %, -22.7 %); supratentorial (-14.2 %, -20,8 %) and infratentorial (-91.0 %, -77.0 %) regions; brainstem (-67.6 %, -28.1 %); pituitary gland (-52.9 %, -52.5 %); contralateral hippocampus (-98.9 %, -98.7 %); and contralateral subventricular zone (-62.7 %, -66.7 %, respectively). Fatigue (91.7 %), radiation dermatitis (75.0 %), focal alopecia (100.0 %), nausea (41.7 %), cephalgia (58.3 %), and transient cerebral edema (16.7 %) were the most common acute toxicities. Essential dose reduction while maintaining equal target volume coverage was observed using PRT, particularly in contralaterally located critical neuronal structures, areas of neurogenesis, and structures of neurocognitive functions. These findings were supported by preliminary clinical results confirming the safety and feasibility of PRT in HGG. (orig.) [German] Die Prognose bei ''High-grade''-Gliomen (HGG) ist infaust. Gerade bei diesen Patienten sollten therapieassoziierte Nebenwirkungen minimiert werden

  17. SU-E-T-449: Hippocampal Sparing Radiotherapy Using Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S [Korea University, Seoul (Korea, Republic of); Kyung Hee University Hospital at Gangdong, Gangdong-gu (Korea, Republic of); Kim, D; Chung, W [Kyung Hee University Hospital at Gangdong, Gangdong-gu (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion around the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.

  18. Volumetric modulated arc therapy versus step-and-shoot intensity modulated radiation therapy in the treatment of large nerve perineural spread to the skull base: a comparative dosimetric planning study

    Energy Technology Data Exchange (ETDEWEB)

    Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara [Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland (Australia); Burmeister, Elizabeth [Nursing Practice Development Unit, Princess Alexandra Hospital and Research Centre for Clinical and Community Practice Innovation, Griffith University, Brisbane, Queensland (Australia); Foote, Matthew [Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland (Australia); Diamantina Institute, University of Queensland, Brisbane, Queensland (Australia)

    2014-06-15

    Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneity included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.

  19. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  20. Volumetric modulated arc therapy for spine SBRT patients to reduce treatment time and intrafractional motion

    Directory of Open Access Journals (Sweden)

    Ahmad Amoush

    2015-01-01

    Full Text Available Volumetric modulated arc therapy (VMAT is an efficient technique to reduce the treatment time and intrafractional motion to treat spine patients presented with severe back pain. Five patients treated with spine stereotactic body radiation therapy (SBRT using 9 beams intensity modulated radiation therapy (IMRT were retrospectively selected for this study. The patients were replanned using two arcs VMAT technique. The average mean dose was 104% ± 1.2% and 104.1% ± 1.0% in IMRT and VMAT, respectively (p = 0.9. Accordingly, the average conformal index (CI was 1.3 ± 0.1 and 1.5 ± 0.3, respectively (p = 0.5. The average dose gradient (DG distance was 1.5 ± 0.1 cm and 1.4 ± 0.1 cm, respectively (p = 0.3. The average spinal cord maximum dose was 11.6 ± 1.0 Gy and 11.8 ± 1.1 Gy (p = 0.8 and V10Gy was 7.4 ± 1.4 cc and 8.6 ± 1.7 cc (p = 0.4 for IMRT and VMAT, respectively. Accordingly, the average number of monitor units (MUs was 6771.7 ± 1323.3 MU and 3978 ± 576.7 MU respectively (p = 0.02. The use of VMAT for spine SBRT patients with severe back pain can reduce the treatment time and intrafractional motion.

  1. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  2. Whole abdomen radiation therapy in ovarian cancers: a comparison between fixed beam and volumetric arc based intensity modulation

    International Nuclear Information System (INIS)

    Mahantshetty, Umesh; Shrivastava, Shyamkishore; Cozzi, Luca; Jamema, Swamidas; Engineer, Reena; Deshpande, Deepak; Sarin, Rajiv; Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio

    2010-01-01

    A study was performed to assess dosimetric characteristics of volumetric modulated arcs (RapidArc, RA) and fixed field intensity modulated therapy (IMRT) for Whole Abdomen Radiotherapy (WAR) after ovarian cancer. Plans for IMRT and RA were optimised for 5 patients prescribing 25 Gy to the whole abdomen (PTV-WAR) and 45 Gy to the pelvis and pelvic nodes (PTV-Pelvis) with Simultaneous Integrated Boost (SIB) technique. Plans were investigated for 6 MV (RA6, IMRT6) and 15 MV (RA15, IMRT15) photons. Objectives were: for both PTVs V 90% > 95%, for PTV-Pelvis: D max < 105%; for organs at risk, maximal sparing was required. The MU and delivery time measured treatment efficiency. Pre-treatment Quality assurance was scored with Gamma Agreement Index (GAI) with 3% and 3 mm thresholds. IMRT and RapidArc resulted comparable for target coverage. For PTV-WAR, V 90% was 99.8 ± 0.2% and 93.4 ± 7.3% for IMRT6 and IMRT15, and 98.4 ± 1.7 and 98.6 ± 0.9% for RA6 and RA15. Target coverage resulted improved for PTV-Pelvis. Dose homogeneity resulted slightly improved by RA (Uniformity was defined as U 5-95% = D 5% -D 95% /D mean ). U 5 - 95% for PTV-WAR was 0.34 ± 0.05 and 0.32 ± 0.06 (IMRT6 and IMRT15), 0.30 ± 0.03 and 0.26 ± 0.04 (RA6 and RA15); for PTV-Pelvis, it resulted equal to 0.1 for all techniques. For organs at risk, small differences were observed between the techniques. MU resulted 3130 ± 221 (IMRT6), 2841 ± 318 (IMRT15), 538 ± 29 (RA6), 635 ± 139 (RA15); the average measured treatment time was 18.0 ± 0.8 and 17.4 ± 2.2 minutes (IMRT6 and IMRT15) and 4.8 ± 0.2 (RA6 and RA15). GAI IMRT6 = 97.3 ± 2.6%, GAI IMRT15 = 94.4 ± 2.1%, GAI RA6 = 98.7 ± 1.0% and GAI RA15 = 95.7 ± 3.7%. RapidArc showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT

  3. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie; Bai, Sen; Xu, Feng; Wei, Yuquan; Gong, Youling

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V 20/30 , and mean dose of the left kidney, as well as the V 20/30 of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V 20 of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future

  4. Dosimetric comparison of intensity modulated radiation, Proton beam therapy and proton arc therapy for para-aortic lymph node tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon [Dept. of Radiation Oncology, Konyang University Hospital. Daejeon (Korea, Republic of)

    2014-12-15

    To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, D{sub 30%}, D{sub 60%}, D{sub 90%}, V{sub 30%}, V{sub 60%}, V{sub 90}%, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

  5. Dosimetric study of volumetric arc modulation with RapidArc and intensity-modulated radiotherapy in patients with cervical cancer and comparison with 3-dimensional conformal technique for definitive radiotherapy in patients with cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Jean-Baptiste [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Falk, Alexander T. [Department of Radiation Oncology, Centre Antoine Lacassagne, Nice (France); Auberdiac, Pierre [Department of Radiation Oncology, Clinique Claude Bernard, Albi (France); Cartier, Lysian; Vallard, Alexis [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Ollier, Edouard [Department of Pharmacology-Toxicology, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Priest en Jarez (France); Trone, Jane-Chloé; Khodri, Moustapha [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Chargari, Cyrus [Department of Radiation Oncology, Hôpital d’instruction de Armées du Val-de-Grâce, Paris (France); Magné, Nicolas, E-mail: nicolas.magne@icloire.fr [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France)

    2016-04-01

    Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.

  6. Some considerations concerning volume-modulated arc therapy: a stepping stone towards a general theory

    International Nuclear Information System (INIS)

    Webb, S; McQuaid, D

    2009-01-01

    In this paper it is formally shown that the dynamic multileaf collimator (MLC) IMRT delivery technique remains valid if the MLC is supported on a 1D moving platform. It is also shown that, in such circumstances, it is always time preferable to deliver overlapping modulating fields as a single swept field rather than as separate fields. The most general formulism is presented and then related to simpler equations in limiting cases. The paper explains in detail how a 'small-arc approximation' can be invoked to relate the 1D linear theory to the MLC-on-moving-platform-(gantry) delivery technique involving rotation therapy and known as volume-modulated arc therapy (VMAT). It is explained how volume-modulated arc therapy delivered with open unmodulated fields and which can deliver conformal dose distributions can be interpreted as an IMRT delivery. The (Elekta adopted) term VMAT will be used in a generic sense to include a similar (Varian) method known as RapidArc. Approximate expressions are derived for the 'amount of modulation' possible in a VMAT delivery. This paper does not discuss the actual VMAT planning but gives an insight at a deep level into VMAT delivery. No universal theory of VMAT is known in the sense that there is no theory that can predict precisely the performance of a VMAT delivery in terms of the free parameters available (variable gantry speed, variable fluence-delivery rate, set of MLC shapes, MLC orientation, number of arcs, coplanarity versus non-coplanarity, etc). This is in stark contrast to the situation with several other IMRT delivery techniques where such theoretical analyses are known. In this paper we do not provide such a theory; the material presented is a stepping stone on the path towards this.

  7. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    International Nuclear Information System (INIS)

    Forde, Elizabeth; Kneebone, Andrew; Bromley, Regina; Guo, Linxin; Hunt, Peter; Eade, Thomas

    2013-01-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for mean dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units

  8. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Forde, Elizabeth, E-mail: eforde@tcd.ie [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Kneebone, Andrew [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Northern Clinical School, University of Sydney, New South Wales (Australia); Bromley, Regina [Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Guo, Linxin; Hunt, Peter [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Eade, Thomas [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Northern Clinical School, University of Sydney, New South Wales (Australia)

    2013-10-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for mean dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.

  9. Intensity-modulated radiation therapy.

    Science.gov (United States)

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  10. A practical method of modeling a treatment couch using cone-beam computed tomography for intensity-modulated radiation therapy and RapidArc treatment delivery

    Energy Technology Data Exchange (ETDEWEB)

    Aldosary, Ghada, E-mail: ghada.aldosary@mail.mcgill.ca [Medical Physics Unit, McGill University Health Centre, Montreal, Quebec (Canada); Nobah, Ahmad; Al-Zorkani, Faisal [Biomedical Physics Department, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia); Devic, Slobodan [Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Moftah, Belal [Medical Physics Unit, McGill University Health Centre, Montreal, Quebec (Canada); Biomedical Physics Department, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia)

    2015-01-01

    The effect of a treatment couch on dose perturbation is not always fully considered in intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). In the course of inverse planning radiotherapy techniques, beam parameter optimization may change in the absence of the couch, causing errors in the calculated dose distributions. Although modern treatment planning systems (TPS) include data for the treatment couch components, they are not manufactured identically. Thus, variations in their Hounsfield unit (HU) values may exist. Moreover, a radiotherapy facility may wish to have a third-party custom tabletop installed that is not included by the TPS vendor. This study demonstrates a practical and simple method of acquiring reliable computed tomography (CT) data for the treatment couch and shows how the absorbed dose calculated with the modeled treatment couch can differ from that with the default treatment couch found in the TPS. We also experimentally verified that neglecting to incorporate the treatment couch completely in the treatment planning process might result in dose differences of up to 9.5% and 7.3% for 4-MV and 10-MV photon beams, respectively. Furthermore, 20 RapidArc and IMRT cases were used to quantify the change in calculated dose distributions caused by using either the default or modeled couch. From 2-dimensional (2D) ionization chamber array measurements, we observed large dose distribution differences between the measurements and calculations when the couch was omitted that varied according to the planning technique and anatomic site. Thus, incorporating the treatment couch in the dose calculation phase of treatment planning significantly decreases dose calculation errors.

  11. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: A dosimetric and treatment efficiency analysis

    International Nuclear Information System (INIS)

    McGrath, Samuel D.; Matuszak, Martha M.; Yan Di; Kestin, Larry L.; Martinez, Alvaro A.; Grills, Inga S.

    2010-01-01

    Purpose/objective(s): Volumetric modulated arc therapy (VMAT) allows for intensity-modulated radiation delivery during gantry rotation with dynamic MLC motion, variable dose rates and gantry speed modulation. We compared VMAT plans with 3D-CRT for hypofractionated lung radiotherapy. Materials/methods: Twenty-one 3D-CRT plans for Stage IA lung cancer previously treated stereotactically were selected. VMAT plans were generated by optimizing machine aperture shape and radiation intensity at 10 deg. intervals. A partial arc range of 180 deg. was manually selected to coincide with tumor location. The arc was resampled down to 5 deg. intervals to ensure dose calculation accuracy. Identical planning objectives were used for VMAT/3D-CRT. Parameters assessed included dose to PTV and organs-at-risk (OAR), monitor units, and multiple conformity and homogeneity indices. Plans were delivered to a phantom for time comparison. Results: Lung V 20/12.5/10/5 were less with VMAT (relative reduction 4.5%, p = .02; 3.2%, p = .01; 2.6%, p = .01; 4.2%, p = .03, respectively). Mean/maximum-doses to PTV, dose to additional OARs, 95% isodose line conformity, and target volume homogeneity were equivalent. VMAT improved conformity at both the 80% (1.87 vs. 1.93, p = .08) and 50% isodose lines (5.19 vs. 5.65, p = .01). Treatment times were reduced significantly with VMAT (mean 6.1 vs. 11.9 min, p < .01). Conclusions: Single arc VMAT planning achieves highly conformal dose distributions while controlling dose to critical structures, including significant reduction in lung dose volume parameters. Employing a VMAT technique decreases treatment times by 37-63%, reducing the chance of error introduced by intrafraction variation. The quality and efficiency of VMAT is ideally suited for stereotactic lung radiotherapy delivery.

  12. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Choi, Kyoung-Sik

    2014-01-01

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ % ≤1, γ avg < 0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  13. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yon-Lae [Choonhae College of Health Sciences, Ulsan (Korea, Republic of); The Catholic University of Korea, Seoul (Korea, Republic of); Chung, Jin-Beom; Kim, Jae-Sung [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Lee, Jeong-Woo [Konkuk University Medical Center, Seoul (Korea, Republic of); Choi, Kyoung-Sik [SAM Anyang Hospital, Anyang (Korea, Republic of)

    2014-04-15

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ{sub %}≤1, γ{sub avg} < 0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  14. Critical structure sparing in stereotactic ablative radiotherapy for central lung lesions: helical tomotherapy vs. volumetric modulated arc therapy.

    Directory of Open Access Journals (Sweden)

    Alexander Chi

    Full Text Available BACKGROUND: Helical tomotherapy (HT and volumetric modulated arc therapy (VMAT are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT. Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs when stereotactic ablative radiotherapy (SABR is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. METHODS: 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0 plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV. Target and OAR dose parameters were compared. Each technique's ability to meet dose constraints was further investigated. RESULTS: HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints (p = 0.0004. All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. CONCLUSION: HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing.

  15. Is volumetric modulated arc therapy with constant dose rate a valid option in radiation therapy for head and neck cancer patients?

    Science.gov (United States)

    Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia

    2018-01-01

    Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse

  16. On the impact of dose rate variation upon RapidArc implementation of volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Nicolini, Giorgia; Clivio, Alessandro; Cozzi, Luca; Fogliata, Antonella; Vanetti, Eugenio

    2011-01-01

    Purpose: A study was carried out to evaluate the robustness and mutual interplay of two variables concurring to generate modulation patterns of the RapidArc (RapidArc) implementation of volumetric modulated arc therapy. Dose rate (DR) and gantry speed (GS) are free parameters optimized alongside field aperture shape by the RapidArc engine; however, they are limited by machine constraints and mutually compensate in order to deliver the proper MU/deg during the gantry rotation. Methods: Four test cases (one geometrical and three clinical) were selected and RapidArc plans were optimized using maximum allowed dose rates from 100 to 600 MU/min. The maximum gantry speed was fixed at 4.8 deg/s. Qualitative analysis of DR and GS patterns from these cases was summarized together with quantitative assessment of delivery parameters. Pretreatment quality assurance measurements and scoring of plan quality aimed to determine whether preferable initial conditions might be identified or the optimization engine might be invariant to those variables and capable of providing adequate plans independently from the limits applied. Results: The results of the study were: (i) High dynamic range in MU/deg is achievable across all dose rates by means of gantry speed modulation; (ii) there is a robust compensation mechanism between the two variables; (iii) from a machine delivery point-of-view, slightly improved accuracy is achieved when lower DRs are applied; however, this does not have practical consequences since measurements and plan evaluation showed a lack of clinically relevant deviation; and (iv) reduced total treatment time is a major advantage of high DR. Conclusions: A trend toward improved plan quality for clinical cases was observed with high DR but cannot be generalized, due to the limited amount of cases investigated and the consequent limited significance of the observed differences. As a minimum benefit, the reduced total treatment time should be considered as well.

  17. Validation and application of polymer gel dosimetry for the dose verification of an intensity-modulated arc therapy (IMAT) treatment

    International Nuclear Information System (INIS)

    Vergote, K; Deene, Y de; Duthoy, W; Gersem, W de; Neve, W de; Achten, E; Wagter, C de

    2004-01-01

    Polymer gel dosimetry was used to assess an intensity-modulated arc therapy (IMAT) treatment for whole abdominopelvic radiotherapy. Prior to the actual dosimetry experiment, a uniformity study on an unirradiated anthropomorphic phantom was carried out. A correction was performed to minimize deviations in the R2 maps due to radiofrequency non-uniformities. In addition, compensation strategies were implemented to limit R2 deviations caused by temperature drift during scanning. Inter- and intra-slice R2 deviations in the phantom were thereby significantly reduced. This was verified in an investigative study where the same phantom was irradiated with two rectangular superimposed beams: structural deviations between gel measurements and computational results remained below 3% outside high dose gradient regions; the spatial shift in those regions was within 2.5 mm. When comparing gel measurements with computational results for the IMAT treatment, dose deviations were noted in the liver and right kidney, but the dose-volume constraints were met. Root-mean-square differences between both dose distributions were within 5% with spatial deviations not more than 2.5 mm. Dose fluctuations due to gantry angle discretization in the dose computation algorithm were particularly noticeable in the low-dose region

  18. A comparison of volumetric modulated arc therapy and sliding-window intensity-modulated radiotherapy in the treatment of Stage I-II nasal natural killer/T-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianfeng [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China); Yang, Yong [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Jin, Fu; He, Yanan; Zhong, Mingsong; Luo, Huanli; Qiu, Da; Li, Chao; Yang, Han; He, Guanglei [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China); Wang, Ying, E-mail: zjajf@126.com [Department of Radiation Oncology, Chongqing Cancer Institute, Chongqing (China)

    2016-04-01

    This article is aimed to compare the dosimetric differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for Stage I-II nasal natural killer/T-cell lymphoma (NNKTL). Ten patients with Stage I-II NNKTL treated with IMRT were replanned with VMAT (2 arcs). The prescribed dose of the planning target volume (PTV) was 50 Gy in 25 fractions. The VMAT plans with the Anisotropic Analytical Algorithm (Version 8.6.15) were based on an Eclipse treatment planning system; the monitor units (MUs) and treatment time (T) were scored to measure the expected treatment efficiency. All the 10 patients under the study were subject to comparisons regarding the quality of target coverage, the efficiency of delivery, and the exposure of normal adjacent organs at risk (OARs). The study shows that VMAT was associated with a better conformal index (CI) and homogeneity index (HI) (both p < 0.05) but slightly higher dose to OARs than IMRT. The MUs with VMAT (650.80 ± 24.59) were fewer than with IMRT (1300.10 ± 57.12) (relative reduction of 49.94%, p = 0.00) when using 2-Gy dose fractions. The treatment time with VMAT (3.20 ± 0.02 minutes) was shorter than with IMRT (7.38 ± 0.18 minutes) (relative reduction of 56.64%, p = 0.00). We found that VMAT and IMRT both provide satisfactory target dosimetric coverage and OARs sparing clinically. Likely to deliver a bit higher dose to OARs, VMAT in comparison with IMRT, is still a better choice for treatment of patients with Stage I-II NNKTL, thanks to better dose distribution, fewer MUs, and shorter delivery time.

  19. Comparison of intensity-modulated radiotherapy and volumetric-modulated arc therapy dose measurement for head and neck cancer using optical stimulated luminescence dosimeter

    International Nuclear Information System (INIS)

    Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng

    2017-01-01

    The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8–13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours. - Highlights: • The surface doses of NPC patients are compared between VMAT and IMRT. • VMAT exerts lower skin dose than IMRT for deep tumours. • The surface tumour coverage is insufficient for VMAT and IMRT.

  20. MO-AB-BRA-01: A Global Level Set Based Formulation for Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D; Lyu, Q; Ruan, D; O’Connor, D; Low, D; Sheng, K [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2016-06-15

    Purpose: The current clinical Volumetric Modulated Arc Therapy (VMAT) optimization is formulated as a non-convex problem and various greedy heuristics have been employed for an empirical solution, jeopardizing plan consistency and quality. We introduce a novel global direct aperture optimization method for VMAT to overcome these limitations. Methods: The global VMAT (gVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term and an anisotropic total variation term. A level set function was used to describe the aperture shapes and adjacent aperture shapes were penalized to control MLC motion range. An alternating optimization strategy was implemented to solve the fluence intensity and aperture shapes simultaneously. Single arc gVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme (GBM), lung (LNG), and 2 head and neck cases—one with 3 PTVs (H&N3PTV) and one with 4 PTVs (H&N4PTV). The plans were compared against the clinical VMAT (cVMAT) plans utilizing two overlapping coplanar arcs. Results: The optimization of the gVMAT plans had converged within 600 iterations. gVMAT reduced the average max and mean OAR dose by 6.59% and 7.45% of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N3PTV case. PTV coverages (D95, D98, D99) were within 0.25% of the prescription dose. By globally considering all beams, the gVMAT optimizer allowed some beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel VMAT approach allows for the search of an optimal plan in the global solution space and generates deliverable apertures directly. The single arc VMAT approach fully utilizes the digital linacs’ capability in dose rate and gantry rotation speed modulation. Varian Medical Systems, NIH grant R01CA188300, NIH grant R43CA183390.

  1. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer

    International Nuclear Information System (INIS)

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.

  2. Potential clinical efficacy of intensity-modulated conformal therapy

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.; Zlotecki, Robert A.

    1998-01-01

    Purpose: The purpose of this study was to examine the potential benefit of using intensity-modulated conformal therapy for a variety of lesions currently treated with stereotactic radiosurgery or conventional radiotherapy. Methods and Materials: Intensity-modulated conformal treatment plans were generated for small intracranial lesions, as well as head and neck, lung, breast, and prostate cases, using the Peacock Plan[reg] treatment-planning system (Nomos Corporation). For small intracranial lesions, intensity-modulated conformal treatment plans were compared with stereotactic radiosurgery treatment plans generated for patient treatment at the University of Florida Shands Cancer Center. For other sites (head and neck, lung, breast, and prostate), plans generated using the Peacock Plan[reg] were compared with conventional treatment plans, as well as beam's-eye-view conformal treatment plans. Plan comparisons were accomplished through conventional qualitative review of two-dimensional (2D) dose distributions in conjunction with quantitative techniques, such as dose-volume histograms, dosimetric statistics, normal tissue complication probabilities, tumor control probabilities, and objective numerical scoring. Results: For small intracranial lesions, there is little difference between intensity-modulated conformal treatment planning and radiosurgery treatment planning in the conformation of high isodose lines with the target volume. However, stereotactic treatment planning provides a steeper dose gradient outside the target volume and, hence, a lower normal tissue toxicity index. For extracranial sites, objective numerical scores for beam's-eye-view and intensity-modulated conformal planning techniques are superior to scores for conventional treatment plans. The beam's-eye-view planning technique prevents geographic target misses and better excludes healthy tissues from the treatment portal. Compared with scores for the beam's-eye-view planning technique, scores for

  3. Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Davis, J. Bernard; Ciernik, I. Frank

    2006-01-01

    Background and purpose: To define the potential advantages of intensity-modulated radiotherapy (IMRT) applied using a non-coplanar dynamic arc technique for the treatment of head and neck cancer. Materials and methods: External beam radiotherapy (EBRT) was planned in ten patients with head and neck cancer using coplanar IMRT and non-coplanar arc techniques, termed intensity modulated non-coplanar arc EBRT (INCA). Planning target volumes (PTV1) of first order covered the gross tumor volume and surrounding clinical target volume treated with 68-70 Gy, whereas PTV2 covered the elective lymph nodes with 54-55 Gy using a simultaneous internal boost. Treatment plan comparison between IMRT and INCA was carried out using dose-volume histogram and 'equivalent uniform dose' (EUD). Results: INCA resulted in better dose coverage and homogeneity of the PTV1, PTV2, and reduced dose delivered to most of the organs at risk (OAR). For the parotid glands, a reduction of the mean dose of 2.9 (±2.0) Gy was observed (p 0.002), the mean dose to the larynx was reduced by 6.9 (±2.9) Gy (p 0.003), the oral mucosa by 2.4 (±1.1) Gy (p < 0.001), and the maximal dose to the spinal cord by 3.2 (±1.7) Gy (p = 0.004). The mean dose to the brain was increased by 3.0 (±1.4) Gy (p = 0.002) and the mean lung dose increased by 0.2 (±0.4) Gy (p = 0.87). The EUD suggested better avoidance of the OAR, except for the lung, and better coverage and dose uniformity were achieved with INCA compared to IMRT. Conclusion: Dose delivery accuracy with IMRT using a non-coplanar dynamic arc beam geometry potentially improves treatment of head and neck cancer

  4. A proton beam delivery system for conformal therapy and intensity modulated therapy

    International Nuclear Information System (INIS)

    Yu Qingchang

    2001-01-01

    A scattering proton beam delivery system for conformal therapy and intensity modulated therapy is described. The beam is laterally spread out by a dual-ring double scattering system and collimated by a program-controlled multileaf collimator and patient specific fixed collimators. The proton range is adjusted and modulated by a program controlled binary filter and ridge filters

  5. Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

    International Nuclear Information System (INIS)

    Ostheimer, Christian; Huebsch, Patrick; Janich, Martin; Gerlach, Reinhard; Vordermark, Dirk

    2016-01-01

    Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8% –88.4% in coplanar, 77.5%–88.2% in non-coplanar IMRT and 82.8%–90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue

  6. Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

    Energy Technology Data Exchange (ETDEWEB)

    Ostheimer, Christian; Huebsch, Patrick; Janich, Martin; Gerlach, Reinhard; Vordermark, Dirk [Dept. of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Germany)

    2016-12-15

    Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8% –88.4% in coplanar, 77.5%–88.2% in non-coplanar IMRT and 82.8%–90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.

  7. Dosimetric comparison of IMRT and modulated arc-therapy techniques in the treatment of cervical cancers; Comparaison dosimetrique des techniques de RCMI et d'arctherapie modulee dans le traitement des cancers du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Renard-Oldrini, S.; Charra-Brunaud, C.; Tournier-Rangeard, L.; Huger, S.; Marchesi, V.; Bouziz, D.; Peiffert, D. [Centre Alexis-Vautrin, Nancy (France)

    2011-10-15

    The authors report the dosimetric comparison of two techniques used for the treatment of cervical cancers: the intensity-modulated conformational radiotherapy (IMRT) with static beams and modulated arc-therapy with RapidArc. The treatment plans of 15 patients have been compared. The clinical target volume (CTV) comprises the gross target volume, the cervix, the upper third of the vagina, and ganglionary areas. The previsional target volume comprises the clinical target volume and a one centimetre margin. Organs at risk are rectum, bladder, intestine and bone marrow. Arc-therapy seems to provide a better sparing of intestine that IMRT, while maintaining a good coverage of the previsional target volume and decreasing treatment duration. Short communication

  8. Patient-Specific Quality Assurance Using Monte Carlo Dose Calculation and Elekta Log Files for Prostate Volumetric-Modulated Arc Therapy.

    Science.gov (United States)

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Sawada, Kinya; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2017-12-01

    Log file-based methods are attracting increasing interest owing to their ability to validate volumetric-modulated arc therapy outputs with high resolution in the leaf and gantry positions and in delivered dose. Cross-validation of these methods for comparison with measurement-based methods using the ionization chamber/ArcCHECK-3DVH software (version 3.2.0) under the same conditions of treatment anatomy and plan enables an efficient evaluation of this method. In this study, with the purpose of cross-validation, we evaluate the accuracy of a log file-based method using Elekta log files and an X-ray voxel Monte Carlo dose calculation technique in the case of leaf misalignment during prostate volumetric-modulated arc therapy. In this study, 10 prostate volumetric-modulated arc therapy plans were used. Systematic multileaf collimator leaf positional errors (±0.4 and ±0.8 mm for each single bank) were deliberately introduced into the optimized plans. Then, the delivered 3-dimensional doses to a phantom with a certain patient anatomy were estimated by our system. These doses were compared with the ionization chamber dose and the ArcCHECK-3DVH dose. For the given phantom and patient anatomy, the estimated dose strongly coincided with the ionization chamber/ArcCHECK-3DVH dose ( P < .01). In addition, good agreement between the estimated dose and the ionization chamber/ArcCHECK-3DVH dose was observed. The dose estimation accuracy of our system, which combines Elekta log files and X-ray voxel Monte Carlo dose calculation, was evaluated.

  9. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling

    2017-01-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated

  10. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yuchuan [Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Deng, Min; Zhou, Xiaojuan [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Lin, Qiang; Du, Bin [Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Tian, Xue; Xu, Yong; Wang, Jin; Lu, You [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Gong, Youling, E-mail: gongyouling@hotmail.com [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China)

    2017-04-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy

  11. Volumetric modulated arc radiotherapy for esophageal cancer

    International Nuclear Information System (INIS)

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Syam Kumar, S.A.; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-01-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V 20Gy and V 30Gy dose levels (range, 4.62–17.98%) compared with IMRT plans. The mean dose and D 35% of heart for the RA plans were better than the IMRT by 0.5–5.8%. Mean V 10Gy and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15–20 Gy) in the range of 14–16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20–25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans.

  12. The pitfalls of dosimetric commissioning for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Tohyama, Naoki; Kodama, Takashi; Hatano, K.

    2013-01-01

    Intensity modulated radiation therapy (IMRT) allows higher radiation dose to be focused to the target volumes while minimizing the dose to OAR. To start of clinical treatment in IMRTvwe must perform commissioning strictly than 3D-conformal radiotherapy (CRT). In this report, pitfalls of dosimetric commissioning for intensity modulated radiation therapy were reviewed. Multileaf collimator (MLC) offsets and MLC transmissions are important parameters in commissioning of RTPS for IMRT. Correction of depth scaling and fluence scaling is necessary for dose measurement using solid phantom. (author)

  13. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer.

    Science.gov (United States)

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  14. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  15. MO-H-19A-02: Investigation of Modulated Electron Arc (MeArc) Therapy for the Treatment of Scalp Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); Al-Azhar University, Cairo (Egypt); Jin, L; Martin, J; Li, J; Chibani, O; Galloway, T; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-15

    Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in a head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.

  16. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    International Nuclear Information System (INIS)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling; Jackson, Paul S.; Lundahl, Robert E.; Ryu, Stephen I.; Ray, Gordon R.

    2011-01-01

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, ∼4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measured (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the ∼4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for ∼4 noncoplanar arc VMAT at 0.86 compared with ∼0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V 50% ) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V 50% for the other plans to the RA(4) V 50% were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V 50% improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the organ at risk. The highest dose gradient

  17. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients

    International Nuclear Information System (INIS)

    Penoncello, Gregory P.; Ding, George X.

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm"3 for head and neck plans and brain plans and a contiguous volume of 5 cm"3 for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.

  18. Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Treatment planning, quality control, and clinical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, Katrien; De Neve, Wilfried; De Gersem, Werner; Paelinck, Leen; Fonteyne, Valerie; De Wagter, Carlos; De Meerleer, Gert [Dept. of Radiotherapy, Ghent Univ. Hospital (Belgium); Delrue, Louke; Villeirs, Geert [Dept. of Radiology, Ghent Univ. Hospital (Belgium); Makar, Amin [Dept. of Gynecology, Ghent Univ. Hospital (Belgium)

    2009-12-15

    Purpose: to report on the planning procedure, quality control, and clinical implementation of intensity-modulated arc therapy (IMAT) delivering a simultaneous integrated boost (SIB) in patients with primary irresectable cervix carcinoma. Patients and methods: six patients underwent PET-CT (positron emission tomography-computed tomography) and MRI (magnetic resonance imaging) before treatment planning. Prescription (25 fractions) was (1) a median dose (D{sub 50}) of 62, 58 and 56 Gy to the primary tumor (GTVcervix), primary clinical target volume (CTVcervix) and its planning target volume (PTVcervix), respectively; (2) a D{sub 50} of 60 Gy to the PET-positive lymph nodes (GTVnodes); (3) a minimal dose (D{sub 98}) of 45 Gy to the planning target volume of the elective lymph nodes (PTVnodes). IMAT plans were generated using an anatomy-based exclusion tool with the aid of weight and leaf position optimization. The dosimetric delivery of IMAT was validated preclinically using radiochromic film dosimetry. Results: five to nine arcs were needed to create valid IMAT plans. Dose constraints on D{sub 50} were not met in two patients (both GTVcervix: 1 Gy and 3 Gy less). D{sub 98} for PTVnodes was not met in three patients (1 Gy each). Film dosimetry showed excellent gamma evaluation. There were no treatment interruptions. Conclusion: IMAT allows delivering an SIB to the macroscopic tumor without compromising the dose to the elective lymph nodes or the organs at risk. The clinical implementation is feasible. (orig.)

  19. Dosimetric study comparing volumetric arc modulation with RapidArc and fixed dynamic intensity-modulated radiation therapy for breast cancer radiotherapy after breast-conserving surgery

    International Nuclear Information System (INIS)

    Tie Jian; Sun Yan; Gong Jian; Han Shukui; Jiang Fan; Wu Hao

    2011-01-01

    Objective: To compare the dosimetric difference between volumetric are modulation with RapidArc and fixed field dynamic IMRT for breast cancer radiotherapy after breast-conserving surgery. Methods: Twenty patients with early left-sided breast cancer received radiotherapy after breast-conserving surgery. After target definition, treatment planning was performed by RapidArc and two fixed fields dynamic IMRT respectively on the same CT scan. The target dose distribution, homogeneity of the breast, and the irradiation dose and volume for the lungs, heart, and contralateral breast were read in the dose-volume histogram (DVH) and compared between RapidArc and IMRT. The treatment delivery time and monitor units were also compared. Results: In comparison with the IMRT planning,the homogeneity of clinical target volume (CTV), the volume proportion of 95% prescribed dose (V 95% ) was significantly higher by 0.65% in RapidArc (t=5.16, P=0.001), and the V 105% and V 110% were lower by 10.96% and 1.48 % respectively, however, without statistical significance (t=-2.05, P=0.055 and t=-1.33, P=0.197). The conformal index of planning target volume (PTV) by the RapidArc planning was (0.88±0.02), significantly higher than that by the IMRT planning [(0.74±0.03), t=18.54, P<0.001]. The homogeneity index (HI) of PTV by the RapidArc planning was 1.11±0.01, significantly lower than that by the IMRT planning (1.12±0.02, t=-2.44, P=0.02). There were no significant differences in the maximum dose (D max ) and V 20 for the ipsilateral lung between the RapidArc and IMRT planning, but the values of V 10 , V 5 , D min and D mean by RapidArc planning were all significantly higher than those by the IMRT planning (all P<0.01). The values of max dose and V 30 for the heart were similar by both techniques, but the values of V 10 and V 5 by the RapidArc planning were significantly higher (by 18% and 50%, respectively). The V 5 of the contralateral breast and lung by the RapidArc planning were

  20. SU-F-T-632: On the Use of Intensity Modulated Arc Therapy for Thoracic Vertebral Metastases SBRT Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, D; Mallory, M; Badkul, R; Jiang, H; Saleh, H; Wang, F; Lominska, C [University of Kansas Hospital, Kansas City, KS (United States)

    2016-06-15

    Purpose: To retrospectively evaluate quality, efficiency and delivery accuracy of intensity modulated arc therapy (IMAT) plans for thoracic-vertebral metastases using stereotactic body radiotherapy (SBRT). Methods: After obtaining approval of RPC-benchmark plan, seven previously treated thoracic-vertebral metastases patients with non-coplanar hybrid arcs(NC-HA)using 1–2 3D-dynamic conformal partial-arcs plus 7–9 IMRT-beams were re-optimized with IMAT using 3 full co-planar arcs. Tumors were located between T2–T7. T1/T2-weighted MRI images were co-registered with planning-CT. PTVs were between 24.3–240.1cc(median=48.1cc). Prescription was 30Gy in 5 fractions with 6-MV beams at Novalis-TX consisting of HD-MLC.Plans were compared for target coverage:conformality index(CI),homogeneity index(HI),PTVD90. Organs-at-risks(OARs)was evaluated for spinal cord(Dmax, D0.35cc, and D1.2cc), esophagus(Dmax and D5cc),heart(Dmax, D15cc)and lung(V5 and V10). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance(QA) plan. Beam-on time was recorded and a gamma index was used to compare agreement between planned and measured doses. Results: SBRT IMAT plans resulted in superior CI(1.02 vs. 1.36, p=0.05) and HI (0.14 vs. 0.27, p=0.01). PTVD90 was improved but statistically insignificant (31.0 vs. 30.4Gy, p=0.38). IMAT resulted in statistically significant improvements in OARs sparing: esophagus max(22.5 vs. 27.0Gy, p=0.03), esophagus 5cc (17.6 vs. 21.5Gy, p=0.02) and heart max(13.1 vs. 15.8Gy, p=0.03). Spinal cord,lung V5 and V10 were lower but statistically insignificant. Average total MU and beam-on time were 2598±354 vs. 3542±495 and 4.7±0.6 min vs. 7.1±1.0min for IMAT vs. NC-HA (without accounting for couch kicks time for NC-HA). IMAT plans demonstrated an accurate dose delivery of 95.5±1.0% for clinical gamma passing-rate of 2%/2mm criteria on MapCHECK, that was comparable to NC-HA plans. Conclusion: IMAT plans provided highly

  1. Statistical process control analysis for patient quality assurance of intensity modulated radiation therapy

    Science.gov (United States)

    Lee, Rena; Kim, Kyubo; Cho, Samju; Lim, Sangwook; Lee, Suk; Shim, Jang Bo; Huh, Hyun Do; Lee, Sang Hoon; Ahn, Sohyun

    2017-11-01

    This study applied statistical process control to set and verify the quality assurances (QA) tolerance standard for our hospital's characteristics with the criteria standards that are applied to all the treatment sites with this analysis. Gamma test factor of delivery quality assurances (DQA) was based on 3%/3 mm. Head and neck, breast, prostate cases of intensity modulated radiation therapy (IMRT) or volumetric arc radiation therapy (VMAT) were selected for the analysis of the QA treatment sites. The numbers of data used in the analysis were 73 and 68 for head and neck patients. Prostate and breast were 49 and 152 by MapCHECK and ArcCHECK respectively. C p value of head and neck and prostate QA were above 1.0, C pml is 1.53 and 1.71 respectively, which is close to the target value of 100%. C pml value of breast (IMRT) was 1.67, data values are close to the target value of 95%. But value of was 0.90, which means that the data values are widely distributed. C p and C pml of breast VMAT QA were respectively 1.07 and 2.10. This suggests that the VMAT QA has better process capability than the IMRT QA. Consequently, we should pay more attention to planning and QA before treatment for breast Radiotherapy.

  2. Postoperative Intensity-Modulated Arc Therapy for Cervical and Endometrial Cancer: A Prospective Report on Toxicity

    International Nuclear Information System (INIS)

    Vandecasteele, Katrien; Tummers, Philippe; Makar, Amin; Eijkeren, Marc van; Delrue, Louke; Denys, Hannelore; Lambert, Bieke; Beerens, Anne-Sophie; Van den Broecke, Rudy; Lambein, Kathleen; Fonteyne, Valérie; De Meerleer, Gert

    2012-01-01

    Purpose: To report on toxicity after postoperative intensity-modulated arc therapy (IMAT) for cervical (CC) and endometrial cancer (EC). Methods and Materials: Twenty-four CC and 41 EC patients were treated with postoperative IMAT. If indicated, para-aortic lymph node irradiation (preventive or when affected, PALN) and/or concomitant cisplatin (40 mg/m², weekly) was administered. The prescribed dose for IMAT was 45 Gy (CC, 25 fractions) and 46 Gy (EC, 23 fractions), followed by a brachytherapeutic boost if possible. Radiation-related toxicity was assessed prospectively. The effect of concomitant cisplatin and PALN irradiation was evaluated. Results: Regarding acute toxicity (n = 65), Grade 3 and 2 acute gastrointestinal toxicity was observed in zero and 63% of patients (79% CC, 54% EC), respectively. Grade 3 and 2 acute genitourinary toxicity was observed in 1% and 18% of patients, respectively. Grade 2 (21%) and 3 (12%) hematologic toxicity (n = 41) occurred only in CC patients. Seventeen percent of CC patients and 2% of EC patients experienced Grade 2 fatigue and skin toxicity, respectively. Adding cisplatin led to an increase in Grade >2 nausea (57% vs. 9%; p = 0.01), Grade 2 nocturia (24% vs. 4%; p = 0.03), Grade ≥2 hematologic toxicity (38% vs. nil, p = 0.003), Grade ≥2 leukopenia (33% vs. nil, p = 0.009), and a strong trend toward more fatigue (14% vs. 2%; p = 0.05). Para-aortic lymph node irradiation led to an increase of Grade 2 nocturia (31% vs. 4%, p = 0.008) and a strong trend toward more Grade >2 nausea (44% vs. 18%; p = 0.052). Regarding late toxicity (n = 45), no Grade 3 or 4 late toxicity occurred. Grade 2 gastrointestinal toxicity, genitourinary toxicity, and fatigue occurred in 4%, 9%, and 1% of patients. Neither concomitant cisplatin nor PALN irradiation increased late toxicity rates. Conclusions: Postoperative IMAT for EC or CC is associated with low acute and late toxicity. Concomitant chemotherapy and PALN irradiation influences acute but

  3. Rapid arc - clinical rationale and results

    International Nuclear Information System (INIS)

    Cozzi, Lucca

    2008-01-01

    The presentation will focus on the background of Intensity modulation volumetric arc therapy Rapid Arc from Varian Medical Systems aiming to highlight the technical and clinical rational also from an historical perspective to the founding pillars of fast delivery with a minimum number of arcs and a minimum number of monitor units

  4. Sweeping-window arc therapy: an implementation of rotational IMRT with automatic beam-weight calculation

    International Nuclear Information System (INIS)

    Cameron, C

    2005-01-01

    Sweeping-window arc therapy (SWAT) is a variation of intensity-modulated radiation therapy (IMRT) with direct aperture optimization (DAO) that is initialized with a leaf sequence of sweeping windows that move back and forth periodically across the target as the gantry rotates. This initial sequence induces modulation in the dose and is assumed to be near enough to a minimum to allow successful optimization, done with simulated annealing, without requiring excessive leaf speeds. Optimal beam weights are calculated analytically, with easy extension to allow for variable beam weights. In this paper SWAT is tested on a phantom model and clinical prostate case. For the phantom, constant and variable beam weights are used. Although further work (in particular, improving the dose model) is required, the results show SWAT to be a feasible approach to generating deliverable dynamic arc treatments that are optimized

  5. Sweeping-window arc therapy: an implementation of rotational IMRT with automatic beam-weight calculation

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C [Division of Radiation Physics, Department of Radiation Oncology, Stanford Cancer Center, 875 Blake Wilbur Drive, Rm G-233, Stanford, CA 94305-5847 (United States)

    2005-09-21

    Sweeping-window arc therapy (SWAT) is a variation of intensity-modulated radiation therapy (IMRT) with direct aperture optimization (DAO) that is initialized with a leaf sequence of sweeping windows that move back and forth periodically across the target as the gantry rotates. This initial sequence induces modulation in the dose and is assumed to be near enough to a minimum to allow successful optimization, done with simulated annealing, without requiring excessive leaf speeds. Optimal beam weights are calculated analytically, with easy extension to allow for variable beam weights. In this paper SWAT is tested on a phantom model and clinical prostate case. For the phantom, constant and variable beam weights are used. Although further work (in particular, improving the dose model) is required, the results show SWAT to be a feasible approach to generating deliverable dynamic arc treatments that are optimized.

  6. Implementing RapidArc into clinical routine

    DEFF Research Database (Denmark)

    Van Esch, Ann; Huyskens, Dominique P; Behrens, Claus F

    2011-01-01

    With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto...

  7. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Li, Xiaoqiang; Zhang, J. Michele; Kabolizadeh, Peyman; Stevens, Craig; Yan, Di

    2016-01-01

    Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc_m_u_l_t_i_-_f_i_e_l_d) and the standard robust optimized intensity modulated proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc_m_u_l_t_i_-_f_i_e_l_d plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be

  8. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng, E-mail: Xuanfeng.ding@beaumont.org; Li, Xiaoqiang; Zhang, J. Michele; Kabolizadeh, Peyman; Stevens, Craig; Yan, Di

    2016-12-01

    Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc{sub multi-field}) and the standard robust optimized intensity modulated proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc{sub multi-field} plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be implemented

  9. Intensity-modulated arc therapy with cisplatin as neo-adjuvant treatment for primary irresectable cervical cancer. Toxicity, tumour response and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, K.; Eijkeren, M. van; Meerleer, G. de [Ghent University Hospital (Belgium). Dept. of Radiotherapy; Makar, A.; Broecke, R. van den; Tummers, P. [Ghent University Hospital (Belgium). Dept. of Gynecology; Delrue, L. [Ghent University Hospital (Belgium). Dept. of Radiology; Denys, H. [Ghent University Hospital (Belgium). Dept. of Medical Oncology; Lambein, K. [Ghent University Hospital (Belgium). Dept. of Pathology; Lambert, B. [Ghent University Hospital (Belgium). Dept. of Nuclear Medicine

    2012-07-15

    Purpose: The goal of this work was to evaluate the feasibility and outcome of intensity-modulated arc therapy {+-} cisplatin (IMAT {+-} C) followed by hysterectomy for locally advanced cervical cancer. Patients and methods: A total of 30 patients were included in the study. The primary tumour and PET-positive lymph node(s) received a simultaneous integrated boost. Four weeks after IMAT {+-} C treatment, response was evaluated. Resection consisted of hysterectomy with or without lymphadenectomy. Tumour response, acute and late radiation toxicity, postoperative morbidity and outcome were evaluated. Results: All hysterectomy specimens were macroscopically tumour-free with negative resection margins; pathological complete response was 40%. In 2 patients, one resected lymph node was positive. There was no excess in postoperative morbidity. Apart from two grade 3 hematologic toxicities, no grade 3 or 4 acute radiation toxicity was observed. No grade 3, 1 grade 4 (4%) intestinal, and 4 grade 3 (14%) urinary late toxicities were observed. The 2-year local and regional control rates were 96% and 100%, respectively. The 2-year distant control rate was 92%. Actuarial 2-year progression free survival rate was 89%. Actuarial 1- and 2-year overall survival rates were 96% and 91%, while 3-year overall survival was 84%. Conclusion: Surgery after IMAT {+-} C is feasible with low postoperative morbidity and radiation toxicity. Local, regional, distant control and survival rates are promising. (orig.)

  10. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  11. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-01-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V 18 Gy ), stomach (mean and V 20 Gy ), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V 18 Gy ), liver (mean dose), total bowel (V 20 Gy and mean dose), and small bowel (V 15 Gy absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing

  12. SU-F-T-79: Monte Carlo Investigation of Optimizing Parameters for Modulated Electron Arc Therapy

    International Nuclear Information System (INIS)

    Al Ashkar, E; Eraba, K; Imam, M; Eldib, A; Ma, C

    2016-01-01

    Purpose: Electron arc therapy provides excellent dose distributions for treating superficial tumors along curved surfaces. However this modality has not received widespread application due to the lack of needed advancement in electron beam delivery, accurate electron dose calculation and treatment plan optimization. The aim of the current work is to investigate possible parameters that can be optimized for electron arc (eARC) therapy. Methods: The MCBEAM code was used to generate phase space files for 6 and 12MeV electron beam energies from a Varian trilogy machine. An Electron Multi-leaf collimator eMLC of 2cm thickness positioned at 82 cm source collimated distance was used in the study. Dose distributions for electron arcs were calculated inside a cylindrical phantom using the MCSIM code. The Cylindrical phantom was constructed with 0.2cm voxels and a 15cm diameter. Electron arcs were delivered with two different approaches. The first approach was to deliver the arc as segments of very small field widths. In this approach we also tested the impact of the segment size and the arc increment angle. The second approach is to deliver the arc as a sum of large fields each covering the whole target as seen from the beam eye view. Results: In considering 90 % as the prescription isodose line, the first approach showed a region of buildup proceeding before the prescription zone. This build up is minimizing with the second approach neglecting need for bolus. The second approach also showed less x-ray contamination. In both approaches the variation of the segment size changed the size and location of the prescription isodose line. The optimization process for eARC could involve interplay between small and large segments to achieve desired coverage. Conclusion: An advanced modulation of eARCs will allow for tailored dose distribution for superficial curved target as with challenging scalp cases

  13. SU-F-T-79: Monte Carlo Investigation of Optimizing Parameters for Modulated Electron Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Al Ashkar, E; Eraba, K; Imam, M [Azhar university, Nasr City, Cairo (Egypt); Eldib, A; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Electron arc therapy provides excellent dose distributions for treating superficial tumors along curved surfaces. However this modality has not received widespread application due to the lack of needed advancement in electron beam delivery, accurate electron dose calculation and treatment plan optimization. The aim of the current work is to investigate possible parameters that can be optimized for electron arc (eARC) therapy. Methods: The MCBEAM code was used to generate phase space files for 6 and 12MeV electron beam energies from a Varian trilogy machine. An Electron Multi-leaf collimator eMLC of 2cm thickness positioned at 82 cm source collimated distance was used in the study. Dose distributions for electron arcs were calculated inside a cylindrical phantom using the MCSIM code. The Cylindrical phantom was constructed with 0.2cm voxels and a 15cm diameter. Electron arcs were delivered with two different approaches. The first approach was to deliver the arc as segments of very small field widths. In this approach we also tested the impact of the segment size and the arc increment angle. The second approach is to deliver the arc as a sum of large fields each covering the whole target as seen from the beam eye view. Results: In considering 90 % as the prescription isodose line, the first approach showed a region of buildup proceeding before the prescription zone. This build up is minimizing with the second approach neglecting need for bolus. The second approach also showed less x-ray contamination. In both approaches the variation of the segment size changed the size and location of the prescription isodose line. The optimization process for eARC could involve interplay between small and large segments to achieve desired coverage. Conclusion: An advanced modulation of eARCs will allow for tailored dose distribution for superficial curved target as with challenging scalp cases.

  14. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    International Nuclear Information System (INIS)

    Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc

  15. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy.

    Science.gov (United States)

    Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E; Huq, M Saiful

    2014-01-01

    Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients' treatment plans using a moving phantom driven with a patient-specific respiratory curve. For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were

  16. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients.

    Science.gov (United States)

    Penoncello, Gregory P; Ding, George X

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. Copyright © 2016 American Association of Medical Dosimetrists. Published by

  17. Quality assurance of intensity-modulated radiation therapy.

    Science.gov (United States)

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  18. Quality Assurance of Intensity-Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery

  19. Unilateral and bilateral neck SIB for head and neck cancer patients. Intensity-modulated proton therapy, tomotherapy, and RapidArc

    Energy Technology Data Exchange (ETDEWEB)

    Stromberger, Carmen; Budach, Volker; Ghadjar, Pirus; Wlodarczyk, Waldemar; Marnitz, Simone [Charite - Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany); Cozzi, Luca; Fogliata, Antonella [Humanitas Cancer Center Milan, Radiotherapy and Radiosurgery Department, Milan (Italy); Jamil, Basil [Klinikum Frankfurt Oder, Praxis fuer Strahlentherapie, Frankfurt Oder (Germany); Raguse, Jan D. [Clinic for Oral and Maxillofacial Surgery, Berlin (Germany); Boettcher, Arne [Charite - Universitaetsmedizin Berlin, Department of Otorhinolaryngology, Berlin (Germany)

    2016-04-15

    To compare simultaneous integrated boost plans for intensity-modulated proton therapy (IMPT), helical tomotherapy (HT), and RapidArc therapy (RA) for patients with head and neck cancer. A total of 20 patients with squamous cell carcinoma of the head and neck received definitive chemoradiation with bilateral (n = 14) or unilateral (n = 6) neck irradiation and were planned using IMPT, HT, and RA with 54.4, 60.8, and 70.4 GyE/Gy in 32 fractions. Dose distributions, coverage, conformity, homogeneity to planning target volumes (PTV)s and sparing of organs at risk and normal tissue were compared. All unilateral and bilateral plans showed excellent PTV coverage and acceptable dose conformity. For unilateral treatment, IMPT delivered substantially lower mean doses to contralateral salivary glands (< 0.001-1.1 Gy) than both rotational techniques did (parotid gland: 6-10 Gy; submandibular gland: 15-20 Gy). Regarding the sparing of classical organs at risk for bilateral treatment, IMPT and HT were similarly excellent and RA was satisfactory. For unilateral neck irradiation, IMPT may minimize the dry mouth risk in this subgroup but showed no advantage over HT for bilateral neck treatment regarding classical organ-at-risk sparing. All methods satisfied modern standards regarding toxicity and excellent target coverage for unilateral and bilateral treatment of head and neck cancer at the planning level. (orig.) [German] Planvergleich von intensitaetsmodulierter Protonentherapie (IMPT), Tomotherapie (HT) und RapidArc-Therapie (RA) fuer Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region unter Anwendung des simultan integrierten Boost-Konzepts (SIB). Fuer 20 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region und bilateraler (n = 14) oder unilateraler (n = 6) zervikaler primaerer Radiochemotherapie erfolgte eine IMPT-, HT- und RA-Planung mit 54,4, 60,8 und 70,4 GyE/Gy in 32 Fraktionen. Die Dosisverteilung, Abdeckung, Konformitaet und Homogenitaet der PTVs sowie die

  20. Influence of increment of gantry angle and number of arcs on esophageal volumetric modulated arc therapy planning in Monaco planning system: A planning study

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The objective of this study was to analyze the influence of the increment of gantry angle and the number of arcs on esophageal volumetric modulated arc therapy plan. All plans were done in Monaco planning system for Elekta Synergy linear accelerator with 80 multileaf collimator (MLC. Volumetric modulated arc therapy (VMAT plans were done with different increment of gantry angle like 15 o , 20 o , 30 o and 40 o . The remaining parameters were similar for all the plans. The results were compared. To compare the plan quality with number of arcs, VMAT plans were done with single and dual arc with increment of gantry angle of 20 o . The dose to gross tumor volume (GTV for 60 Gy and planning target volume (PTV for 48 Gy was compared. The dosimetric parameters D 98% , D 95% , D 50% and D max of GTV were analyzed. The homogeneity index (HI and conformity index (CI of GTV were studied and the dose to 98% and 95% of PTV was analyzed. Maximum dose to spinal cord and planning risk volume of cord (PRV cord was compared. The Volume of lung receiving 10 Gy, 20 Gy and mean dose was analyzed. The volume of heart receiving 30 Gy and 45 Gy was compared. The volume of normal tissue receiving greater than 2 Gy and 5 Gy was compared. The number of monitor units (MU required to deliver the plans were compared. The plan with larger increment of gantry angle proved to be superior to smaller increment of gantry angle plans in terms of dose coverage, HI, CI and normal tissue sparing. The number of arcs did not make any difference in the quality of the plan.

  1. Continuous Arc Rotation of the Couch Therapy for the Delivery of Accelerated Partial Breast Irradiation: A Treatment Planning Analysis

    International Nuclear Information System (INIS)

    Shaitelman, Simona F.; Kim, Leonard H.; Yan Di; Martinez, Alvaro A.; Vicini, Frank A.; Grills, Inga S.

    2011-01-01

    Purpose: We present a novel form of arc therapy: continuous arc rotation of the couch (C-ARC) and compare its dosimetry with three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT) for accelerated partial breast irradiation (APBI). C-ARC, like VMAT, uses a modulated beam aperture and dose rate, but with the couch, not the gantry, rotating. Methods and Materials: Twelve patients previously treated with APBI using 3D-CRT were replanned with (1) C-ARC, (2) IMRT, and (3) VMAT. C-ARC plans were designed with one medial and one lateral arc through which the couch rotated while the gantry was held stationary at a tangent angle. Target dose coverage was normalized to the 3D-CRT plan. Comparative endpoints were dose to normal breast tissue, lungs, and heart and monitor units prescribed. Results: Compared with 3D-CRT, C-ARC, IMRT, and VMAT all significantly reduced the ipsilateral breast V50% by the same amount (mean, 7.8%). Only C-ARC and IMRT plans significantly reduced the contralateral breast maximum dose, the ipsilateral lung V5Gy, and the heart V5%. C-ARC used on average 40%, 30%, and 10% fewer monitor units compared with 3D-CRT, IMRT, and VMAT, respectively. Conclusions: C-ARC provides improved dosimetry and treatment efficiency, which should reduce the risks of toxicity and secondary malignancy. Its tangent geometry avoids irradiation of critical structures that is unavoidable using the en face geometry of VMAT.

  2. Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)

    Science.gov (United States)

    Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.

    2017-02-01

    To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.

  3. Energy and intensity modulated radiation therapy with electrons

    OpenAIRE

    Olofsson, Lennart

    2005-01-01

    In recent years intensity modulated radiation therapy with photons (xIMRT) has gained attention due to its ability to reduce the dose in the tissues close to the tumour volume. However, this technique also results in a large low dose volume. Electron IMRT (eIMRT) has the potential to reduce the integral dose to the patient due to the dose fall off in the electron depth dose curves. This dose fall off makes it possible to modulate the dose distribution in the direction of the beam by selecting...

  4. Volumetric intensity-modulated arc therapy vs. 3-dimensional conformal radiotherapy for primary chemoradiotherapy of anal carcinoma. Effects on treatment-related side effects and survival

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Hanne Elisabeth; Droege, Leif Hendrik; Hennies, Steffen; Herrmann, Markus Karl; Wolff, Hendrik Andreas [University Medical Center Goettingen, Dept. of Radiotherapy and Radiooncology, Goettingen (Germany); Gaedcke, Jochen [University Medical Center Goettingen, Dept. of General Surgery, Goettingen (Germany)

    2015-11-15

    Primary chemoradiotherapy (CRT) is the standard treatment for locally advanced anal carcinoma. This study compared volumetric intensity-modulated arc therapy (VMAT) to 3-dimensional conformal radiotherapy (3DCRT) in terms of treatment-related side effects and survival. From 1992-2014, 103 consecutive patients with anal carcinoma UICC stage I-III were treated. Concomitant CRT consisted of whole pelvic irradiation, including the iliac and inguinal lymph nodes, with 50.4 Gy (1.8 Gy per fractions) by VMAT (n = 17) or 3DCRT (n = 86) as well as two cycles of 5-fluorouracil and mitomycin C. Acute organ and hematological toxicity were assessed according to the Common Terminology Criteria (CTC) for Adverse Events version 3.0. Side effects ≥ grade 3 were scored as high-grade toxicity. High-grade acute organ toxicity CTC ≥ 3 (P < 0.05), especially proctitis (P = 0.03), was significantly reduced in VMAT patients. The 2-year locoregional control (LRC) and disease-free survival (DFS) were both 100 % for VMAT patients compared with 80 and 73 % for 3DCRT patients. VMAT was shown to be a feasible technique, achieving significantly lower rates of acute organ toxicity and promising results for LRC and DFS. Future investigations will aim at assessing the advantages of VMAT with respect to late toxicity and survival after a prolonged follow-up time. (orig.) [German] Die primaere Radiochemotherapie (RCT) gilt als Standardtherapie fuer lokal fortgeschrittene Analkarzinome. In dieser Studie wurde die volumetrisch modulierte Rotationstherapie (''volumetric intensity-modulated arc therapy'', VMAT) mit der klassischen dreidimensionalen konformalen Radiotherapie (3DCRT) hinsichtlich therapieassoziierter Nebenwirkungen und Ueberleben verglichen. Von 1992-2014 wurden 103 aufeinanderfolgende Patienten mit einem Analkarzinom im UICC-Stadium I-III behandelt. Die kombinierte RCT bestand aus der Bestrahlung des gesamten Beckens inklusive der iliakalen und der inguinalen

  5. Efficacy of robust optimization plan with partial-arc VMAT for photon volumetric-modulated arc therapy: A phantom study.

    Science.gov (United States)

    Miura, Hideharu; Ozawa, Shuichi; Nagata, Yasushi

    2017-09-01

    This study investigated position dependence in planning target volume (PTV)-based and robust optimization plans using full-arc and partial-arc volumetric modulated arc therapy (VMAT). The gantry angles at the periphery, intermediate, and center CTV positions were 181°-180° (full-arc VMAT) and 181°-360° (partial-arc VMAT). A PTV-based optimization plan was defined by 5 mm margin expansion of the CTV to a PTV volume, on which the dose constraints were applied. The robust optimization plan consisted of a directly optimized dose to the CTV under a maximum-uncertainties setup of 5 mm. The prescription dose was normalized to the CTV D 99% (the minimum relative dose that covers 99% of the volume of the CTV) as an original plan. The isocenter was rigidly shifted at 1 mm intervals in the anterior-posterior (A-P), superior-inferior (S-I), and right-left (R-L) directions from the original position to the maximum-uncertainties setup of 5 mm in the original plan, yielding recalculated dose distributions. It was found that for the intermediate and center positions, the uncertainties in the D 99% doses to the CTV for all directions did not significantly differ when comparing the PTV-based and robust optimization plans (P > 0.05). For the periphery position, uncertainties in the D 99% doses to the CTV in the R-L direction for the robust optimization plan were found to be lower than those in the PTV-based optimization plan (P plan's efficacy using partial-arc VMAT depends on the periphery CTV position. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. MRI-guided single fraction ablative radiotherapy for early-stage breast cancer : a brachytherapy versus volumetric modulated arc therapy dosimetry study

    NARCIS (Netherlands)

    Charaghvandi, Ramona K; den Hartogh, Mariska D; van Ommen, Anne-Mar L N; de Vries, Wilfred J H; Scholten, Vincent; Moerland, Rien; Philippens, Mariëlle E P; Schokker, Rogier I; van Vulpen, Marco; van Asselen, B; van den Bongard, Desirée H J G

    2015-01-01

    BACKGROUND AND PURPOSE: A radiosurgical treatment approach for early-stage breast cancer has the potential to minimize the patient's treatment burden. The dosimetric feasibility for single fraction ablative radiotherapy was evaluated by comparing volumetric modulated arc therapy (VMAT) with an

  7. Single-Arc IMRT?

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Webb, Steve

    2009-01-01

    The idea of delivering intensity-modulated radiation therapy (IMRT) with a multileaf collimator in a continuous dynamic mode during a single rotation of the gantry has recently gained momentum both in research and industry. In this note we investigate the potential of this Single-Arc IMRT technique at a conceptual level. We consider the original theoretical example case from Brahme et al that got the field of IMRT started. Using analytical methods, we derive deliverable intensity 'landscapes' for Single-Arc as well as standard IMRT and Tomotherapy. We find that Tomotherapy provides the greatest flexibility in shaping intensity landscapes and that it allows one to deliver IMRT in a way that comes close to the ideal case in the transverse plane. Single-Arc and standard IMRT make compromises in different areas. Only in relatively simple cases that do not require substantial intensity modulation will Single-Arc be dosimetrically comparable to Tomotherapy. Compared with standard IMRT, Single-Arc could be dosimetrically superior in certain cases if one is willing to accept the spreading of low dose values over large volumes of normal tissue. In terms of treatment planning, Single-Arc poses a more challenging optimization problem than Tomotherapy or standard IMRT. We conclude that Single-Arc holds potential as an efficient IMRT technique especially for relatively simple cases. In very complex cases, Single-Arc may unduly compromise the quality of the dose distribution, if one tries to keep the treatment time below 2 min or so. As with all IMRT techniques, it is important to explore the tradeoff between plan quality and the efficiency of its delivery carefully for each individual case. (note)

  8. SU-E-J-53: Dosimetric Evaluation at Volumetric Modulated Arc Therapy for Treatment of Prostate Cancer Using Single Or Double Arcs

    Energy Technology Data Exchange (ETDEWEB)

    Silva, D; Salmon, H; Pavan, G; Nardi, S; Anderson, E; Fairbanks, L; Junior, J; Cursino, F; Colodette, K [GRUPO COI, Rio De Janeiro, Rio De Janeiro (Brazil)

    2014-06-01

    Purpose: Evaluate and compare retrospective prostate treatment plan using Volumetric Modulated Arc Therapy (RapidArc™ - Varian) technique with single or double arcs at COI Group. Methods: Ten patients with present prostate and seminal vesicle neoplasia were replanned as a target treatment volume and a prescribed dose of 78 Gy. A baseline planning, using single arc, was developed for each case reaching for the best result on PTV, in order to minimize the dose on organs at risk (OAR). Maintaining the same optimization objectives used on baseline plan, two copies for optimizing single and double arcs, have been developed. The plans were performed with 10 MV photon beam energy on Eclipse software, version 11.0, making use of Trilogy linear accelerator with Millenium HD120 multileaf collimator. Comparisons on PTV have been performed, such as: maximum, minimum and mean dose, gradient dose, as well as the quantity of monitor units, treatment time and homogeneity and conformity index. OARs constrains dose have been evaluated, comparing both optimizations. Results: Regarding PTV coverage, the difference of the minimum, maximum and mean dose were 1.28%, 0.7% and 0.2% respectively higher for single arc. When analyzed the index of homogeneity found a difference of 0.99% higher when compared with double arcs. However homogeneity index was 0.97% lower on average by using single arc. The doses on the OARs, in both cases, were in compliance to the recommended limits RTOG 0415. With the use of single arc, the quantity of monitor units was 10,1% lower, as well as the Beam-On time, 41,78%, when comparing double arcs, respectively. Conclusion: Concerning the optimization of patients with present prostate and seminal vesicle neoplasia, the use of single arc reaches similar objectives, when compared to double arcs, in order to decrease the treatment time and the quantity of monitor units.

  9. DMLC motion tracking of moving targets for intensity modulated arc therapy treatment

    DEFF Research Database (Denmark)

    Zimmerman, Jens; Korreman, Stine; Persson, Gitte

    2009-01-01

    (DMLC). The aim of this work was to evaluate the dose delivered to moving targets using the RapidArc (Varian Medical Systems, Inc.) technology with and without a DMLC tracking algorithm. MATERIAL AND METHODS: A Varian Clinac iX was equipped with a preclinical RapidArc and a 3D DMLC tracking application......) and state (1). CONCLUSIONS: DMLC tracking together with RapidArc make a feasible combination and is capable of improving the dose distribution delivered to a moving target. It seems to be of importance to minimize noise influencing the tracking, to gain the full benefit from the application........ A motion platform was placed on the couch, with the detectors on top: a PTW seven29 and a Scandidos Delta4. One lung plan and one prostate plan were delivered. Motion was monitored using a Real-time Position Management (RPM) system. Reference measurements were performed for both plans with both detectors...

  10. Applicator-guided volumetric-modulated arc therapy for low-risk endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cilla, Savino, E-mail: savinocilla@gmail.com [Medical Physics Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); Macchia, Gabriella [Radiation Oncology Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); Sabatino, Domenico [Medical Physics Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); Digesù, Cinzia; Deodato, Francesco [Radiation Oncology Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); Piermattei, Angelo [Physics Institute, Università Cattolica del Sacro Cuore, Rome (Italy); De Spirito, Marco [Medical Physics Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); Morganti, Alessio G. [Radiation Oncology Unit, Fondazione di ricerca e cura “Giovanni Paolo II,” Università Cattolica del Sacro Cuore, Campobasso (Italy); Radiation Oncology Unit, Università Cattolica del Sacro Cuore, Rome (Italy)

    2013-04-01

    The aim of this study was to report the feasibility of volumetric-modulated arc therapy (VMAT) in the postoperative irradiation of the vaginal vault. Moreover, the VMAT technique was compared with 3D conformal radiotherapy (3D-CRT) and fixed-field intensity-modulated radiotherapy (IMRT), in terms of target coverage and organs at risk sparing. The number of monitor units and the delivery time were analyzed to score the treatment efficiency. All plans were verified in a dedicated solid water phantom using a 2D array of ionization chambers. Twelve patients with endometrial carcinoma who underwent radical hystero-adenexectomy and fixed-field IMRT treatments were retrospectively included in this analysis; for each patient, plans were compared in terms of dose-volume histograms, homogeneity index, and conformity indexes. All techniques met the prescription goal for planning target volume coverage, with VMAT showing the highest level of conformity at all dose levels. VMAT resulted in significant reduction of rectal and bladder volumes irradiated at all dose levels compared with 3D-CRT. No significant differences were found with respect to IMRT. Moreover, a significant improvement of the dose conformity was reached by VMAT technique not only at the 95% dose level (0.74 vs. 0.67 and 0.62) but also at 50% and 75% levels of dose prescription. In addition, VMAT plans showed a significant reduction of monitor units by nearly 28% with respect to IMRT, and reduced treatment time from 11 to <3 minutes for a single 6-Gy fraction. In conclusion, VMAT plans can be planned and carried out with high quality and efficiency for the irradiation of vaginal vault alone, providing similar or better sparing of organs at risk to fixed-field IMRT and resulting in the most efficient treatment option. VMAT is currently our standard approach for radiotherapy of low-risk endometrial cancer.

  11. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Foroudi, Farshad; Kron, Tomas; Wilson, Lesley; Bressel, Mathias; Haworth, Annette; Hornby, Colin; Pham, Daniel; Cramb, Jim; Gill, Suki; Tai, Keen Hun

    2012-01-01

    To compare 3 Dimensional Conformal radiotherapy (3D-CRT) with Intensity Modulated Radiotherapy (IMRT) with Volumetric-Modulated Arc Therapy (VMAT) for bladder cancer. Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB) of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI) index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI) index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293) for 3D-CRT; 824 (range 641–1083) for IMRT; and 403 (range 333–489) for VMAT (P < 0.05). Average treatment delivery time were 2:25min (range 2:01–3:09) for 3D-CRT; 4:39 (range 3:41–6:40) for IMRT; and 1:14 (range 1:13–1:14) for VMAT. In selected patients, the SIB did not result in a higher dose to small bowel or rectum. VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours

  12. Intensity-modulated radiation therapy: dynamic MLC (DMLC) therapy, multisegment therapy and tomotherapy. An example of QA in DMLC therapy

    International Nuclear Information System (INIS)

    Webb, S.

    1998-01-01

    Intensity-modulated radiation therapy will make a quantum leap in tumor control. It is the new radiation therapy for the new millennium. The major methods to achieve IMRT are: 1. Dynamic multileaf collimator (DMLC) therapy, 2. multisegment therapy, and 3. tomotherapy. The principles of these 3 techniques are briefly reviewed. Each technique presents unique QA issues which are outlined. As an example this paper will present the results of a recent new study of an important QA concern in DMLC therapy. (orig.) [de

  13. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Scott B [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia); Kairn, Tanya [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia); Premion, Wesley Medical Centre, Brisbane, Queensland (Australia); Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T [Premion, Wesley Medical Centre, Brisbane, Queensland (Australia); Kenny, John [Australian Clinical Dosimetry Services, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Victoria (Australia); Langton, Christian M; Trapp, Jamie V [Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland (Australia)

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  14. Choreographing Couch and Collimator in Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Yang Yingli; Zhang Pengpeng; Happersett, Laura; Xiong Jianping; Yang Jie; Chan, Maria; Beal, Kathryn; Mageras, Gig; Hunt, Margie

    2011-01-01

    Purpose: To design and optimize trajectory-based, noncoplanar subarcs for volumetric modulated arc therapy (VMAT) deliverable on both Varian TrueBEAM system and traditional accelerators; and to investigate their potential advantages for treating central nervous system (CNS) tumors. Methods and Materials: To guide the computerized selection of beam trajectories consisting of simultaneous couch, gantry, and collimator motion, a score function was implemented to estimate the geometric overlap between targets and organs at risk for each couch/gantry angle combination. An initial set of beam orientations is obtained as a function of couch and gantry angle, according to a minimum search of the score function excluding zones of collision. This set is grouped into multiple continuous and extended subarcs subject to mechanical limitations using a hierarchical clustering algorithm. After determination of couch/gantry trajectories, a principal component analysis finds the collimator angle at each beam orientation that minimizes residual target-organ at risk overlaps. An in-house VMAT optimization algorithm determines the optimal multileaf collimator position and monitor units for control points within each subarc. A retrospective study of 10 CNS patients compares the proposed method of VMAT trajectory with dynamic gantry, leaves, couch, and collimator motion (Tra-VMAT); a standard noncoplanar VMAT with no couch/collimator motion within subarcs (Std-VMAT); and noncoplanar intensity-modulated radiotherapy (IMRT) plans that were clinically used. Results: Tra-VMAT provided improved target dose conformality and lowered maximum dose to brainstem, optic nerves, and chiasm by 7.7%, 1.1%, 2.3%, and 1.7%, respectively, compared with Std-VMAT. Tra-VMAT provided higher planning target volume minimum dose and reduced maximum dose to chiasm, optic nerves, and cochlea by 6.2%, 1.3%, 6.3%, and 8.4%, respectively, and reduced cochlea mean dose by 8.7%, compared with IMRT. Tra-VMAT averaged

  15. Hypofractionated intensity-modulated arc therapy for lymph node metastasized prostate cancer: Early late toxicity and 3-year clinical outcome

    International Nuclear Information System (INIS)

    Fonteyne, Valérie; Lumen, Nicolaas; Ost, Piet; Van Praet, Charles; Vandecasteele, Katrien; De Gersem Ir, Werner; Villeirs, Geert; De Neve, Wilfried; Decaestecker, Karel; De Meerleer, Gert

    2013-01-01

    Background and purpose: For patients with N1 prostate cancer (PCa) aggressive local therapies can be advocated. We evaluated clinical outcome, gastro-intestinal (GI) and genito-urinary (GU) toxicity after intensity modulated arc radiotherapy (IMAT) + androgen deprivation (AD) for N1 PCa. Material and methods: Eighty patients with T1-4N1M0 PCa were treated with IMAT and 2–3 years of AD. A median dose of 69.3 Gy (normalized isoeffective dose at 2 Gy per fraction: 80 Gy [α/β = 3]) was prescribed in 25 fractions to the prostate. The pelvic lymph nodes received a minimal dose of 45 Gy. A simultaneous integrated boost to 72 Gy and 65 Gy was delivered to the intraprostatic lesion and/or pathologically enlarged lymph nodes, respectively. GI and GU toxicity was scored using the RTOG/RILIT and RTOG-SOMA/LENT-CTC toxicity scoring system respectively. Three-year actuarial risk of grade 2 and 3/4 GI–GU toxicity and biochemical and clinical relapse free survival (bRFS and cRFS) were calculated with Kaplan–Meier statistics. Results: Median follow-up was 36 months. Three-year actuarial risk for late grade 3 and 2 GI toxicity is 8% and 20%, respectively. Three-year actuarial risk for late grade 3–4 and 2 GU toxicity was 6% and 34%, respectively. Actuarial 3-year bRFS and cRFS was 81% and 89%, respectively. Actuarial 3-year bRFS and cRFS was, respectively 26% and 32% lower for patients with cN1 disease when compared to patients with cN0 disease. Conclusion: IMAT for N1 PCa offers good clinical outcome with moderate toxicity. Patients with cN1 disease have poorer outcome

  16. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Sio, Terence T. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States); Lin, Huei-Kai; Shi, Qiuling [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cleeland, Charles S. [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, J. Jack; Hernandez, Mike [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Blanchard, Pierre; Thaker, Nikhil G.; Phan, Jack; Rosenthal, David I.; Garden, Adam S.; Morrison, William H.; Fuller, C. David [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mendoza, Tito R. [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Xin Shelley [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-07-15

    Purpose: We hypothesized that patients with oropharyngeal cancer treated with intensity modulated proton therapy (IMPT) would have lower symptom burdens, as measured by patient-reported outcome (PRO) surveys, than patients treated with intensity modulated photon therapy (IMRT). Methods and Materials: Patients were treated for oropharyngeal cancer from 2006 to 2015 through prospective registries with concurrent chemotherapy and IMPT or chemotherapy and IMRT and completed the MD Anderson Symptom Inventory for Head and Neck Cancer (MDASI-HN) module at various times before treatment (baseline), during treatment (acute phase), within the first 3 months after treatment (subacute phase), and afterward (chronic phase). Individual symptoms and the top 5 and top 11 most severe symptoms were summarized and compared between the radiation therapy modalities. Results: PRO data were collected and analyzed from 35 patients treated with chemotherapy and IMPT and from 46 treated with chemotherapy and IMRT. The baseline symptom burdens were similar between both groups. The overall top 5 symptoms were food taste problems (mean score 4.91 on a 0-10 scale), dry mouth (4.49), swallowing/chewing difficulties (4.26), lack of appetite (4.08), and fatigue (4.00). Among the top 11 symptoms, changes in taste and appetite during the subacute and chronic phases favored IMPT (all P<.048). No differences in symptom burden were detected between modalities during the acute and chronic phases by top-11 symptom scoring. During the subacute phase, the mean (±standard deviation) top 5 MDASI scores were 5.15 ± 2.66 for IMPT versus 6.58 ± 1.98 for IMRT (P=.013). Conclusions: According to the MDASI-HN, symptom burden was lower among the IMPT patients than among the IMRT patients during the subacute recovery phase after treatment. A prospective randomized clinical trial is underway to define the value of IMPT for the management of head and neck tumors.

  17. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes

    International Nuclear Information System (INIS)

    Sio, Terence T.; Lin, Huei-Kai; Shi, Qiuling; Gunn, G. Brandon; Cleeland, Charles S.; Lee, J. Jack; Hernandez, Mike; Blanchard, Pierre; Thaker, Nikhil G.; Phan, Jack; Rosenthal, David I.; Garden, Adam S.; Morrison, William H.; Fuller, C. David; Mendoza, Tito R.; Mohan, Radhe; Wang, Xin Shelley; Frank, Steven J.

    2016-01-01

    Purpose: We hypothesized that patients with oropharyngeal cancer treated with intensity modulated proton therapy (IMPT) would have lower symptom burdens, as measured by patient-reported outcome (PRO) surveys, than patients treated with intensity modulated photon therapy (IMRT). Methods and Materials: Patients were treated for oropharyngeal cancer from 2006 to 2015 through prospective registries with concurrent chemotherapy and IMPT or chemotherapy and IMRT and completed the MD Anderson Symptom Inventory for Head and Neck Cancer (MDASI-HN) module at various times before treatment (baseline), during treatment (acute phase), within the first 3 months after treatment (subacute phase), and afterward (chronic phase). Individual symptoms and the top 5 and top 11 most severe symptoms were summarized and compared between the radiation therapy modalities. Results: PRO data were collected and analyzed from 35 patients treated with chemotherapy and IMPT and from 46 treated with chemotherapy and IMRT. The baseline symptom burdens were similar between both groups. The overall top 5 symptoms were food taste problems (mean score 4.91 on a 0-10 scale), dry mouth (4.49), swallowing/chewing difficulties (4.26), lack of appetite (4.08), and fatigue (4.00). Among the top 11 symptoms, changes in taste and appetite during the subacute and chronic phases favored IMPT (all P<.048). No differences in symptom burden were detected between modalities during the acute and chronic phases by top-11 symptom scoring. During the subacute phase, the mean (±standard deviation) top 5 MDASI scores were 5.15 ± 2.66 for IMPT versus 6.58 ± 1.98 for IMRT (P=.013). Conclusions: According to the MDASI-HN, symptom burden was lower among the IMPT patients than among the IMRT patients during the subacute recovery phase after treatment. A prospective randomized clinical trial is underway to define the value of IMPT for the management of head and neck tumors.

  18. Klystron Gun Arcing and Modulator Protection

    International Nuclear Information System (INIS)

    Gold, S

    2004-01-01

    The demand for 500 kV and 265 amperes peak to power an X-Band klystron brings up protection issues for klystron faults and the energy dumped into the arc from the modulator. This situation is made worse when more than one klystron will be driven from a single modulator, such as the existing schemes for running two and eight klystrons. High power pulsed klystrons have traditionally be powered by line type modulators which match the driving impedance with the load impedance and therefore current limit at twice the operating current. Multiple klystrons have the added problems of a lower modulator source impedance and added stray capacitance, which converts into appreciable energy at high voltages like 500kV. SLAC has measured the energy dumped into klystron arcs in a single and dual klystron configuration at the 400 to 450 kV level and found interesting characteristics in the arc formation. The author will present measured data from klystron arcs powered from line-type modulators in several configurations. The questions arise as to how the newly designed solid-state modulators, running multiple tubes, will react to a klystron arc and how much energy will be dumped into the arc

  19. A modified method of planning and delivery for dynamic multileaf collimator intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Dogan, Nesrin; Leybovich, Leonid B.; Sethi, Anil; Krasin, Matthew; Emami, Bahman

    2000-01-01

    Purpose: To develop a modified planning and delivery technique that reduces dose nonuniformity for tomographic delivery of intensity-modulated radiation therapy (IMRT). Methods and Materials: The NOMOS-CORVUS system delivers IMRT in a tomographic paradigm. This type of delivery is prone to create multiple dose nonuniformity regions at the arc abutment regions. The modified technique was based on the cyclical behavior of arc positions as a function of a target length. With the modified technique, two plans are developed for the same patient, one with the original target and the second with a slightly increased target length and the abutment regions shifted by ∼5 mm compared to the first plan. Each plan is designed to deliver half of the target prescription dose delivered on alternate days, resulting in periodic shifts of abutment regions. This method was experimentally tested in phantoms with and without intentionally introduced errors in couch indexing. Results: With the modified technique, the degree of dose nonuniformity was reduced. For example, with 1 mm error in couch indexing, the degree of dose nonuniformity changed from ∼25% to ∼12%. Conclusion: Use of the modified technique reduces dose nonuniformity due to periodic shifts of abutment regions during treatment delivery

  20. Volume Modulated Arc Therapy (VMAT for pulmonary Stereotactic Body Radiotherapy (SBRT in patients with lesions in close approximation to the chest wall

    Directory of Open Access Journals (Sweden)

    Thomas J. FitzGerald

    2013-02-01

    Full Text Available Chest wall pain and discomfort has been recognized as a significant late effect of radiation therapy in historical and modern treatment models. Stereotactic Body Radiotherapy (SBRT is becoming an important treatment tool in oncology care for patients with intrathoracic lesions. For lesions in close approximation to the chest wall including lesions requiring motion management, SBRT techniques can deliver high dose to the chest wall. As an unintended target of consequence, there is possibility of generating significant chest wall pain and discomfort as a late effect of therapy. The purpose of this paper is to evaluate the potential role of Volume Modulated Arc Therapy (VMAT technologies in decreasing chest wall dose in SBRT treatment of pulmonary lesions in close approximation to the chest wall.Ten patients with pulmonary lesions of various sizes and topography in close approximation to the chest wall were selected for retrospective review. All volumes including target, chest wall, ribs, and lung were contoured with maximal intensity projection maps and four-dimensional computer tomography planning. Radiation therapy planning consisted of static techniques including Intensity Modulated Radiation Therapy compared to VMAT therapy to a dose of 60Gy in 12Gy fractions. Dose volume histogram to rib, chest wall, and lung were compared between plans with statistical analysis.In all patients dose and volume were improved to ribs and chest wall using VMAT technologies compared to static field techniques. On average, volume receiving 30Gy to the chest wall was improved by 72%;the ribs by 60%. In only one patient did the VMAT treatment technique increase pulmonary volume receiving 20Gy (V20.VMAT technology has potential of limiting radiation dose to sensitive chest wall regions in patients with lesions in close approximation to this structure. This would also have potential value to lesions treated with SBRT in other body regions where targets abut critical

  1. SU-E-T-568: Improving Normal Brain Sparing with Increasing Number of Arc Beams for Volume Modulated Arc Beam Radiosurgery of Multiple Brain Metastases

    International Nuclear Information System (INIS)

    Hossain, S; Hildebrand, K; Ahmad, S; Larson, D; Ma, L; Sahgal, A

    2014-01-01

    Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targets were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery

  2. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  3. Intensity-modulated radiation therapy: a review with a physics perspective.

    Science.gov (United States)

    Cho, Byungchul

    2018-03-01

    Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

  4. Influence of easily ionised elements on the delayed responses of the emission intensities of an analyte in a power modulated U-shaped argon stabilised DC arc plasma with an aerosol supply

    Directory of Open Access Journals (Sweden)

    MIROSLAV KUZMANOVIC

    2005-09-01

    Full Text Available The current of a U-shaped argon stabilised DC arc was square modulated with a 40 Hz repetition frequency between 6 and 3 A. The delayed line intensity responses to the modulation of the arc current were investigated using calcium as a representative analyte. The intensities of both the atomic and ionic lines were monitored at different distances from the arc axis in the presence of various concentrations of the easily ionised element. Temporal evolutions were monitored on a millisecond time scale. It was found that the responses of the line intesity to the arc current change strongly depended on the observed radial position, especially in the vicinity of the arc axis. The obtained results showed a significant influence of even small amounts of the easily ionised element on the excitation and transport of the analyte and indicated a way of possibly improving the analytical capabilities of the excitation source.

  5. SU-E-T-508: End to End Testing of a Prototype Eclipse Module for Planning Modulated Arc Therapy On the Siemens Platform

    International Nuclear Information System (INIS)

    Huang, L; Sarkar, V; Spiessens, S; Rassiah-Szegedi, P; Huang, Y; Salter, B; Zhao, H; Szegedi, M

    2014-01-01

    Purpose: The latest clinical implementation of the Siemens Artiste linac allows for delivery of modulated arcs (mARC) using full-field flattening filter free (FFF) photon beams. The maximum doserate of 2000 MU/min is well suited for high dose treatments such as SBRT. We tested and report on the performance of a prototype Eclipse TPS module supporting mARC capability on the Artiste platform. Method: our spine SBRT patients originally treated with 12/13 field static-gantry IMRT (SGIMRT) were chosen for this study. These plans were designed to satisfy RTOG0631 guidelines with a prescription of 16Gy in a single fraction. The cases were re-planned as mARC plans in the prototype Eclipse module using the 7MV FFF beam and required to satisfy RTOG0631 requirements. All plans were transferred from Eclipse, delivered on a Siemens Artiste linac and dose-validated using the Delta4 system. Results: All treatment plans were straightforwardly developed, in timely fashion, without challenge or inefficiency using the prototype module. Due to the limited number of segments in a single arc, mARC plans required 2-3 full arcs to yield plan quality comparable to SGIMRT plans containing over 250 total segments. The average (3%/3mm) gamma pass-rate for all arcs was 98.5±1.1%, thus demonstrating both excellent dose prediction by the AAA dose algorithm and excellent delivery fidelity. Mean delivery times for the mARC plans(10.5±1.7min) were 50-70% lower than the SGIMRT plans(26±2min), with both delivered at 2000 MU/min. Conclusion: A prototype Eclipse module capable of planning for Burst Mode modulated arc delivery on the Artiste platform has been tested and found to perform efficiently and accurately for treatment plan development and delivered-dose prediction. Further investigation of more treatment sites is being carried out and data will be presented

  6. TH-CD-209-10: Scanning Proton Arc Therapy (SPArc) - The First Robust and Delivery-Efficient Spot Scanning Proton Arc Therapy

    International Nuclear Information System (INIS)

    Ding, X; Li, X; Zhang, J; Kabolizadeh, P; Stevens, C; Yan, D

    2016-01-01

    Purpose: To develop a delivery-efficient proton spot-scanning arc therapy technique with robust plan quality. Methods: We developed a Scanning Proton Arc(SPArc) optimization algorithm integrated with (1)Control point re-sampling by splitting control point into adjacent sub-control points; (2)Energy layer re-distribution by assigning the original energy layers to the new sub-control points; (3)Energy layer filtration by deleting low MU weighting energy layers; (4)Energy layer re-sampling by sampling additional layers to ensure the optimal solution. A bilateral head and neck oropharynx case and a non-mobile lung target case were tested. Plan quality and total estimated delivery time were compared to original robust optimized multi-field step-and-shoot arc plan without SPArc optimization (Arcmulti-field) and standard robust optimized Intensity Modulated Proton Therapy(IMPT) plans. Dose-Volume-Histograms (DVH) of target and Organ-at-Risks (OARs) were analyzed along with all worst case scenarios. Total delivery time was calculated based on the assumption of a 360 degree gantry room with 1 RPM rotation speed, 2ms spot switching time, beam current 1nA, minimum spot weighting 0.01 MU, energy-layer-switching-time (ELST) from 0.5 to 4s. Results: Compared to IMPT, SPArc delivered less integral dose(−14% lung and −8% oropharynx). For lung case, SPArc reduced 60% of skin max dose, 35% of rib max dose and 15% of lung mean dose. Conformity Index is improved from 7.6(IMPT) to 4.0(SPArc). Compared to Arcmulti-field, SPArc reduced number of energy layers by 61%(276 layers in lung) and 80%(1008 layers in oropharynx) while kept the same robust plan quality. With ELST from 0.5s to 4s, it reduced 55%–60% of Arcmulti-field delivery time for the lung case and 56%–67% for the oropharynx case. Conclusion: SPArc is the first robust and delivery-efficient proton spot-scanning arc therapy technique which could be implemented in routine clinic. For modern proton machine with ELST close

  7. Intensity-modulated radiation therapy: first reported treatment in Australasia

    International Nuclear Information System (INIS)

    Corry, J.; Joon, D.L.; Hope, G.; Smylie, J.; Henkul, Z.; Wills, J.; Cramb, J.; Towns, S.; Archer, P.

    2002-01-01

    Intensity-modulated radiation therapy (IMRT) is an exciting new advance in the practice of radiation oncology. It is the use of non-uniform radiation beams to achieve conformal dose distributions. As a result of the high initial capital costs and the time and complexity of planning, IMRT is not yet a widely available clinical treatment option. We describe the process involved in applying this new technology to a case of locally advanced nasopharyngeal cancer. Copyright (2002) Blackwell Science Pty Ltd

  8. Radiotherapy for Adult Medulloblastoma: Evaluation of Helical Tomotherapy, Volumetric Intensity Modulated Arc Therapy, and Three-Dimensional Conformal Radiotherapy and the Results of Helical Tomotherapy Therapy

    Directory of Open Access Journals (Sweden)

    Sun Zong-wen

    2018-01-01

    Full Text Available Introduction. All adult medulloblastoma (AMB patients should be treated with craniospinal irradiation (CSI postoperatively. Because of the long irradiation range, multiple radiation fields must be designed for conventional radiotherapy technology. CSI can be completed in only one session with helical tomotherapy (HT. We evaluated the dose of HT, volumetric intensity modulated arc therapy (VMAT, and three-dimensional conformal radiotherapy (3D-CRT of AMB and the results of 5 cases of AMB treated with HT. Methods. Complete craniospinal and posterior cranial fossa irradiation with HT, VMAT, and 3D-CRT and dose evaluation were performed. And results of 5 cases of AMB treated with HT were evaluated. Results. A large volume of tissue was exposed to low dose radiation in the organs at risk (OAR, while a small volume was exposed to high dose radiation with HT. The conformity and uniformity of the targets were good with HT and VMAT, and the volume of targets exposed to high dose with VMAT was larger than that of HT. The uniformity of 3D-CRT was also good, but the dose conformity was poor. The main toxicity was hematologic toxicity, without 4th-degree bone marrow suppression. There was 3rd-degree inhibition in the white blood cells, hemoglobin, and platelets. The three female patients suffered menstrual disorders during the course of radiation. Two female patients with heavy menstruation suffered 3rd-degree anemia inhibition, and 2 patients suffered amenorrhea after radiotherapy. Although menstrual cycle was normal, the third patient was not pregnant. Conclusion. CSI with HT is convenient for clinical practice, and the side effects are mild. With good conformity and uniformity, VMAT can also be used for selection in CSI. For poor conformity, 3D-CRT should not be the priority selection for CSI. In female patients, the ovaries should be protected.

  9. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C; Kamal, H [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  10. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    International Nuclear Information System (INIS)

    Beltran, C; Kamal, H

    2016-01-01

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  11. SU-E-T-153: Burst-Mode Modulated Arc Therapy with Flattening-Filter-Free Beams Versus Flattening-Filtered Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, K; Lawton, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2015-06-15

    Purpose: To compare the dosimetry and delivery of burst-mode modulated arc radiotherapy using flattening-filter-free (FFF) and flattening-filtered (FF) beams. Methods: Burst-mode modulated arc therapy (mARC, Siemens) plans were generated for six prostate cases with FFF and FF beam models, using the Elekta Monaco v. 5.00 planning system. One 360-degree arc was used for five cases, and for one case two 360-degree coplanar arcs were used. The maximum number of optimization points (OPs) per arc was set to 91, and OPs with less than 4 MU were disregarded. All plans were delivered on the Siemens Artiste linear accelerator with 6MV FF (300 MU/min) and comparable-energy FFF (2000 MU/min, labeled as 7UF) beams. Results: For all cases studied, the plans with FFF beams exhibited DVHs for the PTV, rectum, and bladder that were nearly identical to those for the plans with FF beams. The FFF plan yielded reduced dose to the right femoral head for 5 cases, and lower mean dose to the left femoral head for 4 cases. For all but the two-arc case, the FFF and FF plans resulted in an identical number of segments. The total number of MUs was slightly lower for the FF plans for five cases. The total delivery time per fraction was substantially lower for the FFF plans, ranging from 25 to 50 percent among all cases, as compared to the FF plans. Conclusion: For mARC plans, FFF and FF beams provided comparable PTV coverage and rectum and bladder sparing. For the femoral heads, the mean dose was slightly lower in most cases when using the FFF beam. Although the flat beam plans typically required slightly fewer MUs, FFF beams required substantially less time to deliver a plan of similar quality. This work was supported by Siemens Medical Solutions and the MCW Cancer Center Fotsch Foundation.

  12. Comparing four volumetric modulated arc therapy beam arrangements for the treatment of early-stage prostate cancer

    International Nuclear Information System (INIS)

    Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M

    2014-01-01

    This study compared four different volumetric modulated arc therapy (VMAT) beam arrangements for the treatment of early-stage prostate cancer examining plan quality and the impact on a radiotherapy department's resources. Twenty prostate cases were retrospectively planned using four VMAT beam arrangements (1) a partial arc (PA), (2) one arc (1A), (3) one arc plus a partial arc (1A + PA) and (4) two arcs (2A). The quality of the dose distributions generated were compared by examining the overall plan quality, the homogeneity and conformity to the planning target volume (PTV), the number of monitor units and the dose delivered to the organs at risk. Departmental resources were considered by recording the planning time and beam delivery time. Each technique produced a plan of similar quality that was considered adequate for treatment; though some differences were noted. The 1A, 1A + PA and 2A plans demonstrated a better conformity to the PTV which correlated to improved sparing of the rectum in the 60–70 Gy range for the 1A + PA and 2A techniques. The time needed to generate the plans was different for each technique ranging from 13.1 min for 1A + PA to 17.8 min for 1A. The PA beam delivery time was fastest with a mean time of 0.9 min. Beam-on times then increased with an increase in the number of arcs up to an average of 2.2 min for the 2A technique. Which VMAT technique is best suited for clinical implementation for the treatment of prostate cancer may be dictated by the individual patient and the availability of departmental resources

  13. Beam's-Eye-View Dosimetrics-Guided Inverse Planning for Aperture-Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Ma Yunzhi; Popple, Richard; Suh, Tae-Suk; Xing Lei

    2009-01-01

    Purpose: To use angular beam's-eye-view dosimetrics (BEVD) information to improve the computational efficiency and plan quality of inverse planning of aperture-modulated arc therapy (AMAT). Methods and Materials: In BEVD-guided inverse planning, the angular space spanned by a rotational arc is represented by a large number of fixed-gantry beams with angular spacing of ∼2.5 degrees. Each beam is assigned with an initial aperture shape determined by the beam's-eye-view (BEV) projection of the planning target volume (PTV) and an initial weight. Instead of setting the beam weights arbitrarily, which slows down the subsequent optimization process and may result in a suboptimal solution, a priori knowledge about the quality of the beam directions derived from a BEVD is adopted to initialize the weights. In the BEVD calculation, a higher score is assigned to directions that allow more dose to be delivered to the PTV without exceeding the dose tolerances of the organs at risk (OARs) and vice versa. Simulated annealing is then used to optimize the segment shapes and weights. The BEVD-guided inverse planning is demonstrated by using two clinical cases, and the results are compared with those of a conventional approach without BEVD guidance. Results: An a priori knowledge-guided inverse planning scheme for AMAT is established. The inclusion of BEVD guidance significantly improves the convergence behavior of AMAT inverse planning and results in much better OAR sparing as compared with the conventional approach. Conclusions: BEVD-guidance facilitates AMAT treatment planning and provides a comprehensive tool to maximally use the technical capacity of the new arc therapeutic modality.

  14. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  15. Conformal radiation therapy with or without intensity modulation in the treatment of localized prostate cancer

    International Nuclear Information System (INIS)

    Maingon, P.; Truc, G.; Bosset, M.; Peignaux, K.; Ammor, A.; Bolla, M.

    2005-01-01

    Conformal radiation therapy has now to be considered as a standard treatment of localized prostatic adenocarcinomas. Using conformational methods and intensity modulated radiation therapy requires a rigorous approach for their implementation in routine, focused on the reproducibility of the treatment, target volume definitions, dosimetry, quality control, setup positioning. In order to offer to the largest number of patients high-dose treatment, the clinicians must integrate as prognostic factors accurate definition of microscopic extension as well as the tolerance threshold of critical organs. High-dose delivery is expected to be most efficient in intermediary risks and locally advanced diseases. Intensity modulated radiation therapy is specifically dedicated to dose escalation. Perfect knowledge of classical constraints of conformal radiation therapy is required. Using such an approach in routine needs a learning curve including the physicists and a specific quality assurance program. (author)

  16. Radiochromic film in the dosimetric verification of intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Zhou Yingjuan; Huang Shaomin; Deng Xiaowu

    2007-01-01

    Objective: Objective To investigate the dose-response behavior of a new type of radio- chromic film( GAFCHROMIC EBT) and explore the clinical application means and precision of dosage measurement, which can be applied for: (1) plan-specific dosimetric verification for intensity modulated radiation therapy, (2) to simplify the process of quality assurance using traditional radiographic film dosimetric system and (3) to establish a more reliable, more efficient dosimetric verification system for intensity modulated radiation therapy. Methods: (1) The step wedge calibration technique was used to calibrate EBT radiochromic film and EDR2 radiographic film. The dose characteristics, the measurement consistency and the quality assurance process between the two methods were compared. (2) The in-phantom dose-measurement based verification technique has been adopted. Respectively, EBT film and EDR2 film were used to measure the same dose plane of IMRT treatment plans. The results of the dose map, dose profiles and iso- dose curves were compared with those calculated by CORVUS treatment planning system to evaluate the function of EBT film for dosimetric verification for intensity modulated radiation therapy. Results: (1) Over the external beam dosimetric range of 0-500 cGy, EBT/VXR-16 and EDR2/VXR-16 film dosimetric system had the same measurement consistency with the measurement variability less then 0.70%. The mean measurement variability of these two systems was 0.37% and 0.68%, respectively. The former proved to be the superior modality at measurement consistency, reliability, and efficiency over dynamic clinical dose range , furthermore, its quality assurance showed less process than the latter. (2) The dosimetric verification of IMRT plane measured with EBT film was quite similar to that with EDR2 film which was processed under strict quality control. In a plane of the phantom, the maximal dose deviation off axis between EBT film measurement and the TPS calculation was

  17. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    International Nuclear Information System (INIS)

    Sapkaroski, Daniel; Osborne, Catherine; Knight, Kellie A

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes

  18. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    Energy Technology Data Exchange (ETDEWEB)

    Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A [Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, Vic. (Australia)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  19. SU-G-BRC-04: Collimator Angle Optimization in Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Johnson, C; Bartlett, G; Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States)

    2016-06-15

    Purpose: Volumetric modulated arc therapy (VMAT) has revolutionized radiation treatment by decreasing treatment time and monitor units, thus reducing scattered and whole body radiation dose. As the collimator angle changes the apparent leaf gap becomes larger which can impact plan quality, organ at risk (OAR) sparing as well as IMRT QA passing rate which is investigated. Methods: Two sites (prostate and head and neck) that have maximum utilization of VMAT were investigated. Two previously treated VMAT patients were chosen. For each patient 10 plans were created by maintaining constant optimization constraints while varying collimator angles from 0-90 deg at an interval of 10 degrees for the first arc and the appropriate complimentary angle for the second arc. Plans were created with AAA algorithm using 6 MV beam on a Varian IX machine with Millennium 120 MLC. The dose-volume histogram (DVH) for each plan was exported and dosimetric parameters (D98, D95, D50, D2) as well homogeneity index (HI) and conformity index (CI) were computed. Each plan was validated for QA using ArcCheck with gamma index passing criteria of 2%/2 mm and 3%/3 mm. Additionally, normal tissue complication probability (NTCP) for each OAR was computed using Uzan-Nahum software. Results: The CI values for both sites had no impact as target volume coverage in every collimator angle were the same since it was optimized for adequate coverage. The HI which is representative of DVH gradient or dose uniformity in PTV showed a clear trend in both sites. The NTCP for OAR (brain and cochlea) in H&N plan and (bladder and rectum) in prostate plan showed a distinct superiority for collimator angles between 15-30 deg. The gamma passing rates were not correlated with angle. Conclusion: Based on CI, HI, NTCP and gamma passing index, it can be concluded that collimator angles should be maintained within 15–30 deg.

  20. SU-G-BRC-04: Collimator Angle Optimization in Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Andersen, A; Johnson, C; Bartlett, G; Das, I

    2016-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) has revolutionized radiation treatment by decreasing treatment time and monitor units, thus reducing scattered and whole body radiation dose. As the collimator angle changes the apparent leaf gap becomes larger which can impact plan quality, organ at risk (OAR) sparing as well as IMRT QA passing rate which is investigated. Methods: Two sites (prostate and head and neck) that have maximum utilization of VMAT were investigated. Two previously treated VMAT patients were chosen. For each patient 10 plans were created by maintaining constant optimization constraints while varying collimator angles from 0-90 deg at an interval of 10 degrees for the first arc and the appropriate complimentary angle for the second arc. Plans were created with AAA algorithm using 6 MV beam on a Varian IX machine with Millennium 120 MLC. The dose-volume histogram (DVH) for each plan was exported and dosimetric parameters (D98, D95, D50, D2) as well homogeneity index (HI) and conformity index (CI) were computed. Each plan was validated for QA using ArcCheck with gamma index passing criteria of 2%/2 mm and 3%/3 mm. Additionally, normal tissue complication probability (NTCP) for each OAR was computed using Uzan-Nahum software. Results: The CI values for both sites had no impact as target volume coverage in every collimator angle were the same since it was optimized for adequate coverage. The HI which is representative of DVH gradient or dose uniformity in PTV showed a clear trend in both sites. The NTCP for OAR (brain and cochlea) in H&N plan and (bladder and rectum) in prostate plan showed a distinct superiority for collimator angles between 15-30 deg. The gamma passing rates were not correlated with angle. Conclusion: Based on CI, HI, NTCP and gamma passing index, it can be concluded that collimator angles should be maintained within 15–30 deg.

  1. Dosimetric comparison for volumetric modulated arc therapy and intensity-modulated radiotherapy on the left-sided chest wall and internal mammary nodes irradiation in treating post-mastectomy breast cancer

    International Nuclear Information System (INIS)

    Zhang, Qian; Yu, Xiao Li; Hu, Wei Gang; Chen, Jia Yi; Wang, Jia Zhou; Ye, Jin Song; Guo, Xiao Mao

    2015-01-01

    The aim of the study was to evaluate the dosimetric benefit of applying volumetric modulated arc therapy (VMAT) on the post-mastectomy left-sided breast cancer patients, with the involvement of internal mammary nodes (IMN). The prescription dose was 50 Gy delivered in 25 fractions, and the clinical target volume included the left chest wall (CW) and IMN. VMAT plans were created and compared with intensity-modulated radiotherapy (IMRT) plans on Pinnacle treatment planning system. Comparative endpoints were dose homogeneity within planning target volume (PTV), target dose coverage, doses to the critical structures including heart, lungs and the contralateral breast, number of monitor units and treatment delivery time. VMAT and IMRT plans showed similar PTV dose homogeneity, but, VMAT provided a better dose coverage for IMN than IMRT (p = 0.017). The mean dose (Gy), V 30 (%) and V 10 (%) for the heart were 13.5 ± 5.0 Gy, 9.9% ± 5.9% and 50.2% ± 29.0% by VMAT, and 14.0 ± 5.4 Gy, 10.6% ± 5.8% and 55.7% ± 29.6% by IMRT, respectively. The left lung mean dose (Gy), V 20 (%), V 10 (%) and the right lung V 5 (%) were significantly reduced from 14.1 ± 2.3 Gy, 24.2% ± 5.9%, 42.4% ± 11.9% and 41.2% ± 12.3% with IMRT to 12.8 ± 1.9 Gy, 21.0% ± 3.8%, 37.1% ± 8.4% and 32.1% ± 18.2% with VMAT, respectively. The mean dose to the contralateral breast was 1.7 ± 1.2 Gy with VMAT and 2.3 ± 1.6 Gy with IMRT. Finally, VMAT reduced the number of monitor units by 24% and the treatment time by 53%, as compared to IMRT. Compared to 5-be am step-and-shot IMRT, VMAT achieves similar or superior target coverage and a better normal tissue sparing, with fewer monitor units and shorter delivery time

  2. Influence of jaw tracking in intensity-modulated and volumetric-modulated arc radiotherapy for head and neck cancers: a dosimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Karthick Raj [Research and Development Centre, Bharathiar University, Tamilnadu (India); Upadhayay, Sagar [Radiation Oncology, Kathmandu Cancer Center, Bhaktapur (Nepal); Das, K. J. Maria [Dept. of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh (India)

    2017-03-15

    To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation (x¯x¯ ± σx¯σx¯) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.

  3. SU-E-T-539: Fixed Versus Variable Optimization Points in Combined-Mode Modulated Arc Therapy Planning

    International Nuclear Information System (INIS)

    Kainz, K; Prah, D; Ahunbay, E; Li, X

    2014-01-01

    Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91 OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred

  4. SU-E-T-539: Fixed Versus Variable Optimization Points in Combined-Mode Modulated Arc Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, K; Prah, D; Ahunbay, E; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-01

    Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91 OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred.

  5. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Shyam Pokharel

    2013-10-01

    Full Text Available Purpose: This study investigated the dosimetric impact of mixing low and high energy treatment plans for prostate cancer treated with volumetric modulated arc therapy (VMAT technique in the form of RapidArc.Methods: A cohort of 12 prostate cases involving proximal seminal vesicles and lymph nodes was selected for this retrospective study. For each prostate case, the single-energy plans (SEPs and mixed-energy plans (MEPs were generated.  First, the SEPs were created using 6 mega-voltage (MV energy for both the primary and boost plans. Second, the MEPs were created using 16 MV energy for the primary plan and 6 MV energy for the boost plan. The primary and boost MEPs used identical beam parameters and same dose optimization values as in the primary and boost SEPs for the corresponding case. The dosimetric parameters from the composite plans (SEPs and MEPs were evaluated. Results: The dose to the target volume was slightly higher (on average <1% in the SEPs than in the MEPs. The conformity index (CI and homogeneity index (HI values between the SEPs and MEPs were comparable. The dose to rectum and bladder was always higher in the SEPs (average difference up to 3.7% for the rectum and up to 8.4% for the bladder than in the MEPs. The mean dose to femoral heads was higher by about 0.8% (on average in the MEPs than in the SEPs. The number of monitor units and integral dose were higher in the SEPs compared to the MEPs by average differences of 9.1% and 5.5%, respectively.Conclusion: The preliminary results from this study suggest that use of mixed-energy VMAT plan for high-risk prostate cancer could potentially reduce the integral dose and minimize the dose to rectum and bladder, but for the higher femoral head dose.-----------------------------------------------Cite this article as:Pokharel S. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer. Int J Cancer Ther Oncol 2013;1(1:01011.DOI: http

  6. Dosimetric comparison between RapidArc and fixed gantry intensity modulated radiation therapy in treatment of liver carcinoma

    International Nuclear Information System (INIS)

    Ma Changsheng; Yin Yong; Liu Tonghai; Chen Jinhu; Sun Tao; Lin Xiutong

    2010-01-01

    Objective: To compare the dosimetric difference of RapidArc and fixed gantry IMRT for liver carcinoma. Methods: The CT data of 10 liver cancer patients were used to design 3 groups of treatment plan: IMRT plan, single arc RapidArc plan (RA1), and dual arc RapidArc plan (RA2). The planning target volume (PTV) dosimetric distribution, the organs at risk (OAR) dose, the normal tissue dose, mornitor units (MU) and treatment time were compared. Results: The maximum dose of PTV in RA1 and RA2 plans were lower than that of IMRT (Z=-2.0990, -2.666, P 40 of stomach small bowel than IMRT plan, but higher in mean dose of left kidney (Z=-1.988, -2.191, P 5 , V 10 and 15 of healthy tissue in RapidArc plan groups were higher than those in IMRT plan, while the values of V 20 , V 25 and V 30 of healthy tissue in RapidArc plan groups were than those in IMRT plan. The number of computed MU/fraction of Rapid Arc plan was 40% or 46% of IMRT plan and the treatment time was 30% and 40% of IMRT. Conclusions: RapidArc showed improvements in conformity index and healthy tissue sparing with uncompromised target coverage. RapidArc could lead to the less MU and shorter delivery time compared to IMRT. (authors)

  7. Intensity-modulated radiation therapy clinical evidence and techniques

    CERN Document Server

    Nishimura, Yasumasa

    2015-01-01

    Successful clinical use of intensity-modulated radiation therapy (IMRT) represents a significant advance in radiation oncology. Because IMRT can deliver high-dose radiation to a target with a reduced dose to the surrounding organs, it can improve the local control rate and reduce toxicities associated with radiation therapy. Since IMRT began being used in the mid-1990s, a large volume of clinical evidence of the advantages of IMRT has been collected. However, treatment planning and quality assurance (QA) of IMRT are complicated and difficult for the clinician and the medical physicist. This book, by authors renowned for their expertise in their fields, provides cumulative clinical evidence and appropriate techniques for IMRT for the clinician and the physicist. Part I deals with the foundations and techniques, history, principles, QA, treatment planning, radiobiology and related aspects of IMRT. Part II covers clinical applications with several case studies, describing contouring and dose distribution with cl...

  8. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    International Nuclear Information System (INIS)

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-01-01

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm 3 , mean 19.65 cm 3 . In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm 3 , mean 1.59 cm 3 . There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and fractionation

  9. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    Energy Technology Data Exchange (ETDEWEB)

    Osa, Etin-Osa O.; DeWyngaert, Keith [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Roses, Daniel [Department of Surgery, New York University School of Medicine, New York, New York (United States); Speyer, James [Department of Medical Oncology, New York University School of Medicine, New York, New York (United States); Guth, Amber; Axelrod, Deborah [Department of Surgery, New York University School of Medicine, New York, New York (United States); Fenton Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Goldberg, Judith D. [Department of Population Health, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: Silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  10. Large planning target volume in whole abdomen radiation therapy in ovarian cancers - a comparison between volumetric arc and fixed beam based intensity modulation in ovarian cancers: a comparison between volumetric arc and fixed beam based intensity modulation

    International Nuclear Information System (INIS)

    Krishnan, Jayapalan; Rao, Suresh; Hedge, Sanath; Shambhavi

    2013-01-01

    Aim of this study is to assess dosimetric characteristics of multiple iso-centre volumetric-modulated arc therapy for the treatment of a large PTV in whole abdomen and ovarian cancers and in comparison with IMRT. Two patients with Epithelial Ovarian Cancer (EOC) underwent CT-simulation in supine position with vacuum cushion and acquired CT-image with 3 mm slice thickness. IMRT and VMAT plans were generated with multiple isocenter using Eclipse Planning System (V10.0.39) for (6 MV photon) Varian UNIQUE Performance Linac equipped with a Millennium-120 MLC and optimised with Progressive Resolution optimizer (PRO3) for prescription 36 Gy to the whole abdomen (PTV W AR) and 45 Gy with daily fraction of 1.8 Gy to the pelvis and pelvic nodes (PTV P elvis) with Simultaneous Integrated Boost and calculated with AAA algorithm in 2.5 mm grid resolution. Mean, V 95% , V 90% , V 107% and uniformity number (Uniformity was defined as US-95%=D5%-D95%/D mean ) was calculated for Planning Target Volumes (PTVs). Organs at Risk (OAR's) were analysed statistically in terms of dose and volume. MU and delivery time were compared. Pre-treatment quality assurance was scored with Gamma Agreement Index (GAl) with 3% and 3 mm thresholds with EPID as well as corresponding Dynalog files were generated and analysed. Feasibility and deliverability of VMAT plans showed to be a solution for the treatment planning and delivery for a large PTV volume (PTV-WAR) treatments, surrounded by critical structures such as liver, spinal canal, and kidneys, offering good dosimetric features with significant logistic improvements compared to IMRT. VMAT combines the advantages of faster delivery and lower number of monitor units (MU). It would help to reduce potential risk of secondary malignancy. VMAT(RapidArc) showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT

  11. The dosimetric effects of photon energy on the quality of prostate volumetric modulated arc therapy.

    Science.gov (United States)

    Mattes, Malcolm D; Tai, Cyril; Lee, Alvin; Ashamalla, Hani; Ikoro, N C

    2014-01-01

    Studies comparing the dosimetric effects of high- and low-energy photons to treat prostate cancer using 3-dimensional conformal and intensity modulated radiation therapy have yielded mixed results. With the advent of newer radiation delivery systems like volumetric modulated arc therapy (VMAT), the impact of changing photon energy is readdressed. Sixty-five patients treated for prostate cancer at our institution from 2011 to 2012 underwent CT simulation. A target volume encompassing the prostate and entire seminal vesicles was treated to 50.4 Gy, followed by a boost to the prostate and proximal seminal vesicles to a total dose of 81 Gy. The VMAT plans were generated for 6-MV and 10-MV photons under identical optimization conditions using the Eclipse system version 8.6 (Varian Medical Systems, Palo Alto, CA). The analytical anisotropic algorithm was used for all dose calculations. Plans were normalized such that 98% of the planning target volume (PTV) received 100% of the prescribed dose. Dose-volumetric data from the treatment planning system was recorded for both 6-MV and 10-MV plans, which were compared for both the entire cohort and subsets of patients stratified according to the anterior-posterior separation. Plans using 10-MV photons had statistically significantly lower relative integral dose (4.1%), gradient measure (4.1%), skin Dmax (16.9%), monitor units (13.0%), and bladder V(30) (3.1%) than plans using 6-MV photons (P photons was more pronounced for thicker patients (anterior-posterior separation >21 cm) for most parameters, with statistically significant differences in bladder V(30), bladder V(65), integral dose, conformity index, and monitor units. The main dosimetric benefits of 10-MV as compared with 6-MV photons are seen in thicker patients, though for the entire cohort 10-MV plans resulted in a lower integral dose, gradient measure, skin Dmax, monitor units, and bladder V(30), possibly at the expense of higher rectum V(81). Copyright © 2014

  12. Clinical Outcomes of Intensity-Modulated Pelvic Radiation Therapy for Carcinoma of the Cervix

    International Nuclear Information System (INIS)

    Hasselle, Michael D.; Rose, Brent S.; Kochanski, Joel D.; Nath, Sameer K.; Bafana, Rounak; Yashar, Catheryn M.; Hasan, Yasmin; Roeske, John C.; Mundt, Arno J.; Mell, Loren K.

    2011-01-01

    Purpose: To evaluate disease outcomes and toxicity in cervical cancer patients treated with pelvic intensity-modulated radiation therapy (IMRT). Methods and Materials: We included all patients with Stage I-IVA cervical carcinoma treated with IMRT at three different institutions from 2000-2007. Patients treated with extended field or conventional techniques were excluded. Intensity-modulated radiation therapy plans were designed to deliver 45 Gy in 1.8-Gy daily fractions to the planning target volume while minimizing dose to the bowel, bladder, and rectum. Toxicity was graded according to the Radiation Therapy Oncology Group system. Overall survival and disease-free survival were estimated by use of the Kaplan-Meier method. Pelvic failure, distant failure, and late toxicity were estimated by use of cumulative incidence functions. Results: The study included 111 patients. Of these, 22 were treated with postoperative IMRT, 8 with IMRT followed by intracavitary brachytherapy and adjuvant hysterectomy, and 81 with IMRT followed by planned intracavitary brachytherapy. Of the patients, 63 had Stage I-IIA disease and 48 had Stage IIB-IVA disease. The median follow-up time was 27 months. The 3-year overall survival rate and the disease-free survival rate were 78% (95% confidence interval [CI], 68-88%) and 69% (95% CI, 59-81%), respectively. The 3-year pelvic failure rate and the distant failure rate were 14% (95% CI, 6-22%) and 17% (95% CI, 8-25%), respectively. Estimates of acute and late Grade 3 toxicity or higher were 2% (95% CI, 0-7%) and 7% (95% CI, 2-13%), respectively. Conclusions: Intensity-modulated radiation therapy is associated with low toxicity and favorable outcomes, supporting its safety and efficacy for cervical cancer. Prospective clinical trials are needed to evaluate the comparative efficacy of IMRT vs. conventional techniques.

  13. Single-energy intensity modulated proton therapy

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  14. Single-energy intensity modulated proton therapy.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  15. Single-energy intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-01-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. (note)

  16. Use of two-dimensional chamber arrays in volumetric modulated arc therapy treatment verification; Empleo de matrices bidimensionales de camaras de ionizacion en la verificacion de tratamientos de arcoterapia volumetrica modulada

    Energy Technology Data Exchange (ETDEWEB)

    Clemente Gutierrez, F.; Perez Vara, C.; Prieto Villacorta, M.; Fernandez Ruiz, M. L.; Ruiz Prados, M.

    2013-09-01

    Volumetric modulated arc therapy (VMAT) requires, as another kind of intensity-modulated radiation therapy (IMRT), patient-specific QA procedures. This work analyzes the method carried out in our institution for VMAT treatment verification. Our hypothesis is that traditional IMRT QA is valid for VMAT technique. Results obtained for absolute point-dose measurements with ion chamber are presented, as well as comparison with treatment planning system calculations (mean difference of (-0.50 {+-} 0.43)%). In addition, different setups with 2D ion chamber array for dose distributions comparison are analyzed. These detectors are the basis of our QA procedure. Advantages and disadvantages of those setups are shown. The present study includes results for 111 patients treated with VMAT technique from different disease sites. We conclude that 2D ion chamber arrays traditionally used in IMRT QA are valid detectors for rotational techniques if these arrays are used together with additional devices (phantoms, accessories) that allow us to obtain as much information as possible. (Author)

  17. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose.

  18. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S

    2014-01-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose

  19. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tatsuya [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Widder, Joachim; Dijk, Lisanne V. van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Takegawa, Hideki [Department of Radiation Oncology, Kansai Medical University Hirakata Hospital, Osaka (Japan); Koizumi, Masahiko; Takashina, Masaaki [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Saito, Anneyuko I. [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Korevaar, Erik W., E-mail: e.w.korevaar@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range

  20. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I.; Sasai, Keisuke; Veld, Aart A. van't; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D_2 − D_9_8, where D_2 and D_9_8 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to 98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and

  1. Treatment planning comparison of electron arc therapy and photon intensity modulated radiotherapy for Askin's tumor of chest wall

    International Nuclear Information System (INIS)

    Jamema, Swamidas V.; Sharma, Pramod K.; Laskar, Siddhartha; Deshpande, Deepak D.; Shrivastava, Shyam K.

    2007-01-01

    Background and Purpose: A dosimetric study to quantitatively compare radiotherapy treatment plans for Askin's tumor using Electron Arc (EA) vs. photon Intensity Modulated Radiotherapy (IMRT). Materials and methods: Five patients treated with EA were included in this study. Treatment plans were generated for each patient using EA and IMRT. Plans were compared using dose volume histograms (DVH) of the Planning Target Volume (PTV) and Organs at Risk (OAR). Results: IMRT resulted in superior PTV coverage, and homogeneous dose distribution compared to EA. For EA, 92% of the PTV was covered to 85% of the dose compared to IMRT in which 96% was covered to 95% of the dose. V 107 that represents the hot spot within the PTV was more in IMRT compared to EA: 7.4(±2)% vs. 3(±0.5)%, respectively. With PTVs located close to the spinal cord (SC), the dose to SC was more with EA, whereas for PTVs located away from the SC, the dose to SC was more with IMRT. The cardiac dose profile was similar to that of SC. Ipsilateral lung received lower doses with IMRT while contralateral lung received higher dose with IMRT compared to EA. For non-OAR normal tissues, IMRT resulted in large volumes of low dose regions. Conclusions: IMRT resulted in superior PTV coverage and sparing of OAR compared to EA plans. Although IMRT seems to be superior to EA, one needs to keep in mind the volume of low dose regions associated with IMRT, especially while treating young children

  2. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Kocak-Uzel, Esengul [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Therapy, Beykent University, Istanbul (Turkey); Feng, Lei [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Thaker, Nikhil G.; Blanchard, Pierre; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-10-01

    A potential advantage of intensity-modulated proton therapy (IMPT) over intensity-modulated (photon) radiation therapy (IMRT) in the treatment of oropharyngeal carcinoma (OPC) is lower radiation dose to several critical structures involved in the development of nausea and vomiting, mucositis, and dysphagia. The purpose of this study was to quantify doses to critical structures for patients with OPC treated with IMPT and compare those with doses on IMRT plans generated for the same patients and with a matched cohort of patients actually treated with IMRT. In this study, 25 patients newly diagnosed with OPC were treated with IMPT between 2011 and 2012. Comparison IMRT plans were generated for these patients and for additional IMRT-treated controls extracted from a database of patients with OPC treated between 2000 and 2009. Cases were matched based on the following criteria, in order: unilateral vs bilateral therapy, tonsil vs base of tongue primary, T-category, N-category, concurrent chemotherapy, induction chemotherapy, smoking status, sex, and age. Results showed that the mean doses to the anterior and posterior oral cavity, hard palate, larynx, mandible, and esophagus were significantly lower with IMPT than with IMRT comparison plans generated for the same cohort, as were doses to several central nervous system structures involved in the nausea and vomiting response. Similar differences were found when comparing dose to organs at risks (OARs) between the IMPT cohort and the case-matched IMRT cohort. In conclusion, these findings suggest that patients with OPC treated with IMPT may experience fewer and less severe side effects during therapy. This may be the result of decreased beam path toxicities with IMPT due to lower doses to several dysphagia, odynophagia, and nausea and vomiting–associated OARs. Further study is needed to evaluate differences in long-term disease control and chronic toxicity between patients with OPC treated with IMPT in comparison to

  3. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  4. TH-AB-BRB-01: Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hristov, D. [Stanford University Cancer Center (United States)

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapy involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43

  5. TH-AB-BRB-01: Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Hristov, D.

    2016-01-01

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapy involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43

  6. A comparison of three optimization algorithms for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pflugfelder, D.; Wilkens, J.J.; Nill, S.; Oelfke, U.

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%. (orig.)

  7. Current status of intensity-modulated radiation therapy (IMRT)

    International Nuclear Information System (INIS)

    Hatano, Kazuo; Araki, Hitoshi; Sakai, Mitsuhiro

    2007-01-01

    External-beam radiation therapy has been one of the treatment options for prostate cancer. The dose response has been observed for a dose range of 64.8-81 Gy. The problem of external-beam radiotherapy (RT) for prostate cancer is that as the dose increases, adverse effects also increase. Three-dimensional conformal radiation therapy (3D-CRT) has enabled us to treat patients with up to 72-76 Gy to the prostate, with a relatively acceptable risk of late rectal bleeding. Recently, intensity-modulated radiation therapy (IMRT) has been shown to deliver a higher dose to the target with acceptable low rates of rectal and bladder complications. The most important things to keep in mind when using an IMRT technique are that there is a significant trade-off between coverage of the target, avoidance of adjacent critical structures, and the inhomogeneity of the dose within the target. Lastly, even with IMRT, it should be kept in mind that a ''perfect'' plan that creates completely homogeneous coverage of the target volume and zero or small dose to the adjacent organs at risk is not always obtained. Participating in many treatment planning sessions and arranging the beams and beam weights create the best approach to the best IMRT plan. (author)

  8. Volume arc therapy of gynaecological tumours: target volume coverage improvement without dose increase for critical organs; Arctherapie volumique des tumeurs gynecologiques: amelioration de la couverture du volume cible sans augmentation de la dose aux organes critiques

    Energy Technology Data Exchange (ETDEWEB)

    Ducteil, A.; Kerr, C.; Idri, K.; Fenoglietto, P.; Vieillot, S.; Ailleres, N.; Dubois, J.B.; Azria, D. [CRLC Val-d' Aurelle, Montpellier (France)

    2011-10-15

    The authors report the assessment of the application of conventional intensity-modulated conformational radiotherapy (IMRT) and volume arc-therapy (RapidArc) for the treatment of cervical cancers, with respect to conventional radiotherapy. Dosimetric plans associated with each of these techniques have been compared. Dose-volume histograms of these three plans have also been compared for the previsional target volume (PTV), organs at risk, and sane tissue. IMCT techniques are equivalent in terms of sparing of organs at risk, and improve target volume coverage with respect to conventional radiotherapy. Arc-therapy reduces significantly treatment duration. Short communication

  9. Role of beam orientation optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Li, Jonathan G.; Boyer, Arthur L.; Hancock, Steven L.; Le, Quynh-Thu; Donaldson, Sarah S.; Lei Xing

    2001-01-01

    Purpose: To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. Methods and Materials: A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. Results: For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. Conclusion: The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans

  10. Fully Automated Volumetric Modulated Arc Therapy Plan Generation for Prostate Cancer Patients

    International Nuclear Information System (INIS)

    Voet, Peter W.J.; Dirkx, Maarten L.P.; Breedveld, Sebastiaan; Al-Mamgani, Abrahim; Incrocci, Luca; Heijmen, Ben J.M.

    2014-01-01

    Purpose: To develop and evaluate fully automated volumetric modulated arc therapy (VMAT) treatment planning for prostate cancer patients, avoiding manual trial-and-error tweaking of plan parameters by dosimetrists. Methods and Materials: A system was developed for fully automated generation of VMAT plans with our commercial clinical treatment planning system (TPS), linked to the in-house developed Erasmus-iCycle multicriterial optimizer for preoptimization. For 30 randomly selected patients, automatically generated VMAT plans (VMAT auto ) were compared with VMAT plans generated manually by 1 expert dosimetrist in the absence of time pressure (VMAT man ). For all treatment plans, planning target volume (PTV) coverage and sparing of organs-at-risk were quantified. Results: All generated plans were clinically acceptable and had similar PTV coverage (V 95%  > 99%). For VMAT auto and VMAT man plans, the organ-at-risk sparing was similar as well, although only the former plans were generated without any planning workload. Conclusions: Fully automated generation of high-quality VMAT plans for prostate cancer patients is feasible and has recently been implemented in our clinic

  11. Automatic Prostate Tracking and Motion Assessment in Volumetric Modulated Arc Therapy With an Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei

    2013-01-01

    Purpose: To assess the prostate intrafraction motion in volumetric modulated arc therapy treatments using cine megavoltage (MV) images acquired with an electronic portal imaging device (EPID). Methods and Materials: Ten prostate cancer patients were treated with volumetric modulated arc therapy using a Varian TrueBeam linear accelerator equipped with an EPID for acquiring cine MV images during treatment. Cine MV images acquisition was scheduled for single or multiple treatment fractions (between 1 and 8). A novel automatic fiducial detection algorithm that can handle irregular multileaf collimator apertures, field edges, fast leaf and gantry movement, and MV image noise and artifacts in patient anatomy was used. All sets of images (approximately 25,000 images in total) were analyzed to measure the positioning accuracy of implanted fiducial markers and assess the prostate movement. Results: Prostate motion can vary greatly in magnitude among different patients. Different motion patterns were identified, showing its unpredictability. The mean displacement and standard deviation of the intrafraction motion was generally less than 2.0 ± 2.0 mm in each of the spatial directions. In certain patients, however, the percentage of the treatment time in which the prostate is displaced more than 5 mm from its planned position in at least 1 spatial direction was 10% or more. The maximum prostate displacement observed was 13.3 mm. Conclusion: Prostate tracking and motion assessment was performed with MV imaging and an EPID. The amount of prostate motion observed suggests that patients will benefit from its real-time monitoring. Megavoltage imaging can provide the basis for real-time prostate tracking using conventional linear accelerators

  12. Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator

    International Nuclear Information System (INIS)

    Chen Zhe; Xing Lei; Nath, Ravinder

    2002-01-01

    A self-consistent monitor unit (MU) and isocenter point-dose calculation method has been developed that provides an independent verification of the MU for intensity modulated radiotherapy (IMRT) using the MIMiC (Nomos Corporation) multileaf collimator. The method takes into account two unique features of IMRT using the MIMiC: namely the gantry-dynamic arc delivery of intensity modulated photon beams and the slice-by-slice dose delivery for large tumor volumes. The method converts the nonuniform beam intensity planned at discrete gantry angles of 5 deg. or 10 deg. into conventional nonmodulated beam intensity apertures of elemental arc segments of 1 deg. This approach more closely simulates the actual gantry-dynamic arc delivery by MIMiC. Because each elemental arc segment is of uniform intensity, the MU calculation for an IMRT arc is made equivalent to a conventional arc with gantry-angle dependent beam apertures. The dose to the isocenter from each 1 deg. elemental arc segment is calculated by using the Clarkson scatter summation technique based on measured tissue-maximum-ratio and output factors, independent of the dose calculation model used in the IMRT planning system. For treatments requiring multiple treatment slices, the MU for the arc at each treatment slice takes into account the MU, leakage and scatter doses from other slices. This is achieved by solving a set of coupled linear equations for the MUs of all involved treatment slices. All input dosimetry data for the independent MU/isocenter point-dose calculation are measured directly. Comparison of the MU and isocenter point dose calculated by the independent program to those calculated by the Corvus planning system and to direct measurements has shown good agreement with relative difference less than ±3%. The program can be used as an independent initial MU verification for IMRT plans using the MIMiC multileaf collimators

  13. Potential Benefits of Scanned Intensity-Modulated Proton Therapy Versus Advanced Photon Therapy With Regard to Sparing of the Salivary Glands in Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Water, Tara A. van de; Lomax, Antony J.; Bijl, Hendrik P.; Jong, Marije E. de; Schilstra, Cornelis; Hug, Eugen B.; Langendijk, Johannes A.

    2011-01-01

    Purpose: To test the hypothesis that scanned intensity-modulated proton therapy (IMPT) results in a significant dose reduction to the parotid and submandibular glands as compared with intensity-modulated radiotherapy with photons (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for oropharyngeal cancer. In addition, we investigated whether the achieved dose reductions would theoretically translate into a reduction of salivary dysfunction and xerostomia. Methods and Materials: Ten patients with N0 oropharyngeal carcinoma were used. The intensity-modulated plans delivered simultaneously 70 Gy to the boost planning target volume (PTV2) and 54 Gy to the elective nodal areas (PTV1). The 3D-CRT technique delivered sequentially 70 Gy and 46 Gy to PTV2 and PTV1, respectively. Normal tissue complication probabilities were calculated for salivary dysfunction and xerostomia. Results: Planning target volume coverage results were similar for IMPT and IMRT. Intensity-modulated proton therapy clearly improved the conformity. The 3D-CRT results were inferior to these results. The mean dose to the parotid glands by 3D-CRT (50.8 Gy), IMRT (25.5 Gy), and IMPT (16.8 Gy) differed significantly. For the submandibular glands no significant differences between IMRT and IMPT were found. The dose reductions obtained with IMPT theoretically translated into a significant reduction in normal tissue complication probability. Conclusion: Compared with IMRT and 3D-CRT, IMPT improved sparing of the organs at risk, while keeping similar target coverage results. The dose reductions obtained with IMPT vs. IMRT and 3D-CRT varied widely per individual patient. Intensity-modulated proton therapy theoretically translated into a clinical benefit for most cases, but this requires clinical validation.

  14. SU-E-T-808: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Early-Stage Nasopharyngeal Carcinoma: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, W-Z [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HI of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time.

  15. SU-E-T-809: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Locally Advanced Laryngeal Carcinoma: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, W-Z; Yan, L-J [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally advanced laryngeal carcinoma. Methods: CT datasets of eleven patients were included. Dual-arc VMAT and 7-field IMRT plans, which were created based on the Eclipse treatment planning system, were compared in terms of dose-volume parameters, conformity index (CI) and homogeneity index (HI) of planning target volume (PTV), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided lower D2% and better CI/HI for the high-risk PTV (PTV1), and provided better CI and comparable HI for the low-risk PTV (PTV2). Concerning the OAR sparing, the VMAT plans demonstrated significantly lower Dmax of the spinal cord (planning OAR volume, PRV) and brainstem (PRV), as well as lower Dmean and V30Gy of the right parotid. No significant differences were observed between the two plans concerning the doses delivered to the thyroid, carotid, oral cavity and left parotid. Moreover, the VMAT planning (147 ± 18 min) consumed 213% more time than the IMRT planning (48 ± 10 min). The MUs of the VMAT plans (556 ± 52) were 64% less than those of the IMRT plans (1684 ± 409), and the average delivery time (2.1 ± 0.1 min) was 66% less than that of the IMRT plans (6.3 ± 0.7 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve superior target dose distribution and better sparing of the spinal cord, brainstem and right parotid, with less MUs and less delivery time. It is recommended for the radiotherapy of locally advanced laryngeal carcinoma.

  16. SU-E-T-808: Volumetric Modulated Arc Radiotherapy Vs. Intensity-Modulated Radiotherapy for Early-Stage Nasopharyngeal Carcinoma: A Dosimetric Study

    International Nuclear Information System (INIS)

    Lu, J-Y; Huang, B-T; Zhang, W-Z

    2015-01-01

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for early-stage nasopharyngeal carcinoma. Methods: CT datasets of ten patients with early-stage nasopharyngeal carcinoma were included. Dual-arc VMAT and nine-field IMRT plans were generated for each case, and were then compared in terms of planning-target-volume (PTV) coverage, conformity index (CI) and homogeneity index (HI), as well as organ-at-risk (OAR) sparing, planning time, monitor units (MUs) and delivery time. Results: Compared with the IMRT plans, the VMAT plans provided comparable HI and CI of PTVnx (PTV of primary tumor of nasopharynx), superior CI and inferior HI of PTVnd (PTV of lymph nodes), as well as superior CI and comparable HI of PTV60 (high-risk PTV). The VMAT plans provided better sparing of the spinal cord, oral cavity and normal tissue, but inferior sparing of the brainstem planning OAR volume (PRV), larynx and parotids, as well as comparable sparing of the spinal cord PRV, brainstem, lenses, optic nerves, optic chiasm. Moreover, the average planning time (181.6 ± 36.0 min) for the VMAT plans was 171% more than that of the IMRT plans (68.1 ± 7.6 min). The MUs of the VMAT plans (609 ± 43) were 70% lower than those of the IMRT plans (2071 ± 262), while the average delivery time (2.2 ± 0.1 min) was 66% less than that of the IMRT plans (6.6 ± 0.4 min). Conclusion: Compared with the IMRT technique, the VMAT technique can achieve similar or slightly superior target dose distribution, with no significant advantages on OAR sparing, and it can achieve significant reductions of MUs and delivery time

  17. SU-E-T-302: Dosimetric Comparison Between Volumetric Modulated Arc Radiotherapy and Intensity-Modulated Radiotherapy for Locally Recurrent Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J-Y; Huang, B-T; Zhang, J-Y; Ma, C-C [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2015-06-15

    Purpose: To compare volumetric modulated arc radiotherapy (VMAT) technique with fixed-gantry intensity-modulated radiotherapy (IMRT) technique for locally recurrent nasopharyngeal carcinoma. Methods: CT datasets of eleven nasopharyngeal-carcinoma patients were included. Dual-arc VMAT and seven-field IMRT plans were created for each case, and were then compared in terms of conformity index (CI), homogeneity index (HI) of the planning target volume (PTV), organ-at-risk (OAR) sparing, monitor unit (MU) and delivery time. Results: The D98% (near-minimal dose) of PTV in the VMAT plans was slightly lower than that of the IMRT plans (P < 0.05), while the CI was higher than that of the IMRT plans (P < 0.05). No significant difference was found in the HI between the two plans (P > 0.05). Compared with the IMRT plans, the VMAT plans demonstrated lower Dmean (mean dose) of the bilateral temporal lobes and the whole surrounding normal tissue (P < 0.05), but slightly higher Dmean of brainstem (P < 0.05). In terms of the other OARs, no significant differences were found (P > 0.05). The MUs of the VMAT plans (672 ± 112) was significantly lower than that of the IMRT plans (917 ± 206), by 25 ± 13% (P < 0.05). The average delivery time of the VMAT plans (2.3 ± 0.1 min) was less than that of the IMRT plans (5.1 ± 0.4 min), by 54 ± 3%. Conclusion: For locally recurrent nasopharyngeal carcinoma, the VMAT technique could achieve equivalent or superior dose distribution of the target and better protect the bilateral temporal lobes, compared with the IMRT technique. Moreover, it could reduce the MU and delivery time effectively.

  18. Inverse planning of intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Nill, S.; Oelfke, U.; Bortfeld, T.

    2004-01-01

    A common requirement of radiation therapy is that treatment planning for different radiation modalities is devised on the basis of the same treatment planning system (TPS). The present study presents a novel multi-modal TPS with separate modules for the dose calculation, the optimization engine and the graphical user interface, which allows to integrate different treatment modalities. For heavy-charged particles, both most promising techniques, the distal edge tracking (DET) and the 3-dimensional scanning (3D) technique can be optimized. As a first application, the quality of optimized intensity-modulated treatment plans for photons (IMXT) and protons (IMPT) was analyzed in one clinical case on the basis of the achieved physical dose distributions. A comparison of the proton plans with the photon plans showed no significant improvement in terms of target volume dose, however there was an improvement in terms of organs at risk as well as a clear reduction of the total integral dose. For the DET technique, it is possible to create a treatment plan with almost the same quality of the 3D technique, however with a clearly reduced number (factor of 5) of beam spots as well as a reduced optimization time. Due to its modular design, the system can be easily expanded to more sophisticated dose-calculation algorithms or to modeling of biological effects. (orig.) [de

  19. SU-F-T-539: Dosimetric Comparison of Volumetric Modulated Arc Therapy and Intensity Modulated Radiation Therapy for Whole Brain Hippocampal Sparing Radiation Therapy Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, E; Higby, C; Algan, O; Ahmad, S; Hossain, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To compare the treatment plan quality and dose gradient near the hippocampus between VMAT (RapidArc) and IMRT delivery techniques for whole brain radiation therapy. Methods: Fifteen patients were evaluated in this retrospective study. All treatments were planned on Varian Eclipse TPS, using 3-Arc VMAT and 9-Field IMRT, following NRG Oncology protocol NRG-CC001 guidelines evaluated by a single radiation oncologist. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 100% of the dose covering 95% of the target volume. Identical contour sets and dose-volume constraints following protocol guidelines were also applied in all plans. A paired t-test analysis was used to compare VMAT and IMRT plans. Results: NRG-CC001 protocol dose-volume constraints were met for all VMAT and IMRT plans. For the planning target volume (PTV), the average values for D2% and D98% were 6% lower and 4% higher in VMAT than in IMRT, respectively. The average mean and maximum hippocampus doses in Gy for VMAT vs IMRT plans were (11.85±0.81 vs. 12.24±0.56, p=0.10) and (16.27±0.78 vs. 16.59±0.71, p=0.24), respectively. In VMAT, the average mean and maximum chiasm doses were 3% and 1% higher than in IMRT plans, respectively. For the left optic nerve, the average mean and maximum doses were 10% and 5% higher in VMAT than in IMRT plans, respectively. These values were 12% and 3% for the right optic nerve. The average percentage of dose gradient around the hippocampus in the 0–5mm and 5–10mm abutted regions for VMAT vs. IMRT were (4.42%±2.22% /mm vs. 3.95%±2.61% /mm, p=0.43) and (4.54%±1.50% /mm vs. 4.39%±1.28% /mm, p=0.73), respectively. Conclusion: VMAT plans can achieve higher hippocampus sparing with a faster dose fall-off than IMRT plans. Though statistically insignificant, VMAT offers better PTV coverage with slightly higher doses to OARs.

  20. SU-F-T-539: Dosimetric Comparison of Volumetric Modulated Arc Therapy and Intensity Modulated Radiation Therapy for Whole Brain Hippocampal Sparing Radiation Therapy Treatments

    International Nuclear Information System (INIS)

    Kendall, E; Higby, C; Algan, O; Ahmad, S; Hossain, S

    2016-01-01

    Purpose: To compare the treatment plan quality and dose gradient near the hippocampus between VMAT (RapidArc) and IMRT delivery techniques for whole brain radiation therapy. Methods: Fifteen patients were evaluated in this retrospective study. All treatments were planned on Varian Eclipse TPS, using 3-Arc VMAT and 9-Field IMRT, following NRG Oncology protocol NRG-CC001 guidelines evaluated by a single radiation oncologist. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 100% of the dose covering 95% of the target volume. Identical contour sets and dose-volume constraints following protocol guidelines were also applied in all plans. A paired t-test analysis was used to compare VMAT and IMRT plans. Results: NRG-CC001 protocol dose-volume constraints were met for all VMAT and IMRT plans. For the planning target volume (PTV), the average values for D2% and D98% were 6% lower and 4% higher in VMAT than in IMRT, respectively. The average mean and maximum hippocampus doses in Gy for VMAT vs IMRT plans were (11.85±0.81 vs. 12.24±0.56, p=0.10) and (16.27±0.78 vs. 16.59±0.71, p=0.24), respectively. In VMAT, the average mean and maximum chiasm doses were 3% and 1% higher than in IMRT plans, respectively. For the left optic nerve, the average mean and maximum doses were 10% and 5% higher in VMAT than in IMRT plans, respectively. These values were 12% and 3% for the right optic nerve. The average percentage of dose gradient around the hippocampus in the 0–5mm and 5–10mm abutted regions for VMAT vs. IMRT were (4.42%±2.22% /mm vs. 3.95%±2.61% /mm, p=0.43) and (4.54%±1.50% /mm vs. 4.39%±1.28% /mm, p=0.73), respectively. Conclusion: VMAT plans can achieve higher hippocampus sparing with a faster dose fall-off than IMRT plans. Though statistically insignificant, VMAT offers better PTV coverage with slightly higher doses to OARs.

  1. Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study

    International Nuclear Information System (INIS)

    Fourkal, E; Li, J S; Xiong, W; Nahum, A; Ma, C-M

    2003-01-01

    In this paper we present Monte Carlo studies of intensity modulated radiation therapy using laser-accelerated proton beams. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Through the introduction of a spectrometer-like particle selection system that delivers small pencil beams of protons with desired energy spectra it is feasible to use laser-accelerated protons for intensity modulated radiotherapy. The method presented in this paper is a three-dimensional modulation in which the proton energy spectrum and intensity of each individual beamlet are modulated to yield a homogeneous dose in both the longitudinal and lateral directions. As an evaluation of the efficacy of this method, it has been applied to two prostate cases using a variety of beam arrangements. We have performed a comparison study between intensity modulated photon plans and those for laser-accelerated protons. For identical beam arrangements and the same optimization parameters, proton plans exhibit superior coverage of the target and sparing of neighbouring critical structures. Dose-volume histogram analysis of the resulting dose distributions shows up to 50% reduction of dose to the critical structures. As the number of fields is decreased, the proton modality exhibits a better preservation of the optimization requirements on the target and critical structures. It is shown that for a two-beam arrangement (parallel-opposed) it is possible to achieve both superior target coverage with 5% dose inhomogeneity within the target and excellent sparing of surrounding tissue

  2. Volumetric Modulated Arc (Radio Therapy in Pets Treatment: The “La Cittadina Fondazione” Experience

    Directory of Open Access Journals (Sweden)

    Mario Dolera

    2018-01-01

    Full Text Available Volumetric Modulated Arc Therapy (VMAT is a modern technique, widely used in human radiotherapy, which allows a high dose to be delivered to tumor volumes and low doses to the surrounding organs at risk (OAR. Veterinary clinics takes advantage of this feature due to the small target volumes and distances between the target and the OAR. Sparing the OAR permits dose escalation, and hypofractionation regimens reduce the number of treatment sessions with a simpler manageability in the veterinary field. Multimodal volumes definition is mandatory for the small volumes involved and a positioning device precisely reproducible with a setup confirmation is needed before each session for avoiding missing the target. Additionally, the elaborate treatment plan must pursue hard constraints and objectives, and its feasibility must be evaluated with a per patient quality control. The aim of this work is to report results with regard to brain meningiomas and gliomas, trigeminal nerve tumors, brachial plexus tumors, adrenal tumors with vascular invasion and rabbit thymomas, in comparison with literature to determine if VMAT is a safe and viable alternative to surgery or chemotherapy alone, or as an adjuvant therapy in pets.

  3. Radiotherapy with volumetric modulated arc therapy for hepatocellular carcinoma patients ineligible for surgery or ablative treatments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P.M.; Chung, N.N.; Chang, F.L. [Cheng-Ching General Hospital, Taichung, Taiwan (China). Dept. of Radiation Oncology; Hsu, W.C. [Cheng-Ching General Hospital, Taichung, Taiwan (China). Dept. of Radiation Oncology; Asia Univ., Taichung, Taiwan (China). Dept. of Healthcare Administration; Fogliata, A.; Cozzi, L. [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)

    2013-04-15

    The aim of this article is to report the dosimetric and clinical findings in the treatment of primary hepatocellular carcinoma (HCC) with volumetric modulated arc therapy (VMAT, RapidArc). A total of 138 patients were investigated. Dose prescription ranged from 45-66 Gy. Most patients (88.4 %) presented AJCC stage III or IV and 83 % were N0-M0. All were classified as Barcelona Clinic Liver Cancer (BCLC) stage A-C. All patients were treated using 10 MV photons with single or multiple, coplanar or non-coplanar arcs, and cone-down technique in case of early response of tumors. The patients' median age was 66 years (range 27-87 years), 83 % were treated with 60 Gy (12 % at 45 Gy, 6 % at 66 Gy), 62 % with cone-down, 98 % with multiple arcs. The mean initial planning target volume (PTV) was 777 {+-} 632 cm{sup 3}; the mean final PTV (after the cone-down) was 583 {+-} 548 cm{sup 3}. High target coverage was achieved. The final PTV was V{sub 98%} > 98 %. Kidneys received on average 5 and 8 Gy (left and right), while the maximum dose to the spinal cord was 22 Gy; mean doses to esophagus and stomach were 23 Gy and 15 Gy, respectively. The average volume of healthy liver receiving more than 30 Gy was 294 {+-} 145 cm{sup 3}. Overall survival at 12 months was 45 %; median survival was 10.3 months (95 % confidence interval 7.2-13.3 months). Actuarial local control at 6 months was 95 % and 93.7 % at 12 months. The median follow-up was 9 months and a maximum of 28 months. This study showed from the dosimetric point of view the feasibility and technical appropriateness of RapidArc for the treatment of HCC. Clinical results were positive and might suggest, with appropriate care, to consider RapidArc as an additional therapeutic opportunity for these patients. (orig.)

  4. RADIATION THERAPY COMMUNICATION-REIRRADIATION OF A NASAL TUMOR IN A BRACHYCEPHALIC DOG USING INTENSITY MODULATED RADIATION THERAPY.

    Science.gov (United States)

    Rancilio, Nicholas J; Custead, Michelle R; Poulson, Jean M

    2016-09-01

    A 5-year-old spayed female Shih Tzu was referred for evaluation of a nasal transitional carcinoma. A total lifetime dose of 117 Gy was delivered to the intranasal mass in three courses over nearly 2 years using fractionated intensity modulated radiation therapy (IMRT) to spare normal tissues. Clinically significant late normal tissue side effects were limited to bilaterally diminished tear production. The patient died of metastatic disease progression 694 days after completion of radiation therapy course 1. This case demonstrates that retreatment with radiation therapy to high lifetime doses for recurrent local disease may be well tolerated with IMRT. © 2016 American College of Veterinary Radiology.

  5. Volumetric modulated arc therapy for lung stereotactic radiation therapy can achieve high local control rates.

    Science.gov (United States)

    Yamashita, Hideomi; Haga, Akihiro; Takahashi, Wataru; Takenaka, Ryousuke; Imae, Toshikazu; Takenaka, Shigeharu; Nakagawa, Keiichi

    2014-11-11

    The aim of this study was to report the outcome of primary or metastatic lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). From October 2010 to December 2013, consecutive 67 lung cancer patients received single-arc VMAT-SBRT using an Elekta-synergy system. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on 10 respiratory phases computed tomography (CT) datasets from 4-dimensional (4D) CT and merged into internal target volumes (ITVs). The planning target volume (PTV) margin was isotropically taken as 5 mm. Treatment was performed with a D95 prescription of 50 Gy (43 cases) or 55 Gy (12 cases) in 4 fractions for peripheral tumor or 56 Gy in 7 fractions (12 cases) for central tumor. Among the 67 patients, the median age was 73 years (range, 59-95 years). Of the patients, male was 72% and female 28%. The median Karnofsky performance status was 90-100% in 39 cases (58%) and 80-90% in 20 cases (30%). The median follow-up was 267 days (range, 40-1162 days). Tissue diagnosis was performed in 41 patients (61%). There were T1 primary lung tumor in 42 patients (T1a in 28 patients, T1b in 14 patients), T2 in 6 patients, three T3 in 3 patients, and metastatic lung tumor in 16 patients. The median mean lung dose was 6.87 Gy (range, 2.5-15 Gy). Six patients (9%) developed radiation pneumonitis required by steroid administration. Actuarial local control rate were 100% and 100% at 1 year, 92% and 75% at 2 years, and 92% and 75% at 3 years in primary and metastatic lung cancer, respectively (p =0.59). Overall survival rate was 83% and 84% at 1 year, 76% and 53% at 2 years, and 46% and 20% at 3 years in primary and metastatic lung cancer, respectively (p =0.12). Use of VMAT-based delivery of SBRT in primary in metastatic lung tumors demonstrates high local control rates and low risk of normal tissue complications.

  6. Volumetric modulated arc therapy for lung stereotactic radiation therapy can achieve high local control rates

    International Nuclear Information System (INIS)

    Yamashita, Hideomi; Haga, Akihiro; Takahashi, Wataru; Takenaka, Ryousuke; Imae, Toshikazu; Takenaka, Shigeharu; Nakagawa, Keiichi

    2014-01-01

    The aim of this study was to report the outcome of primary or metastatic lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). From October 2010 to December 2013, consecutive 67 lung cancer patients received single-arc VMAT-SBRT using an Elekta-synergy system. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on 10 respiratory phases computed tomography (CT) datasets from 4-dimensional (4D) CT and merged into internal target volumes (ITVs). The planning target volume (PTV) margin was isotropically taken as 5 mm. Treatment was performed with a D95 prescription of 50 Gy (43 cases) or 55 Gy (12 cases) in 4 fractions for peripheral tumor or 56 Gy in 7 fractions (12 cases) for central tumor. Among the 67 patients, the median age was 73 years (range, 59–95 years). Of the patients, male was 72% and female 28%. The median Karnofsky performance status was 90-100% in 39 cases (58%) and 80-90% in 20 cases (30%). The median follow-up was 267 days (range, 40–1162 days). Tissue diagnosis was performed in 41 patients (61%). There were T1 primary lung tumor in 42 patients (T1a in 28 patients, T1b in 14 patients), T2 in 6 patients, three T3 in 3 patients, and metastatic lung tumor in 16 patients. The median mean lung dose was 6.87 Gy (range, 2.5-15 Gy). Six patients (9%) developed radiation pneumonitis required by steroid administration. Actuarial local control rate were 100% and 100% at 1 year, 92% and 75% at 2 years, and 92% and 75% at 3 years in primary and metastatic lung cancer, respectively (p = 0.59). Overall survival rate was 83% and 84% at 1 year, 76% and 53% at 2 years, and 46% and 20% at 3 years in primary and metastatic lung cancer, respectively (p = 0.12). Use of VMAT-based delivery of SBRT in primary in metastatic lung tumors demonstrates high local control rates and low risk of normal tissue complications

  7. Film Dosimetry for Intensity Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Benites-Rengifo, J.; Martinez-Davalos, A.; Celis, M.; Larraga, J.

    2004-01-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurologia y Neurocirugia (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields

  8. Effect of interfractional shoulder motion on low neck nodal targets for patients treated using volume modulated arc therapy (VMAT

    Directory of Open Access Journals (Sweden)

    Kevin Casey

    2014-03-01

    Full Text Available Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT.Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor site. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs and a second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient’s treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the deformed low neck contours.Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3.Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.-------------------------------------------Cite this article as: Casey K

  9. Validation of intensity modulated radiation therapy patient plans with portal images

    International Nuclear Information System (INIS)

    Delpon, G.; Warren, S.; Mahe, D.; Gaudaire, S.; Lisbona, A.

    2007-01-01

    The goal of this study was to show the feasibility of step and shoot intensity-modulated radiation therapy pre-treatment quality control for patients using the electronic portal imaging device (iViewGT) fitted on a Sli+ linac (Elekta Oncology Systems, Crawley, UK) instead of radiographic films. Since the beginning of intensity-modulated radiation therapy treatments, the dosimetric quality control necessary before treating each new patient has been a time-consuming and therefore costly obligation. In order to fully develop this technique, it seems absolutely essential to reduce the cost of these controls, especially the linac time. Up to now, verification of the relative dosimetry field by field has been achieved by acquiring radiographic films in the isocenter plane and comparing them to the results of the XiO planning system (Computerized Medical Systems, Missouri, USA) using RIT113 v4.1 software (Radiological Imaging Technology, Colorado, USA). A qualitative and quantitative evaluation was realised for every field of every patient. A quick and simple procedure was put into place to be able to make the same verifications using portal images. This new technique is not a modification of the overall methodology of analysis. The results achieved by comparing the measurement with the electronic portal imaging device and the calculation with the treatment planning system were in line with those achieved with the films for all indicators we studied (isodoses, horizontal and vertical dose profiles and gamma index). (authors)

  10. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Park, So-Yeon; Kim, Il Han; Ye, Sung-Joon; Carlson, Joel

    2014-01-01

    Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r s ) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI SPORT ) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r s values

  11. Head and neck intensity modulated radiation therapy leads to an increase of opportunistic oral pathogens

    NARCIS (Netherlands)

    Schuurhuis, Jennifer M.; Stokman, Monique A.; Witjes, Max J. H.; Langendijk, Johannes A.; van Winkelhoff, Arie J.; Vissink, Arjan; Spijkervet, Frederik K. L.

    Objectives: The introduction of intensity modulated radiation therapy (IMRT) has led to new possibilities in the treatment of head and neck cancer (HNC). Limited information is available on how this more advanced radiation technique affects the oral microflora. In a prospective study we assessed the

  12. Intensity Modulated Radiation Therapy. Development of the technique

    International Nuclear Information System (INIS)

    Rafailovici, L.; Alva, R.; Chiozza, J.; Donato, H.; Falomo, S.; Cardiello, C.; Furia, O.; Martinez, A.; Filomia, M.L.; Sansogne, R.; Arbiser, S.; Dosoretz, B.

    2008-01-01

    Full text: Introduction: Intensity Modulated Radiation Therapy (IMRT) is a result of advances in computer sciences that allowed the development of new technology related to planning and radiation therapy. IMRT was developed to homogenize the dose in the target volumes and decrease the dose in the surrounding healthy tissue. Using a software with high calculation capacity a simultaneous irradiation with different doses in a given volume is achieved. IMRT is based on internal planning. Material and methods: 628 patients were treated with IMRT in prostate lesions, head and neck, breast, thorax, abdomen and brain since August 2008. The software for IMRT is the XIO CMS and the accelerator used is a Varian Clinac 6 / 100. IMRT requires a first simulation, where immobilization systems are selected (mats, thermoplastic masks, among others) and the demarcation of the target structures, healthy tissue and dose prescription by a tattoo. Images of CT / MRI are merged when necessary. Once the system made the treatment optimization, this one is regulated by modulators. These are produced by numerical control machines from digital files produced by software. In a second modulation the planned irradiation is checked and tattoo is carried out according with this. We have a strict process of quality assurance to assess the viability of the plan before its implementation. We use the Map Check it possible to compare the dose on the central axis and the distribution in the whole plane regarding to that generated by the planning system. From 03/2008 the virtual simulation process was implemented integrating the described stages. Results and Conclusions: IMRT is a complex technique. The meticulous planning, implementation of process and quality control allows the use of this technique in a reliable and secure way. With IMRT we achieved a high level of dose conformation, less irradiation of healthy tissue, lower rates of complications and the dose escalation for some tumors. (authors) [es

  13. Four-dimensional CT-based evaluation of volumetric modulated arc therapy for abdominal lymph node metastasis from hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhang Li; Xi Mian; Deng Xiaowu; Li Qiaoqiao; Huang Xiaoyan; Liu Mengzhong

    2012-01-01

    This study aimed to identify the potential benefits and limitations of a new volumetric modulated arc therapy (VMAT) planning system in Monaco, compared with conventional intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT). Four-dimensional CT scans of 13 patients with abdominal lymph node metastasis from hepatocellular carcinoma were selected. Internal target volume was defined as the combined volume of clinical target volumes (CTVs) in the multiple four-dimensional computed tomography (4DCT) phases. Dose prescription was set to 45 Gy for the planning target volume (PTV) in daily 3.0-Gy fractions. The PTV dose coverage, organs at risk (OAR) doses, delivery parameters and treatment accuracy were assessed. Compared with 3DCRT, both VMAT and IMRT provided a systematic improvement in PTV coverage and homogeneity. Planning objectives were not fulfilled for the right kidney, in which the 3DCRT plans exceeded the dose constraints in two patients. Equivalent target coverage and sparing of OARs were achieved with VMAT compared with IMRT. The number of MU/fraction was 462±68 (3DCRT), 564±105 (IMRT) and 601±134 (VMAT), respectively. Effective treatment times were as follows: 1.8±0.2 min (3DCRT), 6.1±1.5 min (IMRT) and 4.8±1.0 min (VMAT). This study suggests that the VMAT plans generated in Monaco improved delivery efficiency for equivalent dosimetric quality to IMRT, and were superior to 3DCRT in target coverage and sparing of most OARs. However, the superiority of VMAT over IMRT in delivery efficiency is limited. (author)

  14. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  15. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy.

    Science.gov (United States)

    Zhang, M; Westerly, D C; Mackie, T R

    2011-08-07

    With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom

  16. Multidimensional correlation among plan complexity, quality and deliverability parameters for volumetric-modulated arc therapy using canonical correlation analysis.

    Science.gov (United States)

    Shen, Lanxiao; Chen, Shan; Zhu, Xiaoyang; Han, Ce; Zheng, Xiaomin; Deng, Zhenxiang; Zhou, Yongqiang; Gong, Changfei; Xie, Congying; Jin, Xiance

    2018-03-01

    A multidimensional exploratory statistical method, canonical correlation analysis (CCA), was applied to evaluate the impact of complexity parameters on the plan quality and deliverability of volumetric-modulated arc therapy (VMAT) and to determine parameters in the generation of an ideal VMAT plan. Canonical correlations among complexity, quality and deliverability parameters of VMAT, as well as the contribution weights of different parameters were investigated with 71 two-arc VMAT nasopharyngeal cancer (NPC) patients, and further verified with 28 one-arc VMAT prostate cancer patients. The average MU and MU per control point (MU/CP) for two-arc VMAT plans were 702.6 ± 55.7 and 3.9 ± 0.3 versus 504.6 ± 99.2 and 5.6 ± 1.1 for one-arc VMAT plans, respectively. The individual volume-based 3D gamma passing rates of clinical target volume (γCTV) and planning target volume (γPTV) for NPC and prostate cancer patients were 85.7% ± 9.0% vs 92.6% ± 7.8%, and 88.0% ± 7.6% vs 91.2% ± 7.7%, respectively. Plan complexity parameters of NPC patients were correlated with plan quality (P = 0.047) and individual volume-based 3D gamma indices γ(IV) (P = 0.01), in which, MU/CP and segment area (SA) per control point (SA/CP) were weighted highly in correlation with γ(IV) , and SA/CP, percentage of CPs with SA plan quality with coefficients of 0.98, 0.68 and -0.99, respectively. Further verification with one-arc VMAT plans demonstrated similar results. In conclusion, MU, SA-related parameters and PTV volume were found to have strong effects on the plan quality and deliverability.

  17. Accommodating practical constraints for intensity modulated radiation therapy by means of compensators

    International Nuclear Information System (INIS)

    Meyer, Juergen

    2002-01-01

    The thesis deals with the practical implementation of intensity modulated radiation therapy (IMRT) generated by means of patient specific metal compensators. An elaborate comparison between several compensator-machining techniques, with respect to their suitability for production within a hospital workshop, is presented. The limitations associated with the selected compensator manufacturing technique are identified and implemented as constraints in an existing inverse treatment-planning algorithm. In order to obtain the profile of a compensator, which produces a desired intensity distribution, inverse modeling of the radiation attenuation within the compensator is required. Two novel and independent approaches, based on deconvolution and system identification, are proposed to accomplish this. To compare the approach with the 'rival' state of the art beam modulation technique, a theoretical and experimental examination of the modulated fields generated by manufactured compensators and multileaf collimators is presented. This comparison focused on the achievable resolution of the intensity modulated beams in lateral and longitudinal directions. To take into account the characteristics of a clinical environment the suitability of the most common commercially available treatment couch systems for IMRT treatments is studied. An original rule based advisory system is developed to alert the operator of any potential collision of the beam with the movable supporting structures of the treatment couch. The system is capable of finding alternative positions for the supporting frames and, if necessary, can suggest alternative beam directions. Finally, a head and neck phantom is designed for gel dosimetry to assess IMRT treatment delivery techniques. The phantom is based on a simplistic but realistic design and contains the main anatomical features

  18. Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Hol, Sandra; Poortmans, Philip M.; Essers, Marion

    2014-01-01

    Purpose: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes. Materials and methods: For 13 patients, four treatment combinations were compared; 3D-conformal RT (i.e., forward IMRT) in free-breathing 3D-CRT(FB), 3D-CRT(vmDIBH), 2 partial arcs VMAT(FB), and VMAT(vmDIBH). Prescribed dose was 42.56 Gy in 16 fractions. For 10 additional patients, 3D-CRT and VMAT in vmDIBH only were also compared. Results: Dose conformity, PTV coverage, ipsilateral and total lung doses were significantly better for VMAT plans compared to 3D-CRT. Mean heart dose (D mean,heart ) reduction in 3D-CRT(vmDIBH) was between 0.9 and 8.6 Gy, depending on initial D mean,heart (in 3D-CRT(FB) plans). VMAT(vmDIBH) reduced the D mean,heart further when D mean,heart was still >3.2 Gy in 3D-CRT(vmDIBH). Mean contralateral breast dose was higher for VMAT plans (2.7 Gy) compared to 3DCRT plans (0.7 Gy). Conclusions: VMAT and 3D-CRT(vmDIBH) significantly reduced heart dose for patients treated with locoregional RT of left-sided breast cancer. When D mean,heart exceeded 3.2 Gy in 3D-CRT(vmDIBH) plans, VMAT(vmDIBH) resulted in a cumulative heart dose reduction. VMAT also provided better target coverage and reduced ipsilateral lung dose, at the expense of a small increase in the dose to the contralateral breast

  19. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    NARCIS (Netherlands)

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; van der Heide, Uulke A.; van Herk, Marcel; Heemsbergen, Wilma D.

    2015-01-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions

  20. Synchronous prostate and rectal adenocarcinomas irradiation utilising volumetric modulated arc therapy

    OpenAIRE

    Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod

    2015-01-01

    Abstract Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high?dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 2...

  1. MO-FG-CAMPUS-TeP2-02: First Experiences and Perspectives in Using Direct Multicriteria Optimization (MCO) On Volumetric-Modulated Arc Therapy (VMAT) for Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Edgington, Samantha; Cotter, Christopher; Busse, Paul; Crawford, Bruce; Wang, Yi [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To report the first experiences and perspectives in using direct multicriteria optimization (MCO) on volumetric-modulated arc therapy (VMAT) for head and neck (H&N) cancer. Methods: Ten prior patients with tumors in representative H&N regions were selected to evaluate direct MCO-VMAT in RayStation v5.0 beta. The patients were previously treated by intensity-modulated radiation therapy (IMRT) with MCO on an Elekta linear accelerator with Agility multileaf collimator. To avoid radiating eyes and shoulders, MCO-VMAT required one to three partial-arc groups, with each group consisting of single or dual arcs. All MCO-VMAT plans were approved by a radiation oncologist. The MCO-VMAT and MCO-IMRT plans were compared using V{sub 100}, D{sub 5}, homogeneity index (HI) and conformity index (CI) for planning target volume (PTV), D{sub mean} and D{sub 50} for six parallel organs and D{sub max} for five serial organs. Patient-specific quality assurance (QA) was performed using ArcCHECK for MCO-VMAT and Matrixx for MCO-IMRT with results analyzed using gamma criteria of 3%/3mm. Results: MCO-VMAT provided better V{sub 100} (+0.8%) lower D{sub 5}(− 0.3 Gy), lower HI (−0.27) and comparable CI (+0.05). MCO-VMAT decreased D{sub mean} and D{sub 50} for multiple parallel organs in seven of the ten patients. On average the reduction ranged from 2.1 (larynx) to 7.6 Gy (esophagus). For the nasal cavity and nasopharynx plans significant reduction in D{sub max} was observed for optics (up to 11 Gy) brainstem (6.4 Gy), cord (2.1 Gy) and mandible (6.7 Gy). All MCO-VMAT and -IMRT plans passed clinical QA. MCO-VMAT required slightly longer planning time due to the more complex VMAT optimization. The net beam-on time for the MCO-VMAT plans ranged from 80 to 242 seconds, up to 9 minutes shorter than MCO-IMRT. Conclusion: With similar target coverage, reduced organ dose, comparable planning time, and significantly faster treatment, MCO-VMAT is very likely to become the modality of

  2. Dosimetric effects of sectional adjustments of collimator angles on volumetric modulated arc therapy for irregularly-shaped targets.

    Directory of Open Access Journals (Sweden)

    Beom Seok Ahn

    Full Text Available To calculate an optimal collimator angle at each of sectional arcs in a full-arc volumetric modulated arc therapy (VMAT plan and evaluate dosimetric quality of these VMAT plans comparing full-arc VMAT plans with a fixed collimator angle.Seventeen patients who had irregularly-shaped target in abdominal, head and neck, and chest cases were selected retrospectively. To calculate an optimal collimator angle at each of sectional arcs in VMAT, integrated MLC apertures which could cover all shapes of target determined by beam's-eye view (BEV within angular sections were obtained for each VMAT plan. The angular sections were 40°, 60°, 90° and 120°. When the collimator settings were rotated at intervals of 2°, we obtained the optimal collimator angle to minimize area size difference between the integrated MLC aperture and collimator settings with 5 mm-margins to the integrated MLC aperture. The VMAT plans with the optimal collimator angles (Colli-VMAT were generated in the EclipseTM. For comparison purposes, one full-arc VMAT plans with a fixed collimator angles (Std-VMAT were generated. The dose-volumetric parameters and total MUs were evaluated.The mean dose-volumetric parameters for target volume of Colli-VMAT were comparable to Std-VMAT. Colli-VMAT improved sparing of most normal organs but for brain stem, compared to Std-VMAT for all cases. There were decreasing tendencies in mean total MUs with decreasing angular section. The mean total MUs for Colli-VMAT with the angular section of 40° (434 ± 95 MU, 317 ± 81 MU, and 371 ± 43 MU for abdominal, head and neck, and chest cases, respectively were lower than those for Std-VMAT (654 ± 182 MU, 517 ± 116 MU, and 533 ± 25 MU, respectively.For an irregularly-shaped target, Colli-VMAT with the angular section of 40° reduced total MUs and improved sparing of normal organs, compared to Std-VMAT.

  3. Plan quality comparison between 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy for the treatment of multiple brain metastases.

    Science.gov (United States)

    Yoshio, Kotaro; Mitsuhashi, Toshiharu; Wakita, Akihisa; Kitayama, Takahiro; Hisazumi, Kento; Inoue, Daisaku; Shiode, Tsuyoki; Akaki, Shiro; Kanazawa, Susumu

    2018-01-04

    To compare the plans of 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy (VMA-SRT) for multiple brain metastases and to investigate the cutoff value for the tumor number and volume for 6-arc rather than 4-arc VMA-SRT. We identified 24 consecutive multiple-target cases (3 to 19 targets in each case) with 189 total targets. We constructed plans using both 4- and 6-arc noncoplanar VMA-SRT. The prescribed dose was 36 Gy/6 fr, and it was delivered to 95% of the planning target volume (PTV). The plans were evaluated for the dose conformity using the Radiation Therapy Oncology Group and Paddick conformity indices (RCI and PCI), fall-off (Paddick gradient index [PGI]), and the normal brain dose. The median (range) RCI, PCI, and PGI was 0.94 (0.92 to 0.99), 0.89 (0.77 to 0.94), and 3.75 (2.24 to 6.54) for the 4-arc plan and 0.94 (0.91 to 0.98), 0.89 (0.76 to 0.94), and 3.65 (2.24 to 6.5) for the 6-arc plan, respectively. The median (range) of the normal brain dose was 910.3 cGy (381.4 to 1268.9) for the 4-arc plan and 898.8 cGy (377 to 1252.9) for the 6-arc plan. The PGI of the 6-arc plan was significantly superior to that of the 4-arc plan (p = 0.0076), and the optimal cutoff values for the tumor number and volume indicative of 6-arc (and not 4-arc) VMA-SRT were cases with ≥ 5 metastases and a PTV of ≥ 12.9 mL, respectively. The PCI values, however, showed no significant difference between the 2 plans. We believe these results will help in considering the use of 6-arc VMA-SRT for multiple brain metastases. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, So-Yeon [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Kim, Il Han [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744, (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 433-270 (Korea, Republic of); Carlson, Joel [Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 433-270 (Korea, Republic of); and others

    2014-11-01

    Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r{sub s}) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI{sub SPORT}) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r

  5. Comparison among therapy planning in volumetric modulated arc for prostate treatments using one or two arches; Comparacao entre planejamentos de terapia em arco volumetrico modulado para tratamentos de prostata utilizando um ou dois arcos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Diego C.S.A.; Pavan, Guilherme A.; Nardi, Stela P.; Fairbanks, Leandro R.; Anderson, Ernani; Junior, Juraci P.R.; Junior, Helio A.S., E-mail: diegocunhalves@hotmail.com [Clinicas Oncologicas Integradas/Grupo COI, Rio de Janeiro, RJ (Brazil)

    2014-04-15

    The study aims to evaluate and compare retrospective planning for prostate cancer using the volumetric modulated arc therapy technique (RapidArc™ - Varian) with one or two arcs. Ten cases of patients with prostate cancer present were replanning with the volume of PTV's between 296.4 cm{sup 3} and 149.6 cm{sup 3} with prescribed dose of 78 Gy. A planning default was created for each case seeking the best result of the distribution dose in the PTV and to minimize the dose to organs at risk, and from this, creates two copies for optimization of one and two arcs. Comparisons of maximum and minimum dose, index of conformity, homogeneity and gradient dose were evaluated in the PTV, the time of the radiation beam and the number of monitor units. The organ at risk were evaluated according to the Radiation Therapy Oncology Group RTOG 0415 and compared in both optimizations. In terms of dosimetric values to organs at risk and PTV were similar, but there was an increase in the number of monitors units and the time of the radiation beam when using the technique with two arcs. Finally the results have showed that use a volumetric modulated arc therapy optimization for prostate cancer it is reaches similar dosimetric goals can be an effective option for radiotherapy department of developing countries with large number of patients. (author)

  6. Australia-wide comparison of intensity modulated radiation therapy prostate plans

    International Nuclear Information System (INIS)

    Skala, M.; Holloway, L.; Bailey, M.; Kneebone, A.

    2005-01-01

    The aim of this study was to investigate the ability of Australian centres to produce high-dose intensity modulated radiation therapy (IMRT) prostate plans, and to compare the planning parameters and resultant dose distributions. Five Australian radiation therapy departments were invited to participate. Each centre received an identical 5 mm-slice CT data set complete with contours of the prostate, seminal vesicles, rectum, bladder, femoral heads and body outline. The planning team was asked to produce the best plan possible, using published Memorial Sloan-Kettering Cancer Centre prescription and dose constraints. Three centres submitted plans for evaluation. All plans covered the planning target volume adequately; however, only one plan met all the critical organ dose constraints. Although the planning parameters, beam arrangements and planning systems were different for each centre, the resulting plans were similar. In Australia, IMRT for prostate cancer is in the early stages of implementation, with routine use limited to a few centres. Copyright (2005) Blackwell Science Pty Ltd

  7. Implementation of intensity modulation with dynamic multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, J W; Yu, C; Jaffray, D [William Beaumont Hospital, Royal Oak, MI (United States)

    1995-12-01

    The computer-controlled multileaf collimator (MLC) marks one of the most important advances in radiation therapy. The device efficiently replaces manual blocking to shape fields and can be used to modulate beam intensity. The results of a research programme at William Beaumont Hospital, aimed at bringing dynamic intensity modulation into clinical use, are discussed.

  8. Clinical application of RapidArc volumetric modulated arc therapy as a component in whole brain radiation therapy for poor prognostic, four or more multiple brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jin Ho; Kim, Hye Young; Lee, Seok Ho; Sung, Ki Hoon; Kim, Yun Mi [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2012-06-15

    To determine feasibility of RapidArc in sequential or simultaneous integrated tumor boost in whole brain radiation therapy (WBRT) for poor prognostic patients with four or more brain metastases. Nine patients with multiple ({>=}4) brain metastases were analyzed. Three patients were classified as class II in recursive partitioning analysis and 6 were class III. The class III patients presented with hemiparesis, cognitive deficit, or apraxia. The ratio of tumor to whole brain volume was 0.8-7.9%. Six patients received 2-dimensional bilateral WBRT, (30 Gy/10- 12 fractions), followed by sequential RapidArc tumor boost (15-30 Gy/4-10 fractions). Three patients received RapidArc WBRT with simultaneous integrated boost to tumors (48-50 Gy) in 10-20 fractions. The median biologically effective dose to metastatic tumors was 68.1 Gy10 and 67.2 Gy10 and the median brain volume irradiated more than 100 Gy3 were 1.9% (24 cm3) and 0.8% (13 cm3) for each group. With less than 3 minutes of treatment time, RapidArc was easily applied to the patients with poor performance status. The follow-up period was 0.3-16.5 months. Tumor responses among the 6 patients who underwent follow-up magnetic resonance imaging were partial and stable in 3 and 3, respectively. Overall survival at 6 and 12 months were 66.7% and 41.7%, respectively. The local progression-free survival at 6 and 12 months were 100% and 62.5%, respectively. RapidArc as a component in whole brain radiation therapy for poor prognostic, multiple brain metastases is an effective and safe modality with easy application.

  9. Feasibility of Single-Isocenter Volumetric Modulated Arc Radiosurgery for Treatment of Multiple Brain Metastases

    International Nuclear Information System (INIS)

    Clark, Grant M.; Popple, Richard A.; Young, P. Edward; Fiveash, John B.

    2010-01-01

    Purpose: To evaluate the relative plan quality of single-isocenter vs. multi-isocenter volumetric modulated arc therapy (VMAT) for radiosurgical treatment of multiple central nervous system metastases. Methods and Materials: VMAT plans were created using RapidArc technology for treatment of simulated patients with three brain metastases. The plans consisted of single-arc/single-isocenter, triple-arc (noncoplanar)/single-isocenter, and triple-arc (coplanar)/triple-isocenter configurations. All VMAT plans were normalized to deliver 100% of the 20-Gy prescription dose to all lesions. The plans were evaluated by calculation of Paddick and Radiation Therapy Oncology Group conformity index scores, Paddick gradient index scores, and 12-Gy isodose volumes. Results: All plans were judged clinically acceptable, but differences were observed in the dosimetric parameters, with the use of multiple noncoplanar arcs showing small improvements in the conformity indexes compared with the single-arc/single-isocenter and triple-arc (coplanar)/triple-isocenter plans. Multiple arc plans (triple-arc [noncoplanar]/single-isocenter and triple-arc [coplanar]/triple-isocenter) showed smaller 12-Gy isodose volumes in scenarios involving three metastases spaced closely together, with only small differences noted among all plans involving lesions spaced further apart. Conclusion: Our initial results suggest that single-isocenter VMAT plans can be used to deliver conformity equivalent to that of multiple isocenter VMAT techniques. For targets that are closely spaced, multiple noncoplanar single-isocenter arcs might be required. VMAT radiosurgery for multiple targets using a single isocenter can be efficiently delivered, requiring less than one-half the beam time required for multiple isocenter set ups. VMAT radiosurgery will likely replace multi-isocenter techniques for linear accelerator-based treatment of multiple targets.

  10. Light intensity modulation in phototherapy

    Science.gov (United States)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  11. Radiation therapy planning for early-stage Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Dabaja, Bouthaina S; Filippi, Andrea R

    2015-01-01

    PURPOSE: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements...... axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3...

  12. An optimal algorithm for configuring delivery options of a one-dimensional intensity-modulated beam

    International Nuclear Information System (INIS)

    Luan Shuang; Chen, Danny Z; Zhang, Li; Wu Xiaodong; Yu, Cedric X

    2003-01-01

    The problem of generating delivery options for one-dimensional intensity-modulated beams (1D IMBs) arises in intensity-modulated radiation therapy. In this paper, we present an algorithm with the optimal running time, based on the 'rightmost-preference' method, for generating all distinct delivery options for an arbitrary 1D IMB. The previously best known method for generating delivery options for a 1D IMB with N left leaf positions and N right leaf positions is a 'brute-force' solution, which first generates all N! possible combinations of the left and right leaf positions and then removes combinations that are not physically allowed delivery options. Compared with the brute-force method, our algorithm has several advantages: (1) our algorithm runs in an optimal time that is linearly proportional to the total number of distinct delivery options that it actually produces. Note that for a 1D IMB with multiple peaks, the total number of distinct delivery options in general tends to be considerably smaller than the worst case N!. (2) Our algorithm can be adapted to generating delivery options subject to additional constraints such as the 'minimum leaf separation' constraint. (3) Our algorithm can also be used to generate random subsets of delivery options; this feature is especially useful when the 1D IMBs in question have too many delivery options for a computer to store and process. The key idea of our method is that we impose an order on how left leaf positions should be paired with right leaf positions. Experiments indicated that our rightmost-preference algorithm runs dramatically faster than the brute-force algorithm. This implies that our algorithm can handle 1D IMBs whose sizes are substantially larger than those handled by the brute-force method. Applications of our algorithm in therapeutic techniques such as intensity-modulated arc therapy and 2D modulations are also discussed

  13. Dosimetric Impact of the Interplay Effect During Stereotactic Lung Radiation Therapy Delivery Using Flattening Filter-Free Beams and Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Ong, Chin Loon; Dahele, Max; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2013-01-01

    Purpose: We investigated the dosimetric impact of the interplay effect during RapidArc stereotactic body radiation therapy for lung tumors using flattening filter-free (FFF) beams with different dose rates. Methods and Materials: Seven tumors with motion ≤20 mm, treated with 10-MV FFF RapidArc, were analyzed. A programmable phantom with sinusoidal longitudinal motion (30-mm diameter “tumor” insert; period = 5 s; individualized amplitude from planning 4-dimensional computed tomography) was used for dynamic dose measurements. Measurements were made with GafChromic EBT III films. Plans delivered the prescribed dose to 95% of the planning target volume, created by a 5-mm expansion of the internal target volume. They comprised 2 arcs and maximum dose rates of 400 and 2400 MU/min. For 2400 MU/min plans, measurements were repeated at 3 different initial breathing phases to model interplay over 2 to 3 fractions. For 3 cases, 2 extra plans were created using 1 full rotational arc (with contralateral lung avoidance sector) and 1 partial arc of 224° to 244°. Dynamic and convolved static measurements were compared by use of gamma analysis of 3% dose difference and 1 mm distance-to-agreement. Results: For 2-arc 2400 MU/min plans, maximum dose deviation of 9.4% was found in a single arc; 7.4% for 2 arcs (single fraction) and 99% of the area within the region of interest passed the gamma criteria when all 3 measurements with different initial phases were combined. Single-fraction single-arc plans showed higher dose deviations, which diminished when dose distributions were summed over 2 fractions. All 400 MU/min plans showed good agreement in a single fraction measurement. Conclusion: Under phantom conditions, single-arc and single-fraction 2400 MU/min FFF RapidArc lung stereotactic body radiation therapy is susceptible to interplay. Two arcs and ≥2 fractions reduced the effect to a level that appeared unlikely to be clinically significant

  14. Spinal cordd biological safety comparison of intensity modulated radiotherapy and conventional radiation therapy

    International Nuclear Information System (INIS)

    Xilinbaoleri; Xu Wanlong; Chen Gang; Liu Hao; Wang Ruozheng; Bai Jingping

    2010-01-01

    Objective: To compare the spine intensity modulated radiation therapy (IMRT) and the conventional radiation therapy on the beagle spinal cord neurons, in order to prove the biological safety of IMRT of the spinal cord. Methods: Twelve selected purebred beagles were randomly divided into 2 groups. A beagle clinical model of tumor was mimiced in the ninth and tenth thoracic vertebrae. Then the beagles were irradiated by 2 different models of intensity modulated radiotherapy and conventional radiation therapy, with the total irradiation doses of 50 and 70 Gy. The samples of spinal cord were taken out from the same position of the nine and tenth thoracic vertebrae at the third month after radiation.All the samples were observed by the electron microscope, and the Fas and HSP70 expression in spinal cord neurons were evaluated by immunohistochemistry method. Terminal deoxynucleatidyl transferase mediated dUTP nick and labeling (TUNEL) technique was used to examine the apoptotic cells in the spinal cord. Results: The neurons in the spinal cord of IMRT group were mainly reversible injury, and those in the conventional radiation therapy were mainly apoptosis. Compared with the conventional radiation therapy group [50 Gy group, (7.3 ± 1.1)%; 70 Gy group, (11.3 ± 1.4)%], the apoptosis rate of the spinal cord neurons of the intensity modulated radiotherapy group [50 Gy group, (1.2 ± 0.7)%; 70 Gy group (2.5 ± 0.8)%] was much lower[(50 Gy group, t=0.022, P<0.05; 70 Gy group, t=0.017, P<0.05)]. The expression levels of Fas in the IMPT group (50 Gy group, 4.6 ± 0.8; 70 Gy group, 7.4 ± 1.1) were also much lowerthan those in the other group (50 Gy group, 15.1 ± 6.4; 70 Gy group, 19.3 ± 7.6. 50 Gy group, t=0.231, P<0.05; 70 Gy group, t=0.457, P<0.05), while the expression levels of HSP70 in the IMPT group (50 Gy group, 9.1 ± 0.8; 70 Gy group, 7.3 ± 1.4)were much higher than those in the conventional radiation therapy group (50 Gy group, 2.1 ± 0.9; 70 Gy group, 1.7 ± 0

  15. Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison

    Directory of Open Access Journals (Sweden)

    Rajesh A Kinhikar

    2014-01-01

    Full Text Available Objective: The objective of this study was to investigate the potential role of RapidArc (RA compared with helical tomotherapy (HT, sliding window intensity modulated radiotherapy (SW IMRT and three-dimensional conformal radiation therapy (3D CRT for localized prostate cancer. Materials and Methods: Prescription doses ranged from 60 Gy to planning target volume (PTV and 66.25 Gy for clinical target volume prostate (CTV-P over 25-30 fractions. PTV and CTV-P coverage were evaluated by conformity index (CI and homogeneity index (HI. Organ sparing comparison was done with mean doses to rectum and bladder. Results: CI 95 were 1.0 ± 0.01 (RA, 0.99 ± 0.01 (HT, 0.97 ± 0.02 (IMRT, 0.98 ± 0.02 (3D CRT for PTV and 1.0 ± 0.00 (RA, HT, SW IMRT and 3D CRT for CTV-P. HI was 0.11 ± 0.03 (RA, 0.16 ± 0.08 (HT, 0.12 ± 0.03 (IMRT, 0.06 ± 0.01 (3D CRT for PTV and 0.03 ± 0.00 (RA, 0.05 ± 0.01 (HT, 0.03 ± 0.01 (SW IMRT and 3D CRT for CTV-P. Mean dose to bladder were 23.68 ± 13.23 Gy (RA, 24.55 ± 12.51 Gy (HT, 19.82 ± 11.61 Gy (IMRT and 23.56 ± 12.81 Gy (3D CRT, whereas mean dose to rectum was 36.85 ± 12.92 Gy (RA, 33.18 ± 11.12 Gy (HT, IMRT and 38.67 ± 12.84 Gy (3D CRT. Conclusion: All studied intensity-modulated techniques yield treatment plans of significantly improved quality when compared with 3D CRT, with HT providing best organs at risk sparing and RA being the most efficient treatment option, reducing treatment time to 1.45-3.7 min and monitor unit to <400 for a 2 Gy fraction.

  16. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    OpenAIRE

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation ...

  17. Impact of Volumetric Modulated Arc Therapy Technique on Treatment With Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Qiu Jianjian; Chang Zheng; Wu, Q. Jackie; Yoo, Sua; Horton, Janet; Yin Fangfang

    2010-01-01

    Purpose: To investigate the technical feasibility of volumetric modulated arc therapy (V-MAT) in the delivery of partial breast irradiation (PBI). Methods and Materials: V-MAT and the standard, three-dimensional conformal radiotherapy (3D-CRT), were compared retrospectively in 8 patients previously treated with PBI. These patients' plans were replanned with a single partial arc using V-MAT that included partial blocking to minimize normal tissue dose. Dosimetric parameters were calculated to evaluate plan quality. Quality assurance studies included verifying both the point and the multiple planar doses. Total monitor units and delivery time were also evaluated, and collision clearance was analyzed. Results: Volumes of ipsilateral lung irradiated to 10 Gy (V10) and 20 Gy (V20) by V-MAT were significantly less than those of 3D-CRT (p = 0.03 for V10 and p = 0.025 for V20). The volume of ipsilateral breast irradiated to 5 Gy was significantly less by using V-MAT than with 3D-CRT (p = 0.02), with a ratio of integrated dose of <1.00. The total mean monitor units (489 ± 38) for V-MAT were significantly less than those for 3D-CRT (634 ± 123) (p = 0.017), with a 23% reduction. The average machine delivery time was 1.21 ± 0.10 min for the V-MAT plans and 6.28 ± 1.40 min for the 3D-CRT plans, resulting in a reduction factor of 80.1%. The conformity indexes were 1.3 in the V-MAT plans and 1.5 in the 3D-CRT plans (p = 0.102). Conclusions: V-MAT technology is feasible for PBI patients. Compared to a conventional 3D-CRT technique, it is more efficient, offers equivalent or better dose conformity, delivers lower doses to the ipsilateral lung and breast, and may potentially reduce intrafractional motion.

  18. Non-coplanar volumetric-modulated arc therapy (VMAT) for craniopharyngiomas reduces radiation doses to the bilateral hippocampus: a planning study comparing dynamic conformal arc therapy, coplanar VMAT, and non-coplanar VMAT

    International Nuclear Information System (INIS)

    Uto, Megumi; Mizowaki, Takashi; Ogura, Kengo; Hiraoka, Masahiro

    2016-01-01

    Recent studies suggest that radiation-induced injuries to the hippocampus play important roles in compromising neurocognitive functioning for patients with brain tumors and it could be important to spare the hippocampus using modern planning methods for patients with craniopharyngiomas. As bilateral hippocampus are located on the same level as the planning target volume (PTV) in patients with craniopharyngioma, it seems possible to reduce doses to hippocampus using non-coplanar beams. While the use of non-coplanar beams in volumetric-modulated arc therapy (VMAT) of malignant intracranial tumors has recently been reported, no dosimetric comparison has yet been made between VMAT using non-coplanar arcs (ncVMAT) and VMAT employing only coplanar arcs (coVMAT) among patients with craniopharyngiomas. We performed a planning study comparing dose distributions to the PTV, hippocampus, and other organs at risk (OAR) of dynamic conformal arc therapy (DCAT), coVMAT, and ncVMAT. DCAT, coVMAT, and ncVMAT plans were created for 10 patients with craniopharyngiomas. The prescription dose was 52.2 Gy in 29 fractions, and 99 % of each PTV was covered by 90 % of the prescribed dose. The maximum dose was held below 107 % of the prescribed dose. CoVMAT and ncVMAT plans were formulated to satisfy the following criteria: the doses to the hippocampus were minimized, and the doses to the OAR were similar to or lower than those of DCAT. The mean equivalent doses in 2-Gy fractions to 40 % of the volumes of the bilateral hippocampus [EQD 2 (40% hippos )] were 15.4/10.8/6.5 Gy for DCAT/coVMAT/ncVMAT, respectively. The EQD 2 (40% hippos ) for ncVMAT were <7.3 Gy, which is the threshold predicting cognitive impairment, as defined by Gondi et al.. The mean doses to normal brain tissue and the conformity indices were similar for the three plans, and the homogeneity indices were significantly better for coVMAT and ncVMAT compared with DCAT. NcVMAT is more appropriate than DCAT and coVMAT for

  19. SU-E-T-417: The Impact of Normal Tissue Constraints On PTV Dose Homogeneity for Intensity Modulated Radiotherapy (IMRT), Volume Modulated Arc Therapy (VMAT) and Tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J; McDonald, D; Ashenafi, M; Ellis, A; Vanek, K [Medical University of South Carolina, Charleston, SC (United States)

    2014-06-01

    Purpose: Complex intensity modulated arc therapy tends to spread low dose to normal tissue(NT)regions to obtain improved target conformity and homogeneity and OAR sparing.This work evaluates the trade-offs between PTV homogeneity and reduction of the maximum dose(Dmax)spread to NT while planning of IMRT,VMAT and Tomotherapy. Methods: Ten prostate patients,previously planned with step-and-shoot IMRT,were selected.To fairly evaluate how PTV homogeneity was affected by NT Dmax constraints,original IMRT DVH objectives for PTV and OARs(femoral heads,and rectal and bladder wall)applied to 2 VMAT plans in Pinnacle(V9.0), and Tomotherapy(V4.2).The only constraint difference was the NT which was defined as body contours excluding targets,OARs and dose rings.NT Dmax constraint for 1st VMAT was set to the prescription dose(Dp).For 2nd VMAT(VMAT-NT)and Tomotherapy,it was set to the Dmax achieved in IMRT(~70-80% of Dp).All NT constraints were set to the lowest priority.Three common homogeneity indices(HI),RTOG-HI=Dmax/Dp,moderated-HI=D95%/D5% and complex-HI=(D2%-D98%)/Dp*100 were calculated. Results: All modalities with similar dosimetric endpoints for PTV and OARs.The complex-HI shows the most variability of indices,with average values of 5.9,4.9,9.3 and 6.1 for IMRT,VMAT,VMAT-NT and Tomotherapy,respectively.VMAT provided the best PTV homogeneity without compromising any OAR/NT sparing.Both VMAT-NT and Tomotherapy,planned with more restrictive NT constraints,showed reduced homogeneity,with VMAT-NT showing the worst homogeneity(P<0.0001)for all HI.Tomotherapy gave the lowest NT Dmax,with slightly decreased homogeneity compared to VMAT. Finally, there was no significant difference in NT Dmax or Dmean between VMAT and VMAT-NT. Conclusion: PTV HI is highly dependent on permitted NT constraints. Results demonstrated that VMAT-NT with more restrictive NT constraints does not reduce Dmax NT,but significantly receives higher Dmax and worse target homogeneity.Therefore, it is critical

  20. Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma

    DEFF Research Database (Denmark)

    Blomstrand, M.; Berthelsen, Anne Kiil; Munck af Rosenschöld, Per Martin

    2012-01-01

    to the whole-brain irradiation that is part of standard management. Neurogenesis is very sensitive to radiation, and limiting the radiation dose to the hippocampus and the subventricular zone (SVZ) may preserve neurocognitive function. Radiotherapy plans were created using 4 techniques: standard opposing...... fields, intensity-modulated radiotherapy (IMRT), intensity-modulated arc therapy (IMAT), and intensity-modulated proton therapy (IMPT). Mean dose to the hippocampus and SVZ (mean for both sites) could be limited to 88.3% (range, 83.6%-91.0%), 77.1% (range, 71.5%-81.3%), and 42.3% (range, 26......-modulated proton therapy, thus making this an attractive option to be tested in a prospective clinical trial....

  1. Biological-based optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Diot, Quentin; Kavanagh, Brian; Timmerman, Robert; Miften, Moyed

    2012-01-01

    Purpose: To describe biological-based optimization and Monte Carlo (MC) dose calculation-based treatment planning for volumetric modulated arc therapy (VMAT) delivery of stereotactic body radiation therapy (SBRT) in lung, liver, and prostate patients. Methods: Optimization strategies and VMAT planning parameters using a biological-based optimization MC planning system were analyzed for 24 SBRT patients. Patients received a median dose of 45 Gy [range, 34-54 Gy] for lung tumors in 1-5 fxs and a median dose of 52 Gy [range, 48-60 Gy] for liver tumors in 3-6 fxs. Prostate patients received a fractional dose of 10 Gy in 5 fxs. Biological-cost functions were used for plan optimization, and its dosimetric quality was evaluated using the conformity index (CI), the conformation number (CN), the ratio of the volume receiving 50% of the prescription dose over the planning target volume (Rx/PTV50). The quality and efficiency of the delivery were assessed according to measured quality assurance (QA) passing rates and delivery times. For each disease site, one patient was replanned using physical cost function and compared to the corresponding biological plan. Results: Median CI, CN, and Rx/PTV50 for all 24 patients were 1.13 (1.02-1.28), 0.79 (0.70-0.88), and 5.3 (3.1-10.8), respectively. The median delivery rate for all patients was 410 MU/min with a maximum possible rate of 480 MU/min (85%). Median QA passing rate was 96.7%, and it did not significantly vary with the tumor site. Conclusions: VMAT delivery of SBRT plans optimized using biological-motivated cost-functions result in highly conformal dose distributions. Plans offer shorter treatment-time benefits and provide efficient dose delivery without compromising the plan conformity for tumors in the prostate, lung, and liver, thereby improving patient comfort and clinical throughput. The short delivery times minimize the risk of patient setup and intrafraction motion errors often associated with long SBRT treatment

  2. Trends in intensity modulated radiation therapy use for locally advanced rectal cancer at National Comprehensive Cancer Network centers

    OpenAIRE

    Marsha Reyngold, MD, PhD; Joyce Niland, PhD; Anna ter Veer, MS; Tanios Bekaii-Saab, MD; Lily Lai, MD; Joshua E. Meyer, MD; Steven J. Nurkin, MD, MS; Deborah Schrag, MD, MPH; John M. Skibber, MD, FACS; Al B. Benson, MD; Martin R. Weiser, MD; Christopher H. Crane, MD; Karyn A. Goodman, MD, MS

    2018-01-01

    Purpose: Intensity modulated radiation therapy (IMRT) has been rapidly incorporated into clinical practice because of its technological advantages over 3-dimensional conformal radiation therapy (CRT). We characterized trends in IMRT utilization in trimodality treatment of locally advanced rectal cancer at National Comprehensive Cancer Network cancer centers between 2005 and 2011. Methods and materials: Using the prospective National Comprehensive Cancer Network Colorectal Cancer Database, ...

  3. Adjuvant intensity-modulated proton therapy in malignant pleural mesothelioma. A comparison with intensity-modulated radiotherapy and a spot size variation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lorentini, S. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Padova Univ. (Italy). Medical Physics School; Amichetti, M.; Fellin, F.; Schwarz, M. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Spiazzi, L. [Brescia Hospital (Italy). Medical Physics Dept.; Tonoli, S.; Magrini, S.M. [Brescia Hospital (Italy). Radiation Oncology Dept.

    2012-03-15

    Intensity-modulated radiation therapy (IMRT) is the state-of-the-art treatment for patients with malignant pleural mesothelioma (MPM). The goal of this work was to assess whether intensity-modulated proton therapy (IMPT) could further improve the dosimetric results allowed by IMRT. We re-planned 7 MPM cases using both photons and protons, by carrying out IMRT and IMPT plans. For both techniques, conventional dose comparisons and normal tissue complication probability (NTCP) analysis were performed. In 3 cases, additional IMPT plans were generated with different beam dimensions. IMPT allowed a slight improvement in target coverage and clear advantages in dose conformity (p < 0.001) and dose homogeneity (p = 0.01). Better organ at risk (OAR) sparing was obtained with IMPT, in particular for the liver (D{sub mean} reduction of 9.5 Gy, p = 0.001) and ipsilateral kidney (V{sub 20} reduction of 58%, p = 0.001), together with a very large reduction of mean dose for the contralateral lung (0.2 Gy vs 6.1 Gy, p = 0.0001). NTCP values for the liver showed a systematic superiority of IMPT with respect to IMRT for both the esophagus (average NTCP 14% vs. 30.5%) and the ipsilateral kidney (p = 0.001). Concerning plans obtained with different spot dimensions, a slight loss of target coverage was observed along with sigma increase, while maintaining OAR irradiation always under planning constraints. Results suggest that IMPT allows better OAR sparing with respect to IMRT, mainly for the liver, ipsilateral kidney, and contralateral lung. The use of a spot dimension larger than 3 x 3 mm (up to 9 x 9 mm) does not compromise dosimetric results and allows a shorter delivery time.

  4. A class solution for volumetric-modulated arc therapy planning in postprostatectomy radiotherapy

    International Nuclear Information System (INIS)

    Forde, Elizabeth; Bromley, Regina; Kneebone, Andrew; Eade, Thomas

    2014-01-01

    This study is aimed to test a postprostatectomy volumetric-modulated arc therapy (VMAT) planning class solution. The solution applies to both the progressive resolution optimizer algorithm version 2 (PRO 2) and the algorithm version 3 (PRO 3), addressing the effect of an upgraded algorithm. A total of 10 radical postprostatectomy patients received 68 Gy to 95% of the planning target volume (PTV), which was planned using VMAT. Each case followed a set of planning instructions; including contouring, field setup, and predetermined optimization parameters. Each case was run through both algorithms only once, with no user interaction. Results were averaged and compared against Radiation Therapy Oncology Group (RTOG) 0534 end points. In addition, the clinical target volume (CTV) D 100 , PTV D 99 , and PTV mean doses were recorded, along with conformity indices (CIs) (95% and 98%) and the homogeneity index. All cases satisfied PTV D 95 of 68 Gy and a maximum dose < 74.8 Gy. The average result for the PTV D 99 was 64.1 Gy for PRO 2 and 62.1 Gy for PRO 3. The average PTV mean dose for PRO 2 was 71.4 Gy and 71.5 Gy for PRO 3. The CTV D 100 average dose was 67.7 and 68.0 Gy for PRO 2 and PRO 3, respectively. The mean homogeneity index for both algorithms was 0.08. The average 95% CI was 1.17 for PRO 2 and 1.19 for PRO 3. For 98%, the average results were 1.08 and 1.12 for PRO 2 and PRO 3, respectively. All cases for each algorithm met the RTOG organs at risk dose constraints. A successful class solution has been established for prostate bed VMAT radiotherapy regardless of the algorithm used

  5. A class solution for volumetric-modulated arc therapy planning in postprostatectomy radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Forde, Elizabeth, E-mail: eforde@tcd.ie [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Bromley, Regina [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Institute of Medical Physics, School of Physics, University of Sydney, New South Wales (Australia); Kneebone, Andrew; Eade, Thomas [Radiation Oncology Department, Northern Sydney Cancer Centre, St Leonards, New South Wales (Australia); Northern Clinical School, University of Sydney, New South Wales (Australia)

    2014-10-01

    This study is aimed to test a postprostatectomy volumetric-modulated arc therapy (VMAT) planning class solution. The solution applies to both the progressive resolution optimizer algorithm version 2 (PRO 2) and the algorithm version 3 (PRO 3), addressing the effect of an upgraded algorithm. A total of 10 radical postprostatectomy patients received 68 Gy to 95% of the planning target volume (PTV), which was planned using VMAT. Each case followed a set of planning instructions; including contouring, field setup, and predetermined optimization parameters. Each case was run through both algorithms only once, with no user interaction. Results were averaged and compared against Radiation Therapy Oncology Group (RTOG) 0534 end points. In addition, the clinical target volume (CTV) D{sub 100}, PTV D{sub 99}, and PTV mean doses were recorded, along with conformity indices (CIs) (95% and 98%) and the homogeneity index. All cases satisfied PTV D{sub 95} of 68 Gy and a maximum dose < 74.8 Gy. The average result for the PTV D{sub 99} was 64.1 Gy for PRO 2 and 62.1 Gy for PRO 3. The average PTV mean dose for PRO 2 was 71.4 Gy and 71.5 Gy for PRO 3. The CTV D{sub 100} average dose was 67.7 and 68.0 Gy for PRO 2 and PRO 3, respectively. The mean homogeneity index for both algorithms was 0.08. The average 95% CI was 1.17 for PRO 2 and 1.19 for PRO 3. For 98%, the average results were 1.08 and 1.12 for PRO 2 and PRO 3, respectively. All cases for each algorithm met the RTOG organs at risk dose constraints. A successful class solution has been established for prostate bed VMAT radiotherapy regardless of the algorithm used.

  6. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun Baozhou; Rangaraj, Dharanipathy; Papiez, Lech; Oddiraju, Swetha; Yang Deshan; Li, H. Harold [Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, Southwestern Medical Center, University of Texas, Dallas, Texas 75390 (United States); Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States)

    2010-12-15

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam's eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors.

  7. Dose verification for respiratory-gated volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qian Jianguo; Xing Lei; Liu Wu; Luxton, Gary, E-mail: gluxton@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2011-08-07

    A novel commercial medical linac system (TrueBeam(TM), Varian Medical Systems, Palo Alto, CA) allows respiratory-gated volumetric modulated arc therapy (VMAT), a new modality for treating moving tumors with high precision and improved accuracy by allowing for regular motion associated with a patient's breathing during VMAT delivery. The purpose of this work is to adapt a previously-developed dose reconstruction technique to evaluate the fidelity of VMAT treatment during gated delivery under clinic-relevant periodic motion related to patient breathing. A Varian TrueBeam system was used in this study. VMAT plans were created for three patients with lung or pancreas tumors. Conventional 6 and 15 MV beams with flattening filter and high-dose-rate 10 MV beams with no flattening filter were used in these plans. Each patient plan was delivered to a phantom first without gating and then with gating for three simulated respiratory periods (3, 4.5 and 6 s). Using the adapted log-file-based dose reconstruction procedure supplemented with ion chamber array (Seven29(TM), PTW, Freiburg, Germany) measurements, the delivered dose was used to evaluate the fidelity of gated VMAT delivery. Comparison of Seven29 measurements with and without gating showed good agreement with gamma-index passing rates above 99% for 1%/1 mm dose accuracy/distance-to-agreement criteria. With original plans as reference, gamma-index passing rates were 100% for the reconstituted plans (1%/1 mm criteria) and 93.5-100% for gated Seven29 measurements (3%/3 mm criteria). In the presence of leaf error deliberately introduced into the gated delivery of a pancreas patient plan, both dose reconstruction and Seven29 measurement consistently indicated substantial dosimetric differences from the original plan. In summary, a dose reconstruction procedure was demonstrated for evaluating the accuracy of respiratory-gated VMAT delivery. This technique showed that under clinical operation, the TrueBeam system

  8. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Boehling, Nicholas S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques B. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew T. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  9. The elementary discussion of volumetric modulated arc therapy using the orthogonal plane dose verification

    International Nuclear Information System (INIS)

    Shi Jinping; Chen Lixin; Xie Qiuying; Zhang Liwen; Teng Jianjian

    2012-01-01

    Objective: This study was to explore the feasibility of using the orthogonal plane dose formed by the coronal and sagittal plane to verify the volumetric modulated arc therapy (VMAT) plan. Methods: The VMAT plans of 12 patients were included in this study. The orthogonal plane dose formed by the coronal and sagittal plane were measured based on the combination of 2D ionization chamber array and multicube phantom, and the point dose were measured based on a multiple hole cylindrical phantom attached with two 0.125 cm 3 ionization chamber probes. Results: In the measurement of the point dose, the average error was 1.5% in high dose area (more than 80% of maximum), and 1.7% in low dose area (less than 80% of maximum), respectively. The discrepancy of point dose measurement was 1.3% between the 2D ionization chamber array and the VMAT planning system. In the measurement of the orthogonal plane dose, the pass rate of γ were 93.7% for 2%/2 mm and 97.2% for 3%/3 mm. Conclusion: It is reliable for using the orthogonal plane dose formed by the coronal and sagittal plane to verify the VMAT plan. (authors)

  10. Clinical implementation and quality assurance for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M.; Price, R.; McNeeley, S.; Chen, L.; Li, J.S.; Wang, L.; Ding, M.; Fourkal, E.; Qin, L.

    2002-01-01

    This paper describes the clinical implementation and quality assurance (QA) for intensity-modulated radiation therapy (IMRT) based on the experience at Fox Chase Cancer Center, Philadelphia, USA. We will review our procedures for the clinical implementation of the IMRT technique and the requirements for patient immobilization, target delineation, treatment optimization, beam delivery and system administration. We will discuss the dosimetric requirements and measurement procedures for beam commissioning and dosimetry verification for IMRT. We will examine the details of model-based dose calculation for IMRT treatment planning and the potential problems with such dose calculation algorithms. We will discuss the effect of beam delivery systems on the actual dose distributions received by the patients and the methods to incorporate such effects in the treatment optimization process. We will investigate the use of the Monte Carlo method for dose calculation and treatment verification for IMRT

  11. Dosimetric verification of the intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Zou Huawei; Jia Mingxuan; Wu Rong; Xiao Fuda; Dong Xiaoqi

    2004-01-01

    Objective: To discuss the methods of the dosimetric verification in the intensity-modulated radiation therapy (IMRT) and insure correct execution of the IMRT planning in the clinical practice. Methods: The CMSFOCUS9200 inverse planning system was used to provide optimized 5-field IMRT treatment plans for the patients. A phantom was made from true water-equivalent material. The doses of the interesting points and isodose distributions of the interesting planes in the phantom were calculated using patients' treatment plan. The phantom was placed on the couch of the accelerator and was irradiated using the phantom's treatment planning data. The doses of interesting points were measured using a 0.23 cc chamber and the isodose distributions of interesting planes were measured using RIT 113 film dosimetry system in the phantom. The results were compared with those from calculation in planning system for verification. Results: The doses and isodose distributions measured by the chamber and the film were consistent with those predicted by the planning. The error between the measured dose and calculated dose in the interesting points was less than 3%. Conclusion: The dosimetric verification of IMRT is a reliable measure in the course of its implementation. (authors)

  12. Intensity-modulated radiation therapy: not a dry eye in the house

    International Nuclear Information System (INIS)

    Arnold, Anthony; Arnold, Belinda; Capp, Anne; Fox, Chris; Metcalfe, Peter; Chapman, Alison; Tangboonduangjit, Puangpeng

    2004-01-01

    Inverse planned intensity-modulated radiation therapy (IMRT) has been applied to patients in a conformal fashion in order to avoid the lacrimal gland. In the present study, we report a patient in which a potential planned dose of 63 Gy to the lacrimal gland for a conventional plan was reduced to 12 Gy to the lacrimal gland for the IMRT plan. Dose objective inverse planning was provided using a Pinnacle treatment planning computer and treatment was delivered using a Varian dynamic multileaf collimator (MLC) on a Varian linear accelerator. Because multiple MLC segments are used to deliver the modulated treatment, conventional dose checks by manual calculation are not practical. To aid in an alternative dosimetric verification process, the Pinnacle planning computer has two unique dose tools, which provide axial and beams eye view doses on user-specified check phantoms. The combined field axial dose tool matched our ion chamber dose checks within ± 2.4% at the isocentre. The individual beams eye view dose tool matched film dose maps within ± 3% in the umbra Copyright (2004) Blackwell Publishing Asia Pty Ltd

  13. Pancreatic cancer planning: Complex conformal vs modulated therapies

    International Nuclear Information System (INIS)

    Chapman, Katherine L.; Witek, Matthew E.; Chen, Hongyu; Showalter, Timothy N.; Bar-Ad, Voichita; Harrison, Amy S.

    2016-01-01

    To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45 Gy; with tumor/tumor bed boosted to 50.4 Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V 30 , V 35 ), stomach (D 10 %), stomach (V 45 ), mean right kidney dose, and right kidney (V 15 ) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V 35 ), and left kidney (V 15 , V 18 , V 20 ). VMAT plans decreased small bowel (D 10 %, D 15 %), small bowel (V 35 , V 45 ), stomach (D 10 %, D 15 %), stomach (V 35 , V 45 ), mean liver dose, liver (V 35 ), left kidney (V 15 , V 18 , V 20 ), and right kidney (V 18 , V 20 ). VMAT plans significantly decreased small bowel (D 10 %, D 15 %), left kidney (V 20 ), and stomach (V 45 ) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10 minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article

  14. The survival analysis on localized prostate cancer treated with neoadjuvant endocrine therapy followed by intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Gao Hong; Li Gaofeng; Wu Qinhong; Li Xuenan; Zhong Qiuzi; Xu Yonggang

    2010-01-01

    Objective: To retrospectively investigate clinical outcomes and prognostic factors in localized prostate cancer treated with neoadjuvant endocrine therapy followed by intensity modulated radiotherapy (IMRT). Methods: Between March 2003 and October 2008, 54 localized prostate cancer treated by IMRT were recruited. All patients had received endocrine therapy before IMRT. The endocrine therapy included surgical castration or medical castration in combination with antiandrogens. The target of IMRT was the prostate and seminal vesicles with or without pelvis. The biochemical failure was defined according to the phoenix definition. By using the risk grouping standard proposed by D'Amico, patients were divided into three groups: low-risk group (n = 5), intermediate-risk group (n = 12), and high-risk group (n = 37). Kaplan-Meier method was used to calculate the overall survival rate. Prognostic factors were analyzed by univariate and multiple Cox regression analysis. Results: The follow-up rate was 98%. The number of patients under follow-up was 39 at 3 years and 25 at 5 years. Potential prognostic factors, including risk groups, mode of endocrine therapy, time of endocrine therapy, phoenix grouping before IMRT, the prostate specific antigen doubling time (PSADT) before radiotherapy, PSA value before IMRT, interval of endocrine therapy and IMRT, irradiation region, and irradiation dose were analyzed by survival analysis. In univariate analysis, time of endocrine therapy (75 % vs 95 %, χ 2 = 6. 45, P = 0. 011), phoenix grouping before IMRT (87% vs 96%, χ 2 = 4. 36, P = 0. 037), interval of endocrine therapy and IMRT (80% vs 95%, χ 2 = 11.60, P= 0. 001), irradiation dose (75% vs 91%, χ 2 =5.92, P= 0. 015) were statistically significant prognostic factors for 3 - year overall survival , and risk groups (85 vs 53 vs 29, χ 2 = 6. 40, P =0. 041) and PSADT before IMRT (62 vs 120, U =24. 50, P =0. 003) were significant factors for the median survival time. In the multiple Cox

  15. Application of the thermoluminescent (TL) and optically stimulated luminescence (OSL) dosimetry techniques to determinate the isodose curves in a cancer treatment planning simulation using Volumetric Modulated Arc Therapy - VMAT

    International Nuclear Information System (INIS)

    Bravim, Amanda

    2015-01-01

    The Volumetric Modulated Arc Therapy (VMAT) is an advance technique of Intensity Modulated Radiation Therapy (IMRT). This progress is due to the continuous gantry rotation with the radiation beam modulation providing lower time of the patient treatment. This research aimed the verification of the isodose curves in a simulation of a vertebra treatment with spinal cord protection using the thermoluminescent (TL) and optically stimulated luminescence (OSL) dosimetry techniques and the LiF:Mg,Ti (TLD-100), CaS0 4 :Dy and Al 2 0 3 :C dosimeters and LiF:Mg,Ti micro dosimeters (TLD-100). The dosimeters were characterized using PMMA plates of 30 x 30 x 30 cm 3 and different thickness. All irradiations were done using Truebeam STx linear accelerator of Hospital Israelita Albert Einstein, with 6 MV photons beam. After the dosimeter characterization, they were irradiated according the specific planning simulation and using a PMMA phantom developed to VMAT measurements. This irradiation aimed to verify the isodose curves of the treatment simulation using the two dosimetry techniques. All types of dosimeters showed satisfactory results to determine the dose distribution but analysing the complexity of the isodose curves and the proximity of them, the LiF:Mg,Ti micro dosimeter showed the most appropriate for use due to its small dimensions. Regarding the best technique, as both technique showed satisfactory results, the TL technique presents less complex to be used because the most of the radiotherapy departments already have a TL laboratory. The OSL technique requires more care and greater investment in the hospital. (author)

  16. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    International Nuclear Information System (INIS)

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  17. A method of segment weight optimization for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pei Xi; Cao Ruifen; Jing Jia; Cheng Mengyun; Zheng Huaqing; Li Jia; Huang Shanqing; Li Gui; Song Gang; Wang Weihua; Wu Yican; FDS Team

    2011-01-01

    The error caused by leaf sequencing often leads to planning of Intensity-Modulated Radiation Therapy (IMRT) arrange system couldn't meet clinical demand. The optimization approach in this paper can reduce this error and improve efficiency of plan-making effectively. Conjugate Gradient algorithm was used to optimize segment weight and readjust segment shape, which could minimize the error anterior-posterior leaf sequencing eventually. Frequent clinical cases were tasted by precise radiotherapy system, and then compared Dose-Volume histogram between target area and organ at risk as well as isodose line in computed tomography (CT) film, we found that the effect was improved significantly after optimizing segment weight. Segment weight optimizing approach based on Conjugate Gradient method can make treatment planning meet clinical request more efficiently, so that has extensive application perspective. (authors)

  18. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    International Nuclear Information System (INIS)

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih; Chiu, J. Kam; Teh, Bin S.; Woo, Shiao Y.; Paulino, Arnold C.

    2008-01-01

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% ± 9%. The 3-year local control rate was 68% ± 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival

  19. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    DEFF Research Database (Denmark)

    Hansen, Anders T; Lukacova, Slavka; Lassen-Ramshad, Yasmin A.

    2015-01-01

    When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar...... patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanar volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique...... substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore...

  20. A 4 MV flattening filter-free beam: commissioning and application to conformal therapy and volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Stevens, S W; Rosser, K E; Bedford, J L

    2011-01-01

    Recent studies have indicated that radiotherapy treatments undertaken on a flattening filter-free (FFF) linear accelerator have a number of advantages over treatments undertaken on a conventional linear accelerator. In addition, 4 MV photon beams may give improved isodose coverage for some treatment volumes at air/tissue interfaces, compared to when utilizing the clinical standard of 6 MV photons. In order to investigate these benefits, FFF beams were established on an Elekta Beam Modulator linear accelerator for 4 MV photons. Commissioning beam data were obtained for open and wedged fields. The measured data were then imported into a treatment planning system and a beam model was commissioned. The beam model was optimized to improve dose calculations at shallow, clinically relevant depths. Following verification, the beam model was utilized in a treatment planning study, including volumetric modulated arc therapy, for a selection of lung, breast/chest wall and larynx patients. Increased dose rates of around 800 MU min -1 were recorded for open fields (relative to 320 MU min -1 for filtered open fields) and reduced head scatter was inferred from output factor measurements. Good agreement between planned and delivered dose was observed in verification of treatment plans. The planning study indicated that with a FFF beam, equivalent (and in some cases improved) isodose profiles could be achieved for small lung and larynx treatment volumes relative to 4 MV filtered treatments. Furthermore, FFF treatments with wedges could be replicated using open fields together with an 'effective wedge' technique and isocentre shift. Clinical feasibility of a FFF beam was therefore demonstrated, with beam modelling, treatment planning and verification being successfully accomplished.

  1. Dosimetric comparison of volumetric modulated arc therapy and linear accelerator-based radiosurgery for the treatment of one to four brain metastases.

    Science.gov (United States)

    Salkeld, Alison L; Unicomb, Kylie; Hayden, Amy J; Van Tilburg, Kevin; Yau, Shan; Tiver, Kenneth

    2014-12-01

    The purpose of this study is to compare and evaluate volumetric modulated arc therapy (VMAT) and linear accelerator-based radiosurgery (Linac RS) for the treatment of one to four brain metastases. Radiotherapy plans for 10 patients with 1 to 4 brain metastases that were planned and treated using conventional Linac RS were replanned using a mono-isocentric VMAT technique using two to four arcs. The same doses, target volumes and organs at risk (OAR) were used in both plans. The plans were evaluated for target volume coverage, dose conformity, homogeneity and dose to OAR. For VMAT plans, 18/19 brain metastases met acceptable Radiation Therapy Oncology Group (RTOG) radiosurgery dose coverage, homogeneity and conformity criteria. There was no observed difference between the mean homogeneity indices for VMAT and Linac RS plans. VMAT plans had a lower mean RTOG conformity index compared with the Linac RS plans (1.10 ± 0.06 versus 2.06 ± 1.02). For the OAR, there was no difference in maximal doses to the brain stem, optic chiasm or optic nerves. The volume of normal brain receiving 12 Gy was lower in the VMAT plans (13.3 cm(3) versus 23.1 cm(3) ) compared with the Linac RS plans. The mean total number of monitor units (MUs) was 31.3% less in the VMAT plans (5231.2 MU versus 3593.5 MU). Mono-isocentric VMAT plans using two to four arcs meet RTOG radiosurgery quality criteria in patients with one to four brain metastases, with an improvement in conformity and 12-Gy normal brain volume when compared with patients treated with Linac RS at our institution. © 2014 The Royal Australian and New Zealand College of Radiologists.

  2. Early clinical experience of radiotherapy of prostate cancer with volumetric modulated arc therapy

    Directory of Open Access Journals (Sweden)

    Valli Mariacarla

    2010-06-01

    Full Text Available Abstract Background To report about initial clinical experience in radiation treatment of carcinoma of prostate with volumetric modulated arcs with the RapidArc (RA technology. Methods Forty-five patients with a median age of 72 ± 3, affected by prostate carcinoma (T1c: 22 patients, T2a-b: 17 patients, T3a-b: 6 patients. N0: 43 patients, N1-Nx: 2 patients, all M0, with initial PSA of 10.0 ± 3.0 ng/mL, were treated with RapidArc in a feasibility study. All patients were treated with single arc using 6MV photons. Dose prescription ranged between 76 (7 patients and 78 Gy (38 patients in 2Gy/fraction. Plan quality was assessed by means of Dose Volume Histogram (DVH analysis. Technical parameters of arcs and pre-treatment quality assurance results (Gamma Agreement Index, GAI are reported to describe delivery features. Early toxicity was scored (according to the Common Terminology Criteria of Adverse Effects scale, CTCAE, scale at the end of treatment together with biochemical outcome (PSA. Results From DVH data, target coverage was fulfilling planning objectives: V95% was in average higher than 98% and V107%~0.0% (D2%~104.0% in average. Homogeneity D5%-D95% ranged between 6.2 ± 1.0% to 6.7 ± 1.3%. For rectum, all planning objectives were largely met (e.g. V70Gy = 10.7 ± 5.5% against an objective of 2% = 79.4 ± 1.2Gy against an objective of 80.0Gy. Maximum dose to femurs was D2% = 36.7 ± 5.4Gy against an objective of 47Gy. Monitor Units resulted: MU/Gy = 239 ± 37. Average beam on time was 1.24 ± 0.0 minutes. Pre-treatment GAI resulted in 98.1 ± 1.1%. Clinical data were recorded as PSA at 6 weeks after RT, with median values of 0.4 ± 0.4 ng/mL. Concerning acute toxicity, no patient showed grade 2-3 rectal toxicity; 5/42 (12% patients experienced grade 2 dysuria; 18/41 (44% patients preserved complete or partial erectile function. Conclusion RapidArc proved to be a safe, qualitative and advantageous treatment modality for prostate cancer.

  3. Chest wall desmoid tumours treated with definitive radiotherapy: a plan comparison of 3D conformal radiotherapy, intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy

    International Nuclear Information System (INIS)

    Liu, Jia; Ng, Diana; Lee, James; Stalley, Paul; Hong, Angela

    2016-01-01

    Definitive radiotherapy is often used for chest wall desmoid tumours due to size or anatomical location. The delivery of radiotherapy is challenging due to the large size and constraints of normal surrounding structures. We compared the dosimetry of 3D conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) to evaluate the best treatment option. Ten consecutive patients with inoperable chest wall desmoid tumours (PTV range 416–4549 cm 3 ) were selected. For each patient, 3DCRT, IMRT and VMAT plans were generated and the Conformity Index (CI), organ at risk (OAR) doses and monitor unit (MU) were evaluated. The Wilcoxon signed-rank test was used to compare dose delivered to both target and OARs. The mean number of fields for 3DCRT and IMRT were 6.3 ± 2.1, 7.2 ± 1.8. The mean number of arcs for VMAT was 3.7 ± 1.1. The mean conformity index of VMAT (0.98 ± 0.14) was similar to that of IMRT (1.03 ± 0.13), both of which were significantly better than 3DCRT (1.35 ± 0.20; p = 0.005). The mean dose to lung was significantly higher for 3DCRT (11.9Gy ± 7.9) compared to IMRT (9.4Gy ± 5.4, p = 0.014) and VMAT (8.9Gy ± 4.5, p = 0.017). For the 3 females, the low dose regions in the ipsilateral breast for VMAT were generally less with VMAT. IMRT plans required 1427 ± 532 MU per fraction which was almost 4-fold higher than 3DCRT (313 ± 112, P = 0.005). Compared to IMRT, VMAT plans required 60 % less MU (570 ± 285, P = 0.005). For inoperable chest wall desmoid tumours, VMAT delivered equivalent target coverage when compared to IMRT but required 60 % less MU. Both VMAT and IMRT were superior to 3DCRT in terms of better PTV coverage and sparing of lung tissue

  4. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  5. Ultrasound-based guidance of intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  6. Poster — Thur Eve — 17: In-phantom and Fluence-based Measurements for Quality Assurance of Volumetric-driven Adaptation of Arc Therapy

    International Nuclear Information System (INIS)

    Schaly, B; Hoover, D; Mitchell, S; Wong, E

    2014-01-01

    During volumetric modulated arc therapy (VMAT) of head and neck cancer, some patients lose weight which may result in anatomical deviations from the initial plan. If these deviations are substantial a new treatment plan can be designed for the remainder of treatment (i.e., adaptive planning). Since the adaptive treatment process is resource intensive, one possible approach to streamlining the quality assurance (QA) process is to use the electronic portal imaging device (EPID) to measure the integrated fluence for the adapted plans instead of the currently-used ArcCHECK device (Sun Nuclear). Although ArcCHECK is recognized as the clinical standard for patient-specific VMAT plan QA, it has limited length (20 cm) for most head and neck field apertures and has coarser detector spacing than the EPID (10 mm vs. 0.39 mm). In this work we compared measurement of the integrated fluence using the EPID with corresponding measurements from the ArcCHECK device. In the past year nine patients required an adapted plan. Each of the plans (the original and adapted) is composed of two arcs. Routine clinical QA was performed using the ArcCHECK device, and the same plans were delivered to the EPID (individual arcs) in integrated mode. The dose difference between the initial plan and adapted plan was compared for ArcCHECK and EPID. In most cases, it was found that the EPID is more sensitive in detecting plan differences. Therefore, we conclude that EPID provides a viable alternative for QA of the adapted head and neck plans and should be further explored

  7. Pancreatic cancer planning: Complex conformal vs modulated therapies

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Katherine L. [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Witek, Matthew E. [Department of Radiation Oncology, University of Wisconsin School of Medicine School of Medicine and Public Health, Madison, WI (United States); Chen, Hongyu [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Showalter, Timothy N. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Bar-Ad, Voichita [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Harrison, Amy S., E-mail: amy.harrison@jefferson.edu [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    2016-07-01

    To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45 Gy; with tumor/tumor bed boosted to 50.4 Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V{sub 30}, V{sub 35}), stomach (D{sub 10}%), stomach (V{sub 45}), mean right kidney dose, and right kidney (V{sub 15}) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V{sub 35}), and left kidney (V{sub 15}, V{sub 18}, V{sub 20}). VMAT plans decreased small bowel (D{sub 10}%, D{sub 15}%), small bowel (V{sub 35}, V{sub 45}), stomach (D{sub 10}%, D{sub 15}%), stomach (V{sub 35}, V{sub 45}), mean liver dose, liver (V{sub 35}), left kidney (V{sub 15}, V{sub 18}, V{sub 20}), and right kidney (V{sub 18}, V{sub 20}). VMAT plans significantly decreased small bowel (D{sub 10}%, D{sub 15}%), left kidney (V{sub 20}), and stomach (V{sub 45}) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average

  8. SU-E-T-212: Influence of the Modulation Index On Daily Quality Assurance in Rapid Arc Treatments

    International Nuclear Information System (INIS)

    Wessels, C; Dumas, J-L; Francois, P; Mazal, A

    2014-01-01

    Purpose: At our Institute some measured parameters for daily quality assurance (DQA) of dynamic arc therapy plans showed an unexpected behavior, therefore an investigation of the influence of the magnitude of modulation was conducted. Methods: In our clinical practice all DQAs of dynamic arc therapy plans are measured and analyzed prior to treatments using commercial software. For this study these plans were additionally exported to our in-house software written in MATLAB.The developed software extracted the leaf position, gantry angle, cumulative meterset weight of each control point (CP) and the total number of Monitor Units (MU) of each arc. Based on this information we calculated the leaf travel distance, irradiated segment area, number of MUs and dose rate for each CP. These data allowed us to calculate the modulation indexes (MI) of the plans, applying five different definitions of MI. The results were then correlated to the results of our DQA measurements.To validate the software, additional plans of known MIs were created and analyzed. For confirmation, the calculated parameters were compared to the segmented treatment table (STT) coming from the treatment planning system. Results: All calculated CP-parameters matched the STT by 99% or better. For linac 1, the comparison of the MI evaluation and the DQA results showed a slight tendency: 91.3% failed DQA plans had a MI lower than the average value. For this definition we consider that the lower the MI the higher the modulation. The results of the linac 2 present no significant relevance due to the low sample sizes for each DQA software. Conclusion: Available data and given definitions of the modulation index do not bring conclusive results; one cannot find a clear and distinct correlation with the failure of the DQA. The ongoing analysis with an increased sample size might lead to another conclusion

  9. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    International Nuclear Information System (INIS)

    Ding Meisong; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-01-01

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV ≤2 cm 3 ), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to ≤100 cm 3 ), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm 3 ), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors

  10. Comparison of dose-volume histograms for Tomo therapy, linear accelerator-based 3D conformal radiation therapy, and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Choi, Seong-Kwan; Chung, Woon-Kwan; Lee, Jong-Woong

    2011-01-01

    Highlights: → Evaluation of DVH from 3D CRT, IMRT and Tomo therapy was conducted for tumor therapy. → The doses of GTV and CTV were compared using DVHs from 3D CRT, IMRT and Tomo therapy. → The GTV was higher when Tomo therapy was used, while the doses of critical organ were low. → They said that Tomo therapy satisfied the goal of radiation therapy more than the others. - Abstract: Evaluation of dose-volume histograms from three-dimensional conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and Tomo therapy was conducted. These three modalities are among the diverse treatment systems available for tumor therapy. Three patients who received tumor therapy for a malignant oligodendroglioma in the cranium, nasopharyngeal carcinoma in the cervical neck, and prostate cancer in the pelvis were selected as study subjects. Therapy plans were made for the three patients before dose-volume histograms were obtained. The doses of the gross tumor volume (GTV) and the clinical target volume (CTV) were compared using the dose-volume histograms obtained from the LINAC-based 3D CRT, IMRT planning station (Varian Eclipse-Varian, version 8.1), and Tomo therapy planning station. In addition, the doses of critical organs in the cranium, cervix, and pelvis that should be protected were compared. The GTV was higher when Tomo therapy was used compared to 3D CRT and the LINAC-based IMRT, while the doses of critical organ tissues that required protection were low. These results demonstrated that Tomo therapy satisfied the ultimate goal of radiation therapy more than the other therapies.

  11. Feasibility of Pencil Beam Scanned Intensity Modulated Proton Therapy in Breath-hold for Locally Advanced Non-Small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny; Munck Af Rosenschold, Per; Perrin, Rosalind

    2017-01-01

    PURPOSE: We evaluated the feasibility of treating patients with locally advanced non-small cell lung cancer (NSCLC) with pencil beam scanned intensity modulated proton therapy (IMPT) in breath-hold. METHODS AND MATERIALS: Fifteen NSCLC patients who had previously received 66 Gy in 33 fractions wi...

  12. Sensitivity of intensity modulated proton therapy plans to changes in patient weight

    International Nuclear Information System (INIS)

    Albertini, Francesca; Bolsi, Alessandra; Lomax, Antony J.; Rutz, Hans Peter; Timmerman, Beate; Goitein, Gudrun

    2008-01-01

    Purpose: A retrospective study to investigate the sensitivity of intensity modulated proton therapy (IMPT) to changes in body weight occurring during the course of radiotherapy for patients treated in the sacral region. Materials and methods: During therapy, important weight gain and loss were observed for two patients treated to para-spinal tumors, which resulted in both patients being re-scanned and re-planned. Both patients were treated as part of their therapy, with a narrow-angle IMPT (NA-IMPT) plan delivering a 'dose hole' around the cauda equina (CE), which was mainly formed through modulation of Bragg peaks in depth. To investigate the impact of these weight changes on the proton range and delivered dose, the nominal fields were re-calculated on the new CT data sets. Results were analyzed by comparing these new plans with those originally delivered and by calculating changes in range and delivered doses in target volumes and normal tissues. Results: Maximum differences in proton range in the CE region of up to +8 mm and -13 mm, respectively, for the patient who gained weight and for the patient who lost weight, increased the maximum dose to the CE by only 2%. This indicates that both IMPT plans were relatively insensitive to substantial range uncertainties. Even greater differences in range (16 mm) in the planning target volume only slightly affected its dose homogeneity (differences in V 90% of 6% in the worst case). Nevertheless, some large undesired local dose differences were observed. Conclusions: We demonstrated, that, at least for the two analyzed cases, NA-IMPT plans are less sensitive to weight variations than one may expect. Still, we would advise to calculate new plans in case of substantial change in weight for patients treated in the sacral region, primarily due to the presence of new hot/cold area

  13. An approach to multiobjective optimization of rotational therapy. II. Pareto optimal surfaces and linear combinations of modulated blocked arcs for a prostate geometry.

    Science.gov (United States)

    Pardo-Montero, Juan; Fenwick, John D

    2010-06-01

    comprising two regions: One where the dose to the target is close to prescription and trade-offs can be made between doses to the organs at risk and (small) changes in target dose, and one where very substantial rectal sparing is achieved at the cost of large target underdosage. Plans computed following the approach using a conformal arc and four blocked arcs generally lie close to the Pareto front, although distances of some plans from high gradient regions of the Pareto front can be greater. Only around 12% of plans lie a relative Euclidean distance of 0.15 or greater from the Pareto front. Using the alternative distance measure of Craft ["Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization," Phys. Medica (to be published)], around 2/5 of plans lie more than 0.05 from the front. Computation of blocked arcs is quite fast, the algorithms requiring 35%-80% of the running time per iteration needed for conventional inverse plan computation. The geometry-based arc approach to multicriteria optimization of rotational therapy allows solutions to be obtained that lie close to the Pareto front. Both the image-reconstruction type and gradient-descent algorithms produce similar modulated arcs, the latter one perhaps being preferred because it is more easily implementable in standard treatment planning systems. Moderate unblocking provides a good way of dealing with OARs which abut the PTV. Optimization of geometry-based arcs is faster than usual inverse optimization of treatment plans, making this approach more rapid than an inverse-based Pareto front reconstruction.

  14. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar, E-mail: dpokhrel@kumc.edu; Sood, Sumit; McClinton, Christopher; Shen, Xinglei; Lominska, Christopher; Saleh, Habeeb; Badkul, Rajeev; Jiang, Hongyu; Mitchell, Melissa; Wang, Fen

    2016-01-01

    Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D{sub 2%}, D{sub 98%}, and V{sub 30} {sub Gy} NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5

  15. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

    International Nuclear Information System (INIS)

    Pokhrel, Damodar; Sood, Sumit; McClinton, Christopher; Shen, Xinglei; Lominska, Christopher; Saleh, Habeeb; Badkul, Rajeev; Jiang, Hongyu; Mitchell, Melissa; Wang, Fen

    2016-01-01

    Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured on T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D 2% , D 98% , and V 30 Gy NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing

  16. Multimodal hypoxia imaging and intensity modulated radiation therapy for unresectable non-small-cell lung cancer: the HIL trial

    Directory of Open Access Journals (Sweden)

    Askoxylakis Vasileios

    2012-09-01

    Full Text Available Abstract Background Radiotherapy, preferably combined with chemotherapy, is the treatment standard for locally advanced, unresectable non-small cell lung cancer (NSCLC. The tumor response to different therapy protocols is variable, with hypoxia known to be a major factor that negatively influences treatment effectiveness. Visualisation of tumor hypoxia prior to the use of modern radiation therapy strategies, such as intensity modulated radiation therapy (IMRT, might allow optimized dose applications to the target volume, leading to improvement of therapy outcome. 18 F-fluoromisonidazole dynamic positron emission tomography and computed tomography (18 F-FMISO dPET-CT and functional magnetic resonance imaging (functional MRI are attractive options for imaging tumor hypoxia. Methods/design The HIL trial is a single centre study combining multimodal hypoxia imaging with 18 F-FMISO dPET-CT and functional MRI, with intensity modulated radiation therapy (IMRT in patients with inoperable stage III NSCLC. 15 patients will be recruited in the study. All patients undergo initial FDG PET-CT and serial 18 F-FMISO dPET-CT and functional MRI before treatment, at week 5 of radiotherapy and 6 weeks post treatment. Radiation therapy is performed as inversely planned IMRT based on 4D-CT. Discussion Primary objectives of the trial are to characterize the correlation of 18 F-FMISO dPET-CT and functional MRI for tumor hypoxia imaging in NSCLC and evaluate possible effects of radiation therapy on tumor re-oxygenation. Further objectives include the generation of data regarding the prognostic value of 18 F-FMISO dPET-CT and functional MRI for locoregional control, progression free survival and overall survival of NSCLC treated with IMRT, which will form the basis for larger clinical trials focusing on possible interactions between tumor oxygenation and radiotherapy outcome. Trial registration The ClinicalTrials.gov protocol ID is NCT01617980

  17. SU-F-P-64: The Impact of Plan Complexity Parameters On the Plan Quality and Deliverability of Volumetric Modulated Arc Therapy with Canonical Correlation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, X; Yi, J; Xie, C [The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2016-06-15

    Purpose: To evaluate the impact of complexity indices on the plan quality and deliverability of volumetric modulated arc therapy (VMAT), and to determine the most significant parameters in the generation of an ideal VMAT plan. Methods: A multi-dimensional exploratory statistical method, canonical correlation analysis (CCA) was adopted to study the correlations between VMAT parameters of complexity, quality and deliverability, as well as their contribution weights with 32 two-arc VMAT nasopharyngeal cancer (NPC) patients and 31 one-arc VMAT prostate cancer patients. Results: The MU per arc (MU/Arc) and MU per control point (MU/CP) of NPC were 337.8±25.2 and 3.7±0.3, respectively, which were significantly lower than those of prostate cancer patients (MU/Arc : 506.9±95.4, MU/CP : 5.6±1.1). The plan complexity indices indicated that two-arc VMAT plans were more complex than one-arc VMAT plans. Plan quality comparison confirmed that one-arc VMAT plans had a high quality than two-arc VMAT plans. CCA results implied that plan complexity parameters were highly correlated with plan quality with the first two canonical correlations of 0.96, 0.88 (both p<0.001) and significantly correlated with deliverability with the first canonical correlation of 0.79 (p<0.001), plan quality and deliverability was also correlated with the first canonical correlation of 0.71 (p=0.02). Complexity parameters of MU/CP, segment area (SA) per CP, percent of MU/CP less 3 and planning target volume (PTV) were weighted heavily in correlation with plan quality and deliveability . Similar results obtained from individual NPC and prostate CCA analysis. Conclusion: Relationship between complexity, quality, and deliverability parameters were investigated with CCA. MU, SA related parameters and PTV volume were found to have strong effect on the plan quality and deliverability. The presented correlation among different quantified parameters could be used to improve the plan quality and the efficiency

  18. Design, simulation and manufacture of a multi leaf collimator to confirm the target volumes in intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Kamali-Asl, A.; Batooli, A. H.; Harriri, S.; Salman-Rezaee, F.; Shahmardan, F.; Yavari, L.

    2010-01-01

    Intensity modulated radiation therapy is one of the cancer treatment methods. It is important to selectively aim at the target in this way, which can be performed using a multi leaf collimator. Materials and Methods: In order to specifically irradiate the target volume in radiotherapy to reduce the patient absorbed dose, the use of multi leaf collimator has been investigated in this work. Design and simulation of an multi leaf collimator was performed by a Monte Carlo method and the optimum material for manufacturing the leaves was determined using MCNP4C. After image processing (CT or MRI) in this system, the tumor configuration is determined. Then the linear accelerator is switched on and the beam irradiates the cancerous cells. When the multi leaf collimator leaves receive a command from the micro controller, they start to move and absorb the radiation and modulate its intensity. Consequently, the tumor receives maximum intensity of radiation but minimum intensity is delivered to healthy tissues. Results: According to the simulations and calculations, the best material to manufacture the leaves from is tungsten alloy containing copper and nickel which absorbs a large amount of the radiation; by using a 8.65 cm thickness of alloy, 10.55% of radiation will transmit through the leaves. Discussion and Conclusion: Lead blocks are conventionally used in radiotherapy. However, they have some problems like cost, storage and manufacture for every patient. Certainly, the multi leaf collimator is the most efficient device to specifically irradiate the tumor in Intensity modulated radiation therapy. Furthermore, it facilitates treating the target in different views by rotation around the patient. Thus the patient's absorbed dose will decrease and the tumor will receive maximum dose.

  19. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    Science.gov (United States)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O'Brien, Ricky T.; Meidahl Petersen, Peter; Rosenschöld, Per Munck af

    2013-04-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 s. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7-100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7-99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with >3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf position

  20. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study

    International Nuclear Information System (INIS)

    Weber, Damien C; Miralbell, Raymond; Wang, Hui; Cozzi, Luca; Dipasquale, Giovanna; Khan, Haleem G; Ratib, Osman; Rouzaud, Michel; Vees, Hansjoerg; Zaidi, Habib

    2009-01-01

    A study was performed comparing volumetric modulated arcs (RA) and intensity modulation (with photons, IMRT, or protons, IMPT) radiation therapy (RT) for patients with recurrent prostate cancer after RT. Plans for RA, IMRT and IMPT were optimized for 7 patients. Prescribed dose was 56 Gy in 14 fractions. The recurrent gross tumor volume (GTV) was defined on 18 F-fluorocholine PET/CT scans. Plans aimed to cover at least 95% of the planning target volume with a dose > 50.4 Gy. A maximum dose (D Max ) of 61.6 Gy was allowed to 5% of the GTV. For the urethra, D Max was constrained to 37 Gy. Rectal D Median was < 17 Gy. Results were analyzed using Dose-Volume Histogram and conformity index (CI 90 ) parameters. Tumor coverage (GTV and PTV) was improved with RA (V 95% 92.6 ± 7.9 and 83.7 ± 3.3%), when compared to IMRT (V 95% 88.6 ± 10.8 and 77.2 ± 2.2%). The corresponding values for IMPT were intermediate for the GTV (V 95% 88.9 ± 10.5%) and better for the PTV (V 95% 85.6 ± 5.0%). The percentages of rectal and urethral volumes receiving intermediate doses (35 Gy) were significantly decreased with RA (5.1 ± 3.0 and 38.0 ± 25.3%) and IMPT (3.9 ± 2.7 and 25.1 ± 21.1%), when compared to IMRT (9.8 ± 5.3 and 60.7 ± 41.7%). CI 90 was 1.3 ± 0.1 for photons and 1.6 ± 0.2 for protons. Integral Dose was 1.1 ± 0.5 Gy*cm 3 *10 5 for IMPT and about a factor three higher for all photon's techniques. RA and IMPT showed improvements in conformal avoidance relative to fixed beam IMRT for 7 patients with recurrent prostate cancer. IMPT showed further sparing of organs at risk

  1. SU-F-T-446: Improving Craniospinal Irradiation Technique Using Volumetric Modulated Arc Therapy (VMAT) Planning and Its Dosimetric Verification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X; Tejani, M; Jiang, X; Elder, E; Dhabaan, A [Emory University, Atlanta, GA (United States)

    2016-06-15

    Purpose: The purpose of this study is to investigate a volumetric modulated arc therapy (VMAT) treatment planning technique for supine craniospinal irradiation (CSI). Evaluate the suitability of VMAT for CSI with dosimetric measurements and compare it to 3D conformal planning using specific plan metrics such as dose conformity, homogeneity, and dose of organs at risk (OAR). Methods: Ten CSI patients treated with conventional 3D technique were re-planned with VMAT. The PTV was contoured to include the whole contents of the brain and spinal canal with a uniform margin of 5 mm. VMAT plans were generated with two partial arcs covering the brain, two partial arcs for the superior portion of the spinal cord and two partial arcs covering the remaining inferior portion of the spinal cord. Conformity index (CI), heterogeneity indexes (HI) and max and mean doses of OAR were compared to 3D plans. VMAT plans were delivered onto an anthropomorphic phantom loaded with Gafchromic films and OSLDs placed at specific positions to evaluate the plan dose at the junctions and as well as the plan dose distributions. Results: This VMAT technique was validated with a clinical study of 10 patients. The average CI was 1.03±0.02 for VMAT plans and 1.96±0.32 for conformal plans. And the average HI was 1.15±0.01 for VMAT plans and 1.51±0.21 for conformal plans. The mean and max doses to the all OARs for VMAT plans were significantly lower than conformal plans. The measured dose in phantom for VAMT plans was comparable to the calculated dose in Eclipse and the doses at junctions were verified. Conclusion: VMAT CSI was able to achieve better dose conformity and heterogeneity as well as significantly reducing the dose to Heart, esophagus and larynx. VMAT CSI appears to be a dosimterically advantageous, faster delivery, has better reproducibility CSI treatment.

  2. Comparison of acute and subacute genitourinary and gastrointestinal adverse events of radiotherapy for prostate cancer using intensity-modulated radiation therapy, three-dimensional conformal radiation therapy, permanent implant brachytherapy and high-dose-rate brachytherapy

    NARCIS (Netherlands)

    Morimoto, Masahiro; Yoshioka, Yasuo; Konishi, Koji; Isohashi, Fumiaki; Takahashi, Yutaka; Ogata, Toshiyuki; Koizumi, Masahiko; Teshima, Teruki; Bijl, Henk P; van der Schaaf, Arjen; Langendijk, Johannes A; Ogawa, Kazuhiko

    2014-01-01

    AIMS AND BACKGROUND: To examine acute and subacute urinary and rectal toxicity in patients with localized prostate cancer monotherapeutically treated with the following four radiotherapeutic techniques: intensity-modulated radiation therapy, three-dimensional conformal radiation therapy,

  3. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clivio, Alessandro [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Kluge, Anne [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Cozzi, Luca, E-mail: lucozzi@iosi.ch [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Köhler, Christhardt [Department of Gynecology, Charité University Hospital, Berlin (Germany); Neumann, Oliver [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Vanetti, Eugenio [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Wlodarczyk, Waldemar; Marnitz, Simone [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany)

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  4. Intensity modulated radiation therapy for head and neck cancer: The standard; Radiotherapie avec modulation d'intensite pour les cancers de la tete et du cou: le standard

    Energy Technology Data Exchange (ETDEWEB)

    Maingon, P.; Crehange, G.; Chamois, J.; Khoury, C.; Truc, G. [Departement de radiotherapie, centre Georges-Francois-Leclerc, 1, rue du Pr-Marion, 21079 Dijon cedex (France)

    2011-10-15

    Combined radical radiation therapy for head and neck carcinoma should be planned with intensity modulated beams to provide a rapid answer to patients' requirements in terms of quality of treatment. The most frequent late toxicity of radiation therapy is xerostomia, which may be prevented by using this technique able to significantly spare salivary glands irradiation. Selection of indications is a very important step. The objective of sparing salivary functions, strongly associated with optimization criteria of quality of life should be considered as a main objective in irradiation of head and neck tumours. The various possibilities offered by this technique allowing to boost a target volume included in prophylactically irradiated regions could offer the possibility to escalate the dose in selected patients. The feasibility of this process is currently validated in prospective studies. Finally, routine implementation of intensity modulated radiation therapy should be performed with strong and robust quality assurance procedures, ensuring that the expected benefit could be increased with the current developments by using rotational techniques. (authors)

  5. Synchronous prostate and rectal adenocarcinomas irradiation utilising volumetric modulated arc therapy.

    Science.gov (United States)

    Ng, Sweet Ping; Tran, Thu; Moloney, Philip; Sale, Charlotte; Mathlum, Maitham; Ong, Grace; Lynch, Rod

    2015-12-01

    Cases of synchronous prostate and colorectal adenocarcinomas have been sporadically reported. There are case reports on patients with synchronous prostate and rectal cancers treated with external beam radiotherapy alone or combined with high-dose rate brachytherapy boost to the prostate. Here, we illustrate a patient with synchronous prostate and rectal cancers treated using the volumetric arc therapy (VMAT) technique. The patient was treated with radical radiotherapy to 50.4 Gy in 28 fractions to the pelvis, incorporating the involved internal iliac node and the prostate. A boost of 24 Gy in 12 fractions was delivered to the prostate only, using VMAT. Treatment-related toxicities and follow-up prostate-specific antigen and carcinoembryonic antigen were collected for data analysis. At 12 months, the patient achieved complete response for both rectal and prostate cancers without significant treatment-related toxicities.

  6. [Intensity modulated radiation therapy for patients with gynecological malignancies after hysterectomy and chemotherapy/radiotherapy].

    Science.gov (United States)

    Chen, Zhen-yun; Ma, Yue-bing; Sheng, Xiu-gui; Zhang, Xiao-ling; Xue, Li; Song, Qu-qing; Liu, Nai-fu; Miao, Hua-qin

    2007-04-01

    To investigate the value of intensity modulated radiation therapy (IMRT) for patient with gynecological malignancies after treatment of hysterectomy and chemotherapy/radiotherapy. All 32 patients with cervical or endometrial cancer after hysterectomy received full course IMRT after 1 to 3 cycles of chemotherapy (Karnofsky performance status(KPS) > or =70). Seventeen of these patients underwent postoperative preventive irradiation and the other 15 patients were pelvic wall recurrence and/or retroperitoneal lymph node metastasis, though postoperative radiotherapy and/or chemotherapy had been given after operation. The median dose delivered to the PTV was 56.8 Gy for preventive irradiation, and 60.6 Gy for pelvic wall recurrence or retroperioneal lymph node metastasis irradiation. It was required that 90% of iso-dose curve could covere more than 99% of GTV. However, The mean dose irradiated to small intestine, bladder, rectum, kidney and spinal cord was 21.3 Gy, 37.8 Gy, 35.3 Gy, 8.5 Gy, 22.1 Gy, respectively. Fourteen patients presented grade I (11 patients) or II (3 patients) digestive tract side-effects, Five patients developed grade I or II bone marrow depression. Twelve patients had grade I skin reaction. The overall 1-year survival rate was 100%. The 2- and 3- year survival rate for preventive irradiation were both 100%, but which was 5/7 and 3/6 for the patients with pelvic wall recurrence or retroperioneal lymph node metastasis. Intensity modulated radiation therapy can provide a better dose distribution than traditional radiotherapy for both prevention and pelvic wall recurrence or retroperioneal lymph node metastasis. The toxicity is tolerable. The adjacent organs at risk can well be protected.

  7. On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar, E-mail: damodar.pokhrel@uky.edu; Sood, Sumit; McClinton, Christopher; Shen, Xinglei; Badkul, Rajeev; Jiang, Hongyu; Mallory, Matthew; Mitchell, Mellissa; Wang, Fen; Lominska, Christopher

    2017-04-01

    To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planning target volumes (PTV) were between 14.4 and 230.1 cc (median = 38.0 cc). Prescription dose was 16 Gy in 1 fraction with 6 MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV-1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D{sub 0.03} {sub cc}, D{sub 0.35} {sub cc}), partial spinal cord (D{sub 10%}), esophagus (D{sub 0.03} {sub cc} and D{sub 5} {sub cc}), heart (D{sub 0.03} {sub cc} and D{sub 15} {sub cc}), and lung (V{sub 5}, V{sub 10}, and maximum dose to 1000 cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2 mm and 3%/3 mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and

  8. Evaluation of aluminum oxide dosimeters using OSL technique in dosimetry of clinical photon beams on volumetric modulated arc treatment

    International Nuclear Information System (INIS)

    Villani, Daniel

    2017-01-01

    Treatment using Volumetric Modulated Arc Radiation Therapy is the most modern modality of conformational radiotherapy so that, with the overlapping of several fields, the dose distributions provide a perfect conformation to the tumor, reducing the probability of complications in adjacent normal tissues. In this sense, many efforts are being invested to improve dose distribution compliance as well as the integration of imaging techniques for tumor screening and correction of inter and intrafraction variations. To this end, an intensive monitoring of the quality of the processes and a quality assurance program are fundamental for patient safety and compliance with current legislation; besides the use of different dosimetry methodologies for intercomparison and validation of the results. The aim of this study is to evaluate and compare the performance of aluminum oxide (Al_2O_3:C) OSL dosimeters manufactured by Landauer Inc. with those produced by Rexon™ in the dosimetry of high energy photon clinical bundles used in Volumetric Modulated Arc Therapy - (VMAT) using different simulating objects. The dosimeters were characterized for gamma radiation of the "6"0Co and for clinical photon beams of 6 MV typical of treatments by VMAT under conditions of electronic equilibrium and maximum dose respectively. Performance tests of the TL and OSL readers used and repeatability of the samples were evaluated. After all tests, the dosimeters were irradiated in the simulation of different radiotherapy treatments by VMAT and their responses compared to the planning system. All types of dosimeters presented satisfactory results in verifying the doses of this type of planning simulation. The Al_2O_3:C dosimeters presented compatible results and validated by the other dosimeters and ionization chamber. Regarding the best technique, the OSL InLight commercial system presents greater practicality and versatility for use and application in the clinical routine. (author)

  9. Prospective assessment of urinary, gastrointestinal and sexual symptoms before, during and after image-guided volumetric modulated arc therapy for prostate cancer

    DEFF Research Database (Denmark)

    Sveistrup, Joen; Widmark, Anders; Fransson, Per

    2015-01-01

    OBJECTIVE: The aim of this study was to prospectively assess the development of 24 urinary, gastrointestinal and sexual symptoms in patients with prostate cancer (PCa) during and after image-guided volumetric modulated arc therapy (IG-VMAT). MATERIAL AND METHODS: A total of 87 patients with PCa......, planning of toilet visits, flatulence, mucus, gastrointestinal bleeding and impact of gastrointestinal bother on daily activities compared to baseline. All sexual symptoms increased significantly at all times compared to baseline. The use of ADT was associated with worse sexual symptoms. CONCLUSIONS: IG......-VMAT is a safe treatment for PCa, with few and mild changes in urinary and gastrointestinal symptoms 1 year after RT compared to baseline. Sexual symptoms deteriorated both during and after RT. The use of ADT was associated with worse sexual symptoms....

  10. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    International Nuclear Information System (INIS)

    Amdur, Robert J.; Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-01-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction

  11. Novel dosimetric phantom for quality assurance of volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Letourneau, Daniel; Publicover, Julia; Kozelka, Jakub; Moseley, Douglas J.; Jaffray, David A.

    2009-01-01

    The objective of this work is to assess the suitability and performance of a new dosimeter system with a novel geometry for the quality assurance (QA) of volumetric modulated arc therapy (VMAT). The new dosimeter system consists of a hollow cylinder (15 and 25 cm inner and outer diameters) with 124 diodes embedded in the phantom's cylindrical wall forming four rings of detectors. For coplanar beams, the cylindrical geometry and the ring diode pattern offer the advantage of invariant perpendicular incidence on the beam central axis for any gantry angle and also have the benefit of increasing the detector density as both walls of the cylinder sample the beam. Other advantages include real-time readout and reduced weight with the hollow phantom shape. A calibration method taking into account the variation in radiation sensitivity of the diodes as a function of gantry angle was developed and implemented. In this work, the new dosimeter system was used in integrating mode to perform composite dose measurements along the cylindrical surface supporting the diodes. The reproducibility of the dosimeter response and the angular dependence of the diodes were assessed using simple 6 MV photon static beams. The performance of the new dosimeter system for VMAT QA was then evaluated using VMAT plans designed for a head and neck, an abdominal sarcoma, and a prostate patient. These plans were optimized with 90 control points (CPs) and additional versions of each plan were generated by increasing the number of CPs to 180 and 360 using linear interpolation. The relative dose measured with the dosimeter system for the VMAT plans was compared to the corresponding TPS dose map in terms of relative dose difference (%ΔD) and distance to agreement (DTA). The dosimeter system's sensitivity to gantry rotation offset and scaling errors as well as setup errors was also evaluated. For static beams, the dosimeter system offered good reproducibility and demonstrated small residual diode angular

  12. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M; Rehman, J; Khan, M [The Islaimia University of Bahawalpur, Bahawalpur, Punjab (Pakistan); Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)

    2014-06-01

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT.

  13. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Khan, M; Rehman, J; Khan, M; Chow, J

    2014-01-01

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT

  14. A study of the positioning errors of head and neck in the process of intensity modulation radiated therapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lin Chengguang; Lin Liuwen; Liu Bingti; Liu Xiaomao; Li Guowen

    2011-01-01

    Objective: To investigate the positioning errors of head and neck during intensity-modulated radiation therapy of nasopharyngeal carcinoma. Methods: Nineteen patients with middle-advanced nasopharyngeal carcinoma (T 2-4 N 1-3 M 0 ), treated by intensity-modulated radiation therapy, underwent repeated CT during their 6-week treatment course. All the patients were immobilized by head-neck-shoulder thermoplastic mask. We evaluated their anatomic landmark coordinated in a total of 66 repeated CT data sets and respective x, y, z shifts relative to their position in the planning CT. Results: The positioning error of the neck was 2.44 mm ± 2.24 mm, 2.05 mm ± 1.42 mm, 1.83 mm ± 1.53 mm in x, y, z respectively. And that of the head was 1.05 mm ± 0.87 mm, 1.23 mm ± 1.05 mm, 1.17 mm ± 1.55 mm respectively. The positioning error between neck and head have respectively statistical difference (t=-6.58, -5.28, -3.42, P=0.000, 0.000, 0.001). The system error of the neck was 2.33, 1.67 and 1.56 higher than that of the head, respectively in left-right, vertical and head-foot directions; and the random error of neck was 2.57, 1.34 and 0.99 higher than that of head respectively. Conclusions: In the process of the intensity-modulated radiation therapy of nasopharyngeal carcinoma, with the immobilization by head-neck-shoulder thermoplastic mask, the positioning error of neck is higher than that of head. (authors)

  15. State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83)

    International Nuclear Information System (INIS)

    Gregoire, V.; Mackie, T.R.

    2011-01-01

    The International Commission on Radiation Units and Measurements (ICRU) report No. 83 provides the information necessary to standardize techniques and procedures and to harmonize the prescribing, recording, and reporting of intensity modulated radiation therapy. Applicable concepts and recommendations in previous ICRU reports concerning radiation therapy were adopted, and new concepts were elaborated. In particular, additional recommendations were given on the selection and delineation of the targets volumes and the organs at risk; concepts of dose prescription and dose-volume reporting have also been refined. (authors)

  16. Can We Advance Proton Therapy for Prostate? Considering Alternative Beam Angles and Relative Biological Effectiveness Variations When Comparing Against Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Tracy, E-mail: tunderwood@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Department of Medical Physics and Bioengineering, University College London, London (United Kingdom); Giantsoudi, Drosoula; Moteabbed, Maryam; Zietman, Anthony; Efstathiou, Jason; Paganetti, Harald; Lu, Hsiao-Ming [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2016-05-01

    Purpose: For prostate treatments, robust evidence regarding the superiority of either intensity modulated radiation therapy (IMRT) or proton therapy is currently lacking. In this study we investigated the circumstances under which proton therapy should be expected to outperform IMRT, particularly the proton beam orientations and relative biological effectiveness (RBE) assumptions. Methods and Materials: For 8 patients, 4 treatment planning strategies were considered: (A) IMRT; (B) passively scattered standard bilateral (SB) proton beams; (C) passively scattered anterior oblique (AO) proton beams, and (D) AO intensity modulated proton therapy (IMPT). For modalities (B)-(D) the dose and linear energy transfer (LET) distributions were simulated using the TOPAS Monte Carlo platform and RBE was calculated according to 3 different models. Results: Assuming a fixed RBE of 1.1, our implementation of IMRT outperformed SB proton therapy across most normal tissue metrics. For the scattered AO proton plans, application of the variable RBE models resulted in substantial hotspots in rectal RBE weighted dose. For AO IMPT, it was typically not possible to find a plan that simultaneously met the tumor and rectal constraints for both fixed and variable RBE models. Conclusion: If either a fixed RBE of 1.1 or a variable RBE model could be validated in vivo, then it would always be possible to use AO IMPT to dose-boost the prostate and improve normal tissue sparing relative to IMRT. For a cohort without rectum spacer gels, this study (1) underlines the importance of resolving the question of proton RBE within the framework of an IMRT versus proton debate for the prostate and (2) highlights that without further LET/RBE model validation, great care must be taken if AO proton fields are to be considered for prostate treatments.

  17. Target volume delineation and field setup. A practical guide for conformal and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nancy Y. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Radiation Oncology; Lu, Jiade J. (eds.) [National Univ. Health System, Singapore (Singapore). Dept. of Radiation Oncology; National Univ. of Singapore (Singapore). Dept. of Medicine

    2013-03-01

    Practical handbook on selection and delineation of tumor volumes and fields for conformal radiation therapy, including IMRT. Helpful format facilitating use on a step-by-step basis in daily practice. Designed to ensure accurate coverage of commonly encountered tumors along their routes of spread. This handbook is designed to enable radiation oncologists to appropriately and confidently delineate tumor volumes/fields for conformal radiation therapy, including intensity-modulated radiation therapy (IMRT), in patients with commonly encountered cancers. The orientation of this handbook is entirely practical, in that the focus is on the illustration of clinical target volume (CTV) delineation for each major malignancy. Each chapter provides guidelines and concise knowledge on CTV selection for a particular disease, explains how the anatomy of lymphatic drainage shapes the selection of the target volume, and presents detailed illustrations of volumes, slice by slice, on planning CT images. While the emphasis is on target volume delineation for three-dimensional conformal therapy and IMRT, information is also provided on conventional radiation therapy field setup and planning for certain malignancies for which IMRT is not currently suitable.

  18. Assessment of volumetric-modulated arc therapy for constant and variable dose rates

    Directory of Open Access Journals (Sweden)

    Mariluz De Ornelas-Couto

    2017-01-01

    Full Text Available Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR and six constant dose rate (CDR (100–600 monitor units [MUs]/min plans. Prescription doses were: 80 Gy to planning target volume (PTV for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality.

  19. Intensity Modulated Proton and Photon Therapy for Early Prostate Cancer With or Without Transperineal Injection of a Polyethylen Glycol Spacer: A Treatment Planning Comparison Study

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Damien C., E-mail: damien.weber@unige.ch [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Zilli, Thomas [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Vallee, Jean Paul [Department of Diagnostic Radiology, Geneva University Hospital, Geneva (Switzerland); Rouzaud, Michel; Miralbell, Raymond [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Cozzi, Luca [Oncology Institute of Southern Switzerland, Medical Physics Unit, Bellinzona (Switzerland)

    2012-11-01

    Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipse treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no

  20. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    , beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.

  1. Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium.

    Directory of Open Access Journals (Sweden)

    Carolin Schubert

    Full Text Available To evaluate the performance of a model-based optimisation process for volumetric modulated arc therapy applied to prostate cancer in a multicentric cooperative group. The RapidPlan (RP knowledge-based engine was tested for the planning of Volumetric modulated arc therapy with RapidArc on prostate cancer patients. The study was conducted in the frame of the German RapidPlan Consortium (GRC.43 patients from one institute of the GRC were used to build and train a RP model. This was further shared with all members of the GRC plus an external site from a different country to increase the heterogeneity of the patient's sampling. An in silico multicentric validation of the model was performed at planning level by comparing RP against reference plans optimized according to institutional procedures. A total of 60 patients from 7 institutes were used.On average, the automated RP based plans resulted fully consistent with the manually optimised set with a modest tendency to improvement in the medium-to-high dose region. A per-site stratification allowed to identify different patterns of performance of the model with some organs at risk resulting better spared with the manual or with the automated approach but in all cases the RP data fulfilled the clinical acceptability requirements. Discrepancies in the performance were due to different contouring protocols or to different emphasis put in the optimization of the manual cases.The multicentric validation demonstrated that it was possible to satisfactorily optimize with the knowledge based model patients from all participating centres. In the presence of possibly significant differences in the contouring protocols, the automated plans, though acceptable and fulfilling the benchmark goals, might benefit from further fine tuning of the constraints. The study demonstrates that, at least for the case of prostate cancer patients, it is possibile to share models among different clinical institutes in a cooperative

  2. Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pugachev, A.; Xing, L. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: lei@reyes.stanford.edu

    2001-09-01

    In intensity-modulated radiation therapy (IMRT), the incident beam orientations are often determined by a trial and error search. The conventional beam's-eye view (BEV) tool becomes less helpful in IMRT because it is frequently required that beams go through organs at risk (OARs) in order to achieve a compromise between the dosimetric objectives of the planning target volume (PTV) and the OARs. In this paper, we report a beam's-eye view dosimetrics (BEVD) technique to assist in the selection of beam orientations in IMRT. In our method, each beam portal is divided into a grid of beamlets. A score function is introduced to measure the 'goodness' of each beamlet at a given gantry angle. The score is determined by the maximum PTV dose deliverable by the beamlet without exceeding the tolerance doses of the OARs and normal tissue located in the path of the beamlet. The overall score of the gantry angle is given by a sum of the scores of all beamlets. For a given patient, the score function is evaluated for each possible beam orientation. The directions with the highest scores are then selected as the candidates for beam placement. This procedure is similar to the BEV approach used in conventional radiation therapy, except that the evaluation by a human is replaced by a score function to take into account the intensity modulation. This technique allows one to select beam orientations without the excessive computing overhead of computer optimization of beam orientation. It also provides useful insight into the problem of selection of beam orientation and is especially valuable for complicated cases where the PTV is surrounded by several sensitive structures and where it is difficult to select a set of 'good' beam orientations. Several two-dimensional (2D) model cases were used to test the proposed technique. The plans obtained using the BEVD-selected beam orientations were compared with the plans obtained using equiangular spaced beams. For

  3. An algorithm for real-time dosimetry in intensity-modulated radiation therapy using the radioluminescence signal from Al2O3:C

    DEFF Research Database (Denmark)

    Andersen, C.E.; Marckmann, C.J.; Aznar, Marianne

    2006-01-01

    radiation beams. The dosimetry system has been used for dose measurements in a phantom during an intensity-modulated radiation therapy (IMRT) treatment with 6 MV photons. The RL measurement results are in excellent agreement (i.e. within 1%) with both the OSL results and the dose delivered according...

  4. American Society of Radiation Oncology Recommendations for Documenting Intensity-Modulated Radiation Therapy Treatments

    International Nuclear Information System (INIS)

    Holmes, Timothy; Das, Rupak; Low, Daniel; Yin Fangfang; Balter, James; Palta, Jatinder; Eifel, Patricia

    2009-01-01

    Despite the widespread use of intensity-modulated radiation therapy (IMRT) for approximately a decade, a lack of adequate guidelines for documenting these treatments persists. Proper IMRT treatment documentation is necessary for accurate reconstruction of prior treatments when a patient presents with a marginal recurrence. This is especially crucial when the follow-up care is managed at a second treatment facility not involved in the initial IMRT treatment. To address this issue, an American Society for Radiation Oncology (ASTRO) workgroup within the American ASTRO Radiation Physics Committee was formed at the request of the ASTRO Research Council to develop a set of recommendations for documenting IMRT treatments. This document provides a set of comprehensive recommendations for documenting IMRT treatments, as well as image-guidance procedures, with example forms provided.

  5. Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation

    International Nuclear Information System (INIS)

    Benedict, Stanley H.; Cardinale, Robert M.; Wu Qiuwen; Zwicker, Robert D.; Broaddus, William C.; Mohan, Radhe

    2001-01-01

    Purpose: The implementation of dynamic leaf motion on a micro-multileaf collimator system provides the capability for intensity-modulated stereotactic radiosurgery (IMSRS), and the consequent potential for improved dose distributions for irregularly shaped tumor volumes adjacent to critical organs. This study explores the use of IMSRS to provide improved tumor coverage and normal tissue sparing for small cranial tumors relative to plans based on multiple fixed uniform-intensity beams or traditional circular collimator arc-based stereotactic techniques. Methods and Materials: Four patient cases involving small brain lesions are presented and analyzed. The cases were chosen to include a representative selection of target shapes, number of targets, and adjacent critical areas. Patient plans generated for these comparisons include standard arcs with multiple circular collimators, and fixed noncoplanar static fields with uniform-intensity beams and IMSRS. Parameters used for evaluation of the plans include the percentage of irradiated volume to tumor volume (PITV), normal tissue dose-volume histograms, and dose-homogeneity ratios. All IMSRS plans were computed using previously established IMRT techniques adapted for use with the BrainLAB M3 micro-multileaf collimator. The algorithms comprising the IMRT system for optimization of intensity distributions and conversion into leaf trajectories of the BrainLab M3 were developed at our institution. The ADAC Pinnacle 3 radiation treatment-planning system was used for dose calculations and for input of contours for target volumes and normal critical structures. Results: For all cases, the IMSRS plans showed a high degree of conformity of the dose distribution with the target shape. The IMSRS plans provided either (1) a smaller volume of normal tissue irradiated to significant dose levels, generally taken as doses greater than 50% of the prescription, or (2) a lower dose to an important adjacent critical organ. The reduction in

  6. Neo-adjuvant chemo-radiation of rectal cancer with Volumetric Modulated Arc Therapy: summary of technical and dosimetric features and early clinical experience

    International Nuclear Information System (INIS)

    Richetti, Antonella; Fogliata, Antonella; Clivio, Alessandro; Nicolini, Giorgia; Pesce, Gianfranco; Salati, Emanuela; Vanetti, Eugenio; Cozzi, Luca

    2010-01-01

    To report about initial technical and clinical experience in preoperative radiation treatment of rectal cancer with volumetric modulated arcs with the RapidArc ® (RA) technology. Twenty-five consecutive patients (pts) were treated with RA. All showed locally advanced rectal adenocarcinoma with stage T2-T4, N0-1. Dose prescription was 44 Gy in 22 fractions (or 45 Gy in 25 fractions). Delivery was performed with single arc with a 6 MV photon beam. Twenty patients were treated preoperatively, five did not receive surgery. Twenty-three patients received concomitant chemotherapy with oral capecitabine. A comparison with a cohort of twenty patients with similar characteristics treated with conformal therapy (3DC) is presented as well. From a dosimetric point of view, RA improved conformality of doses (CI 95% = 1.1 vs. 1.4 for RA and 3DC), presented similar target coverage with lower maximum doses, significant sparing of femurs and significant reduction of integral and mean dose to healthy tissue. From the clinical point of view, surgical reports resulted in a down-staging in 41% of cases. Acute toxicity was limited to Grade 1-2 diarrhoea in 40% and Grade 3 in 8% of RA pts, 45% and 5% of 3DC pts, compatible with known effects of concomitant chemotherapy. RA treatments were performed with an average of 2.0 vs. 3.4 min of 3DC. RA proved to be a safe, qualitatively advantageous treatment modality for rectal cancer, showing some improved results in dosimetric aspects

  7. Neo-adjuvant chemo-radiation of rectal cancer with Volumetric Modulated Arc Therapy: summary of technical and dosimetric features and early clinical experience

    Directory of Open Access Journals (Sweden)

    Salati Emanuela

    2010-02-01

    Full Text Available Abstract Background To report about initial technical and clinical experience in preoperative radiation treatment of rectal cancer with volumetric modulated arcs with the RapidArc® (RA technology. Methods Twenty-five consecutive patients (pts were treated with RA. All showed locally advanced rectal adenocarcinoma with stage T2-T4, N0-1. Dose prescription was 44 Gy in 22 fractions (or 45 Gy in 25 fractions. Delivery was performed with single arc with a 6 MV photon beam. Twenty patients were treated preoperatively, five did not receive surgery. Twenty-three patients received concomitant chemotherapy with oral capecitabine. A comparison with a cohort of twenty patients with similar characteristics treated with conformal therapy (3DC is presented as well. Results From a dosimetric point of view, RA improved conformality of doses (CI95% = 1.1 vs. 1.4 for RA and 3DC, presented similar target coverage with lower maximum doses, significant sparing of femurs and significant reduction of integral and mean dose to healthy tissue. From the clinical point of view, surgical reports resulted in a down-staging in 41% of cases. Acute toxicity was limited to Grade 1-2 diarrhoea in 40% and Grade 3 in 8% of RA pts, 45% and 5% of 3DC pts, compatible with known effects of concomitant chemotherapy. RA treatments were performed with an average of 2.0 vs. 3.4 min of 3DC. Conclusion RA proved to be a safe, qualitatively advantageous treatment modality for rectal cancer, showing some improved results in dosimetric aspects.

  8. Concurrent chemotherapy with intensity-modulated radiation therapy for locally advanced squamous cell carcinoma of the larynx and oropharynx: A retrospective single-institution analysis

    NARCIS (Netherlands)

    N.F. Saba (Nabil); D.J. Edelman (David); M. Tighiouart (Mourad); J.G. Gaultney (Jennifer G.); L.W. Davis (Lawrence); F.R. Khuri (Fadlo); A. Chen (Amy); S. Grist (Scott); D.M. Shin (Dong)

    2009-01-01

    textabstractBackground. We present outcome data from concurrent chemotherapy and intensity-modulated radiation therapy (IMRT) for squamous cell carcinoma (SCC) of the larynx and oropharyx. Methods. Eighty patients with laryngeal (n = 15) or oropharyngeal (n = 65) SCC underwent concurrent IMRT and

  9. Dosimetric and QA aspects of Konrad inverse planning system for commissioning intensity-modulated radiation therapy

    Directory of Open Access Journals (Sweden)

    Deshpande Shrikant

    2007-01-01

    Full Text Available The intensity-modulated radiation therapy (IMRT planning is performed using the Konrad inverse treatment planning system and the delivery of the treatment by using Siemens Oncor Impression Plus linear accelerator (step and shoot, which has been commissioned recently. The basic beam data required for commissioning the system were generate. The quality assurance of relative and absolute dose distribution was carried out before clinical implementation. The salient features of Konrad planning system, like dependence of grid size on dose volume histogram (DVH, number of intensity levels and step size in sequencer, are studied quantitatively and qualitatively. To verify whether the planned dose [from treatment planning system (TPS] and delivered dose are the same, the absolute dose at a point is determined using CC01 ion chamber and the axial plane dose distribution is carried out using Kodak EDR2 in conjunction with OmniPro IMRT Phantom and OmniPro IMRT software from Scanditronix Wellhofer. To obtain the optimum combination in leaf sequencer module, parameters like number of intensity levels, step size are analyzed. The difference between pixel values of optimum fluence profile and the fluence profile obtained for various combinations of number of intensity levels and step size is compared and plotted. The calculations of the volume of any RT structure in the dose volume histogram are compared using grid sizes 3 mm and 4 mm. The measured and planned dose at a point showed good agreement (< 3% except for a few cases wherein the chamber was placed in a relatively high dose gradient region. The axial plane dose distribution using film dosimetry shows excellent agreement (correlation coefficient> 0.97 in all the cases. In the leaf sequencer module, the combination of number of intensity level 7 with step size of 3 is the optimal solution for obtaining deliverable segments. The RT structure volume calculation is found to be more accurate with grid size of

  10. Development of a novel quality assurance system based on rolled-up and rolled-out radiochromic films in volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Park, Ji-Yeon; Lee, Jeong-Woo; Choi, Kyoung-Sik; Lee, Jung Seok; Kim, You-Hyun; Hong, Semie; Suh, Tae-Suk

    2011-01-01

    Purpose: To develop a cylindrical phantom with rolled-up radiochromic films and dose analysis software in the rolled-out plane for quality assurance (QA) in volumetric modulated arc therapy (VMAT). Methods: The phantom consists of an acrylic cylindrical body wrapped with radiochromic film inserted into an outer cylindrical shell of 5 cm thickness. The rolled-up films with high spatial resolution enable detection of specific dose errors along the arc trajectory of continuously irradiated and modulated beams in VMAT. The developed dose analysis software facilitates dosimetric evaluation in the rolled-up and rolled-out planes of the film; the calculated doses on the corresponding points where the rolled-up film was placed were reconstructed into a rectangular dose matrix equivalent to that of the rolled-out plane of the film. The VMAT QA system was implemented in 3 clinical cases of prostate, nasopharynx, and pelvic metastasis. Each calculated dose on the rolled-out plane was compared with measurement values by modified gamma evaluation. Detected positions of dose disagreement on the rolled-out plane were also distinguished in cylindrical coordinates. The frequency of error occurrence and error distribution were summarized in a histogram and in an axial view of rolled-up plane to intuitively identify the corresponding positions of detected errors according to the gantry angle. Results: The dose matrix reconstructed from the developed VMAT QA system was used to verify the measured dose distribution along the arc trajectory. Dose discrepancies were detected on the rolled-out plane and visualized on the calculated dose matrix in cylindrical coordinates. The error histogram obtained by gamma evaluation enabled identification of the specific error frequency at each gantry angular position. The total dose error occurring on the cylindrical surface was in the range of 5%-8% for the 3 cases. Conclusions: The developed system provides a practical and reliable QA method to

  11. Development of a novel quality assurance system based on rolled-up and rolled-out radiochromic films in volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Yeon; Lee, Jeong-Woo; Choi, Kyoung-Sik; Lee, Jung Seok; Kim, You-Hyun; Hong, Semie; Suh, Tae-Suk [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Research Institute of Health Science, College of Health Science, Korea University, Seoul 136-703 (Korea, Republic of) and Department of Radiation Oncology, Konkuk University Medical Center, Seoul 143-729 (Korea, Republic of); Department of Radiation Oncology, Anyang SAM Hospital, Anyang 430-733 (Korea, Republic of) and Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Department of Radiation Oncology, Anyang SAM Hospital, Anyang 430-733 (Korea, Republic of); Department of Radiologic Science, College of Health Science, Korea University, Seoul 136-703 (Korea, Republic of); Department of Radiation Oncology, Konkuk University Medical Center, Seoul 143-729 (Korea, Republic of); Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of)

    2011-12-15

    Purpose: To develop a cylindrical phantom with rolled-up radiochromic films and dose analysis software in the rolled-out plane for quality assurance (QA) in volumetric modulated arc therapy (VMAT). Methods: The phantom consists of an acrylic cylindrical body wrapped with radiochromic film inserted into an outer cylindrical shell of 5 cm thickness. The rolled-up films with high spatial resolution enable detection of specific dose errors along the arc trajectory of continuously irradiated and modulated beams in VMAT. The developed dose analysis software facilitates dosimetric evaluation in the rolled-up and rolled-out planes of the film; the calculated doses on the corresponding points where the rolled-up film was placed were reconstructed into a rectangular dose matrix equivalent to that of the rolled-out plane of the film. The VMAT QA system was implemented in 3 clinical cases of prostate, nasopharynx, and pelvic metastasis. Each calculated dose on the rolled-out plane was compared with measurement values by modified gamma evaluation. Detected positions of dose disagreement on the rolled-out plane were also distinguished in cylindrical coordinates. The frequency of error occurrence and error distribution were summarized in a histogram and in an axial view of rolled-up plane to intuitively identify the corresponding positions of detected errors according to the gantry angle. Results: The dose matrix reconstructed from the developed VMAT QA system was used to verify the measured dose distribution along the arc trajectory. Dose discrepancies were detected on the rolled-out plane and visualized on the calculated dose matrix in cylindrical coordinates. The error histogram obtained by gamma evaluation enabled identification of the specific error frequency at each gantry angular position. The total dose error occurring on the cylindrical surface was in the range of 5%-8% for the 3 cases. Conclusions: The developed system provides a practical and reliable QA method to

  12. Postmastectomy intensity modulated radiation therapy following immediate expander-implant reconstruction

    International Nuclear Information System (INIS)

    Koutcher, Lawrence; Ballangrud, Ase; Cordeiro, Peter G.; McCormick, Beryl; Hunt, Margie; Zee, Kimberly J. Van; Hudis, Clifford; Beal, Kathryn

    2010-01-01

    Background/purpose: To evaluate radiation plans of patients undergoing mastectomy with immediate expander-implant reconstruction followed by postmastectomy radiation therapy (PMRT). Materials/methods: We identified 41 patients from June 2004 to May 2007 who underwent mastectomy, immediate expander-implant reconstruction, and PMRT with intensity-modulated radiation therapy. We assessed chest wall (CW) coverage and volume of heart and lung irradiated. Results: In 73% of patients, all CW borders were adequately covered, and in 22%, all but 1 border were adequately covered. The total lung V 20 was 20 was 13% (range, 3-23%), and the mean heart D mean was 2.81 Gy (range, 0.53-9.60 Gy). In patients with left-sided lesions without internal mammary nodes (IMNs) treatment (n = 22), the mean lung V 20 was 12.6% and the mean heart D mean was 3.90 Gy, and in the patient with IMN treatment, the lung V 20 was 18% and heart D mean was 8.04 Gy. For right-sided lesions without IMN treatment (n = 12), the mean lung V 20 was 12.4% and the mean heart D mean was 0.90 Gy, and in patients with IMN treatment (n = 6), these numbers were 17.8% and 1.76 Gy. At a median follow-up of 29 months, the 30-month actuarial local control was 97%. Conclusions: In women undergoing immediate expander-implant reconstruction, PMRT can achieve excellent local control with acceptable heart and lung doses. These results can be achieved even when the IMN are being treated, although doses to the heart and lungs will be higher.

  13. SU-E-T-644: Evaluation of Angular Dependence Correction for 2D Array Detector Using for Quality Assurance of Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Karthikeyan, N; Ganesh, K M; Vikraman, S; Shariff, MH

    2014-01-01

    Purpose: To evaluate the angular dependence correction for Matrix Evolution 2D array detector in quality assurance of volumetric modulated arc therapy(VMAT). Methods: Total ten patients comprising of different sites were planned for VMAT and taken for the study. Each plan was exposed on Matrix Evolution 2D array detector with Omnipro IMRT software based on the following three different methods using 6MV photon beams from Elekta Synergy linear accelerator. First method, VMAT plan was delivered on Matrix Evolution detector as it gantry mounted with dedicated holder with build-up of 2.3cm. Second, the VMAT plan was delivered with the static gantry angle on to the table mounted setup. Third, the VMAT plan was delivered with actual gantry angle on Matrix Evolution detector fixed in Multicube phantom with gantry angle sensor and angular dependence correction were applied to quantify the plan quality. For all these methods, the corresponding QA plans were generated in TPS and the dose verification was done for both point and 2D fluence analysis with pass criteria of 3% dose difference and 3mm distance to agreement. Results: The measured point dose variation for the first method was observed as 1.58±0.6% of mean and SD with TPS calculated. For second and third method, the mean and standard deviation(SD) was observed as 1.67±0.7% and 1.85±0.8% respectively. The 2D fluence analysis of measured and TPS calculated has the mean and SD of 97.9±1.1%, 97.88±1.2% and 97.55±1.3% for first, second and third methods respectively. The calculated two-tailed Pvalue for point dose and 2D fluence analysis shows the insignificance with values of 0.9316 and 0.9015 respectively, among the different methods of QA. Conclusion: The qualitative evaluation of angular dependence correction for Matrix Evolution 2D array detector shows its competency in accuracy of quality assurance measurement of composite dose distribution of volumetric modulated arc therapy

  14. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    Science.gov (United States)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  15. Implementation of intensity-modulated conformational radiotherapy for cervical cancers at the Alexis Vautrin Centre

    International Nuclear Information System (INIS)

    Renard-Oldrini, Sophie

    2010-01-01

    As platinum salt based concomitant conformational radiotherapy and chemotherapy have been used as a standard treatment for cervical cancers but resulted in digestive and haematological toxicities, this research thesis reports the application of intensity-modulated conformational radiation therapy. After having recalled some epidemiological, anatomical aspects, diagnosis and treatments aspects regarding cervical cancer, the author presents this last treatment technique (principles, benefits, practical implementation). The author discusses results obtained by an experiment during which seven patients have been treated by simple conformational radiation therapy, and four by intensity-modulated conformational radiation therapy. Results are discussed in terms of volumes (clinical target volume, growth target volume, planned target volume), dosimetric results, toxicities (urine and skin), weight loss [fr

  16. Weekly Cisplatin and Volumetric-Modulated Arc Therapy With Simultaneous Integrated Boost for Radical Treatment of Advanced Cervical Cancer in Elderly Patients: Feasibility and Clinical Preliminary Results

    Science.gov (United States)

    Mazzola, Rosario; Ricchetti, Francesco; Fiorentino, Alba; Levra, Niccolò Giaj; Fersino, Sergio; Di Paola, Gioacchino; Ruggieri, Ruggero

    2016-01-01

    Background: To evaluate the feasibility and clinical preliminary results of weekly cisplatin and volumetric-modulated arc therapy to the pelvis with simultaneous integrated boost to macroscopic disease in a cohort of elderly patients. Materials and Methods: Inclusion criteria of this prospective study were age ≥70 years, Karnofsky performance status 70 to 100, locally advanced histologically proven squamous cervical carcinoma, and patients unable to undergo brachytherapy. Radiation doses prescribed were 66 Gy to the macroscopic disease and 54 Gy to the pelvic nodes in 30 fractions. Weekly cisplatin dose was 40 mg/mq. Results: A total of 30 patients were recruited. Median follow-up was 32 months (range: 8-48 months). Median age was 72 years (range: 70-84 years). The 3-year overall survival and local control were 93% and 80%, respectively. The median time to progression was 24 months (range: 6-30 months). Analyzing clinical outcome grouping based on the stage of disease, II versus III, the 3-year overall survival was 100% and 85%, respectively. The 3-year local control was 91% for stage II and 67% for stage III. Acute and late toxicities were acceptable without severe events. Conclusion: Weekly cisplatin and volumetric-modulated arc therapy–simultaneous integrated boost for radical treatment of advanced cervical cancer in the current cohort of elderly patients were feasible. Long-term results and prospective randomized trials are advocated. PMID:27402633

  17. Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy.

    Science.gov (United States)

    Miura, Hideharu; Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi

    2016-11-08

    Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribu-tion measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ~ 3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ~ 1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ~ 1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. © 2016 The Authors.

  18. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1996-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  19. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1997-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  20. Linear energy transfer incorporated intensity modulated proton therapy optimization

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  1. Beyond bixels: Generalizing the optimization parameters for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Markman, Jerry; Low, Daniel A.; Beavis, Andrew W.; Deasy, Joseph O.

    2002-01-01

    Intensity modulated radiation therapy (IMRT) treatment planning systems optimize fluence distributions by subdividing the fluence distribution into rectangular bixels. The algorithms typically optimize the fluence intensity directly, often leading to fluence distributions with sharp discontinuities. These discontinuities may yield difficulties in delivery of the fluence distribution, leading to inaccurate dose delivery. We have developed a method for decoupling the bixel intensities from the optimization parameters; either by introducing optimization control points from which the bixel intensities are interpolated or by parametrizing the fluence distribution using basis functions. In either case, the number of optimization search parameters is reduced from the direct bixel optimization method. To illustrate the concept, the technique is applied to two-dimensional idealized head and neck treatment plans. The interpolation algorithms investigated were nearest-neighbor, linear and cubic spline, and radial basis functions serve as the basis function test. The interpolation and basis function optimization techniques were compared against the direct bixel calculation. The number of optimization parameters were significantly reduced relative to the bixel optimization, and this was evident in the reduction of computation time of as much as 58% from the full bixel optimization. The dose distributions obtained using the reduced optimization parameter sets were very similar to the full bixel optimization when examined by dose distributions, statistics, and dose-volume histograms. To evaluate the sensitivity of the fluence calculations to spatial misalignment caused either by delivery errors or patient motion, the doses were recomputed with a 1 mm shift in each beam and compared to the unshifted distributions. Except for the nearest-neighbor algorithm, the reduced optimization parameter dose distributions were generally less sensitive to spatial shifts than the bixel

  2. Dosimetric comparison to the heart and cardiac substructure in a large cohort of esophageal cancer patients treated with proton beam therapy or Intensity-modulated radiation therapy.

    Science.gov (United States)

    Shiraishi, Yutaka; Xu, Cai; Yang, Jinzhong; Komaki, Ritsuko; Lin, Steven H

    2017-10-01

    To compare heart and cardiac substructure radiation exposure using intensity-modulated radiotherapy (IMRT) vs. proton beam therapy (PBT) for patients with mid- to distal esophageal cancer who received chemoradiation therapy. We identified 727 esophageal cancer patients who received IMRT (n=477) or PBT (n=250) from March 2004 to December 2015. All patients were treated to 50.4Gy with IMRT or to 50.4 cobalt Gray equivalents with PBT. IMRT and PBT dose-volume histograms (DVHs) of the whole heart, atria, ventricles, and four coronary arteries were compared. For PBT patients, passive scattering proton therapy (PSPT; n=237) and intensity-modulated proton therapy (IMPT; n=13) DVHs were compared. Compared with IMRT, PBT resulted in significantly lower mean heart dose (MHD) and heart V5, V10, V20, V30, and V40as well as lower radiation exposure to the four chambers and four coronary arteries. Compared with PSPT, IMPT resulted in significantly lower heart V20, V30, and V40 but not MHD or heart V5 or V10. IMPT also resulted in significantly lower radiation doses to the left atrium, right atrium, left main coronary artery, and left circumflex artery, but not the left ventricle, right ventricle, left anterior descending artery, or right coronary artery. Factors associated with lower MHD included PBT (Pheart and cardiac substructures than IMRT. Long-term studies are necessary to determine how this cardiac sparing effect impacts the development of coronary artery disease and other cardiac complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Minimizing the number of segments in a delivery sequence for intensity-modulated radiation therapy with a multileaf collimator

    International Nuclear Information System (INIS)

    Dai Jianrong; Zhu Yunping

    2001-01-01

    This paper proposes a sequencing algorithm for intensity-modulated radiation therapy with a multileaf collimator in the static mode. The algorithm aims to minimize the number of segments in a delivery sequence. For a machine with a long verification and recording overhead time (e.g., 15 s per segment), minimizing the number of segments is equivalent to minimizing the delivery time. The proposed new algorithm is based on checking numerous candidates for a segment and selecting the candidate that results in a residual intensity matrix with the least complexity. When there is more than one candidate resulting in the same complexity, the candidate with the largest size is selected. The complexity of an intensity matrix is measured in the new algorithm in terms of the number of segments in the delivery sequence obtained by using a published algorithm. The beam delivery efficiency of the proposed algorithm and the influence of different published algorithms used to calculate the complexity of an intensity matrix were tested with clinical intensity-modulated beams. The results show that no matter which published algorithm is used to calculate the complexity of an intensity matrix, the sequence generated by the algorithm proposed here is always more efficient than that generated by the published algorithm itself. The results also show that the algorithm used to calculate the complexity of an intensity matrix affects the efficiency of beam delivery. The delivery sequences are frequently most efficient when the algorithm of Bortfeld et al. is used to calculate the complexity of an intensity matrix. Because no single variation is most efficient for all beams tested, we suggest implementing multiple variations of our algorithm

  4. Comparison of RapidArc plans and fixed field intensity modulated radiotherapy planning in cervical cancer radiotherapy

    International Nuclear Information System (INIS)

    Liu Xiangyu; Liu Xianfeng; He Ya'nan; Yin Wenjuan; Wu Yongzhong

    2011-01-01

    Objective: To explore the advantages and disadvantages between the RapidArc plans and fixed-field IMRT plan (IMRT). Methods: Ten cases of cervical cancer,aged 55 (36-70), who were to receive post-operative radiotherapy were selected randomly. Single arc (Arc 1), two arcs (Arc 2), and three arc (Arc 3) RapidArc plans and fixed-field IMRT plan were designed respectively in the Eclipse 8.6 planning system. The designing, treatment time, target area, and dose distribution of organs at risk by these 4 planning techniques were compared. Results: The values of average planned treatment time by the Arc 1, Arc 2, and Arc 3 ten cases was 98, 155, 185, and 46 min, respectively. The values of average treatment time in the Varian IX accelerator were 2.15, 3.32, 4.48, and 6.95 min, respectively. The average mean doses were (48.99±1.08),(49.40±0.51), (49.51±0.62), and (48.65±0.92) Gy, respectively. The values of homogeneity index (HI) of target were 1.11±0.07, 1.07±0.02, 1.06±0.02, and 1.12±0.05, respectively. The values of conformal index (CI) of target were 0.73±0.13, 0.87±0.06, 0.87±0.06, and 0.79±0.06, respectively. The doses at rectum, bladder, and small intestine calculated by IMRT plan were the lowest, and the doses at the femoral neck calculated by these 4 plans were similar. Conclusions: The RapidArc plan is superior in dose distribution at target, HI, CI, and treatment time to IMRT, but IMRT plan is superior to RapidArc in planned dose calculation time and protection of organs at risk. However, in general, the RapidArc plan is better in clinical application than IMRT plan. (authors)

  5. Learning modulation of odor representations: new findings from Arc-indexed networks

    Directory of Open Access Journals (Sweden)

    Qi eYuan

    2014-12-01

    Full Text Available We first review our understanding of odor representations in rodent olfactory bulb and anterior piriform cortex. We then consider learning-induced representation changes. Finally we describe the perspective on network representations gained from examining Arc-indexed odor networks of awake rats. Arc-indexed networks are sparse and distributed, consistent with current views. However Arc provides representations of repeated odors. Arc-indexed repeated odor representations are quite variable. Sparse representations are assumed to be compact and reliable memory codes. Arc suggests this is not necessarily the case. The variability seen is consistent with electrophysiology in awake animals and may reflect top down-cortical modulation of context. Arc-indexing shows that distinct odors share larger than predicted neuron pools. These may be low-threshold neuronal subsets.Learning’s effect on Arc-indexed representations is to increase the stable or overlapping component of rewarded odor representations. This component can decrease for similar odors when their discrimination is rewarded. The learning effects seen are supported by electrophysiology, but mechanisms remain to be elucidated.

  6. Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case

    International Nuclear Information System (INIS)

    Lobefalo, Francesca; Cozzi, Luca; Scorsetti, Marta; Mancosu, Pietro; Bignardi, Mario; Reggiori, Giacomo; Tozzi, Angelo; Tomatis, Stefano; Alongi, Filippo; Fogliata, Antonella; Gaudino, Anna; Navarria, Piera

    2013-01-01

    To assess the dosimetric effect induced by inter-observer variability in target definition for 3D-conformal RT (3DCRT) and volumetric modulated arc therapy by RapidArc (RA) techniques for rectal cancer treatment. Ten patients with rectal cancer subjected to neo-adjuvant RT were randomly selected from the internal database. Four radiation oncologists independently contoured the clinical target volume (CTV) in blind mode. Planning target volume (PTV) was defined as CTV + 7 mm in the three directions. Afterwards, shared guidelines between radiation oncologists were introduced to give general criteria for the contouring of rectal target and the four radiation oncologists defined new CTV following the guidelines. For each patient, six intersections (I) and unions (U) volumes were calculated coupling the contours of the various oncologists. This was repeated for the contours drawn after the guidelines. Agreement Index (AI = I/U) was calculated pre and post guidelines. Two RT plans (one with 3DCRT technique using 3–4 fields and one with RA using a single modulated arc) were optimized on each radiation oncologist’s PTV. For each plan the PTV volume receiving at least 95% of the prescribed dose (PTV V95%) was calculated for both target and non-target PTVs. The inter-operator AI pre-guidelines was 0.57 and was increased up to 0.69 post-guidelines. The maximum volume difference between the various CTV couples, drawn for each patient, passed from 380 ± 147 cm 3 to 137 ± 83 cm 3 after the introduction of guidelines. The mean percentage for the non-target PTV V95% was 93.7 ± 9.2% before and 96.6 ± 4.9%after the introduction of guidelines for the 3DCRT, for RA the increase was more relevant, passing from 86.5 ± 13.8% (pre) to 94.5 ± 7.5% (post). The OARs were maximally spared with VMAT technique while the variability between pre and post guidelines was not relevant in both techniques. The contouring inter-observer variability has dosimetric effects in the PTV coverage

  7. Hippocampal sparing radiotherapy for glioblastoma patients: a planning study using volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Hofmaier, Jan; Kantz, Steffi; Söhn, Matthias; Dohm, Oliver S.; Bächle, Stefan; Alber, Markus; Parodi, Katia; Belka, Claus; Niyazi, Maximilian

    2016-01-01

    The purpose of this study is to investigate the potential to reduce exposure of the contralateral hippocampus in radiotherapy for glioblastoma using volumetric modulated arc therapy (VMAT). Datasets of 27 patients who had received 3D conformal radiotherapy (3D-CRT) for glioblastoma with a prescribed dose of 60Gy in fractions of 2Gy were included in this planning study. VMAT plans were optimized with the aim to reduce the dose to the contralateral hippocampus as much as possible without compromising other parameters. Hippocampal dose and treatment parameters were compared to the 3D-CRT plans using the Wilcoxon signed-rank test. The influence of tumour location and PTV size on the hippocampal dose was investigated with the Mann–Whitney-U-test and Spearman’s rank correlation coefficient. The median reduction of the contralateral hippocampus generalized equivalent uniform dose (gEUD) with VMAT was 36 % compared to the original 3D-CRT plans (p < 0.05). Other dose parameters were maintained or improved. The median V30Gy brain could be reduced by 17.9 % (p < 0.05). For VMAT, a parietal and a non-temporal tumour localisation as well as a larger PTV size were predictors for a higher hippocampal dose (p < 0.05). Using VMAT, a substantial reduction of the radiotherapy dose to the contralateral hippocampus for patients with glioblastoma is feasible without compromising other treatment parameters. For larger PTV sizes, less sparing can be achieved. Whether this approach is able to preserve the neurocognitive status without compromising the oncological outcome needs to be investigated in the setting of prospective clinical trials

  8. Iterative regularization in intensity-modulated radiation therapy optimization

    International Nuclear Information System (INIS)

    Carlsson, Fredrik; Forsgren, Anders

    2006-01-01

    A common way to solve intensity-modulated radiation therapy (IMRT) optimization problems is to use a beamlet-based approach. The approach is usually employed in a three-step manner: first a beamlet-weight optimization problem is solved, then the fluence profiles are converted into step-and-shoot segments, and finally postoptimization of the segment weights is performed. A drawback of beamlet-based approaches is that beamlet-weight optimization problems are ill-conditioned and have to be regularized in order to produce smooth fluence profiles that are suitable for conversion. The purpose of this paper is twofold: first, to explain the suitability of solving beamlet-based IMRT problems by a BFGS quasi-Newton sequential quadratic programming method with diagonal initial Hessian estimate, and second, to empirically show that beamlet-weight optimization problems should be solved in relatively few iterations when using this optimization method. The explanation of the suitability is based on viewing the optimization method as an iterative regularization method. In iterative regularization, the optimization problem is solved approximately by iterating long enough to obtain a solution close to the optimal one, but terminating before too much noise occurs. Iterative regularization requires an optimization method that initially proceeds in smooth directions and makes rapid initial progress. Solving ten beamlet-based IMRT problems with dose-volume objectives and bounds on the beamlet-weights, we find that the considered optimization method fulfills the requirements for performing iterative regularization. After segment-weight optimization, the treatments obtained using 35 beamlet-weight iterations outperform the treatments obtained using 100 beamlet-weight iterations, both in terms of objective value and of target uniformity. We conclude that iterating too long may in fact deteriorate the quality of the deliverable plan

  9. Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Rankine, Leith J., E-mail: Leith_Rankine@med.unc.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Mein, Stewart [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Cai, Bin; Curcuru, Austen [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Juang, Titania; Miles, Devin [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Mutic, Sasa; Wang, Yuhe [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Oldham, Mark [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Li, H. Harold, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States)

    2017-04-01

    Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning system (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We

  10. Three-Dimensional Dosimetric Validation of a Magnetic Resonance Guided Intensity Modulated Radiation Therapy System

    International Nuclear Information System (INIS)

    Rankine, Leith J.; Mein, Stewart; Cai, Bin; Curcuru, Austen; Juang, Titania; Miles, Devin; Mutic, Sasa; Wang, Yuhe; Oldham, Mark; Li, H. Harold

    2017-01-01

    Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning system (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We

  11. Can volumetric modulated arc therapy with flattening filter free beams play a role in stereotactic body radiotherapy for liver lesions? A volume-based analysis

    International Nuclear Information System (INIS)

    Reggiori, Giacomo; Mancosu, Pietro; Castiglioni, Simona; Alongi, Filippo; Pellegrini, Chiara; Lobefalo, Francesca; Catalano, Maddalena; Fogliata, Antonella; Arcangeli, Stefano; Navarria, Piera; Cozzi, Luca; Scorsetti, Marta

    2012-01-01

    Purpose: To compare volumetric modulated arc therapy with flattening filter free (FFF) and flattening filter (FF) beams in patients with hepatic metastases subject to hypofractionated radiotherapy (RT). Methods: A planning study on 13 virtual lesions of increasing volume was performed. Two single arc plans were optimized with the RapidArc technique using either FFF or FF beams. A second planning study was performed on ten patients treated for liver metastases to validate conclusions. In all cases, a dose of 75 Gy in 3 fractions was prescribed to the planning target volume (PTV) and plans were evaluated in terms of coverage, homogeneity, conformity, mean dose to healthy liver and to healthy tissue. For each parameter, results were expressed in relative terms as the percentage ratio between FFF and FF data. Results: In terms of PTV coverage, conformity index favored FFF for targets of intermediate size while FF resulted more suitable for small ( 3 ) and large (>300 cm 3 ) targets. Plans optimized with FFF beams resulted in increased sparing of healthy tissue in ≅85% of cases. Despite the qualitative results, no statistically significant differences were found between FFF and FF results. Plans optimized with un-flattened beams resulted in higher average MU/Gy than plans with FF beams. A remarkable and significant difference was observed in the beam-on time (BOT) needed to deliver plans. The BOT for FF plans was 8.2 ± 1.0 min; for FFF plans BOT was 2.2 ± 0.2 min. Conclusions: RapidArc plans optimized using FFF were dosimetrically equivalent to those optimized using FF beams, showing the feasibility of SBRT treatments with FFF beams. Some improvement in healthy tissue sparing was observed when using the FFF modality due to the different beam's profile. The main advantage was a considerable reduction of beam-on time, relevant for SBRT techniques.

  12. Patients with advanced periodontal disease before intensity-modulated radiation therapy are prone to develop bone healing problems : a 2-year prospective follow-up study

    NARCIS (Netherlands)

    Schuurhuis, Jennifer M; Stokman, Monique A; Witjes, Max J H; Reintsema, Harry; Langendijk, Johannes A; Vissink, Arjan; Spijkervet, Frederik K L

    PURPOSE: Intensity-modulated radiation therapy (IMRT) has changed radiation treatment of head and neck cancer (HNC). However, it is still unclear if and how IMRT changes oral morbidity outcomes. In this prospective study, we assessed the outcome of reducing post-IMRT sequelae by means of

  13. Clinical Outcomes of Volume-Modulated Arc Therapy in 205 Patients with Nasopharyngeal Carcinoma: An Analysis of Survival and Treatment Toxicities.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    Full Text Available To investigate the clinical efficacy and treatment toxicity of volume-modulated arc therapy (VMAT for nasopharyngeal carcinoma (NPC.205 VMAT-treated NPC patients from our cancer center were prospectively entrolled. All patients received 68-70 Gy irradiation based on the planning target volume of the primary gross tumor volume. Acute and late toxicities were graded according to the Common Terminology Criteria for Adverse Events v3.0 and Radiation Therapy Oncology Group Late Radiation Morbidity Scoring Criteria.The median follow-up period was 37.3 months (range, 6.3-45.1 months. The 3-year estimated local failure-free survival, regional failure-free survival, locoregional failure-free survival, distant metastasis-free survival, disease-free survival and overall survival were 95.5%, 97.0%, 94.0%, 92.1%, 86.8% and 97.0%, respectively. Cox regression analysis showed primary gross tumor volume, N stage and EBV-DNA to be independent predictors of VMAT outcomes (P < 0.05. The most common acute and late side effects were grade 2-3 mucositis (78% and xerostomia (83%, 61%, 34%, and 9% at 3, 6, 12 and 24 months after VMAT, respectively.VMAT for the primary treatment of NPC achieved very high locoregional control with a favorable toxicity profile. The time-saving benefit of VMAT will enable more patients to receive precision radiotherapy.

  14. Intensity-modulated radiation therapy to bilateral lower limb extremities concurrently: a planning case study

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, Emma, E-mail: emmafitz1390@gmail.com; Miles, Wesley; Fenton, Paul; Frantzis, Jim [Radiation Oncology, Epworth HealthCare, Victoria (Australia)

    2014-09-15

    Non-melanomatous skin cancers represent 80% of all newly diagnosed cancers in Australia with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being the most common. A previously healthy 71-year-old woman presented with widespread and tender superficial skin cancers on the lower bilateral limbs. External beam radiation therapy through the use of intensity-modulated radiation therapy (IMRT) was employed as the treatment modality of choice as this technique provides conformal dose distribution to a three-dimensional treatment volume while reducing toxicity to surrounding tissues. The patient was prescribed a dose of 60 Gy to the planning target volume (PTV) with 1.0 cm bolus over the ventral surface of each limb. The beam arrangement consisted of six treatment fields that avoided entry and exit through the contralateral limb. The treatment plans met the International Commission on Radiation Units and Measurements (ICRU) guidelines and produced highly conformal dosimetric results. Skin toxicity was measured against the National Cancer Institute: Common Terminology Criteria for Adverse Events (NCI: CTCAE) version 3. A well-tolerated treatment was delivered with excellent results given the initial extent of the disease. This case study has demonstrated the feasibility and effectiveness of IMRT for skin cancers as an alternative to surgery and traditional superficial radiation therapy, utilising a complex PTV of the extremities for patients with similar presentations.

  15. Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy

    Science.gov (United States)

    Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.

    2013-11-01

    Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.

  16. Using decision analysis to determine the cost-effectiveness of intensity-modulated radiation therapy in the treatment of intermediate risk prostate cancer

    International Nuclear Information System (INIS)

    Konski, Andre; Watkins-Bruner, Deborah; Feigenberg, Steven; Hanlon, Alexandra; Kulkarni, Sachin M.S.; Beck, J. Robert; Horwitz, Eric M.; Pollack, Alan

    2006-01-01

    Background: The specific aim of this study is to evaluate the cost-effectiveness of intensity-modulated radiation therapy (IMRT) compared with three-dimensional conformal radiation therapy (3D-CRT) in the treatment of a 70-year-old with intermediate-risk prostate cancer. Methods: A Markov model was designed with the following states; posttreatment, hormone therapy, chemotherapy, and death. Transition probabilities from one state to another were calculated from rates derived from the literature for IMRT and 3D-CRT. Utility values for each health state were obtained from preliminary studies of preferences conducted at Fox Chase Cancer Center. The analysis took a payer's perspective. Expected mean costs, cost-effectiveness scatterplots, and cost acceptability curves were calculated with commercially available software. Results: The expected mean cost of patients undergoing IMRT was $47,931 with a survival of 6.27 quality-adjusted life years (QALYs). The expected mean cost of patients having 3D-CRT was $21,865 with a survival of 5.62 QALYs. The incremental cost-effectiveness comparing IMRT with CRT was $40,101/QALYs. Cost-effectiveness acceptability curve analysis revealed a 55.1% probability of IMRT being cost-effective at a $50,000/QALY willingness to pay. Conclusion: Intensity-modulated radiation therapy was found to be cost-effective, however, at the upper limits of acceptability. The results, however, are dependent on the assumptions of improved biochemical disease-free survival with fewer patients undergoing subsequent salvage therapy and improved quality of life after the treatment. In the absence of prospective randomized trials, decision analysis can help inform physicians and health policy experts on the cost-effectiveness of emerging technologies

  17. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    International Nuclear Information System (INIS)

    Broderick, Maria; Leech, Michelle; Coffey, Mary

    2009-01-01

    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU) required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct Aperture optimization

  18. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Directory of Open Access Journals (Sweden)

    Coffey Mary

    2009-02-01

    Full Text Available Abstract Intensity Modulated Radiation Therapy (IMRT is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct

  19. Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Maria; Leech, Michelle; Coffey, Mary [Division of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin, Ireland (United Kingdom)

    2009-02-16

    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step. One of the main problems of IMRT, which becomes even more apparent as the complexity of the IMRT plan increases, is the dramatic increase in the number of Monitor Units (MU) required to deliver a fractionated treatment. The difficulty with this increase in MU is its association with increased treatment times and a greater leakage of radiation from the MLCs increasing the total body dose and the risk of secondary cancers in patients. Therefore one attempts to find ways of reducing these MU without compromising plan quality. The design of inverse planning systems where the beam is divided into small beamlets to produce the required intensity map automatically introduces complexity into IMRT treatment planning. Plan complexity is associated with many negative factors such as dosimetric uncertainty and delivery issues A large search space is required necessitating much computing power. However, the limitations of the delivery technology are not taken into consideration when designing the ideal intensity map therefore a further step termed the sequencing step is required to convert the ideal intensity map into a deliverable one. Many approaches have been taken to reduce the complexity. These include setting intensity limits, putting penalties on the cost function and using smoothing filters Direct Aperture optimization

  20. Patient-specific quality assurance for the delivery of 60Co intensity modulated radiation therapy subject to a 0.35 T lateral magnetic field

    Science.gov (United States)

    Li, H. Harold; Rodriguez, Vivian L.; Green, Olga L.; Hu, Yanle; Kashani, Rojano; Wooten, H. Omar; Yang, Deshan; Mutic, Sasa

    2014-01-01

    Purpose This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging guided radiation therapy device. Methods and materials The program consisted of the following components: 1) one-dimensional multipoint ionization chamber measurement using a customized 15 cm3 cubic phantom, 2) two-dimensional (2D) radiographic film measurement using a 30×30×20 cm3 phantom with multiple inserted ionization chambers, 3) quasi- three-dimensional (3D) diode array (ArcCHECK) measurement with a centrally inserted ionization chamber, 4) 2D fluence verification using machine delivery log files, and 5) 3D Monte-Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Results The ionization chamber measurements agreed well with treatment planning system (TPS) computed doses in all phantom geometries where the mean difference (mean ± SD) was 0.0% ± 1.3% (n=102, range, −3.0 % to 2.9%). The film measurements also showed excellent agreement with the TPS computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30, range, 87.4% to 100%). For ArcCHECK measurements, the mean passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34, range, 95.8% to 100%). 2D fluence maps with a resolution of 1×1 mm2 showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18, range, 97.0% to100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. Conclusions We have developed a dosimetry program for ViewRay’s patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and

  1. Image Guided Hypofractionated Postprostatectomy Intensity Modulated Radiation Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Stephen L.; Patel, Pretesh; Song, Haijun [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Freedland, Stephen J. [Surgery Section, Durham Veterans Administration, and Division of Urology, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California (United States); Bynum, Sigrun; Oh, Daniel; Palta, Manisha; Yoo, David; Oleson, James [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Salama, Joseph K., E-mail: joseph.salama@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2016-03-01

    Purpose: Hypofractionated radiation therapy (RT) has promising long-term biochemical relapse-free survival (bRFS) with comparable toxicity for definitive treatment of prostate cancer. However, data reporting outcomes after adjuvant and salvage postprostatectomy hypofractionated RT are sparse. Therefore, we report the toxicity and clinical outcomes after postprostatectomy hypofractionated RT. Methods and Materials: From a prospectively maintained database, men receiving image guided hypofractionated intensity modulated RT (HIMRT) with 2.5-Gy fractions constituted our study population. Androgen deprivation therapy was used at the discretion of the radiation oncologist. Acute toxicities were graded according to the Common Terminology Criteria for Adverse Events version 4.0. Late toxicities were scored using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale. Biochemical recurrence was defined as an increase of 0.1 in prostate-specific antigen (PSA) from posttreatment nadir or an increase in PSA despite treatment. The Kaplan-Meier method was used for the time-to-event outcomes. Results: Between April 2008 and April 2012, 56 men received postoperative HIMRT. The median follow-up time was 48 months (range, 21-67 months). Thirty percent had pre-RT PSA <0.1; the median pre-RT detectable PSA was 0.32 ng/mL. The median RT dose was 65 Gy (range, 57.5-65 Gy). Ten patients received neoadjuvant and concurrent hormone therapy. Posttreatment acute urinary toxicity was limited. There was no acute grade 3 toxicity. Late genitourinary (GU) toxicity of any grade was noted in 52% of patients, 40% of whom had pre-RT urinary incontinence. The 4-year actuarial rate of late grade 3 GU toxicity (exclusively gross hematuria) was 28% (95% confidence interval [CI], 16%-41%). Most grade 3 GU toxicity resolved; only 7% had persistent grade ≥3 toxicity at the last follow-up visit. Fourteen patients experienced biochemical recurrence at a

  2. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Son, Jaeman; Baek, Taesung; Lee, Boram; Shin, Dongho; Park, Sung Yong; Park, Jeonghoon; Lim, Young Kyung; Lee, Se Byeong; Kim, Jooyoung; Yoon, Myonggeun

    2015-01-01

    This study was designed to compare the quality assurance (QA) results of four dosimetric tools used for intensity modulated radiation therapy (IMRT) and to suggest universal criteria for the passing rate in QA, irrespective of the dosimetric tool used. Thirty fields of IMRT plans from five patients were selected, followed by irradiation onto radiochromic film, a diode array (Mapcheck), an ion chamber array (MatriXX) and an electronic portal imaging device (EPID) for patient-specific QA. The measured doses from the four dosimetric tools were compared with the dose calculated by the treatment planning system. The passing rates of the four dosimetric tools were calculated using the gamma index method, using as criteria a dose difference of 3% and a distance-to-agreement of 3 mm. The QA results based on Mapcheck, MatriXX and EPID showed good agreement, with average passing rates of 99.61%, 99.04% and 99.29%, respectively. However, the average passing rate based on film measurement was significantly lower, 95.88%. The average uncertainty (1 standard deviation) of passing rates for 6 intensity modulated fields was around 0.31 for film measurement, larger than those of the other three dosimetric tools. QA results and consistencies depend on the choice of dosimetric tool. Universal passing rates should depend on the normalization or inter-comparisons of dosimetric tools if more than one dosimetric tool is used for patient specific QA

  3. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy.

    Science.gov (United States)

    Son, Jaeman; Baek, Taesung; Lee, Boram; Shin, Dongho; Park, Sung Yong; Park, Jeonghoon; Lim, Young Kyung; Lee, Se Byeong; Kim, Jooyoung; Yoon, Myonggeun

    2015-09-01

    This study was designed to compare the quality assurance (QA) results of four dosimetric tools used for intensity modulated radiation therapy (IMRT) and to suggest universal criteria for the passing rate in QA, irrespective of the dosimetric tool used. Thirty fields of IMRT plans from five patients were selected, followed by irradiation onto radiochromic film, a diode array (Mapcheck), an ion chamber array (MatriXX) and an electronic portal imaging device (EPID) for patient-specific QA. The measured doses from the four dosimetric tools were compared with the dose calculated by the treatment planning system. The passing rates of the four dosimetric tools were calculated using the gamma index method, using as criteria a dose difference of 3% and a distance-to-agreement of 3 mm. The QA results based on Mapcheck, MatriXX and EPID showed good agreement, with average passing rates of 99.61%, 99.04% and 99.29%, respectively. However, the average passing rate based on film measurement was significantly lower, 95.88%. The average uncertainty (1 standard deviation) of passing rates for 6 intensity modulated fields was around 0.31 for film measurement, larger than those of the other three dosimetric tools. QA results and consistencies depend on the choice of dosimetric tool. Universal passing rates should depend on the normalization or inter-comparisons of dosimetric tools if more than one dosimetric tool is used for patient specific QA.

  4. From analytic inversion to contemporary IMRT optimization: radiation therapy planning revisited from a mathematical perspective.

    Science.gov (United States)

    Censor, Yair; Unkelbach, Jan

    2012-04-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Improved Outcomes with Intensity Modulated Radiation Therapy Combined with Temozolomide for Newly Diagnosed Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Noel J. Aherne

    2014-01-01

    Full Text Available Purpose. Glioblastoma multiforme (GBM is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months. We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM.

  6. Improved outcomes with intensity modulated radiation therapy combined with temozolomide for newly diagnosed glioblastoma multiforme.

    Science.gov (United States)

    Aherne, Noel J; Benjamin, Linus C; Horsley, Patrick J; Silva, Thomaz; Wilcox, Shea; Amalaseelan, Julan; Dwyer, Patrick; Tahir, Abdul M R; Hill, Jacques; Last, Andrew; Hansen, Carmen; McLachlan, Craig S; Lee, Yvonne L; McKay, Michael J; Shakespeare, Thomas P

    2014-01-01

    Purpose. Glioblastoma multiforme (GBM) is optimally treated by maximal debulking followed by combined chemoradiation. Intensity modulated radiation therapy (IMRT) is gaining widespread acceptance in other tumour sites, although evidence to support its use over three-dimensional conformal radiation therapy (3DCRT) in the treatment of gliomas is currently lacking. We examined the survival outcomes for patients with GBM treated with IMRT and Temozolomide. Methods and Materials. In all, 31 patients with GBM were treated with IMRT and 23 of these received chemoradiation with Temozolomide. We correlated survival outcomes with patient functional status, extent of surgery, radiation dose, and use of chemotherapy. Results. Median survival for all patients was 11.3 months, with a median survival of 7.2 months for patients receiving 40.05 Gray (Gy) and a median survival of 17.4 months for patients receiving 60 Gy. Conclusions. We report one of the few series of IMRT in patients with GBM. In our group, median survival for those receiving 60 Gy with Temozolomide compared favourably to the combined therapy arm of the largest randomised trial of chemoradiation versus radiation to date (17.4 months versus 14.6 months). We propose that IMRT should be considered as an alternative to 3DCRT for patients with GBM.

  7. Outcome of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy for inoperable locally advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Lu Ningning; Jin Jing; Li Yexiong; Yu Zihao; Liu Xinfan; Wang Weihu; Wang Shulian; Song Yongwen; Liu Yuping

    2009-01-01

    Objective: To evaluate the outcome of radiotherapy for locally advanced pancreatic cancer. Methods: From January 2000 to December 2007, 41 patients with inoperable locally advanced (stage III) pancreatic cancer were treated with three-dimensional conformal radiation therapy(3DCRT) or intensity-modulated radiation therapy (IMRT). Among these patients, 30 received concurrent radio-chemo-therapy. Results: The median survival time(MST) and 1-year overall survival were 9.2 months and 23%. Patients with pretreatment KPS ≥ 80, no regional lymph nodes metastasis, and CR/PR after radiotherapy had better prognosis. The corresponding MSTs were 11.1 months vs 5.8 months (χ 2 =7.50, P=0.006), 10.8 months vs 6.5 months(χ 2 =5.67, P=0.017), and 19.5 months vs 9.1 months (χ 2 =7.28, P=0.007), respectively. Concurrent radio-chemotherapy tended to improve the overall survival(χ 2 =3.25, P=0.072). After radiotherapy, 18 patients had clinical benefit response, mainly being abdominal pain relief. Neither grade 4 hematologic nor grade 3 non-hematologic toxicities were observed. Conclusions: For patients with locally advanced pancreatic cancer, both 3DCRT and IMRT are effective in alleviation of disease-related symptoms. Patients with better performance status before treatment, no regional lymph nodes metastasis, and better response to radiotherapy may have better prognosis. Concurrent radio-chemotherapy trend to improve overall survival when compared with radiotherapy alone. (authors)

  8. The effect of high-resolution fluences by couch shift between arcs on the VMAT plan quality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung In; Park, So Yeon; Choi, Chang Heon; Park, Jong Min [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Wu, Hong Gyun [Dept. of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Various studies have demonstrated the dosimetric advantages of multi-leaf collimators (MLCs) with fine leaf widths for both intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), which can generate high resolution fluences. However, a practical disadvantage of MLCs with fine leaf widths is a limited field length in the longitudinal direction. This is because the numbers of leaves and motors are limited due to spatial constraints within the treatment head. We propose an alternative way to generate high resolution fluences of a VMAT plan without MLCs with fine leaf widths for the treatment of large H and N target volumes. With the Millennium 120 MLC with inner leaf widths of 5 mm, we simulate 2.5 mm inner leaf widths by a 2.5 mm shift of the patient couch in the longitudinal direction between arcs. In this way, we acquire not only the improved dosimetric effects of the MLCs with fine leaf widths, but also the full coverage of the H and N target volumes. The HAS plan was better than the others in terms of normal tissue sparing and plan efficiency.

  9. An Ensemble Approach to Knowledge-Based Intensity-Modulated Radiation Therapy Planning

    Directory of Open Access Journals (Sweden)

    Jiahan Zhang

    2018-03-01

    Full Text Available Knowledge-based planning (KBP utilizes experienced planners’ knowledge embedded in prior plans to estimate optimal achievable dose volume histogram (DVH of new cases. In the regression-based KBP framework, previously planned patients’ anatomical features and DVHs are extracted, and prior knowledge is summarized as the regression coefficients that transform features to organ-at-risk DVH predictions. In our study, we find that in different settings, different regression methods work better. To improve the robustness of KBP models, we propose an ensemble method that combines the strengths of various linear regression models, including stepwise, lasso, elastic net, and ridge regression. In the ensemble approach, we first obtain individual model prediction metadata using in-training-set leave-one-out cross validation. A constrained optimization is subsequently performed to decide individual model weights. The metadata is also used to filter out impactful training set outliers. We evaluate our method on a fresh set of retrospectively retrieved anonymized prostate intensity-modulated radiation therapy (IMRT cases and head and neck IMRT cases. The proposed approach is more robust against small training set size, wrongly labeled cases, and dosimetric inferior plans, compared with other individual models. In summary, we believe the improved robustness makes the proposed method more suitable for clinical settings than individual models.

  10. Gamma-index method sensitivity for gauging plan delivery accuracy of volumetric modulated arc therapy.

    Science.gov (United States)

    Park, Jong In; Park, Jong Min; Kim, Jung-In; Park, So-Yeon; Ye, Sung-Joon

    2015-12-01

    The aim of this study was to investigate the sensitivity of the gamma-index method according to various gamma criteria for volumetric modulated arc therapy (VMAT). Twenty head and neck (HN) and twenty prostate VMAT plans were retrospectively selected for this study. Both global and local 2D gamma evaluations were performed with criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm. In this study, the global and local gamma-index calculated the differences in doses relative to the maximum dose and the dose at the current measurement point, respectively. Using log files acquired during delivery, the differences in parameters at every control point between the VMAT plans and the log files were acquired. The differences in dose-volumetric parameters between reconstructed VMAT plans using the log files and the original VMAT plans were calculated. The Spearman's rank correlation coefficients (rs) were calculated between the passing rates and those differences. Considerable correlations with statistical significances were observed between global 1%/2 mm, local 1%/2 mm and local 2%/1 mm and the MLC position differences (rs = -0.712, -0.628 and -0.581). The numbers of rs values with statistical significance between the passing rates and the changes in dose-volumetric parameters were largest in global 2%/2 mm (n = 16), global 2%/1 mm (n = 15) and local 2%/1 mm (n = 13) criteria. Local gamma-index method with 2%/1 mm generally showed higher sensitivity to detect deviations between a VMAT plan and the delivery of the VMAT plan. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangjun [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wu, Kui [Department of Radiotherapy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province (China); Peng, Guang; Zhang, Yingjie [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Bai, Sen, E-mail: baisen@scu.edu.cn [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.

  12. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    International Nuclear Information System (INIS)

    Li, Guangjun; Wu, Kui; Peng, Guang; Zhang, Yingjie; Bai, Sen

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS

  13. Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Stinauer, Michelle; Rogers, Brion; Madden, Jennifer R.; Wilkening, Greta N.; Liu, Arthur K.

    2012-01-01

    Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.

  14. Gafchromic EBT‐XD film: Dosimetry characterization in high‐dose, volumetric‐modulated arc therapy

    Science.gov (United States)

    Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi

    2016-01-01

    Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT‐XD films have been designed for optimal performance in the 40–4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose‐response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high‐dose volumetric‐modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0–4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter‐free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose‐rate dependence. For clinical examinations, we compared the dose distribution measured with EBT‐XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT‐XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ∼3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ∼1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ∼1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film‐ measured and treatment planning system (TPS)‐calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. PACS number(s): 87.56 Fc PMID:27929504

  15. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Kenny S K; Lee, Louis K Y [Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR (China); Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chan, Anthony T C [Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR (China); State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR (China)

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis, which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.

  16. Conformal radiotherapy by intensity modulation of pediatrics tumors

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Carrie, C.; Bernier, V.; Beneyton, V.; Mahe, M.A.; Supiot, S.

    2009-01-01

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  17. Bone marrow sparing in intensity modulated proton therapy for cervical cancer: Efficacy and robustness under range and setup uncertainties

    International Nuclear Information System (INIS)

    Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu

    2015-01-01

    Background and purpose: This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and methods: IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated X-ray therapy (IMRT). Functional bone marrow was identified by 18 F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3 mm translational setup errors in all three principal dimensions. Results: In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V 5Gy , 47% for V 10Gy , 54% for V 20Gy , and 57% for V 40Gy , all with p < 0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V 5Gy , 37% for V 10Gy , 41% for V 20Gy , and 39% for V 40Gy , all with p < 0.01. Conclusions: The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors

  18. Bone Marrow Sparing in Intensity Modulated Proton Therapy for Cervical Cancer: Efficacy and Robustness under Range and Setup Uncertainties

    Science.gov (United States)

    Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu

    2015-01-01

    Background and Purpose This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and Methods IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated x-ray therapy (IMRT). Functional bone marrow was identified by 18F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3mm translational setup errors in all three principal dimensions. Results In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V5GY, 47% for V10Gy, 54% for V20Gy, and 57% for V40Gy, all with p<0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V5Gy, 37% for V10Gy, 41% for V20Gy, and 39% for V40Gy, all with p<0.01. Conclusions The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors. PMID:25981130

  19. Multicentre quality assurance of intensity-modulated radiation therapy plans: a precursor to clinical trials

    International Nuclear Information System (INIS)

    Williams, M. J.; Bailey, M. J.; Forstner, D.; Metcalfe, P. E

    2007-01-01

    Full text: A multicentre planning study comparing intensity-modulated radiation therapy (IMRT) plans for the treatment of a head and neck cancer has been carried out. Three Australian radiotherapy centres, each with a different planning system, were supplied a fully contoured CT dataset and requested to generate an IMRT plan in accordance with the requirements of an IMRT-based radiation therapy oncology group clinical trial. Plan analysis was carried out using software developed specifically for reviewing multicentre clinical trial data. Two out of the three plans failed to meet the prescription requirements with one misinterpreting the prescription and the third failed to meet one of the constraints. Only one plan achieved all of the dose objectives for the critical structures and normal tissues. Although each centre used very similar planning parameters and beam arrangements the resulting plans were quite different. The subjective interpretation and application of the prescription and planning objectives emphasize one of the many difficulties in carrying out multicentre IMRT planning studies. The treatment prescription protocol in a clinical trial must be both lucid and unequivocally stated to avoid misinterpretation. Australian radiotherapy centres must show that they can produce a quality IMRT plan and that they can adhere to protocols for IMRT planning before using it in a clinical trial

  20. A fast algorithm for solving a linear feasibility problem with application to Intensity-Modulated Radiation Therapy.

    Science.gov (United States)

    Herman, Gabor T; Chen, Wei

    2008-03-01

    The goal of Intensity-Modulated Radiation Therapy (IMRT) is to deliver sufficient doses to tumors to kill them, but without causing irreparable damage to critical organs. This requirement can be formulated as a linear feasibility problem. The sequential (i.e., iteratively treating the constraints one after another in a cyclic fashion) algorithm ART3 is known to find a solution to such problems in a finite number of steps, provided that the feasible region is full dimensional. We present a faster algorithm called ART3+. The idea of ART3+ is to avoid unnecessary checks on constraints that are likely to be satisfied. The superior performance of the new algorithm is demonstrated by mathematical experiments inspired by the IMRT application.

  1. Sci—Sat AM: Stereo — 08: Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam

    International Nuclear Information System (INIS)

    Mestrovic, A; Fortin, D; Alexander, A

    2014-01-01

    Purpose: To determine the feasibility of using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam for Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer. Methods and Materials: Ten anonymized patient CT data sets were used in this planning study. For each patient CT data set, three sets of contours were generated: 1) low risk, 2) intermediate risk, and 3) high risk scenarios. For each scenario, a single-arc and a double-arc VMAT treatment plans were created. Plans were generated with the Varian Eclipse™ treatment planning system for a Varian TrueBeam™ linac equipped with Millenium 120 MLC. Plans were created using a 10x-FFF beam with a maximum dose rate of 2400 MU/min. Dose prescription was 36.25Gy/5 fractions with the planning objective of covering 99% of the Planning Target Volume with the 95% of the prescription dose. Normal tissue constraints were based on provincial prostate SABR planning guidelines, derived from national and international prostate SABR protocols. Plans were evaluated and compared in terms of: 1) dosimetric plan quality, and 2) treatment delivery efficiency. Results: Both single-arc and double-arc VMAT plans were able to meet the planning goals for low, intermediate and high risk scenarios. No significant dosimetric differences were observed between the plans. However, the treatment time was significantly lower for a single-arc VMAT plans. Conclusions: Prostate SABR treatments are feasible with 10x-FFF VMAT technique. A single-arc VMAT offers equivalent dosimetric plan quality and a superior treatment delivery efficiency, compared to a double-arc VMAT

  2. Intensity modulated radiation therapy: Analysis of patient specific quality control results, experience of Rene-Gauducheau Centre

    International Nuclear Information System (INIS)

    Chiavassa, S.; Brunet, G.; Gaudaire, S.; Munos-Llagostera, C.; Delpon, G.; Lisbona, A.

    2011-01-01

    Purpose. - Systematic verifications of patient's specific intensity-modulated radiation treatments are usually performed with absolute and relative measurements. The results constitute a database which allows the identification of potential systematic errors. Material and methods. - We analyzed 1270 beams distributed in 232 treatment plans. Step-and-shoot intensity-modulated radiation treatments were performed with a Clinac (6 and 23 MV) and sliding window intensity-modulated radiation treatments with a Novalis (6 MV). Results. - The distributions obtained do not show systematic error and all the control meet specified tolerances. Conclusion. - These results allow us to reduce controls specific patients for treatments performed under identical conditions (location, optimization and segmentation parameters of treatment planning system, etc.). (authors)

  3. Application of the electron pencil beam redefinition algorithm to electron arc therapy

    International Nuclear Information System (INIS)

    Chi, P.-C.M.; Hogstrom, Kenneth R.; Starkschall, George; Boyd, Robert A.; Tucker, Susan L.; Antolak, John A.

    2006-01-01

    This project investigated the potential of summing fixed-beam dose distributions calculated using the pencil-beam redefinition algorithm (PBRA) at small angular steps (1 deg.) to model an electron arc therapy beam. The PRBA, previously modified to model skin collimation, was modified further by incorporating two correction factors. One correction factor that is energy, SSD (source-to-surface distance), and field-width dependent constrained the calculated dose output to be the same as the measured dose output for fixed-beam geometries within the range of field widths and SSDs encountered in arc therapy. Another correction factor (single field-width correction factor for each energy) compensated for large-angle scattering not being modeled, allowing a more accurate calculation of dose output at mid arc. The PBRA was commissioned to accurately calculate dose in a water phantom for fixed-beam geometries typical of electron arc therapy. Calculated central-axis depth doses agreed with measured doses to within 2% in the low-dose gradient regions and within 1-mm in the high-dose gradient regions. Off-axis doses agreed to within 2 mm in the high-dose gradient regions and within 3% in the low-dose gradient regions. Arced-beam calculations of dose output and depth dose at mid arc were evaluated by comparing to data measured using two cylindrical water phantoms with radii of 12 and 15 cm at 10 and 15 MeV. Dose output was measured for all combinations of phantom radii of curvature, collimator widths (4, 5, and 6 cm), and arc angles (0 deg., 20 deg., 40 deg., 60 deg., 80 deg., and 90 deg.) for both beam energies. Results showed the calculated mid-arc dose output to agree within 2% of measurement for all combinations. For a 90 deg.arc angle and 5x20 cm 2 field size, the calculated mid-arc depth dose in the low-dose gradient region agreed to within 2% of measurement for all depths at 10 MeV and for depths greater than depth of dose maximum R 100 at 15 MeV. For depths in the

  4. Combined cetuximab and volumetric modulated arc-radiotherapy in advanced recurrent squamous cell carcinoma of the scalp

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2011-12-01

    Full Text Available A 77-year-old male patient presented with an ulcerated exophytic tumor (T2, N0, M0 with three macroscopically visible satellite metastases in the right temporo-occipital region. Mohs surgery could not control the disease due to lymphangiosis carcinomatosa and perineural infiltration, and recurrence of satellite skin metastases. Re-staging demonstrated a T2, N1, M0 profile (stage III, AJCC. Chemotherapy was limited by the patient’s co-morbidities. Therefore, we used targeted therapy with monoclonal anti-epidermal growth factor receptor antibody cetuximab in combination with volumetric modulated arc- radiotherapy (VMAT. Cetuximab was well tolerated except for the loading dose when the patient developed fever chills. To verify the correct application of VMAT, it was applied to a 3-dimensional measuring phantom prior to the patient’s first treatment session. To minimize these tolerances, patient set-up was checked and corrected by orthogonal fluoroscopic images recorded daily by the on-board imager used in our Varian accelerator. The average daily beam time was 6 min (6 arcs, 767 monitor units; the total treatment time including patient set-up and set-up correction was less than 20 min. Combined therapy was well tolerated and complete remission was achieved.

  5. Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT)

    Science.gov (United States)

    Fu, Hsiao-Ju; Li, Chi-Wei; Tsai, Wei-Ta; Chang, Chih-Chia; Tsang, Yuk-Wah

    2017-11-01

    The reliability of thermoluminescent dosimeters (ultrathin TLD) and ISP Gafchromic EBT2 film to measure the surface dose in phantom and the skin dose in head-and-neck patients treated with intensity-modulated radiation therapy technique(IMRT) is the research focus. Seven-field treatment plans with prescribed dose of 180 cGy were performed on Eclipse treatment planning system which utilized pencil beam calculation algorithm(PBC). In calibration tests, the variance coefficient of the ultrathin TLDs were within 3%. The points on the calibration curve of the Gafchromic film was within 1% variation. Five measurements were taken on phantom using ultrathin TLD and EBT2 film respectively. The measured mean surface doses between ultrathin TLD or EBT2 film were within 5% deviation. Skin doses of 6 patients were measured for initial 5 fractions and the mean dose per-fraction was calculated. If the extrapolated doses for 30 fractions were below 4000 cGy, the skin reaction grading observed according to Radiation Therapy Oncology Group (RTOG) was either grade 1 or grade 2. If surface dose exceeded 5000 cGy in 32 fractions, then grade 3 skin reactions were observed.

  6. A Phase 1 Study of Everolimus + Weekly Cisplatin + Intensity Modulated Radiation Therapy in Head-and-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fury, Matthew G. [Department of Medicine, Head and Neck Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Medicine, Weill Cornell Medical College, New York, New York (United States); Lee, Nancy Y. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Sherman, Eric; Ho, Alan L. [Department of Medicine, Head and Neck Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Medicine, Weill Cornell Medical College, New York, New York (United States); Rao, Shyam [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Heguy, Adriana [Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shen, Ronglai [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Korte, Susan; Lisa, Donna [Department of Medicine, Head and Neck Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ganly, Ian; Patel, Snehal; Wong, Richard J.; Shaha, Ashok; Shah, Jatin [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Haque, Sofia [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Katabi, Nora [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pfister, David G. [Department of Medicine, Head and Neck Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Medicine, Weill Cornell Medical College, New York, New York (United States)

    2013-11-01

    Purpose: Elevated expression of eukaryotic protein synthesis initiation factor 4E (eIF4E) in histologically cancer-free margins of resected head and neck squamous cell carcinomas (HNSCCs) is mediated by mammalian target of rapamycin complex 1 (mTORC1) and has been associated with increased risk of disease recurrence. Preclinically, inhibition of mTORC1 with everolimus sensitizes cancer cells to cisplatin and radiation. Methods and Materials: This was single-institution phase 1 study to establish the maximum tolerated dose of daily everolimus given with fixed dose cisplatin (30 mg/m{sup 2} weekly × 6) and concurrent intensity modulated radiation therapy for patients with locally and/or regionally advanced head-and-neck cancer. The study had a standard 3 + 3 dose-escalation design. Results: Tumor primary sites were oral cavity (4), salivary gland (4), oropharynx (2), nasopharynx (1), scalp (1), and neck node with occult primary (1). In 4 of 4 cases in which resected HNSCC surgical pathology specimens were available for immunohistochemistry, elevated expression of eIF4E was observed in the cancer-free margins. The most common grade ≥3 treatment-related adverse event was lymphopenia (92%), and dose-limiting toxicities (DLTs) were mucositis (n=2) and failure to thrive (n=1). With a median follow up of 19.4 months, 2 patients have experienced recurrent disease. The maximum tolerated dose was everolimus 5 mg/day. Conclusions: Head-and-neck cancer patients tolerated everolimus at therapeutic doses (5 mg/day) given with weekly cisplatin and intensity modulated radiation therapy. The regimen merits further evaluation, especially among patients who are status post resection of HNSCCs that harbor mTORC1-mediated activation of eIF4E in histologically negative surgical margins.

  7. A Phase 1 Study of Everolimus + Weekly Cisplatin + Intensity Modulated Radiation Therapy in Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Fury, Matthew G.; Lee, Nancy Y.; Sherman, Eric; Ho, Alan L.; Rao, Shyam; Heguy, Adriana; Shen, Ronglai; Korte, Susan; Lisa, Donna; Ganly, Ian; Patel, Snehal; Wong, Richard J.; Shaha, Ashok; Shah, Jatin; Haque, Sofia; Katabi, Nora; Pfister, David G.

    2013-01-01

    Purpose: Elevated expression of eukaryotic protein synthesis initiation factor 4E (eIF4E) in histologically cancer-free margins of resected head and neck squamous cell carcinomas (HNSCCs) is mediated by mammalian target of rapamycin complex 1 (mTORC1) and has been associated with increased risk of disease recurrence. Preclinically, inhibition of mTORC1 with everolimus sensitizes cancer cells to cisplatin and radiation. Methods and Materials: This was single-institution phase 1 study to establish the maximum tolerated dose of daily everolimus given with fixed dose cisplatin (30 mg/m 2 weekly × 6) and concurrent intensity modulated radiation therapy for patients with locally and/or regionally advanced head-and-neck cancer. The study had a standard 3 + 3 dose-escalation design. Results: Tumor primary sites were oral cavity (4), salivary gland (4), oropharynx (2), nasopharynx (1), scalp (1), and neck node with occult primary (1). In 4 of 4 cases in which resected HNSCC surgical pathology specimens were available for immunohistochemistry, elevated expression of eIF4E was observed in the cancer-free margins. The most common grade ≥3 treatment-related adverse event was lymphopenia (92%), and dose-limiting toxicities (DLTs) were mucositis (n=2) and failure to thrive (n=1). With a median follow up of 19.4 months, 2 patients have experienced recurrent disease. The maximum tolerated dose was everolimus 5 mg/day. Conclusions: Head-and-neck cancer patients tolerated everolimus at therapeutic doses (5 mg/day) given with weekly cisplatin and intensity modulated radiation therapy. The regimen merits further evaluation, especially among patients who are status post resection of HNSCCs that harbor mTORC1-mediated activation of eIF4E in histologically negative surgical margins

  8. A Dosimetric Comparison of Tomotherapy and Volumetric Modulated Arc Therapy in the Treatment of High-Risk Prostate Cancer With Pelvic Nodal Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pasquier, David, E-mail: d-pasquier@o-lambret.fr [Departement Universitaire de Radiotherapie, Centre O. Lambret, Lille (France); Universite Lille Nord de France, Lille (France); Centre Galilee, Clinique de la Louviere, Lille (France); Cavillon, Fabrice [Universite Lille Nord de France, Lille (France); Faculte Libre de Medecine, Lille (France); Lacornerie, Thomas [Departement Universitaire de Radiotherapie, Centre O. Lambret, Lille (France); Universite Lille Nord de France, Lille (France); Touzeau, Claire [Centre Galilee, Clinique de la Louviere, Lille (France); Tresch, Emmanuelle [Unite de Methodologie et Biostatistique, Centre O. Lambret, Lille (France); Lartigau, Eric [Departement Universitaire de Radiotherapie, Centre O. Lambret, Lille (France); Universite Lille Nord de France, Lille (France)

    2013-02-01

    Purpose: To compare the dosimetric results of volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Methods and Materials: Plans were generated for 10 consecutive patients treated for high-risk prostate cancer with prophylactic whole pelvic radiation therapy (WPRT) using VMAT and HT. After WPRT, a sequential boost was delivered to the prostate. Plan quality was assessed according to the criteria of the International Commission on Radiation Units and Measurements 83 report: the near-minimal (D98%), near-maximal (D2%), and median (D50%) doses; the homogeneity index (HI); and the Dice similarity coefficient (DSC). Beam-on time, integral dose, and several organs at risk (OAR) dosimetric indexes were also compared. Results: For WPRT, HT was able to provide a higher D98% than VMAT (44.3 {+-} 0.3 Gy and 43.9 {+-} 0.5 Gy, respectively; P=.032) and a lower D2% than VMAT (47.3 {+-} 0.3 Gy and 49.1 {+-} 0.7 Gy, respectively; P=.005), leading to a better HI. The DSC was better for WPRT with HT (0.89 {+-} 0.009) than with VMAT (0.80 {+-} 0.02; P=.002). The dosimetric indexes for the prostate boost did not differ significantly. VMAT provided better rectum wall sparing at higher doses (V70, V75, D2%). Conversely, HT provided better bladder wall sparing (V50, V60, V70), except at lower doses (V20). The beam-on times for WPRT and prostate boost were shorter with VMAT than with HT (3.1 {+-} 0.1 vs 7.4 {+-} 0.6 min, respectively; P=.002, and 1.5 {+-} 0.05 vs 3.7 {+-} 0.3 min, respectively; P=.002). The integral dose was slightly lower for VMAT. Conclusion: VMAT and HT provided very similar and highly conformal plans that complied well with OAR dose-volume constraints. Although some dosimetric differences were statistically significant, they remained small. HT provided a more homogeneous dose distribution, whereas VMAT enabled a shorter delivery time.

  9. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    Science.gov (United States)

    Gustafsson, H.; Lund, E.; Olsson, S.

    2008-09-01

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  10. Lithium formate EPR dosimetry for verifications of planned dose distributions prior to intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, H; Lund, E [Department of Medical and Health Sciences, Radiation Physics, Faculty of Health Sciences, Linkoeping University, S-581 85 Linkoeping (Sweden); Olsson, S [Division of Radiation Physics, Linkoeping University Hospital, S-581 85 Linkoeping (Sweden)], E-mail: hakgu@imv.liu.se

    2008-09-07

    The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.

  11. Poster — Thur Eve — 39: Feasibility of Commissioning HybridArc with the Delta 4 two plane diode phantom: comparisons with Gafchromic Film

    Energy Technology Data Exchange (ETDEWEB)

    Bojechko, C. [University of Calgary, Department of Physics and Astronomy, Tom Baker Cancer Center, Calgary AB (Canada); Ploquin, N. [University of Calgary, Department of Physics and Astronomy, Tom Baker Cancer Center, Calgary AB (Canada); University of Calgary, Department of Oncology, Tom Baker Cancer Center, Calgary AB (Canada); Hudson, A. [University of Calgary, Department of Oncology, Tom Baker Cancer Center, Calgary AB (Canada); Sayous, Y. [Université Paul Sabotier Toulouse (France)

    2014-08-15

    HybridArc is a relatively novel radiation therapy technique which combines optimized dynamic conformai arcs (DCA) and intensity modulated radiation therapy (IMRT). HybridArc has possible dosimetry and efficiency advantages over stand alone DCA and IMRT treatments and can be readily implemented on any linac capable of DCA and IMRT, giving strong motivation to commission the modality. The Delta4 phantom (Scandidos, Uppsala, Sweden) has been used for IMRT and VMAT clinical dosimetric verification making it a candidate for HybridArc commissioning. However the HybridArc modality makes use of several non co-planar arcs which creates setup issues due to the geometry of the Delta4, resulting in possible phantom gantry collisions for plans with non-zero couch angles. An analysis was done determining the feasibility of using the Delta4 fixed at 0° couch angle compared with results obtained using Gafchromic ETB2 film (Ashland, Covington Kentucky) in an anthropomorphic phantom at the planned couch angles. A gamma index analysis of the measured and planned dose distributions was done using Delta4 and DoseLab Pro (Mobius Medical Systems, Houston Texas) software. For both arc and IMRT sub-fields there is reasonable correlation between the gamma index found from the Delta4 and Gafchromic film. All results show the feasibility of using the Delta4 for HybridArc commissioning.

  12. Poster — Thur Eve — 39: Feasibility of Commissioning HybridArc with the Delta 4 two plane diode phantom: comparisons with Gafchromic Film

    International Nuclear Information System (INIS)

    Bojechko, C.; Ploquin, N.; Hudson, A.; Sayous, Y.

    2014-01-01

    HybridArc is a relatively novel radiation therapy technique which combines optimized dynamic conformai arcs (DCA) and intensity modulated radiation therapy (IMRT). HybridArc has possible dosimetry and efficiency advantages over stand alone DCA and IMRT treatments and can be readily implemented on any linac capable of DCA and IMRT, giving strong motivation to commission the modality. The Delta4 phantom (Scandidos, Uppsala, Sweden) has been used for IMRT and VMAT clinical dosimetric verification making it a candidate for HybridArc commissioning. However the HybridArc modality makes use of several non co-planar arcs which creates setup issues due to the geometry of the Delta4, resulting in possible phantom gantry collisions for plans with non-zero couch angles. An analysis was done determining the feasibility of using the Delta4 fixed at 0° couch angle compared with results obtained using Gafchromic ETB2 film (Ashland, Covington Kentucky) in an anthropomorphic phantom at the planned couch angles. A gamma index analysis of the measured and planned dose distributions was done using Delta4 and DoseLab Pro (Mobius Medical Systems, Houston Texas) software. For both arc and IMRT sub-fields there is reasonable correlation between the gamma index found from the Delta4 and Gafchromic film. All results show the feasibility of using the Delta4 for HybridArc commissioning

  13. Comparative evaluation of Map-Check and Arc-Check for dosimetric verification in patients treaties with IMRT; Evaluacion comparativa de MapCHECK y ArcCHECK para verificacion dosimetrica en pacientes tratados con IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B.; Marquina, J.; Ramirez, J.; Gonzales, A., E-mail: bertha.garcia@aliada.com.pe [ALIADA, Oncologia Integral, Av. Jose Galvez Barrenechea 1044, San Isidro, Lima 27 (Peru)

    2014-08-15

    The dosimetric controls that are realized to the patients in the Intensity-Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) techniques; are indispensable since allows in real time to verify the quantity of imparted dose to the patient, these controls should be carried out every time that will begin a treatment, because these techniques impart dose dynamically modulating the dose intensity and movements of the Multi leaf Collimator (MLC), for they exist different diodes devices prepared in spiral (3-D) and planar form (2-D); that allows to estimate the dose fluence in a certain area. Treatment studies for head and neck with IMRT were compared regarding the reading average carried out by the diodes in the corresponding areas, using the criteria of the gamma index like dose difference 3% or 3m m of distance for both diode arrangements, in the IMRT case was found in Arc-Check a minor difference of 3/3 for an average of 99.37% of read diodes in a correct way contrary to the reading obtained with the Map-Check 3/3 an average of difference of 96.19%; in IMRT the difference was lower due to different factors like sensibility of the diodes reading, resolution, diodes disposition, as well as the average reading of entrance and exit of the radiation beams. Within the parameters delivered by the diodes arrangement is considered the positioning correction for both acceptance indexes like the gamma factor and the Distance-to-agreement (Dta), the existent difference of reading in factor gamma and Dta fundamentally is the way in like they compare the dose distribution; the Gamma uses dose averages of high and low gradients and Dta use only averages of areas of high gradients between the nearest points giving the distance as a result among the distribution point and the nearest point what makes stricter. (Author)

  14. Rapid arc in cancer treatment - a therapeutic perspective

    International Nuclear Information System (INIS)

    Rao, Suresh

    2013-01-01

    Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique at our hospital to determine the superior dose coverage for planning target volume (PTV) with adequate sparing of organs-at-risk (OARs). The delivery time and monitor units (MUs) is reduced in comparison with conventional fixed-field IMRT. Rapid Arc (RA) plans had a pre-treatment quality assurance and results were summarised in terms of the Gamma Agreement Index (GAI) scoring criteria of 3% and 3 mm thresholds. A total of 771 patients were treated between July 2011 and August 2013 of which head and neck cancer were 385, prostate cancer 53, brain tumours 112, cervical and endometrial cancer 77, breast cancer 38, rectal and bladder cancer 56, special technique using SBRT 45 (Liver and Lung) and Cranio-spinal irradiation 5 patients using RA single (177 control points) and double arcs (354 control points). The Average treatment time was 4.8 ±0.2 minutes (220 seconds of beam-on). The number of MU per fraction of 2.0 Gy was 522.5 ± 133.62. VMAT can be a valuable clinical tool that can deliver the prescribed dose efficiently in 1.5-3 minutes (single or double arcs) with high target homogeneity and adequate sparing of organs at risk. It would allow to reduce patient lying time on couch and over all beam on time from 4 hours to one hour. The toxicity (Tracheal fistula) observed in two patients of Carcinoma Lung receiving SRT high lights the need for peer review. (author)

  15. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning

    International Nuclear Information System (INIS)

    Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.

    2010-01-01

    Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  16. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.

    Science.gov (United States)

    Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T

    2010-09-01

    To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  17. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    International Nuclear Information System (INIS)

    Freedman, Gary M.; Anderson, Penny R.; Goldstein, Lori J.; Ma Changming; Li Jinsheng; Swaby, Ramona F.; Litwin, Samuel; Watkins-Bruner, Deborah; Sigurdson, Elin R.; Morrow, Monica

    2007-01-01

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age ≥18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapy not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules

  18. Breast-conserving radiation therapy using combined electron and intensity-modulated radiotherapy technique

    International Nuclear Information System (INIS)

    Li, J.G.; Williams, S.S.; Goffinet, D.R.; Boer, A.L.; Xing, L.

    2000-01-01

    An electron beam with appropriate energy was combined with four intensity modulated photon beams. The direction of the electron beam was chosen to be tilted 10-20 laterally from the anteroposterior direction. Two of the intensity-modulated photon beams had the same gantry angles as the conventional tangential fields, whereas the other two beams were rotated 15-25' toward the anteroposterior directions from the first two photon beams. An iterative algorithm was developed which optimizes the weight of the electron beam as well as the fluence profiles of the photon beams for a given patient. Two breast cancer patients with early-stage breast tumors were planned with the new technique and the results were compared with those from 3D planning using tangential fields as well as 9-field intensity-modulated radiotherapy (IMRT) techniques. The combined electron and IMRT plans showed better dose conformity to the target with significantly reduced dose to the ipsilateral lung and, in the case of the left-breast patient, reduced dose to the heart, than the tangential field plans. In both the right-sided and left-sided breast plans, the dose to other normal structures was similar to that from conventional plans and was much smaller than that from the 9-field IMRT plans. The optimized electron beam provided between 70 to 80% of the prescribed dose at the depth of maximum dose of the electron beam. The combined electron and IMRT technique showed improvement over the conventional treatment technique using tangential fields with reduced dose to the ipsilateral lung and the heart. The customized beam directions of the four IMRT fields also kept the dose to other critical structures to a minimum. (author)

  19. Patient-specific quality assurance for the delivery of (60)Co intensity modulated radiation therapy subject to a 0.35-T lateral magnetic field.

    Science.gov (United States)

    Li, H Harold; Rodriguez, Vivian L; Green, Olga L; Hu, Yanle; Kashani, Rojano; Wooten, H Omar; Yang, Deshan; Mutic, Sasa

    2015-01-01

    This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging-guided RT device. The program consisted of: (1) a 1-dimensional multipoint ionization chamber measurement using a customized 15-cm(3) cube-shaped phantom; (2) 2-dimensional (2D) radiographic film measurement using a 30- × 30- × 20-cm(3) phantom with multiple inserted ionization chambers; (3) quasi-3D diode array (ArcCHECK) measurement with a centrally inserted ionization chamber; (4) 2D fluence verification using machine delivery log files; and (5) 3D Monte Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Ionization chamber measurements agreed well with treatment planning system (TPS)-computed doses in all phantom geometries where the mean ± SD difference was 0.0% ± 1.3% (n=102; range, -3.0%-2.9%). Film measurements also showed excellent agreement with the TPS-computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30; range, 87.4%-100%). For ArcCHECK measurements, the mean ± SD passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34; range, 95.8%-100%). 2D fluence maps with a resolution of 1 × 1 mm(2) showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18; range, 97.0%-100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. We developed a dosimetry program for ViewRay's patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and action limits for ViewRay's IMRT QA. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Dosimetric comparison of different schemes for arrange beams in intensity modulated radiation therapy for mid- and distal-esophageal carcinoma

    International Nuclear Information System (INIS)

    Zhang Min; Zhou Li; Zhang Kaixian; Li Ling; Shi Cun

    2012-01-01

    Objective: To analyze the difference between five-field plan and seven-field plan in intensity modulated radiation therapy for patients with mid- and distal-esophageal carcinoma,and to find out the optimal beam arrangement. Methods: Five-field plan and seven-field plan were designed for each of 12 patients with mid- and distal-esophageal carcinoma. 95% of planning target volume was required to achieve prescription dose. Dose-volume histograms statistics, dose uniformity, and dose conformity in every patient were compared respectively.Results: Superior dose conformity for planning target volume was shown in seven-field plan (t=2.681, P<0.05). Difference was not significant between uniformity in seven-field plan and that in five-field plan. Difference was not significant between doses received by organs at risk,such as spinal cord and heart,in seven-field plan and those in five-field plan. V 5 , V 10 , V 15 of lungs in five-field plan were lower significantly than those in seven-field plan (t=-7.938, -12.055 and -4.859, all P<0.05). Conclusions: For patients with thoracic esophageal carcinoma treated by intensity modulate radiation therapy, compared with 7-fielded plan,the volume of lungs with lower dose could be reduced on the premise of acceptable planning target volume coverage by the application of five-plan. Therefore, radiation-induced lung injury occurrence probability would be reduced, and the patient's quality of life would be improved. Five-field plan would be worth applying in the clinical work. (authors)

  1. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, Drosoula, E-mail: dgiantsoudi@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  2. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    International Nuclear Information System (INIS)

    Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald

    2013-01-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  3. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans

  4. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Lee, Eva K.; Fox, Tim; Crocker, Ian

    2006-01-01

    Purpose: In current intensity-modulated radiation therapy (IMRT) plan optimization, the focus is on either finding optimal beam angles (or other beam delivery parameters such as field segments, couch angles, gantry angles) or optimal beam intensities. In this article we offer a mixed integer programming (MIP) approach for simultaneously determining an optimal intensity map and optimal beam angles for IMRT delivery. Using this approach, we pursue an experimental study designed to (a) gauge differences in plan quality metrics with respect to different tumor sites and different MIP treatment planning models, and (b) test the concept of critical-normal-tissue-ring-a tissue ring of 5 mm thickness drawn around the planning target volume (PTV)-and its use for designing conformal plans. Methods and Materials: Our treatment planning models use two classes of decision variables to capture the beam configuration and intensities simultaneously. Binary (0/1) variables are used to capture 'on' or 'off' or 'yes' or 'no' decisions for each field, and nonnegative continuous variables are used to represent intensities of beamlets. Binary and continuous variables are also used for each voxel to capture dose level and dose deviation from target bounds. Treatment planning models were designed to explicitly incorporate the following planning constraints: (a) upper/lower/mean dose-based constraints, (b) dose-volume and equivalent-uniform-dose (EUD) constraints for critical structures, (c) homogeneity constraints (underdose/overdose) for PTV, (d) coverage constraints for PTV, and (e) maximum number of beams allowed. Within this constrained solution space, five optimization strategies involving clinical objectives were analyzed: optimize total intensity to PTV, optimize total intensity and then optimize conformity, optimize total intensity and then optimize homogeneity, minimize total dose to critical structures, minimize total dose to critical structures and optimize conformity

  5. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    International Nuclear Information System (INIS)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK

    2014-01-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT

  6. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.

  7. Meningioma Causing Visual Impairment: Outcomes and Toxicity After Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Maclean, Jillian, E-mail: jillian.maclean@uclh.nhs.uk [Radiotherapy Department, University College London Hospital, London (United Kingdom); Fersht, Naomi [Radiotherapy Department, University College London Hospital, London (United Kingdom); Bremner, Fion [Neuro-Ophthalmology Department, National Hospital for Neurology and Neurosurgery, London (United Kingdom); Stacey, Chris; Sivabalasingham, Suganya [Radiotherapy Department, University College London Hospital, London (United Kingdom); Short, Susan [Radiotherapy Department, University College London Hospital, London (United Kingdom); Leeds Institute of Molecular Medicine, St James University Hospital, Leeds (United Kingdom)

    2013-03-15

    Purpose: To evaluate ophthalmologic outcomes and toxicity of intensity modulated radiation therapy (IMRT) in patients with meningiomas causing visual deficits. Methods and Materials: A prospective observational study with formal ophthalmologic and clinical assessment of 30 consecutive cases of meningioma affecting vision treated with IMRT from 2007 to 2011. Prescriptions were 50.4 Gy to mean target dose in 28 daily fractions. The median follow-up time was 28 months. Twenty-six meningiomas affected the anterior visual pathway (including 3 optic nerve sheath meningiomas); 4 were posterior to the chiasm. Results: Vision improved objectively in 12 patients (40%). Improvements were in visual field (5/16 patients), color vision (4/9 patients), acuity (1/15 patients), extraocular movements (3/11 patients), ptosis (1/5 patients), and proptosis (2/6 patients). No predictors of clinical response were found. Two patients had minor reductions in tumor dimensions on magnetic resonance imaging, 1 patient had radiological progression, and the other patients were stable. One patient experienced grade 2 keratitis, 1 patient had a minor visual field loss, and 5 patients had grade 1 dry eye. Conclusion: IMRT is an effective method for treating meningiomas causing ophthalmologic deficits, and toxicity is minimal. Thorough ophthalmologic assessment is important because clinical responses often occur in the absence of radiological change.

  8. Intensity-modulated radiation therapy for anal carcinoma

    International Nuclear Information System (INIS)

    Peiffert, D.; Moreau-Claeys, M.V.; Tournier-Rangeard, L.; Huger, S.; Marchesi, V.

    2011-01-01

    Anal canal carcinoma are highly curable by irradiation, combined with chemotherapy in locally advanced disease, with preservation of sphincter function. The clinical target volume for the nodes is extended, often including the inguinal nodes, which is not usual for other pelvic tumours. Acute and late effects are correlated with the volume and dose delivered to organs at risk, i. e. small bowel, bladder and increased by concomitant chemotherapy. Intensity modulated irradiation (IMRT) makes it possible to optimize the dose distribution in this 'complex U shaped' volume, while maintaining the dose distribution for the target volumes. The conversion from conformal irradiation to IMRT necessitates good knowledge of the definition and skills to delineate target volumes and organs at risk, including new volumes needed to optimize the dose distribution. Dosimetric and clinical benefits of IMRT are described, based on early descriptions and evidence-based publication. The growing development of IMRT in anal canal radiotherapy must be encouraged, and long-term benefits should be soon published. Radiation oncologists should precisely learn IMRT recommendations before starting the technique, and evaluate its early and late results for adverse effects, but also for long-term tumour control. (authors)

  9. Infrared losses from a Na/Sc metal-halide high intensity discharge arc lamp

    International Nuclear Information System (INIS)

    Smith, D J; Bonvallet, G A; Lawler, J E

    2003-01-01

    A study of the near-infrared (IR) emission from the arc of a metal-halide high intensity discharge (MH-HID) lamp with a sodium/scandium chemistry is reported. Radiometrically calibrated spectra from 0.7 to 2.5 μm were recorded as a function of position on the arc tube of a 250 W lamp. These spectra were analysed to determine the relative densities of Na and Sc atoms and the arc temperature as a function of radius. Information from these spectra, combined with absorption measurements in the companion paper (Bonvallet and Lawler 2003), were used to determine the absolute output power in the near-IR from the MH-HID lamp

  10. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans.

    Science.gov (United States)

    Li, Guangjun; Wu, Kui; Peng, Guang; Zhang, Yingjie; Bai, Sen

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS. Copyright © 2014 American Association of Medical Dosimetrists. Published by

  11. A Study of volumetric modulated arc therapy for stereotactic body radiation therapy in case of multi-target liver cancer using flattening filter free beam

    International Nuclear Information System (INIS)

    Yeom, Mi Sook; Yoon, In Ha; Hong, Dong Gi; Back, Geum Mun

    2015-01-01

    Stereotactic body radiation therapy (SBRT) has proved its efficacy in several patient populations with primary and metastatic limited tumors. Because SBRT prescription is high dose level than Conventional radiation therapy. SBRT plan is necessary for effective Organ at risk (OAR) protection and sufficient Planning target volume (PTV) dose coverage. In particular, multi-target cases may result excessive doses to OAR and hot spot due to dose overlap. This study evaluate usefulness of Volumetric modulated arc therapy (VMAT) in dosimetric and technical considerations using Flattening filter free (FFF) beam. The treatment plans for five patients, being treated on TrueBeam STx(Varian™, USA) with VMAT using 10MV FFF beam and Standard conformal radiotherapy (CRT) using 15MV Flattening filter (FF) beam. PTV, liver, duodenum, bowel, spinal cord, esophagus, stomach dose were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV was assessed. Total Monitor unit (MU) and beam on time was assessed. Average value of CI, HI and PCI for PTV was 1.381±0.028, 1.096±0.016, 0.944±0.473 in VMAT and 1.381± 0.042, 1.136±0.042, 1.534±0.465 in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT. VMAT for SBRT in multi-target liver cancer using FFF beam is effective treatment techniqe in dosimetric and technical considerations. VMAT decrease intra-fraction error due to treatment time shortening using high dose rate of FFF beam

  12. A Study of volumetric modulated arc therapy for stereotactic body radiation therapy in case of multi-target liver cancer using flattening filter free beam

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Mi Sook; Yoon, In Ha; Hong, Dong Gi; Back, Geum Mun [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2015-06-15

    Stereotactic body radiation therapy (SBRT) has proved its efficacy in several patient populations with primary and metastatic limited tumors. Because SBRT prescription is high dose level than Conventional radiation therapy. SBRT plan is necessary for effective Organ at risk (OAR) protection and sufficient Planning target volume (PTV) dose coverage. In particular, multi-target cases may result excessive doses to OAR and hot spot due to dose overlap. This study evaluate usefulness of Volumetric modulated arc therapy (VMAT) in dosimetric and technical considerations using Flattening filter free (FFF) beam. The treatment plans for five patients, being treated on TrueBeam STx(Varian™, USA) with VMAT using 10MV FFF beam and Standard conformal radiotherapy (CRT) using 15MV Flattening filter (FF) beam. PTV, liver, duodenum, bowel, spinal cord, esophagus, stomach dose were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV was assessed. Total Monitor unit (MU) and beam on time was assessed. Average value of CI, HI and PCI for PTV was 1.381±0.028, 1.096±0.016, 0.944±0.473 in VMAT and 1.381± 0.042, 1.136±0.042, 1.534±0.465 in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT respectively. OAR dose in CRT plans evaluated 1.8 times higher than VMAT. Total MU in VMAT evaluated 1.3 times increase than CRT. Average beam on time was 6.8 minute in VMAT and 21.3 minute in CRT. VMAT for SBRT in multi-target liver cancer using FFF beam is effective treatment techniqe in dosimetric and technical considerations. VMAT decrease intra-fraction error due to treatment time shortening using high dose rate of FFF beam.

  13. Clinical phase I/II trial to investigate neoadjuvant intensity-modulated short term radiation therapy (5 × 5 gy) and intraoperative radiation therapy (15 gy) in patients with primarily resectable pancreatic cancer - NEOPANC

    International Nuclear Information System (INIS)

    Roeder, Falk; Debus, Juergen; Huber, Peter E; Werner, Jens; Timke, Carmen; Saleh-Ebrahimi, Ladan; Schneider, Lutz; Hackert, Thilo; Hartwig, Werner; Kopp-Schneider, Annette; Hensley, Frank W; Buechler, Markus W

    2012-01-01

    The current standard treatment, at least in Europe, for patients with primarily resectable tumors, consists of surgery followed by adjuvant chemotherapy. But even in this prognostic favourable group, long term survival is disappointing because of high local and distant failure rates. Postoperative chemoradiation has shown improved local control and overalls survival compared to surgery alone but the value of additional radiation has been questioned in case of adjuvant chemotherapy. However, there remains a strong rationale for the addition of radiation therapy considering the high rates of microscopically incomplete resections after surgery. As postoperative administration of radiation therapy has some general disadvantages, neoadjuvant and intraoperative approaches theoretically offer benefits in terms of dose escalation, reduction of toxicity and patients comfort especially if hypofractionated regimens with highly conformal techniques like intensity-modulated radiation therapy are considered. The NEOPANC trial is a prospective, one armed, single center phase I/II study investigating a combination of neoadjuvant short course intensity-modulated radiation therapy (5 × 5 Gy) in combination with surgery and intraoperative radiation therapy (15 Gy), followed by adjuvant chemotherapy according to the german treatment guidelines, in patients with primarily resectable pancreatic cancer. The aim of accrual is 46 patients. The primary objectives of the NEOPANC trial are to evaluate the general feasibility of this approach and the local recurrence rate after one year. Secondary endpoints are progression-free survival, overall survival, acute and late toxicity, postoperative morbidity and mortality and quality of life. http://www.clinicaltrials.gov/ct2/show/NCT01372735

  14. Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT) in combination with cetuximab and chemotherapy: the REACH protocol

    International Nuclear Information System (INIS)

    Habl, Gregor; Münter, Marc W; Jensen, Alexandra D; Potthoff, Karin; Uhl, Matthias; Hof, Holger; Hajda, Jacek; Simon, Christian; Debus, Jürgen; Krempien, Robert

    2010-01-01

    Primary treatment of carcinoma of the oro-/hypopharynx or larynx may consist of combined platinum-containing chemoradiotherapy. In order to improve clinical outcome (i.e. local control/overall survival), combined therapy is intensified by the addition of the EGFR inhibitor cetuximab (Erbitux ® ). Radiation therapy (RT) is carried out as intensity-modulated RT (IMRT) to avoid higher grade acute and late toxicity by sparing of surrounding normal tissues. The REACH study is a prospective phase II study combining chemoradiotherapy with carboplatin/5-Fluorouracil (5-FU) and the monoclonal epidermal growth factor-receptor (EGFR) antibody cetuximab (Erbitux ® ) as intensity-modulated radiation therapy in patients with locally advanced squamous-cell carcinomas of oropharynx, hypopharynx or larynx. Patients receive weekly chemotherapy infusions in the 1 st and 5 th week of RT. Additionally, cetuximab is administered weekly throughout the treatment course. IMRT is delivered as in a classical concomitant boost concept (bid from fraction 16) to a total dose of 69,9 Gy. Primary endpoint of the trial is local-regional control (LRC). Disease-free survival, progression-free survival, overall survival, toxicity, proteomic and genomic analyses are secondary endpoints. The aim is to explore the efficacy as well as the safety and feasibility of this combined radioimmunchemotherapy in order to improve the outcome of patients with advanced head and neck cancer. ISRCTN87356938

  15. Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT in combination with cetuximab and chemotherapy: the REACH protocol

    Directory of Open Access Journals (Sweden)

    Simon Christian

    2010-11-01

    Full Text Available Abstract Background Primary treatment of carcinoma of the oro-/hypopharynx or larynx may consist of combined platinum-containing chemoradiotherapy. In order to improve clinical outcome (i.e. local control/overall survival, combined therapy is intensified by the addition of the EGFR inhibitor cetuximab (Erbitux®. Radiation therapy (RT is carried out as intensity-modulated RT (IMRT to avoid higher grade acute and late toxicity by sparing of surrounding normal tissues. Methods/Design The REACH study is a prospective phase II study combining chemoradiotherapy with carboplatin/5-Fluorouracil (5-FU and the monoclonal epidermal growth factor-receptor (EGFR antibody cetuximab (Erbitux® as intensity-modulated radiation therapy in patients with locally advanced squamous-cell carcinomas of oropharynx, hypopharynx or larynx. Patients receive weekly chemotherapy infusions in the 1st and 5th week of RT. Additionally, cetuximab is administered weekly throughout the treatment course. IMRT is delivered as in a classical concomitant boost concept (bid from fraction 16 to a total dose of 69,9 Gy. Discussion Primary endpoint of the trial is local-regional control (LRC. Disease-free survival, progression-free survival, overall survival, toxicity, proteomic and genomic analyses are secondary endpoints. The aim is to explore the efficacy as well as the safety and feasibility of this combined radioimmunchemotherapy in order to improve the outcome of patients with advanced head and neck cancer. Trial registration ISRCTN87356938

  16. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    International Nuclear Information System (INIS)

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-01-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged ≤7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  17. SU-E-T-483: In Vivo Dosimetry of Conventional and Rotational Intensity Modulated Radiotherapy Using Integral Quality Monitor (IQM)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L; Qian, J; Gonzales, R; Keck, J; Armour, E; Wong, J [Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate the sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.

  18. Definitive Reirradiation for Locoregionally Recurrent Non-Small Cell Lung Cancer With Proton Beam Therapy or Intensity Modulated Radiation Therapy: Predictors of High-Grade Toxicity and Survival Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    McAvoy, Sarah; Ciura, Katherine; Wei, Caimiao; Rineer, Justin; Liao, Zhongxing; Chang, Joe Y.; Palmer, Matthew B.; Cox, James D.; Komaki, Ritsuko; Gomez, Daniel R., E-mail: DGomez@mdanderson.org

    2014-11-15

    Purpose: Intrathoracic recurrence of non-small cell lung cancer (NSCLC) after initial treatment remains a dominant cause of death. We report our experience using proton beam therapy and intensity modulated radiation therapy for reirradiation in such cases, focusing on patterns of failure, criteria for patient selection, and predictors of toxicity. Methods and Materials: A total of 102 patients underwent reirradiation for intrathoracic recurrent NSCLC at a single institution. All doses were recalculated to an equivalent dose in 2-Gy fractions (EQD2). All patients had received radiation therapy for NSCLC (median initial dose of 70 EQD2 Gy), with median interval to reirradiation of 17 months and median reirradiation dose of 60.48 EQD2 Gy. Median follow-up time was 6.5 months (range, 0-72 months). Results: Ninety-nine patients (97%) completed reirradiation. Median local failure-free survival, distant metastasis-free survival (DMFS), and overall survival times were 11.43 months (range, 8.6-22.66 months), 11.43 months (range, 6.83-23.84 months), and 14.71 (range, 10.34-20.56 months), respectively. Toxicity was acceptable, with rates of grade ≥3 esophageal toxicity of 7% and grade ≥3 pulmonary toxicity of 10%. Of the patients who developed local failure after reirradiation, 88% had failure in either the original or the reirradiation field. Poor local control was associated with T4 disease, squamous histology, and Eastern Cooperative Oncology Group performance status score >1. Concurrent chemotherapy improved DMFS, but T4 disease was associated with poor DMFS. Higher T status, Eastern Cooperative Oncology Group performance status ≥1, squamous histology, and larger reirradiation target volumes led to worse overall survival; receipt of concurrent chemotherapy and higher EQD2 were associated with improved OS. Conclusions: Intensity modulated radiation therapy and proton beam therapy are options for treating recurrent non-small cell lung cancer. However, rates of

  19. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    Science.gov (United States)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  20. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    International Nuclear Information System (INIS)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques

  1. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT).

    Science.gov (United States)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  2. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham [Andrew Love Cancer Centre, Geelong Hospital, Geelong, Victoria (Australia)

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  3. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Joseph C., E-mail: joseph.hodges@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Beg, Muhammad S. [Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Das, Prajnan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Meyer, Jeffrey [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  4. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    International Nuclear Information System (INIS)

    Hodges, Joseph C.; Beg, Muhammad S.; Das, Prajnan; Meyer, Jeffrey

    2014-01-01

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities

  5. Electron arc therapy: chest wall irradiation of breast cancer patients

    International Nuclear Information System (INIS)

    McNeely, L.K.; Jacobson, G.M.; Leavitt, D.D.; Stewart, J.R.

    1988-01-01

    From 1980 to October 1985 we treated 45 breast cancer patients with electron arc therapy. This technique was used in situations where optimal treatment with fixed photon or electron beams was technically difficult: long scars, recurrent tumor extending across midline or to the posterior thorax, or marked variation in depth of target tissue. Forty-four patients were treated following mastectomy: 35 electively because of high risk of local failure, and 9 following local recurrence. One patient with advanced local regional disease was treated primarily. The target volume boundaries on the chest wall were defined by a foam lined cerrobend cast which rested on the patient during treatment, functioning as a tertiary collimator. A variable width secondary collimator was used to account for changes in the radius of the thorax from superior to inferior border. All patients had computerized tomography performed to determine Internal Mammary Chain depth and chest wall thickness. Electron energies were selected based on these thicknesses and often variable energies over different segments of the arc were used. The chest wall and regional node areas were irradiated to 45 Gy-50 Gy in 5-6 weeks by this technique. The supraclavicular and upper axillary nodes were treated by a direct anterior photon field abutted to the superior edge of the electron arc field. Follow-up is from 10-73 months with a median of 50 months. No major complications were observed. Acute and late effects and local control are comparable to standard chest wall irradiation. The disadvantages of this technique are that the preparation of the tertiary field defining cast and CT treatment planning are labor intensive and expensive. The advantage is that for specific clinical situations large areas of chest wall with marked topographical variation can be optimally, homogeneously irradiated while sparing normal uninvolved tissues

  6. Intensity-Modulated Radiation Therapy in the Salvage of Locally Recurrent Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Qiu Sufang; Lin Shaojun; Tham, Ivan W.K.; Pan Jianji; Lu Jun; Lu, Jiade J.

    2012-01-01

    Purpose: Local recurrences of nasopharyngeal carcinoma (NPC) may be salvaged by reirradiation with conventional techniques, but with significant morbidity. Intensity-modulated radiation therapy (IMRT) may improve the therapeutic ratio by reducing doses to normal tissue. The aim of this study was to address the efficacy and toxicity profile of IMRT for a cohort of patients with locally recurrent NPC. Methods and Materials: Between August 2003 and June 2009, 70 patients with radiologic or pathologically proven locally recurrent NPC were treated with IMRT. The median time to recurrence was 30 months after the completion of conventional radiation to definitive dose. Fifty-seven percent of the tumors were classified asrT3–4. The minimum planned doses were 59.4 to 60 Gy in 1.8- to 2-Gy fractions per day to the gross disease with margins, with or without chemotherapy. Results: The median dose to the recurrent tumor was 70 Gy (range, 50–77.4 Gy). Sixty-five patients received the planned radiation therapy; 5 patients received between 50 and 60 Gy because of acute side effects. With a median follow-up time of 25 months, the rates of 2-year locoregional recurrence-free survival, disease-free survival, and overall survival were 65.8%, 65.8%, and 67.4%, respectively. Moderate to severe late toxicities were noted in 25 patients (35.7%). Eleven patients (15.7%) had posterior nasal space ulceration, 17 (24.3%) experienced cranial nerve palsies, 12 (17.1%) had trismus, and 12 (17.1%) experienced deafness. Extended disease-free interval (relative risk 2.049) and advanced T classification (relative risk 3.895) at presentation were adverse prognostic factors. Conclusion: Reirradiation with IMRT provides reasonable long-term control in patients with locally recurrent NPC.

  7. Comparative evaluation of Map-Check and Arc-Check for dosimetric verification in patients treaties with IMRT

    International Nuclear Information System (INIS)

    Garcia, B.; Marquina, J.; Ramirez, J.; Gonzales, A.

    2014-08-01

    The dosimetric controls that are realized to the patients in the Intensity-Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) techniques; are indispensable since allows in real time to verify the quantity of imparted dose to the patient, these controls should be carried out every time that will begin a treatment, because these techniques impart dose dynamically modulating the dose intensity and movements of the Multi leaf Collimator (MLC), for they exist different diodes devices prepared in spiral (3-D) and planar form (2-D); that allows to estimate the dose fluence in a certain area. Treatment studies for head and neck with IMRT were compared regarding the reading average carried out by the diodes in the corresponding areas, using the criteria of the gamma index like dose difference 3% or 3m m of distance for both diode arrangements, in the IMRT case was found in Arc-Check a minor difference of 3/3 for an average of 99.37% of read diodes in a correct way contrary to the reading obtained with the Map-Check 3/3 an average of difference of 96.19%; in IMRT the difference was lower due to different factors like sensibility of the diodes reading, resolution, diodes disposition, as well as the average reading of entrance and exit of the radiation beams. Within the parameters delivered by the diodes arrangement is considered the positioning correction for both acceptance indexes like the gamma factor and the Distance-to-agreement (Dta), the existent difference of reading in factor gamma and Dta fundamentally is the way in like they compare the dose distribution; the Gamma uses dose averages of high and low gradients and Dta use only averages of areas of high gradients between the nearest points giving the distance as a result among the distribution point and the nearest point what makes stricter. (Author)

  8. Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Blanchard, Pierre [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Institut Gustave Roussy, Villejuif (France); Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Fuller, C. David [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Medical Physics Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Mohamed, Abdallah S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Oncology and Nuclear Medicine, University of Alexandria (Egypt); Morrison, William H.; Phan, Jack; Beadle, Beth M.; Skinner, Heath D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sturgis, Erich M. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kies, Merrill S. [Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hutcheson, Kate A. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rosenthal, David I. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe; Gillin, Michael T. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); and others

    2016-05-01

    Purpose: A single-institution prospective study was conducted to assess disease control and toxicity of proton therapy for patients with head and neck cancer. Methods and Materials: Disease control, toxicity, functional outcomes, and patterns of failure for the initial cohort of patients with oropharyngeal squamous carcinoma (OPC) treated with intensity modulated proton therapy (IMPT) were prospectively collected in 2 registry studies at a single institution. Locoregional failures were analyzed by using deformable image registration. Results: Fifty patients with OPC treated from March 3, 2011, to July 2014 formed the cohort. Eighty-four percent were male, 50% had never smoked, 98% had stage III/IV disease, 64% received concurrent therapy, and 35% received induction chemotherapy. Forty-four of 45 tumors (98%) tested for p16 were positive. All patients received IMPT (multifield optimization to n=46; single-field optimization to n=4). No Common Terminology Criteria for Adverse Events grade 4 or 5 toxicities were observed. The most common grade 3 toxicities were acute mucositis in 58% of patients and late dysphagia in 12%. Eleven patients had a gastrostomy (feeding) tube placed during therapy, but none had a feeding tube at last follow-up. At a median follow-up time of 29 months, 5 patients had disease recurrence: local in 1, local and regional in 1, regional in 2, and distant in 1. The 2-year actuarial overall and progression-free survival rates were 94.5% and 88.6%. Conclusions: The oncologic, toxicity, and functional outcomes after IMPT for OPC are encouraging and provide the basis for ongoing and future clinical studies.

  9. Quality assurance of patients for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Yoon, Sang Min; Yi, Byong Yong; Choi, Eun Kyung; Kim, Jong Hoon; Ahn, Seung Do; Lee, Sang Wook

    2002-01-01

    To establish and verify the proper and the practical IMRT (intensity-modulated radiation therapy) patient QA (Quality Assurance). An IMRT QA which consists of 3 steps and 16 items were designed and examined the validity of the program by applying to 9 patients, 12 IMRT cases of various sites. The three step QA program consists of RTP related QA, treatment information flow QA, and a treatment delivery QA procedure. The evaluation of organ constraints, the validity of the point dose, and the dose distribution are major issues in the RTP related QA procedure. The leaf sequence file generation, the evaluation of the MLC control file, the comparison of the dry run film, and the IMRT field simulate image were included in the treatment information flow procedure QA. The patient setup QA, the verification of the IMRT treatment fields to the patients, and the examination of the data in the Record and Verify system make up the treatment delivery QA procedure. The point dose measurement results of 10 cases showed good agreement with the RTP calculation within 3%. One case showed more than a 3% difference and the other case showed more than 5%, which was out side the tolerance level. We could not find any differences of more than 2 mm between the RTP leaf sequence and the dry run film. Film dosimetry and the dose distribution from the phantom plan showed the same tendency, but quantitative analysis was not possible because of the film dosimetry nature. No error had been found from the MLC control file and one mis-registration case was found before treatment. This study shows the usefulness and the necessity of the IMRT patient QA program. The whole procedure of this program should be performed, especially by institutions that have just started to accumulate experience. But, the program is too complex and time consuming. Therefore, we propose practical and essential QA items for institutions in which the IMRT is performed as a routine procedure

  10. A Dosimetric Comparison of Tomotherapy and Volumetric Modulated Arc Therapy in the Treatment of High-Risk Prostate Cancer With Pelvic Nodal Radiation Therapy

    International Nuclear Information System (INIS)

    Pasquier, David; Cavillon, Fabrice; Lacornerie, Thomas; Touzeau, Claire; Tresch, Emmanuelle; Lartigau, Eric

    2013-01-01

    Purpose: To compare the dosimetric results of volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Methods and Materials: Plans were generated for 10 consecutive patients treated for high-risk prostate cancer with prophylactic whole pelvic radiation therapy (WPRT) using VMAT and HT. After WPRT, a sequential boost was delivered to the prostate. Plan quality was assessed according to the criteria of the International Commission on Radiation Units and Measurements 83 report: the near-minimal (D98%), near-maximal (D2%), and median (D50%) doses; the homogeneity index (HI); and the Dice similarity coefficient (DSC). Beam-on time, integral dose, and several organs at risk (OAR) dosimetric indexes were also compared. Results: For WPRT, HT was able to provide a higher D98% than VMAT (44.3 ± 0.3 Gy and 43.9 ± 0.5 Gy, respectively; P=.032) and a lower D2% than VMAT (47.3 ± 0.3 Gy and 49.1 ± 0.7 Gy, respectively; P=.005), leading to a better HI. The DSC was better for WPRT with HT (0.89 ± 0.009) than with VMAT (0.80 ± 0.02; P=.002). The dosimetric indexes for the prostate boost did not differ significantly. VMAT provided better rectum wall sparing at higher doses (V70, V75, D2%). Conversely, HT provided better bladder wall sparing (V50, V60, V70), except at lower doses (V20). The beam-on times for WPRT and prostate boost were shorter with VMAT than with HT (3.1 ± 0.1 vs 7.4 ± 0.6 min, respectively; P=.002, and 1.5 ± 0.05 vs 3.7 ± 0.3 min, respectively; P=.002). The integral dose was slightly lower for VMAT. Conclusion: VMAT and HT provided very similar and highly conformal plans that complied well with OAR dose-volume constraints. Although some dosimetric differences were statistically significant, they remained small. HT provided a more homogeneous dose distribution, whereas VMAT enabled a shorter delivery time.

  11. A dosimetric comparison of tomotherapy and volumetric modulated arc therapy in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy.

    Science.gov (United States)

    Pasquier, David; Cavillon, Fabrice; Lacornerie, Thomas; Touzeau, Claire; Tresch, Emmanuelle; Lartigau, Eric

    2013-02-01

    To compare the dosimetric results of volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Plans were generated for 10 consecutive patients treated for high-risk prostate cancer with prophylactic whole pelvic radiation therapy (WPRT) using VMAT and HT. After WPRT, a sequential boost was delivered to the prostate. Plan quality was assessed according to the criteria of the International Commission on Radiation Units and Measurements 83 report: the near-minimal (D98%), near-maximal (D2%), and median (D50%) doses; the homogeneity index (HI); and the Dice similarity coefficient (DSC). Beam-on time, integral dose, and several organs at risk (OAR) dosimetric indexes were also compared. For WPRT, HT was able to provide a higher D98% than VMAT (44.3 ± 0.3 Gy and 43.9 ± 0.5 Gy, respectively; P=.032) and a lower D2% than VMAT (47.3 ± 0.3 Gy and 49.1 ± 0.7 Gy, respectively; P=.005), leading to a better HI. The DSC was better for WPRT with HT (0.89 ± 0.009) than with VMAT (0.80 ± 0.02; P=.002). The dosimetric indexes for the prostate boost did not differ significantly. VMAT provided better rectum wall sparing at higher doses (V70, V75, D2%). Conversely, HT provided better bladder wall sparing (V50, V60, V70), except at lower doses (V20). The beam-on times for WPRT and prostate boost were shorter with VMAT than with HT (3.1 ± 0.1 vs 7.4 ± 0.6 min, respectively; P=.002, and 1.5 ± 0.05 vs 3.7 ± 0.3 min, respectively; P=.002). The integral dose was slightly lower for VMAT. VMAT and HT provided very similar and highly conformal plans that complied well with OAR dose-volume constraints. Although some dosimetric differences were statistically significant, they remained small. HT provided a more homogeneous dose distribution, whereas VMAT enabled a shorter delivery time. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Volumetric modulated arc therapy with flattening filter free beams for isolated abdominal/pelvic lymph nodes: report of dosimetric and early clinical results in oligometastatic patients

    Directory of Open Access Journals (Sweden)

    Alongi Filippo

    2012-12-01

    Full Text Available Abstract Background SBRT is a safe and efficient strategy to locally control multiple metastatic sites. While research in the physics domain for Flattening Filter Free Beams (FFF beams is increasing, there are few clinical data of FFF beams in clinical practice. Here we reported dosimentric and early clinical data of SBRT and FFF delivery in isolated lymph node oligometastatic patients. Methods Between October 2010 and March 2012, 34 patients were treated with SBRT for oligometastatic lymph node metastasis on a Varian TrueBeamTM treatment machine using Volumetric Modulated Arc Therapy (RapidArc. We retrospectively evaluated a total of 25 patients for isolated lymph node metastases in abdomen and/or pelvis treated with SBRT and FFF (28 treatments. Acute toxicity was recorded. Local control evaluation was scored by means of CT scan and/or PET scan. Results All dosimetric results are in line with what published for the same type of stereotactic abdominal lymph node metastases treatments and fractionation, using RapidArc. All 25 FFF SBRT patients completed the treatment. Acute gastrointestinal toxicity was minimal: one patient showed Grade 1 gastrointestinal toxicity. Three other patients presented Grade 2 toxicity. No Grade 3 or higher was recorded. All toxicities were recovered within one week. The preliminary clinical results at the median follow up of 195 days are: complete response in 12 cases, partial response in 11, stable disease in 5, with an overall response rate of 82%; no local progression was recorded. Conclusions Data of dosimetrical findings and acute toxicity are excellent for patients treated with SBRT with VMAT using FFF beams. Preliminary clinical results showed a high rate of local control in irradiated lesion. Further data and longer follow up are needed to assess late toxicity and definitive clinical outcomes.

  13. SU-E-J-274: Responses of Medulloblastoma Cells to Radiation Dosimetric Parameters in Intensity-Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Park, J; Park, J; Rogalla, S; Contag, C; Woo, D; Lee, D; Park, H; Suh, T

    2015-01-01

    Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/min was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization

  14. Intensity-Modulated Radiation Therapy (IMRT)

    Science.gov (United States)

    ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: Thank ... Accelerator Prostate Cancer Treatment Head and Neck Cancer Treatment Introduction to Cancer Therapy (Radiation Oncology) ...

  15. Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy

    International Nuclear Information System (INIS)

    Kavanaugh, James A.; Hogstrom, Kenneth R.; Fontenot, Jonas P.; Henkelmann, Gregory; Chu, Connel; Carver, Robert A.

    2013-01-01

    Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively, whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94

  16. Comparative Cost-Effectiveness of Stereotactic Body Radiation Therapy Versus Intensity-Modulated and Proton Radiation Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Parthan, Anju; Pruttivarasin, Narin; Davies, Diane; Taylor, Douglas C. A.; Pawar, Vivek; Bijlani, Akash; Lich, Kristen Hassmiller; Chen, Ronald C.

    2012-01-01

    Objective: To determine the cost-effectiveness of several external beam radiation treatment modalities for the treatment of patients with localized prostate cancer. Methods: A lifetime Markov model incorporated the probabilities of experiencing treatment-related long-term toxicity or death. Toxicity probabilities were derived from published sources using meta-analytical techniques. Utilities and costs in the model were obtained from publicly available secondary sources. The model calculated quality-adjusted life expectancy and expected lifetime cost per patient, and derived ratios of incremental cost per quality-adjusted life year (QALY) gained between treatments. Analyses were conducted from both payer and societal perspectives. One-way and probabilistic sensitivity analyses were performed. Results: Compared to intensity-modulated radiation therapy (IMRT) and proton beam therapy (PT), stereotactic body radiation therapy (SBRT) was less costly and resulted in more QALYs. Sensitivity analyses showed that the conclusions in the base-case scenario were robust with respect to variations in toxicity and cost parameters consistent with available evidence. At a threshold of $50,000/QALY, SBRT was cost-effective in 75% and 94% of probabilistic simulations compared to IMRT and PT, respectively, from a payer perspective. From a societal perspective, SBRT was cost-effective in 75% and 96% of simulations compared to IMRT and PT, respectively, at a threshold of $50,000/QALY. In threshold analyses, SBRT was less expensive with better outcomes compared to IMRT at toxicity rates 23% greater than the SBRT base-case rates. Conclusion: Based on the assumption that each treatment modality results in equivalent long-term efficacy, SBRT is a cost-effective strategy resulting in improved quality-adjusted survival compared to IMRT and PT for the treatment of localized prostate cancer.

  17. Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Palmer, Matthew B.; Riley, Beverly A.; Mayankkumar, Amin V.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Dong, Lei; Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Likhacheva, Anna; Liao, Zhongxing [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Cox, James D. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-12-01

    Purpose: We have previously found that {<=} 75% of treatment failures after chemoradiotherapy for unresectable esophageal cancer appear within the gross tumor volume and that intensity-modulated (photon) radiotherapy (IMRT) might allow dose escalation to the tumor without increasing normal tissue toxicity. Proton therapy might allow additional dose escalation, with even lower normal tissue toxicity. In the present study, we compared the dosimetric parameters for photon IMRT with that for intensity-modulated proton therapy (IMPT) for unresectable, locally advanced, distal esophageal cancer. Patients and Methods: Four plans were created for each of 10 patients. IMPT was delivered using anteroposterior (AP)/posteroanterior beams, left posterior oblique/right posterior oblique (LPO/RPO) beams, or AP/LPO/RPO beams. IMRT was delivered with a concomitant boost to the gross tumor volume. The dose was 65.8 Gy to the gross tumor volume and 50.4 Gy to the planning target volume in 28 fractions. Results: Relative to IMRT, the IMPT (AP/posteroanterior) plan led to considerable reductions in the mean lung dose (3.18 vs. 8.27 Gy, p < .0001) and the percentage of lung volume receiving 5, 10, and 20 Gy (p {<=} .0006) but did not reduce the cardiac dose. The IMPT LPO/RPO plan also reduced the mean lung dose (4.9 Gy vs. 8.2 Gy, p < .001), the heart dose (mean cardiac dose and percentage of the cardiac volume receiving 10, 20, and 30 Gy, p {<=} .02), and the liver dose (mean hepatic dose 5 Gy vs. 14.9 Gy, p < .0001). The IMPT AP/LPO/RPO plan led to considerable reductions in the dose to the lung (p {<=} .005), heart (p {<=} .003), and liver (p {<=} .04). Conclusions: Compared with IMRT, IMPT for distal esophageal cancer lowered the dose to the heart, lung, and liver. The AP/LPO/RPO beam arrangement was optimal for sparing all three organs. The dosimetric benefits of protons will need to be tailored to each patient according to their specific cardiac and pulmonary risks. IMPT for

  18. Dosimetric comparison between intensity modulated brachytherapy versus external beam intensity modulated radiotherapy for cervix cancer: a treatment planning study

    International Nuclear Information System (INIS)

    Subramani, V.; Sharma, D.N.; Jothy Basu, K.S.; Rath, G.K.; Gopishankar, N.

    2008-01-01

    To evaluate the dosimetric superiority of intensity modulated brachytherapy (IMBT) based on inverse planning optimization technique with classical brachytherapy optimization and also with external beam intensity modulated radiotherapy planning technique in patients of cervical carcinoma

  19. Planning Hybrid Intensity Modulated Radiation Therapy for Whole-breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farace, Paolo [Medical Physics Department, Regional Oncological Hospital, Cagliari (Italy); Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco [Medical Physics Department, Regional Oncological Hospital, Cagliari (Italy); Deidda, Maria Assunta; Possanzini, Marco; Orru, Sivia; Lay, Giancarlo [Radiotherapy Department, Regional Oncological Hospital, Cagliari (Italy)

    2012-09-01

    Purpose: To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Methods and Materials: Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Results: Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose ({approx}5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses ({approx}20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Conclusions: Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation.

  20. Planning hybrid intensity modulated radiation therapy for whole-breast irradiation.

    Science.gov (United States)

    Farace, Paolo; Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco; Deidda, Maria Assunta; Possanzini, Marco; Orrù, Sivia; Lay, Giancarlo

    2012-09-01

    To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose (∼5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses (∼20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Planning Hybrid Intensity Modulated Radiation Therapy for Whole-breast Irradiation

    International Nuclear Information System (INIS)

    Farace, Paolo; Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco; Deidda, Maria Assunta; Possanzini, Marco; Orrù, Sivia; Lay, Giancarlo

    2012-01-01

    Purpose: To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Methods and Materials: Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Results: Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose (∼5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses (∼20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Conclusions: Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation.

  2. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Kun, Larry E.; Hua, Chia-Ho [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [St Jude Children' s Research Hospital, Biostatistics, Memphis, Tennessee (United States); Sanford, Robert A.; Boop, Frederick A. [Semmes Murphey Neurologic and Spine Institute, Neurosurgery, Memphis, Tennessee (United States)

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treated with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently investigating

  3. Longitudinal comparison of quality of life after real-time tumor-tracking intensity-modulated radiation therapy and radical prostatectomy in patients with localized prostate cancer

    International Nuclear Information System (INIS)

    Shinohara, Nobuo; Maruyama, Satoru; Abe, Takashige; Nonomura, Katsuya; Shimizu, Shinichi; Nishioka, Kentaro; Shirato, Hiroki; C-Hatanaka, Kanako; Oba, Koji

    2013-01-01

    The purpose of this study was to compare the quality of life (QOL) in patients with localized prostate cancer (PC) after intensity-modulated radiation therapy assisted with a fluoroscopic real-time intensity-modulated radiation therapy (RT-IMRT) tumor-tracking system versus the QOL after radical prostatectomy (RP). Between 2003 and 2006, 71 patients were enrolled in this longitudinal prospective study. Each patient was allowed to decide which treatment modality they would receive. Of the 71 patients, 23 patients underwent RT-IMRT, while 48 opted for RP. No patient received neo-adjuvant or adjuvant hormone therapy. The global QOL and disease-specific-QOL were evaluated before treatment and again at 1, 3 and 5 years after treatment. There was no significant difference in the background characteristics between the two groups. The 5-year biochemical progression-free survival was 90% in the RT-IMRT and 79% in the RP group. In the RT-IMRT group, there was no significant deterioration of the global QOL or disease-specific QOL through 5 years post-treatment. In the RP group, the urinary function, sexual function, and sexual bother indicators significantly deteriorated after treatment. Urinary and sexual function was significantly better in the RT-IMRT group at 1, 3 and 5 years post-treatment compared to the RP group. RT-IMRT may be a preferable treatment for localized PC because of similar efficacy to RP but better post-treatment QOL. (author)

  4. Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy as Preoperative Treatment for Localized Gastric Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Twisha; Crane, Christopher H. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mansfield, Paul F. [Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Briere, Tina M.; Beddar, A. Sam [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mok, Henry; Reed, Valerie K.; Krishnan, Sunil; Delclos, Marc E. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Das, Prajnan, E-mail: PrajDas@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-06-01

    Purpose: The goal of this study was to evaluate dosimetric parameters, acute toxicity, pathologic response, and local control in patients treated with preoperative intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for localized gastric adenocarcinoma. Methods: Between November 2007 and April 2010, 25 patients with localized gastric adenocarcinoma were treated with induction chemotherapy, followed by preoperative IMRT and concurrent chemotherapy and, finally, surgical resection. The median radiation therapy dose was 45 Gy. Concurrent chemotherapy was 5-fluorouracil and oxaliplatin in 18 patients, capecitabine in 3, and other regimens in 4. Subsequently, resection was performed with total gastrectomy in 13 patients, subtotal gastrectomy in 7, and other surgeries in 5. Results: Target coverage, expressed as the ratio of the minimum dose received by 99% of the planning target volume to the prescribed dose, was a median of 0.97 (range, 0.92-1.01). The median V{sub 30} (percentage of volume receiving at least 30 Gy) for the liver was 26%; the median V{sub 20} (percentage of volume receiving at least 20 Gy) for the right and left kidneys was 14% and 24%, respectively; and the median V{sub 40} (percentage of volume receiving at least 40 Gy) for the heart was 18%. Grade 3 acute toxicity developed in 14 patients (56%), including dehydration in 10, nausea in 8, and anorexia in 5. Grade 4 acute toxicity did not develop in any patient. There were no significant differences in the rates of acute toxicity, hospitalization, or feeding tube use in comparison to those in a group of 50 patients treated with preoperative three-dimensional conformal radiation therapy with concurrent chemotherapy. R0 resection was obtained in 20 patients (80%), and pathologic complete response occurred in 5 (20%). Conclusions: Preoperative IMRT for gastric adenocarcinoma was well tolerated, accomplished excellent target coverage and normal structure sparing, and led to appropriate

  5. Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy as Preoperative Treatment for Localized Gastric Adenocarcinoma

    International Nuclear Information System (INIS)

    Chakravarty, Twisha; Crane, Christopher H.; Ajani, Jaffer A.; Mansfield, Paul F.; Briere, Tina M.; Beddar, A. Sam; Mok, Henry; Reed, Valerie K.; Krishnan, Sunil; Delclos, Marc E.; Das, Prajnan

    2012-01-01

    Purpose: The goal of this study was to evaluate dosimetric parameters, acute toxicity, pathologic response, and local control in patients treated with preoperative intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for localized gastric adenocarcinoma. Methods: Between November 2007 and April 2010, 25 patients with localized gastric adenocarcinoma were treated with induction chemotherapy, followed by preoperative IMRT and concurrent chemotherapy and, finally, surgical resection. The median radiation therapy dose was 45 Gy. Concurrent chemotherapy was 5-fluorouracil and oxaliplatin in 18 patients, capecitabine in 3, and other regimens in 4. Subsequently, resection was performed with total gastrectomy in 13 patients, subtotal gastrectomy in 7, and other surgeries in 5. Results: Target coverage, expressed as the ratio of the minimum dose received by 99% of the planning target volume to the prescribed dose, was a median of 0.97 (range, 0.92–1.01). The median V 30 (percentage of volume receiving at least 30 Gy) for the liver was 26%; the median V 20 (percentage of volume receiving at least 20 Gy) for the right and left kidneys was 14% and 24%, respectively; and the median V 40 (percentage of volume receiving at least 40 Gy) for the heart was 18%. Grade 3 acute toxicity developed in 14 patients (56%), including dehydration in 10, nausea in 8, and anorexia in 5. Grade 4 acute toxicity did not develop in any patient. There were no significant differences in the rates of acute toxicity, hospitalization, or feeding tube use in comparison to those in a group of 50 patients treated with preoperative three-dimensional conformal radiation therapy with concurrent chemotherapy. R0 resection was obtained in 20 patients (80%), and pathologic complete response occurred in 5 (20%). Conclusions: Preoperative IMRT for gastric adenocarcinoma was well tolerated, accomplished excellent target coverage and normal structure sparing, and led to appropriate pathologic

  6. Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity

    International Nuclear Information System (INIS)

    Huang, Eugene; Teh, Bin S.; Strother, Douglas R.; Davis, Quillin G.; Chiu, J. Kam; Lu, Hsin H.; Carpenter, L. Steven; Mai Weiyuan; Chintagumpala, Murali M.; South, Michael; Grant, Walter H. III; Butler, E. Brian; Woo, Shiao Y.

    2002-01-01

    Purpose: The combination of cisplatin chemotherapy and radiation therapy for the treatment of medulloblastoma has been shown to cause significant ototoxicity, impairing a child's cognitive function and quality of life. Our purpose is to determine whether the new conformal technique of intensity-modulated radiation therapy (IMRT) can achieve lower rates of hearing loss by decreasing the radiation dose delivered to the cochlea and eighth cranial nerve (auditory apparatus). Patients and Methods: Twenty-six pediatric patients treated for medulloblastoma were retrospectively divided into two groups that received either conventional radiotherapy (Conventional-RT Group) or IMRT (IMRT Group). One hundred thirteen pure-tone audiograms were evaluated retrospectively, and hearing function was graded on a scale of 0 to 4 according to the Pediatric Oncology Group's toxicity criteria. Statistical analysis comparing the rates of ototoxicity was performed using Fisher's exact test with two-tailed analysis. Results: When compared to conventional radiotherapy, IMRT delivered 68% of the radiation dose to the auditory apparatus (mean dose: 36.7 vs. 54.2 Gy). Audiometric evaluation showed that mean decibel hearing thresholds of the IMRT Group were lower at every frequency compared to those of the Conventional-RT Group, despite having higher cumulative doses of cisplatin. The overall incidence of ototoxicity was lower in the IMRT Group. Thirteen percent of the IMRT Group had Grade 3 or 4 hearing loss, compared to 64% of the Conventional-RT Group (p<0.014). Conclusion: The conformal technique of IMRT delivered much lower doses of radiation to the auditory apparatus, while still delivering full doses to the desired target volume. Our findings suggest that, despite higher doses of cisplatin, and despite radiotherapy before cisplatin therapy, treatment with IMRT can achieve a lower rate of hearing loss

  7. The Quality Control of Intensity Modulated Radiation Therapy (IMRT for ONCOR Siemens Linear Accelerators Using Film Dosimetry

    Directory of Open Access Journals (Sweden)

    Keyvan Jabbari

    2012-03-01

    Full Text Available Introduction Intensity Modulated Radiation Therapy (IMRT has made a significant progress in radiation therapy centers in recent years. In this method, each radiation beam is divided into many subfields that create a field with a modulated intensity. Considering the complexity of this method, the quality control for IMRT is a topic of interest for researchers. This article is about the various steps of planning and quality control of Siemens linear accelerators for IMRT, using film dosimetry. This article in addition to review of the techniques, discusses the details of experiments and possible sources of errors which are not mentioned in the protocols and other references. Materials and Methods This project was carried out in Isfahan Milad hospital which has two Siemens ONCOR linear accelerators. Both accelerators are equipped with Multi-Leaf Collimators (MLC which enables us to perform IMRT delivery in the step-and-shoot method. The quality control consists of various experiments related to the sections of radiation therapy. In these experiments, the accuracy of some components such as treatment planning system, imaging device (CT, MLC, control system of accelerator, and stability of the output are evaluated. The dose verification is performed using film dosimetry method. The films were KODAK-EDR2, which were calibrated before the experiments. One of the important steps is the comparison of the calculated dose with planning system and the measured dose in experiments. Results The results of the experiments in various steps have been acceptable according to the standard protocols. The calibration of MLC and evaluation of the leakage through the leaves of MLC was performed by using the film dosimetry and visual check. In comparison with calculated and measured dose, more that 80% of the points have to be in agreement within 3% of the value. In our experiments, between 85 and 90% of the points had such an agreement with IMRT delivery. Conclusion

  8. Improved Beam Angle Arrangement in Intensity Modulated Proton Therapy Treatment Planning for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Cao, Wenhua; Lim, Gino J.; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: This study investigates potential gains of an improved beam angle arrangement compared to a conventional fixed gantry setup in intensity modulated proton therapy (IMPT) treatment for localized prostate cancer patients based on a proof of principle study. Materials and Methods: Three patients with localized prostate cancer retrospectively selected from our institution were studied. For each patient, IMPT plans were designed using two, three and four beam angles, respectively, obtained from a beam angle optimization algorithm. Those plans were then compared with ones using two lateral parallel-opposed beams according to the conventional planning protocol for localized prostate cancer adopted at our institution. Results: IMPT plans with two optimized angles achieved significant improvements in rectum sparing and moderate improvements in bladder sparing against those with two lateral angles. Plans with three optimized angles further improved rectum sparing significantly over those two-angle plans, whereas four-angle plans found no advantage over three-angle plans. A possible three-beam class solution for localized prostate patients was suggested and demonstrated with preserved dosimetric benefits because individually optimized three-angle solutions were found sharing a very similar pattern. Conclusions: This study has demonstrated the potential of using an improved beam angle arrangement to better exploit the theoretical dosimetric benefits of proton therapy and provided insights of selecting quality beam angles for localized prostate cancer treatment

  9. Hematologic Toxicity in Patients Treated With Postprostatectomy Whole-Pelvis Irradiation With Different Intensity Modulated Radiation Therapy Techniques Is Not Negligible and Is Prolonged: Preliminary Results of a Longitudinal, Observational Study

    Energy Technology Data Exchange (ETDEWEB)

    Cozzarini, Cesare, E-mail: cozzarini.cesare@hsr.it [Department of Radiotherapy, San Raffaele Scientific Institute, Milan (Italy); Chiorda, Barbara Noris [Department of Radiotherapy, San Raffaele Scientific Institute, Milan (Italy); Sini, Carla; Fiorino, Claudio [Department of Medical Physics, San Raffaele Scientific Institute, Milan (Italy); Briganti, Alberto; Montorsi, Francesco [Department of Urology, Vita-Salute University, Milan (Italy); Di Muzio, Nadia [Department of Radiotherapy, San Raffaele Scientific Institute, Milan (Italy)

    2016-06-01

    Purpose: To address the thus-far poorly investigated severity and duration of hematologic toxicity from whole-pelvis radiation therapy (WPRT) in a cohort of chemo-naïve patients treated with postprostatectomy radiation therapy including WPRT with different intensity modulated radiation therapy (IMRT) techniques, doses, and fractionations. Methods and Materials: This analysis pertains to 125 patients (70 from a pilot study and 55 from an observational protocol) for whom 1 baseline and at least 3 subsequent blood samples (median 6), obtained at irradiation midpoint and end, and thereafter at 3, 6, and 12 months, were available. Patients were treated with adjuvant (n=73) or salvage intent; static-field IMRT (n=19); volumetric modulated arc therapy (n=60) or helical Tomotherapy (n=46); and conventional (n=39) or moderately hypofractionated (median 2.35 Gy per fraction, n=86) regimens. The median 2-Gy equivalent dose (EQD2) to the prostatic bed was 70.4 Gy with a lymph-nodal planning target volume of 50.2 Gy. Clinical and dosimetric data were collected. Results: Both leukopenia and thrombocytopenia were significant (median nadir count 65% and 67% of baseline, respectively), with leukopenia also persisting (1-year median count 75% of baseline). Lymphopenia was the major contributor to the severity and 1-year persistence of leukopenia; all patients developed acute grade ≥1 lymphopenia (61% and 26% grade 2 and ≥3, respectively), whereas 1-year grade ≥2 lymphopenia was still present in 16%. In addition to an independent predictive role of corresponding baseline values, multivariable analyses highlighted that higher EQD2 doses to lymph nodal planning target volume increased risk of acute neutropenia and hypofractionation for acute thrombocytopenia. Of note, patients of older age were at higher risk for acute grade 2 lymphopenia, and interestingly, increased risk of grade >2 lymphopenia for those who smoked at least one year. No role for different IMRT techniques

  10. Hematologic Toxicity in Patients Treated With Postprostatectomy Whole-Pelvis Irradiation With Different Intensity Modulated Radiation Therapy Techniques Is Not Negligible and Is Prolonged: Preliminary Results of a Longitudinal, Observational Study

    International Nuclear Information System (INIS)

    Cozzarini, Cesare; Chiorda, Barbara Noris; Sini, Carla; Fiorino, Claudio; Briganti, Alberto; Montorsi, Francesco; Di Muzio, Nadia

    2016-01-01

    Purpose: To address the thus-far poorly investigated severity and duration of hematologic toxicity from whole-pelvis radiation therapy (WPRT) in a cohort of chemo-naïve patients treated with postprostatectomy radiation therapy including WPRT with different intensity modulated radiation therapy (IMRT) techniques, doses, and fractionations. Methods and Materials: This analysis pertains to 125 patients (70 from a pilot study and 55 from an observational protocol) for whom 1 baseline and at least 3 subsequent blood samples (median 6), obtained at irradiation midpoint and end, and thereafter at 3, 6, and 12 months, were available. Patients were treated with adjuvant (n=73) or salvage intent; static-field IMRT (n=19); volumetric modulated arc therapy (n=60) or helical Tomotherapy (n=46); and conventional (n=39) or moderately hypofractionated (median 2.35 Gy per fraction, n=86) regimens. The median 2-Gy equivalent dose (EQD2) to the prostatic bed was 70.4 Gy with a lymph-nodal planning target volume of 50.2 Gy. Clinical and dosimetric data were collected. Results: Both leukopenia and thrombocytopenia were significant (median nadir count 65% and 67% of baseline, respectively), with leukopenia also persisting (1-year median count 75% of baseline). Lymphopenia was the major contributor to the severity and 1-year persistence of leukopenia; all patients developed acute grade ≥1 lymphopenia (61% and 26% grade 2 and ≥3, respectively), whereas 1-year grade ≥2 lymphopenia was still present in 16%. In addition to an independent predictive role of corresponding baseline values, multivariable analyses highlighted that higher EQD2 doses to lymph nodal planning target volume increased risk of acute neutropenia and hypofractionation for acute thrombocytopenia. Of note, patients of older age were at higher risk for acute grade 2 lymphopenia, and interestingly, increased risk of grade >2 lymphopenia for those who smoked at least one year. No role for different IMRT techniques

  11. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Duke University Medical Center (United States)

    2015-06-15

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics.

  12. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    International Nuclear Information System (INIS)

    Wu, Q.

    2015-01-01

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics

  13. Simultaneous minimizing monitor units and number of segments without leaf end abutment for segmental intensity modulated radiation therapy delivery

    International Nuclear Information System (INIS)

    Li Kaile; Dai Jianrong; Ma Lijun

    2004-01-01

    Leaf end abutment is seldom studied when delivering segmental intensity modulated radiation therapy (IMRT) fields. We developed an efficient leaf sequencing method to eliminate leaf end abutment for segmental IMRT delivery. Our method uses simple matrix and sorting operations to obtain a solution that simultaneously minimizes total monitor units and number of segments without leaf end abutment between segments. We implemented and demonstrated our method for multiple clinical cases. We compared the results of our method with the results from exhaustive search method. We found that our solution without leaf end abutment produced equivalent results to the unconstrained solutions in terms of minimum total monitor units and minimum number of leaf segments. We conclude that the leaf end abutment fields can be avoided without affecting the efficiency of segmental IMRT delivery. The major strength of our method is its simplicity and high computing speed. This potentially provides a useful means for generating segmental IMRT fields that require high spatial resolution or complex intensity distributions

  14. Intensity modulated conformal radiotherapy

    International Nuclear Information System (INIS)

    Noel, Georges; Moty-Monnereau, Celine; Meyer, Aurelia; David, Pauline; Pages, Frederique; Muller, Felix; Lee-Robin, Sun Hae; David, Denis Jean

    2006-12-01

    This publication reports the assessment of intensity-modulated conformal radiotherapy (IMCR). This assessment is based on a literature survey which focussed on indications, efficiency and safety on the short term, on the risk of radio-induced cancer on the long term, on the role in the therapeutic strategy, on the conditions of execution, on the impact on morbidity-mortality and life quality, on the impact on the health system and on public health policies and program. This assessment is also based on the opinion of a group of experts regarding the technical benefit of IMCR, its indications depending on the cancer type, safety in terms of radio-induced cancers, and conditions of execution. Before this assessment, the report thus indicates indications for which the use of IMCR can be considered as sufficient or not determined. It also proposes a technical description of IMCR and helical tomo-therapy, discusses the use of this technique for various pathologies or tumours, analyses the present situation of care in France, and comments the identification of this technique in foreign classifications

  15. Multifield Optimization Intensity Modulated Proton Therapy for Head and Neck Tumors: A Translation to Practice

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael; Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Garden, Adam S.; Rosenthal, David I.; Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Weber, Randal S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kies, Merrill S. [Department of Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lewin, Jan S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Palmer, Matthew B. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sahoo, Narayan; Zhang, Xiaodong; Liu, Wei; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-07-15

    Background: We report the first clinical experience and toxicity of multifield optimization (MFO) intensity modulated proton therapy (IMPT) for patients with head and neck tumors. Methods and Materials: Fifteen consecutive patients with head and neck cancer underwent MFO-IMPT with active scanning beam proton therapy. Patients with squamous cell carcinoma (SCC) had comprehensive treatment extending from the base of the skull to the clavicle. The doses for chemoradiation therapy and radiation therapy alone were 70 Gy and 66 Gy, respectively. The robustness of each treatment plan was also analyzed to evaluate sensitivity to uncertainties associated with variations in patient setup and the effect of uncertainties with proton beam range in patients. Proton beam energies during treatment ranged from 72.5 to 221.8 MeV. Spot sizes varied depending on the beam energy and depth of the target, and the scanning nozzle delivered the spot scanning treatment “spot by spot” and “layer by layer.” Results: Ten patients presented with SCC and 5 with adenoid cystic carcinoma. All 15 patients were able to complete treatment with MFO-IMPT, with no need for treatment breaks and no hospitalizations. There were no treatment-related deaths, and with a median follow-up time of 28 months (range, 20-35 months), the overall clinical complete response rate was 93.3% (95% confidence interval, 68.1%-99.8%). Xerostomia occurred in all 15 patients as follows: grade 1 in 10 patients, grade 2 in 4 patients, and grade 3 in 1 patient. Mucositis within the planning target volumes was seen during the treatment of all patients: grade 1 in 1 patient, grade 2 in 8 patients, and grade 3 in 6 patients. No patient experienced grade 2 or higher anterior oral mucositis. Conclusions: To our knowledge, this is the first clinical report of MFO-IMPT for head and neck tumors. Early clinical outcomes are encouraging and warrant further investigation of proton therapy in prospective clinical trials.

  16. The superiority of hybrid-volumetric arc therapy (VMAT) technique over double arcs VMAT and 3D-conformal technique in the treatment of locally advanced non-small cell lung cancer – A planning study

    International Nuclear Information System (INIS)

    Chan, Oscar S.H.; Lee, Michael C.H.; Hung, Albert W.M.; Chang, Amy T.Y.; Yeung, Rebecca M.W.; Lee, Anne W.M.

    2011-01-01

    Purpose: To compare the dosimetric performance of three different treatment techniques – conformal radiotherapy (CRT), double arcs volumetric modulated arc therapy (RapidArc, RA) and Hybrid-RapidArc (H-RA) for locally-advanced non-small cell lung cancer (NSCLC). Material and methods: CRT, RA and H-RA plans were optimized for 24 stage III NSCLC patients. The target prescription dose was 60 Gy. CRT consisted of 5–7 coplanar fields, while RA comprised of two 204 o arcs. H-RA referred to two 204 o arcs plus 2 static fields, which accounted for approximately half of the total dose. The plans were optimized to fulfill the departmental plan acceptance criteria. Results: RA and H-RA yielded a 20% better conformity compared with CRT. Lung volume receiving >20 Gy (V20) and mean lung dose (MLD) were the lowest in H-RA (V20 1.7% and 2.1% lower, MLD 0.59 Gy and 0.41 Gy lower than CRT and RA respectively) without jeopardizing the low-dose lung volume (V5). H-RA plans gave the lowest mean maximum spinal cord dose (34.4 Gy, 3.9 Gy < CRT and 2.2 Gy < RA plans) and NTCP of lung. Higher average MU per fraction (addition 52.4 MU) was observed with a reduced treatment time compared with CRT plans. Conclusion: The H-RA technique was superior in dosimetric outcomes for treating locally-advanced NSCLC compared to CRT and RA.

  17. Intensity Modulated Radiation Therapy With Simultaneous Integrated Boost in Patients With Brain Oligometastases: A Phase 1 Study (ISIDE-BM-1)

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Marica [Radiotherapy Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II,” Catholic University of Sacred Heart, Campobasso (Italy); Chiesa, Silvia [Department of Radiotherapy, Fondazione Policlinico Universitario “A. Gemelli,” Catholic University of Sacred Heart, Rome (Italy); Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it [Radiotherapy Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II,” Catholic University of Sacred Heart, Campobasso (Italy); Cilla, Savino [Medical Physics Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II,” Catholic University of Sacred Heart, Campobasso (Italy); Bertini, Federica [Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna (Italy); Frezza, Giovanni [Radiotherapy Department, Ospedale Bellaria, Bologna (Italy); Farioli, Andrea [Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Bologna (Italy); Cammelli, Silvia [Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna (Italy); Balducci, Mario [Department of Radiotherapy, Fondazione Policlinico Universitario “A. Gemelli,” Catholic University of Sacred Heart, Rome (Italy); Ianiro, Anna [Medical Physics Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II,” Catholic University of Sacred Heart, Campobasso (Italy); Angelini, Anna Lisa; Compagnone, Gaetano [Medical Physics Unit, S. Orsola-Malpighi Hospital, Bologna (Italy); and others

    2017-01-01

    Purpose: To investigate the maximum tolerated dose of intensity modulated radiation therapy simultaneous integrated boost whole-brain radiation therapy for palliative treatment of patients with <5 brain metastases using a standard linear accelerator. Materials and Methods: The whole brain plus 3-mm margin was defined as the planning target volume (PTV{sub wb}), whereas each brain metastasis, defined as the contrast-enhancing tumor on MRI T1 scans, plus a 3-mm isotropic margin, was defined as metastases PTV (PTV{sub m}). Radiation therapy was delivered in 10 daily fractions (2 weeks). Only the dose to PTV{sub m} was progressively increased in the patient cohorts (35 Gy, 40 Gy, 45 Gy, 50 Gy), whereas the PTV{sub wb} was always treated with 30 Gy (3 Gy per fraction) in all patients. The dose-limiting toxicity was evaluated providing that 3 months of follow-up had occurred after the treatment of a 6-patient cohort. Results: Thirty patients were enrolled in the study (dose PTV{sub m}: 35 Gy, 8 patients; 40 Gy, 6 patients; 45 Gy, 6 patients; 50 Gy, 10 patients). The number of treated brain metastases was 1 in 18 patients, 2 in 5 patients, 3 in 6 patients, and 4 in 1 patient. Three patients experienced dose-limiting toxicity: 1 patient at dose level 2 presented grade 3 (G3) skin toxicity; 1 patient at dose level 4 presented G3 neurologic toxicity; and 1 patient at the same level showed brain hemorrhage. Most patients showed G1 to 2 acute toxicity, in most cases skin (n=19) or neurologic (n=10). Twenty-seven were evaluable for response: 6 (22%) stable disease, 18 (67%) partial response, and 3 (11%) complete response. Median survival and 1-year overall survival were 12 months and 53%, respectively. No patient showed late toxicity. Conclusions: In this first prospective trial on the use of intensity modulated radiation therapy simultaneous integrated boost delivered with a standard linear accelerator in patients with brain oligometastases, a boost dose up to 50

  18. Patient-Specific Quality Assurance for the Delivery of 60Co Intensity Modulated Radiation Therapy Subject to a 0.35-T Lateral Magnetic Field

    International Nuclear Information System (INIS)

    Li, H. Harold; Rodriguez, Vivian L.; Green, Olga L.; Hu, Yanle; Kashani, Rojano; Wooten, H. Omar; Yang, Deshan; Mutic, Sasa

    2015-01-01

    Purpose: This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging-guided RT device. Methods and Materials: The program consisted of: (1) a 1-dimensional multipoint ionization chamber measurement using a customized 15-cm 3 cube-shaped phantom; (2) 2-dimensional (2D) radiographic film measurement using a 30- × 30- × 20-cm 3 phantom with multiple inserted ionization chambers; (3) quasi-3D diode array (ArcCHECK) measurement with a centrally inserted ionization chamber; (4) 2D fluence verification using machine delivery log files; and (5) 3D Monte Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Results: Ionization chamber measurements agreed well with treatment planning system (TPS)-computed doses in all phantom geometries where the mean ± SD difference was 0.0% ± 1.3% (n=102; range, −3.0%-2.9%). Film measurements also showed excellent agreement with the TPS-computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30; range, 87.4%-100%). For ArcCHECK measurements, the mean ± SD passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34; range, 95.8%-100%). 2D fluence maps with a resolution of 1 × 1 mm 2 showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18; range, 97.0%-100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. Conclusions: We developed a dosimetry program for ViewRay's patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and action limits for ViewRay's IMRT

  19. Multibeam tomotherapy: A new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Achterberg, Nils; Mueller, Reinhold G.

    2007-01-01

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of ±36 deg. . Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of ''step and shoot'' MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as ''multibeam tomotherapy.'' Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The ''Multifocal MLC-positioning'' algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage

  20. Predictors of Hypothyroidism in Hodgkin Lymphoma Survivors After Intensity Modulated Versus 3-Dimensional Radiation Therapy.

    Science.gov (United States)

    Pinnix, Chelsea C; Cella, Laura; Andraos, Therese Y; Ayoub, Zeina; Milgrom, Sarah A; Gunther, Jillian; Thosani, Sonali; Wogan, Christine; Conson, Manuel; D'Avino, Vittoria; Oki, Yasuhiro; Fanale, Michelle; Lee, Hun J; Neelapu, Sattva; Fayad, Luis; Hagemeister, Frederick; Rodriguez, M Alma; Nastoupil, Loretta J; Nieto, Yago; Qiao, Wei; Pacelli, Roberto; Dabaja, Bouthaina

    2018-03-14

    To identify predictors of hypothyroidism after chemoradiation therapy for Hodgkin lymphoma (HL) and to compare outcomes after intensity modulated radiation therapy (IMRT) with those after 3-dimensional (3D) conformal radiation therapy (CRT). Ninety patients who underwent involved-site IMRT in 2009 through 2014 were evaluated for treatment-induced hypothyroidism, defined as elevated thyroid-stimulating hormone or decreased free thyroxine levels (or both). Receiver operating characteristic curve analysis identified individuals at low versus high risk based on dosimetric variables. Dosimetric cutoff points were verified with an external data set of 50 patients who underwent 3D-CRT. In the IMRT group, most patients (75 [83%]) had stage II HL, and the median prescribed dose was 30.6 Gy; in the 3D-CRT group, 32 patients (64%) had stage II HL, and the median prescribed dose was 32.0 Gy. No differences were found in the proportions of patients with bilateral (P = .982) or unilateral (P = .074) neck involvement between the 2 groups. Hypothyroidism rates were marginally higher in the IMRT group, with estimated 3-year rates of freedom from hypothyroidism of 56.1% in the 3D-CRT group and 40% in the IMRT group (P = .057). Univariate analysis showed that smaller thyroid volume and higher thyroid dose were associated with hypothyroidism in both groups (P hypothyroidism (P = .001 and P hypothyroidism (P hypothyroidism after either IMRT or 3D-CRT for HL. IMRT may confer a higher risk than 3D-CRT unless a treatment avoidance structure is used during planning. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.

    Science.gov (United States)

    Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S

    2016-06-01

    Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  2. Volumetric Modulated Arc-Based Hypofractionated Stereotactic Radiotherapy for the Treatment of Selected Intracranial Arteriovenous Malformations: Dosimetric Report and Early Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Sai; Srinivas, Chilukuri; Ramalingam, K.; Babaiah, M.; Swamy, S. Thirumalai; Arun, G.; Kathirvel, M.; Ashok, S. [Yashoda Super Specialty Hospital, Hyderabad (India); Clivio, Alessandro [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Fogliata, Antonella, E-mail: antonella.fogliata-cozzi@eoc.ch [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Nicolini, Giorgia [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Rao, K. Srinivasa; Reddy, T. Pratap; Amit, Jotwani [Yashoda Super Specialty Hospital, Hyderabad (India); Vanetti, Eugenio; Cozzi, Luca [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)

    2012-03-01

    Purpose: To evaluate, with a dosimetric and clinical feasibility study, RapidArc (a volumetric modulated arc technique) for hypofractionated stereotactic radiotherapy treatment of large arteriovenous malformations (AVMs). Methods and Materials: Nine patients were subject to multimodality imaging (magnetic resonance, computed tomography, and digital subtraction angiography) to determine nidus and target volumes, as well as involved organs at risk (optical structures, inner ear, brain stem). Plans for multiple intensity-modulated arcs with a single isocenter were optimized for a fractionation of 25 Gy in 5 fractions. All plans were optimized for 6-MV photon beams. Dose-volume histograms were analyzed to assess plan quality. Delivery parameters were reported to appraise technical features of RapidArc, and pretreatment quality assurance measurements were carried out to report on quality of delivery. Results: Average size of AVM nidus was 26.2 cm{sup 3}, and RapidArc plans provided complete target coverage with minimal overdosage (V{sub 100%} = 100% and V{sub 110%} < 1%) and excellent homogeneity (<6%). Organs at risk were highly spared. The D{sub 1%} to chiasm, eyes, lenses, optic nerves, and brainstem (mean {+-} SD) was 6.4 {+-} 8.3, 1.9 {+-} 3.8, 2.3 {+-} 2.2, 0.7 {+-} 0.9, 4.4 {+-} 7.2, 12.2 {+-} 9.6 Gy, respectively. Conformity index (CI{sub 95%}) was 2.2 {+-} 0.1. The number of monitor units per gray was 277 {+-} 45, total beam-on time was 2.5 {+-} 0.3 min. Planning vs. delivery {gamma} pass rate was 98.3% {+-} 0.9%. None of the patients developed acute toxicity. With a median follow-up of 9 months, 3 patients presented with deterioration of symptoms and were found to have postradiation changes but responded symptomatically to steroids. These patients continue to do well on follow-up. One patient developed headache and seizures, which was attributed to intracranial bleed, confirmed on imaging. Conclusion: Hypofractionated stereotactic radiotherapy can be

  3. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-01-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem

  4. Comparative cost-effectiveness of stereotactic body radiation therapy versus intensity-modulated and proton radiation therapy for localized prostate cancer.

    Directory of Open Access Journals (Sweden)

    Anju eParthan

    2012-08-01

    Full Text Available Objective. To determine the cost-effectiveness of several external beam radiation treatment modalities for the treatment of patients with localized prostate cancer.Methods. A lifetime Markov model incorporated the probabilities of experiencing treatment-related long-term toxicity or death. Toxicity probabilities were derived from published sources using meta-analytical techniques. Utilities and costs in the model were obtained from publically available secondary sources. The model calculated quality-adjusted life expectancy and expected lifetime cost per patient, and derived ratios of incremental cost per quality-adjusted life year (QALY gained between treatments. Analyses were conducted from both a payer and societal perspectives. One-way and probabilistic sensitivity analyses were performed.Results. Compared to intensity modulated radiation therapy (IMRT and proton beam therapy (PT, stereotactic body radiation therapy (SBRT was less costly and resulted in more QALYs. Sensitivity analyses showed that the conclusions in the base-case scenario were robust with respect to variations in toxicity and cost parameters consistent with available evidence. At a threshold of $50,000/QALY, SBRT was cost effective in 75%, and 94% of probabilistic simulations compared to IMRT and PT, respectively, from a payer perspective. From a societal perspective, SBRT was cost-effective in 75%, and 96% of simulations compared to IMRT and PT, respectively, at a threshold of $50,000/QALY. In threshold analyses, SBRT was less expensive with better outcomes compared to IMRT at toxicity rates 23% greater than the SBRT base-case rates. Conclusions. Based on the assumption that each treatment modality results in equivalent long-term efficacy, SBRT is a cost-effective strategy resulting in improved quality-adjusted survival compared to IMRT and PT for the treatment of localized prostate cancer.

  5. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Bedford, J L; Webb, S

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans

  6. The integration of DVH-based planning aspects into a convex intensity modulated radiation therapy optimization framework

    International Nuclear Information System (INIS)

    Kratt, Karin; Scherrer, Alexander

    2009-01-01

    The formulation of intensity modulated radiation therapy (IMRT) planning aspects frequently uses the dose-volume histogram (DVH), whereas plan computations often happen in the more desirable convex IMRT optimization framework. Inspired by a recent publication of Zinchenko et al (2008 Phys. Med. Biol. 53 3231-50), this work addresses the integration of DVH-based planning aspects into this framework from a general point of view. It first provides the basic mathematical requirements on the evaluation functions in order to support such an incorporation. Then it introduces the condition number as a description for how precisely DVH-based planning aspects can be reformulated in terms of evaluation functions. Exemplary numerical studies for the generalized equivalent uniform dose and a physical constraint function show the influence of function parameter values and DVH approximation on the condition number. The work concludes by formulating the aspects that should be taken into account for an appropriate integration of DVH-based planning aspects. (note)

  7. The integration of DVH-based planning aspects into a convex intensity modulated radiation therapy optimization framework

    Energy Technology Data Exchange (ETDEWEB)

    Kratt, Karin [Faculty of Mathematics, Technical University of Kaiserslautern, Kaiserslautern (Germany); Scherrer, Alexander [Department of Optimization, Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern (Germany)], E-mail: alexander.scherrer@itwm.fraunhofer.de

    2009-06-21

    The formulation of intensity modulated radiation therapy (IMRT) planning aspects frequently uses the dose-volume histogram (DVH), whereas plan computations often happen in the more desirable convex IMRT optimization framework. Inspired by a recent publication of Zinchenko et al (2008 Phys. Med. Biol. 53 3231-50), this work addresses the integration of DVH-based planning aspects into this framework from a general point of view. It first provides the basic mathematical requirements on the evaluation functions in order to support such an incorporation. Then it introduces the condition number as a description for how precisely DVH-based planning aspects can be reformulated in terms of evaluation functions. Exemplary numerical studies for the generalized equivalent uniform dose and a physical constraint function show the influence of function parameter values and DVH approximation on the condition number. The work concludes by formulating the aspects that should be taken into account for an appropriate integration of DVH-based planning aspects. (note)

  8. Dosimetric comparison of three intensity-modulated radiation therapies for left breast cancer after breast-conserving surgery.

    Science.gov (United States)

    Zhang, Huai-Wen; Hu, Bo; Xie, Chen; Wang, Yun-Lai

    2018-05-01

    This study aimed to evaluate dosimetric differences of intensity-modulated radiation therapy (IMRT) in target and normal tissues after breast-conserving surgery. IMRT five-field plan I, IMRT six-field plan II, and field-in-field-direct machine parameter optimization-IMRT plan III were designed for each of the 50 patients. One-way analysis of variance was performed to compare differences, and P mean dose (D mean ) for the heart (P optimization-IMRT plans III can reduce doses and volumes to the lungs and heart better while maintaining satisfying conformity index and homogeneity index of target. Nevertheless, plan II neglects target movements caused by respiration. In the same manner, plan III can substantially reduce MU and shorten patient treatment time. Therefore, plan III, which considers target movement caused by respiration, is a more practical radiation mode. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Influence of intensity-modulated radiation therapy on parotid function in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Cui Tiantian; Wu Shaoxiong; Han Fei; Lu Lixia; Huang Shaomin; Deng Xiaowu; Lu Taixiang; Zhao Chong

    2009-01-01

    Objective: To evaluate the effect of intensity-modulated radiation therapy (IMRT) on parotid function in nasopharyngeal carcinoma (NPC). Methods: Eighty-three NPC patients received prima- ry IMRT between 2001 and 2003. Xerostomia before radiotherapy, at the end of radiotherapy, at 6-month, 1-, 2-,3-,4- and 5-year after radiotherapy were investigated, respectively. The relation between xerostomia and parotid dose distribution was analyzed. Results: Of all the patients, 4, 31, 31 and 17 had stage I, II, III and IV A disease, respectively. Sixteen patients received chemo-radiotherapy. The median followed-up time was 65 months. The 5-year local control and regional control rate were 96% and 95%, respectively. The 5- year overall survival rate was 80%. The mild xerostomia rate at the seven time points was 42%, 51%, 71%, 77%, 58%, 38% and 26%. The corresponding moderate xerostomia rate was 52%, 53%, 21%, 8%, 3%, 2% and 2%, respectively. No serious xerostomia was observed. The mean dose of the bilateral parotid glands was 34.34 Gy. Xerostomia at 6-month after radiotherapy was positively correlated with the mean dose of the parotid glands, and D 50 was the independent factor in predicting the xerostomia. Parotid function was well protected when the mean dose and D 50 were no more than 33 Gy and 29 Gy, respectively. Conclusions: IMRT can improve the local-regional control of NPC and protect the parotid glands from radiation-induced injury. (authors)

  10. Rational use of intensity-modulated radiation therapy: the importance of clinical outcome.

    Science.gov (United States)

    De Neve, Wilfried; De Gersem, Werner; Madani, Indira

    2012-01-01

    During the last 2 decades, intensity-modulated radiation therapy (IMRT) became a standard technique despite its drawbacks of volume delineation, planning, robustness of delivery, challenging quality assurance, and cost as compared with non-IMRT. The theoretic advantages of IMRT dose distributions are generally accepted, but the clinical advantages remain debatable because of the lack of clinical assessment of the effort that is required to overshadow the disadvantages. Rational IMRT use requires a positive advantage/drawback balance. Only 5 randomized clinical trials (RCTs), 3 in the breast and 2 in the head and neck, which compare IMRT with non-IMRT (2-dimensional technique in four fifths of the trials), have been published (as of March 2011), and all had toxicity as the primary endpoint. More than 50 clinical trials compared results of IMRT-treated patients with a non-IMRT group, mostly historical controls. RCTs systematically showed a lower toxicity in IMRT-treated patients, and the non-RCTs confirmed these findings. Toxicity reduction, counterbalancing the drawbacks of IMRT, was convincing for breast and head and neck IMRT. For other tumor sites, the arguments favoring IMRT are weaker because of the inability to control bias outside the randomized setting. For anticancer efficacy endpoints, like survival, disease-specific survival, or locoregional control, the balance between advantages and drawbacks is fraught with uncertainties because of the absence of robust clinical data. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. TH-EF-BRB-09: Total Body Irradiation with Uniform MU and Modulated Arc Segments, UMMS-TBI

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Chung, H; Mutaf, Y; Prado, K [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: To test a novel total body irradiation (TBI) system using conformal partial arc with patient lying on the stationary couch which is biologically equivalent to a moving couch TBI. This improves the scanning field TBI, which is previously presented. Methods: The Uniform MU Modulated arc Segments TBI or UMMS-TBI scans the treatment plane with a constant machine dose rate and a constant gantry rotation speed. A dynamic MLC pattern which moves while gantry rotates has been designed so that the treatment field moves same distance at the treatment plane per each gantry angle, while maintaining same treatment field size (34cm) at the plane. Dose across the plane varies due to the geometric differences including the distance from the source to a point of interest and the different attenuation from the slanted depth which changes the effective depth. Beam intensity is modulated to correct the dose variation across the plane by assigning the number of gantry angles inversely proportional to the uncorrected dose. Results: Measured dose and calculated dose matched within 1 % for central axis and 3% for off axis for various patient scenarios. Dose from different distance does not follow the inverse square relation as it is predicted from calculation. Dose uniformity better than 5% across 180 cm at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 200 MU/min. Conclusion: This novel technique, yet accurate but easy to implement enables TBI treatment in a small treatment room with less program development preparation than other techniques. The VMAT function of treatment delivery is not required to modulate beams. One delivery pattern can be used for different patients by changing the monitor units.

  12. Image-guided conformation arc therapy for prostate cancer: Early side effects

    International Nuclear Information System (INIS)

    Soete, Guy; Verellen, Dirk; Michielsen, Dirk; Rappe, Bernard; Keuppen, Frans; Storme, Guy

    2006-01-01

    Purpose: To evaluate early side effects in prostate cancer patients treated with image-guided conformation arc therapy (IGCAT) using a minimultileaf collimator and daily X-ray-assisted patient positioning. Methods and Materials: Between May 2000 and November 2004, 238 cT1-T3N0M0 tumors were treated with doses of 70 or 78 Gy. Seventy patients also received neoadjuvant or concurrent hormonal treatment. Median follow-up is 18 months (range, 4-55 months). Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer toxicity scoring system was used to evaluate early side effects. Results: Grade 1, 2, and >2 acute side effects occurred in 19, 6, and 0% (gastrointestinal) and 37, 16, and 0% (genitourinary) of the patients. No relation between radiation dose and early side effects was observed. Conclusion: Patients treated with image-guided conformation arc therapy experience a low rate of Grade 2 (i.e., requiring medication) early side effects. The definitive evaluation of late side effects and biochemical control requires further follow-up

  13. Commissioning and Acceptance Testing of the existing linear accelerator upgraded to volumetric modulated arc therapy

    Science.gov (United States)

    Varadharajan, Ekambaram; Ramasubramanian, Velayudham

    2013-01-01

    Aim The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed. Background Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study. Materials and methods Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm3 and 0.65 cm3 Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.1–8 Results All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.7 Conclusion Results confirmed that the linear accelerator is capable of performing accurate VMAT. PMID:24416566

  14. Commissioning and Acceptance Testing of the existing linear accelerator upgraded to volumetric modulated arc therapy.

    Science.gov (United States)

    Varadharajan, Ekambaram; Ramasubramanian, Velayudham

    2013-01-01

    The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed. Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study. Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm(3) and 0.65 cm(3) Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.(1-8.) All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.(7.) Results confirmed that the linear accelerator is capable of performing accurate VMAT.

  15. Radiation therapy for head and neck cancers a case-based review

    CERN Document Server

    Beyzadeoglu, Murat; Selek, Ugur

    2014-01-01

    This evidence-based guide to the current management of cancer cases at all head and neck sites will assist in the appropriate selection and delineation of tumor volumes/fields for intensity-modulated radiation therapy (IMRT), including volumetric modulated arc therapy (VMAT). Each tumor site-related chapter presents, from the perspective of an academic expert, several actual cases at different stages in order to clarify specific clinical concepts. The coverage includes case presentation, a case-related literature review, patient preparation, simulation, contouring, treatment planning, treatment delivery, and follow-up. The text is accompanied by illustrations ranging from slice-by-slice delineations on planning CT images to finalized plan evaluations based on detailed acceptance criteria. The book will be of value for residents, fellows, practicing radiation oncologists, and medical physicists interested in clinical radiation oncology.

  16. Improving intensity-modulated radiation therapy using the anatomic beam orientation optimization algorithm

    International Nuclear Information System (INIS)

    Potrebko, Peter S.; McCurdy, Boyd M. C.; Butler, James B.; El-Gubtan, Adel S.

    2008-01-01

    A novel, anatomic beam orientation optimization (A-BOO) algorithm is proposed to significantly improve conventional intensity-modulated radiation therapy (IMRT). The A-BOO algorithm vectorially analyses polygonal surface mesh data of contoured patient anatomy. Five optimal (5-opt) deliverable beam orientations are selected based on (1) tangential orientation bisecting the target and adjacent organ's-at-risk (OARs) to produce precipitous dose gradients between them and (2) parallel incidence with polygon features of the target volume to facilitate conformal coverage. The 5-opt plans were compared to standard five, seven, and nine equiangular-spaced beam plans (5-equi, 7-equi, 9-equi) for: (1) gastric, (2) Radiation Therapy Oncology Group (RTOG) P-0126 prostate, and (3) RTOG H-0022 oropharyngeal (stage-III, IV) cancer patients. In the gastric case, the noncoplanar 5-opt plan reduced the right kidney V 20 Gy by 32.2%, 23.2%, and 20.6% compared to plans with five, seven, and nine equiangular-spaced beams. In the prostate case, the coplanar 5-opt plan produced similar rectal sparing as the 7-equi and 9-equi plans with a reduction of the V 75, V 70, V 65, and V 60 Gy of 2.4%, 5.3%, 7.0%, and 9.5% compared to the 5-equi plan. In the stage-III and IV oropharyngeal cases, the noncoplanar 5-opt plan substantially reduced the V 30 Gy and mean dose to the contralateral parotid compared to plans with five, seven, and nine equiangular-spaced beams: (stage-III) 7.1%, 5.2%, 6.8%, and 5.1, 3.5, 3.7 Gy and (stage-IV) 10.2%, 10.2%, 9.8% and 7.0, 7.1, 7.2 Gy. The geometry-based A-BOO algorithm has been demonstrated to be robust for application to a variety of IMRT treatment sites. Beam orientations producing significant improvements in OAR sparing over conventional IMRT can be automatically produced in minutes compared to hours with existing dose-based beam orientation optimization methods

  17. Intensity-modulated radiation therapy: overlapping co-axial modulated fields

    International Nuclear Information System (INIS)

    Metcalfe, P; Tangboonduangjit, P; White, P

    2004-01-01

    The Varian multi-leaf collimator has a 14.5 cm leaf extension limit from each carriage. This means the target volumes in the head and neck region are sometimes too wide for standard width-modulated fields to provide adequate dose coverage. A solution is to set up asymmetric co-axial overlapping fields. This protects the MLC carriage while in return the MLC provides modulated dose blending in the field overlap region. Planar dose maps for coincident fields from the Pinnacle radiotherapy treatment planning system are compared with planar dose maps reconstructed from radiographic film and electronic portal images. The film and portal images show small leaf-jaw matchlines at each field overlap border. Linear profiles taken across each image show that the observed leaf-jaw matchlines from the accelerator images are not accounted for by the treatment planning system. Dose difference between film reconstructed electronic portal images and planning system are about 2.5 cGy in a modulated field at d max . While the magnitude of the dose differences are small improved round end leaf modelling combined with a finer dose calculation grid may minimize the discrepancy between calculated and delivered dose

  18. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-01-01

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy for primary NSCLC in 1998–2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient’s preradiation value at the following time intervals: 0–4 (T1), 5–8 (T2), and 9–12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy

  19. Intensive Outpatient Cognitive Behaviour Therapy for Eating Disorder

    Directory of Open Access Journals (Sweden)

    Riccardo Dalle Grave

    2008-12-01

    Full Text Available The aim of this paper is to describe a novel model of intensive outpatient cognitive-behaviour therapy (CBT indicated for eating disorder patients who are having difficulty modifying their eating habits in response to conventional outpatient CBT. Intensive outpatient CBT is a manual based treatment derived by the CBT-Enhanced (CBT-E for eating disorders. The treatment has four features that distinguish it from the conventional outpatient CBT-E: (1 it is designed to be suitable for both adult and adolescent patients, (2 it is delivered by a multidisciplinary non-eclectic team trained in CBT, (3 there is assistance with eating, (4 there is a family therapy module for patients under the age of 18 years. Preliminary outcome of intensive outpatient CBT-E are encouraging. The treatment has been applied to 20 consecutive underweight eating disorder patients (age 18.2 ± 6.5 years; BMI 14.6 ± 1.5 kg/m2. Thirteen patients (65% concluded the treatment, five (25% were admitted at an eating disorder inpatient unit, and two (10% prematurely interrupted the treatment. Completers obtained significant weight regain and improvement of eating disorder and general psychopathology. Most of the improvements were maintained at six-month follow-up.

  20. A Phase II Study of Intensity Modulated Radiation Therapy to the Pelvis for Postoperative Patients With Endometrial Carcinoma: Radiation Therapy Oncology Group Trial 0418

    Energy Technology Data Exchange (ETDEWEB)

    Jhingran, Anuja, E-mail: ajhingra@mdanderson.org [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Winter, Kathryn [RTOG Statistical Center, Philadelphia, Pennsylvania (United States); Portelance, Lorraine [University of Miami, Miami, Florida (United States); Miller, Brigitte [Carolinas Medical Center North East, Concord, North Carolina (United States); Salehpour, Mohammad [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gaur, Rakesh [St. Luke' s Hospital, Kansas City, Missouri (United States); Souhami, Luis [McGill University Health Centre, Montreal, Quebec (Canada); Small, William [Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illionis (United States); Berk, Lawrence [H. Lee Moffitt Cancer Center, Tampa, Florida (United States); Gaffney, David [Huntsman Cancer Hospital, Salt Lake City, Utah (United States)

    2012-09-01

    Purpose: To determine the feasibility of pelvic intensity modulated radiation therapy (IMRT) for patients with endometrial cancer in a multi-institutional setting and to determine whether this treatment is associated with fewer short-term bowel adverse events than standard radiation therapy. Methods: Patients with adenocarcinoma of the endometrium treated with pelvic radiation therapy alone were eligible. Guidelines for target definition and delineation, dose prescription, and dose-volume constraints for the targets and critical normal structures were detailed in the study protocol and a web-based atlas. Results: Fifty-eight patients were accrued by 25 institutions; 43 were eligible for analysis. Forty-two patients (98%) had an acceptable IMRT plan; 1 had an unacceptable variation from the prescribed dose to the nodal planning target volume. The proportions of cases in which doses to critical normal structures exceeded protocol criteria were as follows: bladder, 67%; rectum, 76%; bowel, 17%; and femoral heads, 33%. Twelve patients (28%) developed grade {>=}2 short-term bowel adverse events. Conclusions: Pelvic IMRT for endometrial cancer is feasible across multiple institutions with use of a detailed protocol and centralized quality assurance (QA). For future trials, contouring of vaginal and nodal tissue will need continued monitoring with good QA and better definitions will be needed for organs at risk.

  1. Preliminary Toxicity Analysis of 3-Dimensional Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy on the High-Dose Arm of the Radiation Therapy Oncology Group 0126 Prostate Cancer Trial

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Jeff M., E-mail: jmichalski@radonc.wustl.edu [Department of Radiation Oncology Washington University Medical Center, St. Louis, Missouri (United States); Yan, Yan [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Watkins-Bruner, Deborah [Emory University School of Nursing, Atlanta, Georgia (United States); Bosch, Walter R. [Department of Radiation Oncology Washington University Medical Center, St. Louis, Missouri (United States); Winter, Kathryn [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Galvin, James M. [Department of Radiation Oncology Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Bahary, Jean-Paul [Department of Radiation Oncology Centre Hospitalier de l' Université de Montréal-Notre Dame, Montreal, QC (Canada); Morton, Gerard C. [Department of Radiation Oncology Toronto-Sunnybrook Regional Cancer Centre, Toronto, ON (Canada); Parliament, Matthew B. [Department of Oncology Cross Cancer Institute, Edmonton, AB (Canada); Sandler, Howard M. [Department of Radiation Oncology Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California (United States)

    2013-12-01

    Purpose: To give a preliminary report of clinical and treatment factors associated with toxicity in men receiving high-dose radiation therapy (RT) on a phase 3 dose-escalation trial. Methods and Materials: The trial was initiated with 3-dimensional conformal RT (3D-CRT) and amended after 1 year to allow intensity modulated RT (IMRT). Patients treated with 3D-CRT received 55.8 Gy to a planning target volume that included the prostate and seminal vesicles, then 23.4 Gy to prostate only. The IMRT patients were treated to the prostate and proximal seminal vesicles to 79.2 Gy. Common Toxicity Criteria, version 2.0, and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late morbidity scores were used for acute and late effects. Results: Of 763 patients randomized to the 79.2-Gy arm of Radiation Therapy Oncology Group 0126 protocol, 748 were eligible and evaluable: 491 and 257 were treated with 3D-CRT and IMRT, respectively. For both bladder and rectum, the volumes receiving 65, 70, and 75 Gy were significantly lower with IMRT (all P<.0001). For grade (G) 2+ acute gastrointestinal/genitourinary (GI/GU) toxicity, both univariate and multivariate analyses showed a statistically significant decrease in G2+ acute collective GI/GU toxicity for IMRT. There were no significant differences with 3D-CRT or IMRT for acute or late G2+ or 3+ GU toxicities. Univariate analysis showed a statistically significant decrease in late G2+ GI toxicity for IMRT (P=.039). On multivariate analysis, IMRT showed a 26% reduction in G2+ late GI toxicity (P=.099). Acute G2+ toxicity was associated with late G3+ toxicity (P=.005). With dose–volume histogram data in the multivariate analysis, RT modality was not significant, whereas white race (P=.001) and rectal V70 ≥15% were associated with G2+ rectal toxicity (P=.034). Conclusions: Intensity modulated RT is associated with a significant reduction in acute G2+ GI/GU toxicity. There is a trend for a

  2. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: A treatment planning comparison

    International Nuclear Information System (INIS)

    Kandula, Shravan; Zhu, Xiaorong; Garden, Adam S.; Gillin, Michael; Rosenthal, David I.; Ang, Kie-Kian; Mohan, Radhe; Amin, Mayankkumar V.; Garcia, John A.; Wu, Richard; Sahoo, Narayan; Frank, Steven J.

    2013-01-01

    Radiation therapy for head and neck malignancies can have side effects that impede quality of life. Theoretically, proton therapy can reduce treatment-related morbidity by minimizing the dose to critical normal tissues. We evaluated the feasibility of spot-scanning proton therapy for head and neck malignancies and compared dosimetry between those plans and intensity-modulated radiation therapy (IMRT) plans. Plans from 5 patients who had undergone IMRT for primary tumors of the head and neck were used for planning proton therapy. Both sets of plans were prepared using computed tomography (CT) scans with the goals of achieving 100% of the prescribed dose to the clinical target volume (CTV) and 95% to the planning TV (PTV) while maximizing conformity to the PTV. Dose-volume histograms were generated and compared, as were conformity indexes (CIs) to the PTVs and mean doses to the organs at risk (OARs). Both modalities in all cases achieved 100% of the dose to the CTV and 95% to the PTV. Mean PTV CIs were comparable (0.371 IMRT, 0.374 protons, p = 0.953). Mean doses were significantly lower in the proton plans to the contralateral submandibular (638.7 cGy IMRT, 4.3 cGy protons, p = 0.002) and parotid (533.3 cGy IMRT, 48.5 cGy protons, p = 0.003) glands; oral cavity (1760.4 cGy IMRT, 458.9 cGy protons, p = 0.003); spinal cord (2112.4 cGy IMRT, 249.2 cGy protons, p = 0.002); and brainstem (1553.52 cGy IMRT, 166.2 cGy protons, p = 0.005). Proton plans also produced lower maximum doses to the spinal cord (3692.1 cGy IMRT, 2014.8 cGy protons, p = 0.034) and brainstem (3412.1 cGy IMRT, 1387.6 cGy protons, p = 0.005). Normal tissue V 10 , V 30 , and V 50 values were also significantly lower in the proton plans. We conclude that spot-scanning proton therapy can significantly reduce the integral dose to head and neck critical structures. Prospective studies are underway to determine if this reduced dose translates to improved quality of life

  3. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y [Tsinghua University, Beijing, Beijing (China); UT Southwestern Medical Center, Dallas, TX (United States); Tian, Z; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Song, T [Southern Medical University, Guangzhou, Guangdong (China); UT Southwestern Medical Center, Dallas, TX (United States); Wu, Z; Liu, Y [Tsinghua University, Beijing, Beijing (China)

    2015-06-15

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  4. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    International Nuclear Information System (INIS)

    Li, Y; Tian, Z; Jiang, S; Jia, X; Song, T; Wu, Z; Liu, Y

    2015-01-01

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  5. Shortening Delivery Times of Intensity Modulated Proton Therapy by Reducing Proton Energy Layers During Treatment Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Kooy, Hanne M. [F. H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2015-06-01

    Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system “Erasmus-iCycle.” The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust “time-efficient plan” (with energy layer reduction) with a robust “standard clinical plan” (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases. Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results: The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions: Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs.

  6. Intensity modulated radiotherapy (IMRT) in bilateral retinoblastoma

    International Nuclear Information System (INIS)

    Atalar, Banu; Ozyar, Enis; Gunduz, Kaan; Gungor, Gorkem

    2010-01-01

    External beam radiotherapy (EBRT) for retinoblastoma has traditionally been done with conventional radiotherapy techniques which resulted high doses to the surrounding normal tissues. A 20 month-old girl with group D bilateral retinoblastoma underwent intensity modulated radiotherapy (IMRT) to both eyes after failing chemoreduction and focal therapies including cryotherapy and transpupillary thermotherapy. In this report, we discuss the use of IMRT as a method for reducing doses to adjacent normal tissues while delivering therapeutic doses to the tumour tissues compared with 3-dimensional conformal radiotherapy (3DCRT). At one year follow-up, the patient remained free of any obvious radiation complications. Image guided IMRT provides better dose distribution than 3DCRT in retinoblastoma eyes, delivering the therapeutic dose to the tumours and minimizing adjacent tissue damage

  7. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  8. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    Science.gov (United States)

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within 20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    International Nuclear Information System (INIS)

    Kwint, Margriet; Uyterlinde, Wilma; Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob; Heuvel, Michel van den; Knegjens, Joost; Herk, Marcel van; Belderbos, José

    2012-01-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m²). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D mean and D max of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade ≥2 and grade ≥3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade ≥2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade ≥3 AET (P=.012). The derived V50 model was shown to predict grade ≥2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade ≥3 AET. There was no difference in the incidence of grade ≥2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  10. High-accuracy dosimetry study for intensity-modulated radiation therapy(IMRT) commissioning

    International Nuclear Information System (INIS)

    Jeong, Hae Sun

    2010-02-01

    Intensity-modulated radiation therapy (IMRT), an advanced modality of high-precision radiotherapy, allows for an increase in dose to the tumor volume without increasing the dose to nearby critical organs. In order to successfully achieve the treatment, intensive dosimetry with accurate dose verification is necessary. A dosimetry for IMRT, however, is a challenging task due to dosimetric ally unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, non-uniformity between the detector and the phantom materials, and distortion of scanner-read doses. In the present study, therefore, the LEGO-type multi-purpose dosimetry phantom was developed and used for the studies on dose measurements and correction. Phantom materials for muscle, fat, bone, and lung tissue were selected after considering mass density, atomic composition, effective atomic number, and photon interaction coefficients. The phantom also includes dosimeter holders for several different types of detectors including films, which accommodates a construction of different designs of phantoms as necessary. In order to evaluate its performance, the developed phantom was tested by measuring the point dose and the percent depth dose (PDD) for small size fields under several heterogeneous conditions. However, the measurements with the two types of dosimeter did not agree well for the field sizes less than 1 x 1 cm 2 in muscle and bone, and less than 3 x 3 cm 2 in air cavity. Thus, it was recognized that several studies on small fields dosimetry and correction methods for the calculation with a PMCEPT code are needed. The under-estimated values from the ion chamber were corrected with a convolution method employed to eliminate the volume effect of the chamber. As a result, the discrepancies between the EBT film and the ion chamber measurements were significantly decreased, from 14% to 1% (1 x 1 cm 2 ), 10% to 1% (0.7 x 0.7 cm 2 ), and 42% to 7% (0.5 x 0

  11. Comparative analysis of 60Co intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H Edwin; Lynch, Bart; Dempsey, James F; Men, Chunhua; Aleman, Dionne M

    2008-01-01

    In this study, we perform a scientific comparative analysis of using 60 Co beams in intensity-modulated radiation therapy (IMRT). In particular, we evaluate the treatment plan quality obtained with (i) 6 MV, 18 MV and 60 Co IMRT; (ii) different numbers of static multileaf collimator (MLC) delivered 60 Co beams and (iii) a helical tomotherapy 60 Co beam geometry. We employ a convex fluence map optimization (FMO) model, which allows for the comparison of plan quality between different beam energies and configurations for a given case. A total of 25 clinical patient cases that each contain volumetric CT studies, primary and secondary delineated targets, and contoured structures were studied: 5 head-and-neck (H and N), 5 prostate, 5 central nervous system (CNS), 5 breast and 5 lung cases. The DICOM plan data were anonymized and exported to the University of Florida optimized radiation therapy (UFORT) treatment planning system. The FMO problem was solved for each case for 5-71 equidistant beams as well as a helical geometry for H and N, prostate, CNS and lung cases, and for 3-7 equidistant beams in the upper hemisphere for breast cases, all with 6 MV, 18 MV and 60 Co dose models. In all cases, 95% of the target volumes received at least the prescribed dose with clinical sparing criteria for critical organs being met for all structures that were not wholly or partially contained within the target volume. Improvements in critical organ sparing were found with an increasing number of equidistant 60 Co beams, yet were marginal above 9 beams for H and N, prostate, CNS and lung. Breast cases produced similar plans for 3-7 beams. A helical 60 Co beam geometry achieved similar plan quality as static plans with 11 equidistant 60 Co beams. Furthermore, 18 MV plans were initially found not to provide the same target coverage as 6 MV and 60 Co plans; however, adjusting the trade-offs in the optimization model allowed equivalent target coverage for 18 MV. For plans with comparable

  12. Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method

    International Nuclear Information System (INIS)

    Rocha, Humberto; Dias, Joana M; Ferreira, Brígida C; Lopes, Maria C

    2013-01-01

    Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem. (paper)

  13. Observations of intense velocity shear and associated electrostatic waves near an auroral arc

    International Nuclear Information System (INIS)

    Kelley, M.C.; Carlson, C.W.

    1977-01-01

    An intense shear in plasma flow velocity of magnitude 20 (m/s)m -1 has been detected at the edge of an auroral arc. The region of shear appears to display structure with two characteristic scale sizes. The larger structures were of the order of a few kilometers in size and were identified by a deviation of the direction of the charge sheets crossed by the rocket from a direction parallel to the visible arc. As is shown in the companion paper (Carlson and Kelley, 1977), the average (undisturbed) charge sheet was parallel to the arc. These observations are consistent with television studies which often display such structures propagating along the edges of auroral forms. Additional intense irregularities were detected with characteristic wavelengths smaller than the scale size of the shear. The irregularities are discussed in light of the branches of a velocity shear driven instability suggested by several workers: the Kelvin-Helmholtz instability operating at the longest wavelengths and the drift shear instability at the shorter. Neither mode has wavelengths as short as those observed however. A velocity shear mechanism operating at wavelengths short in comparison with the shear scale length, such as those observed here, would be of significant geophysical importance. For example, it could be responsible for production of high-latitude irregularities which exist throughout the polar cap and for the short-wavelength waves responsible for intense 3-m backscatter during equatorial spread F conditions. Since the wavelengths produced by the short-wavelength mode are in the range of typical auroral E region radars, such data must be carefully checked for F region contamination

  14. Intensity-modulated radiation therapy for nasopharyngeal carcinoma parotid sparing with euivalent uiform dose optimization

    International Nuclear Information System (INIS)

    Yue Weiyou; Dai Jianrong; Gao Li

    2006-01-01

    Objective: The aim of this study was to evaluate the role of an euivalent uiform dose (EUD) based optimization algorithm in sparing the parotids of patients with nasopharyngeal carcinoma (NPC) when they are treated with intensity-modulated radiation therapy (IMRT). Methods: 12 patients were randomly selected from the NPC patients who received IMRT treatments. For these patients, the treatment plans were designed with physical optimization constraints (dose/dose-volume constraints). Based on these plans, new plans were designed through replacing the physical constraints with maximum EUD for parotids, while keeping the physical objectives for targets and other organs at risk(OARs) unchanged. Comparison was then made between the new plan, which had EUD constraints to parotids, and the former for each individual patient. Results: While maintaining the dose to the targets and the other OARs un- changed, optimization with EUD constraints to parotids decreased the mean dose and V 30 of parotids significantly, simultaneously, the dose of target volume and other organs at risk keep stable, the values of probability were less than 0.05 by T-test. Conclusions: The doses to parotids can be reduced through optimization with EUD constraints. This finding is quite helpful to reduce the occurrence rate of parotid complications, and to provide spaces for escalating target dose. (authors)

  15. In vivo measurements with MOSFET detectors in oropharynx and nasopharynx intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Marcie, Serge; Charpiot, Elisabeth; Bensadoun, Rene-Jean; Ciais, Gaston; Herault, Joel; Costa, Andre; Gerard, Jean-Pierre

    2005-01-01

    Purpose: To evaluate the feasibility of in vivo measurements with metal oxide semiconductor field effect transistor (MOSFET) dosimeters for oropharynx and nasopharynx intensity-modulated radiation therapy (IMRT). Methods and Materials: During a 1-year period, in vivo measurements of the dose delivered to one or two points of the oral cavity by IMRT were obtained with MOSFET dosimeters. Measurements were obtained during each session of 48 treatment plans for 21 patients, all of whom were fitted with a custom-made mouth plate. Calculated and measured values were compared. Results: A total of 344 and 452 measurements were performed for the right and left sides, respectively, of the oral cavity. Seventy percent of the discrepancies between calculated and measured values were within ±5%. Uncertainties were due to interfraction patient positions, intrafraction patient movements, and interfraction MOSFET positions. Nevertheless, the discrepancies between the measured and calculated means were within ±5% for 92% and 95% of the right and left sides, respectively. Comparison of these discrepancies and the discrepancies between calculated values and measurements made on a phantom revealed that all differences were within ±5%. Conclusion: Our experience demonstrates the feasibility of in vivo measurements with MOSFET dosimeters for oropharynx and nasopharynx IMRT

  16. Bone marrow-sparing intensity-modulated radiation therapy for Stage I seminoma

    International Nuclear Information System (INIS)

    Zilli, Thomas; Boudreau, Chantal; Doucet, Robert; Alizadeh, Moein; Lambert, Carole; Van Nguyen, Thu; Taussky, Daniel

    2011-01-01

    Background. A direct association between radiotherapy dose, side-effects and secondary cancers has been described in patients with seminoma. A treatment planning study was performed in order to compare computed tomography-based traditional radiotherapy (CT-tRT) versus bone marrow-sparing intensity-modulated radiation therapy (BMS-IMRT) in patients with Stage I seminoma. Material and methods. We optimized in 10 patients a CT-tRT and a BMS-IMRT treatment plan to deliver 20 Gy to the para-aortic nodes. CT-tRT and IMRT consisted of anteroposterior-posterioranterior parallel-opposed and seven non-opposed coplanar fields using 16 and 6-MV photon energies, respectively. Dose-Volume Histograms for clinical target volume (CTV), planning target volume (PTV) and organs at risk (OARs) were compared for both techniques using Wilcoxon matched-pair signed rank-test. Results. Dmean to CTV and PTV were similar for both techniques, even if CT-tRT showed a slightly improved target coverage in terms of PTV-D95% (19.7 vs. 19.5 Gy, p 0.005) and PTV-V95% (100 vs. 99.7%, p = 0.011) compared to BMS-IMRT. BMS-IMRT resulted in a significant reduction (5.2 Gy, p = 0.005) in the Dmean to the active bone marrow (ABM). The V100% and V75% of the OARs were reduced with BMS-IMRT by: ABM-V100% = 51.7% and ABM-V75% = 42.3%; bowel-V100% = 15.7% and bowel-V75% = 16.8%; stomach-V100% = 22% and stomach-V75% = 27.7%; pancreas-V100% = 37.1% and pancreas-V75% = 35.9% (p = 0.005 for all variables). Conclusions. BMS-IMRT reduces markedly the dose to the OARs compared to CT-tRT. This should translate into a reduction in acute and long-term toxicity, as well as into the risk of secondary solid and hematological cancers

  17. SU-E-T-631: Preliminary Results for Analytical Investigation Into Effects of ArcCHECK Setup Errors

    International Nuclear Information System (INIS)

    Kar, S; Tien, C

    2015-01-01

    Purpose: As three-dimensional diode arrays increase in popularity for patient-specific quality assurance for intensity-modulated radiation therapy (IMRT), it is important to evaluate an array’s susceptibility to setup errors. The ArcCHECK phantom is set up by manually aligning its outside marks with the linear accelerator’s lasers and light-field. If done correctly, this aligns the ArcCHECK cylinder’s central axis (CAX) with the linear accelerator’s axis of rotation. However, this process is prone to error. This project has developed an analytical expression including a perturbation factor to quantify the effect of shifts. Methods: The ArcCHECK is set up by aligning its machine marks with either the sagittal room lasers or the light-field of the linear accelerator at gantry zero (IEC). ArcCHECK has sixty-six evenly-spaced SunPoint diodes aligned radially in a ring 14.4 cm from CAX. The detector response function (DRF) was measured and combined with inverse-square correction to develop an analytical expression for output. The output was calculated using shifts of 0 (perfect alignment), +/−1, +/−2 and +/−5 mm. The effect on a series of simple inputs was determined: unity, 1-D ramp, steps, and hat-function to represent uniform field, wedge, evenly-spaced modulation, and single sharp modulation, respectively. Results: Geometric expressions were developed with perturbation factor included to represent shifts. DRF was modeled using sixth-degree polynomials with correlation coefficient 0.9997. The output was calculated using simple inputs such as unity, 1-D ramp, steps, and hat-function, with perturbation factors of: 0, +/−1, +/−2 and +/−5 mm. Discrepancies have been observed, but large fluctuations have been somewhat mitigated by aliasing arising from discrete diode placement. Conclusion: An analytical expression with perturbation factors was developed to estimate the impact of setup errors on an ArcCHECK phantom. Presently, this has been applied to

  18. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    International Nuclear Information System (INIS)

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-01-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35 o /couch, 312 o . Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  19. Limited advantages of intensity-modulated radiotherapy over 3D conformal radiation therapy in the adjuvant management of gastric cancer.

    Science.gov (United States)

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W

    2009-06-01

    Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 degrees , 53 degrees , 107 degrees , 158 degrees , 204 degrees , 255 degrees , and 306 degrees . Beam arrangement 2 consisted of gantry angles of 30 degrees , 90 degrees , 315 degrees , and 345 degrees ; a gantry angle of 320 degrees /couch, 30 degrees ; and a gantry angle of 35 degrees /couch, 312 degrees . Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  20. Total dural irradiation: RapidArc versus static-field IMRT: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Paul J., E-mail: paulj.kelly@hse.ie [Department of Radiation Oncology, Dana Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, MA (United States); Mannarino, Edward; Lewis, John Henry; Baldini, Elizabeth H.; Hacker, Fred L. [Department of Radiation Oncology, Dana Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, MA (United States)

    2012-07-01

    The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45 Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time, RapidArc

  1. Conformal radiotherapy by intensity modulation of pediatrics tumors; Radiotherapie conformationnelle par modulation d'intensite des tumeurs pediatriques

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, J.; Le Prise, E. [Centre Eugene-Marquis, 35 - Rennes (France); Carrie, C. [Centre Leon Berard, 69 - Lyon (France); Bernier, V. [Centre Alexis-Vautrin, 54 - Nancy (France); Beneyton, V. [Centre Paul-Strauss, 67 - Strasbourg (France); Mahe, M.A.; Supiot, S. [Centre Rene-Gauducheau, 44 - Nantes (France)

    2009-10-15

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  2. Replanning During Intensity Modulated Radiation Therapy Improved Quality of Life in Patients With Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Yang Haihua; Hu Wei; Wang Wei; Chen Peifang; Ding Weijun; Luo Wei

    2013-01-01

    Purpose: Anatomic and dosimetric changes have been reported during intensity modulated radiation therapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the effects of replanning on quality of life (QoL) and clinical outcomes during the course of IMRT for NPC patients. Methods and Materials: Between June 2007 and August 2011, 129 patients with NPC were enrolled. Forty-three patients received IMRT without replanning, while 86 patients received IMRT replanning after computed tomography (CT) images were retaken part way through therapy. Chinese versions of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Head and Neck Quality of Life Questionnaire 35 were completed before treatment began and at the end of treatment and at 1, 3, 6, and 12 months after the completion of treatment. Overall survival (OS) data were compared using the Kaplan-Meier method. Results: IMRT replanning had a profound impact on the QoL of NPC patients, as determined by statistically significant changes in global QoL and other QoL scales. Additionally, the clinical outcome comparison indicates that replanning during IMRT for NPC significantly improved 2-year local regional control (97.2% vs 92.4%, respectively, P=.040) but did not improve 2-year OS (89.8% vs 82.2%, respectively, P=.475). Conclusions: IMRT replanning improves QoL as well as local regional control in patients with NPC. Future research is needed to determine the criteria for replanning for NPC patients undergoing IMRT.

  3. Multi-centre experience of implementing image-guided intensity-modulated radiotherapy using the TomoTherapy platform

    International Nuclear Information System (INIS)

    Dean, J.C.; Tudor, G.S.J.; Mott, J.H.; Dunlop, P.R.; Morris, S.L.; Harron, E.C.; Christian, J.A.; Sanghera, P.; Elsworthy, M.; Burnet, N.G.

    2013-01-01

    Use of image guided (IG) intensity modulated radiotherapy (IMRT) is increasing, and helical tomotherapy provides an effective, integrated solution. Practical experience of implementation, shared at a recent UK TomoTherapy Users' meeting, may help centres introducing these techniques using TomoTherapy or other platforms. Seven centres participated, with data shared from 6, varying from 2500 - 4800 new patients per year. Case selection of patients “most likely” to benefit from IG-IMRT was managed in all centres by multi-professional groups comprising clinical oncologists, physicists, treatment planners and radiographers. Radical treatments ranged from 94% to 100%. The proportions of tumour types varied substantially: head and neck: range 0%–100% (mean of centres 50%), prostate: 3%–96% (mean of centres 28%). Head and neck cases were considered most likely to benefit from IMRT, prostate cases from IGRT, or IG-IMRT if pelvic nodes were being treated. IMRT was also selected for complex target volumes, to avoid field junctions, for technical treatment difficulties, and retreatments. Across the centres, every patient was imaged every day, with positional correction before treatment. In one centre, for prostate patients including pelvic treatment, the pelvis was also imaged weekly. All centres had designed a ‘ramp up’ of patient numbers, which was similar in 5. One centre, treating 96% prostate patients, started with 3 and increased to 36 patients per day within 3 months. The variation in case mix implies wide applicability of IG-IMRT. Daily on-line IGRT with IMRT can be routinely implemented into busy departments

  4. Two-Year and Lifetime Cost-Effectiveness of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Head-and-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Racquel E. [Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Sheets, Nathan C. [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States); Wheeler, Stephanie B. [Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Nutting, Chris [Royal Marsden Hospital, London, United Kindom (United Kingdom); Hall, Emma [Clinical Trials and Statistics Unit, Division of Clinical Studies, Institute of Cancer Research, London (United Kingdom); Chera, Bhishamjit S., E-mail: bchera@med.unc.edu [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States)

    2013-11-15

    Purpose: To assess the cost-effectiveness of intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of head-and neck-cancer (HNC). Methods and Materials: We used a Markov model to simulate radiation therapy-induced xerostomia and dysphagia in a hypothetical cohort of 65-year-old HNC patients. Model input parameters were derived from PARSPORT (CRUK/03/005) patient-level trial data and quality-of-life and Medicare cost data from published literature. We calculated average incremental cost-effectiveness ratios (ICERs) from the US health care perspective as cost per quality-adjusted life-year (QALY) gained and compared our ICERs with current cost-effectiveness standards whereby treatment comparators less than $50,000 per QALY gained are considered cost-effective. Results: In the first 2 years after initial treatment, IMRT is not cost-effective compared with 3D-CRT, given an average ICER of $101,100 per QALY gained. However, over 15 years (remaining lifetime on the basis of average life expectancy of a 65-year-old), IMRT is more cost-effective at $34,523 per QALY gained. Conclusion: Although HNC patients receiving IMRT will likely experience reduced xerostomia and dysphagia symptoms, the small quality-of-life benefit associated with IMRT is not cost-effective in the short term but may be cost-effective over a patient's lifetime, assuming benefits persist over time and patients are healthy and likely to live for a sustained period. Additional data quantifying the long-term benefits of IMRT, however, are needed.

  5. Real-Time Dynamic MLC Tracking for Intensity Modulated Arc Therapy

    DEFF Research Database (Denmark)

    Falk, Marianne

    Motion management of intra-fraction tumour motion during radiotherapy treatment can be a challenging task in order to achieve tumour control as well as minimizing the dose to the surrounding healthy tissue. Real-time dynamic multileaf collimator (MLC) tracking is a novel method for intra-fraction...

  6. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors

    International Nuclear Information System (INIS)

    Dong, Peng; Lee, Percy; Ruan, Dan; Long, Troy; Romeijn, Edwin; Low, Daniel A.; Kupelian, Patrick; Abraham, John; Yang, Yingli; Sheng, Ke

    2013-01-01

    Purpose: To investigate the dosimetric improvements in stereotactic body radiation therapy for patients with larger or central lung tumors using a highly noncoplanar 4π planning system. Methods and Materials: This study involved 12 patients with centrally located or larger lung tumors previously treated with 7- to 9-field static beam intensity modulated radiation therapy to 50 Gy. They were replanned using volumetric modulated arc therapy and 4π plans, in which a column generation method was used to optimize the beam orientation and the fluence map. Maximum doses to the heart, esophagus, trachea/bronchus, and spinal cord, as well as the 50% isodose volume, the lung volumes receiving 20, 10, and 5 Gy were minimized and compared against the clinical plans. A dose escalation study was performed to determine whether a higher prescription dose to the tumor would be achievable using 4π without violating dose limits set by the clinical plans. The deliverability of 4π plans was preliminarily tested. Results: Using 4π plans, the maximum heart, esophagus, trachea, bronchus and spinal cord doses were reduced by 32%, 72%, 37%, 44%, and 53% (P≤.001), respectively, and R 50 was reduced by more than 50%. Lung V 20 , V 10 , and V 5 were reduced by 64%, 53%, and 32% (P≤.001), respectively. The improved sparing of organs at risk was achieved while also improving planning target volume (PTV) coverage. The minimal PTV doses were increased by the 4π plans by 12% (P=.002). Consequently, escalated PTV doses of 68 to 70 Gy were achieved in all patients. Conclusions: We have shown that there is a large potential for plan quality improvement and dose escalation for patients with larger or centrally located lung tumors using noncoplanar beams with sufficient quality and quantity. Compared against the clinical volumetric modulated arc therapy and static intensity modulated radiation therapy plans, the 4π plans yielded significantly and consistently improved tumor coverage and

  7. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng; Lee, Percy; Ruan, Dan [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Long, Troy; Romeijn, Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan (United States); Low, Daniel A.; Kupelian, Patrick; Abraham, John; Yang, Yingli [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States)

    2013-07-01

    Purpose: To investigate the dosimetric improvements in stereotactic body radiation therapy for patients with larger or central lung tumors using a highly noncoplanar 4π planning system. Methods and Materials: This study involved 12 patients with centrally located or larger lung tumors previously treated with 7- to 9-field static beam intensity modulated radiation therapy to 50 Gy. They were replanned using volumetric modulated arc therapy and 4π plans, in which a column generation method was used to optimize the beam orientation and the fluence map. Maximum doses to the heart, esophagus, trachea/bronchus, and spinal cord, as well as the 50% isodose volume, the lung volumes receiving 20, 10, and 5 Gy were minimized and compared against the clinical plans. A dose escalation study was performed to determine whether a higher prescription dose to the tumor would be achievable using 4π without violating dose limits set by the clinical plans. The deliverability of 4π plans was preliminarily tested. Results: Using 4π plans, the maximum heart, esophagus, trachea, bronchus and spinal cord doses were reduced by 32%, 72%, 37%, 44%, and 53% (P≤.001), respectively, and R{sub 50} was reduced by more than 50%. Lung V{sub 20}, V{sub 10}, and V{sub 5} were reduced by 64%, 53%, and 32% (P≤.001), respectively. The improved sparing of organs at risk was achieved while also improving planning target volume (PTV) coverage. The minimal PTV doses were increased by the 4π plans by 12% (P=.002). Consequently, escalated PTV doses of 68 to 70 Gy were achieved in all patients. Conclusions: We have shown that there is a large potential for plan quality improvement and dose escalation for patients with larger or centrally located lung tumors using noncoplanar beams with sufficient quality and quantity. Compared against the clinical volumetric modulated arc therapy and static intensity modulated radiation therapy plans, the 4π plans yielded significantly and consistently improved tumor

  8. An investigation of the dose distribution effect related with collimator angle in volumetric arc therapy of prostate cancer

    Directory of Open Access Journals (Sweden)

    Bora Tas

    2016-01-01

    Full Text Available To investigate the dose-volume variations of planning target volume (PTV and organ at risks (OARs in eleven prostate cancer patients planned with single and double arc volumetric modulated arc therapy (VMAT when varying collimator angle. Single and double arc VMAT treatment plans were created using Monaco5.0® with collimator angle set to 0°. All plans were normalized 7600 cGy dose to the 95% of clinical target volume (CTV volume. The single arc VMAT plans were reoptimized with different collimator angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°, and for double arc VMAT plans (0–0°, 15°–345, 30–330°, 45–315°, 60–300°, 75–285°, 90–270° using the same optimization parameters. For the comparison the parameters of heterogeneity index (HI, dose-volume histogram and minimum dose to the 95% of PTV volume (D95 PTV calculated and analyzed. The best plans were verified using 2 dimensional ion chamber array IBA Matrixx® and three-dimensional IBA Compass® program. The comparison between calculation and measurement were made by the γ-index (3%/3 mm analysis. A higher D95 (PTV were found for single arc VMAT with 15° collimator angle. For double arc, VMAT with 60–300° and 75–285° collimator angles. However, lower rectum doses obtained for 75–285° collimator angles. There was no significant dose difference, based on other OARs which are bladder and femur head. When we compared single and double arc VMAT's D95 (PTV, we determined 2.44% high coverage and lower HI with double arc VMAT. All plans passed the γ-index (3%/3 mm analysis with more than 97% of the points and we had an average γ-index for CTV 0.36, for PTV 0.32 with double arc VMAT. These results were significant by Wilcoxon signed rank test statistically. The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of target and OARs. Based on the results we have decided to plan prostate

  9. Electron arc therapy: Influence of heterogeneities on dose to blood-forming organs

    International Nuclear Information System (INIS)

    Leavitt, D.D.; Gibbs, F.A.; Moeller, J.H.

    1986-01-01

    Electron arc therapy has been used successfully to treat extended chest wall surfaces after mastectomy. Treatment is frequently given simultaneously with chemotherapy. Although the primary electron arc treatment volume consists only of the chest wall and mediastinum, dose is accumulated at the isocenter of rotation due to the photon contamination of the arcing electron beam. Additionally, higher energy electron fields which are occasionally used over segments of the arc may contribute to the dose at isocenter if the electron range has been extended due to passage through a low-density heterogeneity such as lung. In some patient setups, the isocenter may intersect blood-forming organs, such as the vertebral bodies. Thermoluminescent dosimetry has been used to measure the dose at isocenter for the following setups: polystyrene phantom, polystyrene phantom covered by 1-cm-thick lead cast, polystyrene phantom with cork insert to simulate lung, and phantom plus cork insert plus lead cast. For the 9-MeV treatment mode, dose at isocenter per 90 0 of arc (as a percentage of maximum tumor dose) is as follows: phantom, 6.5%; phantom plus lead, 5%; phantom plus cork, 8%; and phantom plus cork plus lead, 6%. These values must be scaled by the size of the arc to estimate dose at isocenter in actual treatments. Computer calculation showed good agreement with these measured values, indicating that the computerized treatment plans can be used as a predictor of electron arc dose to blood-forming organs

  10. On the choice of electromagnetic model for short high-intensity arcs, applied to welding

    International Nuclear Information System (INIS)

    Choquet, Isabelle; Shirvan, Alireza Javidi; Nilsson, Håkan

    2012-01-01

    We have considered four different approaches for modelling the electromagnetic fields of high-intensity electric arcs: (i) three-dimensional, (ii) two-dimensional axi-symmetric, (iii) the electric potential formulation and (iv) the magnetic field formulation. The underlying assumptions and the differences between these models are described in detail. Models (i) to (iii) reduce to the same limit for an axi-symmetric configuration with negligible radial current density, contrary to model (iv). Models (i) to (iii) were retained and implemented in the open source CFD software OpenFOAM. The simulation results were first validated against the analytic solution of an infinite electric rod. Perfect agreement was obtained for all the models tested. The electromagnetic models (i) to (iii) were then coupled with thermal fluid mechanics, and applied to axi-symmetric gas tungsten arc welding test cases with short arc (2, 3 and 5 mm) and truncated conical electrode tip. Models (i) and (ii) lead to the same simulation results, but not model (iii). Model (iii) is suited in the specific limit of long axi-symmetric arc with negligible electrode tip effect, i.e. negligible radial current density. For short axi-symmetric arc with significant electrode tip effect, the more general axi-symmetric formulation of model (ii) should instead be used. (paper)

  11. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique

  12. SU-E-T-124: Dosimetric Comparison of HDR Brachytherapy and Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J [Purdue University, West Lafayette, IN (United States); Wu, H [IUPUI, Indianapolis, IN (United States); Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States)

    2014-06-01

    Purpose: Brachytherapy is known to be able to deliver more radiation dose to tumor while minimizing radiation dose to surrounding normal tissues. Proton therapy also provides superior dose distribution due to Bragg peak. Since both HDR and Intensity Modulated Proton Therapy (IMPT) are beneficial for their quick dose drop off, our goal in this study is to compare the pace of dose gradient drop-off between HDR and IMPT plans based on the same CT image data-set. In addition, normal tissues sparing were also compared among HDR, IMPT and SBRT. Methods: Five cervical cancer cases treated with EBRT + HDR boost combination with Tandem and Ovoid applicator were used for comparison purpose. Original HDR plans with prescribed dose of 5.5 Gy x 5 fractions were generated and optimized. The 100% isodose line of HDR plans was converted to a dose volume, and treated as CTV for IMPT and SBRT planning. The same HDR CT scans were also used for IMPT plan and SBRT plan for direct comparison. The philosophy of the IMPT and SBRT planning was to create the same CTV coverage as HDR plans. All three modalities treatment plans were compared to each other with a set of predetermined criteria. Results: With similar target volume coverage in cervix cancer boost treatment, HDR provides a slightly sharper dose drop-off from 100% to 50% isodose line, averagely in all directions compared to IMPT. However, IMPT demonstrated more dose gradient drop-off at the junction of the target and normal tissues by providing more normal tissue sparing and superior capability to reduce integral dose. Conclusion: IMPT is capable of providing comparable dose drop-off as HDR. IMPT can be explored as replacement for HDR brachytherapy in various applications.

  13. Discussion of feasibility to carry out intensity modulated radiation therapy in conventional medical electron linear accelerator treatment rooms

    International Nuclear Information System (INIS)

    Yang Haiyou; Liu Liping; Liang Yueqin; Zhang Liang; Yu Shui

    2010-01-01

    Objective: To investigate the feasibility about the shielding effect of conventional medical electron linear accelerator treatment in the existing rooms to carry out intensity modulated radiation therapy (IMRT). Methods: The estimation model given in NCRP REPORT No. 151- S tructural Shielding Design and Evaluation for Megavoltage X-and Gamma-Ray Radiotherapy Facilities i s adopted by linking instances, which presents the calculation methods on radiation level at the ambience of megavoltage medical electron linear accelerator treatment room. Results: The radiation level, as well as the additional annual effect dose of occupational and public at the ambience of accelerator treatment room, in crease to a certain extent, when conventional medical electron linear accelerator treatment room; are used to carry out IMRT. Conclusion: It is necessary to make environmental impact assessment for conventional medical electron linear accelerator treatment rooms, which will be used to execute IMRT. (authors)

  14. High-accuracy dosimetry study for intensity-modulated radiation therapy(IMRT) commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun

    2010-02-15

    Intensity-modulated radiation therapy (IMRT), an advanced modality of high-precision radiotherapy, allows for an increase in dose to the tumor volume without increasing the dose to nearby critical organs. In order to successfully achieve the treatment, intensive dosimetry with accurate dose verification is necessary. A dosimetry for IMRT, however, is a challenging task due to dosimetric ally unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, non-uniformity between the detector and the phantom materials, and distortion of scanner-read doses. In the present study, therefore, the LEGO-type multi-purpose dosimetry phantom was developed and used for the studies on dose measurements and correction. Phantom materials for muscle, fat, bone, and lung tissue were selected after considering mass density, atomic composition, effective atomic number, and photon interaction coefficients. The phantom also includes dosimeter holders for several different types of detectors including films, which accommodates a construction of different designs of phantoms as necessary. In order to evaluate its performance, the developed phantom was tested by measuring the point dose and the percent depth dose (PDD) for small size fields under several heterogeneous conditions. However, the measurements with the two types of dosimeter did not agree well for the field sizes less than 1 x 1 cm{sup 2} in muscle and bone, and less than 3 x 3 cm{sup 2} in air cavity. Thus, it was recognized that several studies on small fields dosimetry and correction methods for the calculation with a PMCEPT code are needed. The under-estimated values from the ion chamber were corrected with a convolution method employed to eliminate the volume effect of the chamber. As a result, the discrepancies between the EBT film and the ion chamber measurements were significantly decreased, from 14% to 1% (1 x 1 cm{sup 2}), 10% to 1% (0.7 x 0.7 cm{sup 2}), and 42

  15. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification.

    Science.gov (United States)

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C

    2015-03-01

    To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.

  16. Moderate hypofractionated radiotherapy with volumetric modulated arc therapy and simultaneous integrated boost for pelvic irradiation in prostate cancer.

    Science.gov (United States)

    Franzese, C; Fogliata, A; D'Agostino, G R; Di Brina, L; Comito, T; Navarria, P; Cozzi, L; Scorsetti, M

    2017-07-01

    The optimal treatment for unfavourable intermediate/high-risk prostate cancer is still debated. In the present study, the pattern of toxicity and early clinical outcome of patients with localized prostate cancer was analyzed. A cohort of 90 patients treated on pelvic lymph nodes from 2010 to 2015 was selected. All patients were treated with Volumetric Modulated Arc Therapy (VMAT), and Simultaneous integrated boost (SIB) in 28 fractions; the prostate, the seminal vesicle and the pelvic lymph node received total doses of 74.2, 65.5, and 51.8 Gy, respectively. End points were the detection of acute and late toxicities graded according to the Common Toxicity Criteria CTCAE version 3, evaluating the rectal, genito-urinary and gastro-intestinal toxicity. Correlation of OARs dose parameters and related toxicities was explored. Preliminary overall survival and Progression-free survival (PFS) were evaluated. With a median follow-up of 25 months, no interruptions for treatment-related toxicity were recorded. Univariate analysis among dosimetric data and acute toxicities showed no correlations. Regarding late toxicity: the dose received by a rectal volume of 90 cm 3 was found to be significant for toxicity prediction (p = 0.024). PFS was 90.6% and 60.2% at 2 and 4 years, respectively. PFS correlates with age (p = 0.011) and Gleason score (p = 0.011). Stratifying the PSA nadir in quartiles, its value was significant (p = 0.016) in predicting PFS, showing a reduction of PFS of 2 months for each PSA-nadir increase of 0.1 ng/ml. HRT with VMAT and SIB on the whole pelvis in unfavourable prostate cancer patients is effective with a mild pattern of toxicity.

  17. Application of influence diagrams to prostate intensity-modulated radiation therapy plan selection

    International Nuclear Information System (INIS)

    Meyer, Juergen; Phillips, Mark H; Cho, Paul S; Kalet, Ira; Doctor, Jason N

    2004-01-01

    The purpose is to incorporate clinically relevant factors such as patient-specific and dosimetric information as well as data from clinical trials in the decision-making process for the selection of prostate intensity-modulated radiation therapy (IMRT) plans. The approach is to incorporate the decision theoretic concept of an influence diagram into the solution of the multiobjective optimization inverse planning problem. A set of candidate IMRT plans was obtained by varying the importance factors for the planning target volume (PTV) and the organ-at-risk (OAR) in combination with simulated annealing to explore a large part of the solution space. The Pareto set for the PTV and OAR was analysed to demonstrate how the selection of the weighting factors influenced which part of the solution space was explored. An influence diagram based on a Bayesian network with 18 nodes was designed to model the decision process for plan selection. The model possessed nodes for clinical laboratory results, tumour grading, staging information, patient-specific information, dosimetric information, complications and survival statistics from clinical studies. A utility node was utilized for the decision-making process. The influence diagram successfully ranked the plans based on the available information. Sensitivity analyses were used to judge the reasonableness of the diagram and the results. In conclusion, influence diagrams lend themselves well to modelling the decision processes for IMRT plan selection. They provide an excellent means to incorporate the probabilistic nature of data and beliefs into one model. They also provide a means for introducing evidence-based medicine, in the form of results of clinical trials, into the decision-making process

  18. Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Botas, Pablo [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Faculty of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg (Germany); Giantsoudi, Drosoula; Gorissen, Bram L.; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-12-01

    Purpose: We describe a treatment plan optimization method for intensity modulated proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures located within or near the target volume while limiting degradation of the best possible physical dose distribution. Methods and Materials: To allow fast optimization based on dose and LET, a GPU-based Monte Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dose objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of the additional biological dose that is caused by high LET. Results: The method is effective for treatments where serial critical structures with maximum dose constraints are located within or near the target. We report on 5 patients with intracranial tumors (high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning. The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects resulting from elevated RBE of proton beams near the end of range.

  19. SU-E-T-621: Planning Methodologies for Cancer of the Anal Canal: Comparing IMRT, Rapid Arc, and Pencil Beam Scanning Proton Beam

    International Nuclear Information System (INIS)

    McGlade, J; Kassaee, A

    2015-01-01

    Purpose: To evaluate planning methods for anal canal cancer and compare the results of 9-field Intensity Modulated Radiotherapy (IMRT), Volumetric Modulated Arc Therapy (Varian, RapidArc), and Proton Pencil Beam Scanning (PBS). Methods: We generated plans with IMRT, RapidArc (RA) and PBS for twenty patients for both initial phase including nodes and cone down phase of treatment using Eclipe (Varian). We evaluated the advantage of each technique for each phase. RA plans used 2 to 4 arcs and various collimator orientations. PBS used two posterior oblique fields. We evaluated the plans comparing dose volume histogram (DVH), locations of hot spots, and PTV dose conformity. Results: Due to complex shape of target, for RA plans, multiple arcs (>2) are required to achieve optimal PTV conformity. When the PTV exceeds 15 cm in the superior-inferior direction, limitations of deliverability start to dominate. The PTV should be divided into a superior and an inferior structure. The optimization is performed with fixed jaws for each structure and collimator set to 90 degrees for the inferior PTV. Proton PBS plans show little advantage in small bowel sparing when treating the nodes. However, PBS plan reduces volumetric dose to the bladder at the cost of higher doses to the perineal skin. IMRT plans provide good target conformity, but they generate hot spots outside of the target volume. Conclusion: When using one planning technique for entire course of treatment, Multiple arc (>2) RA plans are better as compared to IMRT and PBS plans. When combining techniques, RA for the initial phase in combination with PBS for the cone down phase results in the most optimal plans

  20. SU-E-T-621: Planning Methodologies for Cancer of the Anal Canal: Comparing IMRT, Rapid Arc, and Pencil Beam Scanning Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    McGlade, J; Kassaee, A [University of Pennsylvenia, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To evaluate planning methods for anal canal cancer and compare the results of 9-field Intensity Modulated Radiotherapy (IMRT), Volumetric Modulated Arc Therapy (Varian, RapidArc), and Proton Pencil Beam Scanning (PBS). Methods: We generated plans with IMRT, RapidArc (RA) and PBS for twenty patients for both initial phase including nodes and cone down phase of treatment using Eclipe (Varian). We evaluated the advantage of each technique for each phase. RA plans used 2 to 4 arcs and various collimator orientations. PBS used two posterior oblique fields. We evaluated the plans comparing dose volume histogram (DVH), locations of hot spots, and PTV dose conformity. Results: Due to complex shape of target, for RA plans, multiple arcs (>2) are required to achieve optimal PTV conformity. When the PTV exceeds 15 cm in the superior-inferior direction, limitations of deliverability start to dominate. The PTV should be divided into a superior and an inferior structure. The optimization is performed with fixed jaws for each structure and collimator set to 90 degrees for the inferior PTV. Proton PBS plans show little advantage in small bowel sparing when treating the nodes. However, PBS plan reduces volumetric dose to the bladder at the cost of higher doses to the perineal skin. IMRT plans provide good target conformity, but they generate hot spots outside of the target volume. Conclusion: When using one planning technique for entire course of treatment, Multiple arc (>2) RA plans are better as compared to IMRT and PBS plans. When combining techniques, RA for the initial phase in combination with PBS for the cone down phase results in the most optimal plans.