WorldWideScience

Sample records for intensity ecr proton

  1. Commissioning of the ECR ion source of the high intensity proton injector of the Facility for Antiproton and Ion Research (FAIR)

    Science.gov (United States)

    Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.

    2018-05-01

    The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.

  2. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  3. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    Science.gov (United States)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  4. Ca-48 handling for a cyclotron ECR ion source to produce highly intense ion beams

    International Nuclear Information System (INIS)

    Lebedev, V.Ya.; Bogomolov, S.L.; Dmitriev, S.N.; Kutner, V.B.; Shamanin, A.N.; Yakushev, A.B.

    2002-01-01

    Production of highly intense ion beams of 48 Ca is one of the main tasks in experiments carried out within the framework of the synthesis of new superheavy elements. 48 Ca is very rare and expensive isotope, therefore there is necessity to reach the high intensity of ion beams of the isotope at a low consumption rate. Analysis and our preliminary experiments have showed that the best way of producing highly intense calcium ion beams is evaporation of metallic calcium in an ECR ion source. So we have developed a technique of metallic 48 Ca production by reducing CaO (this chemical form is available at the market with 40-80% of 48 Ca ) with aluminium powder. We used two tantalum crucibles: a larger, with a mixture of CaO + Al heated up to 1250 deg C, which was connected to the smaller (2 mm I.D. and 30 mm long) in which calcium vapour condensed. The temperature distribution in the small crucible was about 50 deg C at the bottom and about 500 deg C in the middle of the crucible. The pressure inside of the set-up was between 0.1 and 1 Pa. The production rate of metallic 48 Ca was 10-20 mg/h. The crucible with the condensed metallic Ca in argon atmosphere was transferred to the ECR-4M ion source, where it was inserted in a wired tubular oven and the calcium evaporation was controlled through the oven power supply. The application of metallic 48 Ca as the working substance for the ECR-4M ion source of the U-400 cyclotron of allowed us to approach a stable high intensity of 48 Ca ion beams: the intensities for the internal and external beams were 10 13 c -1 and 3.10 12 c -1 , respectively, at a consumption rate about 0.4 mg/h. A technique was developed for the reclamation of 48 Ca from the residue inside of the large crucible and from the inner parts of the ECR ion source. Extracting Ca from the inner parts of the ion source enabled us to save up to some 25% of the calcium used in the ECR ion source, so that the actual consumption rate was about 0.3 mg/h at the highest 48

  5. High intensity metallic ion beams from an ecr ion source at GANIL

    International Nuclear Information System (INIS)

    Leherissier, P.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lemagnen, F.; Leroy, R.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Jaffres, P.A.

    2001-01-01

    In the recent years, progress concerning the production of high intensity of metallic ions beams ( 58 Ni, 48 Ca, 76 Ge) at Ganil have been performed. The MIV0C method has been successfully used to produce a high intensity nickel beam with the ECR4 ion source: 20 eμA of 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. The oven method has been first tested with natural metallic calcium on the ECR4 ion source, then used to produce a high power beam (740 W on target i.e. 0.13 pμA accelerated up to 60 MeV/u) of 48 Ca still keeping a low consumption (0.09 mg/h). A germanium beam is now under development, using the oven method with germanium oxide. The ionization efficiencies have been measured and compared. (authors)

  6. High intensity metallic ion beam from an ecr ion source using the Mivoc method

    International Nuclear Information System (INIS)

    Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Leherissier, P.; Lemagnen, F.; Jaffres, P.A.

    2000-01-01

    The MIVOC method has been successfully used at GANIL to produce a high intensity nickel beam with the ECR4 ion source: 20 μA 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. Experimental setup, handling and off-line preparation using a residual gas analyzer are described in this report. The ion source behavior, performances and limitations are presented in the case of nickel and iron. The ionization efficiencies have been measured and compared to the oven method usually used at GANIL. (author)

  7. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  8. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  9. Characteristics of 6.5 GHz ECR ion source for polarized H- ion source

    International Nuclear Information System (INIS)

    Ikegami, Kiyoshi; Mori, Yoshiharu; Takagi, Akira; Fukumoto, Sadayoshi.

    1983-04-01

    A 6.5 GHz ECR (electron cyclotron resonance) ion source has been developed for optically pumped polarized H - ion source at KEK. The properties of this ECR ion source such as beam intensities, proton ratios, plasma electron temperatures and beam emittances were measured. (author)

  10. The intense proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1990-01-01

    The Science and Technology Agency of Japan has formulated the OMEGA project, in which incineration of nuclear wastes by use of accelerators is defined as one of the important tasks. Japan Atomic Energy Research Institute (JAERI) has been engaged for several years in basic studies in incineration technology with use of an intense proton linear accelerator. The intense proton accelerator program intends to provide a large scale proton linear accelerator called Engineering Test Accelerator. The principal purpose of the accelerator is to develop nuclear waste incineration technology. The accelerator will also be used for other industrial applications and applied science studies. The present report further outlines the concept of incineration of radio-activities of nuclear wastes, focusing on nuclear reactions and a concept of incineration plant. Features of Engineering Test Accelerator are described focusing on the development of the accelerator, and research and development of incineration technology. Applications of science and technology other than nuclear waste incineration are also discussed. (N.K.)

  11. Experimental studies of 2.45 GHz ECR ion sources for the production of high intensity currents

    International Nuclear Information System (INIS)

    Coly, A.

    2010-12-01

    This thesis is the result of a collaboration between the Pantechnik company and the LPSC (Laboratory of subatomic physics and cosmology of Grenoble). It consisted in the development of a new test bench dedicated to the characterization of a 2.45 GHz ECR ion sources with the aim of the production of high currents beams for industrial purposes. Two ECR ions sources with different magnetic structures have been tested around the same RF injection system. A new 2.45 GHz ECRIS, named SPEED, featuring a dipolar magnetic field at the extraction has been designed and tested. A study of the beam extraction in the dipolar magnetic field is proposed. First tests have shown a total ionic current density of about 10 mA/cm 2 with a 900 W RF power. Tests with hydrogen plasma have shown a maximum of current on the H 2 + species. Recommendations are given to modify the magnetic structure to improve the H + production yield. The MONO1000 ion source has been tested at high RF power with a wave guide type injection system. Intense total ionic current densities have been measured up to about 95 mA/cm 2 with a diode extraction system. First results using an improved 5 electrode extraction system are presented. (author)

  12. Superconducting ECR ion source system

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator programme, consisting of a superconducting ECR (Electron Cyclotron Resonance) source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting resonator cavities has been proposed. The 18 GHz superconducting ECR ion source system has already been commissioned and being operated periodically at FOTIA beam hall. This source is capable of delivering ion beams right from proton to uranium with high currents and high charge states over a wide mass range (1/7 ≤ q/m ≤ 1/2) across the periodic table, including U"3"4"+ (q/m∼1/7) with 100 pna yield. The normalized transverse beam emittance from ECR source is expected to be <1.0 pi mm mrad. ECR ion sources are quite robust, making them suitable for operating for weeks continuously without any interruption

  13. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  14. Study and development of a new ECR source creating an intense light ions beam

    International Nuclear Information System (INIS)

    Nyckees, S.

    2012-01-01

    This thesis is in the context of study and design of a new ECR light ion source on LEDA (Laboratory of Research and Development of Accelerators - CEA Saclay), named ALISES (Advanced Light Ions Source Extraction System). As a first step, the magnetic, electrical and mechanical design of the new source is described. Then, simulations were performed to determine the reduction of emittance growth taking into account the reduction of the length of the LBE (Low Energy Beam Line) provided by the source ALISES. With this source, it's also possible to realize a study on the dimensions of the cylindrical plasma chamber. Simulations were performed to better understand the interaction between radiofrequency wave and plasma. Subsequently, experiments on the source ALISES helped highlight, understand and solve problems in the Penning discharges inside the accelerator column. Measurements performed on the plasma have yielded the assumption that the electrons are heated at the entrance of the plasma chamber and thermalized along its entire length to achieve an energy corresponding to the maximum of the ionization cross section for hydrogen. (author) [fr

  15. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  16. Development of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.; Kusano, J.; Hasegawa, K.; Ouchi, N.; Oguri, H.; Kinsho, M.; Touchi, Y.; Honda, Y.; Mukugi, K.; Ino, H.; Noda, F.; Akaoka, N.; Kaneko, H.; Chishiro, E.; Fechner, B.

    1997-01-01

    The high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 5.33mA has been proposed for the Neutron Science Project (NSP) at JAERI. the NSP is aiming at exploring nuclear technologies for nuclear waste transmutation based on a proton induced spallation neutrons. The proposed accelerators facilities will be also used in the various basic research fields such as condensed matter physics in combination with a high intensity proton storage ring. The R and D work has been carried out for the components of the front-end of the proton accelerator. For the high energy portion above 100 MeV, superconducting (SC) accelerator linac has been designed and developed as a major option. (Author) 7 refs

  17. A high intensity Stern-Gerlach polarized hydrogen source for the Munich MP-Tandem laboratory using ECR ionization and charge exchange in cesium vapor

    International Nuclear Information System (INIS)

    Hertenberger, R.; Eisermann, Y.; Metz, A.; Schiemenz, P.; Graw, G.

    2001-01-01

    The 14 year old Lamb-Shift hydrogen source of the Munich Tandem laboratory is presently replaced by a newly developed Stern-Gerlach type atomic beam source (ABS) with electron-cyclotron-resonance (ECR) ionization and subsequent double charge exchange in a supersonic cesium vapor jet target. The atomic beam source provides an intensity of 6.4*10 16 atoms/sec of polarized hydrogen and of about 5*10 16 atoms/sec of polarized deuterium. Beam intensities larger than 100 μA were observed for positive H-vector + and D-vector + ion beams after ECR ionization and intensities larger than 10 μA for negative D-vector - ion beams in three magnetic substates

  18. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  19. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  20. ECR Plasma Photos

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Palinkas, J.

    2009-01-01

    Complete text of publication follows. In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The effects of the main external setting parameters (gas pressure, gas composition, magnetic field, microwave power, microwave frequency) were studied to the shape, color and structure of the plasma. The double frequency mode (9+14 GHz) was also realized and photos of this special 'star-in-star' shape plasma were recorded. A study was performed to analyze and understand the color of the ECR plasmas. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas. To our best knowledge our work is the first systematic study of ECR plasmas in the visible light region. When looking in the plasma chamber of an ECRIS we can see an axial image of the plasma (figure 1) in conformity with experimental setup. Most of the quantitative information was obtained through the summarised values of the Analogue Digital Unit (ADU) of pixels. By decreasing the strength of the magnetic trap we clearly observed that the brightness of the central part of the plasma gradually decreases, i.e. the plasma becomes more and more 'empty'. Figure 2 shows a photo series of ECR plasma at decreasing axial magnetic field. The radial size of the plasma increased because of the ascendant resonant zone. By increasing the power of the injected microwave an optimum (or at least saturation) was found in the brightness of the plasma. We found correlation between the gas dosing rates and plasma intensities. When sweeping the frequency of the microwave in a wide region

  1. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  2. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  3. Development of 16.5 GHz ECR ion source in KEK

    International Nuclear Information System (INIS)

    Mori, Yoshiharu; Kinsho, Michikazu; Ikegami, Kiyoshi; Takagi, Akira

    1992-01-01

    An electron cyclotron resonance (ECR) ion source is useful for generating not only highly charged heavy ions but intense protons. We have developed the 16.5 GHz ECR ion source for the optically pumped polarized ion source (OPPIS). Recently, we have modified it to extract highly charged heavy ions and succeeded in producting highly charged argon ions of which charge-states were from 2 to 8. When we introduced electrons into the plasma with a LaB 6 filament, the argon ion beam whose charge-state up to 11 could be extracted. The intensity was also enhanced in factor 2 to 6 for each charge-state ions. (author)

  4. Development of a high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo; Ito, Nobuo; Oguri, Hidetomo; Touchi, Yutaka; Mukugi, Ken; Ino, Hiroshi

    1997-01-01

    The high-intensity proton linear accelerator with a beam power of 15 MW has been proposed for various engineering tests for the nuclear waste transmutation system as one of the research plans in the Neutron Science Research Program (NSRP) in JAERI. High intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beam generated from the proton spallation reaction will be utilized at these facilities in each research field. The R and D work has been carried out for the components of the front-end part of the proton accelerator; ion source, RFQ, DTL and RF source. In the beam test, the current of 70 mA with a duty factor of 7% has been accelerated from the RFQ at the energy of 2 MeV. A hot test model of the DTL for the high power and high duty operation was fabricated and tested. For the high energy portion above 100 MeV, superconducting accelerating cavity is studied as a main option. The superconducting linac is expected to have several favourable characteristics for high intensity accelerator such as short accelerator length, large bore radius resulting in low beam losses and cost effectiveness for construction and operation. A test stand with equipment of cryogenics system, vacuum system, RF system and cavity processing and cleaning is prepared to test the physics issues and fabrication process. The proposed plan for accelerator design and construction will compose of two consecutive stages. The first stage will be completed in about 7 years with the beam power of 1.5 MW. As the second stage gradual upgrading of the beam power will be made up to 15 MW. 7 refs., 3 figs., 4 tabs

  5. Single-energy intensity modulated proton therapy

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  6. Single-energy intensity modulated proton therapy.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  7. Single-energy intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-01-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. (note)

  8. Valorization of ECR sources

    CERN Document Server

    2003-01-01

    One way to limit the size of particle accelerators is to use intense multicharged ion beams. Thus, compact, low cost and reliable sources have been developed. These sources are based on the electron cyclotron resonance (ECR) principle and need no cathode nor filament. A prototype named Nanogan has been developed for the Spiral project of the Ganil accelerator (Caen, France). Then, this technology has been transferred toward other research domains and industrial applications, like the ion implantation in micro-electronics components. (J.S.)

  9. Inverse planning of intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Nill, S.; Oelfke, U.; Bortfeld, T.

    2004-01-01

    A common requirement of radiation therapy is that treatment planning for different radiation modalities is devised on the basis of the same treatment planning system (TPS). The present study presents a novel multi-modal TPS with separate modules for the dose calculation, the optimization engine and the graphical user interface, which allows to integrate different treatment modalities. For heavy-charged particles, both most promising techniques, the distal edge tracking (DET) and the 3-dimensional scanning (3D) technique can be optimized. As a first application, the quality of optimized intensity-modulated treatment plans for photons (IMXT) and protons (IMPT) was analyzed in one clinical case on the basis of the achieved physical dose distributions. A comparison of the proton plans with the photon plans showed no significant improvement in terms of target volume dose, however there was an improvement in terms of organs at risk as well as a clear reduction of the total integral dose. For the DET technique, it is possible to create a treatment plan with almost the same quality of the 3D technique, however with a clearly reduced number (factor of 5) of beam spots as well as a reduced optimization time. Due to its modular design, the system can be easily expanded to more sophisticated dose-calculation algorithms or to modeling of biological effects. (orig.) [de

  10. High intensity proton accelerator controls network upgrade

    International Nuclear Information System (INIS)

    Krempaska, R.; Bertrand, A.; Lendzian, F.; Lutz, H.

    2012-01-01

    The High Intensity Proton Accelerator (HIPA) control system network is spread through a vast area in PSI and it was grown historically in an unorganized way. The miscellaneous network hardware infrastructure and the lack of the documentation and components overview could no longer guarantee the reliability of the control system and the facility operation. Therefore, a new network, based on modern network topology, PSI standard hardware with monitoring and detailed documentation and overview was needed. The number of active components has been reduced from 25 to 9 Cisco Catalyst 24- or 48-port switches. They are the same type as other PSI switches, thus a replacement emergency stock is not an issue anymore. We would like to present how we successfully achieved this goal and the advantages of the clean and well documented network infrastructure. (authors)

  11. High intensity proton injector for facility of antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.; Hollinger, R.; Ivanova, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O.; Tuske, O. [Commissariat à l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191 Gif-sur-Yvette (France); Ullmann, C. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany)

    2016-02-15

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.

  12. Intense-proton-beam transport through an insulator beam guide

    International Nuclear Information System (INIS)

    Hanamori, Susumu; Kawata, Shigeo; Kikuchi, Takashi; Fujita, Akira; Chiba, Yasunobu; Hikita, Taisuke; Kato, Shigeru

    1998-01-01

    In this paper we study intense-proton-beam transport through an insulator guide. In our previous papers (Jpn. J. Appl. Phys. 34 (1995) L520, Jpn. J. Appl. Phys. 35 (1996) L1127) we proposed a new system for intense-electron-beam transport using an insulator guide. In contrast to the electron beam, an intense-proton beam tends to generate a virtual anode, because of the large proton mass. The virtual anode formation at the initial stage is prevented by prefilled plasma in this system. During and after this, electrons are extracted from the plasma generated at the insulator surface by the proton beam space charge and expand over the transport area. The proton beam charge is effectively neutralized by the electrons. Consequently, the proton beam propagates efficiently through the insulator beam guide. The electron extraction is self-regulated by the net space charge of the proton beam. (author)

  13. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS

    International Nuclear Information System (INIS)

    Wei, J.; Macek, R.J.

    2002-01-01

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures

  14. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  15. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  16. Formation of an intense proton beam of microsecond duration

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany)

    1997-12-31

    The proton beam facility PROFA serves as a test installation for ion source development and beam transport optimization for an intense pulsed proton beam of low kinetic energy, envisaged for ITER divertor load simulation. The present state of the investigations is discussed with emphasis on the diode operation parameters, beam divergence and beam transport efficiency. (author). 7 figs., 5 refs.

  17. Electron cyclotron resonance (ECR) ion sources

    International Nuclear Information System (INIS)

    Jongen, Y.

    1984-05-01

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources

  18. Ultra-High Intensity Proton Accelerators and their Applications

    International Nuclear Information System (INIS)

    Weng, W. T.

    1997-01-01

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses

  19. Application of ECR ion source beams in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W.

    1987-01-01

    The availability of intense, high charge state ion beams from ECR ion sources has had significant impact not only on the upgrading of cyclotron and synchrotron facilities, but also on multicharged ion collision research, as evidenced by the increasing number of ECR source facilities used at least on a part time basis for atomic physics research. In this paper one such facility, located at the ORNL ECR source, and dedicated full time to the study of multicharged ion collisions, is described. Examples of applications of ECR ion source beams are given, based on multicharged ion collision physics studies performed at Oak Ridge over the last few years. 21 refs., 18 figs., 2 tabs.

  20. CW high intensity non-scaling FFAG proton drivers

    OpenAIRE

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.

    2012-01-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS)...

  1. Ablative acceleration of thin foil targets by intense proton beams

    International Nuclear Information System (INIS)

    Miyamoto, S.; Ozaki, T.; Imasaki, K.; Higaki, S.; Nakai, S.

    1981-01-01

    A focused proton beam of up to 2 x 10 10 w/cm 2 was obtained using pinch-reflex ion diode connected to Reiden IV generator. Experiments of beam target interaction have been done using thin foil targets. In this power range the interaction was explained classically. The experimental dependence of ablation pressure on proton beam intensity was obtained as P sub(a) = 3 x 10 -3 I sup(0.7) bar (I in w/cm 2 ). (author)

  2. Application of superconductivity to intense proton linacs

    International Nuclear Information System (INIS)

    Heinrichs, H.

    1996-01-01

    Three examples of proposed superconducting linacs for intense particle beams are presented, and in two cases compared to normal conducting counterparts. Advantages and disadvantages of both types are discussed. Suggestions for future developments are presented. Finally a comparison of estimated operational costs of the normal and the superconducting linac for the ESS is given. (R.P.)

  3. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  4. Beam intensity monitoring for the external proton beam at LAMPF

    International Nuclear Information System (INIS)

    Barrett, R.J.; Anderson, B.D.; Willard, H.B.; Anderson, A.N.; Jarmie, N.

    1975-07-01

    Three different intensity monitors were tested in the external proton beam at LAMPF, and together cover the entire range of beam currents available. A 800 kg Faraday cup was installed and used to measure the absolute intensity to better than 1 percent for beam currents up to several nanoamperes. A high gain ion chamber was used as part of the calibration procedure for the Faraday cup, and was found to be useful when monitoring very small beam intensities, being reliable down to the few picoampere level. A secondary emission monitor was also tested, calibrated, and found to be trustworthy only for beams of greater than 50 pA intensity. (auth)

  5. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  6. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermilab

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  7. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  8. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  9. KEK/JAERI joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2002-01-01

    From JFY01, which started on April 1, 2001, a new accelerator project to provide high-intensity proton beams proceeded into a construction phase. This project is conducted under a cooperation of two institutions, KEK and JAERI. The accelerator complex will provide 1 MW proton beams at 3 GeV and 0.75 MW beams at 50 GeV. The project will be completed within six years. In this article I will describe a) the project itself, b) sciences to be pursued at this new accelerator complex and c) the present status and future plans of the project. (author)

  10. Introduction to ECR [electron cyclotron resonance] sources in electrostatic machines

    International Nuclear Information System (INIS)

    Olsen, D.K.

    1989-01-01

    Electron Cyclotron Resonance (ECR) ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the possible use of ECR heavy-ion sources in the terminals of electrostatic machines is discussed. The basic concepts of ECR sources are reviewed in the next section using the ORNL source as a model. The possible advantages of ECR sources over conventional negative ion injection and foil stripping are discussed in Section III. The last section describes the possible installation of an ECR source in a large machine such as the HHIRF 25-MV Pelletron. 6 refs., 4 figs., 1 tab

  11. Characterization of a proton beam driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Daido, Hiroyuki; Ogura, Koichi; Orimo, Satoshi; Hayashi, Yukio; Mori, Michiaki; Nishiuchi, Mamiko; Yogo, Akifumi; Kado, Masataka; Fukumi, Atsushi; Li, Zhong; Pirozhkov, Alexander S.; Nakamura, Shu

    2007-01-01

    High-energy protons are observed with a 3 μm thick tantalum target irradiated with a high intensity laser. The maximum proton energy is ∼900 keV. The half angle of the generated proton beam (>500 keV) is about 10deg. Characterization of the proton beam will significantly contribute to the proton applications. (author)

  12. Pulsed Power Applications in High Intensity Proton Rings

    CERN Document Server

    Zhang, Wu; Ducimetière, Laurent; Fowler, Tony; Kawakubo, Tadamichi; Mertens, Volker; Sandberg, Jon; Shirakabe, Yoshihisa

    2005-01-01

    The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  13. High intensity proton linear accelerator development for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  14. High intensity proton operation at the Brookhaven AGS accelerator complex

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-01-01

    With the completion of the AGS rf upgrade, and the implementation of a transition open-quotes jumpclose quotes, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle

  15. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  16. Developments of ECR Sources and Associated Equipment

    International Nuclear Information System (INIS)

    Bieth, C.; Kantas, S.; Sortais, P.

    2002-01-01

    PANTECHNIK s.a. has improved and created ECR using room temperature coils, superconducting coils at 30K or permanent magnets ECR. Some of these sources are devoted to particular applications: ion implantation, nuclear and atomic physic, Proton and Hadrontherapy, radioactive beam. Stability and reproducibility have been particularly 1.0 Operational Improvements 1.1 High charge state for nuclear physics, atomic physic and RIB beam The HYPERNANOGAN [1] source (fig1) has been modified to run at 18GHz, and improved at 14.5GHz. The XENON spectrum (fig2) at 14.5GHz shows a Beam current of 3 μAe; for the charge state 30 + . At 18 GHz, the preliminary results indicate an improvement of 18% for Ar 8+ and 50% on Ar 9+ . In the atomic physics field our sources have been used to study the effect of extremely charged ions on a semiconductor surface ( Coulomb explosion)

  17. The joint project for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) agreed to promote the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This document describes the joint proposal prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  18. JAERI-KEK joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Organization (KEK) are promoting the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This paper describes the joint project prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  19. Overview of high intensity proton accelerator facility, J-PARC

    International Nuclear Information System (INIS)

    Ikeda, Y.

    2010-01-01

    The J-PARC project of high intensity proton accelerator research complex, conducted jointly by JAERI and KEK, has been completed with demonstration of all beam productions in 2009 as the facility construction phase, and the operation started to offer the secondary beams of neutron, muon, kaon, and neutrino, to the advanced scientific experimental research aiming at making breakthroughs in materials and life science, nuclear and elementary physics, etc. This text describes the overview of the J-PARC present status with emphasis of a performance toward to 1MW power as user facilities. (author)

  20. Polarized proton and deuteron targets for the usage in intensive proton beams

    International Nuclear Information System (INIS)

    Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporo, E.A.; Telegin, Yu.N.

    1982-01-01

    Polarized proton and deuteron targets are developed and tested for conducting investigations in intense photon beams. A flowsheet of polarization targets which includes: working agent of the target, superconducting magnet, cryostat of 3 He evaporation with 3 He pumping and recirculation systems, SHF system of 4 mm range for polarization pumping, measuring system of target polarization protons is presented. Working agent of the targets includes frozen balls with 1.5 mm diameter. Ethylene-glucol and 1.2-propylene-glycol were used as a working substance for proton targets. Completely deuterated ethylene-glycol was used for the deuteron target. Vertical magnetic field with 2.7 T intensity is produced by a superconducting magnetic system. Polarization pumping is exercised at 75 GHz frequency. Q-meter of direct current is used for determination of polarization. Working temperature of the cryostat is approximately 0.5 K. The lock device permits to exercise replacement of the target working agent during 30 minutes

  1. Longitudinal tracking studies for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K.

    1995-01-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed

  2. Development of a Permanent Magnet ECR Source to Produce a 5 mA Deuteron Beam at CEA/Saclay

    CERN Document Server

    Gobin, R; Delferrière, O; Ferdinand, R; Harrault, F

    2004-01-01

    The high intensity light ion source, SILHI, is an ECR ion source operating at 2.45 GHz which produces high intensity (over 100 mA) proton or deuteron beams at 95 keV. It has been moved in the IPHI building after a complete dismantling. At the beginning of 2003, after tuning the source parameters at standard values, the first extracted beam reached more than 70 mA within a few minutes. This encouraged us to propose a permanent magnet source based on the SILHI design to fit in with the injector of the Spiral2 project, requesting 5 mA of D+

  3. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  4. Simplified shielding calculation system for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Masumura, Tomomi; Nakashima, Hiroshi; Nakane, Yoshihiro; Sasamoto, Nobuo [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-06-01

    A simplified shielding calculation system is developed for applying conceptual shielding design of facilities in the joint project for high-intensity proton accelerators. The system is composed of neutron transmission calculation part for bulk shielding using simplified formulas: Moyer model and Tesch's formula, and neutron skyshine calculation part using an empirical formula: Stapleton's formula. The system is made with the Microsoft Excel software for user's convenience. This report provides a manual for the system as well as calculation conditions used in the calculation such as Moyer model's parameters. In this report preliminary results based on data at December 8, 1999, are also shown as an example. (author)

  5. Optical diagnostics of mercury jet for an intense proton target.

    Science.gov (United States)

    Park, H; Tsang, T; Kirk, H G; Ladeinde, F; Graves, V B; Spampinato, P T; Carroll, A J; Titus, P H; McDonald, K T

    2008-04-01

    An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper.

  6. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  7. Material studies for pulsed high-intensity proton beam targets

    International Nuclear Information System (INIS)

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W-T.; McDonald, K.; Yoshimura, K.

    2004-01-01

    Intense beams for muon colliders and neutrino facilities require high-performance target stations of 1-4 MW proton beams. The physics requirements for such a system push the envelope of our current knowledge as to how materials behave under high-power beams for both short and long exposure. The success of an adopted scheme that generates, captures and guides secondary particles depends on the useful life expectancy of this critical system. This paper presents an overview of what has been achieved during the various phases of the experimental effort including a tentative plan to continue the effort by expanding the material matrix. The first phase of the project was to study the changes after irradiation in mechanical properties and specially in thermal expansion coefficient of various materials. During phase-I the study attention was primarily focused on Super-invar and in a lesser degree on Inconel-718. Invar is a metal alloy which predominantly consists of 62% Fe, 32% Ni and 5% Co. It is showed that this metal, whose non-irradiated properties held such promise, can only be considered a serious target candidate for an intense proton beam only if one can anneal the atomic displacements followed by the appropriate heat treatment to restore its favorable expansion coefficient. New materials that have been developed for various industrial needs by optimizing key properties, might be of value for the accelerator community. These materials like carbon-carbon composites, titanium alloys, the Toyota 'gum metal', the Vascomax material and the AlBeMet alloy will be explored and tested in the second phase of the project. (A.C.)

  8. An intense neutron generator based on a proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G A; Milton, J C.D.; Vogt, E W

    1964-07-01

    A study has been made of the demand for a neutron facility with a thermal flux of {>=} 10{sup 16} n cm{sup -2} sec{sup -1} and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of {pi} and {mu} mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics

  9. An intense neutron generator based on a proton accelerator

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Milton, J.C.D.; Vogt, E.W.

    1964-01-01

    A study has been made of the demand for a neutron facility with a thermal flux of ≥ 10 16 n cm -2 sec -1 and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of π and μ mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics, and perhaps also in

  10. Injection and capture simulations for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Cho, Y.; Lessner, E.; Symon, K.; Univ. of Wisconsin, Madison, WI

    1994-01-01

    The injection and capture processes in a high intensity, rapid cycling, proton synchrotron are simulated by numerical integration. The equations of motion suitable for rapid numerical simulation are derived so as to maintain symplecticity and second-order accuracy. By careful bookkeeping, the authors can, for each particle that is lost, determine its initial phase space coordinates. They use this information as a guide for different injection schemes and rf voltage programming, so that a minimum of particle losses and dilution are attained. A fairly accurate estimate of the space charge fields is required, as they influence considerably the particle distribution and reduce the capture efficiency. Since the beam is represented by a relatively coarse ensemble of macro particles, the authors study several methods of reducing the statistical fluctuations while retaining the fine structure (high intensity modulations) of the beam distribution. A pre-smoothing of the data is accomplished by the cloud-in-cell method. The program is checked by making sure that it gives correct answers in the absence of space charge, and that it reproduces the negative mass instability properly. Results of simulations for stationary distributions are compared to their analytical predictions. The capture efficiency for the rapid-cycling synchrotron is analyzed with respect to variations in the injected beam energy spread, bunch length, and rf programming

  11. 11th ECR ion source workshop

    International Nuclear Information System (INIS)

    1993-05-01

    This report contains four articles concerning the commissioning of the 14 GHz ECR at the new Unilac injector, the status of the PuMa-ECR, the redesigned 14 GHz ECR ion source and test bench, and the simulation of ion beam extraction from an ECR source. See hints under the relevant topics. (HSI)

  12. Linear energy transfer incorporated intensity modulated proton therapy optimization

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  13. High intensity proton linear accelerator for Neutron Science Project

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1999-01-01

    JAERI has been proposing the Neutron Science Project (NSP) which will be composed of a high intensity proton accelerator and various research facilities. With an energy of 1.5 GeV and a beam power of 8 MW, the accelerator is required for basic research fields and nuclear waste transmutation studies. The R and D work has been carried out for the components of the accelerator. In the low energy accelerator part, a beam test with an ion source and an RFQ has been performed with a current of 80 mA and a duty factor of 10% at an energy of 2 MeV. A 1 m long high power test model of DTL has been fabricated and tested with a duty factor of 20%. In the high energy accelerator part, a superconducting (SC) linac has been selected as a main option from 100 MeV to 1.5 GeV. A test stand for SC linac cavity with equipment of cryogenics, vacuum, RF source and cavity processing and cleaning system has been prepared to test the fabrication process and physics issues. The vertical tests of β = 0.5 (145 MeV) and β = 0.89 (1.1 GeV) single cell SC cavities have been made resulting in a maximum electric field strength of 44 MV/m and 47 MV/m at 2 K, respectively. (author)

  14. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ and U 34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  15. Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.

    2018-05-01

    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

  16. Low-intensive proton generators for radiation testing; Nizkointensivnyj protonnyj generator dlya radiatsionnykh ispytanij

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, I V; Gurbich, A F; Semenov, A V

    1994-12-31

    Experiment is conducted and calculations are performed grounding the possibility of creating a low-intensity proton generator based on nuclear reaction. The necessity in such a proton source is defined by the need of conducting long-term testings and by the absence of appropriate equipment.

  17. A proton beam delivery system for conformal therapy and intensity modulated therapy

    International Nuclear Information System (INIS)

    Yu Qingchang

    2001-01-01

    A scattering proton beam delivery system for conformal therapy and intensity modulated therapy is described. The beam is laterally spread out by a dual-ring double scattering system and collimated by a program-controlled multileaf collimator and patient specific fixed collimators. The proton range is adjusted and modulated by a program controlled binary filter and ridge filters

  18. ECR-based atomic collision physics research at ORNL

    International Nuclear Information System (INIS)

    Meyer, F.W.; Bannister, M.E.; Hale, J.W.; Havener, C.C.

    1997-01-01

    After a brief summary of the present capability and configuration of the ORNL Multicharged Ion Research Facility (MIRF), and of upcoming upgrades and expansions, the presently on-line atomic collisions experiments are described. In the process, the utility of intense, cw ion beams extracted from ECR ion sources for low-signal rate experiments is illustrated

  19. An ECR table plasma generator

    International Nuclear Information System (INIS)

    Racz, R.; Palinkas, J.; Bin, S.

    2012-01-01

    A compact ECR plasma device was built in our lab using the 'spare parts' of the ATOMKI ECR ion source. We call it 'ECR Table Plasma Generator'. It consists of a relatively big plasma chamber (ID=10 cm, L=40 cm) in a thin NdFeB hexapole magnet with independent vacuum and gas dosing systems. For microwave coupling two low power TWTAs (Travelling Wave tube amplifier) can be applied individually or simultaneously, operating in the 6-18 GHz range. There is no axial magnetic trap and there is no extraction. The technical details of the plasma generator and preliminary plasma photo study results are shown. This paper is followed by the associated poster. (authors)

  20. The R/D of high power proton accelerator technology in China

    Science.gov (United States)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  1. The R/D of high power proton accelerator technology in China

    Indian Academy of Sciences (India)

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the ...

  2. Direct measurement of the energy spectrum of an intense proton beam

    International Nuclear Information System (INIS)

    Leeper, R.J.; Lee, J.R.; Kissel, L.; Johnson, D.J.; Stygar, W.A.; Hebron, D.E.; Roose, L.D.

    1983-01-01

    A time-resolved magnetic spectrometer has been used to measure the energy spectrum of an intense (0.5 TW/cm 2 ) proton beam. A thin (2400 A) gold foil placed at the focus of an ion diode Rutherford scattered protons by 90 0 into the spectrometer, reducing the beam intensity to a level suitable for magnetic analysis. The scattered beam was collimated by two 1 mm diameter apertures separated by 12.3 cm. The collimated protons were deflected in a 12.7 cm diameter, 6.65 Kg samarium-cobalt permanent magnet. The deflected protons were recorded simultaneously on CR-39 and eight 1 mm 2 by 35 μm thick PIN diodes. A Monte Carlo computer code was used to calculate the sensitivity and resolution of the spectrometer. Data taken on Proto-I show a 150 keV to 250 keV wide proton energy spectrum at each instant in time

  3. Proton emission from laser-generated plasmas at different intensities

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Margarone, Daniele

    2012-01-01

    Roč. 57, č. 2 (2012), s. 237-240 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA). Warsaw, 12.09.2011-16.09.2011] Institutional support: RVO:68378271 Keywords : laser-generated plasma * hydrogenated targets * proton acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012

  4. Proton Drivers for neutrino beams and other high intensity applications

    CERN Document Server

    Garoby, R; Koseki, T; Thomason, J

    2013-01-01

    CERN, Fermilab, J-PARC and RAL tentatively plan to have proton accelerators delivering multi-MW of beam power in view of enhancing their physics reach especially in the domain of neutrinos. These plans are described, together with their benefits for other applications.

  5. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  6. RF acceleration of intense laser generated proton bunches

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Ali

    2012-07-13

    With respect to laser-accelerated beams, the high current capability of the CH-DTL cavity has been investigated. Beam simulations have demonstrated that 10{sup 10} protons per bunch can be accelerated successfully and loss free along the structure. It was shown that, the maximum number of protons per bunch that can be accelerated in the first cavity by exploiting about 1% of the stored field energy is 2.02 x 10{sup 11} protons. One further aspect is the total number of protons arriving at the linac entrance. One main aspect of an rf postacceleration experiment is the rf operation stability under these beam load conditions. Detailed simulations from the target along the solenoid and down to the linac entrance were presented, applying adapted software. Special care was taken on the time steps, especially close to the target, and on the collective phenomena between electron and proton distributions. The effect of comoving electrons on the beam dynamics has been investigated in detail. A CH-linac with high space charge limit and large transverse and longitudinal acceptance was designed to accept a maximum fraction of the laser generated proton bursts. Due to well-known transformations of the injected beam emittances along the CH-cavity, it is aimed to derive parameters of the laser generated beam by measuring the beam properties behind of the CH-cavity. With respect to the linac development it is intended to realize the first cavity of the proposed CH-DTL and to demonstrate the acceleration of a laser generated proton bunch with the LIGHT project. The first cavity consists of 7 gaps within a total length of about 668 mm. It is operated at 325 MHz and has an effective accelerating field gradient of about 12.6 MV/m. The study on the surface electric field for this cavity shows, that maximum surface fields of about 94 MV/m and 88 MV/m on the third and sixth drift tubes are reachable, respectively.

  7. ECR Light Ion Sources at CEA/Saclay%CEA/Saclay的ECR轻离子离子源

    Institute of Scientific and Technical Information of China (English)

    R.Gobin; P-A.Leroy; O.Tuske; D.Uriot; P-Y.Beauvais; A.Ben Ismail; D.Bogard; O.Delferriere; D.de Menezes; R.Duperrier; Y.Gauthier; F.Harrault

    2007-01-01

    In the beginning of the 90s,T.Taylor and his collaborators demonstrated ECR sources operating at low frequency (I.e.2.45GHz) are able to produce very intense single charge light ion beams.At CEA/Saclay,the SILHI source developments started in 1995.Since 1997 more than 100mA proton or deuteron beams are routinely produced in pulsed or continuous mode.To comply with ADS reliability constraint,important improvements have been performed to increase the installation reliability.Moreover,to optimize the beam transport in the low energy beam line,the extraction system was carefully designed and space charge compensation studies were undertaken.An important step has been reached in 2005 with the development of a permanent magnet source able to produce a total beam of 109mA at 85kV.A new test bench named BETSI,especially dedicated to permanent magnet source developments,is presently under construction.It will allow analysing positive or negative extracted beams up to 50keV and 100mA.In addition,for several years work has been done to optimize the production of negative hydrogen ion beam with such an ECR source.Recent analysis pushed towards the construction of a new set up based on a multicusp magnetic configuration.After a brief overview of the CEA/Saclay source developments,this article will point out on the recent results and present status.

  8. Ultrafast Melting of Carbon Induced by Intense Proton Beams

    International Nuclear Information System (INIS)

    Pelka, A.; Guenther, M. M.; Harres, K.; Otten, A.; Roth, M.; Gregori, G.; Gericke, D. O.; Vorberger, J.; Glenzer, S. H.; Kritcher, A. L.; Heathcote, R.; Li, B.; Neely, D.; Kugland, N. L.; Niemann, C.; Makita, M.; Riley, D.; Mithen, J.; Schaumann, G.; Schollmeier, M.

    2010-01-01

    Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

  9. Development of superconducting magnets for RAON 28 GHz ECR ion source.

    Science.gov (United States)

    Heo, Jeongil; Choi, Sukjin; Kim, Yonghwan; Hong, In-Seok

    2016-02-01

    RAON, a 28 GHz electron cyclotron resonance ion source (ECR IS), was designed and tested as a Rare Isotope Science Project. It is expected that RAON would provide not only rare-isotope beams but also stable heavy ions ranging from protons to uranium. In order to obtain the steady heavy-ion beam required for ECR IS, we must use a 28 GHz microwave source as well as a high magnetic field. A superconducting magnet using a NbTi wire was designed and manufactured for producing the ECR IS and a test was conducted. In this paper, the design and fabrication of the superconducting magnet for the ECR IS are presented. Experimental results show that the quench current increases whenever quenching occurs, but it has not yet reached the designed current. The experiment is expected to reveal the ideal conditions required to reach the designed current.

  10. Future prospects for ECR ion sources with improved charge state distributions

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    Despite the steady advance in the technology of the ECR ion source, present art forms have not yet reached their full potential in terms of charge state and intensity within a particular charge state, in part, because of the narrow band width. single-frequency microwave radiation used to heat the plasma electrons. This article identifies fundamentally important methods which may enhance the performances of ECR ion sources through the use of: (1) a tailored magnetic field configuration (spatial domain) in combination with single-frequency microwave radiation to create a large uniformly distributed ECR ''volume'' or (2) the use of broadband frequency domain techniques (variable-frequency, broad-band frequency, or multiple-discrete-frequency microwave radiation), derived from standard TWT technology, to transform the resonant plasma ''surfaces'' of traditional ECR ion sources into resonant plasma ''volume''. The creation of a large ECR plasma ''volume'' permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, thereby producing higher charge state ions and much higher intensities within a particular charge state than possible in present forms of' the source. The ECR ion source concepts described in this article offer exciting opportunities to significantly advance the-state-of-the-art of ECR technology and as a consequence, open new opportunities in fundamental and applied research and for a variety of industrial applications

  11. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    International Nuclear Information System (INIS)

    Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima

    2016-01-01

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.

  12. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    Energy Technology Data Exchange (ETDEWEB)

    Bake, Muhammad Ali; Aimidula, Aimierding, E-mail: amir@mail.bnu.edu.cn; Xiaerding, Fuerkaiti; Rashidin, Reyima [School of Physics Science and Technology, Xinjiang University, Urumqi 830046 (China)

    2016-08-15

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.

  13. Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study

    International Nuclear Information System (INIS)

    Fourkal, E; Li, J S; Xiong, W; Nahum, A; Ma, C-M

    2003-01-01

    In this paper we present Monte Carlo studies of intensity modulated radiation therapy using laser-accelerated proton beams. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Through the introduction of a spectrometer-like particle selection system that delivers small pencil beams of protons with desired energy spectra it is feasible to use laser-accelerated protons for intensity modulated radiotherapy. The method presented in this paper is a three-dimensional modulation in which the proton energy spectrum and intensity of each individual beamlet are modulated to yield a homogeneous dose in both the longitudinal and lateral directions. As an evaluation of the efficacy of this method, it has been applied to two prostate cases using a variety of beam arrangements. We have performed a comparison study between intensity modulated photon plans and those for laser-accelerated protons. For identical beam arrangements and the same optimization parameters, proton plans exhibit superior coverage of the target and sparing of neighbouring critical structures. Dose-volume histogram analysis of the resulting dose distributions shows up to 50% reduction of dose to the critical structures. As the number of fields is decreased, the proton modality exhibits a better preservation of the optimization requirements on the target and critical structures. It is shown that for a two-beam arrangement (parallel-opposed) it is possible to achieve both superior target coverage with 5% dose inhomogeneity within the target and excellent sparing of surrounding tissue

  14. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  15. Report of the Snowmass M6 Working Group on high intensity proton sources

    Energy Technology Data Exchange (ETDEWEB)

    Weiren Chou and J. Wei

    2002-08-20

    The U.S. high-energy physics program needs an intense proton source, a 1-4 MW Proton Driver (PD), by the end of this decade. This machine will serve as a stand-alone facility that will provide neutrino superbeams and other high intensity secondary beams such as kaons, muons, neutrons, and anti-protons (cf. E1 and E5 group reports) and also serve as the first stage of a neutrino factory (cf. M1 group report). It can also be a high brightness source for a VLHC. Based on present accelerator technology and project construction experience, it is both feasible and cost-effective to construct a 1-4 MW Proton Driver. Two recent PD design studies have been made, one at FNAL and the other at the BNL. Both designed PD's for 1 MW proton beams at a cost of about U.S. $200M (excluding contingency and overhead) and both designs were upgradeable to 4 MW. An international collaboration between FNAL, BNL and KEK on high intensity proton facilities is addressing a number of key design issues. The superconducting (sc) RF cavities, cryogenics, and RF controls developed for the SNS can be directly adopted to save R&D efforts, cost, and schedule. PD studies are also actively being pursued at Europe and Japan.

  16. Improvement of single detector proton radiography by incorporating intensity of time-resolved dose rate functions

    Science.gov (United States)

    Zhang, Rongxiao; Jee, Kyung-Wook; Cascio, Ethan; Sharp, Gregory C.; Flanz, Jacob B.; Lu, Hsiao-Ming

    2018-01-01

    Proton radiography, which images patients with the same type of particles as those with which they are to be treated, is a promising approach to image guidance and water equivalent path length (WEPL) verification in proton radiation therapy. We have shown recently that proton radiographs could be obtained by measuring time-resolved dose rate functions (DRFs) using an x-ray amorphous silicon flat panel. The WEPL values were derived solely from the root-mean-square (RMS) of DRFs, while the intensity information in the DRFs was filtered out. In this work, we explored the use of such intensity information for potential improvement in WEPL accuracy and imaging quality. Three WEPL derivation methods based on, respectively, the RMS only, the intensity only, and the intensity-weighted RMS were tested and compared in terms of the quality of obtained radiograph images and the accuracy of WEPL values. A Gammex CT calibration phantom containing inserts made of various tissue substitute materials with independently measured relative stopping powers (RSP) was used to assess the imaging performances. Improved image quality with enhanced interfaces was achieved while preserving the accuracy by using intensity information in the calibration. Other objects, including an anthropomorphic head phantom, a proton therapy range compensator, a frozen lamb’s head and an ‘image quality phantom’ were also imaged. Both the RMS only and the intensity-weighted RMS methods derived RSPs within  ±  1% for most of the Gammex phantom inserts, with a mean absolute percentage error of 0.66% for all inserts. In the case of the insert with a titanium rod, the method based on RMS completely failed, whereas that based on the intensity-weighted RMS was qualitatively valid. The use of intensity greatly enhanced the interfaces between different materials in the obtained WEPL images, suggesting the potential for image guidance in areas such as patient positioning and tumor tracking by proton

  17. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  18. Present status of the NIRS-ECR ion source for the HIMAC

    International Nuclear Information System (INIS)

    Kitagawa, A.; Matsushita, H.; Shibuya, S.

    1995-01-01

    The present status of NIRS-ECR ion source for the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS) is reported. The beam intensity of the NIRS-ECR was increased by modifications on the magnetic field structure, chamber cooling system, vacuum conductance and the extraction configuration. The output current of Ar 6+ reached 365 eμA after improvements. The good stability, easy operation, and good reproducibility were realized. (author)

  19. Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shao Qing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2015-06-15

    Electron cyclotron resonance (ECR) ion source is an essential component of heavy-ion accelerator. For a given design, the intensities of the highly charged ion beams extracted from the source can be increased by enlarging the physical volume of ECR zone. Several models for ECR ion source were and will be constructed depending on their operating conditions. In this paper three simulation models with 3, 4 and 6 solenoid system were built, but it's not considered anything else except the number of coils. Two groups of optimization analysis are presented, and the evolution strategy (ES) is adopted as an optimization tool which is a technique based on the ideas of mutation, adaptation and annealing. In this research, the volume of ECR zone was calculated approximately, and optimized designs for ECR solenoid magnet system were presented. Firstly it is better to make the volume of ECR zone large to increase the intensity of ion beam under the specific confinement field conditions. At the same time the total volume of superconducting solenoids must be decreased to save material. By considering the volume of ECR zone and the total length of solenoids in each model with different number of coils, the 6 solenoid system represented the highest coil performance. By the way, a certain case, ECR zone volume itself can be essential than the cost. So the maximum ECR zone volume for each solenoid magnet system was calculated respectively with the same size of the plasma chamber and the total magnet space. By comparing the volume of ECR zone, the 6 solenoid system can be also made with the maximum ECR zone volume.

  20. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.

    Energy Technology Data Exchange (ETDEWEB)

    CHOU,W.; WEI,J.

    2001-08-14

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.

  1. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES

    International Nuclear Information System (INIS)

    CHOU, W.; WEI, J.

    2001-01-01

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade

  2. Evanescent-wave proton postaccelerator driven by intense THz pulse

    OpenAIRE

    L. Pálfalvi; J. A. Fülöp; Gy. Tóth; J. Hebling

    2014-01-01

    Hadron therapy motivates research dealing with the production of particle beams with ∼100  MeV/nucleon energy and relative energy fluctuation on the order of 1%. Laser-driven accelerators produce ion beams with only tens of MeV/nucleon energy and an extremely broad spectra. Here, a novel method is proposed for postacceleration and monochromatization of particles, leaving the laser-driven accelerator, by using intense THz pulses. It is based on further developing the idea of using the evanesce...

  3. Dynamics of intense pulsed proton beam in the Nagaoka ETIGO-I

    International Nuclear Information System (INIS)

    Tanaka, Hajime; Konno, Kohji; Masugata, Katsumi; Yatsui, Kiyoshi; Matsui, Masao

    1982-01-01

    Dynamics of an intense pulsed proton beam have been studied by measuring nuclear reactions as well as by a biased ion-collector (BIC). When the ion-current density (Jsub(i)) is small such that Jsub(i) lt 30 A/cm 2 , the proton numer measured by BIC is in good agreement with that by nuclear activation. Good linearity exists between time integrated gamma -ray signal and proton number measured by the activation. Hence, it would be possible to obtain the proton number quantitatively even when a target ''blow-off'' takes place at Jsub(i) gt 1 kA/cm 2 . Prompt gamma -ray is also measured by the time-of-flight method to yield reasonable agreement with the applied peak potential. (author)

  4. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  5. ECR plasma diagnostics with Langmuir probe

    International Nuclear Information System (INIS)

    Kenez, L.; Biri, S.; Valek, A.

    2000-01-01

    Complete text of publication follows. An Electron Cyclotron Resonance (ECR) Ion Source is a tool to generate highly charged ions. The ion beam is extracted from the plasma chamber of the ECRIS. Higher charge states and beam intensities are the main objectives of ECR research. The heart of an ion source is the confined plasma which should be well known to reach those objectives. Information about the plasma can be obtained by plasma diagnostics methods. Langmuir probes were successfully used in case of other plasmas, e.g. TOKAMAK. Until last year plasma diagnostics at the ATOMKI ECRIS was performed by X-ray and visible light measurements. While X-ray measurements give global information, the Langmuir probe method can give information on the local plasma parameters. This is an advantage because the local parameters are not known in detail. By Langmuir probe measurements it is possible to get information on plasma density, plasma potential and partly on the electron temperature. From the experimental point of view a Langmuir probe is very simple. However, the precise positioning of the probe in the plasma chamber (HV platform, strong magnetic field, RF waves) is a difficult task. Also the theory of probes is complicated: the ECR plasma is a special one because the confining magnetic field is inhomogeneous, beside hot electrons it contains cold ions with different charge states and it is heated with high frequency EM waves. What can be measured with a probe is a voltage-current (U-I) characteristics. Figure 1 shows a typical U-I curve measured in our lab. As it can be seen in the figure the diagram has three main parts. An ion saturation current region (I.), an electron saturation current region (III.) and a transition region (II.) between them. These measurements were performed using two different power supplies to bias the probe to positive and negative voltage. To perform more precise U-I measurements we need a special power supply which is presently being built in

  6. Control of proton beam divergence in intense-laser foil-plasma interaction

    International Nuclear Information System (INIS)

    Kawata, S.; Sonobe, R.; Miyazaki, S.; Sakai, K.; Kikuchi, T.

    2006-01-01

    Quality of an ion beam is one of the critical factors in intense-laser ion beam generation. A purpose of this study is the suppression of transverse proton divergence by a controlled electron cloud in laser-foil interactions. In this study, the foil target has a hole at the opposite side of the laser illumination. The electrons accelerated by an intense laser are limited in transverse by a neutral plasma at a protuberant part. Therefore the protons are accelerated and also controlled transversely by the electron cloud structure. In our 2.5-dimensional Particle-in-Cell simulations we demonstrate that the transverse shape of the electron cloud is well controlled and the collimated proton beam is generated successfully in the target with the hole. (authors)

  7. Status and special features of the Atomki ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); Racz, R. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Palinkas, J. [University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary)

    2012-02-15

    The ECR ion source has been operating in ATOMKI (Debrecen) since 1996. During the past 15 years lots of minor and numerous major technical modifications have been carried out on the ECRIS. Many of these changes aimed the increasing of beams charge, intensity, and the widening of the ion choice. Another group of the modifications were performed to develop special, non-standard operation modes or to produce peculiar plasmas and beams.

  8. Preriminary operation results of JAERI ECR ion source OCTOPUS

    International Nuclear Information System (INIS)

    Yokota, W.; Arakawa, K.; Tachikawa, T.; Satoh, T.; Dupont, C.; Jongen, Y.

    1990-01-01

    An ECR ion source, new OCTOPUS, was built for and AVF cyclotron of the Japan Atomic Energy Research Institute, Takasaki. The design of this source is almost identical to the first built OCTOPUS, except for the RF frequency for the 2nd stage. The first operation of the new OCTOPUS was performed. High intensity of X-ray leakage was measured outside the lead shield wall of the source. (author)

  9. High intensity proton acceleration at the Brookhaven AGS -- An update

    International Nuclear Information System (INIS)

    Ahrens, L.; Alessi, J.; Blaskiewicz, M.

    1997-01-01

    The AGS accelerator complex is into its third year of 60+ x 10 12 (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps

  10. Physics with a high-intensity proton accelerator below 30 GeV

    International Nuclear Information System (INIS)

    Hoffman, C.M.

    1982-01-01

    The types of physics that would be pursued at a high-intensity, moderate-energy proton accelerator are discussed. The discussion is drawn from the deliberations of the 30-GeV subgroup of the Fixed-Target Group at this workshop

  11. Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

    NARCIS (Netherlands)

    Hectors, S.J.C.G.; Jacobs, I.; Strijkers, G.J.; Nicolay, K.

    2014-01-01

    Purpose: In this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. Methods: APT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  12. Amide Proton Transfer Imaging of High Intensity Focused Ultrasound-Treated Tumor Tissue

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Jacobs, Igor; Strijkers, Gustav J.; Nicolay, Klaas

    2014-01-01

    PurposeIn this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. MethodsAPT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  13. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    , beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.

  14. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Boehling, Nicholas S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques B. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew T. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  15. Design studies for an advanced ECR ion source for multiply charged ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1994-01-01

    An innovative technique: for increasing ion source intensity is described which, in principle, could lead to significant advances in ECR ion source technology for multiply charged ion beam formation. The advanced concept design uses a minimum-B magnetic mirror geometry which consists of a multi-cusp, magnetic field, to assist in confining the plasma radially, a flat central field for tuning to the ECR resonant condition, and specially tailored min-or fields in the end zones to confine the plasma in the axial direction. The magnetic field is designed to achieve an axially symmetric plasma ''volume'' with constant mod-B, which extends over the length of the central field region. This design, which strongly contrasts w h the ECR ''surfaces'' characteristic of conventional ECR ion sources, results in dramatic increases in the absorption of RF power, thereby increasing the electron temperature and ''hot'' electron population within the ionization volume of the source

  16. Broadband frequency ECR ion source concepts with large resonant plasma volumes

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    New techniques are proposed for enhancing the performances of ECR ion sources. The techniques are based on the use of high-power, variable-frequency, multiple-discrete-frequency, or broadband microwave radiation, derived from standard TWT technology, to effect large resonant ''volume'' ECR sources. The creation of a large ECR plasma ''volume'' permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present forms of the ECR ion source. If successful, these developments could significantly impact future accelerator designs and accelerator-based, heavy-ion-research programs by providing multiply-charged ion beams with the energies and intensities required for nuclear physics research from existing ECR ion sources. The methods described in this article can be used to retrofit any ECR ion source predicated on B-minimum plasma confinement techniques

  17. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  18. KEK/JAERI Joint Project on high-intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2003-01-01

    From JFY01, which started on April 1, 2001, a new accelerator project to provide high-intensity proton beams proceeded into a construction phase. This project is conducted under a cooperation of two institutions, KEK and JAERI. The accelerator complex will provide 1 MW proton beams at 3 GeV and 0.75 MW beams at 50 GeV. The project will be completed within 6 years. In this article I will describe (a) the project itself, (b) sciences to be pursued at this new accelerator complex and (c) the present status and future plans of the project

  19. Prospect for a 60 GHz multicharged ECR ion source

    Science.gov (United States)

    Thuillier, T.; Bondoux, D.; Angot, J.; Baylac, M.; Froidefond, E.; Jacob, J.; Lamy, T.; Leduc, A.; Sole, P.; Debray, F.; Trophime, C.; Skalyga, V.; Izotov, I.

    2018-05-01

    The conceptual design of a fourth generation hybrid electron cyclotron resonance (ECR) ion source operated at 60 GHz is proposed. The axial magnetic mirror is generated with a set of three Nb3Sn coils, while the hexapole is made with room temperature (RT) copper coils. The motivations for such a hybrid development are to study further the ECR plasma physics and the intense multicharged ion beams' production and transport at a time when a superconducting (SC) hexapole appears unrealistic at 60 GHz. The RT hexapole coil designed is an evolution of the polyhelix technology developed at the French High Magnetic Field Facility. The axial magnetic field is generated by means of 3 Nb3Sn SC coils operated with a maximum current density of 350 A/mm2 and a maximum coil load line factor of 81%. The ECR plasma chamber resulting from the design features an inner radius of 94 mm and a length of 500 mm. The radial magnetic intensity is 4.1 T at the wall. Characteristic axial mirror peaks are 8 and 4.5 T, with 1.45 T minimum in between.

  20. A New ECR Ion Source for Nuclear Astrophysics Studies

    Science.gov (United States)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  1. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  2. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  3. Energetic proton generation in ultra-intense laser-solid interactions

    International Nuclear Information System (INIS)

    Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M. H.; Pennington, D.; MacKinnon, A.; Snavely, R.A.

    2001-01-01

    An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 10 20 W/cm 2 , high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors

  4. Technical development of high intensity proton accelerators in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1995-01-01

    Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)

  5. Development plan of basic technology for a high intensity proton linear accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.

    1990-01-01

    The national program called OMEGA (Option Making Extra Gains from Actinide and Fission Products) has started with the aim of promoting the research and development of the new technologies for nuclear waste partitioning and transmutation. As a part of this program, Japan Atomic Energy Research Institute, JAERI, has laid out several R and D plans for accelerator based actinide transmutation. The present article first outlines the status of the high intensity proton linear accelerator. Then it describes the time schedule for the development of a high intensity proton linac, focusing on the first step development (basic technology accelerator), second step development (engineering test accelerator, and third step development (commercial plant). It also outlines the conceptual design study and preliminary design calculations for basic technology accelerator, focusing on general consideration, ion source, radio frequency quadrupole, drift tube linac, and high beta linac. (N.K.)

  6. Intensity maps of MeV electrons and protons below the radiation belt

    International Nuclear Information System (INIS)

    Kohno, T.; Munakata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuchi, J.; Doke, T.

    1988-01-01

    The global distributions of energetic electrons (0.19 - 3.2 MeV) and protons (0.64 - 35 MeV) are shown in the form of contour maps. The data were obtained by two sets of energetic particle telescopes on board the satellite OHZORA. The observed altitude range is 350 - 850 Km. Ten degress meshes in longitude and latitude were used to obtain the intensity contours. A pitch angle distribution of J(α) = J(90). sin n α with n = 5 A is assumed to get the average intensity in each mesh. (author) [pt

  7. Shortening Delivery Times of Intensity Modulated Proton Therapy by Reducing Proton Energy Layers During Treatment Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Kooy, Hanne M. [F. H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2015-06-01

    Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system “Erasmus-iCycle.” The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust “time-efficient plan” (with energy layer reduction) with a robust “standard clinical plan” (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases. Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results: The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions: Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs.

  8. Medium energy high intensity proton accelerator (MEHIPA): Reference Design Report (RDR) Ver. 1.0

    International Nuclear Information System (INIS)

    2016-11-01

    Recent progress in accelerator technology has made it possible to use a proton accelerator to produce nuclear energy. In an accelerator-driven system (ADS), a high-intensity proton accelerator is used to produce protons of around 1 GeV energy, which strike a target such as lead or tungsten to produce spallation neutrons. ADS can be used to produce power, incinerate minor actinides and long-lived fission products, and for the utilization of thorium as an alternative nuclear fuel. The accelerator for ADS has to produce high energy (1 GeV) protons, and deliver tens of milli amperes of beam current with minimum (< 1 nA/m) beam loss for hands-on maintenance of the accelerator. This makes the development of accelerators for ADS very challenging. In India, it is planned to take a staged approach towards development of the requisite accelerator technology, and it is planned to develop the accelerator in three phases: 20 MeV, 200 MeV and 1 GeV. This report presents a reference design report for the Medium Energy High Intensity Proton Accelerator (MEHIPA) which will accelerate the beam to 200 MeV. The linac consists of a 3 MeV normal conducting RFQ followed by three families of superconducting Single Spoke Resonators (SSR) to accelerate the beam to 200 MeV. The major elements of the physics design of MEHIPA, as well as layouts and specifications of the major accelerator sub-systems are presented in this report. (author)

  9. Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours

    International Nuclear Information System (INIS)

    Petersen, Joergen B. B.; Hansen, Anders T.; Lassen, Yasmin; Grau, Cai; Hoeyer, Morten; Muren, Ludvig P.

    2011-01-01

    Background. Stereotactic body radiotherapy (SBRT) is often the preferred treatment for the advanced liver tumours which owing to tumour distribution, size and multi-focality are out of range of surgical resection or radiofrequency ablation. However, only a minority of patients with liver tumours may be candidates for conventional SBRT because of the limited radiation tolerance of normal liver, intestine and other normal tissues. Due to the favourable depth-dose characteristics of protons, intensity-modulated proton therapy (IMPT) may be a superior alternative to photon-based SBRT. The purpose of this treatment planning study was therefore to investigate the potential sparing of normal liver by IMPT compared to photon-based intensity-modulated radiotherapy (IMRT) for solitary liver tumours. Material and methods. Ten patients with solitary liver metastasis treated at our institution with multi-field SBRT were retrospectively re-planned with IMRT and proton pencil beam scanning techniques. For the proton plans, two to three coplanar fields were used in contrast to five to six coplanar and non-coplanar photon fields. The same planning objectives were used for both techniques. A risk adapted dose prescription to the PTV surface of 12.5-16.75 Gy x 3 was used. Results. The spared liver volume for IMPT was higher compared to IMRT in all 10 patients. At the highest prescription dose level, the median liver volume receiving less than 15 Gy was 1411 cm 3 for IMPT and 955 cm 3 for IMRT (p D 15 Gy > 700 cm 3 constraint. For the D mean = 15 Gy constraint, nine of 10 cases could be treated at the highest dose level using IMPT whereas with IMRT, only two cases met this constraint at the highest dose level and six at the lowest dose level. Conclusion. A considerable sparing of normal liver tissue can be obtained using proton-based SBRT for solitary liver tumours

  10. ECR plasma photographs as a plasma diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R; Biri, S; Palinkas, J [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2011-04-15

    Low, medium or highly charged ions delivered by electron cyclotron resonance (ECR) ion sources all are produced in the ECR plasma. In order to study such plasmas, high-resolution visible light plasma photographs were taken at the ATOMKI ECR ion source. An 8 megapixel digital camera was used to photograph plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The analysis of the photo series gave many qualitative and some valuable physical information on the nature of ECR plasmas. A comparison was made between the plasma photos and computer simulations, and conclusions were drawn regarding the cold electron component of the plasma. The warm electron component of similar simulation was compared with x-ray photos emitted by plasma ions. While the simulations are in good agreement with the photos, a significant difference was found between the spatial distribution of the cold and warm electrons.

  11. Experiment of bias probe method at NIRS-18 GHz ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Jincho, Kaoru; Yamamoto, Mitsugu; Okada, Takanori; Takasugi, Wataru; Sakuma, Tetsuya; Miyoshi, Tomohiro [Accelerator Engineering Corp., Chiba (Japan); Kitagawa, Atsushi; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Biri, Sandor [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary)

    2000-11-01

    An 18 GHz ECR ion source (NIRS-HEC) has been developed to produce highly charged heavy ions from Ar to Xe. In order to increase the beam intensity of highly charged ion, we tried a technique of supplying cold electrons into the ECR plasma. In this paper, enhancement of the beam intensity is discussed in detail. The bias voltage is applied on the probe to repel cold electrons which flow from a plasma. The output beam current is 130 e{mu}A for Ar{sup 11+}. (J.P.N.)

  12. Experiment of bias probe method at NIRS-18 GHz ECR ion source

    International Nuclear Information System (INIS)

    Jincho, Kaoru; Yamamoto, Mitsugu; Okada, Takanori; Takasugi, Wataru; Sakuma, Tetsuya; Miyoshi, Tomohiro; Kitagawa, Atsushi; Muramatsu, Masayuki; Biri, Sandor

    2000-01-01

    An 18 GHz ECR ion source (NIRS-HEC) has been developed to produce highly charged heavy ions from Ar to Xe. In order to increase the beam intensity of highly charged ion, we tried a technique of supplying cold electrons into the ECR plasma. In this paper, enhancement of the beam intensity is discussed in detail. The bias voltage is applied on the probe to repel cold electrons which flow from a plasma. The output beam current is 130 eμA for Ar 11+ . (J.P.N.)

  13. Proposal of experimental facilities for studies of nuclear data and radiation engineering in the Intense Proton Accelerator Project

    CERN Document Server

    Baba, M; Nagai, Y; Ishibashi, K

    2003-01-01

    A proposal is given on the facilities and experiments in the Intense Proton Accelerator Project (J-PARC) relevant to the nuclear data and radiation engineering, nuclear astrophysics, nuclear transmutation, accelerator technology and space technology and so on. (3 refs).

  14. The JAERI-KEK joint project on high intensity proton accelerator and overview of nuclear transmutation experimental facilities

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2001-01-01

    A status of the JAERI/KEK joint project on High Intensity Proton Accelerator is overviewed. It is highlighted that Experimental facilities for development of the accelerator driven system (ADS) for nuclear transmutation technology is proposed under the project. (author)

  15. Dosimetric comparison of intensity modulated radiation, Proton beam therapy and proton arc therapy for para-aortic lymph node tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon [Dept. of Radiation Oncology, Konyang University Hospital. Daejeon (Korea, Republic of)

    2014-12-15

    To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, D{sub 30%}, D{sub 60%}, D{sub 90%}, V{sub 30%}, V{sub 60%}, V{sub 90}%, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

  16. Investigation of L X-ray intensity ratios in Pt induced by proton collisions

    International Nuclear Information System (INIS)

    Kaur, Manpuneet; Kaur, Mandeep; Mohan, Harsh; Jain, Arvind Kumar; Singh, Parjit S.; Vohra, Neelam; Sharma, Sunita

    2015-01-01

    A survey of literature on L X-ray parameters inspires us for taking up the present investigation. These parameters are useful to study atomic properties. In view of this, we report L X-ray intensity ratios for Pt, namely, L ℓ / L α , L β / L α and L γ / L α with proton collisions over the energy range 260 - 400 keV with an interval of 20 keV. The intention of research presented in this paper is to explore their energy dependence and comparison with theoretical calculations. These analyses will yield a data in the low energy region which assist in better clarity of proton induced X-ray emission phenomenon

  17. Experimental results of beryllium exposed to intense high energy proton beam pulses

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Butcher, M; Guinchard, M; Calviani, M; Losito, R; Roberts, S; Kuksenko, V; Atherton, A; Caretta, O; Davenne, T; Densham, C; Fitton, M; Loveridge, J; O'Dell, J

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and co...

  18. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  19. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  20. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  1. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  2. High-intensity, subkolovolt x-ray calibration facility using a Cockroft--Walton proton accelerator

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    Considerable need has arisen for the development of well-calibrated x-ray detectors capable of detecting photons with energies between 100 and 1000 electron-volts. This energy region is of significant interest since the x-ray emission from high-temperature (kT approximately 1.0 keV), laser-produced plasmas is predominantly in this range. A high-intensity, subkilovolt x-ray calibration source was developed which utilizes proton-induced inner-shell atomic fluorescence of low-Z elements. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide an intense, nearly monoenergetic x-ray calibration source for detector development applications. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable liquid-cooled targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. A description of the facility is presented. Typical x-ray spectra (B-K, C-K, Ti-L, Fe-L and Cu-L) and flux values will be shown. Problems such as spectral contamination due to carbon buildup on the target and to backscattered particles are discussed

  3. 400 kV injector compact ECR ion source

    International Nuclear Information System (INIS)

    Constantin, F.; Catana, D.; Macovei, M.; Ivanov, E.

    1997-01-01

    Obtaining multiple ionised ions is a fundamental problem for some applications and research. Multiple ionised ions can be produced from electronic bombardment, when n·τ≥5·10 9 cm -3 · s, where n is the density of electrons (in cm -3 ) and τ is the time of interaction between electrons and ions . The relative speed of electrons and ions determines the equilibrium between the stripping process of the atom's electrons and their capture. An ion source with high ionisation efficiency and large output current is the ECR source (Electron Cyclotron Resonance). Using an ECR source with permanent magnets as ion source for the injector will lead to following advantages: - the possibility to obtain multiple ionised particles; - an increase of ion beam intensities; - the expanding of accelerator activities; - a longer working time, due to magnetron lifetime. The ECR ion source is robust, compact and capable of high intensities of extracted ion current. The large functional domain for the residual gas pressure allows the production of multiple charged ions. The source can be easily integrated in the TRILAC's injection structure. We realised a compact microwave ion source which has an axial magnetic field generated by a permanent magnet of Co-Sm. 1200 G magnetic field is greater than the 875 G magnetic field corresponding to the electron-cyclotron frequency of 2.45 GHz. The microwave generator is a magnetron (2.45 GHz and 200 W in continuos wave). The microwave is fed through a coaxial connector on the top of flange. The test was made on He gas at a pressure between 8· 10 -4 and 5·10 -2 torr. The ion beam current was measured vs. extracted potential from 3 kV to 10 kV and has a dependence according to U 3/2 law. A maximal ion current of 300 μA at 10 kV extraction potential was measured. Dimension of ECR ion source, including Einzel lens are φ=12 cm and h=16 cm. (authors)

  4. ULTRA-LOW INTENSITY PROTON BEAMS FOR RADIATION RESPONSE RELATED EXPERIMENTS AT THE U-120M CYCLOTRON

    Directory of Open Access Journals (Sweden)

    Tomas Matlocha

    2018-05-01

    Full Text Available The U-120M cyclotron at the Nuclear Physics Institute (NPI of the Czech Academy of Sciences in Rez is used for radiation hardness tests of electronics for high-energy physics experiments. These tests are usually carried out with proton fluxes of the order of 105–109 proton·cm−2·s−1. Some tests done for the upgrade of the Inner Tracking System of the ALICE experiment at CERN, however, required proton beam intensities several orders of magnitude lower. This paper presents a method which has been developed to achieve the proton beam flux of the order of 1 proton · cm−2·s−1. The method is mainly based on reduction of the discharge current in the cyclotron internal Penning type ion source. Influence of this new operation mode on the lifetime of ion source cathodes is discussed.

  5. Multifield Optimization Intensity Modulated Proton Therapy for Head and Neck Tumors: A Translation to Practice

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael; Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Garden, Adam S.; Rosenthal, David I.; Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Weber, Randal S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kies, Merrill S. [Department of Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lewin, Jan S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Palmer, Matthew B. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sahoo, Narayan; Zhang, Xiaodong; Liu, Wei; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-07-15

    Background: We report the first clinical experience and toxicity of multifield optimization (MFO) intensity modulated proton therapy (IMPT) for patients with head and neck tumors. Methods and Materials: Fifteen consecutive patients with head and neck cancer underwent MFO-IMPT with active scanning beam proton therapy. Patients with squamous cell carcinoma (SCC) had comprehensive treatment extending from the base of the skull to the clavicle. The doses for chemoradiation therapy and radiation therapy alone were 70 Gy and 66 Gy, respectively. The robustness of each treatment plan was also analyzed to evaluate sensitivity to uncertainties associated with variations in patient setup and the effect of uncertainties with proton beam range in patients. Proton beam energies during treatment ranged from 72.5 to 221.8 MeV. Spot sizes varied depending on the beam energy and depth of the target, and the scanning nozzle delivered the spot scanning treatment “spot by spot” and “layer by layer.” Results: Ten patients presented with SCC and 5 with adenoid cystic carcinoma. All 15 patients were able to complete treatment with MFO-IMPT, with no need for treatment breaks and no hospitalizations. There were no treatment-related deaths, and with a median follow-up time of 28 months (range, 20-35 months), the overall clinical complete response rate was 93.3% (95% confidence interval, 68.1%-99.8%). Xerostomia occurred in all 15 patients as follows: grade 1 in 10 patients, grade 2 in 4 patients, and grade 3 in 1 patient. Mucositis within the planning target volumes was seen during the treatment of all patients: grade 1 in 1 patient, grade 2 in 8 patients, and grade 3 in 6 patients. No patient experienced grade 2 or higher anterior oral mucositis. Conclusions: To our knowledge, this is the first clinical report of MFO-IMPT for head and neck tumors. Early clinical outcomes are encouraging and warrant further investigation of proton therapy in prospective clinical trials.

  6. Generation of fast protons by interaction of modest laser intensities with H2O 'snow' nano-wire targets

    International Nuclear Information System (INIS)

    Bruner, Nir; Schleifer, Elad; Palchan, Tala; Pikuz, Sergey A.; Eisenmann, Shmuel; Botton, Mordechai; Gordon, Dan; Zigler, Arie

    2011-01-01

    We report on the generation of protons with energies of 5.5 MeV when irradiating an H 2 O nano-wire layer grown on a sapphire plate with an intensity of 5x10 17 W/cm 2 . A theoretical model is suggested in which plasma near the tip of the wire is subject to enhanced electrical fields and protons are accelerated to several MeVs.

  7. Sensitivity of intensity modulated proton therapy plans to changes in patient weight

    International Nuclear Information System (INIS)

    Albertini, Francesca; Bolsi, Alessandra; Lomax, Antony J.; Rutz, Hans Peter; Timmerman, Beate; Goitein, Gudrun

    2008-01-01

    Purpose: A retrospective study to investigate the sensitivity of intensity modulated proton therapy (IMPT) to changes in body weight occurring during the course of radiotherapy for patients treated in the sacral region. Materials and methods: During therapy, important weight gain and loss were observed for two patients treated to para-spinal tumors, which resulted in both patients being re-scanned and re-planned. Both patients were treated as part of their therapy, with a narrow-angle IMPT (NA-IMPT) plan delivering a 'dose hole' around the cauda equina (CE), which was mainly formed through modulation of Bragg peaks in depth. To investigate the impact of these weight changes on the proton range and delivered dose, the nominal fields were re-calculated on the new CT data sets. Results were analyzed by comparing these new plans with those originally delivered and by calculating changes in range and delivered doses in target volumes and normal tissues. Results: Maximum differences in proton range in the CE region of up to +8 mm and -13 mm, respectively, for the patient who gained weight and for the patient who lost weight, increased the maximum dose to the CE by only 2%. This indicates that both IMPT plans were relatively insensitive to substantial range uncertainties. Even greater differences in range (16 mm) in the planning target volume only slightly affected its dose homogeneity (differences in V 90% of 6% in the worst case). Nevertheless, some large undesired local dose differences were observed. Conclusions: We demonstrated, that, at least for the two analyzed cases, NA-IMPT plans are less sensitive to weight variations than one may expect. Still, we would advise to calculate new plans in case of substantial change in weight for patients treated in the sacral region, primarily due to the presence of new hot/cold area

  8. Improved Beam Angle Arrangement in Intensity Modulated Proton Therapy Treatment Planning for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Cao, Wenhua; Lim, Gino J.; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: This study investigates potential gains of an improved beam angle arrangement compared to a conventional fixed gantry setup in intensity modulated proton therapy (IMPT) treatment for localized prostate cancer patients based on a proof of principle study. Materials and Methods: Three patients with localized prostate cancer retrospectively selected from our institution were studied. For each patient, IMPT plans were designed using two, three and four beam angles, respectively, obtained from a beam angle optimization algorithm. Those plans were then compared with ones using two lateral parallel-opposed beams according to the conventional planning protocol for localized prostate cancer adopted at our institution. Results: IMPT plans with two optimized angles achieved significant improvements in rectum sparing and moderate improvements in bladder sparing against those with two lateral angles. Plans with three optimized angles further improved rectum sparing significantly over those two-angle plans, whereas four-angle plans found no advantage over three-angle plans. A possible three-beam class solution for localized prostate patients was suggested and demonstrated with preserved dosimetric benefits because individually optimized three-angle solutions were found sharing a very similar pattern. Conclusions: This study has demonstrated the potential of using an improved beam angle arrangement to better exploit the theoretical dosimetric benefits of proton therapy and provided insights of selecting quality beam angles for localized prostate cancer treatment

  9. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning

    International Nuclear Information System (INIS)

    Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.

    2010-01-01

    Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  10. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.

    Science.gov (United States)

    Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T

    2010-09-01

    To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  11. Experimental results of beryllium exposed to intense high energy proton beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Zwaska, R. [Fermilab; Butcher, M. [CERN; Guinchard, M. [CERN; Calviani, M. [CERN; Losito, R. [CERN; Roberts, S. [Culham Lab; Kuksenko, V. [Oxford U.; Atherton, A. [Rutherford; Caretta, O. [Rutherford; Davenne, T. [Rutherford; Densham, C. [Rutherford; Fitton, M. [Rutherford; Loveridge, J. [Rutherford; O' Dell, J. [Rutherford

    2017-02-10

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.

  12. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C; Kamal, H [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  13. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    International Nuclear Information System (INIS)

    Beltran, C; Kamal, H

    2016-01-01

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  14. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    International Nuclear Information System (INIS)

    Zhang, W.; Sandberg, J.; Parson, W.M.; Walstrom, P.; Murray, M.M.; Cook, E.; Hartouni, E.

    2001-01-01

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed

  15. Final Report for 'Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators'

    International Nuclear Information System (INIS)

    Veitzer, Seth A.

    2009-01-01

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  16. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  17. The research of condensed matter physics by using intense proton accelerator

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1990-01-01

    The present article covers the application of intense protons to basic condensed matter physics. Major recent neutron scattering activities in condensed matter physics are first outlined, emphasizing the fact that the contribution of accelerator base science has a tremendous impact on this basic science. Application of spallation neutrons to condensed matter physics is discussed in relation to such subjects as high energy (epithermal) excitations and small angle neutron scattering. Then the specific subject of high Tc superconductor is addressed, focusing on how neutrons as well as muons provide experimental results that serve significantly in exploring the mechanism of exotic high Tc superconductivity. Techniques for neutron polarization must be developed in the future. The neutron spin reflectivity ratio has been shown to be a sensitive probe of surface depth profile of magnetization. Another new method is neutron depolarization to probe bulk magnetic induction throughout a slab which neutrons pass through. (N.K.)

  18. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  19. The Impact of Intrinsic Heavy Quark Distributions in the Proton on New Physics Searches at the High Intensity Frontier

    International Nuclear Information System (INIS)

    Broksky, Stanley

    2012-01-01

    The possibility of an intense proton facility, at 'Project X' or elsewhere, will provide many new opportunities for searches for physics beyond the Standard Model. A Project X can serve a yet broader role in the search for new physics, and in this note we highlight the manner in which thus-enabled studies of the flavor structure of the proton, particularly of its intrinsic heavy quark content, facilitate other direct and indirect searches for new physics. Intrinsic heavy quarks in both light and heavy hadrons play a key role in searches for physics BSM with hadrons - and their study at the Intensity Frontier may prove crucial to establishing its existence.

  20. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy.

    Science.gov (United States)

    Zhang, M; Westerly, D C; Mackie, T R

    2011-08-07

    With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom

  1. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jose V., E-mail: josev.mathew@gmail.com; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  2. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  3. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  4. First observations of intensity-dependent effects for transversely split beams during multiturn extraction studies at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    Simone Gilardoni

    2013-05-01

    Full Text Available During the commissioning of the CERN Proton Synchrotron multiturn extraction, tests with different beam intensities were performed in order to probe the behavior of resonance crossing in the presence of possible space charge effects. The initial beam intensity before transverse splitting was varied and the properties of the five beamlets obtained by crossing the fourth-order horizontal resonance were studied. A clear dependence of the beamlets’ parameters on the total beam intensity was found, which is the first direct observation of intensity-dependent effects for such a peculiar beam type. The experimental results are presented and discussed in detail in this paper.

  5. Calculated L-shell x-ray line intensities for proton and helium ion impact

    International Nuclear Information System (INIS)

    Cohen, D.D.; Harrigan, M.

    1986-01-01

    Theoretical L-shell X-ray line intensities have been calculated for proton and helium bombardment of atoms from nickel (Z 2 = 28) to curium (Z 2 = 96). The ionization cross sections for the three L subshells were obtained from the recent calculations by Cohen and Harrigan in the ECPSSR theory, which uses the plane-wave Born approximation (PWBA) with corrections for energy loss (E), Coulomb deflection (C), perturbed-stationary-state (PSS), and relativistic (R) effects. The fluorescence yields and Coster-Kronig transition probabilities were taken from M. O. Krause (Phys. Chem. Ref. Data 8, 307 (1979)) and the L-subshell emission rates from S. I. Salem, S. L. Panosian, and R. A. Krause (Atomic Data and Nuclear Data Tables 14, 91 (1974)). The line intensities Ll, Lα, Leta, Lβ 1 to Lβ 6 , Lβ/sub 9,10/, and Lγ 1 to Lgg 6 are tabulated for selected ion energies from 0.2 to 10 MeV

  6. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  7. Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, S., E-mail: sakaguchi@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Uesaka, T. [RIKEN Nishina Center, Saitama 351-0198 (Japan); Kawahara, T. [Department of Physics, Toho University, Chiba 274-8510 (Japan); Ogawa, T. [RIKEN Advanced Science Institute, Saitama 351-0198 (Japan); Tang, L. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0001 (Japan); Teranishi, T. [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Urata, Y.; Wada, S. [RIKEN Advanced Science Institute, Saitama 351-0198 (Japan); Wakui, T. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Miyagi 980-8578 (Japan)

    2013-12-15

    Highlights: • Proton polarization in p-terphenyl at room-temperature is enhanced by a factor of 3. • Intense laser and temperature control are critically important for high polarization. • Optimization of time structure of laser pulse is effective for further improvement. -- Abstract: Proton polarization at room temperature, produced in a p-terphenyl crystal by using electron population difference in a photo-excited triplet state of pentacene, was enhanced by utilizing an intense laser with an average power of 1.5 W. It was shown that keeping the sample temperature below 300 K is critically important to prevent the rise of the spin–lattice relaxation rate caused by the laser heating. It is also reported that the magnitude of proton polarization strongly depends on the time structure of the laser pulse such as its width and the time interval between them.

  8. Effect of proton and electron-irradiation intensity on radiation-induced damages in silicon bioolar transistors

    International Nuclear Information System (INIS)

    Bannikov, Yu.A.; Gorin, B.M.; Kozhevnikov, V.P.; Mikhnovich, V.V.; Gusev, L.I.

    1981-01-01

    The increase of radiation-induced damages of bipolar n-p-n transistors 8-12 times with the irradiation intensity decrease by protons from 4.07x1010 to 2.5x107 cm-2 x c-1 has been found experimentally. damages of p-n-p transistors vary in the opposite way - they are decreased 2-3 times with the irradiation intensity decrease within the same limits. the dependence of damages on intansity of proton irradiation occurs at the dose rate by three orders less than it has been observed for electron irradiation. the results obtained are explained by the dependence of radiation defectoformation reactions on charge state of defects with account for the role of formation of disordering regions upon proton irradiation [ru

  9. Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Blanchard, Pierre [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Institut Gustave Roussy, Villejuif (France); Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Fuller, C. David [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Medical Physics Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Mohamed, Abdallah S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Oncology and Nuclear Medicine, University of Alexandria (Egypt); Morrison, William H.; Phan, Jack; Beadle, Beth M.; Skinner, Heath D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sturgis, Erich M. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kies, Merrill S. [Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hutcheson, Kate A. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rosenthal, David I. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe; Gillin, Michael T. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); and others

    2016-05-01

    Purpose: A single-institution prospective study was conducted to assess disease control and toxicity of proton therapy for patients with head and neck cancer. Methods and Materials: Disease control, toxicity, functional outcomes, and patterns of failure for the initial cohort of patients with oropharyngeal squamous carcinoma (OPC) treated with intensity modulated proton therapy (IMPT) were prospectively collected in 2 registry studies at a single institution. Locoregional failures were analyzed by using deformable image registration. Results: Fifty patients with OPC treated from March 3, 2011, to July 2014 formed the cohort. Eighty-four percent were male, 50% had never smoked, 98% had stage III/IV disease, 64% received concurrent therapy, and 35% received induction chemotherapy. Forty-four of 45 tumors (98%) tested for p16 were positive. All patients received IMPT (multifield optimization to n=46; single-field optimization to n=4). No Common Terminology Criteria for Adverse Events grade 4 or 5 toxicities were observed. The most common grade 3 toxicities were acute mucositis in 58% of patients and late dysphagia in 12%. Eleven patients had a gastrostomy (feeding) tube placed during therapy, but none had a feeding tube at last follow-up. At a median follow-up time of 29 months, 5 patients had disease recurrence: local in 1, local and regional in 1, regional in 2, and distant in 1. The 2-year actuarial overall and progression-free survival rates were 94.5% and 88.6%. Conclusions: The oncologic, toxicity, and functional outcomes after IMPT for OPC are encouraging and provide the basis for ongoing and future clinical studies.

  10. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, Drosoula, E-mail: dgiantsoudi@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  11. SU-E-T-124: Dosimetric Comparison of HDR Brachytherapy and Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J [Purdue University, West Lafayette, IN (United States); Wu, H [IUPUI, Indianapolis, IN (United States); Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States)

    2014-06-01

    Purpose: Brachytherapy is known to be able to deliver more radiation dose to tumor while minimizing radiation dose to surrounding normal tissues. Proton therapy also provides superior dose distribution due to Bragg peak. Since both HDR and Intensity Modulated Proton Therapy (IMPT) are beneficial for their quick dose drop off, our goal in this study is to compare the pace of dose gradient drop-off between HDR and IMPT plans based on the same CT image data-set. In addition, normal tissues sparing were also compared among HDR, IMPT and SBRT. Methods: Five cervical cancer cases treated with EBRT + HDR boost combination with Tandem and Ovoid applicator were used for comparison purpose. Original HDR plans with prescribed dose of 5.5 Gy x 5 fractions were generated and optimized. The 100% isodose line of HDR plans was converted to a dose volume, and treated as CTV for IMPT and SBRT planning. The same HDR CT scans were also used for IMPT plan and SBRT plan for direct comparison. The philosophy of the IMPT and SBRT planning was to create the same CTV coverage as HDR plans. All three modalities treatment plans were compared to each other with a set of predetermined criteria. Results: With similar target volume coverage in cervix cancer boost treatment, HDR provides a slightly sharper dose drop-off from 100% to 50% isodose line, averagely in all directions compared to IMPT. However, IMPT demonstrated more dose gradient drop-off at the junction of the target and normal tissues by providing more normal tissue sparing and superior capability to reduce integral dose. Conclusion: IMPT is capable of providing comparable dose drop-off as HDR. IMPT can be explored as replacement for HDR brachytherapy in various applications.

  12. Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Botas, Pablo [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Faculty of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg (Germany); Giantsoudi, Drosoula; Gorissen, Bram L.; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-12-01

    Purpose: We describe a treatment plan optimization method for intensity modulated proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures located within or near the target volume while limiting degradation of the best possible physical dose distribution. Methods and Materials: To allow fast optimization based on dose and LET, a GPU-based Monte Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dose objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of the additional biological dose that is caused by high LET. Results: The method is effective for treatments where serial critical structures with maximum dose constraints are located within or near the target. We report on 5 patients with intracranial tumors (high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning. The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects resulting from elevated RBE of proton beams near the end of range.

  13. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    International Nuclear Information System (INIS)

    Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald

    2013-01-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  14. Including robustness in multi-criteria optimization for intensity-modulated proton therapy

    Science.gov (United States)

    Chen, Wei; Unkelbach, Jan; Trofimov, Alexei; Madden, Thomas; Kooy, Hanne; Bortfeld, Thomas; Craft, David

    2012-02-01

    We present a method to include robustness in a multi-criteria optimization (MCO) framework for intensity-modulated proton therapy (IMPT). The approach allows one to simultaneously explore the trade-off between different objectives as well as the trade-off between robustness and nominal plan quality. In MCO, a database of plans each emphasizing different treatment planning objectives, is pre-computed to approximate the Pareto surface. An IMPT treatment plan that strikes the best balance between the different objectives can be selected by navigating on the Pareto surface. In our approach, robustness is integrated into MCO by adding robustified objectives and constraints to the MCO problem. Uncertainties (or errors) of the robust problem are modeled by pre-calculated dose-influence matrices for a nominal scenario and a number of pre-defined error scenarios (shifted patient positions, proton beam undershoot and overshoot). Objectives and constraints can be defined for the nominal scenario, thus characterizing nominal plan quality. A robustified objective represents the worst objective function value that can be realized for any of the error scenarios and thus provides a measure of plan robustness. The optimization method is based on a linear projection solver and is capable of handling large problem sizes resulting from a fine dose grid resolution, many scenarios, and a large number of proton pencil beams. A base-of-skull case is used to demonstrate the robust optimization method. It is demonstrated that the robust optimization method reduces the sensitivity of the treatment plan to setup and range errors to a degree that is not achieved by a safety margin approach. A chordoma case is analyzed in more detail to demonstrate the involved trade-offs between target underdose and brainstem sparing as well as robustness and nominal plan quality. The latter illustrates the advantage of MCO in the context of robust planning. For all cases examined, the robust optimization for

  15. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.

    Science.gov (United States)

    Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G

    2014-12-01

    Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and

  16. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jiasen, E-mail: ma.jiasen@mayo.edu; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G. [Department of Radiation Oncology, Division of Medical Physics, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States)

    2014-12-15

    Purpose: Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. Methods: An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. Results: For relatively large and complex three-field head and neck cases, i.e., >100 000 spots with a target volume of ∼1000 cm{sup 3} and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. Conclusions: A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45

  17. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  18. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  19. Development of ECR ion source and LEBT technology for RIA

    International Nuclear Information System (INIS)

    Leitner, Daniela; Lyneis, Claude M.; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Silver, Charles S.; Taylor, Clyde E.

    2004-01-01

    The Rare Isotope Accelerator (RIA) Linac driver requires a great variety of high charge state ion beams with up to a magnitude higher intensity than currently achievable for the heaviest masses. The goal of the RIA injector R and D program for VENUS is the reliable production of intense medium charge state ion beams, e.g., 8 puA (particle mu A) of U29+. Therefore, the superconducting ECR ion source VENUS has been designed from the beginning for optimum operation at 28 GHz at high power (10 kW). In addition, a high intensity Low Energy Beam Transport, LEBT, that was developed to analyze and transport these multiply-charged, space charge dominated beams. During the last year VENUS was commissioned at 18 GHz and preparations for 28 GHz operation continued. Tests with various gases and recently metals have been performed with up to 2000 W of 18 GHz RF power. Promising performance has been measured in those preliminary beam tests. For example, 180 p mu A of O6+, 15 p mu A of Ar12+, 7.5 puA of X e20+ and 4puA of Bi24+ were produced in the early commissioning phase, ranking VENUS among the currently highest performance 18 GHz ECR ion sources. In FY04 a 10 kW 28 gyrotron system will be added, which will enable VENUS to reach full performance. The emittance of the beams produced at 18 GHz was measured with a two axis emittance scanner developed with earlier RIA R and D funds

  20. Production of an intense source of micro-second proton pulses; Recherche d'une intense source de protons pulsee a la micro-seconde

    Energy Technology Data Exchange (ETDEWEB)

    Belmont, J L [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-02-01

    In order to obtain micro-second proton pulses of 100 mA, we have built a duoplasmatron ion source and beam focusing equipment. The pulses of the ion-source were produced by a load discharge. The source operates as a hydrogen-thyratron. The particular geometry of the duoplasmatron was chosen in order that the ion emission be stable with a 10 A arc and with a gas-flow lower than 10 cm{sup 3}/h T.P.N. Studies of the beam showed preponderance of protons and the presence of heavy ions. The beam density is higher on the optic axis. (author) [French] Pour obtenir des impulsions d'une microseconde de 100 mA de protons, on a ete amene a construire une source 'duoplasmatron' et son optique de focalisation. La pulsation de la source a ete faite par decharge d'une ligne, la source fonctionnant elle-meme comme un thyratron a hydrogene. La geometrie de la source a ete etudiee pour que l'emission d'ions soit stable avec un arc de 10 amperes de crete et un debit de gaz de 10 cm{sup 3}/h T.P.N. Une analyse du faisceau a revele la preponderance des protons et l'existence d'ions lourds. La densite du faisceau est plus grande sur l'axe de l'optique.

  1. State of the Art ECR Ion Sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1997-01-01

    Electron Cyclotron Resonance (ECR) ion source which produces highly-charged ions is used in heavy ion accelerators worldwide. Applications also found in atomic physics research and industry ion implantation. ECR ion source performance continues to improve, especially in the last few years with new techniques, such as multiple-frequency plasma heating and better methods to provide extra cold electrons, combined with higher magnetic mirror fields. So far more than 1 emA of multiply-charged ions such as He 2+ and O 6+ , and 30 eμA of Au 32+ , 1.1 eμA of 238 U 48+ , and epA currents of very high charge states such as 86 Kr 35+ and 238 U 60+ have been produced

  2. Status of ECR ion sources at JAERI

    CERN Document Server

    Yokota, W; Nara, T; Ishi, Y; Arakawa, K; Ohkoshi, K

    1999-01-01

    At the Takasaki site of Japan Atomic Energy Research Institute, four ECR ion sources were purchased or developed so far. This paper will report their performance, modification and status. The outlines for each source are as follows; 1. OCTOPUS purchased from IBA s.a. has been in use with a cyclotron since 1990. The gas feed system was modified to change gas species within 10 minutes to avoid impurity ions in the cocktail beam acceleration technique of the cyclotron. 2. ECR-18 with 18-GHz microwave has a solenoid coil between a pair of mirror coils to change mirror ratio in a wide range. A bump between mirror peaks in the original axial field distribution was removed by halving the solenoid length. The performance in generating high charge state ions was significantly improved as a result. 3. HYPERNANOGAN was purchased from PANTECHNIK s.a. and installed in the cyclotron system this year. Test operation was successfully made with generation of Ar, Pb and Ta ions. 4. MINI ECR is a full permanent magnet source wi...

  3. Measurement of L X-ray intensity ratios in tantalum by proton and Si-ion impact

    International Nuclear Information System (INIS)

    Braich, J.S.; Dhal, B.B.; Singh, B.P.; Padhi, H.C.; Khurana, C.S.; Verma, H.R.

    1996-01-01

    The Lι, Lβ 1,4,6 , Lβ 2,15,3 , Lγ 1 , Lγ 2,3,6 and Lγ 4,4' , X-ray intensities relative to the Lα, caused by the impact of protons of energy 1 to 4.6 MeV and Si-ions of 70 to 98 MeV on Ta targets, h ave been measured. The results show that the intensity ratios drop significantly for all transitions except Lγ 2,3,6 /Lα with Si-ions of the same energy/amu as compared to those of protons. The experimental results have been compared with those based on the ECPSSR theoretical values. From the energy shift and change in the intensity ratios of various transitions caused by Si-ion impact, the number of outer shell vacancies in the M, N and O-shells simultaneous to that of L-shell have been estimat ed. (orig.)

  4. Experiments on a 14.5 GHz ECR source

    International Nuclear Information System (INIS)

    Hill, C.E.; Langbein, K.

    1996-01-01

    The 14.5 GHz ECR4 source supplied to CERN in the framework of the Heavy Ion Facility collaboration provided Pb 27+ operational beams to a new custom built linac in 1994. This source, which operates in the pulsed 'afterglow' mode, quickly met its design specification of 80 eμA and now provides currents >100 eμA regularly. Early source tests showed the existence of extremely stable modes of operation. In the search for higher intensities a number of experiments have been performed on plasma gas composition, RF power matching, extraction, beam pulse compression and a biased dynode. The results of these tests will be presented along with further ideas to improve source performance. (author)

  5. Microwave Coupling to ECR and Alternative Heating Methods

    CERN Document Server

    Celona, L.

    2013-12-16

    The Electron Cyclotron Resonance Ion Source (ECRIS) is nowadays the most effective device that can feed particle accelerators in a continuous and reliable way, providing high-current beams of low- and medium-charge-state ions and relatively intense currents for highly charged ions. The ECRIS is an important tool for research with ion beams (in surface, atomic, and nuclear science) while, on the other hand, it implies plasma under extreme conditions and thus constitutes an object of scientific interest in itself. The fundamental aspect of the coupling between the electromagnetic wave and the plasma is hereinafter treated together with some variations to the classical ECR heating mechanism, with particular attention being paid to the frequency tuning effect and two-frequency heating. Considerations of electron and ion dynamics will be presented together with some recent observations connecting the beam shape with the frequency of the electromagnetic wave feeding the cavity. The future challenges of higher-charg...

  6. Handling of high intensity proton beams at 12 GeV

    International Nuclear Information System (INIS)

    Takasaki, M.; Minakawa, M.; Yamanoi, Y.; Ieiri, M.; Kato, Y.; Ishii, H.; Suzuki, Y.; Suzuki, T.; Tanaka, K.H.

    1990-01-01

    A new counter experimental hall is now being constructed at the KEK (National Laboratory for High Energy Physics, Japan) 12 GeV Proton Synchrotron (KEK-PS). This hall will be completed by the end of 1989, immediately followed by magnet installation. The present report describes the new technical achievements employed at the hall. The most important and essential feature of the equipment is that the beam-handling system is maintenance-free, though in case of need, maintenance should be carried out quickly from a distant location in order to reduce the absorbed dose during the maintenance work. This paper is divided into three parts. The first part outlines the general design concept of the hall, focusing on the handling of high-intensity beams. The second part addresses the development of a quick-disconnect system, focusing on electric power, interlock signals, cooling water, pumping port, and vacuum flange. The third part describes the development of radiation-resistant instruments, focusing on polyimide magnets and cement magnets. (N.K.)

  7. A conceptual design of the DTL-SDTL for the JAERI high intensity proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Hiroshi; Kabeya, Zenzaburo [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Chishiro, Etsuji; Ouchi, Nobuo; Hasegawa, Kazuo; Mizumoto, Motoharu

    1998-08-01

    A high intensity proton linear accelerator with an energy of 1.5 GeV and an average beam power of 8 MW has been proposed for the Neutron Science Project (NSP) at JAERI. This linac starts with radio-frequency quadrupole (RFQ) linac, which is followed by a drift-tube linac (DTL), separated-type DTL (SDTL), and a superconducting structure. In this report, we focus on the DTL and SDTL part of the accelerator. The DTL accelerates the beam from 2 to 51 MeV, and SDTL accelerates the beam from 51 to 10 MeV. Since the main features of the requirement for the DTL-SDTL are high peak current ({approx}30 mA) and a high-duty factor ({approx}CW), the conceptual design should be determined not only based on the result of a beam-dynamics calculation, but by careful study of the cooling problems. The design processes of the DTL-SDTL and the matching sections (RFQ to DTL, CW-Pulse merge section, and SDTL to SCC) and the result of a heat transfer analysis of DTL are described. (author)

  8. Proton probing of ultra-thin foil dynamics in high intensity regime

    Science.gov (United States)

    Prasad, Rajendra; Aktan, Esin; Aurand, Bastian; Cerchez, Mirela; Willi, Oswald

    2017-10-01

    The field of laser driven ion acceleration has been enriched significantly over the past decade, thanks to the advanced laser technologies. Already, from 100s TW class systems, laser driven sources of particles and radiations are being considered in number of potential applications in science and medicine due to their unique properties. New physical effects unearthed at these systems may help understand and conduct successful experiments at several PW class multi-beam facilities with high rep rate systems, e.g. ELI. Here we present the first experimental results on ultra-thin foil dynamics irradiated by an ultra-high intensity (1020 W/cm2) , ultra-high contrast (10-12) laser pulse at ARCTURUS laser facility at HHU Duesseldorf. By employing the elegant proton probing technique it is observed that for the circular polarization of laser light, a 100nm thin target is pushed forward as a compressed layer due to the radiation pressure of light. Whereas, the linear polarization seems to decompress the target drastically. 2D particle-in-cell simulations corroborate the experimental findings. Our results confirm the previous simulation studies investigating the fundamental role played by light polarization, finite focus spot size effect and eventually electron heating including the oblique incidence at the target edges.

  9. Proton-proton intensity interferometry: Space-time structure of the emitting zone in Ni+Ni collisions

    International Nuclear Information System (INIS)

    Korolija, M.; Cindro, N.; Shapira, D.

    1995-01-01

    A brief description is given of the Hanbury-Brown-Twiss effect method for determining the space-time structure of the proton-emitting source in a nucleus-nucleus collision. In this context a measurement of exclusive p-p correlations from 58 Ni+ 58 Ni at 850 MeV is analyzed. The data served to study the directional dependence of the p-p correlation function and, for the first time, extract separately the source size and the particle-emission time

  10. Improvement of highly charged ion output from an ECR source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1995-01-01

    The physical limitations of the highly charged ion production in the ECR source is analyzed in this report. General methods to increase the output ion current and the attainable charged states of heavy ions are discussed. Some new ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the mathematical simulation of heavy ion production in the ECR ion source is used for numerical experiments to test these ways for improving the operation of the ECR source. (orig.)

  11. Hydrogen Recovery by ECR Plasma Pyrolysis of Methane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible Electron Cyclotron Resonance (ECR) Plasma Methane Pyrolysis Reactor is proposed to recover hydrogen which is...

  12. Density overwrites of internal tumor volumes in intensity modulated proton therapy plans for mobile lung tumors

    Science.gov (United States)

    Botas, Pablo; Grassberger, Clemens; Sharp, Gregory; Paganetti, Harald

    2018-02-01

    The purpose of this study was to investigate internal tumor volume density overwrite strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung tumors. Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume (IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b) 50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was performed using deformable image registration. Interplay effect was addressed applying 10 times rescanning. Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target coverage (D99≥slant 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D{{99}WEPL}=69.2+/- 4.0 Gy (RBE)), keeping dose heterogeneity low (D5-D{{95}WEPL}=3.9+/- 2.0 Gy(RBE)). The mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk (OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific. Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it possible to handle long simulations based on 4D data sets to perform studies with high accuracy and efficiency, even prior to individual treatment planning.

  13. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  14. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    Science.gov (United States)

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  15. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    Directory of Open Access Journals (Sweden)

    K. D. Xiao

    2016-01-01

    Full Text Available Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA case.

  16. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    Science.gov (United States)

    Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  17. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-02-15

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  18. Design of the compact ECR ion source for heavy-ion therapy

    International Nuclear Information System (INIS)

    Muramatsu, M.; Kitagawa, A.; Sato, S.; Sato, Y.; Yamada, S.; Hattori, T.; Shibuya, S.

    1999-01-01

    Heavy ion cancer treatment is successfully being done at the Heavy Ion Medical Accelerator in Chiba (HIMAC). Design philosophy for the ion sources for medical facilities are as follows: sufficient beam intensity, a few hundred eμA; long lifetime with good stability; easy operation and easy maintenance; and compactness. In order to develop such source for future heavy-ion facilities, we have tested compact electron cyclotron resonance (ECR) ion sources using permanent magnets both for axial and radial confinement of hot electrons. Since the yield of C 2+ ion in the firstly-developed source (2.45 GHz ECR) was 15 eμA and far below the medical requirement (-150 eμA for the HIMAC), a new source has been proposed, having the frequency of 10 GHz. The extracted intensity of C 4+ (and C 2+ ) ions is expected to be higher than 200 eμA. (author)

  19. Observation of spatial resolution of ECR plasma on the MM-2 magnetic mirror

    International Nuclear Information System (INIS)

    Duan Shuyun; Gu Biao; Guan Weishu; Cheng Shiqing; Liu Rong; Chen Kangwei; Shang Zhenkui

    1991-04-01

    The measuring method and results of the ECR plasma properties taken from hard X-ray pinhole camera on the MM-2 magnetic mirror are presented. This non-destructive imaging method can directly display the spatial distribution of hot electron plasma. A frame of clear picture could be taken at one shot of discharge. The relationships between emission intensity and discharge parameters are also shown by experimental pictures

  20. An enhanced production of highly charged ions in the ECR ion sources

    International Nuclear Information System (INIS)

    Schaechter, L.; Dobrescu, S.; Badescu- Singureanu, Al.I.; Stiebing, K.E.; Runkel, S.; Hohn, O.; Schmidt, L.; Schempp, A.; Schmidt - Boecking, H.

    2000-01-01

    The electron cyclotron resonance (ECR) ion source (ECRIS) are the ideal sources of highly charged heavy ions. Highly charged heavy ions are widely used in atomic physics research where they constitute a very efficient tool due to their very high electric potential of collision. The highly charged ions are also used in fusion plasma physics studies, in solid state surface physics investigations and are very efficient when injected in particle accelerators. More than 50 ECR ion sources are presently working in the whole world. Stable and intense highly charged heavy ions beams are extracted from ECR ion sources, in a wide range of ion species. RECRIS, the Romanian 14 GHz ECR Ion Source, developed in IFIN-HH, designed as a facility for atomic physics and materials studies, has been recently completed. The research field concerning the development of advanced ECRIS and the study of the physical processes of the ECR plasma are presently very dynamical , a fact well proved by the great number of scientific published works and the numerous dedicated international conferences and workshops. It is well established that the performance of ECRIS can substantially be enhanced if special techniques like a 'biased disk' or a special wall coating of the plasma chamber are employed. In the frame of a cooperation project between IFIN-HH ,Bucharest, Romania and the Institut fuer Kernphysik of the J. W. Goethe University, Frankfurt/Main, Germany we developed, on the basis of previous research carried out in IFIN-HH, a new method to strongly increase the intensity of the ion beams extracted from the 14.4 GHz ECRIS in Frankfurt. In our method a special metal-dielectric structure (MD cylinder) was introduced in the ECRIS plasma chamber. In the experiment analyzed beams of Ar 16+ ions were increased in intensity by a factor of 50 as compared to the standard set up with stainless steel chamber. These results have been communicated at the International Conference on Ion Sources held at

  1. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  2. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  3. A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning

    International Nuclear Information System (INIS)

    Fredriksson, Albin; Bokrantz, Rasmus

    2014-01-01

    Purpose: To critically evaluate and compare three worst case optimization methods that have been previously employed to generate intensity-modulated proton therapy treatment plans that are robust against systematic errors. The goal of the evaluation is to identify circumstances when the methods behave differently and to describe the mechanism behind the differences when they occur. Methods: The worst case methods optimize plans to perform as well as possible under the worst case scenario that can physically occur (composite worst case), the combination of the worst case scenarios for each objective constituent considered independently (objectivewise worst case), and the combination of the worst case scenarios for each voxel considered independently (voxelwise worst case). These three methods were assessed with respect to treatment planning for prostate under systematic setup uncertainty. An equivalence with probabilistic optimization was used to identify the scenarios that determine the outcome of the optimization. Results: If the conflict between target coverage and normal tissue sparing is small and no dose-volume histogram (DVH) constraints are present, then all three methods yield robust plans. Otherwise, they all have their shortcomings: Composite worst case led to unnecessarily low plan quality in boundary scenarios that were less difficult than the worst case ones. Objectivewise worst case generally led to nonrobust plans. Voxelwise worst case led to overly conservative plans with respect to DVH constraints, which resulted in excessive dose to normal tissue, and less sharp dose fall-off than the other two methods. Conclusions: The three worst case methods have clearly different behaviors. These behaviors can be understood from which scenarios that are active in the optimization. No particular method is superior to the others under all circumstances: composite worst case is suitable if the conflicts are not very severe or there are DVH constraints whereas

  4. ECR ion source for variable energy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Dasgupta, B; Mallik, C; Das, S K; Bandopadhaya, D K; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1995-09-01

    Some performance characteristics of 6.4 GHz two stage ECR ion source which was under development at this centre is presented. The present ion source will facilitate acceleration of light heavy ions with the existing k=130 variable energy cyclotron. Multiply charged heavy ion (MCHI) beam from the source will also be utilized for atomic physics studies. Oxygen beam has already been used for ion implantation studies. The external injection system under development is nearing completion. Heavy ion beam from cyclotron is expected by end of 1995. (author).

  5. A superconducting RFQ for an ECR injector

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1988-01-01

    The beam dynamics and resonator properties of a superconducting radio-frequency quadrupole (RFQ) for heavy ions are discussed. The motivation is its use as a very low velocity section following an electron cyclotron resonance (ECR) source for injection into a superconducting heavy-ion linac. The constraints on the design and performance of this accelerating structure are presented. Expressions for a limiting stable phase angle and longitudinal and transverse acceptance are derived. A numerical example is given, using the SUNYLAC linac at Sony Stony Brook. Beam-dynamics calculations with PARMTEQ are reported, verifying the theoretical beam-dynamics calculations. (author) 12 refs., 1 tab

  6. Consistency of neutron and proton capture intensity standards new relative intensities for 56Co, 66Ga decay and 35Cl(n,γ) reaction gamma rays

    International Nuclear Information System (INIS)

    Molnar, G.L.; Revay, Z.; Belgya, T.

    2000-01-01

    The equivalence of efficiency determination procedures based on neutron and proton capture lines has been verified and the deviation of high-energy efficiency from linearity confirmed. The new, accurate relative intensities for 56 Co and 66 Ga extend the range of secondary radioactive standards up to 4.8 MeV. Extreme care has to be taken with any high-energy intensity value obtained in the past with the help of 56 Co and 66 Ga calibration sources, and corrections have to be made using the present data of high accuracy. Relative intensities have also been improved for the 35 Cl(n,γ) reaction, a useful secondary standard in a wide energy range, between 0.3-8.5 MeV. The new data are supported by other most recent measurements of a slightly lower precision

  7. Nuclear design aspect of the Korean high intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Song, Tae-Yung [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1998-11-01

    A plan to construct a high current proton accelerator has been proposed by KAERI. We are presenting the required nuclear design to support the project as well as a brief overview of the proposed proton accelerator. The target and core design is highlighted to show feasibility of incineration of minor actinides from the spent fuel of light water reactors. Radiation shielding and activation analyses are also important for the design and the license of the accelerator. (author)

  8. ECR plasma cleaning for superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-02-01

    A superconducting linac has been operating well as a heavy ion energy booster of the tandem accelerator at JAERI since 1994. Forty superconducting quarter wave resonators are used in the linac. They have high performances in average. Some of them are, however, suffering from 'Q-disease' that has been caused by hydrogen absorption into niobium during electro-polishing and the precipitation of niobium-hydrides on the surface at the vicinity of about 120K during precooling. A method of electron cyclotron resonance (ECR) plasma cleaning was applied to spare resonator in order to investigate if it is useful as a curing method of Q-disease. ECR plasma was excited in the resonator by 2.45 GHz microwave in a magnetic field of about 87.5 mT. In the first preliminary experiments, hydrogen, helium, water and oxigen gases were investigated. Every case was done at a pressure of about 3x10{sup -3} Pa. The results show that apparent recovery from Q-disease was found with helium and oxigen gases. (author)

  9. Design and field configuration for a 14.4 GHz ECR ion source in Kolkata

    International Nuclear Information System (INIS)

    Rashid, M.H.; Bose, D.K.; Mallik, C.; Bhandari, R.K.

    2001-01-01

    The K500 cyclotron under construction will be capable of accelerating ions like O 6+ , Ne 4+ , Ar 16+ , Kr 27+ etc. We aim to get ∼200 euA maximum intensity of the extracted beam of O 6+ from the ion source and decided to have >2B ECR magnetic field on the cylindrical surface and the injection ends of the plasma chamber (P Ch) and slightly less than this at the extraction end. The success of the high field operation of ECRs at other places (U-AECR at LBL) suggests generation of proper magnetic field configuration for the 14.4 GHz microwave heating. The absolute composite magnetic field have been evaluated due to the coils (C1,C2) at the two ends and a -ve coil (NC) at the mid-length and a Halbach type sextupole (PM-Hex)

  10. Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy.

    Science.gov (United States)

    Wahl, Niklas; Hennig, Philipp; Wieser, Hans-Peter; Bangert, Mark

    2018-04-01

    We show that it is possible to explicitly incorporate fractionation effects into closed-form probabilistic treatment plan analysis and optimization for intensity-modulated proton therapy with analytical probabilistic modeling (APM). We study the impact of different fractionation schemes on the dosimetric uncertainty induced by random and systematic sources of range and setup uncertainty for treatment plans that were optimized with and without consideration of the number of treatment fractions. The APM framework is capable of handling arbitrarily correlated uncertainty models including systematic and random errors in the context of fractionation. On this basis, we construct an analytical dose variance computation pipeline that explicitly considers the number of treatment fractions for uncertainty quantitation and minimization during treatment planning. We evaluate the variance computation model in comparison to random sampling of 100 treatments for conventional and probabilistic treatment plans under different fractionation schemes (1, 5, 30 fractions) for an intracranial, a paraspinal and a prostate case. The impact of neglecting the fractionation scheme during treatment planning is investigated by applying treatment plans that were generated with probabilistic optimization for 1 fraction in a higher number of fractions and comparing them to the probabilistic plans optimized under explicit consideration of the number of fractions. APM enables the construction of an analytical variance computation model for dose uncertainty considering fractionation at negligible computational overhead. It is computationally feasible (a) to simultaneously perform a robustness analysis for all possible fraction numbers and (b) to perform a probabilistic treatment plan optimization for a specific fraction number. The incorporation of fractionation assumptions for robustness analysis exposes a dose to uncertainty trade-off, i.e., the dose in the organs at risk is increased for a

  11. Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy for Oropharyngeal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Voort, Sebastian van der [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Water, Steven van de [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Perkó, Zoltán [Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Heijmen, Ben [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Lathouwers, Danny [Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft (Netherlands); Hoogeman, Mischa, E-mail: m.hoogeman@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2016-05-01

    Purpose: We aimed to derive a “robustness recipe” giving the range robustness (RR) and setup robustness (SR) settings (ie, the error values) that ensure adequate clinical target volume (CTV) coverage in oropharyngeal cancer patients for given gaussian distributions of systematic setup, random setup, and range errors (characterized by standard deviations of Σ, σ, and ρ, respectively) when used in minimax worst-case robust intensity modulated proton therapy (IMPT) optimization. Methods and Materials: For the analysis, contoured computed tomography (CT) scans of 9 unilateral and 9 bilateral patients were used. An IMPT plan was considered robust if, for at least 98% of the simulated fractionated treatments, 98% of the CTV received 95% or more of the prescribed dose. For fast assessment of the CTV coverage for given error distributions (ie, different values of Σ, σ, and ρ), polynomial chaos methods were used. Separate recipes were derived for the unilateral and bilateral cases using one patient from each group, and all 18 patients were included in the validation of the recipes. Results: Treatment plans for bilateral cases are intrinsically more robust than those for unilateral cases. The required RR only depends on the ρ, and SR can be fitted by second-order polynomials in Σ and σ. The formulas for the derived robustness recipes are as follows: Unilateral patients need SR = −0.15Σ{sup 2} + 0.27σ{sup 2} + 1.85Σ − 0.06σ + 1.22 and RR=3% for ρ = 1% and ρ = 2%; bilateral patients need SR = −0.07Σ{sup 2} + 0.19σ{sup 2} + 1.34Σ − 0.07σ + 1.17 and RR=3% and 4% for ρ = 1% and 2%, respectively. For the recipe validation, 2 plans were generated for each of the 18 patients corresponding to Σ = σ = 1.5 mm and ρ = 0% and 2%. Thirty-four plans had adequate CTV coverage in 98% or more of the simulated fractionated treatments; the remaining 2 had adequate coverage in 97.8% and 97.9%. Conclusions: Robustness recipes were derived that can

  12. Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy

    Science.gov (United States)

    Wahl, N.; Hennig, P.; Wieser, H. P.; Bangert, M.

    2017-07-01

    The sensitivity of intensity-modulated proton therapy (IMPT) treatment plans to uncertainties can be quantified and mitigated with robust/min-max and stochastic/probabilistic treatment analysis and optimization techniques. Those methods usually rely on sparse random, importance, or worst-case sampling. Inevitably, this imposes a trade-off between computational speed and accuracy of the uncertainty propagation. Here, we investigate analytical probabilistic modeling (APM) as an alternative for uncertainty propagation and minimization in IMPT that does not rely on scenario sampling. APM propagates probability distributions over range and setup uncertainties via a Gaussian pencil-beam approximation into moments of the probability distributions over the resulting dose in closed form. It supports arbitrary correlation models and allows for efficient incorporation of fractionation effects regarding random and systematic errors. We evaluate the trade-off between run-time and accuracy of APM uncertainty computations on three patient datasets. Results are compared against reference computations facilitating importance and random sampling. Two approximation techniques to accelerate uncertainty propagation and minimization based on probabilistic treatment plan optimization are presented. Runtimes are measured on CPU and GPU platforms, dosimetric accuracy is quantified in comparison to a sampling-based benchmark (5000 random samples). APM accurately propagates range and setup uncertainties into dose uncertainties at competitive run-times (GPU ≤slant {5} min). The resulting standard deviation (expectation value) of dose show average global γ{3% / {3}~mm} pass rates between 94.2% and 99.9% (98.4% and 100.0%). All investigated importance sampling strategies provided less accuracy at higher run-times considering only a single fraction. Considering fractionation, APM uncertainty propagation and treatment plan optimization was proven to be possible at constant time complexity

  13. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clivio, Alessandro [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Kluge, Anne [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Cozzi, Luca, E-mail: lucozzi@iosi.ch [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Köhler, Christhardt [Department of Gynecology, Charité University Hospital, Berlin (Germany); Neumann, Oliver [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Vanetti, Eugenio [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Wlodarczyk, Waldemar; Marnitz, Simone [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany)

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  14. Kβ/ Kα intensity ratios for X-ray production in 3d metals by gamma-rays and protons

    Science.gov (United States)

    Bhuinya, C. R.; Padhi, H. C.

    1994-04-01

    Systematic measurements of Kβ/ Kα intensity ratios for X-ray production in 3d metals have been carried out using γ-ray and fast proton ionization methods. The measured ratios from proton ionization experiments indicate production of multivacancies in the L shell giving rise to higher Kβ/ Kα ratios compared to the present γRF results and 2 MeV proton ionization results of Perujo et al. [Perujo A., Maxwell J. A., Teesdale W. J. and Cambell J. L. (1987) J. Phys. B: Atom. Molec. Phys.20, 4973]. This is consistent with the SCA model calculation which gives increased simultaneous K- and L-shell ionization at 4 MeV. The present results from γRF experiments are in close agreement with the 2 MeV proton ionization results of Perujo et al. (1987) and also with the theoretical calculation of jankowski and Polasik [Jankowski K. and Polasik M. (1989) J. Phys. B: Atom. Molec. Optic. Phys. 22, 2369] but the theoretical results of Scofield [Scofield J. H. (1974a) Atom. Data Nucl. Data Tables14, 12] are somewhat higher.

  15. Proceedings of the 10th international workshop on ECR ion sources

    International Nuclear Information System (INIS)

    Meyer, F.W.; Kirkpatrick, M.I.

    1991-01-01

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ''ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A ampersand M ECR Ion Source; Recent Developments of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H - Source; The H + ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research

  16. Proceedings of the 10th international workshop on ECR ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F W; Kirkpatrick, M I [eds.

    1991-01-01

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developments of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.

  17. Progress in the production of intense ion beams and the formation of proton layers

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.; Golden, J.; Marsh, S.J.; Mahaffey, R.A.

    1977-01-01

    The results on ion sources and the application of ion beams to the formation of proton layers and rings are presented. Ion beams have been produced on three different generators. Some results from the experiments performed on the Gamble 2 generator are presented. The Gamble 2 generator with coaxial anode-cathode configuration, hollow beam cross-section produces power levels of 0.6-1.2 MV with peak ion current of 200 kA. The number of protons in the beam 4x10 16 . Peak ion currents is excess 200 kA, energy 1 MeV, ion current density 1 kA/cm 2 . Magnetic field configuration to provide formation of strong proton layers is shown

  18. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Directory of Open Access Journals (Sweden)

    S. Busold

    2013-10-01

    Full Text Available Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 10^{9} particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  19. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  20. SU-E-T-214: Intensity Modulated Proton Therapy (IMPT) Based On Passively Scattered Protons and Multi-Leaf Collimation: Prototype TPS and Dosimetry Study

    International Nuclear Information System (INIS)

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-01-01

    Purpose. Intensity-modulated proton therapy is usually implemented with multi-field optimization of pencil-beam scanning (PBS) proton fields. However, at the view of the experience with photon-IMRT, proton facilities equipped with double-scattering (DS) delivery and multi-leaf collimation (MLC) could produce highly conformal dose distributions (and possibly eliminate the need for patient-specific compensators) with a clever use of their MLC field shaping, provided that an optimal inverse TPS is developed. Methods. A prototype TPS was developed in MATLAB. The dose calculation process was based on a fluence-dose algorithm on an adaptive divergent grid. A database of dose kernels was precalculated in order to allow for fast variations of the field range and modulation during optimization. The inverse planning process was based on the adaptive simulated annealing approach, with direct aperture optimization of the MLC leaves. A dosimetry study was performed on a phantom formed by three concentrical semicylinders separated by 5 mm, of which the inner-most and outer-most were regarded as organs at risk (OARs), and the middle one as the PTV. We chose a concave target (which is not treatable with conventional DS fields) to show the potential of our technique. The optimizer was configured to minimize the mean dose to the OARs while keeping a good coverage of the target. Results. The plan produced by the prototype TPS achieved a conformity index of 1.34, with the mean doses to the OARs below 78% of the prescribed dose. This Result is hardly achievable with traditional conformal DS technique with compensators, and it compares to what can be obtained with PBS. Conclusion. It is certainly feasible to produce IMPT fields with MLC passive scattering fields. With a fully developed treatment planning system, the produced plans can be superior to traditional DS plans in terms of plan conformity and dose to organs at risk

  1. Production of an intense source of micro-second proton pulses

    International Nuclear Information System (INIS)

    Belmont, J.L.

    1965-02-01

    In order to obtain micro-second proton pulses of 100 mA, we have built a duoplasmatron ion source and beam focusing equipment. The pulses of the ion-source were produced by a load discharge. The source operates as a hydrogen-thyratron. The particular geometry of the duoplasmatron was chosen in order that the ion emission be stable with a 10 A arc and with a gas-flow lower than 10 cm 3 /h T.P.N. Studies of the beam showed preponderance of protons and the presence of heavy ions. The beam density is higher on the optic axis. (author) [fr

  2. A critical study of emittance measurements of intense low-energy proton beams

    CERN Document Server

    Evans, Lyndon R

    1972-01-01

    The measurement of emittance in low energy proton beams suffers from two perturbing effects: 1) the neutralisation of the beam by backstreaming secondary electrons and 2) the space charge blowup of the beam sample between defining and analysing apparatus. An experimental study shows a significant change of the emittance orientation when bias is used to eliminate the secondary electrons. Biased and non-biased cases are also compared with computed dynamics including space charge. Criteria for the slit size and drift distance which make the space charge blow-up negligible are derived. In addition a transverse coherent oscillation of the proton beam, which was revealed the measurements, is discussed briefly. (11 refs).

  3. Heavy ion beams from the new Hungarian ECR ion source

    International Nuclear Information System (INIS)

    Biri, S.; Valek, A.; Ditroi, F.; Koivisto, H.; Arje, J.; Stiebing, K.; Schmidt, L.

    1998-01-01

    The first beams of highly charged ions in Hungary were obtained in fall of 1996. The new 14.5 GHz ECR ion source of ATOMKI produced beams of multiply charged ions with remarkable intensities at first experiments. Since then, numerous further developments were carried out. An external electrondonor electrode drastically increased the plasma density and, consequently, the intensity of highly charged ions. These upgrades concentrated mainly on beams from gaseous elements and were carried out by the ECRIS team of ATOMKI. Another series of experiments - ionising from solids - however, was done in the framework of an international collaboration. The first metal ion beam has been extracted from the ECRIS in November 1997 using the known method of Metal Ions from Volatile Compounds (MIVOC). The possibility to put the MIVOC chamber inside the ion source was also tested and the dosing regulation problem of metal vapours inside the ion source was solved. As a result, beams of more than 10 μA of highly charged Fe and Ni ions were produced. (author)

  4. Proton radiography of intense-laser-irradiated wire-attached cone targets

    International Nuclear Information System (INIS)

    Yabuuchi, T.; Sawada, H.; Bartal, T.; Beg, F.N.; Batani, D.; Gizzi, L.A.; Key, M.H.; Mackinnon, A.J.; McLean, H.S.; Patel, P.K.; Norreys, P.A.; Spindloe, C.; Stephens, R.B.; Wei, M.S.; Theobald, W.

    2011-01-01

    Measurements of extreme electrostatic and magnetic fields are of interest for the study of high-energy-density plasmas. Results of proton deflectometry of cone-wire targets that are of interest to fast-ignition inertial confinement fusion are presented. (authors)

  5. Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients

    International Nuclear Information System (INIS)

    Giantsoudi, Drosoula; Seco, Joao; Eaton, Bree R.; Simeone, F. Joseph; Kooy, Hanne; Yock, Torunn I.; Tarbell, Nancy J.; DeLaney, Thomas F.; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M.

    2017-01-01

    Purpose: At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods and Materials: Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (−35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. Results: IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Conclusions: Advanced proton techniques can sufficiently reduce the dose to the vertebral

  6. Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, Drosoula, E-mail: dgiantsoudi@mgh.harvard.edu; Seco, Joao; Eaton, Bree R.; Simeone, F. Joseph; Kooy, Hanne; Yock, Torunn I.; Tarbell, Nancy J.; DeLaney, Thomas F.; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M.

    2017-05-01

    Purpose: At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods and Materials: Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (−35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. Results: IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Conclusions: Advanced proton techniques can sufficiently reduce the dose to the vertebral

  7. Contribution of proton leak to oxygen consumption in skeletal muscle during intense exercise is very low despite large contribution at rest.

    Directory of Open Access Journals (Sweden)

    Bernard Korzeniewski

    Full Text Available A computer model was used to simulate the dependence of protonmotive force (Δp, proton leak and phenomenological (involving proton leak ATP/O2 ratio on work intensity in skeletal muscle. Δp, NADH and proton leak decreased with work intensity. The contribution of proton leak to oxygen consumption ([Formula: see text] decreased from about 60% at rest to about 3 and 1% at moderate and heavy/severe exercise, respectively, while the ATP/O2 ratio increased from 2.1 to 5.5 and 5.7. A two-fold increase in proton leak activity or its decrease to zero decreased/increased the ATP/O2 ratio by only about 3 and 1% during moderate and heavy/severe exercise, respectively. The low contribution of proton leak to [Formula: see text] in intensively working skeletal muscle was mostly caused by a huge increase in ATP usage intensity during rest-to-work transition, while OXPHOS, and thus oxidative ATP supply and [Formula: see text] related to it, was mostly stimulated by high each-step activation (ESA of OXPHOS complexes. The contribution of proton leak to [Formula: see text] and ATP/O2 ratio in isolated mitochondria should not be directly extrapolated to working muscle, as mitochondria lack ESA, at least in the absence of Ca2+, and therefore [Formula: see text] cannot be elevated as much as in intact muscle.

  8. ECR ion source and some improvements

    International Nuclear Information System (INIS)

    Liu Zhanwen; Zhang Wen; Zhao Hongwei; Zhang Xuezhen; Yuan Ping; Guo Xiaohong; Zhou Sixin; Ye Feng; Wei Baowen; Efremov, A.

    1994-01-01

    The structure, the principle of a CAPRICE-type ECR ion source and the necessary condition of the source for providing high charged ions are presented. CAPRICE was tested first at the test bench with a newly shaped configuration of the magnetic mirror throat at the injection side. The ion currents of Ar and Ne ions were increased remarkably. Later, CAPRICE was coupled to the injector SFC of HIRFL, and other modifications were made to improve the magnetic field and decrease the electric power consumption in the solenoids of the source. Meanwhile a simple electron gun with cold cathode was tested preliminarily. The result was satisfactory. Last year, some successful changes in the construction of the insulation cover for the hexapole of CAPRICE were achieved also. The new cover is aimed to endure higher extraction voltage, and avoid the condensation of humid air on the exterior of the insulation covers

  9. Characteristics of MINI ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Yuichi; Yokota, Watalu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A very compact electron cyclotron resonance ion source (MINI ECR) was manufactured to extend available energy ranges of ion beams by applying multiply charged ions to electrostatic accelerators. The magnetic field to confine a plasma is formed only by small permanent magnets and the microwave power up to 15 W is generated by a compact transistor amplifier in order to install the ion source at a narrow high-voltage terminal where the electrical power feed is restricted. The magnet assembly is 12 cm in length and 11 cm in diameter, and forms a mirror field with the maximum strength of 0.55 T. The total power consumption of the source is below 160 W. The performance of the source was tested in a bench stand. The results of Ar, Xe, O, and N ion generation are reported in this paper. (author)

  10. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  11. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  12. Parametric decay instabilities in ECR heated plasmas

    International Nuclear Information System (INIS)

    Porkolab, M.

    1982-01-01

    The possibility of parametric excitation of electron Bernstein waves and low frequency ion oscillations during ECR heating at omega/sub o/ approx. = l omega/sub ce/, l = 1,2 is examined. In particular, the thresholds for such instabilities are calculated. It is found that Bernstein waves and lower hybrid quasi-modes have relatively low homogeneous where T/sub e/ approx. = T/sub i/. Thus, these processes may lead to nonlinear absorption and/or scattering of the incident pump wave. The resulting Bernstein waves may lead to either more effective heating (especially during the start-up phase) or to loss of microwave energy if the decay waves propagate out of the system before their energy is absorbed by particles. While at omega/sub o/ = omega/sub UH/ the threshold is reduced due to the WKB enhancement of the pump wave, (and this instability may be important in tokamaks) in EBT's and tandem mirrors the instability at omega /sub o/ greater than or equal to 2 omega/sub ce/ may be important. The instability may persist even if omega > 2 omega/sub ce/ and this may be the case during finite beta depression of the magnetic field in which case the decay waves may be trapped in the local magnetic well so that convective losses are minimized. The excited fluctuations may lead to additional scattering of the ring electrons and the incident microwave fields. Application of these calculations to ECR heating of tokamaks, tandem mirrors, and EBT's will be examined

  13. Prediction of SEP Peak Proton Intensity Based on CME Speed, Direction and Observations of Associated Solar Phenomena

    Science.gov (United States)

    Richardson, I. G.; Mays, M. L.; Thompson, B. J.; Kwon, R.; Frechette, B. P.

    2017-12-01

    We assess whether a formula obtained by Richardson et al. (Solar Phys., 289, 3059, 2014; DOI 10.1007/s11207-014-0524-8) relating the intensity of 14-24 MeV protons in a solar energetic particle event at 1 AU to the solar event location and the speed of the associated coronal mass ejection (CME), may be used to "predict" the intensity of a solar energetic particle event. Starting with a subset of several hundred CMEs in the CCMC/SWRC DONKI real-time database (http://kauai.ccmc.gsfc.nasa.gov/DONKI/) selected without consideration of whether they were associated with SEP events, we first use the CME speed and direction to predict the proton intensity at Earth or the STEREO spacecraft using this formula. Since most of these CMEs were not in fact associated with SEP events, many "false alarms" result. We then examine whether considering other phenomena which may accompany the CMEs, such as the X-ray flare intensity and the properties of type II and type III radio emissions, may help to reduce the false alarm rate. We also use CME parameters calculated from an ellipsoidal shell fit to multi-spacecraft CME shock observations for a smaller number of events to predict the SEP intensity. We calculate skill scores for each case and assess whether the Richardson et al. (2014) formula, using additional observations to reduce the false alarm rate, has any potential as a SEP prediction tool, assuming that the required observations could be acquired sufficiently rapidly following the onset of the related solar event/CME.

  14. Electron Cyclotron Resonance (ECR) Ion Source Development at the Holified Radioactive Ion Beam Facility

    Science.gov (United States)

    Bilheux, Hassina; Liu, Yuan; Alton, Gerald; Cole, John; Williams, Cecil; Reed, Charles

    2004-11-01

    Performance of ECR ion sources can be significantly enhanced by increasing the physical size of their ECR zones in relation to the size of their plasma volumes (spatial and frequency domain methods).^3-5 A 6 GHz, all-permanent magnet ECR ion source with a large resonant plasma volume has been tested at ORNL.^6 The magnetic circuit can be configured for creating both flat-β (volume) and conventional minimum-β (surface) resonance conditions. Direct comparisons of the performance of the two source types can be made under similar operating conditions. In this paper, we clearly demonstrate that the flat-β source outperforms its minimum-β counterpart in terms of charge state distribution and intensity within a particular charge state. ^1bilheuxhn@ornl.gov ^2Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. ^3G.D. Alton, D.N. Smithe, Rev. Sci. Instrum. 65 (1994) 775. ^4G.D. Alton et al., Rev. Sci. Instrum. 69 (1998) 2305. ^5Z.Q. Xie, C.M. Lyneis, Rev. Sci. Instrum. 66 (1995) 4218. ^6Y. Liu et al., Rev. Sci. Instrum. 69 (1998) 1311.

  15. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Mascali, D.; Castro, G.; Caliri, C.; Gammino, S. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Romano, F. P. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy)

    2016-02-15

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  16. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    Science.gov (United States)

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  17. A New High-intensity Proton Irradiation Facility at the CERN PS East Area

    CERN Document Server

    Gkotse, B; Lima, P; Matli, E; Moll, M; Ravotti, F

    2014-01-01

    and IRRAD2), were heavily and successfully used for irradiation of particle detectors, electronic components and materials since 1992. These facilities operated with particle bursts - protons with momentum of 24GeV/c - delivered from the PS accelerator in “spills” of about 400ms (slow extraction). With the increasing demand of irradiation experiments, these facilities suffered from a number of restrictions such as the space availability, the maximum achievable particle flux and several access constraints. In the framework of the AIDA project, an upgrade of these facilities has been realized during the CERN long shutdown (LS1). While the new proton facility (IRRAD) will continue to be mainly devoted to the radiation hardness studies for the High Energy Physics (HEP) experimental community, the new mixed-field facility (CHARM) will mainly host irradiation experiments for the validation of electronic systems used in a...

  18. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    Science.gov (United States)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  19. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D 3 He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  20. Design of small ECR ion source for neutron generator

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Zu Xiulan; Yang Haisu; Xiong Riheng

    2003-01-01

    The principles, structures and characteristics of small ECR (Electron Cyclotron Resonance) ion source used in the neutron generator are introduced. The processes of the design and key technique and innovations are described. (authors)

  1. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  2. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  3. Can We Advance Proton Therapy for Prostate? Considering Alternative Beam Angles and Relative Biological Effectiveness Variations When Comparing Against Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Tracy, E-mail: tunderwood@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Department of Medical Physics and Bioengineering, University College London, London (United Kingdom); Giantsoudi, Drosoula; Moteabbed, Maryam; Zietman, Anthony; Efstathiou, Jason; Paganetti, Harald; Lu, Hsiao-Ming [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2016-05-01

    Purpose: For prostate treatments, robust evidence regarding the superiority of either intensity modulated radiation therapy (IMRT) or proton therapy is currently lacking. In this study we investigated the circumstances under which proton therapy should be expected to outperform IMRT, particularly the proton beam orientations and relative biological effectiveness (RBE) assumptions. Methods and Materials: For 8 patients, 4 treatment planning strategies were considered: (A) IMRT; (B) passively scattered standard bilateral (SB) proton beams; (C) passively scattered anterior oblique (AO) proton beams, and (D) AO intensity modulated proton therapy (IMPT). For modalities (B)-(D) the dose and linear energy transfer (LET) distributions were simulated using the TOPAS Monte Carlo platform and RBE was calculated according to 3 different models. Results: Assuming a fixed RBE of 1.1, our implementation of IMRT outperformed SB proton therapy across most normal tissue metrics. For the scattered AO proton plans, application of the variable RBE models resulted in substantial hotspots in rectal RBE weighted dose. For AO IMPT, it was typically not possible to find a plan that simultaneously met the tumor and rectal constraints for both fixed and variable RBE models. Conclusion: If either a fixed RBE of 1.1 or a variable RBE model could be validated in vivo, then it would always be possible to use AO IMPT to dose-boost the prostate and improve normal tissue sparing relative to IMRT. For a cohort without rectum spacer gels, this study (1) underlines the importance of resolving the question of proton RBE within the framework of an IMRT versus proton debate for the prostate and (2) highlights that without further LET/RBE model validation, great care must be taken if AO proton fields are to be considered for prostate treatments.

  4. A proton-driven, intense, subcritical, fission neutron source for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y. [Chemin du Cyclotron, Louvain-la-Neuve (Belgium)

    1995-10-01

    {sup 99m}Tc, the most frequently used radioisotope in nuclear medicine, is distributed as {sup 99}Mo=>{sup 99m}Tc generators. {sup 99}Mo is a fission product of {sup 235}U. To replace the aging nuclear reactors used today for this production, the author proposes to use a spallation neutron source, with neutron multiplication by fission. A 150 MeV, H{sup {minus}} cyclotron can produce a 225 kW proton beam with 50% total system energy efficiency. The proton beam would hit a molten lead target, surrounded by a water moderator and a graphite reflector, producing around 0.96 primary neutron per proton. The primary spallation neutrons, moderated, would strike secondary targets containing a subcritical amount of {sup 235}U. The assembly would show a k{sub eff} of 0.8, yielding a fivefold neutron multiplication. The thermal neutron flux at the targets location would be 2 {times} 10{sup 14} n/cm{sup 2}.s, resulting in a fission power of 500 to 750 kW. One such system could supply the world demand in {sup 99}Mo, as well as other radioisotopes. Preliminary indications show that the cost would be lower than the cost of a commercial 10 MW isotope production reactor. The cost of operation, of disposal of radiowaste and of decommissioning should be significantly lower as well. Finally, the non-critical nature of the system would make it more acceptable for the public than a nuclear reactor and should simplify the licensing process.

  5. Adjuvant intensity-modulated proton therapy in malignant pleural mesothelioma. A comparison with intensity-modulated radiotherapy and a spot size variation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lorentini, S. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Padova Univ. (Italy). Medical Physics School; Amichetti, M.; Fellin, F.; Schwarz, M. [Agenzia Provinciale per la Protonterapia (ATreP), Trento (Italy); Spiazzi, L. [Brescia Hospital (Italy). Medical Physics Dept.; Tonoli, S.; Magrini, S.M. [Brescia Hospital (Italy). Radiation Oncology Dept.

    2012-03-15

    Intensity-modulated radiation therapy (IMRT) is the state-of-the-art treatment for patients with malignant pleural mesothelioma (MPM). The goal of this work was to assess whether intensity-modulated proton therapy (IMPT) could further improve the dosimetric results allowed by IMRT. We re-planned 7 MPM cases using both photons and protons, by carrying out IMRT and IMPT plans. For both techniques, conventional dose comparisons and normal tissue complication probability (NTCP) analysis were performed. In 3 cases, additional IMPT plans were generated with different beam dimensions. IMPT allowed a slight improvement in target coverage and clear advantages in dose conformity (p < 0.001) and dose homogeneity (p = 0.01). Better organ at risk (OAR) sparing was obtained with IMPT, in particular for the liver (D{sub mean} reduction of 9.5 Gy, p = 0.001) and ipsilateral kidney (V{sub 20} reduction of 58%, p = 0.001), together with a very large reduction of mean dose for the contralateral lung (0.2 Gy vs 6.1 Gy, p = 0.0001). NTCP values for the liver showed a systematic superiority of IMPT with respect to IMRT for both the esophagus (average NTCP 14% vs. 30.5%) and the ipsilateral kidney (p = 0.001). Concerning plans obtained with different spot dimensions, a slight loss of target coverage was observed along with sigma increase, while maintaining OAR irradiation always under planning constraints. Results suggest that IMPT allows better OAR sparing with respect to IMRT, mainly for the liver, ipsilateral kidney, and contralateral lung. The use of a spot dimension larger than 3 x 3 mm (up to 9 x 9 mm) does not compromise dosimetric results and allows a shorter delivery time.

  6. Generation of fast protons by interaction of modest laser intensities with H{sub 2}O 'snow' nano-wire targets

    Energy Technology Data Exchange (ETDEWEB)

    Bruner, Nir, E-mail: nir.bruner@mail.huji.ac.il [Hebrew University, Jerusalem 91904 (Israel); Schleifer, Elad; Palchan, Tala [Hebrew University, Jerusalem 91904 (Israel); Pikuz, Sergey A. [Joint Institute for High Temperatures RAS, Moscow 125412 (Russian Federation); Eisenmann, Shmuel; Botton, Mordechai [Hebrew University, Jerusalem 91904 (Israel); Gordon, Dan [Naval Research Laboratory, Washington, DC 20375 (United States); Zigler, Arie [Hebrew University, Jerusalem 91904 (Israel)

    2011-10-11

    We report on the generation of protons with energies of 5.5 MeV when irradiating an H{sub 2}O nano-wire layer grown on a sapphire plate with an intensity of 5x10{sup 17} W/cm{sup 2}. A theoretical model is suggested in which plasma near the tip of the wire is subject to enhanced electrical fields and protons are accelerated to several MeVs.

  7. Spectroscopic Investigation of Nitrogen Loaded ECR Plasmas

    CERN Document Server

    Ullmann, F; Zschornack, G; Küchler, D; Ovsyannikov, V P

    1999-01-01

    Energy dispersive X-ray spectroscopy on ions in the plasma and magnetic q/A-analysis of the extracted ions were used to determine the plasmaproperties of nitrogen loaded ECR plasmas.As the beam expands from a limited plasma region and the ion extraction process alters the plasma properties in the extraction meniscus thebeam composition does not correspond to the bulk plasma composition. The analysis of measured spectra of characteristic X-rays delivers a method to determine the ion charge state distribution and the electron energy distribution inside the plasma and does not alter the plasma anddoes not depend on the extraction and transmission properties of the ion extraction and transport system. Hence this method seems to be moreaccurate than the traditional magnetic analysis and allows to analyse different plasma regions.A comparison between ion charge state distributions determined from X-ray spectra and such from q/A-analysis shows significant differencesfor the mean ion charge states in the source plasm...

  8. IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2003-04-01

    Full Text Available We study a brightening of the Lyman-a emission in the cusp which occurred in response to a short-lived south-ward turning of the interplanetary magnetic field (IMF during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992. We use the numerical cusp ion precipitation model of Lockwood and Davis (1996, along with modelled Lyman-a emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5 min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-a intensities with oxygen emissions observed simultaneously by the SI-13

  9. IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available We study a brightening of the Lyman-a emission in the cusp which occurred in response to a short-lived south-ward turning of the interplanetary magnetic field (IMF during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992. We use the numerical cusp ion precipitation model of Lockwood and Davis (1996, along with modelled Lyman-a emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5 min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-

  10. Performance of 3-D architecture silicon sensors after intense proton irradiation

    CERN Document Server

    Parker, S I

    2001-01-01

    Silicon detectors with a three-dimensional architecture, in which the n- and p-electrodes penetrate through the entire substrate, have been successfully fabricated. The electrodes can be separated from each other by distances that are less than the substrate thickness, allowing short collection paths, low depletion voltages, and large current signals from rapid charge collection. While no special hardening steps were taken in this initial fabrication run, these features of three dimensional architectures produce an intrinsic resistance to the effects of radiation damage. Some performance measurements are given for detectors that are fully depleted and working after exposures to proton beams with doses equivalent to that from slightly more than ten years at the B-layer radius (50 mm) in the planned Atlas detector at the Large Hadron Collider at CERN. (41 refs).

  11. Development of residual gas ionization profile monitor for high intensity proton beams

    CERN Document Server

    Sato, Y; Hirose, E; Ieiri, M; Igarashi, Y; Inaba, S; Katoh, Y; Minakawa, M; Noumi, H; Saitó, M; Suzuki, Y; Takahashi, H; Takasaki, M; Tanaka, K; Toyoda, A; Yamada, Y; Yamanoi, Y; Watanabe, H

    2006-01-01

    Nondestructive beam profile monitor utilizing ionizations of residual gas has been developed for continuous monitoring of 3?0(J-PARC). Knock-on electrons produced in the ionizations of residual gas vacuumed to 1 Pa are collected with a uniform electric field applied between electrodes. Applying a uniform electric field parallel to the electric field is essential to reduce diffusion of electrons crossing over magnetic flux. A prototype monitor has been constructed and installed in EP2-C beam line at KEK 12 GeV proton synchrotron (12 Ge V-PS). The profiles measured with the present monitor agree with the ones measured with the existing destructive profile monitor. The present monitor shows sufficient performances as a candidate of the profile monitor at J-PARC. In the present article, the working principle of the present monitor, the results of test experiments, and further developments are described in detail.

  12. Thick target benchmark test for the code used in the design of high intensity proton accelerator project

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Harada, Masatoshi

    2003-01-01

    In the neutronics design for the JAERI and KEK Joint high intensity accelerator facilities, transport codes of NMTC/JAM, MCNPX and MARS are used. In order to confirm the predict ability for these code, it is important to compare with the experiment result. For the validation of the source term of neutron, the calculations are compared with the experimental spectrum of neutrons produced from thick target, which are carried out at LANL and KEK. As for validation of low energy incident case, the calculations are compared with experiment carried out at LANL, in which target of C, Al, Fe, and 238 U are irradiated with 256-MeV protons. By the comparison, it is found that both NMTC/JAM and MCNPX show good agreement with the experiment within by a factor of 2. MARS shows good agreement for C and Al target. MARS, however, gives rather underestimation for all targets in the neutron energy region higher than 30 MeV. For the validation high incident energy case, the codes are compared with the experiment carried out at KEK. In this experiment, W and Pb targets are bombarded with 0.5- and 1.5-GeV protons. Although slightly disagreement exists, NMTC/JAM, MCNPX and MARS are in good agreement with the experiment within by a factor of 2. (author)

  13. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  14. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  15. Dynamics of RF captured cooled proton beams

    International Nuclear Information System (INIS)

    Kells, W.; Mills, F.

    1983-01-01

    In the course of electron cooling experiments at the Electron Cooling Ring (ECR) at Fermilab, several peculiar features of the longitudinal phase space of cold protons (200 MeV) captured in RF buckets were observed. Here we present the experimental facts, present a simple theory, and summarize computer simulation results which support the theory and facts

  16. Electromagnetic design of a β=0.4 superconducting spoke resonator for a high intensity proton linac

    International Nuclear Information System (INIS)

    Pathak, Abhishek; Krishnagopal, Srinivas

    2015-01-01

    Here we present electromagnetic design simulations of a superconducting single-spoke resonator with a geometrical beta of 0.4 and operating at 325 MHz for a high intensity proton linac (HIPL). The spoke equatorial and base parameters were optimized to minimize the peak electric and peak magnetic fields and maximize the shunt impedance, while keeping the same resonant frequency. Variation of the surface magnetic fields was investigated as a function of the spoke base shape, and it was found that an elliptical profile is preferred over a circular or racecourse profile with E peak /E acc =4.71, E peak /E acc =4.33 (mT/(MV/m)) and R/Q=272 Ω. (author)

  17. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  18. Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II

    Science.gov (United States)

    Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan

    2018-05-01

    The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.

  19. Proceedings of the 'INS workshop on ECR ion sources for multiply-charged heavy ions'

    International Nuclear Information System (INIS)

    1995-02-01

    This workshop was held on December 1 and 2, 1994 at the Institute for Nuclear Study, University of Tokyo. The performance of ion sources is crucial for all researches and applications that use ion beam. The performance of ECR ion sources is strongly dependent on heuristic knowledge and innovation. From these viewpoints, it is useful to exchange information on the status of the existing sources, the performance of the new sources, and the design of the future sources between the source builders and the users. There were unexpected more than 70 participants and 20 contributions. The lectures were given on the present status of NIRS-ECR, SF-ECR, INS ISOL-ECR, RCNP ECR and EBIS ion sources, the production of multiply charged metallic ions with Hyper ECR or by plasma cathode method, the processing of ceramic rods and the ion production with OCTOPUS, the modeling of multi-charged ion production, the design of an advanced minimum B for ECR multi-charged ion source, the design, construction and operation of 18 GHz HiECR ion source, the construction and test operation of JAERI 18 GHz ion source, the design of an ECR ion source for the HIMAC, a 14.5 GHz ECR ion source at RIKEN, TMU 14 GHz ECR ion source, ''NANOGAN'' ECR ion source and its irradiation system, the optimization of the ECR ion source for optically pumped polarized ion source and so on. (K.I.)

  20. Proceedings of the `INS workshop on ECR ion sources for multiply-charged heavy ions`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This workshop was held on December 1 and 2, 1994 at the Institute for Nuclear Study, University of Tokyo. The performance of ion sources is crucial for all researches and applications that use ion beam. The performance of ECR ion sources is strongly dependent on heuristic knowledge and innovation. From these viewpoints, it is useful to exchange information on the status of the existing sources, the performance of the new sources, and the design of the future sources between the source builders and the users. There were unexpected more than 70 participants and 20 contributions. The lectures were given on the present status of NIRS-ECR, SF-ECR, INS ISOL-ECR, RCNP ECR and EBIS ion sources, the production of multiply charged metallic ions with Hyper ECR or by plasma cathode method, the processing of ceramic rods and the ion production with OCTOPUS, the modeling of multi-charged ion production, the design of an advanced minimum B for ECR multi-charged ion source, the design, construction and operation of 18 GHz HiECR ion source, the construction and test operation of JAERI 18 GHz ion source, the design of an ECR ion source for the HIMAC, a 14.5 GHz ECR ion source at RIKEN, TMU 14 GHz ECR ion source, ``NANOGAN`` ECR ion source and its irradiation system, the optimization of the ECR ion source for optically pumped polarized ion source and so on. (K.I.).

  1. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    International Nuclear Information System (INIS)

    Matney, Jason; Park, Peter C.; Bluett, Jaques; Chen, Yi Pei; Liu, Wei; Court, Laurence E.; Liao, Zhongxing; Li, Heng; Mohan, Radhe

    2013-01-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  2. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Matney, Jason; Park, Peter C. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Bluett, Jaques [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chen, Yi Pei [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Liu, Wei; Court, Laurence E. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Heng [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe, E-mail: rmohan@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-11-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  3. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    International Nuclear Information System (INIS)

    Li, Y; Tian, Z; Jiang, S; Jia, X; Song, T; Wu, Z; Liu, Y

    2015-01-01

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  4. TU-EF-304-07: Monte Carlo-Based Inverse Treatment Plan Optimization for Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y [Tsinghua University, Beijing, Beijing (China); UT Southwestern Medical Center, Dallas, TX (United States); Tian, Z; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Song, T [Southern Medical University, Guangzhou, Guangdong (China); UT Southwestern Medical Center, Dallas, TX (United States); Wu, Z; Liu, Y [Tsinghua University, Beijing, Beijing (China)

    2015-06-15

    Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC into IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical

  5. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: A treatment planning comparison

    International Nuclear Information System (INIS)

    Kandula, Shravan; Zhu, Xiaorong; Garden, Adam S.; Gillin, Michael; Rosenthal, David I.; Ang, Kie-Kian; Mohan, Radhe; Amin, Mayankkumar V.; Garcia, John A.; Wu, Richard; Sahoo, Narayan; Frank, Steven J.

    2013-01-01

    Radiation therapy for head and neck malignancies can have side effects that impede quality of life. Theoretically, proton therapy can reduce treatment-related morbidity by minimizing the dose to critical normal tissues. We evaluated the feasibility of spot-scanning proton therapy for head and neck malignancies and compared dosimetry between those plans and intensity-modulated radiation therapy (IMRT) plans. Plans from 5 patients who had undergone IMRT for primary tumors of the head and neck were used for planning proton therapy. Both sets of plans were prepared using computed tomography (CT) scans with the goals of achieving 100% of the prescribed dose to the clinical target volume (CTV) and 95% to the planning TV (PTV) while maximizing conformity to the PTV. Dose-volume histograms were generated and compared, as were conformity indexes (CIs) to the PTVs and mean doses to the organs at risk (OARs). Both modalities in all cases achieved 100% of the dose to the CTV and 95% to the PTV. Mean PTV CIs were comparable (0.371 IMRT, 0.374 protons, p = 0.953). Mean doses were significantly lower in the proton plans to the contralateral submandibular (638.7 cGy IMRT, 4.3 cGy protons, p = 0.002) and parotid (533.3 cGy IMRT, 48.5 cGy protons, p = 0.003) glands; oral cavity (1760.4 cGy IMRT, 458.9 cGy protons, p = 0.003); spinal cord (2112.4 cGy IMRT, 249.2 cGy protons, p = 0.002); and brainstem (1553.52 cGy IMRT, 166.2 cGy protons, p = 0.005). Proton plans also produced lower maximum doses to the spinal cord (3692.1 cGy IMRT, 2014.8 cGy protons, p = 0.034) and brainstem (3412.1 cGy IMRT, 1387.6 cGy protons, p = 0.005). Normal tissue V 10 , V 30 , and V 50 values were also significantly lower in the proton plans. We conclude that spot-scanning proton therapy can significantly reduce the integral dose to head and neck critical structures. Prospective studies are underway to determine if this reduced dose translates to improved quality of life

  6. Production and acceleration of Ca-beams with the ECR source in the Jinr-Ganil experiment

    International Nuclear Information System (INIS)

    Lukyanov, S.M.; Artukh, A.G.; Gvozdev, B.A.; Kutner, V.B.; Penionzhkevich, Y.E.; Bex, L.; Bourgarel, M.P.; Ferme, J.

    1989-01-01

    The results of production and acceleration of 48 Ca-beams with the ECR-source are described. For this purpose a special technique has been developed which allows the metal to be extracted from the oxide with the aluminium as an acceptor. The mean rate of consumption of 48 Ca was about 2 mg/h and the beam intensity was about 15μA on charge state 6. The method for recuperation of used calcium is presented

  7. Envelope model for passive magnetic focusing of an intense proton or ion beam propagating through thin foils

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2013-04-01

    Full Text Available Ion beams (including protons with low emittance and high space-charge intensity can be propagated with normal incidence through a sequence of thin metallic foils separated by vacuum gaps of order the characteristic transverse beam extent to transport/collimate the beam or to focus it to a small transverse spot. Energetic ions have sufficient range to pass through a significant number of thin foils with little energy loss or scattering. The foils reduce the (defocusing radial electric self-field of the beam while not altering the (focusing azimuthal magnetic self-field of the beam, thereby allowing passive self-beam focusing if the magnetic field is sufficiently strong relative to the residual electric field. Here we present an envelope model developed to predict the strength of this passive (beam generated focusing effect under a number of simplifying assumptions including relatively long pulse duration. The envelope model provides a simple criterion for the necessary foil spacing for net focusing and clearly illustrates system focusing properties for either beam collimation (such as injecting a laser-produced proton beam into an accelerator or for magnetic pinch focusing to a small transverse spot (for beam driven heating of materials. An illustrative example is worked for an idealization of a recently performed laser-produced proton-beam experiment to provide guidance on possible beam focusing and collimation systems. It is found that foils spaced on the order of the characteristic transverse beam size desired can be employed and that envelope divergence of the initial beam entering the foil lens must be suppressed to limit the total number of foils required to practical values for pinch focusing. Relatively modest proton-beam current at 10 MeV kinetic energy can clearly demonstrate strong magnetic pinch focusing achieving a transverse rms extent similar to the foil spacing (20–50  μm gaps in beam propagation distances of tens of mm

  8. Manufacture of an experimental platform with ECR ion source

    International Nuclear Information System (INIS)

    Zhou Changgeng; Hu Yonghong; Li Yan

    2007-12-01

    The working principle and basal configuration and fabricative process of ECR ion source are introdced. Regarding as an experimental and test device, the experimental platform of ECR ion source may expediently regulate every parameter of ion source, and achieve good character of beam current. Through improving on the components, ECR ion source can is modulated in best state. Above results may be used in the running and debugging of neutron generator. Therefore, the experimental platform of ECR ion source is the necessary equipment of large beam current neutron generator. Comparing the experimental platform of ECR ion source with domestic ones and the overseas ones, it mainly be used in the simulation experiments about neutron generator. It is compact and experimental platform mode in structure. It can focus the beam current and measure many parameters on line in function. The problem of lower beam current to discover is resolved in debugging of the device. The measurement results indicate that the technology character of the device have achieved design requirements. (authors)

  9. The key physics and technology issues in the intense-beam proton accelerators

    International Nuclear Information System (INIS)

    Fu Shinian; Fang Shouxian

    2002-01-01

    Beam power is required to raise one order in the next generation spallation neutron source. There are still some physics and technology difficulties need to be overcome, even though no fatal obstacle exists due to the rapid development of the technology in intense-beam accelerator in recent years. Therefore, it is highly demanded to clarify the key issues and to lunch an R and D program to break through the technological barriers before author start to build the expansive machine. The new technological challenge arises from the high beam current, the high accelerator power and the high demand on the reliability and stability of the accelerator operation. The author will discuss these issues and the means to resolve them, as well as the state of the art in a few of major technological disciplines. Finally, the choice the framework of intense-beam accelerator is discussed

  10. Development of an intense O-15 radioactive ion beam using low energy protons

    CERN Document Server

    Lapi, S; Zyuzin, A Yu; D'Auria, J M

    2003-01-01

    The production of copious quantities of sup 1 sup 5 O, (half-life = 122.2 s) for astrophysical applications has been a source of concern at TRIUMF and ISAC for some time. An sup 1 sup 5 O beam is needed for two experiments ( sup 1 sup 5 O(alpha,gamma) sup 1 sup 9 Ne and sup 1 sup 5 O( sup 6 Li,d) sup 1 sup 9 Ne) at ISAC. The beam flux required for these experiments is extremely high, (between 10 sup 9 and 10 sup 1 sup 1 sup 1 sup 5 O/s) and thus high efficiencies at all steps in the process will be required. Difficulties arise due to the fact that oxygen is very reactive chemically and thus is difficult to extract from a thick spallation target. The possibility of using one of the small cyclotrons on site (TR13, CP42 or TR30) for the production of this isotope ( sup 1 sup 5 O) has been discussed. This production approach will involve the use of low energy protons to interact with a nitrogen gas target via the sup 1 sup 5 N(p,n) sup 1 sup 5 O reaction, which is accessible with attainable particle energies usin...

  11. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  12. Electron cloud simulation of the ECR plasma

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Palinkas, J.

    2011-01-01

    Complete text of publication follows. The plasma of the Electron Cyclotron Resonance Ion Source (ECRIS) of ATOMKI is being continuously investigated by different diagnostic methods: using small-sized probes or taking X-ray and visible light photographs. In 2011 three articles were published by our team in a special edition of the IEEE Transactions on Plasma Science (Special Issue on Images in Plasma Science) describing our X-ray and visible light measurements and plasma modeling and simulating studies. Simulation is in many cases the base for the analysis of the photographs. The outcomes of the X-ray and visible light experiments were presented already in earlier issues of the Atomki Annual Report, therefore in this year we concentrate on the results of the simulating studies. The spatial distribution of the three main electron components (cold, warm and hot electron clouds) of the ECR plasmas was simulated by TrapCAD code. TrapCAD is a 'limited' plasma simulation code. The spatial and energy evolution of a large number of electrons can be realistically followed; however, these particles are independent, and no particle interactions are included. In ECRISs, the magnetic trap confines the electrons which keep together the ion component by their space charge. The electrons gain high energies while the ions remain very cold throughout the whole process. Thus, the spatial and energy simulation of the electron component gives much important and numerical information even for the ions. The electron components of ECRISs can artificially be grouped into three populations: cold, warm, and hot electrons. Cold electrons (1-200 eV) have not been heated by the microwave; they are mainly responsible for the visible light emission of the plasma. The energized warm electrons (several kiloelectronvolts) are able to ionize atoms and ions and they are mainly responsible for the characteristic Xray photons emitted by the plasma. Electrons having much higher energy than necessary for

  13. Development of ECR ion source for the HIMAC medical accelerator

    International Nuclear Information System (INIS)

    Kitagawa, A.; Yamada, S.; Sekiguchi, M.

    1992-01-01

    The development of the ECR ion source for the HIMAC injector is reported. The HIMAC facility has two types of the ion source, one is the PIG ion source and the other is the ECR ion source. The ECR ion source is especially expected long lifetime, easy operation, and easy maintenance for the medical use. Now, the system of the ion source is under construction. However, the tests of fundamental performances have been started. In the present tests, the output electrical currents of Ions are 1300 eμA of He 1+ , 210 eμA of Ne 3+ , and 100 eμA of Ar 6+ . And the good stability of the extracted beam is acquired. These performances satisfied the requirements for the radiotherapy. (author)

  14. Simulation study on ion extraction from ECR ion sources

    International Nuclear Information System (INIS)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1993-07-01

    In order to study beam optics of NIRS-ECR ion source used in HIMAC, EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1-D and 2-D sheath theories are used respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source (in INS, Univ. of Tokyo) are presented in this paper, exhibiting an agreement with the experimental results. Some preliminary suggestions on the upgrading the extraction systems of these sources are also proposed. (author)

  15. Simulation study on ion extraction from ECR ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1993-07-01

    In order to study beam optics of NIRS-ECR ion source used in HIMAC, EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1-D and 2-D sheath theories are used respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source (in INS, Univ. of Tokyo) are presented in this paper, exhibiting an agreement with the experimental results. Some preliminary suggestions on the upgrading the extraction systems of these sources are also proposed. (author).

  16. Bone marrow sparing in intensity modulated proton therapy for cervical cancer: Efficacy and robustness under range and setup uncertainties

    International Nuclear Information System (INIS)

    Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu

    2015-01-01

    Background and purpose: This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and methods: IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated X-ray therapy (IMRT). Functional bone marrow was identified by 18 F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3 mm translational setup errors in all three principal dimensions. Results: In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V 5Gy , 47% for V 10Gy , 54% for V 20Gy , and 57% for V 40Gy , all with p < 0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V 5Gy , 37% for V 10Gy , 41% for V 20Gy , and 39% for V 40Gy , all with p < 0.01. Conclusions: The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors

  17. Bone Marrow Sparing in Intensity Modulated Proton Therapy for Cervical Cancer: Efficacy and Robustness under Range and Setup Uncertainties

    Science.gov (United States)

    Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu

    2015-01-01

    Background and Purpose This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and Methods IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated x-ray therapy (IMRT). Functional bone marrow was identified by 18F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3mm translational setup errors in all three principal dimensions. Results In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V5GY, 47% for V10Gy, 54% for V20Gy, and 57% for V40Gy, all with p<0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V5Gy, 37% for V10Gy, 41% for V20Gy, and 39% for V40Gy, all with p<0.01. Conclusions The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors. PMID:25981130

  18. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  19. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Sio, Terence T. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States); Lin, Huei-Kai; Shi, Qiuling [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cleeland, Charles S. [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, J. Jack; Hernandez, Mike [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Blanchard, Pierre; Thaker, Nikhil G.; Phan, Jack; Rosenthal, David I.; Garden, Adam S.; Morrison, William H.; Fuller, C. David [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mendoza, Tito R. [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Xin Shelley [Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-07-15

    Purpose: We hypothesized that patients with oropharyngeal cancer treated with intensity modulated proton therapy (IMPT) would have lower symptom burdens, as measured by patient-reported outcome (PRO) surveys, than patients treated with intensity modulated photon therapy (IMRT). Methods and Materials: Patients were treated for oropharyngeal cancer from 2006 to 2015 through prospective registries with concurrent chemotherapy and IMPT or chemotherapy and IMRT and completed the MD Anderson Symptom Inventory for Head and Neck Cancer (MDASI-HN) module at various times before treatment (baseline), during treatment (acute phase), within the first 3 months after treatment (subacute phase), and afterward (chronic phase). Individual symptoms and the top 5 and top 11 most severe symptoms were summarized and compared between the radiation therapy modalities. Results: PRO data were collected and analyzed from 35 patients treated with chemotherapy and IMPT and from 46 treated with chemotherapy and IMRT. The baseline symptom burdens were similar between both groups. The overall top 5 symptoms were food taste problems (mean score 4.91 on a 0-10 scale), dry mouth (4.49), swallowing/chewing difficulties (4.26), lack of appetite (4.08), and fatigue (4.00). Among the top 11 symptoms, changes in taste and appetite during the subacute and chronic phases favored IMPT (all P<.048). No differences in symptom burden were detected between modalities during the acute and chronic phases by top-11 symptom scoring. During the subacute phase, the mean (±standard deviation) top 5 MDASI scores were 5.15 ± 2.66 for IMPT versus 6.58 ± 1.98 for IMRT (P=.013). Conclusions: According to the MDASI-HN, symptom burden was lower among the IMPT patients than among the IMRT patients during the subacute recovery phase after treatment. A prospective randomized clinical trial is underway to define the value of IMPT for the management of head and neck tumors.

  20. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Emma B. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Kocak-Uzel, Esengul [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Therapy, Beykent University, Istanbul (Turkey); Feng, Lei [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Thaker, Nikhil G.; Blanchard, Pierre; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S. [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Frank, Steven J., E-mail: sjfrank@mdanderson.org [Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-10-01

    A potential advantage of intensity-modulated proton therapy (IMPT) over intensity-modulated (photon) radiation therapy (IMRT) in the treatment of oropharyngeal carcinoma (OPC) is lower radiation dose to several critical structures involved in the development of nausea and vomiting, mucositis, and dysphagia. The purpose of this study was to quantify doses to critical structures for patients with OPC treated with IMPT and compare those with doses on IMRT plans generated for the same patients and with a matched cohort of patients actually treated with IMRT. In this study, 25 patients newly diagnosed with OPC were treated with IMPT between 2011 and 2012. Comparison IMRT plans were generated for these patients and for additional IMRT-treated controls extracted from a database of patients with OPC treated between 2000 and 2009. Cases were matched based on the following criteria, in order: unilateral vs bilateral therapy, tonsil vs base of tongue primary, T-category, N-category, concurrent chemotherapy, induction chemotherapy, smoking status, sex, and age. Results showed that the mean doses to the anterior and posterior oral cavity, hard palate, larynx, mandible, and esophagus were significantly lower with IMPT than with IMRT comparison plans generated for the same cohort, as were doses to several central nervous system structures involved in the nausea and vomiting response. Similar differences were found when comparing dose to organs at risks (OARs) between the IMPT cohort and the case-matched IMRT cohort. In conclusion, these findings suggest that patients with OPC treated with IMPT may experience fewer and less severe side effects during therapy. This may be the result of decreased beam path toxicities with IMPT due to lower doses to several dysphagia, odynophagia, and nausea and vomiting–associated OARs. Further study is needed to evaluate differences in long-term disease control and chronic toxicity between patients with OPC treated with IMPT in comparison to

  1. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes

    International Nuclear Information System (INIS)

    Sio, Terence T.; Lin, Huei-Kai; Shi, Qiuling; Gunn, G. Brandon; Cleeland, Charles S.; Lee, J. Jack; Hernandez, Mike; Blanchard, Pierre; Thaker, Nikhil G.; Phan, Jack; Rosenthal, David I.; Garden, Adam S.; Morrison, William H.; Fuller, C. David; Mendoza, Tito R.; Mohan, Radhe; Wang, Xin Shelley; Frank, Steven J.

    2016-01-01

    Purpose: We hypothesized that patients with oropharyngeal cancer treated with intensity modulated proton therapy (IMPT) would have lower symptom burdens, as measured by patient-reported outcome (PRO) surveys, than patients treated with intensity modulated photon therapy (IMRT). Methods and Materials: Patients were treated for oropharyngeal cancer from 2006 to 2015 through prospective registries with concurrent chemotherapy and IMPT or chemotherapy and IMRT and completed the MD Anderson Symptom Inventory for Head and Neck Cancer (MDASI-HN) module at various times before treatment (baseline), during treatment (acute phase), within the first 3 months after treatment (subacute phase), and afterward (chronic phase). Individual symptoms and the top 5 and top 11 most severe symptoms were summarized and compared between the radiation therapy modalities. Results: PRO data were collected and analyzed from 35 patients treated with chemotherapy and IMPT and from 46 treated with chemotherapy and IMRT. The baseline symptom burdens were similar between both groups. The overall top 5 symptoms were food taste problems (mean score 4.91 on a 0-10 scale), dry mouth (4.49), swallowing/chewing difficulties (4.26), lack of appetite (4.08), and fatigue (4.00). Among the top 11 symptoms, changes in taste and appetite during the subacute and chronic phases favored IMPT (all P<.048). No differences in symptom burden were detected between modalities during the acute and chronic phases by top-11 symptom scoring. During the subacute phase, the mean (±standard deviation) top 5 MDASI scores were 5.15 ± 2.66 for IMPT versus 6.58 ± 1.98 for IMRT (P=.013). Conclusions: According to the MDASI-HN, symptom burden was lower among the IMPT patients than among the IMRT patients during the subacute recovery phase after treatment. A prospective randomized clinical trial is underway to define the value of IMPT for the management of head and neck tumors.

  2. Study of a power coupler for superconducting RF cavities used in high intensity proton accelerator

    International Nuclear Information System (INIS)

    Souli, M.

    2007-07-01

    The coaxial power coupler needed for superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the protons beam. The calculated RF and dielectric losses in the power coupler (inner and outer conductor, RF window) are relatively high. Consequently, it is necessary to design very carefully the cooling circuits in order to remove the generated heat and to ensure stable and reliable operating conditions for the coupler cavity system. After calculating all type of losses in the power coupler, we have designed and validated the inner conductor cooling circuit using numerical simulations results. We have also designed and optimized the outer conductor cooling circuit by establishing its hydraulic and thermal characteristics. Next, an experiment dedicated to study the thermal interaction between the power coupler and the cavity was successfully performed at CRYOHLAB test facility. The critical heat load Qc for which a strong degradation of the cavity RF performance was measured leading to Q c in the range 3 W-5 W. The measured heat load will be considered as an upper limit of the residual heat flux at the outer conductor cold extremity. A dedicated test facility was developed and successfully operated for measuring the performance of the outer conductor heat exchanger using supercritical helium as coolant. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryo-module. The first experimental results have confirmed the excellent performance of the tested heat exchanger. The maximum residual heat flux measured was 60 mW for a 127 W thermal load. As the RF losses in the coupler are proportional to the incident RF power, we can deduce that the outer conductor heat exchanger performance is continued up to 800 kW RF power. Heat exchanger thermal conductance has been identified using a 2D axisymmetric thermal model by comparing

  3. Study of hot electrons in a ECR ion source

    International Nuclear Information System (INIS)

    Barue, C.

    1992-12-01

    The perfecting of diagnosis connected with hot electrons of plasma, and then the behaviour of measured parameters of plasma according to parameters of source working are the purpose of this thesis. The experimental results obtained give new information on hot electrons of an ECR ion source. This thesis is divided in 4 parts: the first part presents an ECR source and the experimental configuration (ECRIS physics, minimafios GHz, diagnosis used); the second part, the diagnosis (computer code of cyclotron emission and calibration); the third part gives experimental results in continuous regime (emission cyclotron diagnosis, bremsstrahlung); the fourth part, experimental results in pulsed regime (emission cyclotron diagnosis, diamagnetism) calibration)

  4. Design of a 4D emittance measurement device for high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Zhao Yangyang; Yang Yao; Zhao Hongwei; Sun Liangting; Cao Yun; Wang Yun

    2013-01-01

    For the purpose of on-line beam quality diagnostics and transverse emittance coupling investigation of the ion beams delivered by an Electron Cyclotron Resonance (ECR) ion source, a real-time 4D Pepper Pot type emittance scanner is under development at IMP (Institute of Moden Physics, Chinese Academy of Sciences). The high charge state ECR ion source at IMP could produce CW or pulsed heavy ion beam intensities in the range of 1 eμA∼1 emA with the kinetic energy of 10∼35 keV/q, which needs the design of the Pepper Pot scanner to be optimized accordingly. The Pepper Pot scanner has many features, such as very short response time and wide dynamic working range that the device could be applied. Since intense heavy ion beam bombardment is expected for this device, the structure and the material selection for the device is specially considered during the design, and a feasible solution to analyze the pictures acquired after the data acquisition is also made. (authors)

  5. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans

  6. Feasibility of Pencil Beam Scanned Intensity Modulated Proton Therapy in Breath-hold for Locally Advanced Non-Small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny; Munck Af Rosenschold, Per; Perrin, Rosalind

    2017-01-01

    PURPOSE: We evaluated the feasibility of treating patients with locally advanced non-small cell lung cancer (NSCLC) with pencil beam scanned intensity modulated proton therapy (IMPT) in breath-hold. METHODS AND MATERIALS: Fifteen NSCLC patients who had previously received 66 Gy in 33 fractions wi...

  7. TH-C-BRD-12: Robust Intensity Modulated Proton Therapy Plan Can Eliminate Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Liao, L; Jiang, S; Li, Y; Wang, X; Li, H; Zhu, X; Sahoo, N; Gillin, M; Mahajan, A; Grosshans, D; Zhang, X; Lim, G

    2014-01-01

    Purpose: The passive scattering proton therapy (PSPT) technique is the commonly used radiotherapy technique for craniospinal irradiation (CSI). However, PSPT involves many numbers of junction shifts applied over the course of treatment to reduce the cold and hot regions caused by field mismatching. In this work, we introduced a robust planning approach to develop an optimal and clinical efficient techniques for CSI using intensity modulated proton therapy (IMPT) so that junction shifts can essentially be eliminated. Methods: The intra-fractional uncertainty, in which two overlapping fields shift in the opposite directions along the craniospinal axis, are incorporated into the robust optimization algorithm. Treatment plans with junction sizes 3,5,10,15,20,25 cm were designed and compared with the plan designed using the non-robust optimization. Robustness of the plans were evaluated based on dose profiles along the craniospinal axis for the plans applying 3 mm intra-fractional shift. The dose intra-fraction variations (DIV) at the junction are used to evaluate the robustness of the plans. Results: The DIVs are 7.9%, 6.3%, 5.0%, 3.8%, 2.8% and 2.2%, for the robustly optimized plans with junction sizes 3,5,10,15,20,25 cm. The DIV are 10% for the non-robustly optimized plans with junction size 25 cm. The dose profiles along the craniospinal axis exhibit gradual and tapered dose distribution. Using DIVs less than 5% as maximum acceptable intrafractional variation, the overlapping region can be reduced to 10 cm, leading to potential reduced number of the fields. The DIVs are less than 5% for 5 mm intra-fractional shifts with junction size 25 cm, leading to potential no-junction-shift for CSI using IMPT. Conclusion: This work is the first report of the robust optimization on CSI based on IMPT. We demonstrate that robust optimization can lead to much efficient carniospinal irradiation by eliminating the junction shifts

  8. Kinetic description of electron-proton instability in high-intensity proton linacs and storage rings based on the Vlasov-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    1999-05-01

    electrons is negligibly small. We introduce the ion plasma frequency squared defined by ω[over ^]_{pb}^{2}=4πn[over ^]_{b}Z_{b}^{2}e^{2}/γ_{b}m_{b}, and the fractional charge neutralization defined by f=n[over ^]_{e}/Z_{b}n[over ^]_{b}, where n[over ^]_{b} and n[over ^]_{e} are the characteristic ion and electron densities. The equilibrium and stability analysis is carried out for arbitrary normalized beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}, and arbitrary fractional charge neutralization f, consistent with radial confinement of the beam particles. For the moderately high beam intensities envisioned in the proton linacs and storage rings for the Accelerator for Production of Tritium and the Spallation Neutron Source, the normalized beam intensity is typically ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}≲ 0.1. For heavy ion fusion applications, however, the transverse beam emittance is very small, and the space-charge-dominated beam intensity is much larger, with ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}}≲ 2γ_{b}^{2}. The stability analysis shows that the instability growth rate Imω increases with increasing normalized beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}} and increasing fractional charge neutralization f. In addition, the instability is strongest (largest growth rate for perturbations with azimuthal mode number ℓ=1, corresponding to a simple (dipole transverse displacement of the beam ions and the background electrons. For the case of overlapping step-function density profiles for the beam ions and background electrons, corresponding to monoenergetic ions and electrons, a key result is that there is no threshold in beam intensity ω[over ^]_{pb}^{2}/ω_{βb}^{0^{2}} or fractional charge neutralization f for the onset of instability. Finally, for the case of continuously varying density profiles with parabolic profile shape, a semiquantitative estimate is made of the effects of the corresponding spread in (depressed betatron frequency on stability

  9. A conceptual design of the RF system for the NSP high intensity proton accelerator at JAERI

    International Nuclear Information System (INIS)

    Chishiro, Etsuji; Kusano, Joichi; Mizumoto, Motoharu; Touchi, Yutaka; Kaneko, Hiroshi; Takado, Hiroshi; Sawada, Junichi

    1999-03-01

    JAERI has been proposing the Neutron Science Project which aims at exploring the fields of basic science and nuclear technology using a high power spallation neutron source. The neutron source will be driven by a high intensity linear accelerator with an energy of 1.5 GeV and an average beam current of 5.33 mA and beam power of 8 MW. The RF system for the accelerator consists of a high-energy accelerator part and a low energy accelerator part. The maximum RF power requirements at the high and low energy accelerator parts are 25 MW and 8.3 MW, respectively. In this report, we describe the conceptual design of the RF system. In the low energy accelerator part, we estimated the requirement for the high-power amplifier tube and made the basis design for RF components. In the high energy accelerator part, we studied the effect of tuning errors, Lorentz forces and microphonics in the superconducting cavity. We calculated the klystron efficiency and supply power in the arrangement of where one klystron distributes the RF power to four cavities. We also considered an IOT RF system. Finally, we describe the electrical capacity and quantity of cooling water in the RF system. (author)

  10. Present status of FLNR (JINR) ECR ion sources

    International Nuclear Information System (INIS)

    Bogomolov, S.; Efremov, A.; Loginov, V.; Lebedev, A.; Yazvitsy, N.; Bekhterev, V.; Kostukhov, Y.; Gulbekian, G.; Gikal, B.; Drobin, V.; Seleznev, V.; Seleznev, V.

    2012-01-01

    Six ECR ion sources have been operated in the Flerov Laboratory of Nuclear Reactions (JINR). Two 14 GHz ECR ion sources (ECR4M and DECRIS-2) supply various ion species for the U400 and U400M cyclotrons correspondingly for experiments on the synthesis of heavy and exotic nuclei using ion beams of stable and radioactive isotopes. The 18 GHz DECRIS-SC ion source with superconducting magnet system produces ions from Ar up to W for solid state physics experiments and polymer membrane fabrication at the IC-100 cyclotron. The third 14 GHz ion source DECRIS-4 with 'flat' minimum of the axial magnetic field is used as a stand alone machine for test experiments and also for experiments on ion modification of materials. The other two compact ECR ion sources with all permanent magnet configuration have been developed for the production of single charged ions and are used at the DRIBs installation and at the MASHA mass-spectrometer. In this paper, present status of the ion sources, recent developments and plans for modernization are reported. The paper is followed by the slides of the presentation. (authors)

  11. Energy and CKT dependence of proton induced L subshell X-ray intensity ratios in elements 57≤Z≤92

    International Nuclear Information System (INIS)

    Thakkar, Rohit; Sharma, Babita; Allawadhi, K.L.

    2006-01-01

    The dependence of L subshell X-ray intensity ratios on incident proton energy and the CK transitions has been investigated in elements 57≤Z≤92. The intensity ratio I(L α )/I(L l ) neither shows variation with energy nor any dependence on the CK transitions. In general, the ratios I(L α )/I(L β ) and I(L α )/I(L γ ), first increase with incident proton energy, attain a maximum value, then start decreasing and attain an almost constant value after a particular energy (ranging from about 4.6 MeV for La to 5.8 MeV for U). A comparison has been made among the intensity ratios evaluated using three different sets of parameters. A maximum difference of about 18% has been observed among the different values

  12. Long-term operation experience with 2 ECR ion sources and planned extensions at HIT

    International Nuclear Information System (INIS)

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.

    2012-01-01

    The HIT (Heidelberg Ion Beam Therapy Center) is the first treatment facility at a hospital in Europe where patients can be treated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. The operating time is 330 days per year, our experience after three years of continuous operation will be presented. In the future a helium beam for patient treatment is requested, therefore a third ion source will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line will be installed at a test-bench to commission and validate this section. Different test settings are foreseen to study helium operation as well as enhanced parameter sets for proton and carbon beams in combination with a modified beam transport line for higher transmission efficiency. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed. The paper is followed by the associated poster. (authors)

  13. SU-E-T-07: 4DCT Robust Optimization for Esophageal Cancer Using Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liao, L [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Department of Industrial Engineering, University of Houston, Houston, TX (United States); Yu, J; Zhu, X; Li, H; Zhang, X [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Li, Y [Proton Therapy Center, UT MD Anderson Cancer Center, Houston, TX (United States); Varian Medical Systems, Houston, TX (United States); Lim, G [Department of Industrial Engineering, University of Houston, Houston, TX (United States)

    2015-06-15

    Purpose: To develop a 4DCT robust optimization method to reduce the dosimetric impact from respiratory motion in intensity modulated proton therapy (IMPT) for esophageal cancer. Methods: Four esophageal cancer patients were selected for this study. The different phases of CT from a set of 4DCT were incorporated into the worst-case dose distribution robust optimization algorithm. 4DCT robust treatment plans were designed and compared with the conventional non-robust plans. Result doses were calculated on the average and maximum inhale/exhale phases of 4DCT. Dose volume histogram (DVH) band graphic and ΔD95%, ΔD98%, ΔD5%, ΔD2% of CTV between different phases were used to evaluate the robustness of the plans. Results: Compare to the IMPT plans optimized using conventional methods, the 4DCT robust IMPT plans can achieve the same quality in nominal cases, while yield a better robustness to breathing motion. The mean ΔD95%, ΔD98%, ΔD5% and ΔD2% of CTV are 6%, 3.2%, 0.9% and 1% for the robustly optimized plans vs. 16.2%, 11.8%, 1.6% and 3.3% from the conventional non-robust plans. Conclusion: A 4DCT robust optimization method was proposed for esophageal cancer using IMPT. We demonstrate that the 4DCT robust optimization can mitigate the dose deviation caused by the diaphragm motion.

  14. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  15. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  16. Design study on large-scale mercury loop for engineering test of target of high-intensity proton accelerator

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Sudo, Yukio; Koiso, Kohji; Kaminaga, Masanori; Takahashi, Hiromichi.

    1997-03-01

    A heavy liquid-metal target has been proposed as a representative target of a 5MW-scale neutron source for a neutron scattering facility coupled with a high-intensity proton accelerator. In the report, about mercury considered to be the best material of the heavy liquid-metal target, its properties needed for the design were formulated, and results of research on mercury treatment and of evaluation of heat removal performance on the basis of generating heat obtained by a numerical calculation of a spallation reaction were presented. From these results, a 1.5MW-scale mercury loop which equals to that for the first stage operation of the neutron science program of JAERI was designed conceptually for obtaining design data of the mercury target, and basic flow diagram of the loop and specifications of components were decided: diameter of pipelines flowing mercury at the velocity below 1m/s, power of an electro-magnet pump and structure of a cooler. Through the design, engineering problems were made clear such as selection and development of mercury-resistant materials and optimization of the loop and components for decreasing mercury inventory. (author)

  17. A new approach for calculation of volume confined by ECR surface and its area in ECR ion source

    International Nuclear Information System (INIS)

    Filippov, A.V.

    2007-01-01

    The volume confined by the resonance surface and its area are important parameters of the balance equations model for calculation of ion charge-state distribution (CSD) in the electron-cyclotron resonance (ECR) ion source. A new approach for calculation of these parameters is given. This approach allows one to reduce the number of parameters in the balance equations model

  18. Measurement of the 60 GHz ECR ion source using megawatt magnets - SEISM magnetic field map

    International Nuclear Information System (INIS)

    Marie-Jeanne, M.; Jacob, J.; Lamy, T.; Latrasse, L.; Debray, F.; Matera, J.; Pfister, R.; Trophine, C.

    2012-01-01

    LPSC has developed a 60 GHz Electron Cyclotron Resonance (ECR) Ion Source prototype called SEISM. The magnetic structure uses resistive poly-helix coils designed in collaboration with the French National High Magnetic Fields Facility (LNCMI) to produce a CUSP magnetic configuration. A dedicated test bench and appropriate electrical and water cooling environments were built to study the validity of the mechanics, the thermal behaviour and magnetic field characteristics obtained at various current intensities. During the last months, measurements were performed for several magnetic configurations, with up to 7000 A applied on the injection and extraction coils sets. The magnetic field achieved at 13000 A is expected to allow 28 GHz ECR condition, so by extrapolation 60 GHz should be possible at about 28000 A. However, cavitation issues that appeared around 7000 A are to be solved before carrying on with the tests. This contribution will recall some of the crucial steps in the prototype fabrication, and show preliminary results from the measurements at 7000 A. Possible explanations for the differences observed between the results and the simulation will be given. The paper is followed by the slides of the presentation. (authors)

  19. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study.

  20. Evaluation and mitigation of the interplay effects for intensity modulated proton therapy for lung cancer in a clinical setting

    Science.gov (United States)

    Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y.; Liao, Li; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.; Lim, Gino; Zhang, Xiaodong

    2015-01-01

    Purpose The primary aim of this study was to evaluate the impact of interplay effects for intensity-modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of iso-layered re-scanning for mitigating these interplay effects. Methods and Materials Single-fraction 4D dynamic dose without considering re-scanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on moving patient described by 4D computed tomography (4DCT) during the IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase corresponding to the life span of that spot, and the final dose was accumulated to a reference CT phase by using deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected. Results The CTV prescription coverage for the 7 patients were 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53%, calculated with use of the 4D composite dose, and were 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% with use of the 1FX dynamic dose. For the 7 patients, the CTV coverage, calculated by using single-fraction dynamic dose, were 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, using maximum MU limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. Conclusions Single-fraction 4D dynamic dose without re-scanning was validated as a surrogate to evaluate the interplay effects for IMPT for lung cancer in the clinical setting. The interplay effects can be potentially mitigated by increasing the number of iso-layered re-scanning in each fraction delivery. PMID:25407877

  1. Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting.

    Science.gov (United States)

    Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong

    2014-01-01

    The primary aim of this study was to evaluate the impact of the interplay effects of intensity modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of isolayered rescanning to mitigate these interplay effects. A single-fraction 4-dimensional (4D) dynamic dose without considering rescanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on a moving patient, described by 4D computed tomography during IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase that corresponded to the life span of that spot, and the final dose was accumulated to a reference computed tomography phase by use of deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected for study. The clinical target volume (CTV) prescription coverage for the 7 patients was 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53% when calculated with the 4D composite dose and 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% when calculated with the 1FX dynamic dose. For these 7 patients, the CTV coverage calculated by use of a single-fraction dynamic dose was 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, with a maximum monitor unit limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. A single-fraction 4D dynamic dose without rescanning was validated as a surrogate to evaluate the interplay effects of IMPT for lung cancer in the clinical setting. The interplay effects potentially can be mitigated by increasing the amount of isolayered rescanning in each fraction delivery.

  2. Beam configuration selection for robust intensity-modulated proton therapy in cervical cancer using Pareto front comparison.

    Science.gov (United States)

    van de Schoot, A J A J; Visser, J; van Kesteren, Z; Janssen, T M; Rasch, C R N; Bel, A

    2016-02-21

    The Pareto front reflects the optimal trade-offs between conflicting objectives and can be used to quantify the effect of different beam configurations on plan robustness and dose-volume histogram parameters. Therefore, our aim was to develop and implement a method to automatically approach the Pareto front in robust intensity-modulated proton therapy (IMPT) planning. Additionally, clinically relevant Pareto fronts based on different beam configurations will be derived and compared to enable beam configuration selection in cervical cancer proton therapy. A method to iteratively approach the Pareto front by automatically generating robustly optimized IMPT plans was developed. To verify plan quality, IMPT plans were evaluated on robustness by simulating range and position errors and recalculating the dose. For five retrospectively selected cervical cancer patients, this method was applied for IMPT plans with three different beam configurations using two, three and four beams. 3D Pareto fronts were optimized on target coverage (CTV D(99%)) and OAR doses (rectum V30Gy; bladder V40Gy). Per patient, proportions of non-approved IMPT plans were determined and differences between patient-specific Pareto fronts were quantified in terms of CTV D(99%), rectum V(30Gy) and bladder V(40Gy) to perform beam configuration selection. Per patient and beam configuration, Pareto fronts were successfully sampled based on 200 IMPT plans of which on average 29% were non-approved plans. In all patients, IMPT plans based on the 2-beam set-up were completely dominated by plans with the 3-beam and 4-beam configuration. Compared to the 3-beam set-up, the 4-beam set-up increased the median CTV D(99%) on average by 0.2 Gy and decreased the median rectum V(30Gy) and median bladder V(40Gy) on average by 3.6% and 1.3%, respectively. This study demonstrates a method to automatically derive Pareto fronts in robust IMPT planning. For all patients, the defined four-beam configuration was found optimal

  3. Beam configuration selection for robust intensity-modulated proton therapy in cervical cancer using Pareto front comparison

    International Nuclear Information System (INIS)

    Van de Schoot, A J A J; Visser, J; Van Kesteren, Z; Rasch, C R N; Bel, A; Janssen, T M

    2016-01-01

    The Pareto front reflects the optimal trade-offs between conflicting objectives and can be used to quantify the effect of different beam configurations on plan robustness and dose-volume histogram parameters. Therefore, our aim was to develop and implement a method to automatically approach the Pareto front in robust intensity-modulated proton therapy (IMPT) planning. Additionally, clinically relevant Pareto fronts based on different beam configurations will be derived and compared to enable beam configuration selection in cervical cancer proton therapy. A method to iteratively approach the Pareto front by automatically generating robustly optimized IMPT plans was developed. To verify plan quality, IMPT plans were evaluated on robustness by simulating range and position errors and recalculating the dose. For five retrospectively selected cervical cancer patients, this method was applied for IMPT plans with three different beam configurations using two, three and four beams. 3D Pareto fronts were optimized on target coverage (CTV D 99% ) and OAR doses (rectum V 30Gy ; bladder V 40Gy ). Per patient, proportions of non-approved IMPT plans were determined and differences between patient-specific Pareto fronts were quantified in terms of CTV D 99% , rectum V 30Gy and bladder V 40Gy to perform beam configuration selection. Per patient and beam configuration, Pareto fronts were successfully sampled based on 200 IMPT plans of which on average 29% were non-approved plans. In all patients, IMPT plans based on the 2-beam set-up were completely dominated by plans with the 3-beam and 4-beam configuration. Compared to the 3-beam set-up, the 4-beam set-up increased the median CTV D 99% on average by 0.2 Gy and decreased the median rectum V 30Gy and median bladder V 40Gy on average by 3.6% and 1.3%, respectively. This study demonstrates a method to automatically derive Pareto fronts in robust IMPT planning. For all patients, the defined four-beam configuration was found optimal in

  4. Intensity Modulated Proton Therapy for Craniospinal Irradiation: Organ-at-Risk Exposure and a Low-Gradient Junctioning Technique

    International Nuclear Information System (INIS)

    Stoker, Joshua B.; Grant, Jonathan; Zhu, X. Ronald; Pidikiti, Rajesh; Mahajan, Anita; Grosshans, David R.

    2014-01-01

    Purpose: To compare field junction robustness and sparing of organs at risk (OARs) during craniospinal irradiation (CSI) using intensity modulated proton therapy (IMPT) to conventional passively scattered proton therapy (PSPT). Methods and Materials: Ten patients, 5 adult and 5 pediatric patients, previously treated with PSPT-based CSI were selected for comparison. Anterior oblique cranial fields, using a superior couch rotation, and posterior spinal fields were used for IMPT planning. To facilitate low-gradient field junctioning along the spine, the inverse-planning IMPT technique was divided into 3 stages. Dose indices describing target coverage and normal tissue dose, in silico error modeling, and film dosimetry were used to assess plan quality. Results: Field junction robustness along the spine was improved using the staged IMPT planning technique, reducing the worst case impact of a 4-mm setup error from 25% in PSPT to <5% of prescription dose. This was verified by film dosimetry for clinical delivery. Exclusive of thyroid dose in adult patients, IMPT plans demonstrated sparing of organs at risk as good or better than PSPT. Coverage of the cribriform plate for pediatric (V95% [percentage of volume of the target receiving at least 95% of the prescribed dose]; 87 ± 11 vs 92 ± 7) and adult (V95%; 94 ± 7 vs 100 ± 1) patients and the clinical target in pediatric (V95%; 98 ± 2 vs 100 ± 1) and adult (V95%; 100 ± 1 vs 100 ± 1) patients for PSPT and IMPT plans, respectively, were comparable or improved. For adult patients, IMPT target dose inhomogeneity was increased, as determined by heterogeneity index (HI) and inhomogeneity coefficient (IC). IMPT lowered maximum spinal cord dose, improved spinal dose homogeneity, and reduced exposure to other OARs. Conclusions: IMPT has the potential to improve CSI plan quality and the homogeneity of intrafractional dose at match lines. The IMPT approach developed may also simplify treatments and reduce

  5. SU-F-T-196: Hypo-Fractionation with Intensity Modulated Proton Therapy for Unilateral Metallic Prosthesis Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Rana, S; Park, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States); Zheng, Y [Procure Proton Therapy Center, Oklahoma City, OK (United States); Zhang, Y [University of Cincinnati Medical Center, Liberty Township, OH (United States); Pokharel [21st Century Oncology, Estero, FL (United States); Cheng, C [Vantage Oncology, West Hills, CA (United States)

    2016-06-15

    Purpose: The purpose of this study is to investigate the dosimetric feasibility of hypo-fractionated intensity modulated proton therapy (IMPT) for unilateral metallic prosthesis prostate cancer patients based on proton collaborative group (PCG)-GU002-10 (NCT01230866) protocol criteria. Methods: A total of five unilateral metallic prosthesis prostate cancer cases were included in this retrospective study. For each case, IMPT plans were generated for treatment to be delivered with 7.6 Gy[RBE] per fraction in 5 fractions per week for a total dose of 38 Gy(RBE). Each plan was generated using two anterior-oblique beams and one lateral beam. Treatment plans were optimized with an objective meeting PCG-GU002-10 (NCT01230866) protocol criteria: (i) planning target volume (PTV): D99.5% > 36.1 Gy[RBE], (ii) rectum: V24 < 35%, V33.6 < 10%, (iii) bladder: V39 < 8 cc, and (iv) femoral head: V23 < 1cc. Results: All five cases satisfied PTV D99.5% (average=36.82 Gy[RBE]; range, 36.36–37.13 Gy[RBE]). PTV D95% ranged from 36.66 Gy[RBE] to 38.65 Gy[RBE] and PTV V100 ranged from 95.47% to 97.95%. For the rectum, V24 was less than 35% (average=14.07 Gy[RBE]; range, 6.22–18.42%, whereas V33.6 Gy[RBE] was less than 10% (average=6.83; range, 3.06 – 9.15%). Rectal mean dose ranged from 4.22 Gy[RBE] to 9.97 Gy[RBE]. For the bladder, V39 was found to be less than 8 cc (average=3.69 cc; range, 0.19–7.68 cc). Bladder mean dose ranged from 4.22 Gy[RBE] to 18.83 Gy[RBE]. For the femoral head, V23 was 0 in all five cases. Conclusion: All five unilateral metallic prosthesis prostate cancer IMPT plans generated with one lateral and two anterior-oblique beams satisfied the dosimetric criteria of PCG-GU002-10 (NCT01230866) protocol.

  6. Development of a 130-mA, 75-kV high voltage column for high-intensity dc proton injectors

    International Nuclear Information System (INIS)

    Sherman, J.; Arvin, A.; Hansborough, L.; Hodgkins, D.; Meyer, E.; Schneider, J.D.; Stevens, R.R. Jr.; Zaugg, T.

    1997-01-01

    A reliable high-voltage (HV) column has been developed for dc proton injectors with applications to high-intensity cw linacs. The HV column is coupled with a microwave-driven plasma generator to produce a 75-keV, 110-mA dc proton beam. Typical proton fraction from this source is 85--90%, requiring the HV column and accelerating electrodes to operate with a 130-mA hydrogen-ion beam current. A glow-discharge, which was caused by the ion source axial magnetic field, was initially observed in the HV column. This problem was solved by scaling the electron production processes, the magnetic field, and the HV column pressure into a favorable regime. A subsequent 168 hour reliability run on the 75-keV injector showed that the ion source (plasma generator and HV column) has >98% beam availability

  7. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Sun, L.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.; Guo, J. W.; Yang, Y.; Fang, X.

    2016-01-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω 2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE 01 and HE 11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar 12+ , 0.92 emA Xe 27+ , and so on, will be presented

  8. Charge state distribution studies of pure and oxygen mixed krypton ECR plasma - signature of isotope anomaly and gas mixing effect.

    Science.gov (United States)

    Kumar, Pravin; Mal, Kedar; Rodrigues, G

    2016-11-01

    We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82 Kr (~11.58%), 83 Kr (~11.49%), 84 Kr (~57%) and 86 Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82 Kr, 86 Kr and 83 Kr, 86 Kr is prominent, whereas the intensity ratio of 86 Kr to 84 Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    Directory of Open Access Journals (Sweden)

    Otiougova Polina

    2017-01-01

    Full Text Available The Paul Scherrer Institute (PSI is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010 [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE [4] as well as to the Swiss liberation limits (LL [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well.

  10. Using a Reduced Spot Size for Intensity-Modulated Proton Therapy Potentially Improves Salivary Gland-Sparing in Oropharyngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Water, Tara A. van de, E-mail: t.a.van.de.water@rt.umcg.nl [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Lomax, Antony J. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Bijl, Hendrik P.; Schilstra, Cornelis [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Hug, Eugen B. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen-PSI (Switzerland); Langendijk, Johannes A. [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

    2012-02-01

    Purpose: To investigate whether intensity-modulated proton therapy with a reduced spot size (rsIMPT) could further reduce the parotid and submandibular gland dose compared with previously calculated IMPT plans with a larger spot size. In addition, it was investigated whether the obtained dose reductions would theoretically translate into a reduction of normal tissue complication probabilities (NTCPs). Methods: Ten patients with N0 oropharyngeal cancer were included in a comparative treatment planning study. Both IMPT plans delivered simultaneously 70 Gy to the boost planning target volume (PTV) and 54 Gy to the elective nodal PTV. IMPT and rsIMPT used identical three-field beam arrangements. In the IMPT plans, the parotid and submandibular salivary glands were spared as much as possible. rsIMPT plans used identical dose-volume objectives for the parotid glands as those used by the IMPT plans, whereas the objectives for the submandibular glands were tightened further. NTCPs were calculated for salivary dysfunction and xerostomia. Results: Target coverage was similar for both IMPT techniques, whereas rsIMPT clearly improved target conformity. The mean doses in the parotid glands and submandibular glands were significantly lower for three-field rsIMPT (14.7 Gy and 46.9 Gy, respectively) than for three-field IMPT (16.8 Gy and 54.6 Gy, respectively). Hence, rsIMPT significantly reduced the NTCP of patient-rated xerostomia and parotid and contralateral submandibular salivary flow dysfunction (27%, 17%, and 43% respectively) compared with IMPT (39%, 20%, and 79%, respectively). In addition, mean dose values in the sublingual glands, the soft palate and oral cavity were also decreased. Obtained dose and NTCP reductions varied per patient. Conclusions: rsIMPT improved sparing of the salivary glands and reduced NTCP for xerostomia and parotid and submandibular salivary dysfunction, while maintaining similar target coverage results. It is expected that rsIMPT improves quality

  11. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-01-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem

  12. Determination of intensity and energy spectrum of neutrons by bombardment of thallium-203 thick target and its copper substrate with 28.5 MeV protons

    International Nuclear Information System (INIS)

    Hajiloo, N.; Raisali, Gh.; Hamidi, S.; Aslani, Gh.

    2007-01-01

    In this research we have determined neutrons spectrum and the intensity that produced from thallium target bombardment. We have applied SRIM and ALICE computer codes to thallium target and its copper substrate for 145 μA of 28.5 MeV incident proton beam from cyclotron Cyclone30. Because of the energy degradation of protons while passing through the thallium target and its copper substrate, the average energy of protons in different depths has been calculated by using SRIM computer code. Then, by applying ALICE computer code for each sub-layer, the neutron production cross sections and their energy spectrum have been calculated to determine the total neutron intensity and spectrum. Using the calculated neutron intensity of 1.22x10 13 n/s as the source, the equivalent dose rate at the distance 6 meters from the target has been calculated by MCNP computer code and the result has been compared with the measured value. The Pb 201 activity has also been calculated as 13.5 Curies. The measured Pb 201 activity by Curie meter CAPINTEC CRC-712 is 13.1 Ci which is in reasonable agreement with the calculated value, bearing in mind the uncertainties in the proposed models and the measurements

  13. The ECR heavy-ion source for ATLAS

    International Nuclear Information System (INIS)

    Pardo, R.C.; Billquist, P.J.

    1989-01-01

    The ATLAS PII-ECR ion source is the first ECR ion source to be designed for operation in a high voltage platform. The source system is required to provide beams of heavy ions with a velocity of 0.01c for subsequent acceleration by the superconducting ATLAS Positive Ion Injector Linac. At present, the ability of the system to provide high charge state ions with velocities up to .01c is probably unique and as such has generated significant interest in the atomic physics community. A beamline for atomic physics has been installed and is now in use. The source began operation in October, 1987. The source capabilities and operating experiences to date will be discussed. 6 refs., 3 figs., 3 tabs

  14. Design of the compact permanent-magnet ECR ion source

    International Nuclear Information System (INIS)

    Park, J. Y.; Ahn, J. K.; Lee, H. S.; Won, M. S.; Lee, B. S.; Bae, J. S.; Bang, J. K.

    2009-01-01

    The Electron Cyclotron Resonance Ion Sources (ECRIS) for multiply charged ion beams keep regularly improving and expanding since the pioneer time of R. Geller and his coworkers about twenty years age. It has been widely utilized in a variety of research areas ranging from atomic and nuclear physics to material sciences. Because of the unique capability of producing highly charged ion beams, the ECR ion source has become increasingly popular in heavy-ion accelerators where the principle of acceleration sensitively depends on the charge-to-mass ratio (q=M) of the injected positive ion beam. The potential usages of beam based research development is still developing and there are plenty of rooms to be part of it. On the basis of ECR ion source technology, we will explore possible applications in the field of plasma technology, radiation technology, plastic deformation, adding more and new functionality by implantation, MEMS applications, developing new generation mass analysis system, fast neutron radiography system, etc

  15. Treatment planning study comparing proton therapy, RapidArc and intensity modulated radiation therapy for a synchronous bilateral lung cancer case

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2014-03-01

    Full Text Available Purpose: The main purpose of this study is to perform a treatment planning study on a synchronous bilateral non-small cell lung cancer case using three treatment modalities: uniform scanning proton therapy, RapidArc, and intensity modulated radiation therapy (IMRT. Methods: The maximum intensity projection (MIP images obtained from the 4 dimensional-computed tomography (4DCT scans were used for delineation of tumor volumes in the left and right lungs. The average 4D-CT was used for the treatment planning among all three modalities with identical patient contouring and treatment planning goal. A proton therapy plan was generated in XiO treatment planning system (TPS using 2 fields for each target. For a comparative purpose, IMRT and RapidArc plans were generated in Eclipse TPS. Treatment plans were generated for a total dose of 74 CGE or Gy prescribed to each planning target volume (PTV (left and right with 2 CGE or Gy per fraction. In IMRT and RapidArc plans, normalization was done based on PTV coverage values in proton plans. Results: The mean PTV dose deviation from the prescription dose was lower in proton plan (within 3.4%, but higher in IMRT (6.5% to 11.3% and RapidArc (3.8% to 11.5% plans. Proton therapy produced lower mean dose to the total lung, heart, and esophagus when compared to IMRT and RapidArc. The relative volume of the total lung receiving 20, 10, and 5 CGE or Gy (V20, V10, and V5, respectively were lower using proton therapy than using IMRT, with absolute differences of 9.71%, 22.88%, and 39.04%, respectively. The absolute differences in the V20, V10, and V5 between proton and RapidArc plans were 4.84%, 19.16%, and 36.8%, respectively, with proton therapy producing lower dosimetric values. Conclusion: Based on the results presented in this case study, uniform scanning proton therapy has a dosimetric advantage over both IMRT and RapidArc for a synchronous bi-lateral NSCLC, especially for the normal lung tissue, heart, and

  16. 1+-n+ ECR ION SOURCE DEVELOPMENT TEST STAND

    International Nuclear Information System (INIS)

    Donald P. May

    2006-01-01

    A test stand for the investigation of 1+-n+ charge boosting using an ECR ion sources is currently being assembled at the Texas A and M Cyclotron Institute. The ultimate goal is to relate the charge-boosting of ions of stable species to possible charge-boosting of ions of radioactive species extracted from the diverse, low-charge-state ion sources developed for radioactive ion beams

  17. Testing methods of ECR ion source experimental platform

    International Nuclear Information System (INIS)

    Zhou Changgeng; Hu Yonghong; Li Yan

    2006-12-01

    The principle and structure of ECR ion source experimental platform were introduce. The testing methods of the parameters of single main component and the comprehensive parameters under the condition of certain beam current and beam spot diameter were summarized in process of manufacturing. Some appropriate testing dates were given. The existent questions (the parameters of plasma density in discharge chamber and accurate hydrogen flow, etc. can not be measured in operation) and resolutions were also put forward. (authors)

  18. 14 MV pelletron accelerator and superconducting ECR ion source

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR 14UD Pelletron Accelerator at Mumbai has completed more than two and a half decade of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic and molecular, condensed matter physics and material science. The application areas include accelerator mass spectrometry, production of track-etch membranes, radioisotopes production, radiation damage studies and secondary neutron production for cross section measurement etc. Over the years, numerous developmental activities have been carried out in-house that have resulted in improving the overall performance and uptime of the accelerator and has also made possible to initiate variety of application oriented programmes. Since the SF 6 pressure vessels have been in operation for about 29 years, a comprehensive refurbishment and retrofitting work is carried out to comply with the safety recommendations. Recently, the beam trials were conducted with 18 GHz superconducting ECR (Electron Cyclotron Resonance) Ion Source system at Van-de-Graaff as per BARC Safety Council permission. Various ion beams with different charge states were extracted and mass analyzed and the beam quality was measured by recording their transverse emittance in situ. Experimental measurements pertaining to projectile X-rays Spectroscopy were carried out using variety of ion beams at variable energies. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A ∼60 region with E∼5 MeV/A. In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator was initiated under plan project. This heavy ion accelerator essentially comprises of a superconducting ECR ion source, room temperature RFQ (Radio Frequency Quadrupole) followed by superconducting Niobium resonators as accelerating elements. This talk will provide an overview of the developmental activities and the safety features

  19. Characterization of atomic oxygen from an ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, M; Bhoraskar, V N; Mandale, A B; Sainkar, S R; Bhoraskar, S V

    2002-01-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ∼1x10 20 to ∼10x10 20 atom m -3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe

  20. Characterization of atomic oxygen from an ECR plasma source

    Science.gov (United States)

    Naddaf, M.; Bhoraskar, V. N.; Mandale, A. B.; Sainkar, S. R.; Bhoraskar, S. V.

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ~1×1020 to ~10×1020 atom m-3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  1. Characterization of atomic oxygen from an ECR plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Bhoraskar, V N [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Mandale, A B [National Chemical Laboratory, Pashan, Pune 411008 (India); Sainkar, S R [National Chemical Laboratory, Pashan, Pune 411008 (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from {approx}1x10{sup 20} to {approx}10x10{sup 20} atom m{sup -3} as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  2. Development of the 3rd Generation ECR ion source

    International Nuclear Information System (INIS)

    Lyneis, C.M.; Xie, Z.Q.; Taylor, C.E.

    1997-09-01

    The LBNL 3rd Generation ECR ion source has progressed from a concept to the fabrication of a full scale prototype superconducting magnet structure. This new ECR ion source will combine the recent ECR ion source techniques that significantly enhance the production of high charge state ions. The design includes a plasma chamber made from aluminum to provide additional cold electrons, three separate microwave feeds to allow multiple-frequency plasma heating (at 10, 14 and 18 GHz or at 6, 10 and 14 GHz) and very high magnetic mirror fields. The design calls for mirror fields of 4 T at injection and 3 T at extraction and for a radial field strength at the wall of 2.4 T. The prototype superconducting magnet structure which consists of three solenoid coils and six race track coils with iron poles forming the sextupole has been tested in a vertical dewar. After training, the sextupole magnet reached 105% of its design current with the solenoids off. With the solenoids operating at approximately 70% of their full design field, the sextuple coils operated at 95% of the design value which corresponds to a sextupole field strength at the plasma wall of more than 2.1 T

  3. Commissioning of the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.

    2003-01-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. The magnetic field strength has been designed for optimum operation at 28 GHz. The four-year VENUS project has recently achieved two major milestones: The first plasma was ignited in June, the first mass-analyzed high charge state ion beam was extracted in September of 2002. The pa per describes the ongoing commissioning. Initial results including first emittance measurements are presented

  4. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV

    Directory of Open Access Journals (Sweden)

    S. Busold

    2014-03-01

    Full Text Available We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 10^{9} particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E_{0} at FWHM. A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf field is applied via a rf cavity for energy compression at a synchronous phase of -90  deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  5. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  6. SU-D-304-04: Pre-Clinical Feasibility Study for Intensity Modulated Grid Proton Therapy (IMgPT) Using a Newly Developed Delivery System

    International Nuclear Information System (INIS)

    Tsiamas, P; Moskvin, V; Shin, J; Axente, M; Pirlepesov, F; Krasin, M; Merchant, T; Farr, J

    2015-01-01

    Purpose: The purpose of the current study was to characterize and evaluate intensity-modulated proton grid therapy (IMgPT) using a clinical proton beam. Methods: A TOPAS MC model of a new developmental mode (pre-clinical) of the Hitachi proton therapy system (PROBEAT) was used for simulation and characterization of proton grid therapy. TOPAS simulations of different energy ranges, depths and spot separation distances were performed. LET spectra for various energies and depths were produced with FLUKA MC code for evaluation potential interplay between planning parameters and their effect on the characterization of areas (valley) between spots. IMgPT planning aspects (spot spacing, skin dose, peak-to-valley ratios, beam selection, etc.) were evaluated for different phantom and patient cases. Raysearch software (v4.51) was used to perform the evaluation. Results: Calculated beam peak-to-valley ratios scenarios showed strong energy and depth dependence with ratios to be larger for higher energies and shallower depths. Peak-to-valley ratios for R90 range and for spot spacing of 1cm varied from 30% (E = 221.3 MeV, depth 30.6 cm) to 80% (E = 70.3 MeV, depth 4 cm). LET spectra calculations showed spectral hardening with depth, which might potential increase, spot separation distance and improve peak-to-valley ratios. IMgPT optimization, using constant spot spacing, showed skin dose reduction between peak regions of dose due to the irradiation of less skin. Single beam for bulky shallower tumors might be a potential candidate for proton grid therapy. Conclusions: Proton grid therapy using a clinical beam is a promising technique that reduces skin dose between peak regions of dose and may be suitable for the treatment of shallow tumors. IMgPT may be considered for use when bystander effects in off peak regions would be appropriate

  7. SU-D-304-04: Pre-Clinical Feasibility Study for Intensity Modulated Grid Proton Therapy (IMgPT) Using a Newly Developed Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Tsiamas, P; Moskvin, V; Shin, J; Axente, M; Pirlepesov, F; Krasin, M; Merchant, T; Farr, J [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2015-06-15

    Purpose: The purpose of the current study was to characterize and evaluate intensity-modulated proton grid therapy (IMgPT) using a clinical proton beam. Methods: A TOPAS MC model of a new developmental mode (pre-clinical) of the Hitachi proton therapy system (PROBEAT) was used for simulation and characterization of proton grid therapy. TOPAS simulations of different energy ranges, depths and spot separation distances were performed. LET spectra for various energies and depths were produced with FLUKA MC code for evaluation potential interplay between planning parameters and their effect on the characterization of areas (valley) between spots. IMgPT planning aspects (spot spacing, skin dose, peak-to-valley ratios, beam selection, etc.) were evaluated for different phantom and patient cases. Raysearch software (v4.51) was used to perform the evaluation. Results: Calculated beam peak-to-valley ratios scenarios showed strong energy and depth dependence with ratios to be larger for higher energies and shallower depths. Peak-to-valley ratios for R90 range and for spot spacing of 1cm varied from 30% (E = 221.3 MeV, depth 30.6 cm) to 80% (E = 70.3 MeV, depth 4 cm). LET spectra calculations showed spectral hardening with depth, which might potential increase, spot separation distance and improve peak-to-valley ratios. IMgPT optimization, using constant spot spacing, showed skin dose reduction between peak regions of dose due to the irradiation of less skin. Single beam for bulky shallower tumors might be a potential candidate for proton grid therapy. Conclusions: Proton grid therapy using a clinical beam is a promising technique that reduces skin dose between peak regions of dose and may be suitable for the treatment of shallow tumors. IMgPT may be considered for use when bystander effects in off peak regions would be appropriate.

  8. Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    McDonald, Mark W.; Liu, Yuan; Moore, Michael G.; Johnstone, Peter A. S.

    2016-01-01

    To evaluate acute toxicity endpoints in a cohort of patients receiving head and neck radiation with proton therapy or intensity modulated radiation therapy (IMRT). Forty patients received comprehensive head and neck radiation including bilateral cervical nodal radiation, given with or without chemotherapy, for tumors of the nasopharynx, nasal cavity or paranasal sinuses, any T stage, N0-2. Fourteen received comprehensive treatment with proton therapy, and 26 were treated with IMRT, either comprehensively or matched to proton therapy delivered to the primary tumor site. Toxicity endpoints assessed included g-tube dependence at the completion of radiation and at 3 months after radiation, opioid pain medication requirement compared to pretreatment normalized as equivalent morphine dose (EMD) at completion of treatment, and at 1 and 3 months after radiation. In a multivariable model including confounding variables of concurrent chemotherapy and involved nodal disease, comprehensive head and neck radiation therapy using proton therapy was associated with a lower opioid pain requirement at the completion of radiation and a lower rate of gastrostomy tube dependence by the completion of radiation therapy and at 3 months after radiation compared to IMRT. Proton therapy was associated with statistically significant lower mean doses to the oral cavity, esophagus, larynx, and parotid glands. In subgroup analysis of 32 patients receiving concurrent chemotherapy, there was a statistically significant correlation with a greater opioid pain medication requirement at the completion of radiation and both increasing mean dose to the oral cavity and to the esophagus. Proton therapy was associated with significantly reduced radiation dose to assessed non-target normal tissues and a reduced rate of gastrostomy tube dependence and opioid pain medication requirements. This warrants further evaluation in larger studies, ideally with patient-reported toxicity outcomes and quality of life

  9. Potential Benefits of Scanned Intensity-Modulated Proton Therapy Versus Advanced Photon Therapy With Regard to Sparing of the Salivary Glands in Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Water, Tara A. van de; Lomax, Antony J.; Bijl, Hendrik P.; Jong, Marije E. de; Schilstra, Cornelis; Hug, Eugen B.; Langendijk, Johannes A.

    2011-01-01

    Purpose: To test the hypothesis that scanned intensity-modulated proton therapy (IMPT) results in a significant dose reduction to the parotid and submandibular glands as compared with intensity-modulated radiotherapy with photons (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for oropharyngeal cancer. In addition, we investigated whether the achieved dose reductions would theoretically translate into a reduction of salivary dysfunction and xerostomia. Methods and Materials: Ten patients with N0 oropharyngeal carcinoma were used. The intensity-modulated plans delivered simultaneously 70 Gy to the boost planning target volume (PTV2) and 54 Gy to the elective nodal areas (PTV1). The 3D-CRT technique delivered sequentially 70 Gy and 46 Gy to PTV2 and PTV1, respectively. Normal tissue complication probabilities were calculated for salivary dysfunction and xerostomia. Results: Planning target volume coverage results were similar for IMPT and IMRT. Intensity-modulated proton therapy clearly improved the conformity. The 3D-CRT results were inferior to these results. The mean dose to the parotid glands by 3D-CRT (50.8 Gy), IMRT (25.5 Gy), and IMPT (16.8 Gy) differed significantly. For the submandibular glands no significant differences between IMRT and IMPT were found. The dose reductions obtained with IMPT theoretically translated into a significant reduction in normal tissue complication probability. Conclusion: Compared with IMRT and 3D-CRT, IMPT improved sparing of the organs at risk, while keeping similar target coverage results. The dose reductions obtained with IMPT vs. IMRT and 3D-CRT varied widely per individual patient. Intensity-modulated proton therapy theoretically translated into a clinical benefit for most cases, but this requires clinical validation.

  10. Proton Therapy as Salvage Treatment for Local Relapse of Prostate Cancer Following Cryosurgery or High-Intensity Focused Ultrasound

    International Nuclear Information System (INIS)

    Holtzman, Adam L.; Hoppe, Bradford S.; Letter, Haley P.; Bryant, Curtis; Nichols, Romaine C.; Henderson, Randal H.; Mendenhall, William M.; Morris, Christopher G.; Williams, Christopher R.; Li, Zuofeng; Mendenhall, Nancy P.

    2016-01-01

    Purpose: Local recurrence of prostate cancer after cryosurgery (CS) and high-intensity focused ultrasound (HIFU) is an emerging problem for which optimal management is unknown. Proton therapy (PT) may offer advantages over other local therapeutic options. This article reviews a single institution's experience using PT for salvage of local recurrent disease after HIFU or CS. Methods and Materials: We reviewed the medical records of 21 consecutive patients treated with salvage PT following a local recurrence of prostate cancer after CS (n=12) or HIFU (n=9) between January 2007 and July 2014. Patients were treated to a median dose of 74 Gy(relative biological effectiveness [RBE]; range: 74-82 Gy[RBE]) and 8 patients received androgen deprivation therapy with radiation therapy. Patients were evaluated for quality of life (QOL) by using the Expanded Prostate Index Composite questionnaire and toxicity by using Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment, every 6 months for 2 years after treatment, and then annually. Results: Median follow-up was 37 months (range: 6-95 months). The 3-year biochemical progression-free survival (bPFS) rate was 77%. The 3-year grade 3 toxicity rate was 17%; however, 2 of these patients had pre-existing grade 3 GU toxicities from their HIFU/CRYO prior to PT. At 1 year, bowel summary, urinary incontinence, and urinary obstructive QOL scores declined, but only the bowel QOL score at 12 months met the minimally important difference threshold. Conclusions: PT achieved a high rate of bPFS with acceptable toxicity and minimal changes in QOL scores compared with baseline pre-PT functions. Although most patients have done fairly well, the study size is small, follow-up is short, and early results suggest that outcomes with PT for salvage after HIFU or CS failure are inferior to outcomes with PT given in the de novo setting with respect to disease control, toxicity, and QOL.

  11. Impact of Spot Size and Spacing on the Quality of Robustly Optimized Intensity Modulated Proton Therapy Plans for Lung Cancer.

    Science.gov (United States)

    Liu, Chenbin; Schild, Steven E; Chang, Joe Y; Liao, Zhongxing; Korte, Shawn; Shen, Jiajian; Ding, Xiaoning; Hu, Yanle; Kang, Yixiu; Keole, Sameer R; Sio, Terence T; Wong, William W; Sahoo, Narayan; Bues, Martin; Liu, Wei

    2018-06-01

    To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large

  12. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    Science.gov (United States)

    Otiougova, Polina; Bergmann, Ryan; Kiselev, Daniela; Talanov, Vadim; Wohlmuther, Michael

    2017-09-01

    The Paul Scherrer Institute (PSI) is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA) has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN) are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010) [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE) [4] as well as to the Swiss liberation limits (LL) [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well. Note to the reader: the pdf file has been changed on September 22, 2017.

  13. Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei, E-mail: Liu.Wei@mayo.edu [Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona (United States); Schild, Steven E. [Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona (United States); Chang, Joe Y.; Liao, Zhongxing [Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Yu-Hui [Division of Health Sciences Research, Mayo Clinic Arizona, Phoenix, Arizona (United States); Wen, Zhifei [Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shen, Jiajian; Stoker, Joshua B.; Ding, Xiaoning; Hu, Yanle [Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona (United States); Sahoo, Narayan [Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Herman, Michael G. [Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota (United States); Vargas, Carlos; Keole, Sameer; Wong, William; Bues, Martin [Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona (United States)

    2016-05-01

    Purpose: The purpose of this study was to compare the impact of uncertainties and interplay on 3-dimensional (3D) and 4D robustly optimized intensity modulated proton therapy (IMPT) plans for lung cancer in an exploratory methodology study. Methods and Materials: IMPT plans were created for 11 nonrandomly selected non-small cell lung cancer (NSCLC) cases: 3D robustly optimized plans on average CTs with internal gross tumor volume density overridden to irradiate internal target volume, and 4D robustly optimized plans on 4D computed tomography (CT) to irradiate clinical target volume (CTV). Regular fractionation (66 Gy [relative biological effectiveness; RBE] in 33 fractions) was considered. In 4D optimization, the CTV of individual phases received nonuniform doses to achieve a uniform cumulative dose. The root-mean-square dose-volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under the RVH curve (AUCs) were used to evaluate plan robustness. Dose evaluation software modeled time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Dose-volume histogram (DVH) indices comparing CTV coverage, homogeneity, and normal tissue sparing were evaluated using Wilcoxon signed rank test. Results: 4D robust optimization plans led to smaller AUC for CTV (14.26 vs 18.61, respectively; P=.001), better CTV coverage (Gy [RBE]) (D{sub 95%} CTV: 60.6 vs 55.2, respectively; P=.001), and better CTV homogeneity (D{sub 5%}-D{sub 95%} CTV: 10.3 vs 17.7, resspectively; P=.002) in the face of uncertainties. With interplay effect considered, 4D robust optimization produced plans with better target coverage (D{sub 95%} CTV: 64.5 vs 63.8, respectively; P=.0068), comparable target homogeneity, and comparable normal tissue protection. The benefits from 4D robust optimization were most obvious for the 2 typical stage III lung cancer patients. Conclusions: Our exploratory methodology study showed

  14. A Prospective Comparison of the Effects of Interfractional Variations on Proton Therapy and Intensity Modulated Radiation Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Trofimov, Alexei; Sharp, Gregory C.; Wang, Yi; Zietman, Anthony L.; Efstathiou, Jason A.; Lu, Hsiao-Ming

    2016-05-01

    Purpose: To quantify and compare the impact of interfractional setup and anatomic variations on proton therapy (PT) and intensity modulated radiation therapy (IMRT) for prostate cancer. Methods and Materials: Twenty patients with low-risk or intermediate-risk prostate cancer randomized to receive passive-scattering PT (n=10) and IMRT (n=10) were selected. For both modalities, clinical treatment plans included 50.4 Gy(RBE) to prostate and proximal seminal vesicles, and prostate-only boost to 79.2 Gy(RBE) in 1.8 Gy(RBE) per fraction. Implanted fiducials were used for prostate localization and endorectal balloons were used for immobilization. Patients in PT and IMRT arms received weekly computed tomography (CT) and cone beam CT (CBCT) scans, respectively. The planned dose was recalculated on each weekly image, scaled, and mapped onto the planning CT using deformable registration. The resulting accumulated dose distribution over the entire treatment course was compared with the planned dose using dose-volume histogram (DVH) and γ analysis. Results: The target conformity index remained acceptable after accumulation. The largest decrease in the average prostate D{sub 98} was 2.2 and 0.7 Gy for PT and IMRT, respectively. On average, the mean dose to bladder increased by 3.26 ± 7.51 Gy and 1.97 ± 6.84 Gy for PT and IMRT, respectively. These values were 0.74 ± 2.37 and 0.56 ± 1.90 for rectum. Differences between changes in DVH indices were not statistically significant between modalities. All volume indices remained within the protocol tolerances after accumulation. The average pass rate for the γ analysis, assuming tolerances of 3 mm and 3%, for clinical target volume, bladder, rectum, and whole patient for PT/IMRT were 100/100, 92.6/99, 99.2/100, and 97.2/99.4, respectively. Conclusion: The differences in target coverage and organs at risk dose deviations for PT and IMRT were not statistically significant under the guidelines of this protocol.

  15. Proton Therapy as Salvage Treatment for Local Relapse of Prostate Cancer Following Cryosurgery or High-Intensity Focused Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, Adam L. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Hoppe, Bradford S., E-mail: bhoppe@floridaproton.org [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Letter, Haley P.; Bryant, Curtis; Nichols, Romaine C.; Henderson, Randal H.; Mendenhall, William M.; Morris, Christopher G. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Williams, Christopher R. [Department of Surgery, University of Florida College of Medicine, Jacksonville, Florida (United States); Li, Zuofeng; Mendenhall, Nancy P. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States)

    2016-05-01

    Purpose: Local recurrence of prostate cancer after cryosurgery (CS) and high-intensity focused ultrasound (HIFU) is an emerging problem for which optimal management is unknown. Proton therapy (PT) may offer advantages over other local therapeutic options. This article reviews a single institution's experience using PT for salvage of local recurrent disease after HIFU or CS. Methods and Materials: We reviewed the medical records of 21 consecutive patients treated with salvage PT following a local recurrence of prostate cancer after CS (n=12) or HIFU (n=9) between January 2007 and July 2014. Patients were treated to a median dose of 74 Gy(relative biological effectiveness [RBE]; range: 74-82 Gy[RBE]) and 8 patients received androgen deprivation therapy with radiation therapy. Patients were evaluated for quality of life (QOL) by using the Expanded Prostate Index Composite questionnaire and toxicity by using Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment, every 6 months for 2 years after treatment, and then annually. Results: Median follow-up was 37 months (range: 6-95 months). The 3-year biochemical progression-free survival (bPFS) rate was 77%. The 3-year grade 3 toxicity rate was 17%; however, 2 of these patients had pre-existing grade 3 GU toxicities from their HIFU/CRYO prior to PT. At 1 year, bowel summary, urinary incontinence, and urinary obstructive QOL scores declined, but only the bowel QOL score at 12 months met the minimally important difference threshold. Conclusions: PT achieved a high rate of bPFS with acceptable toxicity and minimal changes in QOL scores compared with baseline pre-PT functions. Although most patients have done fairly well, the study size is small, follow-up is short, and early results suggest that outcomes with PT for salvage after HIFU or CS failure are inferior to outcomes with PT given in the de novo setting with respect to disease control, toxicity, and QOL.

  16. Improvement of highly charged ion production in the ECR source of heavy ions

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    Some physical limitations of the highly charged ion production in the ECR source are analyzed in this report. A few possible ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the numerical simulation of heavy ion production in the ECR ion source is used to examine these ways to improve the ECR source operation according to the CERN program of heavy ion acceleration. copyright 1996 American Institute of Physics

  17. Development of ECR ion source for VEC

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Mallik, C; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1997-12-01

    A 6.4 GHz Electron Cyclotron Resonance Ion Source (ECRIS) was developed at the VEC centre to enable acceleration of heavy ions with the K=130, Variable Energy Cyclotron (VEC). Heavy ions which will be sufficiently energetic after acceleration from the cyclotron will be utilised to explore new fields of research. VEC ECRIS was first made operational in April 1991. Initially the stability and intensity of high charge state (z) beam were poor. Constant efforts were paid to improve source performance. Finally going to high field operation that is improving the plasma confinement, desired stability and high output current were achieved. At present stable {sup 16}O beam up to 50 e{mu}A maximum is available from VEC ECRIS. Many other high- z ion beam of gaseous species are also available. (author) 16 refs., 14 figs., 2 tabs.

  18. Development of ECR ion source for VEC

    International Nuclear Information System (INIS)

    Bose, D.K.; Taki, G.S.; Nabhiraj, P.Y.; Pal, G.; Mallik, C.; Bhandari, R.K.

    1997-01-01

    A 6.4 GHz Electron Cyclotron Resonance Ion Source (ECRIS) was developed at the VEC centre to enable acceleration of heavy ions with the K=130, Variable Energy Cyclotron (VEC). Heavy ions which will be sufficiently energetic after acceleration from the cyclotron will be utilised to explore new fields of research. VEC ECRIS was first made operational in April 1991. Initially the stability and intensity of high charge state (z) beam were poor. Constant efforts were paid to improve source performance. Finally going to high field operation that is improving the plasma confinement, desired stability and high output current were achieved. At present stable 16 O beam up to 50 eμA maximum is available from VEC ECRIS. Many other high- z ion beam of gaseous species are also available. (author)

  19. Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse

    International Nuclear Information System (INIS)

    Fukumi, A.; Nishiuchi, M.; Daido, H.; Li, Z.; Sagisaka, A.; Ogura, K.; Orimo, S.; Kado, M.; Hayashi, Y.; Mori, M.; Bulanov, S.V.; Esirkepov, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Nakamura, S.

    2005-01-01

    A study of proton emission from a 3-μm-thick Ta foil target irradiated by p-, s-, and circularly polarized laser pulses with respect to the target plane has been carried out. Protons with energies up to 880 keV were observed in the target normal direction under the irradiation by the p-polarized laser pulse, which yielded the highest efficiency for proton emission. In contrast, s- and circularly polarized laser pulses gave the maximum energies of 610 and 680 keV, respectively. The difference in the maximum energy between the p- and s-polarized cases was associated with the difference between the sheath fields estimated from electron spectra

  20. CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

    CERN Multimedia

    1969-01-01

    CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

  1. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    Science.gov (United States)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  2. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, H.

    2004-01-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j +ext , and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j +ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects

  3. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. ECR plasma source for heavy ion beam charge neutralization

    Science.gov (United States)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.

  5. SERIJSKA POVEZAVA POS TERMINALA INGENICO 5100 Z NAPRAVO ECR

    OpenAIRE

    Černenšek, Matjaž

    2012-01-01

    Diplomsko delo predstavlja korak naprej k poenostavitvi in pospešitvi izvajanja postopkov finančnih transakcij na prodajnem mestu z uporabo plačilnih kartic in POS terminala. Predstavljena in definirana je ideja fizične povezave dveh naprav, vključenih v ta proces. To sta blagajniška naprava ECR in POS terminal, ki ju z uporabo serijske povezave povežemo tako, da si izmenjujeta podatke za uspešno izvršitev finančne transakcije in druge ključne informacije. Podrobneje je opisana fizična izvedb...

  6. Design of a 'two-ion-source' charge breeder with a dual frequency ECR ion source

    International Nuclear Information System (INIS)

    Naik, D.; Naik, V.; Chakrabarti, A.; Dechoudhury, S.; Nayak, S.K.; Pandey, H.K.; Nakagawa, T.

    2005-01-01

    A charge breeder, 'two-ion-source' has been designed which consists of a surface ionisation source followed by an ECR ion source working in two-frequency mode. In this system low charge state ion beam (1+)of radioactive atoms are obtained from the first ion source close to the target chamber and landed into the ECR where those are captured and become high charged state after undergoing a multi ionisation process. This beam dynamics design has been done to optimise the maximum possible transfer of 1 + beam from the first ion source into the ECR, its full capture within the ECR zone and design of an efficient dual frequency ECR. The results shows that 1 + beam of 100 nA and 1μA (A=100) are successfully transmitted and it's beam size at the centre of ECR zone are 12 mm and 21 mm respectively, which are very less than 65 mm width ECR zone of dual frequency ECR heating at 14 GHz and 10 GHz. (author)

  7. DeVelopment of the high-intensity polarized H- source with proton charge exchange on sodium optically oriented atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1982-01-01

    The results of experimental study on the source of polarized H - ions at polarized electron capture by proton from optically oriented sodium atoms are presented. Circular-polarized dye laser radiation with lamp pumping is used for polarization of highly dense sodium vapors in the pulsed mode. A facility for polarization measurement in the ion source is described. Dependence of the counting rate of metastables for the right and left circular radiation polarization in respect to wave length is presented. The results of measuring the degree of polarization under change of sodium density are revealed. The measurements have disclosed that obtaining of high polarization degree at 20-30% charge exchange effectiveness is possible but large radiation power is required. Use of a dense charge exchange target provides high effectiveness of hte whole polarization process. Yield of polarized H - ions can approach 10 μA/1 mA of the initial proton current

  8. Microgan ECR ion source in a Van de Graaff accelerator terminal

    International Nuclear Information System (INIS)

    Gaubert, G.; Tasset-Maye, O.; Villari, A.C.C.; Bieth, C.; Bougy, W.; Brionne, N.; Donzel, X.; Sineau, A.; Vallerand, C.; Chaves, C.; Gamboni, T.; Geerts, W.; Giorginis, G.; Jaime Tornin, R.; Loevestam, G.; Mondelaers, W.

    2012-01-01

    The Van de Graaff accelerator at IRMM (Institute for Reference Materials and Measurements, Geel - Belgium) works since many years providing proton, deuteron and helium beams for nuclear data measurements. The original ion source was of RF type with quartz bottle. This kind of source, as well known, needs regular maintenance for which the accelerator tank must be completely opened. The heavy usage at high currents of the IRMM accelerator necessitated an opening about once every month. Recently, the full permanent magnet Microgan ECR ion source from PANTECHNIK was installed into a new terminal platform together with a solid state amplifier of 50 W, a dedicated dosing system for 4 gases (with respective gas bottles H 2 , D 2 , He and Ar), and a set of dedicated power supplies and electronic devices for the remote tuning of the source. The new system shows a very stable behaviour of the produced beam allowing running the Van de Graaff without maintenance for several months. The paper is followed by the associated poster. (authors)

  9. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    Science.gov (United States)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVSilicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02proton sources).

  10. Statistical properties of turbulence in a toroidal magnetized ECR plasma

    International Nuclear Information System (INIS)

    Yu Yi; Lu Ronghua; Wang Zhijiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu, Wandong

    2008-01-01

    The statistical analyses of fluctuation data measured by electrostatic-probe arrays clearly show that the self-organized criticality (SOC) avalanches are not the dominant behaviors in a toroidal ECR plasma in the SMT (Simple Magnetic Torus) mode of KT-5D device. The f -1 index region in the auto-correlation spectra of the floating potential V f and the ion saturation current I s , which is a fingerprint of a SOC system, ranges only in a narrow frequency band. By investigating the Hurst exponents at increasingly coarse grained time series, we find that at a time scale of τ>100 μs, there exists no or a very weak long-range correlation over two decades in τ. The difference between the PDFs of I s and V f clearly shows a more global nature of the latter. The transport flux induced by the turbulence suggests that the natural intermittency of turbulent transport maybe independent of the avalanche induced by near criticality. The drift instability is dominant in a SMT plasma generated by means of ECR discharges

  11. Particle behavior in an ECR plasma etch tool

    International Nuclear Information System (INIS)

    Blain, M.G.; Tipton, G.D.; Holber, W.M.; Westerfield, P.L.; Maxwell, K.L.

    1993-01-01

    Sources of particles in a close-coupled electron cyclotron resonance (ECR) polysilicon plasma etch source include flaking of films deposited on chamber surfaces, and shedding of material from electrostatic wafer chucks. A large, episodic increase in the number of particles added to a wafer in a clean system is observed more frequently for a plasma-on than for a gas-only source condition. For polymer forming process conditions, particles were added to wafers by a polymer film which was observed to fracture and flake away from chamber surfaces. The presence of a plasma, especially when rf bias is applied to the wafer, caused more particles to be ejected from the walls and added to wafers than the gas-only condition; however, no significant influence was observed with different microwave powers. A study of effect of electrode temperatures on particles added showed that thermophoretic forces are not significant for this ECR configuration. Particles originating from the electrostatic chuck were observed to be deposited on wafers in much larger numbers in the presence of the plasma as compared to gas-only conditions

  12. VUV emission spectroscopy diagnostics of a 14 GHz ECR negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, R., E-mail: duo0364@mail4.doshisha.ac.jp; Ichikawa, T.; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Nishiura, M. [Graduate School of Frontier Sciences The University of Tokyo, Kashiwara, Chiba 277-8561 (Japan); Shimozuma, T. [National lnstitute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-04-08

    Vacuum Ultra Violet(VUV) emission from a 4 cm diameter 2 cm long compact ion source excited by 14 GHz microwave has been investigated. Intensity ratio of band spectrum emission near Ly-α to Ly-α line spectrum is determined from the measured spectrum. which shows preferential excitation of molecules near the entrance of microwave input power. The ratio does not depend strongly upon pressure nor the input microwave power when the intensity is integrated over the volume of the plasma. The spatial distribution of the spectrum intensity ratio exhibits concentrations near microwave inlet and the opposite side where the microwave matching structure is located. The ratio at these peripheral regions is about two times as high as that of the central region. The ratio increased in proportion to the ion source pressure up to about 3.0 Pa, indicating efficient production of high energy electrons by ECR up to this pressure.

  13. Dosimetric comparison to the heart and cardiac substructure in a large cohort of esophageal cancer patients treated with proton beam therapy or Intensity-modulated radiation therapy.

    Science.gov (United States)

    Shiraishi, Yutaka; Xu, Cai; Yang, Jinzhong; Komaki, Ritsuko; Lin, Steven H

    2017-10-01

    To compare heart and cardiac substructure radiation exposure using intensity-modulated radiotherapy (IMRT) vs. proton beam therapy (PBT) for patients with mid- to distal esophageal cancer who received chemoradiation therapy. We identified 727 esophageal cancer patients who received IMRT (n=477) or PBT (n=250) from March 2004 to December 2015. All patients were treated to 50.4Gy with IMRT or to 50.4 cobalt Gray equivalents with PBT. IMRT and PBT dose-volume histograms (DVHs) of the whole heart, atria, ventricles, and four coronary arteries were compared. For PBT patients, passive scattering proton therapy (PSPT; n=237) and intensity-modulated proton therapy (IMPT; n=13) DVHs were compared. Compared with IMRT, PBT resulted in significantly lower mean heart dose (MHD) and heart V5, V10, V20, V30, and V40as well as lower radiation exposure to the four chambers and four coronary arteries. Compared with PSPT, IMPT resulted in significantly lower heart V20, V30, and V40 but not MHD or heart V5 or V10. IMPT also resulted in significantly lower radiation doses to the left atrium, right atrium, left main coronary artery, and left circumflex artery, but not the left ventricle, right ventricle, left anterior descending artery, or right coronary artery. Factors associated with lower MHD included PBT (Pheart and cardiac substructures than IMRT. Long-term studies are necessary to determine how this cardiac sparing effect impacts the development of coronary artery disease and other cardiac complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  15. SU-E-T-33: A Feasibility-Seeking Algorithm Applied to Planning of Intensity Modulated Proton Therapy: A Proof of Principle Study

    International Nuclear Information System (INIS)

    Penfold, S; Casiraghi, M; Dou, T; Schulte, R; Censor, Y

    2015-01-01

    Purpose: To investigate the applicability of feasibility-seeking cyclic orthogonal projections to the field of intensity modulated proton therapy (IMPT) inverse planning. Feasibility of constraints only, as opposed to optimization of a merit function, is less demanding algorithmically and holds a promise of parallel computations capability with non-cyclic orthogonal projections algorithms such as string-averaging or block-iterative strategies. Methods: A virtual 2D geometry was designed containing a C-shaped planning target volume (PTV) surrounding an organ at risk (OAR). The geometry was pixelized into 1 mm pixels. Four beams containing a subset of proton pencil beams were simulated in Geant4 to provide the system matrix A whose elements a-ij correspond to the dose delivered to pixel i by a unit intensity pencil beam j. A cyclic orthogonal projections algorithm was applied with the goal of finding a pencil beam intensity distribution that would meet the following dose requirements: D-OAR < 54 Gy and 57 Gy < D-PTV < 64.2 Gy. The cyclic algorithm was based on the concept of orthogonal projections onto half-spaces according to the Agmon-Motzkin-Schoenberg algorithm, also known as ‘ART for inequalities’. Results: The cyclic orthogonal projections algorithm resulted in less than 5% of the PTV pixels and less than 1% of OAR pixels violating their dose constraints, respectively. Because of the abutting OAR-PTV geometry and the realistic modelling of the pencil beam penumbra, complete satisfaction of the dose objectives was not achieved, although this would be a clinically acceptable plan for a meningioma abutting the brainstem, for example. Conclusion: The cyclic orthogonal projections algorithm was demonstrated to be an effective tool for inverse IMPT planning in the 2D test geometry described. We plan to further develop this linear algorithm to be capable of incorporating dose-volume constraints into the feasibility-seeking algorithm

  16. Study and optimization of a LINAC drift tube for high intensity proton acceleration; Etude et optimisation d'un LINAC a tubes de glissement pour acceleration de forts courants de protons en continu

    Energy Technology Data Exchange (ETDEWEB)

    Bernaudin, P.E

    2002-09-01

    High intensity proton accelerators lead to specific problems related to the need to limit beam losses. The problem is more acute in the low energy part (up to 20 MeV) where the beam transport is the most difficult. The drift tube linac (DTL) remains the reference structure for energies of a few MeV to a few dozens MeV despite the arising of some new cavity types. This thesis purpose is to design such a DTL for a high intensity proton accelerator. Until now, no such continuous wave cavity has ever been operated. To ensure the viability of such an accelerator, a short four cells prototype is designed, built and tested under nominal RF conditions. This prototype is fully representative of a complete machine except for its length. The design complexity comes from the combination of RF electromagnetism, thermal exchanges, mechanics, ultra-vacuum engineering and manufacturing constraints. More specifically, the electromagnets alignment is a primary factor, and reliability, despite being usually of secondary importance in particles accelerator science, is here a major concern considering potential industrial applications of this machine. The prototype design includes the cavity itself, but also quadrupole electromagnets whose feasibility is a limiting factor, considering the very small space available to them. Two different magnet types and associated drift tubes are studied and manufactured, to be tested in the prototype cavity. The experimental part is focused on mechanical and thermal aspects. The electromagnetic properties of the cavity are also checked. As a conclusion of this thesis, technical and conceptual improvements as suggested by the manufacturing and experimental phases are presented, to be implemented in a complete cavity. (author)

  17. Measurements of bremsstrahlung spectra of Lanzhou ECR Ion Source No. 3 (LECR3)

    International Nuclear Information System (INIS)

    Zhao, H.Y.; Zhao, H.W.; Ma, X.W.; Zhang, S.F.; Feng, W.T.; Zhu, X.L.; Zhang, Z.M.; He, W.; Sun, L.T.; Feng, Y.C.; Cao, Y.; Li, J.Y.; Li, X.X.; Wang, H.; Ma, B.H.

    2006-01-01

    In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou)

  18. Hydrogen dissociation in the deposition of GaN films with ECR-PECVD process

    Science.gov (United States)

    Fu, S. L.; Wang, C. A.; Ding, L. C.; Qin, Y. X.

    2018-05-01

    The hydrogen dissociation and its effect on the GaN film growth in the ECR-PECVD process are investigated in this paper. We use N2 and trimethylgallium (TMG) as N and Ga sources respectively in the ECR- PECVD process. The results show that the rate of hydrogen dissociation increases with the microwave power and it becomes higher at high microwave power (> 500 W). However, this population increase of the H species dissociated from the TMG gas in ECR plasma is not enough to change the growth condition from Ga-rich to N-rich.

  19. On-line measurement of microwave power in ECR ion source

    International Nuclear Information System (INIS)

    Zhou Changgeng; Kang Wu; Hu Yonghong; Li Yan; Lou Benchao; Zu Xiulan; Xiong Riheng; Chen Junguang; Li Xiaoyun

    2005-01-01

    It is a new technology to apply an ECR ion source to the neutron generator. Because of the structure limitation, working state of the ECR ion source could not be judged by the color of gas discharging in discharge chamber. Therefore, it was hard to estimate if the ECR ion source was working properly in the neutron generator. The method to resolve the problem was described in this paper. The microwave power was measured on-line by a directional coupler and a small microwave power meter. The ion beam current could be educed from the measured incidence microwave power, and discharge state in discharge chamber could be determined. (authors)

  20. Plasma heating by radiofrequency in the electron cyclotron resonance (ECR)

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da; Aihara, S.; Universidade Estadual de Campinas

    1982-01-01

    The characteristics of the experimental set-up mounted in the Physical Institute of UFF (Brazil) to produce the gas ionization by radio-frequency are shown and its behaviour when confined by a mirror-geometry magnetic field is studied. The diagnostic is made by a langmuir probe and a prisme spectrogaph is used in order to verify the nature of the ionized helium gas and the degree of purity through its spectral lines. The argon ionization by R.f. is produced in the 'LISA' machine obtain a plasma column of approximatelly 60 cm length and with the Langmuir probe the study of the profile distribution of the plasma parameters such as: electron temperature and density and floating potencial in function of the magnetic field variation is made. The main focus is given to the fundamental electron cyclotron resonance (ECR). A new expression on the ion saturation current (I sub(is)) produced by radiofrequency is developed. (L.C.) [pt

  1. ECR-MAPK regulation in liver early development.

    Science.gov (United States)

    Zhao, Xiu-Ju; Zhuo, Hexian

    2014-01-01

    Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region)-socs2 (-SH2-containing signals/receptor tyrosine kinases)-ppp2r2a/pik3c3 (MAPK signaling)-hsd3b5/cav2 (metabolism/organization) plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  2. Particle flux at the outlet of an Ecr plasma source

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Gonzalez D, J.

    1999-01-01

    The necessity of processing big material areas this has resulted in the development of plasma sources with the important property to be uniform in these areas. Also the continuous diminution in the size of substrates to be processed have stimulated the study of models which allow to predict the control of energy and the density of the ions and neutral particles toward the substrate. On the other hand, there are other applications of the plasma sources where it is very necessary to understand the effects generated by the energetic fluxes of ions and neutrals. These fluxes as well as another beneficial effects can improve the activation energy for the formation and improvement of the diffusion processes in the different materials. In this work, using the drift kinetic approximation is described a model to calculate the azimuthal and radial fluxes in the zone of materials processing of an Ecr plasma source type. The results obtained are compared with experimental results. (Author)

  3. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V.; Mandale, A.B.

    2002-01-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2 . Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping

  4. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    Science.gov (United States)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S. V.; Mandale, A. B.

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  5. Modification of sensing properties of metallophthalocyanine by an ECR plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in; Mandale, A.B

    2002-07-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H{sub 2} and 75% N{sub 2}. Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping.

  6. ECR-MAPK Regulation in Liver Early Development

    Directory of Open Access Journals (Sweden)

    Xiu-Ju Zhao

    2014-01-01

    Full Text Available Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region-socs2 (-SH2-containing signals/receptor tyrosine kinases-ppp2r2a/pik3c3 (MAPK signaling-hsd3b5/cav2 (metabolism/organization plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  7. Modification of sensing properties of metallophthalocyanine by an Ecr plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Chakane, S.; Jain, S.; Bhoraskar, S.V.; Mandale, A.B

    2004-01-01

    Lead Phthalocyanine (PC) tetracarboxylic acid prepared by chemical reaction from phthalic anhydride and urea was used as sensor element for sensing humidity and alcohol vapors. The surface was treated with electron cyclotron resonance (ECR) plasma consisting of 25% H 2 and 75% N 2 . Remarkable improvement in the selectivity with respect to ethyl alcohol and reduction in the sensitivity for humidity was observed after this treatment. The response and recovery time for resistive sensing were of the order of 50 and 30 s respectively. X-ray photoelectron spectroscopy and Fourier transformation infra red studies showed that the increased cross-linking of PC is responsible for the creation of new functional groups which have imparted the sensing of alcohol vapor through extrinsic doping. (author)

  8. TH-A-19A-12: A GPU-Accelerated and Monte Carlo-Based Intensity Modulated Proton Therapy Optimization System

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Wan Chan Tseung, H; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    Purpose: To develop a clinically applicable intensity modulated proton therapy (IMPT) optimization system that utilizes more accurate Monte Carlo (MC) dose calculation, rather than analytical dose calculation. Methods: A very fast in-house graphics processing unit (GPU) based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified gradient based optimization method was used to achieve the desired dose volume histograms (DVH). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve the spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that Result from maintaining the intrinsic CT resolution and large number of proton spots. The dose effects were studied particularly in cases with heterogeneous materials in comparison with the commercial treatment planning system (TPS). Results: For a relatively large and complex three-field bi-lateral head and neck case (i.e. >100K spots with a target volume of ∼1000 cc and multiple surrounding critical structures), the optimization together with the initial MC dose influence map calculation can be done in a clinically viable time frame (i.e. less than 15 minutes) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The DVHs of the MC TPS plan compare favorably with those of a commercial treatment planning system. Conclusion: A GPU accelerated and MC-based IMPT optimization system was developed. The dose calculation and plan optimization can be performed in less than 15 minutes on a hardware system costing less than 45,000 dollars. The fast calculation and optimization makes the system easily expandable to robust and multi-criteria optimization. This work was funded in part by a grant from Varian Medical Systems, Inc.

  9. TH-A-19A-12: A GPU-Accelerated and Monte Carlo-Based Intensity Modulated Proton Therapy Optimization System

    International Nuclear Information System (INIS)

    Ma, J; Wan Chan Tseung, H; Beltran, C

    2014-01-01

    Purpose: To develop a clinically applicable intensity modulated proton therapy (IMPT) optimization system that utilizes more accurate Monte Carlo (MC) dose calculation, rather than analytical dose calculation. Methods: A very fast in-house graphics processing unit (GPU) based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified gradient based optimization method was used to achieve the desired dose volume histograms (DVH). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve the spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that Result from maintaining the intrinsic CT resolution and large number of proton spots. The dose effects were studied particularly in cases with heterogeneous materials in comparison with the commercial treatment planning system (TPS). Results: For a relatively large and complex three-field bi-lateral head and neck case (i.e. >100K spots with a target volume of ∼1000 cc and multiple surrounding critical structures), the optimization together with the initial MC dose influence map calculation can be done in a clinically viable time frame (i.e. less than 15 minutes) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The DVHs of the MC TPS plan compare favorably with those of a commercial treatment planning system. Conclusion: A GPU accelerated and MC-based IMPT optimization system was developed. The dose calculation and plan optimization can be performed in less than 15 minutes on a hardware system costing less than 45,000 dollars. The fast calculation and optimization makes the system easily expandable to robust and multi-criteria optimization. This work was funded in part by a grant from Varian Medical Systems, Inc

  10. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions

    International Nuclear Information System (INIS)

    Lomax, A J

    2008-01-01

    Simple tools for studying the effects of inter-fraction and inter-field motions on intensity modulated proton therapy (IMPT) plans have been developed, and have been applied to both 3D and distal edge tracking (DET) IMPT plans. For the inter-fraction motion, we have investigated the effects of misaligned density heterogeneities, whereas for the inter-field motion analysis, the effects of field misalignment on the plans have been assessed. Inter-fraction motion problems have been analysed using density differentiated error (DDE) distributions, which specifically show the additional problems resulting from misaligned density heterogeneities for proton plans. Likewise, for inter-field motion, we present methods for calculating motion differentiated error (MDE) distributions. DDE and MDE analysis of all plans demonstrate that the 3D approach is generally more robust to both inter-fraction and inter-field motions than the DET approach, but that strong in-field dose gradients can also adversely affect a plan's robustness. An important additional conclusion is that, for certain IMPT plans, even inter-fraction errors cannot necessarily be compensated for by the use of a simple PTV margins, implying that more sophisticated tools need to be developed for uncertainty management and assessment for IMPT treatments at the treatment planning level

  11. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Togao, Osamu; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Keupp, Jochen [Philips Research, Hamburg (Germany); Yoshimoto, Koji; Kuga, Daisuke; Iihara, Koji [Kyushu University, Department of Neurosurgery, Graduate School of Medical Sciences, Fukuoka (Japan); Yoneyama, Masami [Philips Electronics Japan, Tokyo (Japan); Suzuki, Satoshi O.; Iwaki, Toru [Kyushu University, Department of Neuropathology, Graduate School of Medical Sciences, Fukuoka (Japan); Takahashi, Masaya [Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX (United States)

    2017-02-15

    To investigate whether amide proton transfer (APT) MR imaging can differentiate high-grade gliomas (HGGs) from low-grade gliomas (LGGs) among gliomas without intense contrast enhancement (CE). This retrospective study evaluated 34 patients (22 males, 12 females; age 36.0 ± 11.3 years) including 20 with LGGs and 14 with HGGs, all scanned on a 3T MR scanner. Only tumours without intense CE were included. Two neuroradiologists independently performed histogram analyses to measure the 90th-percentile (APT{sub 90}) and mean (APT{sub mean}) of the tumours' APT signals. The apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) were also measured. The parameters were compared between the groups with Student's t-test. Diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis. The APT{sub 90} (2.80 ± 0.59 % in LGGs, 3.72 ± 0.89 in HGGs, P = 0.001) and APT{sub mean} (1.87 ± 0.49 % in LGGs, 2.70 ± 0.58 in HGGs, P = 0.0001) were significantly larger in the HGGs compared to the LGGs. The ADC and rCBV values were not significantly different between the groups. Both the APT{sub 90} and APT{sub mean} showed medium diagnostic performance in this discrimination. APT imaging is useful in discriminating HGGs from LGGs among diffuse gliomas without intense CE. (orig.)

  12. Moderator/collimator for a proton/deuteron linac to produce a high-intensity, high-quality thermal neutron beam for neutron radiography

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Imel, G.R.; McMichael, G.E.

    1995-01-01

    Reactor based high resolution neutron radiography facilities are able to deliver a well-collimated (L/D ≥100) thermal flux of 10 6 n/cm 2 ·sec to an image plane. This is well in excess of that achievable with the present accelerator based systems such as sealed tube D-T sources, Van der Graaff's, small cyclotrons, or low duty factor linacs. However, continuous wave linacs can accelerate tens of milliamperes of protons to 2.5 to 4 MeV. The MCNP code has been used to analyze target/moderator configurations that could be used with Argonne's Continuous Wave Linac (ACWL). These analyses have shown that ACWL could be modified to generate a neutron beam that has a high intensity and is of high quality

  13. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-01-01

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy for primary NSCLC in 1998–2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient’s preradiation value at the following time intervals: 0–4 (T1), 5–8 (T2), and 9–12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy

  14. Previously unreported intense absorption band and the pK/sub A/ of protonated triplet methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, T.; Osif, T.L.; Lichtin, N.N.

    1979-01-01

    Excitation by a Q-switched giant ruby laser (1.2 joule output at 694 nm, approx. 50 nsec flash) of 2-10 ..mu..M solutions of methylene blue in water, 30% ethanol in water or 50 v/v% water - CH/sub 3/CN at pH values in the range 2.0 - 9.3 converted the dye essentially completely to its T/sub 1/ state. The absorption spectrum of T/sub 1/ dye was measured in different media at pH 2.0 and 8.2 by kinetic spectrophotometry. Previously reported T-T absorption in the violet in acidic and alkaline solutions and in the near infrared in alkaline solution was confirmed. Values found for these absorptions in the present work with 30% ethanol in water as solvent are lambda/sub max/ approx. 370 nm, epsilon/sub max/ approx. 13,200 M/sup -1/ cm/sup -1/ at pH 2 and lambda/sub max/ approx. 420 nm, epsilon/sub max/ approx. 9,000 M/sup -1/ cm/sup -1/, lambda/sub max/ approx. 840 nm, epsilon/sub max/ approx. 20,000 M/sup -1/ cm/sup -1/ at pH 8.2. Long-wavelength T-T absorption in acidic solution is reported here for the first time: lambda/sub max/ approx. 680 nm, epsilon/sub max/ approx. 19,000 M/sup -1/ cm/sup -1/ in 30% ethanol in water at pH 2. Observation of a pH-independent isobestic point approx. 720 nm confirms that the long-wavelength absorptions are due to different protonated states of the same species, MB/sup +/(T/sub 1/) and MBH/sup 2 +/(T/sub 1/). The pK/sub A/ of MBH/sup 2 +/(T/sub 1/) in water was determined from the dependence on pH of absorption at 700 and 825 nm to be 7.1/sub 4/ +- .1 and from the kinetics of decay of triplet absorption to be 7.2. The specific rate of protonation of MB/sup +/(T/sub 1/) by H/sub 2/PO/sub 4//sup -/ in water at pH 4.4 was found to be 4.5 +- .4 x 10/sup 8/ M/sup -1/ sec/sup -1/.

  15. [Developing the Japanese version of the Adult Attachment Style Scale (ECR)].

    Science.gov (United States)

    Nakao, Tatsuma; Kato, Kazuo

    2004-06-01

    This study attempted to adapt into Japanese the Adult Attachment Style Scale (ECR: Experiences in Close Relationships inventory) that was constructed by Brennan, Clark, and Shaver (1998), based on 14 existing scales. Of 387 respondents, 231 who reported having been or are currently involved in romantic relationships were employed for final analysis. We examined validities of the Japanese version of ECR in the two ways: (1) Examining the correlations between "Anxiety" and Self-esteem scale by Rosenberg (1965) which were theoretically related to Self-view, and the correlations between "Avoidance" and Other-view scale by Kato (1999b) which were theoretically related to Other-view; (2) whether or not ECR represents the features of four attachment styles as classified by Relationship Questionnaire (RQ; Bartholomew & Horowitz, 1991). The results supported our expectations. This Japanese version of ECR was demonstrated to have adequate psychometric properties in validity and reliability.

  16. Ion mixing and numerical simulation of different ions produced in the ECR ion source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs

  17. Efficient Consumer Response (ECR: a survey of the Australian grocery industry

    Directory of Open Access Journals (Sweden)

    Paula Swatman

    1998-05-01

    Full Text Available Efficient consumer response (ECR is a U.S. supply chain management strategy which attempts to address the inefficiencies which have led to excessive inventory and unnecessary costs at all levels within the grocery industry supply chain. This paper discusses the traditional grocery store format, the supermarket, and the ways in which inefficient business practices developed in the U.S. grocery supply chain; and discusses the major business activities needed for successful implementation of ECR. The paper then presents a brief summary of the results of a survey of ECR knowledge and usage within the Australian grocery industry, which is the initial phase of a long term research project whose main purpose is to evaluate ECR as it applies to that industry.

  18. Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Palmer, Matthew B.; Riley, Beverly A.; Mayankkumar, Amin V.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Dong, Lei; Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Likhacheva, Anna; Liao, Zhongxing [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Cox, James D. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-12-01

    Purpose: We have previously found that {<=} 75% of treatment failures after chemoradiotherapy for unresectable esophageal cancer appear within the gross tumor volume and that intensity-modulated (photon) radiotherapy (IMRT) might allow dose escalation to the tumor without increasing normal tissue toxicity. Proton therapy might allow additional dose escalation, with even lower normal tissue toxicity. In the present study, we compared the dosimetric parameters for photon IMRT with that for intensity-modulated proton therapy (IMPT) for unresectable, locally advanced, distal esophageal cancer. Patients and Methods: Four plans were created for each of 10 patients. IMPT was delivered using anteroposterior (AP)/posteroanterior beams, left posterior oblique/right posterior oblique (LPO/RPO) beams, or AP/LPO/RPO beams. IMRT was delivered with a concomitant boost to the gross tumor volume. The dose was 65.8 Gy to the gross tumor volume and 50.4 Gy to the planning target volume in 28 fractions. Results: Relative to IMRT, the IMPT (AP/posteroanterior) plan led to considerable reductions in the mean lung dose (3.18 vs. 8.27 Gy, p < .0001) and the percentage of lung volume receiving 5, 10, and 20 Gy (p {<=} .0006) but did not reduce the cardiac dose. The IMPT LPO/RPO plan also reduced the mean lung dose (4.9 Gy vs. 8.2 Gy, p < .001), the heart dose (mean cardiac dose and percentage of the cardiac volume receiving 10, 20, and 30 Gy, p {<=} .02), and the liver dose (mean hepatic dose 5 Gy vs. 14.9 Gy, p < .0001). The IMPT AP/LPO/RPO plan led to considerable reductions in the dose to the lung (p {<=} .005), heart (p {<=} .003), and liver (p {<=} .04). Conclusions: Compared with IMRT, IMPT for distal esophageal cancer lowered the dose to the heart, lung, and liver. The AP/LPO/RPO beam arrangement was optimal for sparing all three organs. The dosimetric benefits of protons will need to be tailored to each patient according to their specific cardiac and pulmonary risks. IMPT for

  19. Compact permanent magnet H⁺ ECR ion source with pulse gas valve.

    Science.gov (United States)

    Iwashita, Y; Tongu, H; Fuwa, Y; Ichikawa, M

    2016-02-01

    Compact H(+) ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained.

  20. Preliminary Ionization Efficiencies of 11C and 14O with the LBNL ECR Ion Sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Cerny, J.; Guo, F.Q.; Joosten, R.; Larimer, R.M.; Lyneis, C.M.; McMahan, P.; Norman, E.B.; O'Neil, J.P.; Powell, J.; Rowe, M.W.; VanBrocklin, H.F.; Wutte, D.; Xu, X.J.; Haustein, P.

    1998-01-01

    High charge states, up to fully stripped 11 C and 14 O ion, beams have been produced with the electron cyclotron resonance ion sources (LBNL, ECR and AECR-U) at Lawrence Berkeley National Laboratory. The radioactive atoms of 11 C and 14 O were collected in batch mode with an LN 2 trap and then bled into the ECR ion sources. Ionization efficiency as high as 11% for 11 C 4+ was achieved

  1. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muguira, L., E-mail: lmuguira@essbilbao.org [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Portilla, J. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Etxebarria, V. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain)

    2014-03-21

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  2. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    International Nuclear Information System (INIS)

    Muguira, L.; Portilla, J.; Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J.; Etxebarria, V.; Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D.

    2014-01-01

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  3. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  4. Proposal for a heavy ion ECR-source at the PSI-Philips cyclotron

    International Nuclear Information System (INIS)

    Kern, J.

    1989-10-01

    It is proposed by a large community of PSI- and external scientists to install an electron cyclotron resonance (ECR) source for highly charged heavy ions at the PHILIPS (injector I) cyclotron. Such a facility would then allow to produce high intensity ion beams with energies up to 30 MeV/u. A workshop hold in June 1989 clearly showed that with such a machine a large variety of interesting heavy ion experiments could be performed. While at foreign heavy ion centres the main focus is given to basic research in the field of nuclear physics we propose to concentrate the scientific effort at a PSI heavy ion facility mainly onto applications in the fields of atomic physics, chemistry, accelerator mass spectrometry, radiation biology and solid state physics. This is adequate, in view of the broad infrastructure available at PSI together with the existing know-how in many different fields. The proposed machine will thus be of great potential use for a large community. (author) 19 figs., 3 tabs., 82 refs

  5. Simulation of the electromagnetic field in a cylindrical cavity of an ECR ions source

    Science.gov (United States)

    Estupiñán, A.; Orozco, E. A.; Dugar-Zhabon, V. D.; Murillo Acevedo, M. T.

    2017-12-01

    Now there are numerous sources for multicharged ions production, each being designed for certain science or technological objectives. Electron cyclotron resonance ion sources (ECRIS) are best suited for designing heavy ion accelerators of very high energies, because they can generate multicharged ion beams at relatively great intensities. In these sources, plasma heating and its confinement are effected predominantly in minimum-B magnetic traps, this type of magnetic trap consist of two current coils used for the longitudinal magnetic confinement and a hexapole system around the cavity to generate a transversal confinement of the plasma. In an ECRIS, the electron cyclotron frequency and the microwave frequency are maintained equal on a quasi-ellipsoidal surface localized in the trap volume. It is crucial to heat electrons to energies sufficient to ionize K- and L-levels of heavy atoms. In this work, we present the preliminary numerical results concerning the space distribution of TE 111 microwave field in a cylindrical cavity. The 3D microwave field is calculated by solving the Maxwell equations through the Yee’s method. The magnetic field of minimum-B configuration is determined using the Biot-Savart law. The parameters of the magnetic system are that which guarantee the ECR surface location in a zone of a reasonably high microwave tension. Additionally, the accuracy of electric and magnetic fields calculations are checked.

  6. Micro-pulses generation in ECR breakdown stimulated by gyrotron radiation at 37,5 GHz

    International Nuclear Information System (INIS)

    Skalyga, V.; Zorin, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Vodopyanov, A.

    2012-01-01

    The present work is devoted to experimental and theoretical investigation of the creation of short pulsed (< 100 μs) multicharged ion beams. The possibility of quasi-stationary generation of short pulsed beams under conditions of quasi-gasdynamic plasma confinement was shown in recent experiments. Later another way of such beams creation based on the Pre-glow effect was proposed. In present work it was demonstrated that in the case when duration of microwave (MW) pulse is less than formation time of Pre-glow peak, realization of a regime when ion current is negligible during MW pulse and intense multicharged ions flux appears only when MW ends could be possible. Such pulses after the end of MW were called micro-pulses. In the present work the generation of micro-pulses was observed in experiments with ECR discharge stimulated by gyrotron radiation at 37,5 GHz, 100 kW. In this case pulses with duration less than 30 μs were obtained. Probably the same effect was observed in GANIL where 14 GHz radiation was used and pulses with duration about 2 ms were registered. In present work it was shown that the intensity of such micro-pulse could be higher than intensity of Pre-glow peak at the same conditions but with longer MW pulse. The generation of micro-pulses of nitrogen and argon multicharged ions with current of a few mA and length about 30 μs after MW pulse with duration of 30-100 μs was demonstrated. The low level of impurities, high current density and rather high average charge make possible to consider such micro-pulse regime as a possibility for the creation of a short pulsed ion source. The paper is followed by the slides of the presentation. (authors)

  7. Analysis of expiration gas in intensive care patients with SIRS/sepsis using proton-transfer-reaction-mass-spectrometry

    International Nuclear Information System (INIS)

    Bodrogi, F.B.M.

    2003-11-01

    In 1971, Pauling and co-workers were the first to detect volatile organic compounds (VOC) in human breath. Since then, a number of technical applications for breath gas analyses have been designed and processed, among them gas chromatography and proton transfer reaction-mass spectrometry (PTR-MS). Due to this technical progress it is meanwhile possible to correlate different kinds and stages of diseases with measurable changes in the patient's VOC profile. The aim of the present study was to investigate the composition of VOC in exhaled air of patients with sepsis via PTR-MS. To isolate distinct volatile organic compounds that may serve as clinical markers for the onset, the progress, as well as the outcome of the disease, the results obtained from septic patients were compared with two different control groups: 25 healthy, non-smoking volunteers enrolled in the day-case-surgery and 25 post-operative in-patients residing in post-anaesthetic care units (PACU). PTR-MS is capable to analyze VOC according to their molecular weight with a range between 21-230 Da. A total of 210 different masses has been detected in the present study. 54 masses were significantly different in exhaled air of septic patients as compared to healthy controls as well as post-operative patients. Among them, mass 69 representing isoprene might be of special interest for the diagnosis of sepsis. Although no exact biochemical properties of isoprene have been described to date, it is known that isoprene synthesis is increased in plants following exposure to oxidative stress. Chronic, systemic infectious diseases like sepsis are accompanied by the production of reactive oxygen species, indicating that isoprene might be increased in the course of sepsis, too. In the present study, isoprene values were markedly higher in septic patients as compared to PACU residents (3.3-fold increase in mean value) and to healthy volunteers (2.2-fold increase in mean value). In addition (and in contrast to other VOC

  8. 100-MeV proton beam intensity measurement by Au activation analysis using {sup 197}Au(p, pn){sup 196}Au and {sup 197}Au(p, p3n){sup 194}Au reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari Oranj, Leila [Division of Advanced Nuclear Engineering, POSTECH, Pohang 37673 (Korea, Republic of); Jung, Nam-Suk; Oh, Joo-Hee [Pohang Accelerator Laboratory, POSTECH, Pohang 37673 (Korea, Republic of); Lee, Hee-Seock, E-mail: lee@postech.ac.kr [Pohang Accelerator Laboratory, POSTECH, Pohang 37673 (Korea, Republic of)

    2016-05-15

    The proton beam intensity of a 100-MeV proton linac at the Korea Multi-purpose Accelerator Complex (KOMAC) was measured by an Au activation analysis using {sup 197}Au(p, pn){sup 196}Au and {sup 197}Au(p, p3n){sup 194}Au reactions to determine the accuracy and precision of beam intensity measurement using Gafchromic film dosimetry method. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of Au, Al foils and Pb plates. The yields of produced radio-nuclei in Au foils were obtained by gamma-ray spectroscopy. The FLUKA code was employed to calculate the energy spectrum of protons onto the front surface of Au foils located at three different depth points of the target and also to investigate the condition of incident beam on the target. A good agreement was found between the beam intensity measurements using the activation analysis method at three different depth points of the target. An excellent agreement was also observed between the beam intensity measurements using the Au activation analysis method and the dosimetry method using Gafchromic film.

  9. Boron ion beam production with the supernanogan ECR ion source for the CERN BIO-LEIR facility

    CERN Document Server

    Stafford-Haworth, J; Scrivens, R; Toivanen, V; Röhrich, J

    2014-01-01

    To deliver B3+ ions for medical research the compounds decaborane and m-carborane were tested using the metal ions from volatile compounds (MIVOC) method with the Supernanogan 14.5 GHz ECR ion source. Using decaborane the source delivered less than 10 A intensity of B3+ and after operation large deposits of material were found inside the source. Using m-carborane 50 A of B3+ were delivered without support gas. For m-carborane, helium and oxygen support gasses were also tested, and the effects of different source tuning parameters are discussed. The average consumption of m-carborane was 0:1 mg/Ah over all operation.

  10. TH-CD-209-05: Impact of Spot Size and Spacing On the Quality of Robustly-Optimized Intensity-Modulated Proton Therapy Plans for Lung Cancer

    International Nuclear Information System (INIS)

    Liu, W; Ding, X; Hu, Y; Shen, J; Korte, S; Bues, M; Schild, S; Wong, W; Chang, J; Liao, Z; Sahoo, N; Herman, M

    2016-01-01

    Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). The root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan

  11. TH-CD-209-05: Impact of Spot Size and Spacing On the Quality of Robustly-Optimized Intensity-Modulated Proton Therapy Plans for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W; Ding, X; Hu, Y; Shen, J; Korte, S; Bues, M [Mayo Clinic Arizona, Phoenix, AZ (United States); Schild, S; Wong, W [Mayo Clinic AZ, Phoenix, AZ (United States); Chang, J [MD Anderson Cancer Center, Houston, TX (United States); Liao, Z; Sahoo, N [UT MD Anderson Cancer Center, Houston, TX (United States); Herman, M [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To investigate how spot size and spacing affect plan quality, especially, plan robustness and the impact of interplay effect, of robustly-optimized intensity-modulated proton therapy (IMPT) plans for lung cancer. Methods: Two robustly-optimized IMPT plans were created for 10 lung cancer patients: (1) one for a proton beam with in-air energy dependent large spot size at isocenter (σ: 5–15 mm) and spacing (1.53σ); (2) the other for a proton beam with small spot size (σ: 2–6 mm) and spacing (5 mm). Both plans were generated on the average CTs with internal-gross-tumor-volume density overridden to irradiate internal target volume (ITV). The root-mean-square-dose volume histograms (RVH) measured the sensitivity of the dose to uncertainties, and the areas under RVH curves were used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Dose-volume-histogram indices including ITV coverage, homogeneity, and organs-at-risk (OAR) sparing were compared using Student-t test. Results: Compared to large spots, small spots resulted in significantly better OAR sparing with comparable ITV coverage and homogeneity in the nominal plan. Plan robustness was comparable for ITV and most OARs. With interplay effect considered, significantly better OAR sparing with comparable ITV coverage and homogeneity is observed using smaller spots. Conclusion: Robust optimization with smaller spots significantly improves OAR sparing with comparable plan robustness and similar impact of interplay effect compare to larger spots. Small spot size requires the use of larger number of spots, which gives optimizer more freedom to render a plan more robust. The ratio between spot size and spacing was found to be more relevant to determine plan

  12. Integrated beam orientation and scanning-spot optimization in intensity-modulated proton therapy for brain and unilateral head and neck tumors.

    Science.gov (United States)

    Gu, Wenbo; O'Connor, Daniel; Nguyen, Dan; Yu, Victoria Y; Ruan, Dan; Dong, Lei; Sheng, Ke

    2018-04-01

    Intensity-Modulated Proton Therapy (IMPT) is the state-of-the-art method of delivering proton radiotherapy. Previous research has been mainly focused on optimization of scanning spots with manually selected beam angles. Due to the computational complexity, the potential benefit of simultaneously optimizing beam orientations and spot pattern could not be realized. In this study, we developed a novel integrated beam orientation optimization (BOO) and scanning-spot optimization algorithm for intensity-modulated proton therapy (IMPT). A brain chordoma and three unilateral head-and-neck patients with a maximal target size of 112.49 cm 3 were included in this study. A total number of 1162 noncoplanar candidate beams evenly distributed across 4π steradians were included in the optimization. For each candidate beam, the pencil-beam doses of all scanning spots covering the PTV and a margin were calculated. The beam angle selection and spot intensity optimization problem was formulated to include three terms: a dose fidelity term to penalize the deviation of PTV and OAR doses from ideal dose distribution; an L1-norm sparsity term to reduce the number of active spots and improve delivery efficiency; a group sparsity term to control the number of active beams between 2 and 4. For the group sparsity term, convex L2,1-norm and nonconvex L2,1/2-norm were tested. For the dose fidelity term, both quadratic function and linearized equivalent uniform dose (LEUD) cost function were implemented. The optimization problem was solved using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The IMPT BOO method was tested on three head-and-neck patients and one skull base chordoma patient. The results were compared with IMPT plans created using column generation selected beams or manually selected beams. The L2,1-norm plan selected spatially aggregated beams, indicating potential degeneracy using this norm. L2,1/2-norm was able to select spatially separated beams and achieve

  13. Studies of the ECR plasma in the visible light range

    International Nuclear Information System (INIS)

    Biri, S.; Racz, R.; Palinkas, J.

    2012-01-01

    High resolution visible light (VL) plasma photographs were taken at the ATOMKI-ECRIS by an 8 mega-pixel digital camera. Plasmas were generated from gases of He, methane, N, O, Ne, Ar, Kr, Xe and from their mixtures. The analysis of the photo series gave many qualitative and numerous valuable physical information on the nature of ECR plasmas. VL photos convey information mainly on the cold electron component of the plasma. Cold electrons are confined in the central part of the plasma. It is a further challenging task to understand the colors of this special type of plasmas. The colors can be determined by the VL electron transitions of the plasma atoms and ions combined with the human eye sensitivity. There is a good visual agreement between the calculated normalized color and the real color of the plasmas. Through the examples of He and Xe we analyze the physical processes which affect the characteristic colors of these plasmas. The paper is followed by the slides of the presentation. (authors)

  14. ECRIPAC: A new concept for the production and acceleration to very high energies of multiply charged ions using an ECR plasma

    International Nuclear Information System (INIS)

    Geller, R.; Golovanivsky, K.; Melin, G.

    1991-01-01

    A concept of a new ECR device aimed to produce pulsed beams of ions accelerated up to 0.5 GeV/nucleon without the help of any conventional accelerator is exposed. The main idea is the conjunction of two fundamental physical principles experienced formerly in the PLEIADE and GYRAC devices. With the new concept the authors propose to produce, using a very compact device, high energy ion beams with energies and intensities adequate for particle, nuclear and atomic physics as well as for modern technologies and medicine

  15. Is there a single spot size and grid for intensity modulated proton therapy? Simulation of head and neck, prostate and mesothelioma cases

    Energy Technology Data Exchange (ETDEWEB)

    Widesott, Lamberto; Lomax, Antony J.; Schwarz, Marco [AtreP, Agenzia Provinciale per la Protonterapia, 38122 Trento (Italy); Paul Scherrer Institute, 5232 Villigen (Switzerland); AtreP, Agenzia Provinciale per la Protonterapia, 38122 Trento (Italy)

    2012-03-15

    Purpose: To assess the quality of dose distributions in real clinical cases for different dimensions of scanned proton pencil beams. The distance between spots (i.e., the grid of delivery) is optimized for each dimension of the pencil beam. Methods: The authors vary the {sigma} of the initial Gaussian size of the spot, from {sigma}{sub x} = {sigma}{sub y} = 3 mm to {sigma}{sub x} = {sigma}{sub y} = 8 mm, to evaluate the impact of the proton beam size on the quality of intensity modulated proton therapy (IMPT) plans. The distance between spots, {Delta}x and {Delta}y, is optimized on the spot plane, ranging from 4 to 12 mm (i.e., each spot size is coupled with the best spot grid resolution). In our Hyperion treatment planning system (TPS), constrained optimization is applied with respect to the organs at risk (OARs), i.e., the optimization tries to satisfy the dose objectives in the planning target volume (PTV) as long as all planning objectives for the OARs are met. Three-field plans for a nasopharynx case, two-field plans for a prostate case, and two-field plans for a malignant pleural mesothelioma case are considered in our analysis. Results: For the head and neck tumor, the best grids (i.e., distance between spots) are 5, 4, 6, 6, and 8 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. {sigma} {<=} 5 mm is required for tumor volumes with low dose and {sigma}{<=} 4 mm for tumor volumes with high dose. For the prostate patient, the best grid is 4, 4, 5, 5, and 5 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. Beams with {sigma} > 3 mm did not satisfy our first clinical requirement that 95% of the prescribed dose is delivered to more than 95% of prostate and proximal seminal vesicles PTV. Our second clinical requirement, to cover the distal seminal vesicles PTV, is satisfied for beams as wide as {sigma} = 6 mm. For the mesothelioma case, the low dose PTV prescription is well respected for all values of {sigma}, while there is loss of high dose PTV coverage

  16. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I.; Sasai, Keisuke; Veld, Aart A. van't; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D_2 − D_9_8, where D_2 and D_9_8 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to 98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and

  17. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Shah, Anand; Efstathiou, Jason A.; Paly, Jonathan J.; Halpern, Scott D.; Bruner, Deborah W.; Christodouleas, John P.; Coen, John J.; Deville, Curtiland; Vapiwala, Neha; Shipley, William U.; Zietman, Anthony L.; Hahn, Stephen M.; Bekelman, Justin E.

    2012-01-01

    Purpose: To investigate patients’ willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients’ stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients’ WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either “definitely” or “probably” participate. Seventeen percent (8 of 46) stated they would “definitely not” or “probably not” enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  18. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  19. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study

    International Nuclear Information System (INIS)

    Weber, Damien C; Miralbell, Raymond; Wang, Hui; Cozzi, Luca; Dipasquale, Giovanna; Khan, Haleem G; Ratib, Osman; Rouzaud, Michel; Vees, Hansjoerg; Zaidi, Habib

    2009-01-01

    A study was performed comparing volumetric modulated arcs (RA) and intensity modulation (with photons, IMRT, or protons, IMPT) radiation therapy (RT) for patients with recurrent prostate cancer after RT. Plans for RA, IMRT and IMPT were optimized for 7 patients. Prescribed dose was 56 Gy in 14 fractions. The recurrent gross tumor volume (GTV) was defined on 18 F-fluorocholine PET/CT scans. Plans aimed to cover at least 95% of the planning target volume with a dose > 50.4 Gy. A maximum dose (D Max ) of 61.6 Gy was allowed to 5% of the GTV. For the urethra, D Max was constrained to 37 Gy. Rectal D Median was < 17 Gy. Results were analyzed using Dose-Volume Histogram and conformity index (CI 90 ) parameters. Tumor coverage (GTV and PTV) was improved with RA (V 95% 92.6 ± 7.9 and 83.7 ± 3.3%), when compared to IMRT (V 95% 88.6 ± 10.8 and 77.2 ± 2.2%). The corresponding values for IMPT were intermediate for the GTV (V 95% 88.9 ± 10.5%) and better for the PTV (V 95% 85.6 ± 5.0%). The percentages of rectal and urethral volumes receiving intermediate doses (35 Gy) were significantly decreased with RA (5.1 ± 3.0 and 38.0 ± 25.3%) and IMPT (3.9 ± 2.7 and 25.1 ± 21.1%), when compared to IMRT (9.8 ± 5.3 and 60.7 ± 41.7%). CI 90 was 1.3 ± 0.1 for photons and 1.6 ± 0.2 for protons. Integral Dose was 1.1 ± 0.5 Gy*cm 3 *10 5 for IMPT and about a factor three higher for all photon's techniques. RA and IMPT showed improvements in conformal avoidance relative to fixed beam IMRT for 7 patients with recurrent prostate cancer. IMPT showed further sparing of organs at risk

  20. SU-E-T-452: Impact of Respiratory Motion On Robustly-Optimized Intensity-Modulated Proton Therapy to Treat Lung Cancers

    International Nuclear Information System (INIS)

    Liu, W; Schild, S; Bues, M; Liao, Z; Sahoo, N; Park, P; Li, H; Li, Y; Li, X; Shen, J; Anand, A; Dong, L; Zhu, X; Mohan, R

    2014-01-01

    Purpose: We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case robustly optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods: For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional Method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from the internal target volume (ITV). The second employed the worst-case robust optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results: Without respiratory motion considered, we affirmed that worst-case robust optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, robust optimization still leads to more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% - D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusion: Worst-case robust optimization led to superior solutions for lung IMPT. Despite of the fact that robust optimization did not explicitly

  1. Results of a new ''OCTOPUS'' ECR ion source at 6.4 GHz

    International Nuclear Information System (INIS)

    Dupont, C.; Jongen, Y.; Arakawa, K.; Yokota, W.; Satoh, T.; Tachikawa, T.

    1990-01-01

    The first OCTOPUS electron cyclstron resonance (ECR) multicharged heavy ion source was built in 1985 at the Centre de Recherches du Cyclotron of the University of Louvain (Belgium). This first source used an ECR frequency of 14.3 GHz in the injector stage and 8.5 GHz in the main confinement stage. A new OCTOPUS source has now been built for a new cyclotron to be installed at the Japan Atomic Energy Research Institute (JAERI). The design of this new OCTOPUS source is identical to the first OCTOPUS source, but uses an ECR frequency of 6.4 GHz in the main confinement stage. The experimental results are described, and a comparison is made between the two sources. However, the available data does not allow any clear conclusion to be drawn on frequency scaling

  2. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  3. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.K.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2004-07-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10{sup -3} mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  4. On-line measurement of the microwave power in ECR ion source

    International Nuclear Information System (INIS)

    Zhou Changgeng; Kang Wu; Hu Yonghong; Li Yan; Lou Benchao; Zu Xiulan; Xiong Riheng; Chen Junguang

    2005-01-01

    It is a new technology that ECR ion source is applied in the neutron generator. Because of effect of the structure, working state of ECR ion source could not be judged by the color of gas discharging in discharging chamber as doing in high frequency ion source. Therefore, state adjusting of ECR ion source was difficult in running of the neutron generator. The method to resolve the question is described in this paper. The micro-wave power was measured in case of running by using the method of directional coupler adding small microwave power meter. Because both were in the direct proportion, the ion beam current could be educed from microwave incidence power measured, and discharge state in discharge chamber could be judged. Finally, the neutron generator might be operated in best running state. (authors)

  5. PK-ISIS: a new superconducting ECR ion source at Pantechnik

    International Nuclear Information System (INIS)

    Villari, A.C.; Bieth, C.; Bougy, W.; Brionne, N.; Donzel, X.; Gaubert, G.; Leroy, R.; Sineau, A.; Tasset, O.; Vallerand, C.; Thuillier, T.

    2012-01-01

    The new ECR ion source PK-ISIS was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration while the radial magnetic field is done with multi-layer permanent magnets. Special care was devoted in the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using Low Temperature Superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability, easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T max = 1400 C) installed with an angle of 5 degrees with respect to the source axis or a sputtering system, mounted in the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PK-ISIS delivers 5 to 10 times more beam intensity than the original PK-DELIS and/or shifting the charge state distribution to higher values. PK-ISIS is built with Low Temperature Superconducting wire technology (LTS), but keeps the He-free concept, extremely important for a reliable and easy operation. The radial field circuit is permanent magnet made. Finally, PK-ISIS is also conceived for using in a High-Voltage platform with minor power consumption. The paper is followed by the slides of the presentation. (A.C.)

  6. The producing of an ECR plasma using 2450MHz Whistler Wave and the investigating of its parameters

    International Nuclear Information System (INIS)

    Fang Yude; Zhang Jiande; Fu Keming; Lu Xiangyu; Liu Dengcheng; Wang Xianyu; Xie Weidong; Bao Dinghua; Yin Xiejin

    1988-12-01

    A stable ECR plasma was produced and sustained in HER mirror using 2450MHz Whistler wave. The parameters of the ECR plasma and their chaining characters were studied in detail and were compared with those of the DC discharge plasmas. The conclusion is that the ECR plasma is a high ionizability, low temperature, middle density plasma, its peak density may much exceed the cutoff density of the pump wave (when ω = ω pe ) and arrive at the order of 10 12 cm -3 . The ECR plasma includes some high energy hot electrons (20Kev-200Kev) and middle energy warm electrons (< 20Kev). Those two kinds of electron created some strong X-ray emissions in a wide frequency range. The ECR plasma has higher edge density and can strongly interact with the wall. (author). 9 refs, 17 figs

  7. Simulation and beam line experiments for the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-01-01

    The particle-in-cell code Warp has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving Warp the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disc. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS

  8. Production of hot electrons in mirror systems associated with ECR heating with longitudinal input of microwaves

    International Nuclear Information System (INIS)

    Zhil'tsov, V.A.; Skovoroda, A.A.; Timofeev, A.V.; Kharitonov, K.Yu.; Shcherbakov, A.G.

    1991-01-01

    Almost all experiments on ECR plasma heating are accompanied by the formation of hot electrons (i.e., electrons with energy substantially greater than the average of the bulk population). In mirror systems these electrons may determine the basic energy content (β) of the plasma. In this paper, results are presented from experimental measurements of the hot electron population resulting from ECR heating of the plasma in OGRA-4. A theoretical model is developed which describes the hot electron dynamics and the propagation of electromagnetic oscillations in the plasma self-consistently. The results obtained with this model are in agreement with experimental data

  9. [Optical emission analyses of N2/TMG ECR plasma for deposition of GaN film].

    Science.gov (United States)

    Fu, Si-Lie; Wang, Chun-An; Chen, Jun-Fang

    2013-04-01

    The optical emission spectroscopy of hybrid N2/trimethylgallium (TMG) plasma in an ECR-PECVD system was investigated. The results indicate that the TMG gas is strongly dissociated into Ga*, CH and H even under self-heating condition. Ga species and nitrogen molecule in metastable state are dominant in hybrid ECR plasma. The concentration of metastable nitrogen molecule increases with the microwave power. On the other hand, the concentration of excited nitrogen molecules and of nitrogen ion decreases when the microwave power is higher than 400 W.

  10. Four-dimensional Monte Carlo simulations demonstrating how the extent of intensity-modulation impacts motion effects in proton therapy lung treatments

    International Nuclear Information System (INIS)

    Dowdell, Stephen; Paganetti, Harald; Grassberger, Clemens

    2013-01-01

    Purpose: To compare motion effects in intensity modulated proton therapy (IMPT) lung treatments with different levels of intensity modulation.Methods: Spot scanning IMPT treatment plans were generated for ten lung cancer patients for 2.5Gy(RBE) and 12Gy(RBE) fractions and two distinct energy-dependent spot sizes (σ∼8–17 mm and ∼2–4 mm). IMPT plans were generated with the target homogeneity of each individual field restricted to 20% ). These plans were compared to full IMPT (IMPT full ), which had no restriction on the single field homogeneity. 4D Monte Carlo simulations were performed upon the patient 4DCT geometry, including deformable image registration and incorporating the detailed timing structure of the proton delivery system. Motion effects were quantified via comparison of the results of the 4D simulations (4D-IMPT 20% , 4D-IMPT full ) with those of a 3D Monte Carlo simulation (3D-IMPT 20% , 3D-IMPT full ) upon the planning CT using the equivalent uniform dose (EUD), V 95 and D 1 -D 99 . The effects in normal lung were quantified using mean lung dose (MLD) and V 90% .Results: For 2.5Gy(RBE), the mean EUD for the large spot size is 99.9%± 2.8% for 4D-IMPT 20% compared to 100.1%± 2.9% for 4D-IMPT full . The corresponding values are 88.6%± 8.7% (4D-IMPT 20% ) and 91.0%± 9.3% (4D-IMPT full ) for the smaller spot size. The EUD value is higher in 69.7% of the considered deliveries for 4D-IMPT full . The V 95 is also higher in 74.7% of the plans for 4D-IMPT full , implying that IMPT full plans experience less underdose compared to IMPT 20% . However, the target dose homogeneity is improved in the majority (67.8%) of plans for 4D-IMPT 20% . The higher EUD and V 95 suggests that the degraded homogeneity in IMPT full is actually due to the introduction of hot spots in the target volume, perhaps resulting from the sharper in-target dose gradients. The greatest variations between the IMPT 20% and IMPT full deliveries are observed for patients with the

  11. Is There an Advantage in Designing Adapted, Patient-Specific PTV Margins in Intensity Modulated Proton Beam Therapy for Prostate Cancer?

    International Nuclear Information System (INIS)

    Góra, Joanna; Stock, Markus; Lütgendorf-Caucig, Carola; Georg, Dietmar

    2013-01-01

    Purpose: To investigate robust margin strategies in intensity modulated proton therapy to account for interfractional organ motion in prostate cancer. Methods and Materials: For 9 patients, one planning computed tomography (CT) scan and daily and weekly cone beam CTs (CBCTs) were acquired and coregistered. The following planning target volume (PTV) approaches were investigated: a clinical target volume (CTV) delineated on the planning CT (CTV ct ) plus 10-mm margin (PTV 10mm ); a reduced PTV (PTV Red ): CTV ct plus 5 mm in the left-right (LR) and anterior-posterior (AP) directions and 8 mm in the inferior-superior (IS) directions; and a PTV Hull method: the sum of CTV ct and CTVs from 5 CBCTs from the first week plus 3 mm in the LR and IS directions and 5 mm in the AP direction. For each approach, separate plans were calculated using a spot-scanning technique with 2 lateral fields. Results: Each approach achieved excellent target coverage. Differences were observed in volume receiving 98% of the prescribed dose (V 98% ) where PTV Hull and PTV Red results were superior to the PTV 10mm concept. The PTV Hull approach was more robust to organ motion. The V 98% for CTVs was 99.7%, whereas for PTV Red and PTV 10mm plans, V 98% was 98% and 96.1%, respectively. Doses to organs at risk were higher for PTV Hull and PTV 10mm plans than for PTV Red , but only differences between PTV 10mm and PTV Red were significant. Conclusions: In terms of organ sparing, the PTV 10mm method was inferior but not significantly different from the PTV Red and PTV Hull approaches. PTV Hull was most insensitive to target motion

  12. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Harada, Hideyuki; Asakura, Hirofumi; Nishimura, Tetsuo; Schneider, Uwe; Ishida, Yuji; Konno, Masahiro; Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki; Onoe, Tsuyoshi; Ogawa, Hirofumi

    2013-01-01

    To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs. Five patients (median age, 4 years; range, 2–11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System. Two patients received 36 Gy, two received 21.6 Gy, and one received 41.4 Gy of radiation. The volume structures of these patients were used for simulations of CRT and IMRT treatment. Dose–volume analyses of liver, stomach, colon, small intestine, pancreas, and bone were performed for the simulations. Secondary cancer risks in these organs were calculated using the organ equivalent dose (OED) model, which took into account the rates of cell killing, repopulation, and the neutron dose from the treatment machine. In all evaluated organs, the mean dose in PBT was 20–80% of that in CRT. IMRT also showed lower mean doses than CRT for two organs (20% and 65%), but higher mean doses for the other four organs (110–120%). The risk of secondary cancer in PBT was 24–83% of that in CRT for five organs, but 121% of that in CRT for pancreas. The risk of secondary cancer in IMRT was equal to or higher than CRT for four organs (range 100–124%). Low radiation doses in normal organs are more frequently observed in PBT than in IMRT. Assessments of secondary cancer risk showed that PBT reduces the risk of secondary cancer in most organs, whereas IMRT is associated with a higher risk than CRT

  13. SU-F-T-205: Effectiveness of Robust Treatment Planning to Account for Inter- Fractional Variation in Intensity Modulated Proton Therapy for Head Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Zhang, J; Qin, A; Liang, J; Zhou, J; Yan, D; Chen, P; Krauss, D; Ding, X [Beaumont Health Systeml, Royal Oak, Michigan (United States)

    2016-06-15

    Purpose: To evaluate the potential benefits of robust optimization in intensity modulated proton therapy(IMPT) treatment planning to account for inter-fractional variation for Head Neck Cancer(HNC). Methods: One patient with bilateral HNC previous treated at our institution was used in this study. Ten daily CBCTs were selected. The CT numbers of the CBCTs were corrected by mapping the CT numbers from simulation CT via Deformable Image Registration. The planning target volumes(PTVs) were defined by a 3mm expansion from clinical target volumes(CTVs). The prescription was 70Gy, 54Gy to CTV1, CTV2, and PTV1, PTV2 for robust optimized(RO) and conventionally optimized(CO) plans respectively. Both techniques were generated by RayStation with the same beam angles: two anterior oblique and two posterior oblique angles. The similar dose constraints were used to achieve 99% of CTV1 received 100% prescription dose while kept the hotspots less than 110% of the prescription. In order to evaluate the dosimetric result through the course of treatment, the contours were deformed from simulation CT to daily CBCTs, modified, and approved by a radiation oncologist. The initial plan on the simulation CT was re-replayed on the daily CBCTs followed the bony alignment. The target coverage was evaluated using the daily doses and the cumulative dose. Results: Eight of 10 daily deliveries with using RO plan achieved at least 95% prescription dose to CTV1 and CTV2, while still kept maximum hotspot less than 112% of prescription compared with only one of 10 for the CO plan to achieve the same standards. For the cumulative doses, the target coverage for both RO and CO plans was quite similar, which was due to the compensation of cold and hot spots. Conclusion: Robust optimization can be effectively applied to compensate for target dose deficit caused by inter-fractional target geometric variation in IMPT treatment planning.

  14. Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy

    Directory of Open Access Journals (Sweden)

    Annika eJakobi

    2015-11-01

    Full Text Available Introduction:Presently used radio-chemotherapy regimens result in moderate local control rates for patients with advanced head and neck squamous cell carcinoma (HNSCC. Dose escalation (DE may be an option to improve patient outcome, but may also increase the risk of toxicities in healthy tissue. The presented treatment planning study evaluated the feasibility of two DE levels for advanced HNSCC patients, planned with either intensity-modulated photon therapy (IMXT or proton therapy (IMPT.Materials and Methods:For 45 HNSCC patients, IMXT and IMPT treatment plans were created including DE via a simultaneous integrated boost (SIB in the high-risk volume, while maintaining standard fractionation with 2 Gy per fraction in the remaining target volume. Two DE levels for the SIB were compared: 2.3 Gy and 2.6 Gy. Treatment plan evaluation included assessment of tumor control probabilities (TCP and normal tissue complication probabilities (NTCP.Results:An increase of approximately 10% in TCP was estimated between the DE levels. A pronounced high-dose rim surrounding the SIB volume was identified in IMXT treatment. Compared to IMPT, this extra dose slightly increased the TCP values and to a larger extent the NTCP values. For both modalities, the higher DE level led only to a small increase in NTCP values (mean differences < 2% in all models, except for the risk of aspiration, which increased on average by 8% and 6% with IMXT and IMPT, respectively, but showed a considerable patient dependence. Conclusions:Both DE levels appear applicable to patients with IMXT and IMPT since all calculated NTCP values, except for one, increased only little for the higher DE level. The estimated TCP increase is of relevant magnitude. The higher DE schedule needs to be investigated carefully in the setting of a prospective clinical trial, especially regarding toxicities caused by high local doses that lack a sound dose response description, e.g., ulcers.

  15. Comparative Cost-Effectiveness of Stereotactic Body Radiation Therapy Versus Intensity-Modulated and Proton Radiation Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Parthan, Anju; Pruttivarasin, Narin; Davies, Diane; Taylor, Douglas C. A.; Pawar, Vivek; Bijlani, Akash; Lich, Kristen Hassmiller; Chen, Ronald C.

    2012-01-01

    Objective: To determine the cost-effectiveness of several external beam radiation treatment modalities for the treatment of patients with localized prostate cancer. Methods: A lifetime Markov model incorporated the probabilities of experiencing treatment-related long-term toxicity or death. Toxicity probabilities were derived from published sources using meta-analytical techniques. Utilities and costs in the model were obtained from publicly available secondary sources. The model calculated quality-adjusted life expectancy and expected lifetime cost per patient, and derived ratios of incremental cost per quality-adjusted life year (QALY) gained between treatments. Analyses were conducted from both payer and societal perspectives. One-way and probabilistic sensitivity analyses were performed. Results: Compared to intensity-modulated radiation therapy (IMRT) and proton beam therapy (PT), stereotactic body radiation therapy (SBRT) was less costly and resulted in more QALYs. Sensitivity analyses showed that the conclusions in the base-case scenario were robust with respect to variations in toxicity and cost parameters consistent with available evidence. At a threshold of $50,000/QALY, SBRT was cost-effective in 75% and 94% of probabilistic simulations compared to IMRT and PT, respectively, from a payer perspective. From a societal perspective, SBRT was cost-effective in 75% and 96% of simulations compared to IMRT and PT, respectively, at a threshold of $50,000/QALY. In threshold analyses, SBRT was less expensive with better outcomes compared to IMRT at toxicity rates 23% greater than the SBRT base-case rates. Conclusion: Based on the assumption that each treatment modality results in equivalent long-term efficacy, SBRT is a cost-effective strategy resulting in improved quality-adjusted survival compared to IMRT and PT for the treatment of localized prostate cancer.

  16. Comparative cost-effectiveness of stereotactic body radiation therapy versus intensity-modulated and proton radiation therapy for localized prostate cancer.

    Directory of Open Access Journals (Sweden)

    Anju eParthan

    2012-08-01

    Full Text Available Objective. To determine the cost-effectiveness of several external beam radiation treatment modalities for the treatment of patients with localized prostate cancer.Methods. A lifetime Markov model incorporated the probabilities of experiencing treatment-related long-term toxicity or death. Toxicity probabilities were derived from published sources using meta-analytical techniques. Utilities and costs in the model were obtained from publically available secondary sources. The model calculated quality-adjusted life expectancy and expected lifetime cost per patient, and derived ratios of incremental cost per quality-adjusted life year (QALY gained between treatments. Analyses were conducted from both a payer and societal perspectives. One-way and probabilistic sensitivity analyses were performed.Results. Compared to intensity modulated radiation therapy (IMRT and proton beam therapy (PT, stereotactic body radiation therapy (SBRT was less costly and resulted in more QALYs. Sensitivity analyses showed that the conclusions in the base-case scenario were robust with respect to variations in toxicity and cost parameters consistent with available evidence. At a threshold of $50,000/QALY, SBRT was cost effective in 75%, and 94% of probabilistic simulations compared to IMRT and PT, respectively, from a payer perspective. From a societal perspective, SBRT was cost-effective in 75%, and 96% of simulations compared to IMRT and PT, respectively, at a threshold of $50,000/QALY. In threshold analyses, SBRT was less expensive with better outcomes compared to IMRT at toxicity rates 23% greater than the SBRT base-case rates. Conclusions. Based on the assumption that each treatment modality results in equivalent long-term efficacy, SBRT is a cost-effective strategy resulting in improved quality-adjusted survival compared to IMRT and PT for the treatment of localized prostate cancer.

  17. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Anand [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Efstathiou, Jason A.; Paly, Jonathan J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Halpern, Scott D. [Department of Medicine, University of Pennsylvania, Philadelphia, PA (United States); Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA (United States); Center for Bioethics, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States); Bruner, Deborah W. [Winship Cancer Institute, Emory University, Atlanta, GA (United States); Christodouleas, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Coen, John J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Deville, Curtiland; Vapiwala, Neha [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Shipley, William U.; Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States)

    2012-05-01

    Purpose: To investigate patients' willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients' stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients' WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either 'definitely' or 'probably' participate. Seventeen percent (8 of 46) stated they would 'definitely not' or 'probably not' enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  18. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tatsuya [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Widder, Joachim; Dijk, Lisanne V. van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Takegawa, Hideki [Department of Radiation Oncology, Kansai Medical University Hirakata Hospital, Osaka (Japan); Koizumi, Masahiko; Takashina, Masaaki [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Saito, Anneyuko I. [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Korevaar, Erik W., E-mail: e.w.korevaar@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range

  19. Intensity Modulated Proton and Photon Therapy for Early Prostate Cancer With or Without Transperineal Injection of a Polyethylen Glycol Spacer: A Treatment Planning Comparison Study

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Damien C., E-mail: damien.weber@unige.ch [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Zilli, Thomas [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Vallee, Jean Paul [Department of Diagnostic Radiology, Geneva University Hospital, Geneva (Switzerland); Rouzaud, Michel; Miralbell, Raymond [Department of Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Cozzi, Luca [Oncology Institute of Southern Switzerland, Medical Physics Unit, Bellinzona (Switzerland)

    2012-11-01

    Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipse treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no

  20. Measurement of profile and intensity of proton beam by an integrating current transformer and a segmented parallel-plate ion chamber for the AGS-spallation target experiment (ASTE)

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Nakashima, Hiroshi; Takada, Hiroshi

    2001-03-01

    Profile and intensity of proton beams incident to a mercury target were measured for the experiments under AGS-spallation Target Experiment (ASTE) collaboration. Protons of 1.94, 12 and 24 GeV energy were measured for a temperature, pressure wave and neutronics in the mercury target. For the beam profile measurement, segmented parallel-plate ion chamber (CHIDORI) was used as the online detector. Imaging plates (IP) were also used for the profile measurement with aluminum activation foils as the image converter. An integrating current transformer (ICT) and activation method by Cu foil were used for the measurement of beam intensity. The beam profile obtained by CHIDORI gives a good agreement with the results with the IP. The beam intensity obtained by ICT agrees with the data obtained by the activation technique within ±3% for 12 and 24 GeV cases. Furthermore, these results show in good agreement with those obtained by the monitor of segmented wire ionization chamber (SWIC) and secondary emission chamber (SEC) installed by the AGS team. Therefore, a reliable beam monitor technique was established, so that the analysis of the experiment such as temperature and pressure wave can be normalized by the number of incident protons. (author)

  1. Development of KU-band waveguide break for ECR-3 ion source

    International Nuclear Information System (INIS)

    Misra, Anuraag; Prasad, R.K.; Nabhiraj, P.Y.; Mallik, C.

    2011-01-01

    This article describes the analytical design, simulation results, engineering design and testing of WR-62 waveguide break for ECR-3 ion source and it also emphasizes on the estimation of far-field radiation with the use of advanced 3D codes. (author)

  2. REVIEW OF THE 11TH INTERNATIONAL WORKSHOP ON ECR ION SOURCES

    NARCIS (Netherlands)

    DRENTJE, AG

    At the Workshop, the operation of various new and existing ECR ion sources was reported, with most of the emphasis on new methods to improve the performance and extend the variety of species. Much attention was paid to theoretical aspects, in particular to the basic question of electron heating; a

  3. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  4. Effects of magnetic configuration on hot electrons in highly charged ECR plasma

    International Nuclear Information System (INIS)

    Zhao, H Y; Zhao, H W; Sun, L T; Wang, H; Ma, B H; Zhang, X Zh; Li, X X; Ma, X W; Zhu, Y H; Lu, W; Shang, Y; Xie, D Z

    2009-01-01

    To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, T spe , is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.

  5. The effects of varying plasma parameters on silicon thin film growth by ECR plasma CVD

    International Nuclear Information System (INIS)

    Summers, S.; Reehal, H.S.; Shirkoohi, G.H.

    2001-01-01

    The technique of electron cyclotron resonance (ECR) plasma enhanced chemical vapour deposition (PECVD) is increasingly being used in electronic and photonic device applications. ECR offers a number of advantages including improved control of the deposition process, less damage to the growing film and the possibility of high deposition rates. ECR occurs in a plasma under appropriate magnetic and electric field conditions. In most cases, as in our system, this is achieved with a combination of 2.45 GHz microwave radiation and a 0.0875 T magnetic field, due to the use of standardized microwave supplies. We have studied the effects on silicon film growth of changing the magnetic field configuration to produce one or more planes of ECR within the system, and of changing the positions of the plane(s) relative to the deposition substrate. The films were grown in silane-hydrogen discharges. The magnetic field in our system was provided by two electromagnets. It was measured experimentally for a number of operating current values and then a detailed profile achieved by modelling using a proprietary software package. A process condition discharge under identical magnetic field configurations to growth was analysed by the use of a Langmuir probe and the results correlated with film properties determined by Raman spectroscopy and Dektak profilometry. (author)

  6. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    International Nuclear Information System (INIS)

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.

    2004-01-01

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R and D injector is the production of 240e(micro)A of U 30+ , a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e(micro)A of U 48+ , a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004

  7. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaodong; Wang Xiaochun; Kang Yixiu; Riley, Beverly C.; Bilton, Stephen C.; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.

    2006-01-01

    Purpose: To compare dose-volume histograms (DVH) in patients with non-small-cell lung cancer (NSCLC) treated by photon or proton radiotherapy. Methods and Materials: Dose-volume histograms were compared between photon, including three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and proton plans at doses of 66 Gy, 87.5 Gy in Stage I (n = 10) and 60-63 Gy, and 74 Gy in Stage III (n 15). Results: For Stage I, the mean total lung V5, V10, and V20 were 31.8%, 24.6%, and 15.8%, respectively, for photon 3D-CRT with 66 Gy, whereas they were 13.4%, 12.3%, and 10.9%, respectively, with proton with dose escalation to 87.5 cobalt Gray equivalents (CGE) (p = 0.002). For Stage III, the mean total lung V5, V10, and V20 were 54.1%, 46.9%, and 34.8%, respectively, for photon 3D-CRT with 63 Gy, whereas they were 39.7%, 36.6%, and 31.6%, respectively, for proton with dose escalation to 74 CGE (p = 0.002). In all cases, the doses to lung, spinal cord, heart, esophagus, and integral dose were lower with proton therapy even compared with IMRT. Conclusions: Proton treatment appears to reduce dose to normal tissues significantly, even with dose escalation, compared with standard-dose photon therapy, either 3D-CRT or IMRT

  8. Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma. A dosimetric comparison

    Energy Technology Data Exchange (ETDEWEB)

    Adeberg, S.; Debus, J. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, Heidelberg (Germany); Harrabi, S.B.; Bougatf, N.; Rieber, J.; Koerber, S.A.; Herfarth, K.; Rieken, S. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Bernhardt, D.; Syed, M.; Sprave, T.; Mohr, A. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Abdollahi, A. [University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Haberer, T. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Combs, S.E. [Technische Universitaet Muenchen, Department of Radiation Oncology, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institut fuer Innovative Radiotherapie (iRT), Department of Radiation Sciences (DRS), Neuherberg (Germany)

    2016-11-15

    The prognosis for high-grade glioma (HGG) patients is poor; thus, treatment-related side effects need to be minimized to conserve quality of life and functionality. Advanced techniques such as proton radiation therapy (PRT) and volumetric-modulated arc therapy (VMAT) may potentially further reduce the frequency and severity of radiogenic impairment. We retrospectively assessed 12 HGG patients who had undergone postoperative intensity-modulated proton therapy (IMPT). VMAT and 3D conformal radiotherapy (3D-CRT) plans were generated and optimized for comparison after contouring crucial neuronal structures important for neurogenesis and neurocognitive function. Integral dose (ID), homogeneity index (HI), and inhomogeneity coefficient (IC) were calculated from dose statistics. Toxicity data were evaluated. Target volume coverage was comparable for all three modalities. Compared to 3D-CRT and VMAT, PRT showed statistically significant reductions (p < 0.05) in mean dose to whole brain (-20.2 %, -22.7 %); supratentorial (-14.2 %, -20,8 %) and infratentorial (-91.0 %, -77.0 %) regions; brainstem (-67.6 %, -28.1 %); pituitary gland (-52.9 %, -52.5 %); contralateral hippocampus (-98.9 %, -98.7 %); and contralateral subventricular zone (-62.7 %, -66.7 %, respectively). Fatigue (91.7 %), radiation dermatitis (75.0 %), focal alopecia (100.0 %), nausea (41.7 %), cephalgia (58.3 %), and transient cerebral edema (16.7 %) were the most common acute toxicities. Essential dose reduction while maintaining equal target volume coverage was observed using PRT, particularly in contralaterally located critical neuronal structures, areas of neurogenesis, and structures of neurocognitive functions. These findings were supported by preliminary clinical results confirming the safety and feasibility of PRT in HGG. (orig.) [German] Die Prognose bei ''High-grade''-Gliomen (HGG) ist infaust. Gerade bei diesen Patienten sollten therapieassoziierte Nebenwirkungen minimiert werden

  9. The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy

    CERN Document Server

    Baussan, E.; Ekelof, T.; Martinez, E.Fernandez; Ohman, H.; Vassilopoulos, N.

    2012-01-01

    It is proposed to complement the ESS proton linac with equipment that would enable the production, concurrently with the production of the planned ESS beam used for neutron production, of a 5 MW beam of 10$^{23}$ 2.5 GeV protons per year in microsecond short pulses to produce a neutrino Super Beam, and to install a megaton underground water Cherenkov detector in a mine to detect $\

  10. SU-E-T-574: Novel Chance-Constrained Optimization in Intensity-Modulated Proton Therapy Planning to Account for Range and Patient Setup Uncertainties

    International Nuclear Information System (INIS)

    An, Y; Liang, J; Liu, W

    2015-01-01

    Purpose: We propose to apply a probabilistic framework, namely chanceconstrained optimization, in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to hedge against the influence of uncertainties and improve robustness of treatment plans. Methods: IMPT plans were generated for a typical prostate patient. Nine dose distributions are computed — the nominal one and one each for ±5mm setup uncertainties along three cardinal axes and for ±3.5% range uncertainty. These nine dose distributions are supplied to the solver CPLEX as chance constraints to explicitly control plan robustness under these representative uncertainty scenarios with certain probability. This probability is determined by the tolerance level. We make the chance-constrained model tractable by converting it to a mixed integer optimization problem. The quality of plans derived from this method is evaluated using dose-volume histogram (DVH) indices such as tumor dose homogeneity (D5% – D95%) and coverage (D95%) and normal tissue sparing like V70 of rectum, V65, and V40 of bladder. We also compare the results from this novel method with the conventional PTV-based method to further demonstrate its effectiveness Results: Our model can yield clinically acceptable plans within 50 seconds. The chance-constrained optimization produces IMPT plans with comparable target coverage, better target dose homogeneity, and better normal tissue sparing compared to the PTV-based optimization [D95% CTV: 67.9 vs 68.7 (Gy), D5% – D95% CTV: 11.9 vs 18 (Gy), V70 rectum: 0.0 % vs 0.33%, V65 bladder: 2.17% vs 9.33%, V40 bladder: 8.83% vs 21.83%]. It also simultaneously makes the plan more robust [Width of DVH band at D50%: 2.0 vs 10.0 (Gy)]. The tolerance level may be varied to control the tradeoff between plan robustness and quality. Conclusion: The chance-constrained optimization generates superior IMPT plan compared to the PTV-based optimization with

  11. TH-CD-209-04: Fuzzy Robust Optimization in Intensity-Modulated Proton Therapy Planning to Account for Range and Patient Setup Uncertainties

    International Nuclear Information System (INIS)

    An, Y; Bues, M; Schild, S; Liu, W

    2016-01-01

    Purpose: We propose to apply a robust optimization model based on fuzzy-logic constraints in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to ensure the plan robustness under uncertainty and obtain the best trade-off between tumor dose coverage and organ-at-risk(OAR) sparing. Methods: Two IMPT plans were generated for 3 head-and-neck cancer patients: one used the planning target volume(PTV) method; the other used the fuzzy robust optimization method. In the latter method, nine dose distributions were computed - the nominal one and one each for ±3mm setup uncertainties along three cardinal axes and for ±3.5% range uncertainty. For tumors, these nine dose distributions were explicitly controlled by adding hard constraints with adjustable parameters. For OARs, fuzzy constraints that allow the dose to vary within a certain range were used so that the tumor dose distribution was guaranteed by minimum compromise of that of OARs. We rendered this model tractable by converting the fuzzy constraints to linear constraints. The plan quality was evaluated using dose-volume histogram(DVH) indices such as tumor dose coverage(D95%), homogeneity(D5%-D95%), plan robustness(DVH band at D95%), and OAR sparing like D1% of brain and D1% of brainstem. Results: Our model could yield clinically acceptable plans. The fuzzy-logic robust optimization method produced IMPT plans with comparable target dose coverage and homogeneity compared to the PTV method(unit: Gy[RBE]; average[min, max])(CTV D95%: 59 [52.7, 63.5] vs 53.5[46.4, 60.1], CTV D5% - D95%: 11.1[5.3, 18.6] vs 14.4[9.2, 21.5]). It also generated more robust plans(CTV DVH band at D95%: 3.8[1.2, 5.6] vs 11.5[6.2, 16.7]). The parameters of tumor constraints could be adjusted to control the tradeoff between tumor coverage and OAR sparing. Conclusion: The fuzzy-logic robust optimization generates superior IMPT with minimum compromise of OAR sparing. This research

  12. TH-CD-209-04: Fuzzy Robust Optimization in Intensity-Modulated Proton Therapy Planning to Account for Range and Patient Setup Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    An, Y; Bues, M; Schild, S; Liu, W [Mayo Clinic Arizona, Phoenix, AZ (United States)

    2016-06-15

    Purpose: We propose to apply a robust optimization model based on fuzzy-logic constraints in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to ensure the plan robustness under uncertainty and obtain the best trade-off between tumor dose coverage and organ-at-risk(OAR) sparing. Methods: Two IMPT plans were generated for 3 head-and-neck cancer patients: one used the planning target volume(PTV) method; the other used the fuzzy robust optimization method. In the latter method, nine dose distributions were computed - the nominal one and one each for ±3mm setup uncertainties along three cardinal axes and for ±3.5% range uncertainty. For tumors, these nine dose distributions were explicitly controlled by adding hard constraints with adjustable parameters. For OARs, fuzzy constraints that allow the dose to vary within a certain range were used so that the tumor dose distribution was guaranteed by minimum compromise of that of OARs. We rendered this model tractable by converting the fuzzy constraints to linear constraints. The plan quality was evaluated using dose-volume histogram(DVH) indices such as tumor dose coverage(D95%), homogeneity(D5%-D95%), plan robustness(DVH band at D95%), and OAR sparing like D1% of brain and D1% of brainstem. Results: Our model could yield clinically acceptable plans. The fuzzy-logic robust optimization method produced IMPT plans with comparable target dose coverage and homogeneity compared to the PTV method(unit: Gy[RBE]; average[min, max])(CTV D95%: 59 [52.7, 63.5] vs 53.5[46.4, 60.1], CTV D5% - D95%: 11.1[5.3, 18.6] vs 14.4[9.2, 21.5]). It also generated more robust plans(CTV DVH band at D95%: 3.8[1.2, 5.6] vs 11.5[6.2, 16.7]). The parameters of tumor constraints could be adjusted to control the tradeoff between tumor coverage and OAR sparing. Conclusion: The fuzzy-logic robust optimization generates superior IMPT with minimum compromise of OAR sparing. This research

  13. SU-F-BRD-01: A Novel 4D Robust Optimization Mitigates Interplay Effect in Intensity-Modulated Proton Therapy for Lung Cancer

    International Nuclear Information System (INIS)

    Liu, W; Shen, J; Stoker, J; Bues, M; Schild, S; Wong, W; Chang, J; Liao, Z; Wen, Z; Sahoo, N; Herman, M; Mohan, R

    2015-01-01

    Purpose: To compare the impact of interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans to treat lung cancer. Methods: Two IMPT plans were created for 11 non-small-cell-lung-cancer cases with 6–14 mm spots. 3D robust optimization generated plans on average CTs with the internal gross tumor volume density overridden to deliver 66 CGyE in 33 fractions to the internal target volume (ITV). 4D robust optimization generated plans on 4D CTs with the delivery of prescribed dose to the clinical target volume (CTV). In 4D optimization, the CTV of individual 4D CT phases received non-uniform doses to achieve a uniform cumulative dose. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Indices from dose-volume histograms were used to compare target coverage, dose homogeneity, and normal-tissue sparing. DVH indices were compared using Wilcoxon test. Results: Given the presence of interplay effect, 4D robust optimization produced IMPT plans with better target coverage and homogeneity, but slightly worse normal tissue sparing compared to 3D robust optimization (unit: Gy) [D95% ITV: 63.5 vs 62.0 (p=0.014), D5% - D95% ITV: 6.2 vs 7.3 (p=0.37), D1% spinal cord: 29.0 vs 29.5 (p=0.52), Dmean total lung: 14.8 vs 14.5 (p=0.12), D33% esophagus: 33.6 vs 33.1 (p=0.28)]. The improvement of target coverage (D95%,4D – D95%,3D) was related to the ratio RMA3/(TVx10−4), with RMA and TV being respiratory motion amplitude (RMA) and tumor volume (TV), respectively. Peak benefit was observed at ratios between 2 and 10. This corresponds to 125 – 625 cm3 TV with 0.5-cm RMA. Conclusion: 4D optimization produced more interplay-effect-resistant plans compared to 3D optimization. It is most effective when respiratory motion is modest

  14. Comparison of linear and nonlinear programming approaches for "worst case dose" and "minmax" robust optimization of intensity-modulated proton therapy dose distributions.

    Science.gov (United States)

    Zaghian, Maryam; Cao, Wenhua; Liu, Wei; Kardar, Laleh; Randeniya, Sharmalee; Mohan, Radhe; Lim, Gino

    2017-03-01

    Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertainties into account during spot weight optimization and leads to dose distributions that are resilient to uncertainties. Previous studies demonstrated benefits of linear programming (LP) for IMPT in terms of delivery efficiency by considerably reducing the number of spots required for the same quality of plans. However, a reduction in the number of spots may lead to loss of robustness. The purpose of this study was to evaluate and compare the performance in terms of plan quality and robustness of two robust optimization approaches using LP and nonlinear programming (NLP) models. The so-called "worst case dose" and "minmax" robust optimization approaches and conventional planning target volume (PTV)-based optimization approach were applied to designing IMPT plans for five patients: two with prostate cancer, one with skull-based cancer, and two with head and neck cancer. For each approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimization methods behaved differently from patient to patient, and no method emerged as superior to the others in terms of nominal plan quality and robustness against uncertainties. The plans generated using LP-based robust optimization were more robust regarding patient setup and range uncertainties than were those generated using NLP-based robust optimization for the prostate cancer patients. However, the robustness of plans generated using NLP-based methods was superior for the skull-based and head and neck cancer patients. Overall, LP-based methods were suitable for the less challenging cancer cases in which all uncertainty scenarios were able to satisfy tight dose constraints, while NLP performed better in more difficult cases in which most uncertainty scenarios were hard to meet

  15. SU-F-BRD-01: A Novel 4D Robust Optimization Mitigates Interplay Effect in Intensity-Modulated Proton Therapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W; Shen, J; Stoker, J; Bues, M [Mayo Clinic Arizona, Phoenix, AZ (United States); Schild, S; Wong, W [Mayo Clinic, Phoenix, Arizona (United States); Chang, J; Liao, Z; Wen, Z; Sahoo, N [MD Anderson Cancer Center, Houston, TX (United States); Herman, M [Mayo Clinic, Rochester, MN (United States); Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To compare the impact of interplay effect on 3D and 4D robustly optimized intensity-modulated proton therapy (IMPT) plans to treat lung cancer. Methods: Two IMPT plans were created for 11 non-small-cell-lung-cancer cases with 6–14 mm spots. 3D robust optimization generated plans on average CTs with the internal gross tumor volume density overridden to deliver 66 CGyE in 33 fractions to the internal target volume (ITV). 4D robust optimization generated plans on 4D CTs with the delivery of prescribed dose to the clinical target volume (CTV). In 4D optimization, the CTV of individual 4D CT phases received non-uniform doses to achieve a uniform cumulative dose. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effect with randomized starting phases of each field per fraction. Patient anatomy voxels were mapped from phase to phase via deformable image registration to score doses. Indices from dose-volume histograms were used to compare target coverage, dose homogeneity, and normal-tissue sparing. DVH indices were compared using Wilcoxon test. Results: Given the presence of interplay effect, 4D robust optimization produced IMPT plans with better target coverage and homogeneity, but slightly worse normal tissue sparing compared to 3D robust optimization (unit: Gy) [D95% ITV: 63.5 vs 62.0 (p=0.014), D5% - D95% ITV: 6.2 vs 7.3 (p=0.37), D1% spinal cord: 29.0 vs 29.5 (p=0.52), Dmean total lung: 14.8 vs 14.5 (p=0.12), D33% esophagus: 33.6 vs 33.1 (p=0.28)]. The improvement of target coverage (D95%,4D – D95%,3D) was related to the ratio RMA3/(TVx10−4), with RMA and TV being respiratory motion amplitude (RMA) and tumor volume (TV), respectively. Peak benefit was observed at ratios between 2 and 10. This corresponds to 125 – 625 cm3 TV with 0.5-cm RMA. Conclusion: 4D optimization produced more interplay-effect-resistant plans compared to 3D optimization. It is most effective when respiratory motion is modest

  16. Anatomical robust optimization to account for nasal cavity filling variation during intensity-modulated proton therapy: a comparison with conventional and adaptive planning strategies

    Science.gov (United States)

    van de Water, Steven; Albertini, Francesca; Weber, Damien C.; Heijmen, Ben J. M.; Hoogeman, Mischa S.; Lomax, Antony J.

    2018-01-01

    The aim of this study is to develop an anatomical robust optimization method for intensity-modulated proton therapy (IMPT) that accounts for interfraction variations in nasal cavity filling, and to compare it with conventional single-field uniform dose (SFUD) optimization and online plan adaptation. We included CT data of five patients with tumors in the sinonasal region. Using the planning CT, we generated for each patient 25 ‘synthetic’ CTs with varying nasal cavity filling. The robust optimization method available in our treatment planning system ‘Erasmus-iCycle’ was extended to also account for anatomical uncertainties by including (synthetic) CTs with varying patient anatomy as error scenarios in the inverse optimization. For each patient, we generated treatment plans using anatomical robust optimization and, for benchmarking, using SFUD optimization and online plan adaptation. Clinical target volume (CTV) and organ-at-risk (OAR) doses were assessed by recalculating the treatment plans on the synthetic CTs, evaluating dose distributions individually and accumulated over an entire fractionated 50 GyRBE treatment, assuming each synthetic CT to correspond to a 2 GyRBE fraction. Treatment plans were also evaluated using actual repeat CTs. Anatomical robust optimization resulted in adequate CTV doses (V95%  ⩾  98% and V107%  ⩽  2%) if at least three synthetic CTs were included in addition to the planning CT. These CTV requirements were also fulfilled for online plan adaptation, but not for the SFUD approach, even when applying a margin of 5 mm. Compared with anatomical robust optimization, OAR dose parameters for the accumulated dose distributions were on average 5.9 GyRBE (20%) higher when using SFUD optimization and on average 3.6 GyRBE (18%) lower for online plan adaptation. In conclusion, anatomical robust optimization effectively accounted for changes in nasal cavity filling during IMPT, providing substantially improved CTV and

  17. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  18. Protonation of pyridine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, N F; Ghoniem, H; Helal, A I [Physics Dept., Nuclear Research Center, AEA., Cairo, (Egypt); Rasheed, N [Nuclear Material Authority, Cairo, (Egypt)

    1996-03-01

    Field ionization mass spectra of pyridine is measured using 10{mu}m activated wire. protonation of pyridine, is observed as an intense peak in the mass spectra. Charge distribution of pyridine molecule is calculated using the modified neglect of diatomic overlap (MNDO) technique, and consequently proton attachment is proposed to be on the nitrogen atom. Temperature dependence of (M+H){sup +} ion is investigated and discussed. MNDO calculations of the protonated species are done, and the proton affinity of pyridine molecule is estimated. Time dependence of the field ionization process of pyridine and protonated ions are observed and discussed. 5 figs.

  19. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    Kutner, V.B.

    1981-01-01

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe 48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe 26+ approximately 4x10 10 h/s, Asub(r)sup(12+) approximately 10 12 h/s intensive ion beams are produced. In the laser source a full number of C 6+ ions during one laser pulse constitutes not less than 10 10 from the 5x10mm 2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe 15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached [ru

  20. Time variations of magnetospheric intensities of outer zone protons, alpha particles and ions (Z greater than or equal to 2). Ph.D. Thesis

    Science.gov (United States)

    Randall, B. A.

    1973-01-01

    A comprehensive study of the temporal behavior of trapped protons, alpha particles and ions (Z 2) in outer zone of the earth's magnetosphere has been made. These observations were made by the Injun V satellite during the first 21 months of operation, August 1968 to May 1970. Rapid increases in the observed number of particles followed by slower exponential decay characterize the data. Comparisons are made with the temporal behavior of interplanetary particles of the same energy observed by Explorer 35. Increases in the trapped fluxes generally correspond to enhanced interplanetary activity. The energy spectra of protons and alpha particles at L = 3 have similar shapes when compared on an energy per charge basis while the respective polar cap spectra have similar shape on an energy per nucleon basis. Apparent inward trans-L motion of energetic protons is observed. These particles are diffused inward by a process involving fluctuating electric fields. The loss of trapped low altitude protons, alpha particles and ions (Z 2) is controlled by coulombic energy loss in the atmosphere.

  1. Unilateral and bilateral neck SIB for head and neck cancer patients. Intensity-modulated proton therapy, tomotherapy, and RapidArc

    Energy Technology Data Exchange (ETDEWEB)

    Stromberger, Carmen; Budach, Volker; Ghadjar, Pirus; Wlodarczyk, Waldemar; Marnitz, Simone [Charite - Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany); Cozzi, Luca; Fogliata, Antonella [Humanitas Cancer Center Milan, Radiotherapy and Radiosurgery Department, Milan (Italy); Jamil, Basil [Klinikum Frankfurt Oder, Praxis fuer Strahlentherapie, Frankfurt Oder (Germany); Raguse, Jan D. [Clinic for Oral and Maxillofacial Surgery, Berlin (Germany); Boettcher, Arne [Charite - Universitaetsmedizin Berlin, Department of Otorhinolaryngology, Berlin (Germany)

    2016-04-15

    To compare simultaneous integrated boost plans for intensity-modulated proton therapy (IMPT), helical tomotherapy (HT), and RapidArc therapy (RA) for patients with head and neck cancer. A total of 20 patients with squamous cell carcinoma of the head and neck received definitive chemoradiation with bilateral (n = 14) or unilateral (n = 6) neck irradiation and were planned using IMPT, HT, and RA with 54.4, 60.8, and 70.4 GyE/Gy in 32 fractions. Dose distributions, coverage, conformity, homogeneity to planning target volumes (PTV)s and sparing of organs at risk and normal tissue were compared. All unilateral and bilateral plans showed excellent PTV coverage and acceptable dose conformity. For unilateral treatment, IMPT delivered substantially lower mean doses to contralateral salivary glands (< 0.001-1.1 Gy) than both rotational techniques did (parotid gland: 6-10 Gy; submandibular gland: 15-20 Gy). Regarding the sparing of classical organs at risk for bilateral treatment, IMPT and HT were similarly excellent and RA was satisfactory. For unilateral neck irradiation, IMPT may minimize the dry mouth risk in this subgroup but showed no advantage over HT for bilateral neck treatment regarding classical organ-at-risk sparing. All methods satisfied modern standards regarding toxicity and excellent target coverage for unilateral and bilateral treatment of head and neck cancer at the planning level. (orig.) [German] Planvergleich von intensitaetsmodulierter Protonentherapie (IMPT), Tomotherapie (HT) und RapidArc-Therapie (RA) fuer Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region unter Anwendung des simultan integrierten Boost-Konzepts (SIB). Fuer 20 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region und bilateraler (n = 14) oder unilateraler (n = 6) zervikaler primaerer Radiochemotherapie erfolgte eine IMPT-, HT- und RA-Planung mit 54,4, 60,8 und 70,4 GyE/Gy in 32 Fraktionen. Die Dosisverteilung, Abdeckung, Konformitaet und Homogenitaet der PTVs sowie die

  2. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    -ECR plasma source [3] with transversal magnetic filter for electron temperature control. 12 ECR plasma cells are placed 7.5 cm apart on the top of a cubic chamber 40x40x40 cm3. Each cell can be controlled independently by tuning the injected microwave power. The discharge is operated at pressures below 1 m......Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...

  3. Enhancement of ECR performances by means of carbon nano-tubes based electron guns

    International Nuclear Information System (INIS)

    Odorici, F.; Cuffiani, M.; Malferrari, L.; Rizzoli, R.; Veronese, G.P.; Celona, L.; Gammino, S.; Mascali, D.; Miracoli, R.; Romano, F.P.; Gambino, N.; Castro, G.; Ciavola, G.; Serafino, T.

    2012-01-01

    The CANTES experiment at INFN-LNS tested the use of carbon nano-tubes (CNTs) to emit electrons by field emission effect, in order to provide additional electrons to the plasma core of an ECR ion source. This technique was used with the Caesar source, demonstrating that the total extracted ion current is increased and that a relevant reduction of the number of 'high energy' electrons (above 100 keV) may be observed. The injection of additional electrons inside the plasma increases the amount of cold and warm electrons, and then the number of ionizing collisions. Details of the construction of CNTs based electron gun and of the improvement of performances of the Caesar ECR ion source will be presented. The paper is followed by the associated poster. (authors)

  4. Magnetic Parameters Of A NB3SN Superconducting Magnet For A 56 HGz ECR Ion Source

    International Nuclear Information System (INIS)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C.M.; Prestemon, S.; Sabbi, G.L.; Todd, D.S.

    2009-01-01

    Third generation Electron Cyclotron Resonance (ECR) ion sources operate at microwave frequencies between 20 and 30 GHz and employ NbTi superconducting magnets with a conductor peak field of 6-7 T. A significant gain in performance can be achieved by replacing NbTi with Nb 3 Sn, allowing solenoids and sextupole coils to reach a field of 15 T in the windings. In this paper we describe the design of a Nb 3 Sn superconducting magnet for a fourth generation ECR source operating at a microwave frequency of 56 GHz. The magnet design features a configuration with an internal sextupole magnet surrounded by three solenoids. A finite element magnetic model has been used to investigate conductor peak fields and the operational margins. Results of the numerical analysis are presented and discussed.

  5. MAGNETIC PARAMETERS OF A NB3SN SUPERCONDUCTING MAGNET FOR A 56 HGz ECR ION SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Third generation Electron Cyclotron Resonance (ECR) ion sources operate at microwave frequencies between 20 and 30 GHz and employ NbTi superconducting magnets with a conductor peak field of 6-7 T. A significant gain in performance can be achieved by replacing NbTi with Nb{sub 3}Sn, allowing solenoids and sextupole coils to reach a field of 15 T in the windings. In this paper we describe the design of a Nb{sub 3}Sn superconducting magnet for a fourth generation ECR source operating at a microwave frequency of 56 GHz. The magnet design features a configuration with an internal sextupole magnet surrounded by three solenoids. A finite element magnetic model has been used to investigate conductor peak fields and the operational margins. Results of the numerical analysis are presented and discussed.

  6. Development of an Ethernet enabled microcontroller based module for Superconducting Cyclotron ECR beam line control

    International Nuclear Information System (INIS)

    Chatterjee, M.; Koley, D.; Nabhiraj, P.Y.

    2012-01-01

    An Ethernet enabled control and data acquisition module is developed for remote control and monitoring of the ECR beam line equipment of the Superconducting Cyclotron. The PIC microcontroller based module supports multiple general purpose analog and digital inputs and outputs for interfacing with various equipments and an embedded web server. The remote monitoring and control of the equipment are achieved through the web based user interface. The user authenticated access to control parameters and module configuration parameters ensures the operational safety of the equipment under control. This module is installed in Superconducting Cyclotron ECR beam line for the control and monitoring of vacuum pumping modules, comprising of pumps, gate valves and dual vacuum gauges. The installation of these modules results in a distributed control with localised field cabling and hence better fault diagnosis. (author)

  7. Operational results and development of the E.C.R. sources and the injector into CYCLONE

    International Nuclear Information System (INIS)

    Bol, J.L.; Jongen, Y.; Lacroix, M.; Mathy, F.; Ryckewaert, G.

    1985-01-01

    A large superconducting ECR-source (ECREVIS) has been producing high charge state ions up to Xe 27+ for injection into CYCLONE and as a stand alone source for atomic physics for over two years now. An improved analysing system has been installed increasing greatly the acceptance without harming the resolution. Operational results of transmission and realistic charge state distributions are reported. The design of a more compact ECR-source, to be called OCTOPUS and using water cooled copper solenoids, an open permanent magnet octupole structure and an iron yoke is presented. This source will replace ECREVIS and it is expected to have better performance and to be more reliable and economical to operate

  8. Properties of hydrogenated amorphous silicon (a-Si:H) deposited using a microwave Ecr plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.

    1996-01-01

    Hydrogenated amorphous silicon (a-Si:H) films have been widely applied to semiconductor devices, such as thin film transistors, solar cells and photosensitive devices. In this work, the first Si-H-Cl alloys (obtained at the National Institute for Nuclear Research of Mexico) were formed by a microwave electron cyclotron resonance (Ecr) plasma CVD method. Gaseous mixtures of silicon tetrachloride (Si Cl 4 ), hydrogen and argon were used. The Ecr plasma was generated by microwaves at 2.45 GHz and a magnetic field of 670 G was applied to maintain the discharge after resonance condition (occurring at 875 G). Si and Cl contents were analyzed by Rutherford Backscattering Spectrometry (RBS). It was found that, increasing proportion of Si Cl 4 in the mixture or decreasing pressure, the silicon and chlorine percentages decrease. Optical gaps were obtained by spectrophotometry. Decreasing temperature, optical gap values increase from 1.4 to 1.5 eV. (Author)

  9. The new ECR charge breeder for the Selective Production of Exotic Species project at INFN—Laboratori Nazionali di Legnaro

    International Nuclear Information System (INIS)

    Galatà, A.; Patti, G.; Roncolato, C.; Angot, J.; Lamy, T.

    2016-01-01

    The Selective Production of Exotic Species (SPES) project is an ISOL facility under construction at Istituto Nazionale di Fisica Nucleare–Laboratori Nationali di Legnaro (INFN-LNL). 1+ radioactive ions, produced and extracted from the target-ion-source system, will be charge bred to high charge states by an ECR charge breeder (SPES-CB): the project will adopt an upgraded version of the PHOENIX charge breeder, developed since about twenty years by the Laboratoire de Physique Subatomique et de Cosmologie (LPSC). The collaboration between LNL and LPSC started in 2010 with charge breeding experiments performed on the LPSC test bench and led, in June 2014, to the signature of a Research Collaboration Agreement for the delivery of a complete charge breeder and ancillaries, satisfying the SPES requirements. Important technological aspects were tackled during the construction phase, as, for example, beam purity issues, electrodes alignment, and vacuum sealing. This phase was completed in spring 2015, after which the qualification tests were carried out at LPSC on the 1+/q+ test stand. This paper describes the characteristics of the SPES-CB, with particular emphasis on the results obtained during the qualification tests: charge breeding of Ar, Xe, Rb, and Cs satisfied the SPES requirements for different intensities of the injected 1+ beam, showing very good performances, some of which are “best ever” for this device

  10. The new ECR charge breeder for the Selective Production of Exotic Species project at INFN—Laboratori Nazionali di Legnaro

    Science.gov (United States)

    Galatà, A.; Patti, G.; Roncolato, C.; Angot, J.; Lamy, T.

    2016-02-01

    The Selective Production of Exotic Species (SPES) project is an ISOL facility under construction at Istituto Nazionale di Fisica Nucleare-Laboratori Nationali di Legnaro (INFN-LNL). 1+ radioactive ions, produced and extracted from the target-ion-source system, will be charge bred to high charge states by an ECR charge breeder (SPES-CB): the project will adopt an upgraded version of the PHOENIX charge breeder, developed since about twenty years by the Laboratoire de Physique Subatomique et de Cosmologie (LPSC). The collaboration between LNL and LPSC started in 2010 with charge breeding experiments performed on the LPSC test bench and led, in June 2014, to the signature of a Research Collaboration Agreement for the delivery of a complete charge breeder and ancillaries, satisfying the SPES requirements. Important technological aspects were tackled during the construction phase, as, for example, beam purity issues, electrodes alignment, and vacuum sealing. This phase was completed in spring 2015, after which the qualification tests were carried out at LPSC on the 1+/q+ test stand. This paper describes the characteristics of the SPES-CB, with particular emphasis on the results obtained during the qualification tests: charge breeding of Ar, Xe, Rb, and Cs satisfied the SPES requirements for different intensities of the injected 1+ beam, showing very good performances, some of which are "best ever" for this device.

  11. Plasma polarization spectroscopy on the ECR helium plasma in a cusp magnetic field

    International Nuclear Information System (INIS)

    Sato, T.; Iwamae, A.; Fujimoto, T.; Uchida, M.; Maekawa, T.

    2004-01-01

    Helium emission lines have been observed on the ECR plasma in a cusp field with the polarized components resolved. The polarization map is constructed for the 501.6 nm (2 1 S-3 1 P) line emission. Lines from n 1 P and n 1 D levels are strongly polarized and those from n 3 D levels are weakly polarized. As the helium pressure increases the polarization degree decreases. (author)

  12. Development of 2.45GHz compact ECR ion sources with permanent magnets

    International Nuclear Information System (INIS)

    Tojyo, E.; Ohshiro, Y.; Oyaizu, M.; Shirakabe, Y.

    1993-05-01

    Two kinds of new compact ECR ion sources have been developed by use of permanent magnets only, for the purpose of acceleration tests of the 25.5MHz INS split coaxial RFQ linac and the 50MHz one. Confined magnetic fields of sources are constructed by permanent magnets only. In this paper design parameters, structures, magnetic field distributions and extracted beam properties of these sources are described briefly. (author)

  13. Mean energy of ions at outlet of a type Ecr plasma source

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Gonzalez D, J.

    1998-01-01

    In this work it is described the calculations to mean energy of the ions in the extraction zone of a type Ecr plasma source considering the presence of a metallic substrate. This zone is characterized by the existence of a divergent magnetic field. It is showed that mean energy is function as the distance between the outlet and substrate as the value of the external magnetic field. (Author)

  14. Intensity-modulated proton therapy for elective nodal irradiation and involved-field radiation in the definitive treatment of locally advanced non-small-cell lung cancer: a dosimetric study.

    Science.gov (United States)

    Kesarwala, Aparna H; Ko, Christine J; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E; O'Meara, William P; Simone, Charles B; Rengan, Ramesh

    2015-05-01

    Photon involved-field (IF) radiation therapy (IFRT), the standard for locally advanced (LA) non-small cell lung cancer (NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Because of the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. IMPT IFRT plans were generated to the same total dose of 66.6-72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 cobalt Gray equivalent (CGE) to elective nodal planning treatment volumes (PTV) plus 24 CGE to IF-PTVs. Proton IFRT and ENI improved the IF-PTV percentage of volume receiving 95% of the prescribed dose (D95) by 4% (P ENI. The mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all P ENI. Potential decreased toxicity indicates that IMPT could allow ENI while maintaining a favorable therapeutic ratio compared with photon IFRT. Published by Elsevier Inc.

  15. Intensity-Modulated Proton Therapy for Elective Nodal Irradiation and Involved-Field Radiation in the Definitive Treatment of Locally Advanced Non-Small Cell Lung Cancer: A Dosimetric Study

    Science.gov (United States)

    Kesarwala, Aparna H.; Ko, Christine J.; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E.; O’Meara, William P.; Simone, Charles B.; Rengan, Ramesh

    2015-01-01

    Background Photon involved-field radiation therapy (IFRT), the standard for locally advanced non-small cell lung cancer (LA-NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Given the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. Materials and Methods IMPT IFRT plans were generated to the same total dose of 66.6–72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 CGE to elective nodal (EN) planning treatment volumes (PTV) plus 24 CGE to involved field (IF)-PTVs. Results Proton IFRT and ENI both improved D95 involved field (IF)-PTV coverage by 4% (pENI. Mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all pENI. Potential decreased toxicity indicates IMPT could allow ENI while maintaining a favorable therapeutic ratio compared to photon IFRT. PMID:25604729

  16. Effect of ECR on the Learning and Memory Dysfunction of the Rats Induced by Aβ25-35 Involved in ChAT Activity

    Institute of Scientific and Technical Information of China (English)

    YANGSu-Fen; YANGZheng-Qin; LiYu; WuQin; HUANGXie-Nan; SUNAn-Sheng; ZHOUQi-Xin; SHIJing-Shan

    2004-01-01

    Objective: To explore the mechanism of Ecdysterone (ECR) in prevention of learning and memory dysfunction of the rats induced by β-amyloid peptide ( Aβ25-35 ). Methods: Ninety Wistar male rats were randomly divided into five groups, the control group, the model group, the treated groups (ECR 4mg·kg-1 and ECR 8mg·kg-1 and Nimodipine

  17. Cost of New Technologies in Prostate Cancer Treatment: Systematic Review of Costs and Cost Effectiveness of Robotic-assisted Laparoscopic Prostatectomy, Intensity-modulated Radiotherapy, and Proton Beam Therapy.

    Science.gov (United States)

    Schroeck, Florian Rudolf; Jacobs, Bruce L; Bhayani, Sam B; Nguyen, Paul L; Penson, David; Hu, Jim

    2017-11-01

    Some of the high costs of robot-assisted radical prostatectomy (RARP), intensity-modulated radiotherapy (IMRT), and proton beam therapy may be offset by better outcomes or less resource use during the treatment episode. To systematically review the literature to identify the key economic trade-offs implicit in a particular treatment choice for prostate cancer. We systematically reviewed the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement and protocol. We searched Medline, Embase, and Web of Science for articles published between January 2001 and July 2016, which compared the treatment costs of RARP, IMRT, or proton beam therapy to the standard treatment. We identified 37, nine, and three studies, respectively. RARP is costlier than radical retropubic prostatectomy for hospitals and payers. However, RARP has the potential for a moderate cost advantage for payers and society over a longer time horizon when optimal cancer and quality-of-life outcomes are achieved. IMRT is more expensive from a payer's perspective compared with three-dimensional conformal radiotherapy, but also more cost effective when defined by an incremental cost effectiveness ratio new versus traditional technologies is costlier. However, given the low quality of evidence and the inconsistencies across studies, the precise difference in costs remains unclear. Attempts to estimate whether this increased cost is worth the expense are hampered by the uncertainty surrounding improvements in outcomes, such as cancer control and side effects of treatment. If the new technologies can consistently achieve better outcomes, then they may be cost effective. We review the cost and cost effectiveness of robot-assisted radical prostatectomy, intensity-modulated radiotherapy, and proton beam therapy in prostate cancer treatment. These technologies are costlier than their traditional counterparts. It remains unclear whether their use is associated

  18. Tailoring of materials by atomic oxygen from ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, Munzer; Bhoraskar, S.V.

    2002-01-01

    Full text: An intense source of oxygen finds important applications in many areas of science, technology and industry. It has been successfully used for surface activation and cleaning in the electronic, chemical and automotive industries. Atomic oxygen and interaction with materials have also a significant importance in space science and technology. This paper describes the detailed studies related to the surface modification and processing of different materials, which include metals and polymers by atomic oxygen produced in microwave assisted electron cyclotron resonance plasma. The energy distribution of ions was measured as a function of plasma parameters and density measurements were supplemented by catalytic probe using nickel and oxidation of silver surface

  19. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  20. Sudden Intensity Increases and Radial Gradient Changes of Cosmic Ray Mev Electrons and Protons Observed at Voyager 1 Beyond 111 AU in the Heliosheath

    Science.gov (United States)

    Webber, W. R.; Mcdonald, F. B.; Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.

    2012-01-01

    Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheathat a distance of about 111 AU from the Sun. The low energy 614 MeV galactic electron intensity increased by 20over a time period 10 days and the electron radial intensity gradient abruptly decreased from 19AU to 8AU at2009.7 at a radial distance of 111.2 AU. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase of25 was observed for electrons. After the second sudden electron increase the radial intensity gradient increased to18AU. This large positive gradient and the 13 day periodic variations of 200 MeV particles observed near theend of 2011 indicate that V1 is still within the overall heliospheric modulating region. The implications of these resultsregarding the proximity of the heliopause are discussed.

  1. Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy

    International Nuclear Information System (INIS)

    Fontenot, Jonas D; Bloch, Charles; Followill, David; Titt, Uwe; Newhauser, Wayne D

    2010-01-01

    Theoretical calculations have shown that proton therapy can reduce the incidence of radiation-induced secondary malignant neoplasms (SMN) compared with photon therapy for patients with prostate cancer. However, the uncertainties associated with calculations of SMN risk had not been assessed. The objective of this study was to quantify the uncertainties in projected risks of secondary cancer following contemporary proton and photon radiotherapies for prostate cancer. We performed a rigorous propagation of errors and several sensitivity tests to estimate the uncertainty in the ratio of relative risk (RRR) due to the largest contributors to the uncertainty: the radiation weighting factor for neutrons, the dose-response model for radiation carcinogenesis and interpatient variations in absorbed dose. The interval of values for the radiation weighting factor for neutrons and the dose-response model were derived from the literature, while interpatient variations in absorbed dose were taken from actual patient data. The influence of each parameter on a baseline RRR value was quantified. Our analysis revealed that the calculated RRR was insensitive to the largest contributors to the uncertainty. Uncertainties in the radiation weighting factor for neutrons, the shape of the dose-risk model and interpatient variations in therapeutic and stray doses introduced a total uncertainty of 33% to the baseline RRR calculation.

  2. Particle flux at the outlet of an Ecr plasma source; Flujos de particulas a la salida de una fuente de plasma ECR

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C.; Gonzalez D, J. [ININ, Departamento de Fisica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The necessity of processing big material areas this has resulted in the development of plasma sources with the important property to be uniform in these areas. Also the continuous diminution in the size of substrates to be processed have stimulated the study of models which allow to predict the control of energy and the density of the ions and neutral particles toward the substrate. On the other hand, there are other applications of the plasma sources where it is very necessary to understand the effects generated by the energetic fluxes of ions and neutrals. These fluxes as well as another beneficial effects can improve the activation energy for the formation and improvement of the diffusion processes in the different materials. In this work, using the drift kinetic approximation is described a model to calculate the azimuthal and radial fluxes in the zone of materials processing of an Ecr plasma source type. The results obtained are compared with experimental results. (Author)

  3. Experiments on cleaning effects of TDC, GDC and ECR-DC in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Matsuzaki, Y.; Ogawa, H.; Miura, Y.; Ohtsuka, H.; Suzuki, N.; Yamauchi, T.; Tani, T.; Mori, M.

    1987-01-01

    The cleaning effects of Taylor-type discharge cleaning (TDC), glow discharge cleaning (GDC) and ECR discharge cleaning (ECR-DC) were studied in the JFT-2M tokamak by comparing the properties of resulting tokamak plasmas, by observing the surface composition of samples and by residual gas analysis. The operational parameters of the three discharge cleaning techniques were as follows; the plasma current for TDC is 20 kA, the DC current for GDC is 3 A and the RF power for ECR-DC is 2.3 kW. Parameters of the tokamak plasmas such as loop voltages, radiation losses, spectra emission of oxygen, maximum mean electron densities and profiles of electron temperature were improved as the TDC and ECR-DC proceeded. Changes in the surface composition of samples were measured by Auger electron spectrosopy. The results showed that during the TDC and ECR-DC oxygen was reduced, while GDC reduced mainly carbon. Residual gas analysis performed during discharge cleaning corroborated these results. (orig.)

  4. A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-06-15

    High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.

  5. Conceptual design of proton beam window

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  6. A workstation based spectrometry application for ECR ion source [Paper No.: G5

    International Nuclear Information System (INIS)

    Suresh Babu, R.M.; . PS Div.)

    1993-01-01

    A program for an Electron Cyclotron Resonance (ECR) Ion Source beam diagnostics application in a X-Windows/Motif based workstation environment is discussed. The application program controls the hardware and acquires data via a front end computer across a local area network. The data is subsequently processed for displaying on the workstation console. The timing for data acquisition and control is determined by the particle source timing. The user interface has been implemented using the Motif widget set and the actions have been implemented through call back routines. The equipment interface is through a set of database driven calls across the network. (author). 7 refs., 1 fig

  7. Production of a large diameter ECR plasma with low electron temperature

    International Nuclear Information System (INIS)

    Koga, Mayuko; Hishikawa, Yasuhiro; Tsuchiya, Hayato; Kawai, Yoshinobu

    2006-01-01

    A large diameter plasma over 300 mm in diameter is produced by electron cyclotron resonance (ECR) discharges using a cylindrical vacuum chamber of 400 mm in inner diameter. It is found that the plasma uniformity is improved by adding the nitrogen gas to pure Ar plasma. The electron temperature is decreased by adding the nitrogen gas. It is considered that the electron energy is absorbed in the vibrational energy of nitrogen molecules and the electron temperature decreases. Therefore, the adjunction of the nitrogen gas is considered to be effective for producing uniform and low electron temperature plasma

  8. Creation and behavior of radicals and ions in the Acetylene/Argon microwave ECR discharge

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Petr; Musil, Jindřich; Novotný, Michal; Lančok, Ján; Fitl, Přemysl; Vlček, Jan

    2017-01-01

    Roč. 14, č. 12 (2017), s. 1-9, č. článku 1700062. ISSN 1612-8850 R&D Projects: GA ČR GA17-13427S; GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : acetylene * ECR discharge * ions * mass spectrometry * radicals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.846, year: 2016

  9. Investigation of particle reduction and its transport mechanism in UHF-ECR dielectric etching system

    International Nuclear Information System (INIS)

    Kobayashi, Hiroyuki; Yokogawa, Ken'etsu; Maeda, Kenji; Izawa, Masaru

    2008-01-01

    Control of particle transport was investigated by using a UHF-ECR etching apparatus with a laser particle monitor. The particles, which float at a plasma-sheath boundary, fall on a wafer when the plasma is turned off. These floating particles can be removed from the region above the wafer by changing the plasma distribution. We measured the distribution of the rotational temperature of nitrogen molecules across the wafer to investigate the effect of the thermophoretic force. We found that mechanisms of particle transport in directions parallel to the wafer surface can be explained by the balance between thermophoretic and gas viscous forces

  10. Hydrogen and deuterium pellet injection into ohmically and additionally ECR-heated TFR plasmas

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1987-01-01

    The ablation clouds of hydrogen and deuterium pellets injected into ohmically and electron cyclotron resonance heated (ECRH) plasmas of the Fontenay-aux-Roses tokamak TFR have been photographed, their emission has been measured photoelectrically. Without ECRH the pellets penetrate deeply into the plasma, the clouds are striated. Injection during ECRH leads to ablation in the outer plasma region. The position of the ECR layer has no influence on the penetration depth which is only a few centimeters. The ablation clouds show no particular structure when ECRH is applied

  11. Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method.

    Science.gov (United States)

    Diakite, Mahamadou; Odéen, Henrik; Todd, Nick; Payne, Allison; Parker, Dennis L

    2014-07-01

    To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation. The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects. The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Copyright © 2013 Wiley Periodicals, Inc.

  12. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu [Accelerator Engineering Corporation, Chiba (Japan)

    2001-11-19

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  13. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    International Nuclear Information System (INIS)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki; Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu

    2001-01-01

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  14. Study of a power coupler for superconducting RF cavities used in high intensity proton accelerator; Etude et developpement d'un coupleur de puissance pour les cavites supraconductrices destinees aux accelerateurs de protons de haute intensite

    Energy Technology Data Exchange (ETDEWEB)

    Souli, M

    2007-07-15

    The coaxial power coupler needed for superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the protons beam. The calculated RF and dielectric losses in the power coupler (inner and outer conductor, RF window) are relatively high. Consequently, it is necessary to design very carefully the cooling circuits in order to remove the generated heat and to ensure stable and reliable operating conditions for the coupler cavity system. After calculating all type of losses in the power coupler, we have designed and validated the inner conductor cooling circuit using numerical simulations results. We have also designed and optimized the outer conductor cooling circuit by establishing its hydraulic and thermal characteristics. Next, an experiment dedicated to study the thermal interaction between the power coupler and the cavity was successfully performed at CRYOHLAB test facility. The critical heat load Qc for which a strong degradation of the cavity RF performance was measured leading to Q{sub c} in the range 3 W-5 W. The measured heat load will be considered as an upper limit of the residual heat flux at the outer conductor cold extremity. A dedicated test facility was developed and successfully operated for measuring the performance of the outer conductor heat exchanger using supercritical helium as coolant. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryo-module. The first experimental results have confirmed the excellent performance of the tested heat exchanger. The maximum residual heat flux measured was 60 mW for a 127 W thermal load. As the RF losses in the coupler are proportional to the incident RF power, we can deduce that the outer conductor heat exchanger performance is continued up to 800 kW RF power. Heat exchanger thermal conductance has been identified using a 2D axisymmetric thermal model by comparing

  15. Electron cyclotron resonance (E.C.R.) multiply charged ion sources

    International Nuclear Information System (INIS)

    Geller, R.

    1978-01-01

    High charge state ions can be produced by electron bombardment inside targets when the target electron density n (cm -3 ) multiplied by the ion transit time through the target tau (sec) is: n tau > 5.10 9 cm -3 sec. The relative velocity between electrons and ions determines the balance between stripping and capture i.e. the final ion charge state. (In a stripper foil fast ions interact with slow electrons involving typically n approximately 10 24 cm -3 , tau approximately 10 -14 sec). In the E.C.R. source a cold ion plasma created in a first stage diffuses slowly through a second stage containing a hot E.C.R. plasma with n > 3.10 11 cm -3 and tau > 10 -2 sec. Continuous beams of several μA of C 6+ N 7+ Ne 9+ A 11+ are extracted from the second stage with normalized emittances of approximately 0.5 π mm mrad. The absence of cathodes and plasma arcs makes the source very robust, reliable and well-fitted for cyclotron injection. A super conducting source is under development

  16. ECR [electron cyclotron resonance] discharges maintained by radiation in the millimeter wavelength range

    International Nuclear Information System (INIS)

    Bykov, Yu.V.; Golubev, S.V.; Eremeev, A.G.; Zorin, V.G.

    1990-01-01

    It is well known that plasmas formed by microwave breakdown of gases under electron cyclotron resonance (ECR) conditions can serve as an efficient source for ion beams. The major disadvantage of this type of source is relatively low ion beam currents which generally do not exceed 1 A (for an electron density of ∼10 12 cm -3 in the discharge). Raising the current density in the ion beams requires a higher plasma density, which can be obtained by using higher frequencies. Thus, a study has recently been made of the parameters of the plasma formed by ECR breakdown in a linear confinement system employing pulsed radiation at a frequency of 60 GHz. The maximum electron densities obtained in the experiment were 2·10 13 cm -3 at a gas pressure of 3·10 -4 torr. In this paper the authors describe some experiments on the creation of plasmas by means of quasi-cw electromagnetic radiation at a frequency of 100 GHz under electron cyclotron resonance conditions

  17. Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer

    Directory of Open Access Journals (Sweden)

    Fray Miroslawa El

    2015-12-01

    Full Text Available In this paper we report a study on influence of radio-frequency (RF plasma induced with electron cyclotron resonance (ECR on multiblock copolymer containing butylene terephthalate hard segments (PBT and butylene dilinoleate (BDLA soft segments. The changes in thermal properties were studied by DSC. The changes in wettability of PBT-BDLA surfaces were studied by water contact angle (WCA. We found that ECR-RF plasma surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confirmed that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be beneficial for increased cell adhesion in future biomedical applications of these materials.

  18. AMS of heavy elements with an ECR ion source and the ATLAS linear accelerator

    CERN Document Server

    Paul, M; Ahmad, I; Borasi, F; Caggiano, J; Davids, C N; Greene, J P; Harss, B; Heinz, A; Henderson, D J; Henning, W F; Jiang, C L; Pardo, R C; Rehm, K E; Rejoub, R; Seweryniak, D; Sonzogni, A; Uusitalo, J; Vondrasek, R C

    2000-01-01

    Detection of heavy elements by accelerator mass spectrometry with the electron cyclotron resonance ion source, Argonne linear accelerator and fragment mass analyzer (ECRIS-ATLAS-FMA) system has been developed. The use of the ECR-ATLAS system for AMS of heavy elements has two interesting features: (i) the efficient production of high-charge state ions in the ECR source ensures the elimination of molecular ions at the source stage, a highly attractive feature for any mass-spectrometric use not exploited so far; (ii) the linear acceleration based on velocity matching and the beam transport system act as a powerful mass filter for background suppression. We have shown that our system reaches an abundance sensitivity of 1x10 sup - sup 1 sup 4 for Pb isotopes. The sup 2 sup 3 sup 6 U detection sensitivity is sup 2 sup 3 sup 6 U/U > or approx. 1x10 sup - sup 1 sup 2 , limited mainly by the ion source output.

  19. SU-G-TeP1-06: Fast GPU Framework for Four-Dimensional Monte Carlo in Adaptive Intensity Modulated Proton Therapy (IMPT) for Mobile Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Botas, P [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Heidelberg University, Heidelberg (Germany); Grassberger, C; Sharp, G; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Qin, N; Jia, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) treatment planning and verification using four-dimensional CT (4DCT) for adaptive IMPT for lung cancer patients. Methods: A validated GPU MC code, gPMC, has been linked to the patient database at our institution and employed to compute the dose-influence matrices (Dij) on the planning CT (pCT). The pCT is an average of the respiratory motion of the patient. The Dijs and patient structures were fed to the optimizer to calculate a treatment plan. To validate the plan against motion, a 4D dose distribution averaged over the possible starting phases is calculated using the 4DCT and a model of the time structure of the delivered spot map. The dose is accumulated using vector maps created by a GPU-accelerated deformable image registration program (DIR) from each phase of the 4DCT to the reference phase using the B-spline method. Calculation of the Dij matrices and the DIR are performed on a cluster, with each field and vector map calculated in parallel. Results: The Dij production takes ∼3.5s per beamlet for 10e6 protons, depending on the energy and the CT size. Generating a plan with 4D simulation of 1000 spots in 4 fields takes approximately 1h. To test the framework, IMPT plans for 10 lung cancer patients were generated for validation. Differences between the planned and the delivered dose of 19% in dose to some organs at risk and 1.4/21.1% in target mean dose/homogeneity with respect to the plan were observed, suggesting potential for improvement if adaptation is considered. Conclusion: A fast MC treatment planning framework has been developed that allows reliable plan design and verification for mobile targets and adaptation of treatment plans. This will significantly impact treatments for lung tumors, as 4D-MC dose calculations can now become part of planning strategies.

  20. MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm, Bombyx mori

    Science.gov (United States)

    Hundreds of Bombyx mori miRNAs had been identified in recent years, but their function in vivo remains poorly understood. The silkworm EcR gene (BmEcR) has three transcriptional isoforms, A, B1 and B2. Isoform sequences are different in the 3’UTR region of the gene, which is the case only in insects...

  1. A validation of the Experiences in Close Relationships-Relationship Structures scale (ECR-RS) in adolescents

    DEFF Research Database (Denmark)

    Donbaek, Dagmar Feddern; Elklit, Ask

    2014-01-01

    structures in adults and, hence, moves beyond the traditional focus on romantic relationships. The present article explored the psychometric abilities of the ECR-RS across parental and best friend domains in a sample of 15 to 18-year-olds (n = 1999). Two oblique factors were revealed across domains...

  2. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  3. An evolutionary conserved region (ECR in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    Directory of Open Access Journals (Sweden)

    Haddley Kate

    2011-05-01

    Full Text Available Abstract Background Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs, in which the degree of conservation can be comparable with exonic regions suggesting functional significance. Results We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1 supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. Conclusion Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a a strong enhancer that functions in neurons and b a transcription factor that may modulate the function of that enhancer.

  4. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  5. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-01-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V 18 Gy ), stomach (mean and V 20 Gy ), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V 18 Gy ), liver (mean dose), total bowel (V 20 Gy and mean dose), and small bowel (V 15 Gy absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing

  6. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistic