WorldWideScience

Sample records for intense deuterium nuclear

  1. Intense deuterium nuclear fusion of pycnodeuterium-lumps coagulated locally within highly deuterated atom clusters

    CERN Document Server

    Yoshiaki, A; Zhang, Y C

    2002-01-01

    Embedded nano-Pd particles of 5 nm in size instantly abundant D-atoms more than 250% in the atomic ratio against Pd-atoms at room temperature when they are kept in D sub 2 gas pressurized to less than 10 atm. In such ultrahigh densities, 2-4 D-atoms can be coagulated inside each octahedral space of Pd lattice (pycnodeuterium-lump). When a stimulation energy such as latticequake causing by ultrasonic wave was supplied to those highly deuterated Pd particles, intense deuterium nuclear fusion (''solid fusion'') was generated there and both excess heat and sup 4 He gas were abundantly produced. Naturally, these facts can not be realized at all in bulk Pd. The results show that the nuclear fusion occurs without any hazardous rays in pycnodeuterium-lumps coagulated locally inside the each cell of the host metal lattice. These unit cells correspond to minimum unit of the solid fusion reactor as a ''Lattice Reactor''. (author)

  2. Electrochemically induced nuclear fusion of deuterium

    International Nuclear Information System (INIS)

    Jorne, J.

    1990-01-01

    In this paper cold fusion of deuterium by electrolysis of heavy water onto a palladium (or titanium) cathode is reported. Contrary to the assumption of Fleishmann and Pons that electrochemically compressed D + exists inside the palladium cathode, the observations of Jones et al. can be partially explained by the simultaneous presence of deuteride D - and the highly mobile positive deuterium ion D + . The opposite charges reduce the intranuclear distance and enhance the tunneling fusion rate. Furthermore, alloying of lithium with palladium can stabilize a negatively charged deuteride ion due to the salinelike character of lithium deuteride. The enormous pressure (or fugacity), achieved by the applied electrochemical potential (10 30 atm), is a virtual pressure that would have existed in equilibrium with palladium deuteride (PdD x ). It is speculated that nuclear fusion occurs at the surface, and the PdD x serves as a reservoir for the supply of deuteride ions

  3. Ex-vacuo nuclear reaction analysis of deuterium

    International Nuclear Information System (INIS)

    Lee, S.R.; Doyle, B.L.

    1989-01-01

    A novel technique for performing in-air d( 3 He, p) nuclear reaction analysis of deuterium using external 3 He ion beams ranging in energy from 0.3-2.0 MeV is presented. Variable on-target beam energies for the depth profiling of deuterium are obtained by varying the transmission distance of the external 3 He beam in air. The ex-vacuo nuclear reaction analysis (XNRA) apparatus is described, and unique aspects and limitations of in-air depth profiling of deuterium using the d( 3 He, p) reaction are discussed. Example analyses where XNRA has been used for the multidimensional measurement of deuterium in fusion reactor components are presented in order to illustrate the advantages of XNRA for deuterium. These advantages include nondestructive analysis of large targets, efficient depth profiling via variable air gap energy tuning, and rapid analysis of numerous samples in the absence of vacuum cycling. (orig.)

  4. Nuclear processes in deuterium/natural hydrogen-metal systems

    International Nuclear Information System (INIS)

    Zelensky, V.F.

    2013-01-01

    The survey presents the analysis of the phenomena taking place in deuterium - metal and natural hydrogen - metal systems under cold fusion experimental conditions. The cold fusion experiments have shown that the generation of heat and helium in the deuterium-metal system without emission of energetic gamma-quanta is the result of occurrence of a chain of chemical, physical and nuclear processes observed in the system, culminating in both the fusion of deuterium nuclei and the formation of a virtual, electron-modified excited 4He nucleus. The excitation energy of the helium nucleus is transferred to the matrix through emission of conversion electrons, and that, under appropriate conditions, provides a persistent synthesis of deuterium. The processes occurring in the deuterium/natural hydrogen - metal systems have come to be known as chemonuclear DD- and HD-fusion. The mechanism of stimulation of weak interaction reactions under chemonuclear deuterium fusion conditions by means of strong interaction reactions has been proposed. The results of numerous experiments discussed in the survey bear witness to the validity of chemonuclear fusion. From the facts discussed it is concluded that the chemonuclear deuterium fusion scenario as presented in this paper may serve as a basis for expansion of deeper research and development of this ecologically clean energy source. It is shown that the natural hydrogen-based system, containing 0.015% of deuterium, also has good prospects as an energy source. The chemonuclear fusion processes do not require going beyond the scope of traditional physics for their explanation

  5. Deuterium behavior in first-wall materials for nuclear fusion

    International Nuclear Information System (INIS)

    Bernard, E.

    2012-01-01

    Plasma-wall interactions play an important part while choosing materials for the first wall in future fusion reactors. Moreover, the use of tritium as a fuel will impose safety limits regarding the total amount present in the tokamak. Previous analyses of first-wall samples exposed to fusion plasma highlighted an in-bulk migration of deuterium (as an analog to tritium) in carbon materials. Despite its limited value, this retention is problematic: contrary to co-deposited layers, it seems very unlikely to recover easily the deuterium retained in such a way. Because of the difficult access to in situ samples, most published studies on the subject were carried out using post-mortem sample analysis. In order to access to the dynamic of the phenomenon and come apart potential element redistribution during storage, we set up a bench intended for simultaneous low-energy ion implantation, reproducing the deuterium interaction with first-wall materials, and high-energy micro beam analysis. Nuclear reaction analysis performed at the micrometric scale (μNRA) allows to characterize deuterium repartition profiles in situ. This analysis technique was confirmed to be non-perturbative of the mechanisms studied. We observed on the experimental data set that the material surface (0-1 μm) display a high and nearly constant deuterium content, with a uniform distribution. On the contrary, in-bulk deuterium (1-11 μm) localizes in preferential trapping sites related to the material microstructure. In-bulk deuterium inventory seems to increase with the incident fluence, in spite of the wide data scattering attributed to the structure variation of studied areas. Deuterium saturation at the surface as well as in-depth migration are instantaneous; in-vacuum storage leads to a small deuterium global desorption. Observations made via μNRA were coupled with results from other characterization techniques. X-ray μtomography allowed to identify porosities as the preferential trapping sites

  6. Deuterium ingress at rolled joints in Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Ramos Nervi, J. E.; Schroeter, F.

    2013-01-01

    Deuterium ingress model at the Rolled Joint has been extensively used for CANDU Nuclear Power Plants Operators in the Life Management of the Pressure Tubes. The importance of understanding the model is vital to avoid delayed hydride cracking at the Rolled Joint. This work reports the first step on develop the model presented on literature to be used in Argentinean CANDU 6, Embalse Nuclear Power Plant. (author)

  7. Measurements of neutron intensity from liquid deuterium moderator of the cold neutron source of KUR

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Akiyoshi, Tsunekazu; Tasaki, Seiji

    1990-01-01

    The neutron spectra from the liquid deuterium moderator of the cold neutron source of KUR were measured by the time of flight (TOF) method similar to the previous measurements for the liquid hydrogen moderator. The cold neutron gain factor is found to be about 20 ∼ 28 times for the wavelength longer than 6 A. Cold neutron intensities from the liquid deuterium moderator and from the liquid hydrogen moderator are compared and discussed. (author)

  8. Deuterium depth profiling in JT-60U W-shaped divertor tiles by nuclear reaction analysis

    International Nuclear Information System (INIS)

    Hayashi, T.; Ochiai, K.; Masaki, K.; Gotoh, Y.; Kutsukake, C.; Arai, T.; Nishitani, T.; Miya, N.

    2006-01-01

    Deuterium concentrations and depth profiles in plasma-facing graphite tiles used in the divertor of JAERI Tokamak-60 Upgrade (JT-60U) were investigated by nuclear reaction analysis (NRA). The highest deuterium concentration of D/ 12 C of 0.053 was found in the outer dome wing tile, where the deuterium accumulated probably through the deuterium-carbon co-deposition. In the outer and inner divertor target tiles, the D/ 12 C data were lower than 0.006. Additionally, the maximum (H + D)/ 12 C in the dome top tile was estimated to be 0.023 from the results of NRA and secondary ion mass spectroscopy (SIMS). Orbit following Monte-Carlo (OFMC) simulation showed energetic deuterons caused by neutral beam injections (NBI) were implanted into the dome region with high heat flux. Furthermore, the surface temperature and conditions such as deposition and erosion significantly influenced the accumulation process of deuterium. The deuterium depth profile, scanning electron microscope (SEM) observation and OFMC simulation indicated the deuterium was considered to accumulate through three processes: the deuterium-carbon co-deposition, the implantation of energetic deuterons and the deuterium diffusion into the bulk

  9. Carbon and deuterium nuclear magnetic resonance in solids

    Energy Technology Data Exchange (ETDEWEB)

    Shattuck, Thomas Wayne [Univ. of California, Berkeley, CA (United States)

    1976-07-01

    In Chapter I we present the results on a study of cross polarization dynamics, between protons and carbon-13 in adamantane, by the direct observation of the dilute, carbon-13, spins. These dynamics are an important consideration in the efficiency of proton enhancement double-resonance techniques and they also provide good experimental models for statistical theories of cross relaxation. In order to test these theories we present a comparison of the experimental and theoretical proton dipolar fluctuation correlation time τc, which is experimentally 110 ± 15 μsec and theoretically 122 μsec for adamantane. These double resonance considerations provide the background for extensions to deuterium and double quantum effects discussed in Chapter II. In Chapter II an approach to high resolution nmr of deuterium in solids is described. The m = 1 → -1 transition is excited by a double quantum process and the decay of coherence Q(τ) is monitored. Fourier transformation yields a deuterium spectrum devoid of quadrupole splittings and broadening. If the deuterium nuclei are dilute and the protons are spin decoupled, the double-quantum spectrum is a high resolution one and yields information on the deuterium chemical shifts Δω. The relationship Q(τ) ~ cos 2Δωτ is checked and the technique is applied to a single crystal of oxalic acid dihydrate enriched to ~ 10% in deuterium. The carboxyl and the water deuterium shifts are indeed resolved and the anisotropy of the carboxyl shielding tensor is estimated to be Δσ = 32 ± 3 ppm. A complete theoretical analysis is presented. The extension of cross relaxation techniques, both direct and indirect, to proton-deuterium double resonance is also described. The m = 1 → -1 double quantum transition and the m = ± 1 → 0 single quantum transitions may all be polarized and we present the derivation of the Hartmann-Hahn cross polarization conditions for each case. In addition the dynamics of the double quantum process

  10. Nuclear micro-beam analysis of deuterium distribution in carbon fibre composites for controlled fusion devices

    International Nuclear Information System (INIS)

    Petersson, P.; Kreter, A.; Possnert, G.; Rubel, M.

    2010-01-01

    Probes made of carbon fibre composite NB41 were exposed to deuterium plasmas in the TEXTOR tokamak and in a simulator of plasma-wall interactions, PISCES. The aim was to assess the deuterium retention and its lateral and depth distribution. The analysis was performed by means of D( 3 He, p) 4 He and 12 C( 3 He, p) 14 N nuclear reactions analysis using a standard (1 mm spot) and micro-beam (20 μm resolution). The measurements have revealed non uniform distribution of deuterium atoms in micro-regions: differences by a factor of 3 between the maximum and minimum deuterium concentrations. The differences were associated with the orientation and type of fibres for samples exposed in PICSES. For surface structure in the erosion zone of samples exposed to a tokamak plasma the micro-regions were more complex. Depth profiling has indicated migration of fuel into the bulk of materials.

  11. Nuclear effect study on nucleon structure functions, in comparison with antineutrino interactions on neon and deuterium

    International Nuclear Information System (INIS)

    Vallee, C.

    1984-03-01

    We have studied the nuclear effects on high energy antineutrino charged current interactions by comparing the data which were taken in the Bubble Chamber BEBC filled with Neon and Deuterium. On the one hand, the study of nuclear reinteractions gave us the possibility to estimate the formation time of hadrons. On the other hand, the comparison of structure functions does not show any significant difference between Neon and Deuterium. Though this result does not contradict the effects observed with charged leptons by the EMC and SLAC experiments, it is strongly incompatible with certain theoretical interpretations which implied a stronger effect in antineutrino interactions [fr

  12. Phenomenological nuclear reaction description in deuterium-saturated palladium and synthesized structure in dense deuterium gas under γ-quanta irradiation

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Wisniewski, R.

    2012-01-01

    The observed phenomena on the changes of chemical compositions in our previous reports allowed us to develop a phenomenological nuclear fusion-fission model with taking into consideration the elastic and inelastic scattering of photoprotons and photoneutrons, heating of surrounding deuterium nuclei, following D-D fusion reactions and fission of middle-mass nuclei by 'hot' protons, deuterons and various-energy neutrons. Such chain processes could produce the necessary number of neutrons, 'hot' deuterons for explanation of the observed experimental results. The developed approach can be a basis for creation of deuterated nuclear fission reactors (DNFR) with high-density deuterium gas and so-called deuterated metals. Also, the developed approach can be used for the study of nuclear reactions in high-density deuterium or tritium gases and deuterated metals

  13. Deuterium cluster model for low energy nuclear reactions (LENR)

    Science.gov (United States)

    Miley, George; Hora, Heinrich

    2007-11-01

    For studying the possible reactions of high density deuterons on the background of a degenerate electron gas, a summary of experimental observations resulted in the possibility of reactions in pm distance and more than ksec duration similar to the K-shell electron capture [1]. The essential reason was the screening of the deuterons by a factor of 14 based on the observations. Using the bosonic properties for a cluster formation of the deuterons and a model of compound nuclear reactions [2], the measured distribution of the resulting nuclei may be explained as known from the Maruhn-Greiner theory for fission. The local maximum of the distribution at the main minimum indicates the excited states of the compound nuclei during their intermediary state. This measured local maximum may be an independent proof for the deuteron clusters at LENR. [1] H. Hora, G.H. Miley et al. Physics Letters A175, 138 (1993) [2] H. Hora and G.H. Miley, APS March Meeting 2007, Program p. 116

  14. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  15. A deuterium and carbon nuclear magnetic resonance spectroscopic investigation of blood flow and carbohydrate metabolism

    International Nuclear Information System (INIS)

    Bosch, C.S.E.

    1988-01-01

    The purpose of this study is the development and application of nuclear magnetic resonance (NMR) spectroscopic techniques for this study of whole tissue metabolism, tissue perfusion and blood flow. The feasibility of spin imaging deuterium-enriched tissue water is demonstrated in cat brain in vivo and in situ. The potential application of D 2 O administration to deuterium-flow-imaging is considered. NMR investigations of hepatic carbohydrate metabolism were performed in rat liver in vivo and in situ. A coaxial, double-surface-coil, double-resonance probe was developed for carbon detection while decoupling neighboring proton scalar interactions ( 13 C-[ 1 H]) in hepatic tissue within the living animal. Hormonal and substrate regulation of hepatic glucose and glycogen metabolism was investigated by monitoring the metabolic fate of an administered c-dose of [1- 13 C]glucose. Label flux was directed primarily into newly-synthesized 13 C-labeled glycogen. A multiple resonance ( 1 H, 13 C, 31 P) liver perfusion probe was designed for complimentary carbohydrate metabolic studies in rat liver in vitro. A description of the 13 C-[ 1 H]/ 31 P NMR perfusion probe is given. The surgical technique used for liver excision and peripheral life-support apparatus required to maintain hepatic function are also detailed

  16. Electrodeless, multi-megawatt reactor for room-temperature, lithium-6/deuterium nuclear reactions

    International Nuclear Information System (INIS)

    Drexler, J.

    1993-01-01

    This paper describes a reactor design to facilitate a room-temperature nuclear fusion/fission reaction to generate heat without generating unwanted neutrons, gamma rays, tritium, or other radioactive products. The room-temperature fusion/fission reaction involves the sequential triggering of billions of single-molecule, 6 LiD 'fusion energy pellets' distributed in lattices of a palladium ion accumulator that also acts as a catalyst to produce the molecules of 6 LiD from a solution comprising D 2 O, 6 LiOD with D 2 gas bubbling through it. The D 2 gas is the source of the negative deuterium ions in the 6 LiD molecules. The next step is to trigger a first nuclear fusion/fission reaction of some of the 6 LiD molecules, according to the well-known nuclear reaction: 6 Li + D → 2 4 He + 22.4 MeV. The highly energetic alpha particles ( 4 He nuclei) generated by this nuclear reaction within the palladium will cause shock and vibrations in the palladium lattices, leading to compression of other 6 LiD molecules and thereby triggering a second series of similar fusion/fission reactions, leading to a third series, and so on. The absorption of the kinetic energy in the palladium will, in turn, generate a continuous flow of heat into the heavy water carrier, which would be removed with a heat exchanger. (author)

  17. Evidence of 9Be  +  p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas

    Science.gov (United States)

    Krasilnikov, A. V.; Kiptily, V.; Lerche, E.; Van Eester, D.; Afanasyev, V. I.; Giroud, C.; Goloborodko, V.; Hellesen, C.; Popovichev, S. V.; Mironov, M. I.; contributors, JET

    2018-02-01

    The intensity of 9Be  +  p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be  +  p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.

  18. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    International Nuclear Information System (INIS)

    van den Brand, J.; Bulten, H.; Zhou, Z.; Unal, O.; van den Brand, J.; Ferro-Luzzi, M.; Botto, T.; Bouwhuis, M.; Heimberg, P.; de Jager, C.; de Lange, D.; Nooren, G.; Papadakis, N.; Passchier, I.; Poolman, H.; Steijger, J.; Vodinas, N.; de Vries, H.; van den Brand, J.; Ferro-Luzzi, M.; Lang, J.; Alarcon, R.; Dolfini, S.; Ent, R.; Higinbotham, D.

    1997-01-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. copyright 1997 The American Physical Society

  19. Natural abundance deuterium nuclear magnetic resonance spectroscopy: Study of the biosynthesis of monoterpenes

    International Nuclear Information System (INIS)

    Leopold, M.F.

    1990-01-01

    Deuterium NMR spectroscopy at natural abundance (D NMR-na) is a new technique for exploring the biosynthesis of small molecules such as monoterpenes. The analysis of relative site-specific deuterium integration values is an effective means of measuring isotope effects, and examining the regio- and stereochemistry of biosynthetic reactions. The deuterium integration values of linalyl acetate and limonene isolated from the same source were consistent and showed that proton abstraction from the postulated α-terpinyl cation intermediate to form limonene is regioselective from the methyl derived from the Cs methyl of the precursor, geranyl diphosphate. This regiochemistry was observed in limonene samples from different sources and the measured primary kinetic isotope effect ranged from 0.25 to in excess of 100 (no deuterium was removed within experimental error). Various α- and β-pinene samples were isolated and D NMR-na analysis showed evidence of isotopically sensitive partitioning of the pinylcation in the formation of these products. This spectral analysis supported published radiolabeling studies but did not require synthesis of substrates or enzyme purification. The formation of 3-carene occurs without isomerization of the double bond which was previously postulated. The olefinic deuterium of the bicyclic compound was traced to the depleted deuterium at C 2 of isopentyl diphosphate by D NMR-na data and this supported unpublished radiolabeling studies. Study of irregular monoterpenes, chrysanthemyl acetate and lyratyl acetate, showed partitioning of dimethylallyl diphosphate (DMAPP) by chrysanthemyl cyclase. The α-secondary kinetic isotope effect of 1.06-1.12, obtained from relative deuterium integration values, suggested that S N 1 ionization of one molecule of DMAPP is the first step in the condensation reaction

  20. Deuterium nuclear magnetic resonance studies on the plasmalogens and the glycerol acetals of plasmalogens of Clostridium butyricum and Clostridium beijerinckii

    International Nuclear Information System (INIS)

    Malthaner, M.; Seelig, J.; Johnston, N.C.; Goldfine, H.

    1987-01-01

    Deuterium nuclear magnetic resonance was used to investigate the structure of different lipid fractions isolated from the anaerobic bacteria Clostridium butyricum and Clostridium beijerinckii. The fractions isolated from C. butyricum were (1) phosphatidylethanolamine/plasmenylethanolamine and (2) the glycerol acetal of plasmenylethanolamine, and from C. beijerinckii similar fractions containing principally (1) phosphatidyl-N-monomethylethanolamine, along with its plasmalogen, and (2) the glycerol acetal of this plasmalogen were isolated. The third fraction from both species consisted largely of the acidic lipids phosphatidylglycerol and cardiolipin along with plasmalogen forms of these lipids. Palmitic acid with deuterium labels at C-2, C-3, or C-4 or oleic acid with deuterium labels at C-2 and C-9,10 was added to the growth medium and incorporated to various extents in the lipid fractions. Biochemical analysis showed that palmitic acid and oleic acid were preferentially bound to the sn-2 and sn-1 positions, respectively, of the glycerol backbone when both fatty acids were added to the medium. From the 2 H NMR spectra, the hydrocarbon chain ordering near the lipid-water interface could be determined and appeared to be similar for all three lipid fractions. The deuterium quadrupole splitting and order parameter were low at the C-2 segment and increased by almost a factor of 2 at positions C-3 and C-4 for cells fed with deuteriated palmitic acid along with unlabeled oleic acid. These results agree with previous findings on pure diacyl lipids in which the sn-2 chain was found to adopt a bent conformation at the carbon segment C-2. However, two unusual quadrupole splittings could be detected for the plasmalogens. By comparison with other model systems it could be concluded that the double bond is aligned essentially parallel with the long axis of the hydrocarbon chains

  1. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  2. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  3. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    International Nuclear Information System (INIS)

    Guzek, J.; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S.

    1999-01-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 μA beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output

  4. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO{sub 2}-cooled reactors and for the decontamination of irradiated graphite waste

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Agence nationale pour la gestion des déchets radioactifs, DRD/CM – 1-7, rue Jean Monnet, Parc de la Croix-Blanche, F-92298 Châtenay-Malabry cedex (France); Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon – 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Khodja, H. [Laboratoire d’Etude des Eléments Légers, CEA/DSM/IRAMIS/NIMBE, UMR 3299 SIS2M – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-06-15

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO{sub 2}-cooled nuclear fission reactors (called UNGG for “Uranium Naturel-Graphite-Gaz”) to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D{sup +} ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO{sub 2}) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the

  5. Solid state deuterium nuclear magnetic resonance detection of transmembrane-potential-driven tetraphenylphosphonium redistribution across Giant Unilamellar Vesicle bilayers

    International Nuclear Information System (INIS)

    Franzin, Carla Maria Mirella

    1995-01-01

    It has been demonstrated that deuterium nuclear magnetic resonance ( 2 H NMR) of Giant Unilamellar Vesicles (GUVs) consisting of specifically choline-deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), plus 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and cholesterol can be used to monitor the transbilayer redistribution of tetraphenylphosphonium (TPP + ) in response to a transmembrane potential (δψ tm ). The 2 H quadrupolar splittings (δν Q 's) measured reflect the level of TPP + bound at the membrane surface due to the latter's effect on the membrane surface electrostatic potential, ψ s . Results reveal the appearance of two distinct δν Q 's, due to differences in bound TPP + at the inner versus the outer monolayer in response to a δψ tm . The observed values of the δν Q 's agree with theoretical predictions based on a derived mathematical model that takes into account δψ tm , plus ψ s , plus the equilibrium binding of TPP + from solution onto the membrane surface, plus the sensitivity of δν Q to the amount of bound TPP + . This model identifies experimental factors that lead to improvements in spectral resolution. Henceforth, 2 H NMR is a valuable tool for quantifying transmembrane asymmetries of ψ s . (author)

  6. Deuterium migration in nuclear graphite: consequences for the behavior of tritium in Gas Cooled Reactors and for the decontamination of irradiated graphite waste

    International Nuclear Information System (INIS)

    Le-Guillou, Mael

    2014-01-01

    In France, 23 000 t of irradiated graphite that will be generated by the decommissioning of the first generation Uranium Naturel-Graphite-Gaz (UNGG) nuclear reactors are waiting for a long term management solution. This work focuses on the behavior of tritium, which is one of the main contributors to the radiological inventory of graphite waste after reactor shutdown. In order to anticipate tritium release during dismantling or waste management, it is mandatory to collect data on its migration, location and inventory. Our study is based on the simulation of tritium by implantation of approximately 3 at. % of deuterium up to around 3 μm in a virgin nuclear graphite. This material was then annealed up to 300 h and 1300 C in inert atmosphere, UNGG coolant gas and humid gas, aiming to reproduce thermal conditions close to those encountered in reactor and during waste management operations. The deuterium profiles and spatial distribution were analyzed using the nuclear reaction 2 H( 3 He,p) 4 He. The main results evidence a thermal release of implanted deuterium occurring essentially through three regimes controlled by the detrapping of atomic deuterium located in superficial or interstitial sites. The extrapolation of our data to tritium suggests that its purely thermal release during reactor operations may have been lower than 30 % and would be located close to the graphite free surfaces. Consequently, most of the tritium inventory after reactor shutdown could be trapped deeply within the irradiated graphite structure. Decontamination of graphite waste should then require temperatures higher than 1300 C, and would be more efficient in dry inert gas than in humid gas. (author)

  7. Applications of nuclear reaction analysis for determining hydrogen and deuterium distribution in metals

    International Nuclear Information System (INIS)

    Altstetter, C.J.

    1981-01-01

    The use of ion beams for materials analysis has made a successful transition from the domain of the particle physicist to that of the materials scientist. The subcategory of this field, nuclear reaction analysis, is just now undergoing the transition, particularly in applications to hydrogen in materials. The materials scientist must locate the nearest accelerator, because now he will find that using it can solve mysteries that do not yield to other techniques. 9 figures

  8. Deuterium–deuterium nuclear reaction induced by high intensity laser pulses

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cavallaro, S.; Cutroneo, M.; Giuffrida, L.; Krása, Josef; Margarone, Daniele; Velyhan, Andriy; Kravarik, J.; Ullschmied, Jiří; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2013-01-01

    Roč. 272, May (2013), s. 42-45 ISSN 0169-4332 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087; GA MŠk(CZ) LC528 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OPVK 3 Laser Zdroj(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; 7FP LASERLAB-EUROPE(XE) 228334 Program:EE; FP7 Keywords : D–D fusion * cross-section * laser-plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  9. Defect trapping of deuterium implanted in aluminium

    International Nuclear Information System (INIS)

    Kido, Y.; Kakeno, M.; Yamada, K.; Hioki, T.; Kawamoto, J.

    1982-01-01

    The behaviour of deuterium implanted in Al was studied by the D( 3 He,p) 4 He and the D(d,p)T nuclear reactions. Changes of the depth profiles of the deuterium after heat treatments indicated that the implanted deuterium was trapped by the defect produced during the deuterium implantation and the release probability of the trapped deuterium increased as the specimen temperature was raised. Assuming a thermal equilibrium locally in the region of high defect concentration, the trapping energy of deuterium in Al was determined to be 0.12eV. Since the release probability for the single crystal was considerably larger than that for the polycrystal specimens, the deuterium was considered to be strongly trapped in the grain boundaries. Distributions of displaced Al atoms and the recovery of the lattice damage by annealing were measured by the channelling technique. (author)

  10. Irradiation of nuclear materials with laser-plasma filaments produced in air and deuterium by terrawatt (TW) laser pulses

    Science.gov (United States)

    Avotina, Liga; Lungu, Mihail; Dinca, Paul; Butoi, Bogdan; Cojocaru, Gabriel; Ungureanu, Razvan; Marcu, Aurelian; Luculescu, Catalin; Hapenciuc, Claudiu; Ganea, Paul C.; Petjukevics, Aleksandrs; Lungu, Cristian P.; Kizane, Gunta; Ticos, C. M.; Antohe, Stefan

    2018-01-01

    Be-C-W mixed materials with variable atomic ratios were exposed to high power (TW) laser induced filamentation plasma in air in normal conditions and in deuterium at a reduced pressure of 20 Torr. Morphological and structural investigations were performed on the irradiated zones for both ambient conditions. The presence of low-pressure deuterium increased the overall ablation rate for all samples. From the elemental concentration point of view, the increase of the carbon percentage has led to an increase in the ablation rate. An increase of the tungsten percentage had the opposite effect. From structural spectroscopic investigations using XPS, Raman and FT-IR of the irradiated and non-irradiated sample surfaces, we conclude that deuterium-induced enhancement of the ablation process could be explained by preferential amorphous carbon removal, possibly by forming deuterated hydrocarbons which further evaporated, weakening the layer structure.

  11. On nuclear DD synthesis at the initial stage of nanosecond vacuum discharge with deuterium-loaded Pd anode

    Science.gov (United States)

    Kurilenkov, Yu K.; Gus'kov, S. Yu; Karpukhin, V. T.; Oginov, A. V.; Samoylov, I. S.

    2018-01-01

    Earlier, there was demonstrated generation of DD neutrons in an interelectrode medium of a low-energy (˜ 1 J) nanosecond vacuum discharge with a hollow cathode and a deuterium-loaded Pd anode. There was revealed essential role of formation of a virtual cathode and a potential well corresponding thereto in the processes of collisional DD synthesis in the interelectrode space. In this work, we have obtained as a result of an experiment and discussed the neutron yield at the very initial stage of the discharge, when the beam of auto-electrons just starts to irradiate the non-ideal surface of the deuterium-loaded Pd anode.

  12. Deuterium and heavy water

    International Nuclear Information System (INIS)

    Vasaru, G.; Ursu, D.; Mihaila, A.; Szentgyorgyi, P.

    1975-01-01

    This bibliography on deuterium and heavy water contains 3763 references (1932-1974) from 43 sources of information. An author index and a subject index are given. The latter contains a list of 136 subjects, arranged in 13 main topics: abundance of deuterium , catalysts, catalytic exchange, chemical equilibria, chemical kinetics, deuterium and heavy water analysis, deuterium and heavy water properties, deuterium and heavy water separation, exchange reactions, general review, heavy water as moderator, isotope effects, synthesis of deuterium compounds

  13. A verification scenario of nuclear plus interference scattering effects using neutron incident angle distribution to the wall in beam-injected deuterium plasmas

    International Nuclear Information System (INIS)

    Sugiyama, Shota; Matsuura, Hideaki; Uchiyama, Daisuke; Sawada, Daisuke; Watanabe, Tsuguhiro; Goto, Takuya; Mitarai, Osamu

    2015-01-01

    A verification scenario of knock-on tail formation in the deuteron distribution function due to nuclear plus interference scattering is presented by observing the incident angle distribution of neutrons in a vacuum vessel. Assuming a knock-on tail created in a "3He-beam-injected deuterium plasma, the incident angle distribution and energy spectra of the neutrons produced by fusion reactions between 1-MeV and thermal deuterons are evaluated. The relation between the neutron incident angle to the vacuum vessel and neutron energy is examined in the case of anisotropic neutron emission due to knock-on tail formation in neutral-beam-injected plasmas. (author)

  14. Work of the Liquid Deuterium Target of the Joint Institute for Nuclear Research at the Yerevan Electron Acceleration Ring

    CERN Document Server

    Golovanov, L B; Panebratsev, Yu A; Tsvinev, A P; Chumakov, V F; Shimansky, S S; Babayan, K Z; Mirzoyan, A E; Movsesyan, G D; Sirunyan, A M

    2003-01-01

    A cryogenic installation with a target filled with liquid hydrogen (deuterium), developed in the LHE JINR is described. The installation was used in an experimental run at the Yerevan ring accelerator with a beam of polarized photons. A description of the installation, features of its work in the YerPhI and its operational parameters is given.

  15. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1980-01-01

    A method of deuterium isotope separation and enrichment using infrared laser technology in combination with chemical processes for treating and recycling the unreacted and deuterium-depleted starting materials is described. Organic molecules of the formula RX (where R is an ethyl, isopropyl, t-butyl, or cyclopentenyl group and X is F, Cl, Br or OH) containing a normal abundance of hydrogen and deuterium are exposed to intense laser infrared radiation. An olefin containing deuterium (olefin D) will be formed, along with HX. The enriched olefin D can be stripped from the depleted stream of RX and HX, and can be burned to form enriched water or pyrolyzed to produce hydrogen gas with elevated deuterium content. The depleted RX is decomposed to olefins and RX, catalytically exchanged with normal water to restore the deuterium content to natural levels, and recombined to form RX which can be recycled. (LL)

  16. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  17. Determining the pk(a) of N,N-dimethylsphingosine and the flip-flop rate of related compounds with deuterium nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Lau, Bienca

    1995-01-01

    Deuterium nuclear magnetic resonance ( 2 H-NMR) spectroscopy was applied to determine the pk(a) of the protein kinase C (PKC) inhibitor, N,N-dimethylsphingosine (DMS), when bound to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. The quadrupolar splittings from deuterium labels at the α- and the β-positions of the POPC headgroup responded in a manner indicative of a positive surface charge density at pH 7.0. Conversely, at pH 10.0 DMS had virtually no influence on either quadrupolar splitting, an effect attributed to titration of the dimethylamino group of DMS to its neutral form. A DMS titration curve was obtained by quantifying the charge in the quadrupolar splittings as a function of pH. Simulation of this curve yielded a pk(a) of 8.8 of membrane-bound DMS. Using a similar approach, the dynamic process of flip-flop was examined in two DMS analogues. We discuss here the quantitative and the qualitative aspects as well as the limitations of this application. (author)

  18. Investigating the intra-nuclear cascade process using the reaction 136Xe on deuterium at 500 AMeV

    Directory of Open Access Journals (Sweden)

    Rejmund F.

    2010-10-01

    Full Text Available More than 600 residual nuclei, formed in the spallation of 136Xe projectiles impinging on deuterium at 500 AMeV of incident energy, have been unambiguously identified and their production cross sections have been determined with high accuracy. By comparing these data to others previously measured for the reactions 136Xe  +  p at 1 AGeV and 136Xe  +  p at 500 AMeV we investigated the role that neutrons play in peripheral collisions and to understand the energy dissipation in frontal collisions in spallation reactions.

  19. Deuterium isotope separation

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    Deuterium-containing molecules are separated and enriched by exposing commercially available ethylene, vinyl chloride, 1,2-dichloroethane or propylene to the radiation of tuned infrared lasers to selectively decompose these compounds into enriched molecular products containing deuterium atoms. The deuterium containing molecules can be easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. (author)

  20. Applications of super - high intensity lasers in nuclear engineering

    International Nuclear Information System (INIS)

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  1. High intensity proton linear accelerator development for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  2. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  3. Deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A2

    International Nuclear Information System (INIS)

    Dempsey, C.E.; Watts, A.

    1987-01-01

    The interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) selectively deuteriated in the choline head group has been studied by deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. The action of residual phospholipase A 2 in melittin samples resulted in mixtures of DMPC and its hydrolytic products that underwent reversible transitions at temperatures between 30 and 35 0 C from extended bilayers to micellar particles which gave narrow single-line deuterium and phosphorus-31 NMR spectra. Similar transitions were observed in DMPC-myristoyllysophosphatidylcholine (lysoPC)-myristic acid mixtures containing melittin but not in melittin-free mixtures, indicating that melittin is able to stabilize extended bilayers containing DMPC and its hydrolytic products in the liquid-crystalline phase. Melittin, free of phospholipase A 2 activity, and at 3-5 mol % relative to DMPC, induced reversible transitions between extended bilayers and micellar particles on passing through the liquid-crystalline to gel phase transition temperature of the lipid, effects similar to those observed in melittin-acyl chain deuteriated dipalmitoylphosphatidylcholine (DPPC) mixtures. LysoPC at concentrations of 20 mol % or greater relative to DMPC induced transitions between extended bilayers and micellar particles with characteristics similar to those induced by melittin. It is proposed that these melittin- and lysoPC-induced transitions share similar mechanisms. The effects of melittin on the quadrupole splittings and T 1 relaxation times of head-group-deuteriated DMPC in the liquid-crystalline phase share features similar to the effects of metal ions on DPPC head groups, indicating that the conformational properties of the choline head group in PC bilayers may be affected by melittin and by metal ions in a similar manner

  4. Deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, C.E.; Watts, A.

    1987-09-08

    The interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) selectively deuteriated in the choline head group has been studied by deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. The action of residual phospholipase A/sub 2/ in melittin samples resulted in mixtures of DMPC and its hydrolytic products that underwent reversible transitions at temperatures between 30 and 35/sup 0/C from extended bilayers to micellar particles which gave narrow single-line deuterium and phosphorus-31 NMR spectra. Similar transitions were observed in DMPC-myristoyllysophosphatidylcholine (lysoPC)-myristic acid mixtures containing melittin but not in melittin-free mixtures, indicating that melittin is able to stabilize extended bilayers containing DMPC and its hydrolytic products in the liquid-crystalline phase. Melittin, free of phospholipase A/sub 2/ activity, and at 3-5 mol % relative to DMPC, induced reversible transitions between extended bilayers and micellar particles on passing through the liquid-crystalline to gel phase transition temperature of the lipid, effects similar to those observed in melittin-acyl chain deuteriated dipalmitoylphosphatidylcholine (DPPC) mixtures. LysoPC at concentrations of 20 mol % or greater relative to DMPC induced transitions between extended bilayers and micellar particles with characteristics similar to those induced by melittin. It is proposed that these melittin- and lysoPC-induced transitions share similar mechanisms. The effects of melittin on the quadrupole splittings and T/sub 1/ relaxation times of head-group-deuteriated DMPC in the liquid-crystalline phase share features similar to the effects of metal ions on DPPC head groups, indicating that the conformational properties of the choline head group in PC bilayers may be affected by melittin and by metal ions in a similar manner.

  5. Energy Levels of Hydrogen and Deuterium

    Science.gov (United States)

    SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  6. Nuclear energy = more jobs. [Capital-intensive vs labor-intensive systems

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, L G

    1979-07-01

    In the April 1979 issue of Energy Manager, Dr. David Elliott of Open University says capital-intensive systems employ less labor per unit of output, concluding that nuclear energy represented a poor bargain in terms of money invested per job created. Responding to this earlier article, Dr. Brookes argues that capital-intensive systems may employ less labor per unit of output, but they also produce more output and income per worker. Dr. Brookes uses a simple analysis to illustrate how progress results by increasing capital investment and disagrees strongly with Elliotts conclusions - says output must become more capital-intensive to provide more employment opportunities. Further, he feels that Elliott and other antinuclear and environmentalist writers have fallen into the trap of the fallacy of composition - assuming that what is true for a small number of constituent parts taken singly is true also for the total system taken as a whole. Examples can be found in economics of microeconomic elements which do not add up to the expected macroeconomic composition, which explains why some capital-intensive strategies are good and others are not. The excess income produced by capital-intensive energy strategies supports the service and public administration sectors. 3 figures, 1 table. (DCK)

  7. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  8. Deuterium-depleted water

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Steflea, Dumitru; Saros-Rogobete, Irina; Titescu, Gheorghe; Tamaian, Radu

    2001-01-01

    Deuterium-depleted water represents water that has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Deuterium depleted water is produced by vacuum distillation in columns equipped with structured packing made from phosphor bronze or stainless steel. Deuterium-depleted water, the production technique and structured packing are patents of National Institute of Research - Development for Cryogenics and Isotopic Technologies at Rm. Valcea. Researches made in the last few years showed the deuterium-depleted water is a biological active product that could have many applications in medicine and agriculture. (authors)

  9. Fine target of deuterium

    International Nuclear Information System (INIS)

    Diaz Diaz, J.; Granados Gonzalez, C. E.; Gutierrez Bernal, R.

    1959-01-01

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 μ gr/cm 2 thick is obtained. (Author) 1 refs

  10. Evaluation of nuclear magnetic resonance spectroscopy for determination of deuterium abundance in body fluids: application to measurement of total-body water in human infants

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Pearson, G.A.; Serfass, R.E.; Roth, C.W.; Finley, J.W.

    1987-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to quantitate abundance of 2H in body water of human infants. This method provides precise measurement of total-body water without the extensive sample preparation requirements of previously described methods for determination of 2H content in body fluids. 2H2O (1 g/kg body weight) was administered to infants and saliva and urine were collected for up to 5 h. An internal standard was added directly to the fluid specimen and 2H enrichment in water was measured by NMR spectroscopy. Working range of deuterium abundance was 0.04-0.32 atom %. Coefficients of variation for saliva samples at 0.20 atom % 2H was 1.97%. 2H content in urine and saliva water reached a plateau by 4 h after administration, and amounts in the two fluids were virtually identical. Mean total-body water determination for six infants was 58.3 +/- 5.8% of body weight (range 53-66%)

  11. Knock-on tail formation due to nuclear elastic scattering and its observation method using γ-ray-generating "6Li+d reaction in tokamak deuterium plasmas

    International Nuclear Information System (INIS)

    Matsuura, Hideaki; Sugiyama, Shota; Kajimoto, Shogo; Sawada, Daisuke; Nishimura, Yosuke; Kawamoto, Yasuko

    2016-01-01

    A knock-on tail formation in deuteron velocity distribution function due to nuclear elastic scattering (NES) by energetic protons and its observation method using γ-ray-generating "6Li(d,pγ)"7Li reaction are examined for proton-beam-injected deuterium plasmas. The proton velocity distribution function is obtained by means of the ion trajectory analysis in a Tokamak magnetic configuration. The knock-on tail in two-dimensional (2D) deuteron velocity distribution function due to NES by energetic protons is evaluated via Boltzmann collision integral and 2D Fokker-Planck simulation. From the 2D deuteron velocity distribution function obtained, enhancement of the emission rate of 0.48-MeV γ-rays by "6Li(d,p)"7Li*, "7Li*→"7Li+γ reaction due to NES is evaluated. It is shown that the γ-ray emission rate is significantly influenced by the magnitude of the knock-on tail, and the γ-ray-generating reaction can be a useful tool for the knock-on tail observation. (author)

  12. Deuterium measurement by emission spectrometry

    International Nuclear Information System (INIS)

    Niemann, E.G.; Heilig, K.; Dumke, I.

    1978-01-01

    The method makes it possible to determine the relative deuterium content of enriched water samples. For this, the relative intensities of the Hα and Dα lines are measured which are emitted by a high-frequency discharge in water vapour. Although the method is not as exact as mass spectrometry, it has the following advantages: - Easy sample preparation (no reduction necessary); - samples of highly different enrichment can be measured one after the other without the danger of memory effects; - much lower apparatus and cost expenditure. The necessary sample size is about the same in both methods. (orig.) [de

  13. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  14. Effect of laser spot size on fusion neutron yield in laser–deuterium cluster interactions

    International Nuclear Information System (INIS)

    Chen Guanglong; Lu Haiyang; Wang Cheng; Liu Jiansheng; Li Ruxin; Ni Guoquan; Xu Zhizhan

    2008-01-01

    The effect of the laser spot size on the neutron yield of table-top nuclear fusion from explosions of a femtosecond intense laser pulse heated deuterium clusters is investigated by using a simplified model, in which the cluster size distribution and the energy attenuation of the laser as it propagates through the cluster jet are taken into account. It has been found that there exists a proper laser spot size for the maximum fusion neutron yield for a given laser pulse and a specific deuterium gas cluster jet. The proper spot size, which is dependent on the laser parameters and the cluster jet parameters, has been calculated and compared with the available experimental data. A reasonable agreement between the calculated results and the published experimental results is found

  15. Method of producing deuterium-oxide-enriched water

    International Nuclear Information System (INIS)

    Mandel, H.

    1976-01-01

    A method and apparatus for producing deuterium-oxide-enriched water (e.g., as a source of deuterium-rich gas mixtures) are disclosed wherein the multiplicity of individual cooling cycles of a power plant are connected in replenishment cascade so that fresh feed water with a naturally occurring level of deuterium oxide is supplied to replace the vaporization losses, sludge losses and withdrawn portion of water in a first cooling cycle, the withdrawn water being fed as the feed water to the subsequent cooling cycle or stage and serving as the sole feed-water input to the latter. At the end of the replenishment-cascade system, the withdrawn water has a high concentration of deuterium oxide and may serve as a source of water for the production of heavy water or deuterium-enriched gas by conventional methods of removing deuterium oxide or deuterium from the deuterium-oxide-enriched water. Each cooling cycle may form part of a thermal or nuclear power plant in which a turbine is driven by part of the energy and air-cooling of the water takes place in the atmosphere, e.g., in a cooling tower

  16. Neutrino disintegration of deuterium

    International Nuclear Information System (INIS)

    Ying, S.; Haxton, W.; Henley, E.M.

    1989-01-01

    We calculate the rate of both neutral- and charged-current neutrino and antineutrino disintegration of deuterium. These rates are of interest for solar 8 B and hep ( 3 He + p) spectra and supernovae neutrinos, and are relevant for the Sudbury Neutrino Observatory (SNO)

  17. Deuterium in atmospheric cycle

    International Nuclear Information System (INIS)

    Pontikis, M.C.

    Interest of the study concerning the deuterium content variation (HDO) in the atmospheric water. Standards and measurement methods. Molecule HDO cycle in the atmospheric water. Application to the study of hail-generating cumulus-nimbus and of the mantle of snow [fr

  18. Future of high intensity accelerators in nuclear energy

    International Nuclear Information System (INIS)

    Schriber, S.O.; Fraser, J.S.; Tunnicliffe, P.R.

    1977-08-01

    A possible application for a high mean current, intermediate-energy proton linear accelerator is the ''electrical breeding'' of fuel for nuclear electrical power stations. The possible role of the spallation breeder in the context of a Canadian nuclear power economy and its relationship to nuclear fuel resources are discussed. The production of fissile material using the spallation process in a target containing actinide elements appears desirable and feasible from engineering and economic considerations. Current development work in Canada and some of the outstanding problems are discussed. (author)

  19. Method to separate deuterium isotopes using ethylene and ethylene dichloride

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    The separation of deuterium by the dissociation of ethylene vinyl chloride, 1,2-dichloro-ethanes or propylene with the help of intensive, matched infrared lasers enables a relatively good yield if operated on a large scale, e.g. in refineries with large through-put. The deuterium from the laser photolysis of ethylene and vinyl chloride is found in the acetylene formed, which has to be separated off and processed. When using dichloroehtane, the deuterium is found in the vinal chloride formed. The methods are briefly described. (UWI) [de

  20. Proposal of experimental facilities for studies of nuclear data and radiation engineering in the Intense Proton Accelerator Project

    CERN Document Server

    Baba, M; Nagai, Y; Ishibashi, K

    2003-01-01

    A proposal is given on the facilities and experiments in the Intense Proton Accelerator Project (J-PARC) relevant to the nuclear data and radiation engineering, nuclear astrophysics, nuclear transmutation, accelerator technology and space technology and so on. (3 refs).

  1. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  2. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  3. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  4. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    International Nuclear Information System (INIS)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-01-01

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL)

  5. Deuterium labeled cannabinoids

    International Nuclear Information System (INIS)

    Driessen, R.A.

    1979-01-01

    Complex reactions involving ring opening, ring closure and rearrangements hamper complete understanding of the fragmentation processes in the mass spectrometric fragmentation patterns of cannabinoids. Specifically labelled compounds are very powerful tools for obtaining more insight into fragmentation mechanisms and ion structures and therefore the synthesis of specifically deuterated cannabinoids was undertaken. For this, it was necessary to investigate the preparation of cannabinoids, appropriately functionalized for specific introduction of deuterium atom labels. The results of mass spectrometry with these labelled cannabinoids are described. (Auth.)

  6. Predicting big bang deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Hata, N.; Scherrer, R.J.; Steigman, G.; Thomas, D.; Walker, T.P. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)

    1996-02-01

    We present new upper and lower bounds to the primordial abundances of deuterium and {sup 3}He based on observational data from the solar system and the interstellar medium. Independent of any model for the primordial production of the elements we find (at the 95{percent} C.L.): 1.5{times}10{sup {minus}5}{le}(D/H){sub {ital P}}{le}10.0{times}10{sup {minus}5} and ({sup 3}He/H){sub {ital P}}{le}2.6{times}10{sup {minus}5}. When combined with the predictions of standard big bang nucleosynthesis, these constraints lead to a 95{percent} C.L. bound on the primordial abundance deuterium: (D/H){sub best}=(3.5{sup +2.7}{sub {minus}1.8}){times}10{sup {minus}5}. Measurements of deuterium absorption in the spectra of high-redshift QSOs will directly test this prediction. The implications of this prediction for the primordial abundances of {sup 4}He and {sup 7}Li are discussed, as well as those for the universal density of baryons. {copyright} {ital 1996 The American Astronomical Society.}

  7. A simple and rapid gas chromatographic method for the determination of dissolved deuterium and nitrogen in heavy water coolant of a nuclear reactor

    International Nuclear Information System (INIS)

    Nair, B.K.S.

    1976-01-01

    A known volume of a heavy water sample is equilibrated with a known volume of pure helium gas at atmospheric pressure in a sample tube. The dissolved gases evolve into the helium and distribute themselves between the gaseous and liquid phases according to their equilibrium partial pressures. These partial pressures of the gases in the equilibrium gas mixture are determined by analysing it gas-chromatographically. From these analytical data and the absorption coefficients of deuterium and nitrogen, their original concentrations in heavy water are calculated. Corrections for the increase in the total pressure of the gaseous phase owing to evolved gases are calculated and found to be negligible. Air contamination during sampling and analysis can be detected by the presence of the oxygen peak in the chromatogram and corrected for. The calculation is facilitated by programming it on an electronic calculator. The method is much simpler and faster than the vacuum method usually applied for this analysis. One determination can be completed in about an hour. The average deviation and standard deviation have been estimated at 0.19 ml/litre heavy water and 0.25 ml/litre heavy water respectively in deuterium, and 0.36 and 0.68 ml/litre in nitrogen. (author)

  8. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  9. Determination of karst collapse intensity indicator in area of nuclear power plant construction using incomplete data

    International Nuclear Information System (INIS)

    Sharapov, R

    2014-01-01

    The paper deals with the definition of karst collapse intensity. The technique for determining the intensity of karst formation and collapse on the basis of calculation and probabilistic method is given. Karst collapse formation is affected by a great variety of natural and anthropogenic factors. Each factor can vary quite widely. The paper describes a technique for determining karst collapse intensity from incomplete data. It uses karst processes monitoring data in the area and monitoring data of areas with similar values of the most significant factors leading to the karst collapses. The method used for determination of karst collapse intensity indicator in area of Nizhny Novgorod nuclear power plant construction

  10. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  11. Photodisintegration of deuterium

    International Nuclear Information System (INIS)

    Hara, K.Y.; Utsunomiya, H.; Goko, S.

    2004-01-01

    Photodisintegration cross sections were measured for deuterium with Laser Compton scattering γ beams at E γ = 2.3 - 4.6 MeV. The present data made it possible to experimentally evaluate R(E) = N a συ for the p(n, γ)D reaction with 6% uncertainty in the energy region to big bang nucleosynthesis (BBN). The result confirms the past theoretical evaluation and the recent calculation based on the effective field theory. The reaction rate for the p(n, γ)D reaction is presented for the BBN in the precision era. (author)

  12. Symposium on the 50th anniversary of the discovery of deuterium: divisions of history of chemistry, geochemistry, nuclear and physical chemistry

    International Nuclear Information System (INIS)

    Bigeleisen, J.

    1981-01-01

    In tribute to Harold Urey, the author cites Urey's accomplishments as a scientist and public servant and gives insight of the man. Some of his accomplishments in science are: discovered deuterium for which he received the Nobel prize in 1934; worked with Rittenberg and Greiff on the theory and calculation of the differences in the thermodynamic properties of isotopic compounds; with Thode, Hutchison and others, separated the isotopes of the light elements by chemical methods on a laboratory scale; during World War II headed the Substitute Alloy Materials Laboratories of Columbia University where his group developed industrial scale processes for the separation of 2 H, 10 B, and 235 U; with his associates developed the 18 O paleotemperature scale; made fundamental contributions to a widely accepted theory of the origin of the earth

  13. Selected bibliography on deuterium isotope effects and heavy water

    International Nuclear Information System (INIS)

    Dave, S.M.; Donde, M.M.

    1983-01-01

    In recent years, there has been a great deal of interest in using deuterium and heavy water not only in nuclear industry but also in various fields of basic as well as applied research in physics, chemistry and biology. As a result, the literature is being enriched with a large number of research papers and technical reports published each year. Thus, to enable the scientists to have an easy reference to these works, an endeavour has been made in this selected bibliography, to enlist the publications related to these fields. Since the interest is concerned mainly with heavy water production processes, deuterium isotope effects etc., several aspects (e.g. nuclear) of deuterium have not been covered here. The material in this bibliography which cites 2388 references has been classified under six broad headings, viz. (1) Production of heavy water, (2) Study of deuterium isotope effects, (3) Analysis and Properties of heavy water, (4) Laser Separation of deuterium, (5) Isotopic exchange reactions, and (6) Miscellaneous. The sources of information used for this compilation are chemical abstracts, nuclear science abstracts, INIS Atomindex and also some scattered search through journals and reports available in the B.A.R.C. library. However, in spite of sincere attempts for a wide coverage, no claim is being made towards the exhaustiveness of this bibliography. (author)

  14. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target

  15. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures

  16. Burn performance of deuterium-tritium, deuterium-deuterium, and catalyzed deuterium ICF targets

    International Nuclear Information System (INIS)

    Harris, D.B.; Blue, T.E.

    1983-01-01

    The University of Illinois hydrodynamic burn code, AFBURN, has been used to model the performance of homogeneous D-T, D 2 , and catalyzed deuterium ICF targets. Yields and gains are compared for power-producing targets. AFBURN is a one-dimensional, two-temperature, single-fluid hydrodynamic code with non-local fusion product energy deposition. The initial conditions for AFBURN are uniformly compressed targets with central hot spots. AFBURN predicts that maximum D 2 target gains are obtained for target rhoR and spark rhoR about seven times larger than the target and spark rhoR for maximum D-T target gains, that the maximum D 2 target gain is approximately one third of the maximum D-T target gain, and that the corresponding yields are approximately equal. By recycling tritium and 3 He from previous targets, D 2 target performance can be improved by about 10%. (author)

  17. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    International Nuclear Information System (INIS)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-01-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  18. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, E. Kim; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L. [Department of Phsysics, Purdue University, West Lafayette, IN 47907 (United States)

    2006-07-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent. experimental results indicating that the LENR und transmutation processes in condensed matter (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently, proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro-or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and those deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many orders of magnitude, and thus may lead to better reproducibility and theoretical understanding of the phenomena. (authors)

  19. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    Science.gov (United States)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  20. Nuclear beta decay induced by intense electromagnetic fields: Forbidden transition examples

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1983-01-01

    A formalism developed earlier for the effect on nuclear beta decay of an intense plane-wave electromagnetic field is applied to three examples of forbidden beta transitions. The examples represent cases where the nuclear ''fragment'' contains one, two, and three nucleons; where the nuclear fragment is defined to be that smallest sub-unit of the nucleus containing the nucleon which undergoes beta decay plus any other nucleons directly angular-momentum coupled to it in initial or final states. The single-nucleon-fragment example is 113 Cd, which has a fourth-forbidden transition. The two-nucleon-fragment example is 90 Sr, which is first-forbidden. The three-nucleon-fragment example is 87 Rb, which is third-forbidden. An algebraic closed-form transition probability is found in each case. At low external-field intensity, the transition probability is proportional to z/sup L/, where z is the field intensity parameter and L is the degree of forbiddenness. At intermediate intensities, the transition probability behaves as z/sup L/-(1/2). At higher intensities, the transition probability contains the z/sup L/-(1/2) factor, a declining exponential factor, and an alternating polynomial in z. This high-intensity transition probability possesses a maximum value, which is found for each of the examples. A general rule, z = q 2 (2L-1), where q is the number of particles in the fragment, is found for giving an upper limit on the intensity at which the maximum transition probability occurs. Field-induced beta decay half-lives for all the examples are dramatically reduced from natural half-lives when evaluated at the optimum field intensity. Relative half-life reduction is greater the higher the degree of forbiddenness

  1. Lamb shift in the muonic deuterium atom

    Energy Technology Data Exchange (ETDEWEB)

    Krutov, A. A.; Martynenko, A. P. [Samara State University, Pavlov street 1, 443011, Samara (Russian Federation); Samara State University, Pavlov Street 1, 443011, Samara, Russia and Samara State Aerospace University named after academician S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation)

    2011-11-15

    We present an investigation of the Lamb shift (2P{sub 1/2}-2S{sub 1/2}) in the muonic deuterium ({mu}D) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear-structure, and recoil effects are calculated with the account of contributions of orders {alpha}{sup 3}, {alpha}{sup 4}, {alpha}{sup 5}, and {alpha}{sup 6}. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift at 202.4139 meV can be considered a reliable estimate for comparison with forthcoming experimental data.

  2. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  3. Laser-driven polarized hydrogen and deuterium internal targets

    International Nuclear Information System (INIS)

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-01-01

    After completing comprehensive tests of the performance of the source with both hydrogen and deuterium gas, we began tests of a realistic polarized deuterium internal target. These tests involve characterizing the atomic polarization and dissociation fraction of atoms in a storage cell as a function of flow and magnetic field, and making direct measurements of the average nuclear tensor polarization of deuterium atoms in the storage cell. Transfer of polarization from the atomic electron to the nucleus as a result of D-D spin-exchange collisions was observed in deuterium, verifying calculations suggesting that high vector polarization in both hydrogen and deuterium can be obtained in a gas in spin temperature equilibrium without inducing RF transitions between the magnetic substates. In order to improve the durability of the system, the source glassware was redesigned to simplify construction and installation and eliminate stress points that led to frequent breakage. Improvements made to the nuclear polarimeter, which used the low energy 3 H(d,n) 4 He reaction to analyze the tensor polarization of the deuterium, included installing acceleration lenses constructed of wire mesh to improve pumping conductance, construction of a new holding field coil, and elimination of the Wien filter from the setup. These changes substantially simplified operation of the polarimeter and should have reduced depolarization in collisions with the wall. However, when a number of tests failed to show an improvement of the nuclear polarization, it was discovered that extended operation of the system with a section of teflon as a getter for potassium caused the dissociation fraction to decline with time under realistic operating conditions, suggesting that teflon may not be a suitable material to eliminate potassium from the target. We are replacing the teflon surfaces with drifilm-coated ones and plan to continue tests of the polarized internal target in this configuration

  4. Long Term Retention of Deuterium and Tritium in Alcator C-Mod

    International Nuclear Information System (INIS)

    FIORE, C.; LABOMBARD, B.; LIPSCHULTZ, B.; PITCHER, C.S.; SKINNER, C.H.; WAMPLER, WILLIAM R.

    1999-01-01

    We estimate the total in-vessel deuterium retention in Alcator C-Mod from a run campaign of about 1090 plasmas. The estimate is based on measurements of deuterium retained on 22 molybdenum tiles from the inner wall and divertor. The areal density of deuterium on the tiles was measured by nuclear reaction analysis. From these data, the in-vessel deuterium inventory is estimated to be about 0.1 gram, assuming the deuterium coverage is toroidally symmetric. Most of the retained deuterium is on the walls of the main plasma chamber, only about 2.5% of the deuterium is in the divertor. The D coverage is consistent with a layer saturated by implantation with ions and charge-exchange neutrals from the plasma. This contrasts with tokamaks with carbon plasma-facing components (PFC's) where long-term retention of tritium and deuterium is large and mainly in the divertor due to codeposition with carbon eroded by the plasma. The low deuterium retention in the C-Mod divertor is mainly due to the absence of carbon PFC's in C-Mod and the low erosion rate of Mo

  5. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    OpenAIRE

    Beaumont, Jonathan; Villa, Mario; Mellor, Matthew; Joyce, Malcolm John

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has bee...

  6. Characterization of a deuterium-deuterium plasma fusion neutron generator

    Science.gov (United States)

    Lang, R. F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M. L.; Bruno, G.

    2018-01-01

    We characterize the neutron output of a deuterium-deuterium plasma fusion neutron generator, model 35-DD-W-S, manufactured by NSD/Gradel-Fusion. The measured energy spectrum is found to be dominated by neutron peaks at 2.2 MeV and 2.7 MeV. A detailed GEANT4 simulation accurately reproduces the measured energy spectrum and confirms our understanding of the fusion process in this generator. Additionally, a contribution of 14 . 1 MeV neutrons from deuterium-tritium fusion is found at a level of 3 . 5%, from tritium produced in previous deuterium-deuterium reactions. We have measured both the absolute neutron flux as well as its relative variation on the operational parameters of the generator. We find the flux to be proportional to voltage V 3 . 32 ± 0 . 14 and current I 0 . 97 ± 0 . 01. Further, we have measured the angular dependence of the neutron emission with respect to the polar angle. We conclude that it is well described by isotropic production of neutrons within the cathode field cage.

  7. Cold versus hot fusion deuterium branching ratios

    International Nuclear Information System (INIS)

    Fox, H.; Bass, R.

    1995-01-01

    A major source of misunderstanding of the nature of cold nuclear fusion has been the expectation that the deuterium branching ratios occurring within a palladium lattice would be consistent with the gas-plasma branching ratios. This misunderstanding has led to the concept of the dead graduate student, the 1989's feverish but fruitless search for neutron emissions from cold fusion reactors, and the follow-on condemnation of the new science of cold fusion. The experimental facts are that in a properly loaded palladium lattice, the deuterium fusion produces neutrons at little above background, a greatly less-than-expected production of tritium (the tritium desert), and substantially more helium-4 than is observed in hot plasma physics. The experimental evidence is now compelling (800 reports of success from 30 countries) that cold nuclear fusion is a reality, that the branching ratios are unexpected, and that a new science is struggling to be recognized. Commercialization of some types of cold fusion devices has already begun

  8. Public attitudes toward nuclear power generation. Focusing on measurement of attitude intensity

    International Nuclear Information System (INIS)

    Nagai, Yasuko; Hayashi, Chikio

    1999-01-01

    The purpose of the present study was to 1) examine the differences of the perception between nuclear power generation (NPG) and electric power generation by nuclear fusion, 2) find the structural characteristics of the attitude toward NPG, 3) shed light on the characteristics of knowledge about NPG, and 4) develop a scale to measure the intensity in attitude toward NPG. Subjects (N = 1,582) were randomly assigned into 4 groups and were asked to answer a questionnaire including public attitudes toward NPG and related matters. The results were as follows: 1) the perception of electric power generation by nuclear fusion was less favorable than that of NPG; 2) Items which correlated with attitudes toward NPG were: 'sense of anxiety,' sensitivity to risk,' 'trust in science and technology,' 'evaluation of Japan's nuclear policy', 'evaluation of electric power companies,' and interest in life and environmental issues.' Moreover, people with a strong attitude tended to be rational and had a better knowledge of NPG; 3) The evaluation of the amount of subjective knowledge concerning nuclear power and electric power generation was reliable as a measure of objective knowledge; 4) The measurement method used in this study was characterized by the use of biased questions(ten positively and ten negatively biased questions) which were shown to the subjects using the split-half method. An attempt was made to measure the attitude and its intensity taking into consideration gender, positive or negative attitude toward NPG, level of knowledge about NPG, age, and occupation. As a result, differences in intensity between different attributes were found. (author)

  9. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  10. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  11. Deuterium exchange between hydrofluorocarbons and amines

    International Nuclear Information System (INIS)

    Hammond, W.B.; Bigeleisen, J.; Tuccio, S.A.

    1983-01-01

    The invention consists of a process for obtaining a compound enriched in deuterium which comprises the known method of exposing a gaseous hydrofluorocarbon to infrared laser radiation of a predetermined frequency to selectively cause a chemical reaction involving hydrofluorocarbon molecules containing deuterium without substantially affecting hydrofluorocarbon molecules not containing deuterium, thereby producing, as reaction products, a compound enriched in deuterium and hydrofluorocarbon depleted in deuterium; combined with a new method, which comprises enriching the deuterium content of the depleted hydrofluorocarbon by contacting the depleted hydrofluorocarbon with an alkali metal amide and an amine having a concentration of deuterium at least that which will yield an increase in deuterium concentration of the hydrofluorocarbon upon equilibration, whereby the amine becomes depleted in deuterium

  12. Deuterium/hydrogen isotope exchange on beryllium and beryllium nitride; Deuterium/Wasserstoff-Isotopenaustausch an Beryllium und Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Dollase, Petra; Eichler, Michael; Koeppen, Martin; Dittmar, Timo; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    In the fusion experiments JET and ITER, the first wall is made up of beryllium. The use of nitrogen is discussed for radiative cooling in the divertor. This can react with the surface of the first wall to form beryllium nitride (Be{sub 3}N{sub 2}). The hydrogen isotopes deuterium and tritium, which react in the fusion reaction to helium and a neutron, are used as fuel. Since the magnetic confinement of the plasma is not perfect, deuterium and tritium ions are also found on the beryllium wall and can accumulate there. This should be avoided due to the radioactivity of tritium. Therefore the isotope exchange with deuterium is investigated to regenerate the first wall. We investigate the isotopic exchange of deuterium and protium in order to have not to work with radioactive tritium. The ion bombardment is simulated with an ion source. With voltages up to a maximum of 5 kV, deuterium and protic hydrogen ions are implanted in polycrystalline Be and Be{sub 3}N{sub 2}. The samples are then analyzed in situ using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). Subsequently, samples prepared under the same conditions are characterized ex-situ by means of nuclear reaction analysis (NRA). [German] In den Fusionsexperimenten JET und ITER besteht die erste Wand im Hauptraum aus Beryllium (Be). Zur Strahlungskuehlung im Divertor wird der Einsatz von Stickstoff diskutiert. Dieser kann mit der Oberflaeche der ersten Wand zu Berylliumnitrid (Be{sub 3}N{sub 2}) reagieren. Als Brennstoff werden die Wasserstoffisotope Deuterium und Tritium eingesetzt, die in der Fusionsreaktion zu Helium und einem Neutron reagieren. Da der magnetische Einschluss des Plasmas nicht perfekt ist, treffen auch Deuterium- und Tritiumionen auf die Berylliumwand auf und koennen sich dort anreichern. Das soll aufgrund der Radioaktivitaet von Tritium unbedingt vermieden werden. Daher wird zur Regenerierung der ersten Wand der Isotopenaustausch mit Deuterium untersucht. Wir

  13. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    Science.gov (United States)

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  14. Wildcat: A commercial deuterium-deuterium tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K.; Baker, C.C.; Barry, K.M.

    1983-01-01

    WILDCAT is a conceptual design of a catalyzed deuterium-deuterium tokamak commercial fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing deuterium-tritium (D-T) designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete conceptual design

  15. Experimental measurement of nuclear heating in a graphite-cantered assembly in deuterium-tritium neutron environment for the validation of data and calculation

    International Nuclear Information System (INIS)

    Kumar, A.; Youssef, M.; Abdou, M.A.

    1998-01-01

    Within the framework of the ITER Task T-218 entitled 'Shielding Blanket Neutronics Experiments', nuclear heating measurements were conducted jointly by the USA and Japan using a micro calorimetric technique in a graphite-cantered assembly. An accelerator-based D-T neutron source at JAERI was used to provide a mixed neutron and photon field. The first measurements related to direct micro calorimetric measurements in individual graphite probes along the axis. In the second set, the first graphite probe was replaced, one by one, by single probes of beryllium, aluminum, silicon, silicon carbide, titanium, vanadium, chromium, iron, stainless steel 316, nickel, copper, zirconium, niobium, molybdenum, tungsten. Analysis of the measurements has been carried out using Monte Carlo code MCNP with FENDL-1, ENDF/B-VI and MCPLIB nuclear data libraries. A comparison of calculations (C) and experiments (E) shows a C/E ratio lying in a C/E band extending from 0.9 to 1.2 for beryllium, graphite, copper, chromium, iron, nickel, 316 stainless steel, titanium, vanadium, molybdenum, niobium and tungsten. However, larger deviations from unity are seen for C/E values for silicon, zirconium, and aluminum. Though FENDL-1 and ENDF/B-VI libraries provide very close nuclear heating rates for most of the probe materials, significant divergences are seen for silicon, silicon carbide, aluminum, titanium, zirconium, niobium, and molybdenum. The divergences are traceable to differences in neutron kerma factors as well as gamma production cross-sections of these materials. (orig.)

  16. Postgraduate Course 'Physics Aspects of Nuclear Medicine'. Theoretical and practical intensive version. Preliminary results

    International Nuclear Information System (INIS)

    Lopez Diaz, A.; Gonzalez, G.J.; Torres, A.L.; Fraxedas, M.R.

    2007-01-01

    Full text: Using national and international recommendations about human resource in Nuclear Medicine, a group of experts organized a National Course for the education and training of physicist who work in Cuban hospitals, adapted to national condition and practice of Nuclear Medicine. The program was approved for National Authorities in Nuclear Security and University Schools in Medicine. The program contains two intensive theoretic and practical courses, to be completed over a period of 15 days of full time engagement, complemented with 4 month full attachment to a Nuclear Medicine Service monitored by accredited expert. The theoretical/practical intensive courses have final evaluation: combining practical exercise and a final test. When all docent activities finish the students should clear a final theoretical/practical evaluation by an examination board comprising of at least three accredited experts. The theoretical/practical courses were attended by 19 physicists working in hospitals in Cuba. The contents of the first course included, Introduction to Nuclear Medicine, Principle of NM equipment, Quality assurance and quality control of NM equipment, Radiation Protection and Licence Topics of NM Services. The second course had the following topics: Acquisition and Processing methods in Nuclear Medicine, Nuclear Medicine Techniques and Clinical Dosimetry for radiopharmaceutical therapy. With 100 point of maximum score and 60 point minimum to pass, the final test of this first course comprised of 2 types of questions: 1 Multiple choice questions and 2. long essay type questions. The average scores obtained by the participants was 87.02 points/ students (range 65- 100 points). The students pass the test with very good degree of comprehension: 10-Excellent (90-100 points), 5- Very good (80-89 points), 2-Good (70-79 point) and 2- satisfactory standard (60-69 point). The students evaluated 'satisfactory' the quality of the course (in anonymous poll), reporting like

  17. Deuterium trapping in liquid lithium irradiated by deuterium plasma

    International Nuclear Information System (INIS)

    Pisarev, A.; Moshkunov, K.; Vizgalov, I.; Gasparyan, Yu.

    2013-01-01

    Liquid lithium was irradiated by deuterium plasma to a low fluence of 10 22 –10 23 D/m 2 , cooled down to room temperature, and then slowly heated. The temperature and release rate were measured during heating. Two plateaus on the temperature–time dependence were observed at 180 °C and 660 °C. The first one corresponds to melting of Li and the second one – either to melting or to decomposition of solid LiD. Features of deuterium release in TDS were interpreted in terms of decomposition of lithium deuterides formed during plasma irradiation

  18. Deuterium inventory in tungsten after plasma exposure. A microstructural survey

    International Nuclear Information System (INIS)

    Manhard, Armin

    2012-09-01

    Tungsten is a promising material for armouring the plasma-facing wall of future nuclear fusion experiments and power plants. It has a very high melting point, good thermal conductivity and is highly resistant against physical sputtering by energetic particles from the plasma. It also has a very low solubility for hydrogen isotopes. This is important both for safety and also for economic reasons, in particular with regard to the radioactive fusion fuel tritium. Due to this low solubility, the retention of hydrogen isotopes in tungsten materials after exposure to a plasma is dominated by the trapping of hydrogen isotopes at tungsten lattice defects. Therefore, a strong dependence of the hydrogen isotope retention on the microstructure of the tungsten is to be expected. This work describes a survey study of tungsten with different microstructures exposed to deuterium plasmas under a wide range of different plasma exposure conditions. The isotope deuterium was used because its natural abundance is much smaller than that of hydrogen (i.e., 1 H). This allows detecting even very small amounts retained in the tungsten practically without background signal. Furthermore, the use of deuterium allows utilising the nuclear reaction 2 D( 3 He,p) 4 He for depth-resolved quantification of the deuterium inventory up to depths of several microns. In order to standardise the specimens as far as possible, they were all cut from the same initial material from a single manufacturing batch. After a chemo-mechanical polishing procedure, which produces a well-defined surface, the specimens were annealed at either of four different temperatures in order to modify the grain structure and the dislocation density. These were then characterised by scanning electron microscopy and scanning transmission electron microscopy. The specimens were subsequently exposed in a fully characterised deuterium plasma source at different specimen temperatures, ion energies and deuterium fluences. In addition

  19. Deuterium retention in liquid lithium

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.; Luckhardt, S.C.; Conn, R.W.

    2002-01-01

    Measurements of deuterium retention in samples of lithium exposed in the liquid state to deuterium plasma are reported. Retention was measured as a function of plasma ion dose in the range 6x10 19 -4x10 22 D atoms and exposure temperature between 523 and 673 K using thermal desorption spectrometry. The results are consistent with the full uptake of all deuterium ions incident on the liquid metal surface and are found to be independent of the temperature of the liquid lithium over the range explored. Full uptake, consistent with very low recycling, continues until the sample is volumetrically converted to lithium deuteride. This occurs for exposure temperatures where the gas pressure during exposure was both below and slightly above the corresponding decomposition pressure for LiD in Li. (author)

  20. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  1. Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis

    International Nuclear Information System (INIS)

    Goodman, M.N.; Masuoka, L.K.; deRopp, J.S.; Jones, A.D.

    1989-01-01

    Deuterium labelled glucose has been used to study the pathway of hepatic glycogen synthesis during the fasted-refed transition in rats. Deuterium enrichment of liver glycogen was determined using nuclear magnetic resonance as well as mass spectroscopy. Sixty minutes after oral administration of deuterated glucose to fasted rats, the portal vein blood was fully enriched with deuterated glucose. Despite this, less than half of the glucose molecules incorporated into liver glycogen contained deuterium. The loss of deuterium label from glucose is consistent with hepatic glycogen synthesis by an indirect pathway requiring prior metabolism of glucose. The use of deuterium labelled glucose may prove to be a useful probe to study hepatic glycogen metabolism. Its use may also find application in the study of liver glycogen metabolism in humans by a noninvasive means

  2. Liquid hydrogen and deuterium targets

    International Nuclear Information System (INIS)

    Bougon, M.; Marquet, M.; Prugne, P.

    1961-01-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [fr

  3. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1978-01-01

    A method of separating deuterium, i.e., heavy hydrogen, from certain naturally occurring sources using tuned infrared lasers to selectively decompose specified classes of organic molecules (i.e., RX) into enriched molecular products containing deuterium atoms is described. The deuterium containing molecules are easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. The undecomposed molecules and the other reaction products which are depleted of their deuterium containing species can be catalytically treated, preferably using normal water, to restore the natural abundance of deuterium and such restored molecules can then be recycled

  4. The JAERI-KEK joint project on high intensity proton accelerator and overview of nuclear transmutation experimental facilities

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2001-01-01

    A status of the JAERI/KEK joint project on High Intensity Proton Accelerator is overviewed. It is highlighted that Experimental facilities for development of the accelerator driven system (ADS) for nuclear transmutation technology is proposed under the project. (author)

  5. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    International Nuclear Information System (INIS)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  6. Scenarios with an intensive contribution of the nuclear energy to the world energy supply

    International Nuclear Information System (INIS)

    Nifenecker, H.; Heuer, D.; Huffer, E.; David, S.; Loiseaux, J.M.; Meplan, O.; Nuttin, A.; Martin, J.M.

    2002-01-01

    Temperature stabilization requires that CO 2 emissions be limited to less than 3 Gt Carbon equivalent, from the present level of more than 6 Gt. Despite an increase of primary energy demand by 250% in 2050 we find that a nuclear intensive scenario assuming the development of a 3000 GWe pool of PWR reactors by 2030 and of an additional 6000 GWe pool of U-Pu or Th-U reactors by 2050 would lead to temperature stabilization at a level 2 degrees above the pre-industrial level. (authors)

  7. Evaluation of beta intensity data in nuclear decay schemes: Comments on some pitfalls

    International Nuclear Information System (INIS)

    Reich, C.W.

    1987-02-01

    Some of the problems that arise in the evaluation of decay-schemes data to obtain values for the intensities of beta transitions are discussed. As examples of these problems, the decay schemes of 87 Br and 233 Pa are examined. No specific solutions to these problems are offered; but by pointing out to the participants in the International Nuclear Structure and Decay Data Evaluation Network, and to others, it is hoped that a general understanding of them can be gained, which may ultimately lead to a consistent means of dealing with them. 14 refs., 2 figs

  8. Scenarios with an intensive contribution of nuclear energy to the world energy supply

    International Nuclear Information System (INIS)

    Nifenecker, H.; Heuer, D.; Loiseaux, J.M.; Meplan, O.; Nuttin, A.; David, S.; Martin, J.M.

    2001-01-01

    Temperature stabilization requires that Co2 emissions be limited to less than 3 Gt Carbon equivalent, from the present level of more than 6 Gt. Despite an increase of primary energy demand by 250% in 2050 we find that a nuclear intensive scenario assuming the development of a 3000 GW pool of PWR reactors by 2030 and of an additional 6000 GW pool of U-Pu or Th-U reactors by 2050 would lead to temperature stabilization at a level 2 degrees above the pre-industrial level. (author)

  9. Evaluation of β intensity data in nuclear decay schemes: comments on some pitfalls

    International Nuclear Information System (INIS)

    Reich, C.W.

    1986-01-01

    Some of the problems which arise in the evaluation of decay-schemes data to obtain values for the intensities of β transitions are discussed. As examples of these problems, the decay schemes of 87 Br and 233 Pa are examined. No specific solutions to these problems are offered; but by pointing them out to the participants in the International Nuclear Structure and Decay Data Evaluation Network, it is hoped that a general understanding of them can be gained, which may ultimately lead to a consistent means of dealing with them. 14 refs., 2 figs., 1 tab

  10. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1982-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  11. Deuterium pellet injector gun design

    International Nuclear Information System (INIS)

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging

  12. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1983-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength Kevlar/epoxy composite. This arbor has been spin-tested to a tip speed of 1 km/s

  13. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    Science.gov (United States)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  14. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriyeva, O., E-mail: olga.dmitriyeva@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States); Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Cantwell, R.; McConnell, M. [Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Moddel, G. [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. Black-Right-Pointing-Pointer Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. Black-Right-Pointing-Pointer Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. Black-Right-Pointing-Pointer Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. Black-Right-Pointing-Pointer Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  15. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    International Nuclear Information System (INIS)

    Dmitriyeva, O.; Cantwell, R.; McConnell, M.; Moddel, G.

    2012-01-01

    Highlights: ► We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. ► Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. ► Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. ► Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. ► Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  16. A highly polarized hydrogen/deuterium internal gas target embedded in a toroidal magnetic spectrometer

    International Nuclear Information System (INIS)

    Cheever, D.; Ihloff, E.; Kelsey, J.; Kolster, H.; Meitanis, N.; Milner, R.; Shinozaki, A.; Tsentalovich, E.; Zwart, T.; Ziskin, V.; Xiao, Y.; Zhang, C.

    2006-01-01

    A polarized hydrogen/deuterium internal gas target has been constructed and operated at the internal target region of the South Hall Ring (SHR) of the MIT-Bates Linear Accelerator Center to carry out measurements of spin-dependent electron scattering at 850MeV. The target used an Atomic Beam Source (ABS) to inject a flux of highly polarized atoms into a thin-walled, coated storage cell. The polarization of the electron beam was determined using a Compton laser backscattering polarimeter. The target polarization was determined using well-known nuclear reactions. The ABS and storage cell were embedded in the Bates Large Acceptance Toroidal Spectrometer (BLAST), which was used to detect scattered particles from the electron-target interactions. The target has been designed to rapidly (∼8h) switch operation from hydrogen to deuterium. Further, this target was the first to be operated inside a magnetic spectrometer in the presence of a magnetic field exceeding 2kG. An ABS intensity 2.5x10 16 at/s and a high polarization (∼70%) inside the storage cell have been achieved. The details of the target design and construction are described here and the performance over an 18 month period is reported

  17. Resource intensities of the front end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Schneider, E.; Phathanapirom, U.; Eggert, R.; Collins, J.

    2013-01-01

    This paper presents resource intensities, including direct and embodied energy consumption, land and water use, associated with the processes comprising the front end of the nuclear fuel cycle. These processes include uranium extraction, conversion, enrichment, fuel fabrication and depleted uranium de-conversion. To the extent feasible, these impacts are calculated based on data reported by operating facilities, with preference given to more recent data based on current technologies and regulations. All impacts are normalized per GWh of electricity produced. Uranium extraction is seen to be the most resource intensive front end process. Combined, the energy consumed by all front end processes is equal to less than 1% of the electricity produced by the uranium in a nuclear reactor. Land transformation and water withdrawals are calculated at 8.07 m 2 /GWh(e) and 1.37x10 5 l/GWh(e), respectively. Both are dominated by the requirements of uranium extraction, which accounts for over 70% of land use and nearly 90% of water use

  18. Prospects for a deuterium internal target, tensor polarized by optical pumping: spin exchange

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    The prospects for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) appropriate for nuclear physics studies in medium and high energy particle storage rings are discussed. Using the technique of electron spin exchange with an optically pumped sodium (or potassium) vapor, we hope to polarize deuterium at a rate approx. 10 17 atoms/sec. Predictions for the deuterium polarization for a particular target cell design will be presented leading to the identification of the required optical pumping power and cell wall depolarization probability to attain optimum performance. The technical obstacles to be surmounted in such a target design will also be discussed

  19. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1989-01-01

    Following the ''First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop

  20. Deuterium - depleted water. Achievements and perspectives

    International Nuclear Information System (INIS)

    Titescu, Gh.; Stefanescu, I.; Saros-Rogobete, I.

    2001-01-01

    Deuterium - depleted water represents water that has an isotopic content lower than 145 ppm D/(D+H) which is the natural isotopic content of water. The research conducted at ICSI Ramnicu Valcea, regarding deuterium - depleted water were completed by the following patents: - technique and installation for deuterium - depleted water production; - distilled water with low deuterium content; - technique and installation for the production of distilled water with low deuterium content; - mineralized water with low deuterium content and technique to produce it. The gold and silver medals won at international salons for inventions confirmed the novelty of these inventions. Knowing that deuterium content of water has a big influence on living organisms, beginning with 1996, the ICSI Ramnicu Valcea, deuterium - depleted water producer, co-operated with Romanian specialized institutes for biological effects' evaluation of deuterium - depleted water. The role of natural deuterium in living organisms was examined by using deuterium - depleted water instead of natural water. These investigations led to the following conclusions: 1. deuterium - depleted water caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the deuterium - depleted water persists after the removal of the vascular endothelium; -2. animals treated with deuterium - depleted water showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defence mechanism; 3, deuterium - depleted water stimulates immune defence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the numbers of polymorphonuclear neutrophils; 4. investigations regarding artificial

  1. Properties of thick GEM in low-pressure deuterium

    International Nuclear Information System (INIS)

    Lee, C S; Ota, S; Tokieda, H; Kojima, R; Watanabe, Y N; Uesaka, T

    2014-01-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241 Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 10 3 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time

  2. Properties of thick GEM in low-pressure deuterium

    Science.gov (United States)

    Lee, C. S.; Ota, S.; Tokieda, H.; Kojima, R.; Watanabe, Y. N.; Uesaka, T.

    2014-05-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time.

  3. Some methods for labelling organic compounds by deuterium

    International Nuclear Information System (INIS)

    Moustapha, C.

    1988-01-01

    The rapid growth of knowledge in the fields of biochemistry, physiology, and molecular biology reflects to a considerable degree the utilization of stable isotopes (specially deuterium) in the study of chemical reactions and fragmentation mechanisms in mass spectrometry, as well as in the pharmacological and biological studies. Organic compounds maybe labelled by deuterium through classic organic reactions by using special deuterated solvents and reagents. This article discusses some reactions, with examples on how to prepare labelled compounds with high isotopic purety. These reactions are: exchange reactions in acid and alkaline media (the exchange in the chromatographic column in liquid and gas phases, the exchange in homogenous medium), reduction reactions of functional groups as well as saturation of the double bounds by deuterium using hydrogenation catalystes, electrochemical reactions using KOLBE, and photochemical reactions. This article also deals with spectroscopic properties of deuterium and the methods which are used to identify its compounds such as infrared, nuclear magnetic resonance, and mass spectroscopy. 37 refs., 2 figs

  4. Trapping of deuterium in krypton-implanted nickel

    International Nuclear Information System (INIS)

    Frank, R.C.; McManus, S.P.; Rehn, L.E.; Baldo, P.

    1986-01-01

    Krypton ions with energy 600 keV were implanted in nickel to fluences of 2 x 10 16 cm -2 under three different conditions. Deuterium was subsequently introduced into the implanted regions by electrolysis at room temperature. After the diffusible deuterium was permitted to escape, the 2 H( 3 He, 1 H) 4 He nuclear reaction was used to analyze for the trapped deuterium during an isochronal annealing program. The region implanted at 100 0 C with no higher temperature anneal had the largest number of traps; the region implanted at 100 0 C and annealed for 100 min at 500 0 C had considerably less; the region implanted at 500 0 C had the least. Electron diffraction patterns confirmed the existence of solid crystalline krypton in all three regions. Transmission electron microscope studies revealed precipitates with an average diameter of 8 nm in the region implanted at 500 0 C. The two regions implanted at 100 0 C contained smaller precipitates. Trap binding enthalpies were obtained by math modeling. In addition to the traps with binding enthalpy of 0.55 eV reported earlier by other investigators for helium implanted in nickel, a smaller number of traps with binding enthalpies up to 0.83 eV were also found. The trapping of deuterium by various types of imperfections, including the solid krypton precipitates, is discussed

  5. In situ sampling for pressure tube deuterium concentration

    International Nuclear Information System (INIS)

    Harrington, A.J.; Kittmer, C.A.

    1988-01-01

    The present method of assessing the useful life of pressure tubes in CANDU (CANada Deuterium Uranium) reactors requires the periodic removal and examination of a tube. Special tooling was developed at Atomic Energy of Canada Limited (AECL) to obtain a sample of material from a pressure tube without removing the tube from the reactor. The sampling tool concept has been successfully used by Ontario Hydro during scheduled outages at the Pickering Nuclear Generating Station (PNGS). (author)

  6. Synthesis of deuterium labelled ibuprofen

    International Nuclear Information System (INIS)

    Cappon, V.J.; Halstead, G.W.; Theis, D.L.

    1986-01-01

    The preparations of [ar- 2 H 4 ]-ibuprofen and [ar, 3,3,3- 2 H 7 ]-ibuprofen are described. The deuterium was incorporated into the aromatic ring of [ar- 2 H 4 ]-ibuprofen which is a metabolically stable position. [ar, 3,3,3- 2 H 7 ]-ibuprofen was synthesized by the same route using [ 2 H 3 ]-CH 3 I instead of CH 3 I for use as a GC/MS internal standard in stable isotope labelled bioavailability studies. (author)

  7. Deuterium and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Burles, S.

    2000-01-01

    Measurements of deuterium absorption in high redshift quasar absorption systems provide a direct inference of the deuterium abundance produced by big bang nucleosynthesis (BBN). With measurements and limits from five independent absorption systems, we place strong constraints on the primordial ratio of deuterium to hydrogen, (D/H) p = 3.4 ± 0.3 x 10 -5 [1,2]. We employ a direct numerical treatment to improve the estimates of critical reaction rates and reduce the uncertainties in BBN predictions of D/H and 7 Li/H by a factor of three[3] over previous efforts[4]. Using our measurements of (D/H) p and new BBN predictions, we find at 95% confidence the baryon density ρ b = (3.6 ± 0.4) x 10 -31 g cm -3 (Ω b h 2 65 = 0.045 ± 0.006 in units of the critical density), and cosmological baryon-photon ratio η = (5.1 ± 0.6) x 10 -10

  8. Deuterium release from Li-D films exposed to atmospheric gases

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, Yu. M., E-mail: YMGasparyan@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow (Russian Federation); Popkov, A.S.; Krat, S.A.; Pisarev, A.A.; Vasina, Ya. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow (Russian Federation); Lyublinski, I.E. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow (Russian Federation); JSC “Red Star”, Electrolitniy proezd 1a, Moscow (Russian Federation); Vertkov, A.V. [JSC “Red Star”, Electrolitniy proezd 1a, Moscow (Russian Federation)

    2017-04-15

    Highlights: • The major part of deuterium desorbs from Li-D films in a very sharp peak at 670–710 K. • Exposure on air leads to intensive deuterium release from the Li-D film at room temperature. • Interaction with water vapor plays a major role in deuterium release from lithium films in the air. - Abstract: Deuterium release from Li-D films co-deposited on a Mo substrate at room temperature in magnetron discharge was investigated by means of thermal desorption spectroscopy. The deuterium concentration in the films was estimated to be D/Li = (14 ± 4)%. TDS from Li-D films just after co-deposition had a sharp peak at 670–710 K. Exposure of deposited Li-D films in the air at room temperature led to deuterium release. Comparison of release in air, water vapor, nitrogen, and oxygen demonstrated that water plays a major role in deuterium release in the air at low temperatures.

  9. Catalyzed deuterium-deuterium and deuterium-tritium fusion blankets for high temperature process heat production

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Salimi, B.

    1982-01-01

    Tritiumless blanket designs, associated with a catalyzed deuterium-deuterium (D-D) fusion cycle and using a single high temperature solid pebble or falling bed zone, for process heat production, are proposed. Neutronics and photonics calculations, using the Monte Carlo method, show that an about 90% heat deposition fraction is possible in the high temperature zone, compared to a 30 to 40% fraction if a deuterium-tritium (D-T) fusion cycle is used with separate breeding and heat deposition zones. Such a design is intended primarily for synthetic fuels manufacture through hydrogen production using high temperature water electrolysis. A system analysis involving plant energy balances and accounting for the different fusion energy partitions into neutrons and charged particles showed that plasma amplification factors in the range of 2 are needed. In terms of maximization of process heat and electricity production, and the maximization of the ratio of high temperature process heat to electricity, the catalyzed D-D system outperforms the D-T one by about 20%. The concept is thought competitive to the lithium boiler concept for such applications, with the added potential advantages of lower tritium inventories in the plasma, reduced lithium pumping (in the case of magnetic confinement) and safety problems, less radiation damage at the first wall, and minimized risks of radioactive product contamination by tritium

  10. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    A method is described for separating and enriching deuterium containing molecules comprising the steps of: providing a source of organic molecules containing a normal abundance of deuterium atoms, the organic molecules having a structural formula RX, in which R is an organic radical selected from ethyl, isopropyl, t-butyl and 3-cyclopentenyl, and in which X is selected from F, Cl, Br and OH, and wherein R represents 3-cyclopentenyl, X may additionally represent H; exposing the molecules to the radiation of at least one pulsed infrared laser source which has been specifically tuned and focussed to selectively decompose RX molecules containing deuterium to form an enriched olefin specie containing deuterium, and HX; and separating the deuterium enriched olefin specie from the undecomposed deuterium depleted RX molecules and HX. (author)

  11. Effect of Coulomb screening on deuterium-deuterium fusion cross-section

    International Nuclear Information System (INIS)

    Wang Shunjin

    1991-01-01

    The popular Gamow formula for the deuterium-deuterium fusion cross-section is generalized to take into account the Coulomb screening effect. The generalized formula has been used to discuss the fusion process occurring in the metal medium

  12. The hydrogen and deuterium concentrations in chondrites

    International Nuclear Information System (INIS)

    Robert, F.; Merlivat, L.

    1978-01-01

    Water and isotopic concentration of H 2 O + are reported. It shows a correlation between the water, the deuterium concentrations and the petrologic types of chondrites. The Chainpur meteorite has been divided into several mineralogical fractions and the results are reported. The results of Orgueil are also reported. The correlation shows that as the sulfate content increases, the water and deuterium contents decrease. The terrestrial contamination is discussed and possible deuterium variation models are presented

  13. Commissioning experiment of the polarized internal gas target with deuterium at ANKE/COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Collaboration: ANKE-Collaboration

    2012-07-01

    In order to conduct the production experiments with polarized deuterium target and (un)polarized proton beam at ANKE/COSY, a commissioning experiment of the polarized internal target with deuterium is imperative. The commissioning experiment includes the measurements of both the vector (Q{sub y}) and tensor (Q{sub yy}) polarization of the deuterium gas target through the nuclear reactions with large and well known analyzing powers, which can be detected in ANKE. The dependence of the polarizations along the storage cell is also determined. The poster presents the physics case for the experiments with deuterium polarized internal target and the apparatus needed for the commissioning experiment, as well as the procedure of extraction for spin observables.

  14. Hyperfine structure of S-states of muonic deuterium

    Directory of Open Access Journals (Sweden)

    Alexey P. Martynenko

    2015-09-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate corrections of order $\\alpha^5$ and $\\alpha^6$ to hyperfine structure of $S$-wave energy levels of muonic deuterium. Relativistic corrections, effects of vacuum polarization in first, second and third orders of perturbation theory, nuclear structure and recoil corrections are taken into account. The obtained numerical values of hyperfine splitting $\\Delta E^{hfs}(1S=50.2814$ meV ($1S$ state and $\\Delta E^{hfs}(2S=6.2804$ meV ($2S$ state represent reliable estimate for a comparison with forthcoming experimental data of CREMA collaboration. The hyperfine structure interval $\\Delta_{12}=8\\Delta E^{hfs}(2S- \\Delta E^{hfs}(1S=-0.0379$ meV can be used for precision check of quantum electrodynamics prediction for muonic deuterium.

  15. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    Directory of Open Access Journals (Sweden)

    Leif Holmlid

    2015-08-01

    Full Text Available Previous results from laser-induced processes in ultra-dense deuterium D(0 give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u−1. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles HN(0 of ultra-dense hydrogen (size of a few pm escape with a substantial fraction of the energy. Heat loss to the D2 gas (at <1 mbar pressure is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  16. Deuterium abundance, from ultraviolet to visible

    International Nuclear Information System (INIS)

    Hebrard, Guillaume

    2000-01-01

    In the frame of the standard Big Bang model, the primordial abundance of deuterium is the most sensitive to the baryonic density of the Universe. It was synthesized only during the primordial nucleosynthesis few minutes after the Big Bang and no other standard mechanism is able to produce any further significant amount. On the contrary, since deuterium is burned up within stars, its abundance D/H decreases along cosmic evolution. Thus, D/H measurements constrain Big Bang and galactic chemical evolution models. There are three samples of deuterium abundances: primordial, proto-solar and interstellar. Each of them is representative of a given epoch, respectively about 15 Gyrs past, 4.5 Gyrs past and present epoch. Although the evolution of the deuterium abundance seems to be qualitatively understood, the measurements show some dispersion. Present thesis works are linked to deuterium interstellar abundance measurements. Such measurements are classically obtained from spectroscopic observations of the hydrogen and deuterium Lyman series in absorption in the ultraviolet spectral range, using space observatories. Results presented here were obtained with the Hubble Space Telescope and FUSE, which has recently been launched. Simultaneously, a new way to observe deuterium has been proposed, in the visible spectral range from ground-based telescopes. This has led to the first detections and the identification of the deuterium Balmer series, in emission in HII regions, using CFHT and VLT telescopes. (author) [fr

  17. Deuterium implantation into Y{sub 2}O{sub 3}-doped and pure tungsten: Deuterium retention and blistering behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M. [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748 (Germany); Jacob, W., E-mail: wolfgang.jacob@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748 (Germany); Manhard, A.; Gao, L.; Balden, M.; Toussaint, U. von [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching 85748 (Germany); Zhou, Z. [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China)

    2017-04-15

    The blistering and near-surface deuterium retention of a Y{sub 2}O{sub 3}-doped tungsten (W) and two different pure W grades were studied after exposure to deuterium (D) plasma at elevated temperatures (370, 450 and 570 K). Samples were exposed to a deuterium fluence of 6 × 10{sup 24} D m{sup −2} applying a moderate ion flux of about 9 × 10{sup 19} D m{sup −2} s{sup −1} at an ion energy of 38 eV/D. Morphological modifications at the surface were analyzed by confocal laser scanning microscopy and scanning electron microscopy. The D depth profiles and the accumulated D inventories within the topmost 8 μm were determined by nuclear reaction analysis. Blistering and deuterium retention were strongly dependent on the implantation temperature. In addition, blistering was sensitively influenced by the used tungsten grade, although the total amount of retained D measured by nuclear reaction analysis was comparable. Among the three different investigated tungsten grades, Y{sub 2}O{sub 3}-doped W exhibited the lowest degree of surface modification despite a comparable total D retention. - Highlights: •Y{sub 2}O{sub 3}-doped W and 2 pure W were exposed to D plasma at 370, 450 and 570 K. •D retention in all 3 materials is comparable. •D plasma exposure leads to blister formation on all investigated W grades. •Blister morphology and size distribution depend strongly on W grade. •Y{sub 2}O{sub 3}-doped W shows the lowest degree of surface modification.

  18. Damage, trapping and desorption at the implantation of helium and deuterium in graphite, diamond and silicon carbide

    International Nuclear Information System (INIS)

    Lopez, G.A.R.

    1995-07-01

    The production, thermal stability and structure of ion induced defects have been studied by Rutherford backscattering in channeling geometry for the implantation of helium and deuterium in graphite, diamond and silicon carbide with energies of 8 and 20 keV. At the implantation of deuterium and helium ions more defects were measured in graphite than in diamond or silicon carbide at equal experimental conditions. This is due to increased backscattering in graphite, which is caused by the splitting and tilting of crystallites and a local reordering of lattice atoms around defects. At 300 K, Helium produces more defects in all three materials than deuterium with equal depth distribution of defects. The ratio of the defects produced by helium and deuterium agrees very well with the corresponding ratio of the energy deposited in nuclear collisions. In graphite, only small concentrations of deuterium induced defects anneal below 800 K, while in diamond small concentrations of deuterium as well as of helium induced defects anneal mostly below 800 K. This annealing behavior is considered to be due to recombination of point defects. The buildup of helium and deuterium in graphite is different. The trapping of deuterium proceeds until saturation is reached, while in the case of helium trapping is interrupted by flaking. In diamond, deuterium as well as helium are trapped almost completely until at higher fluences reemission starts and saturation is reached. Two desorption mechanisms were identified for the thermal desorption of helium from base-oriented graphite. Helium implanted at low fluences desorbs diffusing to the surface, while for the implantation of high fluences the release of helium due to blistering dominates. The desorption of deuterium from graphite and diamond shows differences. While in graphite the desorption starts already at 800 K, in diamond up to 1140 K only little desorption can be observed. These differences can be explained by the different transport

  19. Experimental studies of particle acceleration with ultra-intense lasers - Applications to nuclear physics experiments involving laser-produced plasmas

    International Nuclear Information System (INIS)

    Plaisir, C.

    2010-11-01

    For the last ten years, the Ultra High Intensity Lasers offer the opportunity to produce accelerated particle beams which contain more than 10 12 electrons, protons accelerated into a few ps. We have simulated and developed some diagnostics based on nuclear activation to characterize both the angular and the energy distributions of the particle beams produced with intense lasers. The characterization methods which are presented are illustrated by means of results obtained in different experiments. We would use the particle beams produced to excite nuclear state in a plasma environment. It can modify intrinsic characteristics of the nuclei such as the half-life of some isomeric states. To prepare this kind of experiments, we have measured the nuclear reaction cross section (gamma,n) to produce the isomeric state of the 84 Rb, which has an excitation energy of 463 keV, with the electron accelerator ELSA of CEA/DIF in Bruyeres-le-Chatel (France). (author)

  20. Intense, brilliant micro γ-beams in nuclear physics and applications

    Science.gov (United States)

    Habs, D.; Gasilov, S.; Lang, C.; Thirolf, P. G.; Jentschel, M.; Diehl, R.; Schroer, C.; Barty, C. P. J.; Zamfir, N. V.

    2011-06-01

    The upcoming γ facilities MEGa-Ray (Livermore) and ELI-NP (Bucharest) will have a 105 times higher γ flux F0 = 1013/s and a ~30 times smaller band width (ΔEγ/Eγ = BW ~ 10-3) than the presently best γ beam facility. They will allow to extract a small γ beam of about 30 - 100 μm radius 1 m behind the γ production point, containing the dominant γ energy band width. One can collimate the γ beam down to ΘBW = √ BW/ γe , where γe = Ee/ mec2 is a measure of the energy Ee of the electron beam, from which the γ beam is produced by Compton back-scattering. Due to the γ energy - angle correlation, the angular collimation results at the same time in a reduction of the γ beam band width without loss of "good" γ quanta, however, the primary γ flux F0is reduced to about Fcoll ~ F0 . 1.5 . ΔEγ/Eγ. For γ rays in the (0.1-100) MeV range, the negative real part δ of the index of refraction n = 1- δ + iβ from coherent Rayleigh scattering (virtual photo effect) dominates over the positive δ contributions from coherent virtual Compton scattering and coherent virtual pair creation scattering (Delbrück scattering). The very small absolute value |δ| ~ 10-6 - 10-9 of the index of refraction of matter for hard X-rays and γ-rays and its negative sign--in contrast to usual optics--results in a very different γ-ray optics, e.g. focusing lenses become concave and we use stacks of N optimized lenses. It requires very small radii of curvature of the γ lenses and thus very small γ beam radii. This leads to a technical new solution, where the primary γ beam is subdivided into M γ beamlets, which do not interfere with each other, but contribute with their independent intensities. We send the γ beamlets into a two-dimensional array of closely packed cylindrical parabolic refractive lenses, where N ~ 103 lenses with very small radius of curvature are stacked behind each other, leading to contracted beam spots in one dimension. With a second 1D lens system turned by

  1. The Advanced Neutron Source liquid deuterium cold source

    International Nuclear Information System (INIS)

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy

  2. Changes in bacterial radiation sensitivity due to deuterium substitution

    International Nuclear Information System (INIS)

    Strauss, A.; Weiss, H.

    1985-01-01

    The influence of deuterium substitution for hydrogen on radiation sensitivity was measured under various conditions for E. coli B/r irradiated by 450 kev electrons in single intense pulses. Cells were grown in a nutrient medium made from a deuterium oxide based solution. They were suspended in a D/sub 2/O based buffered saline and plated in thin aqueous layers on membrane filters and irradiated in 100% N/sub 2/ or 100% O/sub 2/. Comparisons were made to cells similarly plated and irradiated but grown instead in a water based nutrient medium and suspended in either a water based or a D/sub 2/O based buffered saline. For the conventionally grown cells, D/sub 2/O increased the radiation sensitivity in both gases by about 10%. For cells grown and suspended with D/sub 2/O based media, a 50% reduction of radiation sensitivity was found with both gas and an increased extrapolation number was observed. In this latter method, deuterium is more fully substituted for hydrogen in the molecular substrate of the cell. These cells were also irradiated over a temperature range of 2 0 C to 43 0 C after being suspended in deuterated ethanol. Speculations for the changes induced by the substitution are presented

  3. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  4. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  5. Measuring deuterium permeation through tungsten near room temperature under plasma loading using a getter layer and ion-beam based detection

    Directory of Open Access Journals (Sweden)

    Stefan Kapser

    2017-08-01

    Full Text Available A method to measure deuterium permeation through tungsten near room temperature under plasma loading is presented. The permeating deuterium is accumulated in a getter layer of zirconium, titanium or erbium, respectively, on the unexposed side of the sample. Subsequently, the amount of deuterium in the getter is measured ex-situ using nuclear reaction analysis. A cover layer system on the getter prevents direct loading of the getter with deuterium from the gas phase during plasma loading. In addition, it enables the distinction of deuterium in the getter and at the cover surface. The method appears promising to add additional permeation measurement capabilities to deuterium retention experiments, also in other plasma devices, without the need for a complex in-situ permeation measurement setup.

  6. One Percent Determination of the Primordial Deuterium Abundance

    Science.gov (United States)

    Cooke, Ryan J.; Pettini, Max; Steidel, Charles C.

    2018-03-01

    We report a reanalysis of a near-pristine absorption system, located at a redshift {z}abs}=2.52564 toward the quasar Q1243+307, based on the combination of archival and new data obtained with the HIRES echelle spectrograph on the Keck telescope. This absorption system, which has an oxygen abundance [O/H] = ‑2.769 ± 0.028 (≃1/600 of the solar abundance), is among the lowest metallicity systems currently known where a precise measurement of the deuterium abundance is afforded. Our detailed analysis of this system concludes, on the basis of eight D I absorption lines, that the deuterium abundance of this gas cloud is {log}}10({{D}}/{{H}})=-4.622+/- 0.015, which is in very good agreement with the results previously reported by Kirkman et al., but with an improvement on the precision of this single measurement by a factor of ∼3.5. Combining this new estimate with our previous sample of six high precision and homogeneously analyzed D/H measurements, we deduce that the primordial deuterium abundance is {log}}10{({{D}}/{{H}})}{{P}}=-4.5974+/- 0.0052 or, expressed as a linear quantity, {10}5{({{D}}/{{H}})}{{P}}=2.527+/- 0.030; this value corresponds to a one percent determination of the primordial deuterium abundance. Combining our result with a big bang nucleosynthesis (BBN) calculation that uses the latest nuclear physics input, we find that the baryon density derived from BBN agrees to within 2σ of the latest results from the Planck cosmic microwave background data. Based on observations collected at the W.M. Keck Observatory which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  7. Synthesis of deuterium-labeled fluphenazine.

    Science.gov (United States)

    Shetty, H U; Hawes, E M; Midha, K K

    1984-01-01

    The propylpiperazine side chain of fluphenazine has been labeled with two, four, and six deuterium atoms by lithium aluminum deuteride reduction of the appropriate ester or imide. The gamma-carbon of the propyl group was labeled with two deuterium atoms by reduction of 10- (2-methoxycarbonylethyl) -2-trifluoromethyl-10H-phenothiazine, while four deuterium atoms were incorporated into the piperazine ring by reduction of 10-[3-(3,5-dioxo-1-piperazinyl)propyl]-2-trifluoromethyl-10H-pheno thiazine. The latter reduction gave the d4-labeled N-deshydroxyethyl metabolite of fluphenazine.

  8. Equilibrium deuterium isotope effect of surprising magnitude

    International Nuclear Information System (INIS)

    Goldstein, M.J.; Pressman, E.J.

    1981-01-01

    Seemingly large deuterium isotope effects are reported for the preference of deuterium for the α-chloro site to the bridgehead or to the vinyl site in samples of anti-7-chlorobicyclo[4.3.2]undecatetraene-d 1 . Studies of molecular models did not provide a basis for these large equilibrium deuterium isotope effects. The possibility is proposed that these isotope effects only appear to be large for want of comparison with isotope effects measured for molecules that might provide even greater contrasts in local force fields

  9. Advances in deuterium dioxide concentration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Woojung [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Sung Paal, E-mail: nspyim@kaeri.re.kr [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Lim; Park, Hyunmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Kwang Rag; Chung, Hongsuk [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheo Kyung [Handong Global University, Pohang (Korea, Republic of)

    2016-11-01

    Highlights: • Heavy water (D{sub 2}O) with a high purity level is necessary for nuclear fusion application. • D{sub 2}O purity is analyzed using Fourier Transform infrared (FT-IR) spectroscopy and newly introduced off-axis integrated cavity output spectroscopy (OA-ICOS). • OA-ICOS has advantages in terms of analysis of D{sub 2}O vapor. • OA-ICOS is expected that it can be used for accurate isotopic analyses in the future. - Abstract: The deuterium–tritium (D–T) reaction has been identified as the most efficient reaction for fusion devices. Deuterium can be obtained by heavy water electrolysis. Heavy water (D{sub 2}O) with a high purity level is necessary for nuclear fusion application. A D{sub 2}O isotopic analysis is thus very important. A system for a heavy water analysis was built and a newly designed isotopic analysis experiment was carried out. We tried to analyze the D{sub 2}O purity using Fourier Transform infrared (FT-IR) spectroscopy and newly introduced off-axis integrated cavity output spectroscopy (OA-ICOS). We found that the OA-ICOS based on measurement via laser absorption spectroscopy shows very high sensitivity. We ameliorated the sensitivity by an order of magnitude of more than 10{sup 3}–10{sup 5}. We could make the apparatus smaller by employing very tiny diode laser and fiber optics elements of a DFB (Distributed Feedback) type. Consequently, our device has advantages in terms of maintainability and mobility even in a radioactive environment. This new method could be used for an accurate isotopic analysis in the future.

  10. Effect of deposited tungsten on deuterium accumulation in beryllium in contact with atomic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V.M.; Gavrilov, L.E. [Institute of Physical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, V.S.

    1998-01-01

    Usually ion or plasma beam is used for the experiment with beryllium which simulates the interaction of plasma with first wall in fusion devices. However, the use of thermal or subthermal atoms of hydrogen isotopes seems to be useful for that purpose. Recently, the authors have studied the deuterium accumulation in beryllium in contact with atomic deuterium. The experimental setup is shown, and is explained. By means of elastic recoil detection (ERD) technique, it was shown that in the exposure to D atoms at 740 K, deuterium is distributed deeply into the bulk, and is accumulated up to higher concentration than the case of the exposure to molecular deuterium. The depth and concentration of deuterium distribution depend on the exposure time, and those data are shown. During the exposure to atomic deuterium, oxide film grew on the side of a sample facing plasma. In order to understand the mechanism of deuterium trapping, the experiment was performed using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA). The influence that the tungsten deposit from the heated cathode exerted to the deuterium accumulation in beryllium in contact with atomic deuterium was investigated. These results are reported. (K.I.)

  11. Post-graduated course 'Basic aspects of medical physics in nuclear medicine': theoretical/practical intensive version: preliminary results

    International Nuclear Information System (INIS)

    Lopez, Adlin; Gonzalez, Joaquin; Torres, Leonel; Fraxedas, Roberto; Varela, Consuelo; Freixas, Vivian.

    2008-01-01

    Full text: Using national and international recommendation about human resource in nuclear medicine, a group of experts organized a national course for the education and training of physicist who works in Cuban hospital, adapted to national condition and practice of nuclear medicine. The program was approved for National Authorities in Nuclear Security and University School in Medicine and content three intensive theoretic and practical courses (15 days of full time duration each), complemented with 4 months full time in Nuclear Medicine Service monitored by accredited expert and 2 months at distance with practical task. The theoretical/practical intensive courses have final evaluation: combining practical exercise and write final test. When all docent activities finish the students should pass a final evaluation by a testing board composed for (at least) three accredited experts. The first theoretical/practical course included 19 physicists who work in hospital, the second 17 and the third 16 students. With 100 point of maximum score and 60 point minimum to pass, the partial final tests included: true or false choice (with 10 aspects to verify, 1 point/correct answer) and questions to write developed answer. The average result was 83.02 points/ students (range 65-100 points). The students evaluated satisfactory the quality of different courses (in anonymous poll), reporting like very good; the quality of conferences, excellent; the usefulness of different charters, very good; the support bibliography, and recommended the repetition of this kind of education and training in order to warranty the human resource, in the same way and content, and included others item in the future. Conclusion: the theoretical/practice intensive courses of this post-graduated course were successful and satisfied the objective of education and training of medical physicist in nuclear medicine. (author)

  12. Permeation of deuterium implanted into vanadium alloys

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1986-05-01

    Permeation of deuterium through the vanadium alloy, V-15Cr-5Ti, was investigated using 3-keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurements of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5-mm thick specimens heated to tempertures from 623 to 823 0 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). Analyses of these measurements indicate that for the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This corresponds to approximately 1000 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates D = 1.4 x 10 -8 exp(-.11 eV/kT) (m 2 /s)

  13. Synthesis of deuterium-labelled diclofenac sodium

    International Nuclear Information System (INIS)

    Leroy, D.; Richard, J.; Godbillon, J.

    1993-01-01

    Dicolofenac sodium labelled with deuterium in the phenylacetic ring was prepared from [ 2 H 5 ]-bromobenzene in a six-step reaction. It was found to be suitable for use in pharmacokinetic and bioavailability studies in man. (Author)

  14. DeUterium industrial production - tome 8

    International Nuclear Information System (INIS)

    Chagas, T.P.

    1987-01-01

    Some selected bibliographical references about processes for deuterium industrial production are presented, as follow: isotope exchange H 2 S-H 2 O and NH 3 -H 2 , eletrolysis and distillation. (E.G.) [pt

  15. A high field optical-pumping spin-exchange polarized deuterium source

    International Nuclear Information System (INIS)

    Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Poelker, M.; Potterveld, D.H.; Young, L.; Zeidman, B.; Toporkov, D.

    1992-01-01

    Recent results from a prototype high field optical-pumping spin-exchange polarized deuterium source are presented. Atomic polarization as high as 62% have been observed with an intensity of 6.3 x 10 17 atoms-sec -1 and 65% dissociation fraction

  16. Measurement of pzz of the laser-driven polarized deuterium target

    International Nuclear Information System (INIS)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S.; Buchholz, M.; Neal, J.; van den Brand, J.F.J.

    1993-01-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T → n + 4 He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described

  17. Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin

    DEFF Research Database (Denmark)

    Farver, O.; Zhang, Jingdong; Chi, Qijin

    2001-01-01

    rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H2O than in D2O (0.001 nm K-1) is sufficient both to account for the activation......Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K-1 mol(-1...

  18. Evaluation method of nuclear data: half-lives, gamma-ray intensities etc

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Yasukazu; Miyatake, Osamu; Toyama, Masao

    1998-03-01

    The evaluation method has been studied. The basic problem is how to estimate and treat the systematic error. Nuclear decay data were evaluated. Eight practical examples of half-lives are shown in this report. (author)

  19. Radiation damage and deuterium trapping in deuterium-ion-irradiated Fe–9Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Iwakir, Hirotomo, E-mail: iwakiri@edu.u-ryukyu.ac.jp [Faculty and Graduate School of Education, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan); Tani, Munechika [Interdisciplinary Graduate School of Engineering Sciences, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan); Watanabe, Yoshiyuki [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Yoshida, Naoaki [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-01-15

    Thermal desorption of deuterium (D{sub 2}) from deuterium-ion (D{sub 2}{sup +})-irradiated Fe–9Cr was correlated with the microstructural evolution of the alloy during irradiation with 8-keV D{sub 2}{sup +} ions following annealing to determine the retention and desorption behavior of the implanted deuterium and to identify effective traps for them, particularly at high temperature. After irradiation at 573 K, a new desorption stage formed between 650 and 1100 K at higher fluences, and cavities were observed using transmission electron microscopy. The total amount of trapped deuterium following irradiation with a fluence of 3.0 × 10{sup 22} ions/m{sup 2} was 6.8 × 10{sup 17} D{sub 2}/m{sup 2}, or approximately 0.007%. These results indicate that the deuterium atoms recombined to form D{sub 2} molecules at the surfaces of the cavities.

  20. Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF)

    International Nuclear Information System (INIS)

    Andersson, Patrik U.; Loenn, Benny; Holmlid, Leif

    2011-01-01

    A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤10 12 W cm -2 is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.

  1. Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF)

    Science.gov (United States)

    Andersson, Patrik U.; Lönn, Benny; Holmlid, Leif

    2011-01-01

    A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤1012 W cm-2 is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.

  2. Deuterium microscopy using 17 MeV deuteron–deuteron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Reichart, Patrick, E-mail: patrick.reichart@unibw.de; Moser, Marcus; Greubel, Christoph; Peeper, Katrin; Dollinger, Günther, E-mail: guenther.dollinger@unibw.de

    2016-03-15

    Using 17 MeV deuterons as a micrometer focused primary beam, we performed deuterium microscopy by using the deuteron–deuteron (dd) scattering reaction. We describe our new box like detector setup consisting of four double sided silicon strip detectors (DSSSD) with 16 strips on each side, each covering up to 0.5 sr solid angle for coincidence detection. This method becomes a valuable tool for studies of hydrogen incorporation or dynamic processes using deuterium tagging. The background from natural hydrocarbon or water contamination is reduced by the factor 150 ppm of natural abundance of deuterium in hydrogen. Deuterium energies of up to 25 MeV, available at the microprobe SNAKE, are ideal for the analysis of thin freestanding samples so that the scattered particles are transmitted to the detector. The differential cross section for the elastic scattering reaction is about the same as for pp-scattering (~100 mb/sr). The main background due to nuclear reactions is outside the energy window of interest. Deuteron–proton (dp) scattering events give an additional signal for hydrogen atoms, so the H/D-ratio can be monitored in parallel. A deuterium detection limit due to accidental coincidences of 3 at-ppm down to less than 1 at-ppm is demonstrated on deuterated polypropylen sheets as well as thick polycarbonate sheets after various stages of coincidence filtering that is possible with our granular detector.

  3. Determination of deuterium in metal by vacuum fusion-mass spectrometric method

    International Nuclear Information System (INIS)

    Wada, Yukio; Akiyama, Shigeo; Ochiai, Ken-ichi; Asakura, Toshiro; Tsutsumi, Ken-ichi

    1976-01-01

    A specimen of deuterium-enriched Zircaloy was prepared to study a method for the determination of deuterium in metal. The measuring apparatus consists of vacuum fusion section (10 -5 -10 -4 Torr), gas extracting and collecting section, the section of introducing both standard D 2 and HD gases into a gas holder, and mass spectrometric analysis section. The deuterium in Zircaloy can be extracted by 100% for 5 min. at 1600 0 C. The main components of the extracted gas are H 2 , D 2 , HD, CO, H 2 O and N 2 . Deuterium is determined by the calculation from the determinations of D 2 and HD. The amounts of D 2 and HD gases in the specimen were obtained from the calibration curve prepared and the spectrum intensity of D 2 + and HD + resulted from specimen analysis. As a result of the analysis of D 2 -enriched Zircaloy, it has been found that the precision of the determination is within the coefficient variation of about 3% for the extracted D 2 gas amount of 10 -3 -10 -2 ml (STP), including the deuterium segregation in the specimen, and the determination limit was 1 x 10 -5 ml (STP). (Kobatake, H.)

  4. Regional and temporal variations of deuterium in the precipitation and atmospheric moisture of Central Europe

    International Nuclear Information System (INIS)

    Huebner, H.; Kowski, P.; Hermichen, W.D.; Richter, W.; Schuetze, H.

    1979-01-01

    Regional and temporal variations of deuterium in precipitation and in atmospheric moisture provide the opportunity to balance water cycles as additional but independent information. Variations of deuterium have been measured in precipitation samples from six stations in different zones of the German Democratic Republic since 1972. The aim of the subsequent mathematical processing was to find a functional connection between the deuterium variations and the meteorological parameters causing them. The isotopic content of atmospheric moisture in different air masses and the isotopic content of precipitation are determined by the evaporation conditions of the area of origin and by the number and intensity of evaporation and condensation (precipitation) processes en route from this area of origin to the observation point. Obviously the temperatures at which evaporation and condensation processes take place are of crucial importance. The deuterium values are correlated with the monthly mean temperature. It has been observed, for example, that the equations of regression between precipitation and atmospheric moisture (valid in the case of Leipzig station) differ only with regard to their absolute terms. This follows from the fact that the deuterium is generally enriched by up to 80 per mille in precipitation. Following the well-known fact that many meteorological phenomena show frequencies, an attempt was made to apply the Fourier analysis for the deltaD variations. Relevant harmonic parts were found in all the deltaD series studied, which are repetitious and independent of the station and the observation period. (author)

  5. Method of deuterium isotope separation using ethylene and ethylene dichloride

    International Nuclear Information System (INIS)

    Benson, S.W.

    1982-01-01

    Compounds enriched in deuterium may be obtained from ethylene, vinyl chloride, 1,2-dichloroethane, or propylene by laser isotope separation. Normal molecules of these organic compounds are exposed to infrared laser radiation of a suitable wavelength. Substantially all of the deuterium-containing molecules exposed to the laser can be selectively dissociated and the deuterium-containing products separated from the starting material and other reaction products. The deuterium-containing molecules can be burned to form water with an enriched deuterium content, or pyrolized to form hydrogen gas enriched in deuterium

  6. The deuterium inventory in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mayer, M.; Rohde, V.; Ramos, G; Vainonen-Ahlgren, E.; Likonen, J.; Herrmann, A.; Neu, R.

    2007-01-01

    The deuterium inventory in ASDEX Upgrade was determined by quantitative ion beam analysis techniques and SIMS for different discharge campaigns between the years 2002 and 2005. ASDEX Upgrade was a carbon dominated machine during this phase. Full poloidal sections of the lower and upper divertor tile surfaces, limiter tiles, gaps between divertor tiles, gaps between inner heat shield tiles and samples from remote areas below the roof baffle and in pump ducts were analysed, thus offering an exhaustive survey of all relevant areas in ASDEX Upgrade. Deuterium is mainly trapped on plasma-exposed surfaces of inner divertor tiles, where about 70% of the retained deuterium inventory is found. About 20% of the inventory is retained at or below the divertor roof baffle, and about 10% is observed in other areas, such as the outer divertor and in gaps between tiles. The long term deuterium retention is 3-4% of the total deuterium input. The obtained results are compared with gas balance measurements, and conclusions about tritium retention in ITER are made

  7. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  8. Use of deuterium oxide to measure breast milk intake in children aged 7-12 months receiving complementary foods

    International Nuclear Information System (INIS)

    Creed-Kanashiro, H.

    2000-01-01

    In the present study we performed a pilot study using deuterium oxide method to determine the breast-milk intake in children 7-12 months of age receiving complementary food. This is applied to a community efficacy study to determine the effects on total energy and nutrient intake and on breast-milk consumption of an intensive education intervention using locally available, culturally acceptable complementary foods. We determined the washout period for the deuterium finding a value of 21 days for the mother and child. This measurement was performed using the infrared spectrometer of the Instituto de Investigacion Nutricional and compared with the values obtained with the IR Mass Spectrometer of INTA Chile. The test weighing was conduced on 14 children and compared with the values obtained using the deuterium methodology. Our result suggest that the breast milk intake determined by the weighing test was lower with regard to the value obtained with the deuterium methodology. (author)

  9. Use of deuterium oxide to measure breast milk intake in children aged 7-12 months receiving complementary foods

    Energy Technology Data Exchange (ETDEWEB)

    Creed-Kanashiro, H [Instituto de Investigacion Nutricional, La Molina, Lima (Peru)

    2000-07-01

    In the present study we performed a pilot study using deuterium oxide method to determine the breast-milk intake in children 7-12 months of age receiving complementary food. This is applied to a community efficacy study to determine the effects on total energy and nutrient intake and on breast-milk consumption of an intensive education intervention using locally available, culturally acceptable complementary foods. We determined the washout period for the deuterium finding a value of 21 days for the mother and child. This measurement was performed using the infrared spectrometer of the Instituto de Investigacion Nutricional and compared with the values obtained with the IR Mass Spectrometer of INTA Chile. The test weighing was conduced on 14 children and compared with the values obtained using the deuterium methodology. Our result suggest that the breast milk intake determined by the weighing test was lower with regard to the value obtained with the deuterium methodology. (author)

  10. Intensity of the absorbing dose of the gamma rays in the air of Krusevac during and after nuclear accident in Chernobil

    International Nuclear Information System (INIS)

    Fortuna, D.

    1997-01-01

    In this paper are compared overage daily values of the intensity of the absorbing doses of the gamma rays in the air of Krusevac, during and after nuclear accident in Cernobil. Average daily values of intensity of the absorbing doses of gamma rays in the air of Krusevac, immediately after nuclear accident in Cernobil were, three to seven time higher than of the average daily values of the natural rays. (author)

  11. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  12. Theory of the energy development in a thermonuclear plasma of deuterium and of deuterium-tritium

    Energy Technology Data Exchange (ETDEWEB)

    Magnac-Valette, D; Lacombe, E; Cuer, P [Particle Physics Laboratory, Strasbourg (France)

    1958-07-01

    We have studied the evolution of a thermonuclear mixture for concentrations of 10{sup 18} and 10{sup 17} ions per cm{sup 3} and for temperatures of (116 and 1160) x 10{sup 6}K, taking into account the contribution from secondary reactions. It is assumed that no deuterium or tritium are supplied during the evolution time. The temperature is assumed constant and the pinching of the charged species perfect. Neutrons leave the mixture without causing any secondary reactions because of their long mean free path. Integration of the differential equations describing the evolution of the mixture yields the total nuclear power in the plasma, and the power carried off by the neutrons. The calculations were made with the aid of an electronic computer. The initial concentration is unimportant since a scaling of the concentrations changes nothing if the inverse scaling is carried out on the time variable. It is assumed, moreover, that the thermalizing time is negligible in comparison with the mean life of the particles. The calculations were performed using a successive approximation method in which the mesh size was selected such that the error was always less than 10{sup -6}. The results are presented in the paper.

  13. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  14. Process for recovering water enriched with deuterium

    International Nuclear Information System (INIS)

    Mandel, H.

    1975-01-01

    By the process proposed herewith, enrichment of deuterium in water by cooling water recirculation through series-connection of several cooling ciruits in the form of columns is obtained. With this method, conventional, open-type cooling towers without special installations can be applied, which is an important advantage as compared with a formerly proposed single-stage process with specially designed, complicated cooling towers. Series-connection of the cooling towers is carried out in such a way that the circulating water of a certain cooling circuit, which has a corresponding output value of deuterium enrichment, is conveyed to a succeeding circuit where further enrichment is achieved. The water enriched with deuterium is removed from the last cooling circuit of the series while an amount of fresch water equivalent to the water removed or evaporated altogether is fed to the first circuit of the series. (RB) [de

  15. The effect of Residual Stress on the Stress Intensity Factor of Nuclear Material

    International Nuclear Information System (INIS)

    Song, Taek Ho

    2008-01-01

    As NPP (Nuclear Power Plant) gets aged, the importance of the pressure boundary integrity increases very much to those who are trying to operate their plant beyond its design life. Not long ago, Boric acid crystal was found at the RPV outlet nozzle of V.C. Summer plant during the visual examination in 2000. After this finding, non-destructive examination was taken to find out what's taken place. As a result of this examination, circumferential and axial cracks were found. With Metallurgical structure examination, it was shown that crack had been developed at the mid-point between Inco-alloy buttering and weld metal. It was turned out that high welding residual stress was the main cause of the cracking. Because of the through wall crack, nozzle and welding parts were replaced. Many other nuclear power plants experienced similar pressure boundary stress corrosion cracks (SCCs). KEPRI (Korea Electric Power Research Institute) has carried out research projects for managing and preventing these kinds of cracks in nuclear power plants (NPPs). The titles of these research projects are 'Development of Stress Corrosion Cracking Management Technology and Aging Monitor for NPP Main Components' and 'Development of Analysis Technology for Crack Management of Dissimilar Metal Weld'. Through these projects, residual stress measurement techniques have been exercised at various points in mock-up test specimens to simulate nuclear power plant dissimilar base metal and weldment residual stress. X-ray test and hole drilling method have been reviewed to measure residual stresses of the dissimilar metal welds. This paper shows some point of view in residual stress measurement. Fracture mechanics analysis has been performed to explain the importance of residual stress measurement in association with nuclear power plant safety

  16. Continuum emission from irradiated solid deuterium

    DEFF Research Database (Denmark)

    Forrest, J.A.; Brooks, R.L.; Hunt, J.L.

    1992-01-01

    A new emission feature from the spectrum of irradiated solid deuterium has been observed in the very near-infrared spectral region. Experiments from three laboratories, using different excitation conditions, have confirmed the observation. Comparison of the timing and temperature dependence...... of the spectral feature to the information previously available from electron spin resonance studies of solid deuterium, points to atomic association as the underlying cause. We shall show the connection of this emission to the occurrence of thermal spikes and optical flashes, previously observed in solid...

  17. Synthesis of deuterium-labelled viloxazine. [Antidepressant

    Energy Technology Data Exchange (ETDEWEB)

    Mamada, Kumiko; Furuta, Takashi; Kasuya, Yasuji

    1988-06-01

    The synthesis of deuterium-labelled viloxazine with high isotopic purity is described. The synthetic procedures employ alkylation of 2-(benzyloxy)phenol with (/sup 2/H/sub 5/)ethyl iodide for the introduction of deuterium. Catalytic removal of the benzyl group of the deuterated product followed by reaction with epichlorohydrin afforded 1,2-epoxy-3-(2'-pentadeuteroethoxy-phenoxy)propane. Addition of 2-aminoethyl hydrogen sulphate to the epoxide and subsequent ring formation into a morpholine derivative produced the desired (/sup 2/H/sub 5/)viloxazine.

  18. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  19. Quantitative analysis of deuterium by gas chromatography

    International Nuclear Information System (INIS)

    Isomura, Shohei; Kaetsu, Hayato

    1981-01-01

    An analytical method for the determination of deuterium concentration in water and hydrogen gas by gas chromatography is described. HD and D 2 in a hydrogen gas sample were separated from H 2 by a column packed with Molecular Sieve 13X, using extra pure hydrogen gas as carrier. A thermal conductivity detector was used. Concentrations of deuterium were determined by comparison with standard samples. The error inherent to the present method was less a 1% on the basis of the calibration curves obtained with the standard samples. The average time required for the analysis was about 3 minutes. (author)

  20. Periods of high intensity rainfall and the safety of the Angra dos Reis nuclear power plant

    International Nuclear Information System (INIS)

    Nicolli, D.

    1993-01-01

    The high precipitation rates aggravate the consequences of hypothetical accidental releases of radioactive material from the Angra dos Reis Nuclear Power Plant (NPP), as determined by probabilistic risk assessment. A 30-year rainfall series was analysed, aiming at calculating the probability of occurring a given amount q of precipitation during a certain period of n days. The nine highest precipitation amounts have also been determined. The results show there was a rainier climate in the '50 s and '60 s than in the '70 s and '80 s. The risk of catastrophic landslide has been enhanced as an environmental impact of the construction of the Rio-Santos highway and NPP which have not yet gone through an abnormal rainfall period. It has been suggested that criteria should be established to reduce the nuclear power and shut down the reactor when the precipitation accumulates to a dangerous limit. (author)

  1. Proton and deuterium NMR experiments in zero field

    International Nuclear Information System (INIS)

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution 2 H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs

  2. Trapping of deuterium in argon-implanted nickel

    International Nuclear Information System (INIS)

    Frank, R.C.; Rehn, L.E.; Baldo, P.

    1985-01-01

    Argon ions with energy 250 keV were implanted at fluences of 2 x 10 16 cm -2 at temperatures of 500, 250, and 21 0 C, in the specimen of relatively pure polycrystalline nickel. Deuterium was introduced into the surface and implanted regions by making the specimen the negative electrode of an electrolytic cell containing 1-N pure deuterated sulfuric acid. Deuterium trapped in the vacancy complexes of the implanted regions was analyzed as a function of temperature using the vacancy complexes of the implanted regions was analyzed as a function of temperature using the 2 H( 3 He, 1 H) 4 He nuclear reaction during an isochronal annealing process. The results indicate that the types of traps and trap densities found in the regions implanted at 21 and 250 0 C were essentially identical while the trap density found in the region implanted at 500 0 C was approximately 40% of that found in the other regions. Math model comparison with the experimental results suggests the existence of at least two types of traps in each region. Trap binding enthalpies used in the math model to fit the experimental data were slightly higher for the region implanted with argon at 500 0 C than for the regions implanted at the lower temperatures. TEM studies revealed the presence of small voids in the region implanted at 500 0 as well as dislocation loops similar to those found in the regions implanted at the lower temperatures. 20 references, 2 figures

  3. Implantation driven permeation behavior of deuterium through pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi E-mail: nakamura@tpl.tokai.jaeri.go.jp; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-09-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 {mu}m thickness under conditions of incident flux of 1.9x10{sup 18}-1.1x10{sup 19} D{sup +}/m{sup 2}s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten.

  4. Implantation driven permeation behavior of deuterium through pure tungsten

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-01-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 μm thickness under conditions of incident flux of 1.9x10 18 -1.1x10 19 D + /m 2 s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten

  5. Nuclear design aspect of the Korean high intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Song, Tae-Yung [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1998-11-01

    A plan to construct a high current proton accelerator has been proposed by KAERI. We are presenting the required nuclear design to support the project as well as a brief overview of the proposed proton accelerator. The target and core design is highlighted to show feasibility of incineration of minor actinides from the spent fuel of light water reactors. Radiation shielding and activation analyses are also important for the design and the license of the accelerator. (author)

  6. Hydrogen and deuterium NMR of solids by magic-angle spinning

    International Nuclear Information System (INIS)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1 H with 2 H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  7. Synthesis of deuterium-labeled prochlorperazine.

    Science.gov (United States)

    Hawes, E M; Gurnsey, T S; Shetty, H U; Midha, K K

    1983-06-01

    The propylpiperazine side chain of prochlorperazine was labeled with two, four, or six deuterium atoms by lithium aluminum deuteride reduction of the appropriate amide. The isotopic purity of the products after correcting for chlorine isotopes was greater than 95.7%.

  8. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  9. The use of deuterium in medicine

    International Nuclear Information System (INIS)

    Roth, E.; Sutton, J.; Marsac, J.

    1981-03-01

    Whenever a corporal function experiences a disturbance reflected either by changes in metabolic activity or modifications of the importance of pools of certain molecules the possibility exists of making use of isotopes in diagnosis. This paper discusses the use of deuterium to measure total body water and extravascular water in the lungs, and gives examples of clinical applications

  10. Deuterium in New Zealand rivers and streams

    International Nuclear Information System (INIS)

    Stewart, M.K.; Cox, M.A.; James, M.R.; Lyon, G.

    1983-07-01

    Over 750 deuterium measurements on rivers and streams in New Zealand are reported. Monthly samples were collected for periods of several years from a number of representative rivers. These show irregular storm-to-storm as well as seasonal deuterium variations. The seasonal variations range from as low as 1 per mille for lake-fed rivers to 8-10 per mille for rivers with large spring snow-melt contributions. Variations in mean annual ΔD values are believed to reflect changes in climatic variables; the present data will be used to compare with future changes. The bulk of the data are single samples; these show a geographic variation related to the altitude, latitude and climatic character of the catchments, with the highest deuterium contents (ΔD = -20 per mille) occurring in the far north, and lowest contents (-80 per mille) in the inland Otago region. Regression equations derived for the ΔD dependence on altitude (h) and latitude (l), are ΔD = -0.0169 h - 30.2 and westerly influence. Eastern climatic zones have lower deuterium contents because of rainout effects on the axial ranges. Contours of constant

  11. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  12. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  13. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  15. Pion Electroproduction form Helium 3, Deuterium, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Stephen Milton [Hampton Univ., Hampton, VA (United States)

    2002-05-01

    A series of measurements for pion electroproduction from helium-3, deuterium, and hydrogen were completed at the Thomas Jefferson National Accelerator Facility by the NucPi Collaboration. E91003 began taking data in February 1998 and was completed in April 1998. The longitudinal and transverse parts of the differential cross section were extracted, by means of a Rosenbluth type separation, in the direction parallel to the virtual photon, at Q 2 = 0.4 GeV 2 , for W = 1.15 and W = 1.6 GeV. The mass dependence of the longitudinal cross section should provide insight into the surprising apparent absence of any significant cross section enhancement due to excess pions in the nuclear medium.

  16. Intense resonance neutron source (IREN) - new pulsed source for nuclear physical and applied investigations

    International Nuclear Information System (INIS)

    Anan'ev, V.D.; Furman, W.I.; Kobets, V.V.; Meshkov, I.N.; Pyataev, V.G.; Shirkov, G.D.; Shvets, V.A.; Sumbaev, A.P.; Kuatbekov, R.P.; Tret'yakov, I.T.; Frolov, A.R.; Gurov, S.M.; Logachev, P.V.; Pavlov, V.M.; Skarbo, B.A.

    2005-01-01

    An accelerator-driven subcritical system (200 MeV electron linac + metallic plutonium subcritical core) IREN is constructed at the Joint Institute for Nuclear Research (JINR). The new pulsed neutron source IREN is optimized for maximal yield of resonance neutrons (1-10 5 eV). The S-band electron linac with a pulse duration near 200 ns, repetition rate up to 150 Hz and the mean beam power 10 kW delivers 200-MeV electrons onto a specially designed tungsten target (an electron-neutron converter) situated in the center of a very compact and fast subcritical assembly with K eff 15 per second. A mean fission power of the multiplying target is planned to be near 15 kW. The current status of the project is presented

  17. Cosmic Deuterium and Social Networking Software

    Science.gov (United States)

    Pasachoff, J. M.; Suer, T.-A.; Lubowich, D. A.; Glaisyer, T.

    2006-08-01

    For the education of newcomers to a scientific field and for the convenience of students and workers in the field, it is helpful to have all the basic scientific papers gathered. For the study of deuterium in the Universe, in 2004-5 we set up http://www.cosmicdeuterium.info with clickable links to all the historic and basic papers in the field and to many of the current papers. Cosmic deuterium is especially important because all deuterium in the Universe was formed in the epoch of nucleosynthesis in the first 1000 seconds after the Big Bang, so study of its relative abundance (D:H~1:100,000) gives us information about those first minutes of the Universe's life. Thus the understanding of cosmic deuterium is one of the pillars of modern cosmology, joining the cosmic expansion, the 3 degree cosmic background radiation, and the ripples in that background radiation. Studies of deuterium are also important for understanding Galactic chemical evolution, astrochemistry, interstellar processes, and planetary formation. Some papers had to be scanned while others are available at the Astrophysical Data System, adswww.harvard.edu, or to publishers' Websites. By 2006, social networking software (http:tinyurl.com/ zx5hk) had advanced with popular sites like facebook.com and MySpace.com; the Astrophysical Data System had even set up MyADS. Social tagging software sites like http://del.icio.us have made it easy to share sets of links to papers already available online. We have set up http://del.icio.us/deuterium to provide links to many of the papers on cosmicdeuterium.info, furthering previous del.icio.us work on /eclipses and /plutocharon. It is easy for the site owner to add links to a del.icio.us site; it takes merely clicking on a button on the browser screen once the site is opened and the desired link is viewed in a browser. Categorizing different topics by keywords allows subsets to be easily displayed. The opportunity to expose knowledge and build an ecosystem of web

  18. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    International Nuclear Information System (INIS)

    Wu, Q.; Sun, L.T.; Cui, B.Q.; Lian, G.; Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M.; Liu, W.P.

    2016-01-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H + , 10 emA He + and 2.0 emA He 2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  19. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, L.T., E-mail: sunlt@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, B.Q.; Lian, G. [China Institute of Atomic Energy, Beijing 102413 (China); Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.P. [China Institute of Atomic Energy, Beijing 102413 (China)

    2016-09-11

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H{sup +}, 10 emA He{sup +} and 2.0 emA He{sup 2+} beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  20. Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch

    Czech Academy of Sciences Publication Activity Database

    Klir, D.; Kubeš, P.; Řezáč, K.; Cikhardt, J.; Kravarik, J.; Šíla, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orčíková, Hana; Turek, Karel

    2014-01-01

    Roč. 112, č. 9 (2014), 095001 ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0454; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) LH13283 Institutional support: RVO:61389005 Keywords : deuterium * neutron yield * neutron production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.512, year: 2014

  1. Definitive Insight into the Graphite Oxide Reduction Mechanism by Deuterium Labeling

    Czech Academy of Sciences Publication Activity Database

    Jankovský, O.; Šimek, P.; Luxa, J.; Sedmidubský, D.; Tomandl, Ivo; Macková, Anna; Mikšová, Romana; Malinský, Petr; Pumera, M.; Sofer, Z.

    2015-01-01

    Roč. 80, č. 9 (2015), s. 1399-1407 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA15-09001S; GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : deuterium * graphene * isotopic labeling * reaction mechanisms * reduction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.836, year: 2015

  2. Double recharge of pions on a deuterium

    International Nuclear Information System (INIS)

    Nichitiu, F.; Falomkin, I.V.; Shcherbakov, Yu.A.

    1987-01-01

    Assumptions on the dibaryon nature of the existing narrow resonances below the threshold of the NΔ-state with masses 1935, 1965, 2015 MeV are considered. New proposals on construction of the particle systematics with a new particle (R-particle of mass 1025 MeV, J=1/2, T=3/2) are used to draw a conclusion that double charge exchange is possible on deuterium and helium-3 if dibaryons or new R-particles are born in the final state. Attention is paid to a possible decay of these particles through a weak channel. A search for double charge exchange of pions on hydrogen and deuterium using a laser-illuminated streamer chamber of high pressure is proposed

  3. Deuterium content of the Venus atmosphere

    International Nuclear Information System (INIS)

    Bertaux, -J.-L.; Clarke, J.T.

    1989-01-01

    The abundance of deuterium in the atmosphere of Venus is an important clue to the planet's history, because ordinary and deuterated water escape at different rates. Using the high-resolution mode of the International Ultraviolet Explorer (IUE), we measured hydrogen Lyman-α-emission but found only an upper limit on deuterium Lyman-α-emission, from which we inferred a D/H ratio of less than 2-5 x 10 -3 . This is smaller by a factor of 3-8 than the D/H ratio derived from measurements by the Pioneer Venus Large Probe, and may indicate either a stratification of D/H ratio with altitude or a smaller overall ratio than previously thought. (author)

  4. Synthesis of deuterium and tritium labelled tyrosine

    International Nuclear Information System (INIS)

    Kanska, M.; Drabarek, S.

    1980-01-01

    A new method of synthesis of tyrosine labelled with deuterium and tritium in the aromatic ring has been developed. Deuterated and tritiated tyrosine was obtained by isotope exchange between tyrosine and deuterated or tritiated water at elevated temperature in hydrochloric acid medium using K 2 PtCl 4 as a catalyst. For synthesis of tritiated tyrosine 1 Ci HTO was used; the specific activity of the product was 5 mCi/mMol. (author)

  5. Photodisintegration of deuterium and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Hara, K.Y.; Utsunomiya, H.; Goko, S.; Akimune, H.; Yamagata, T.; Ohta, M.; Toyokawa, H.; Kudo, K.; Uritani, A.; Shibata, Y.; Lui, Y.-W.; Ohgaki, H.

    2003-01-01

    Photodisintegration cross sections were measured for deuterium with Laser-Compton scattering γ beams at seven energies near threshold. Combined with the preceding data, R(E)=N a σv for the p(n,γ)D reaction is for the first time evaluated based on experimental data with 6% uncertainty in the energy region relevant to the big bang nucleosynthesis (BBN). The result confirms the theoretical evaluation on which the BBN in the precision era relies

  6. Initial deuterium pellet experiments on FTU

    International Nuclear Information System (INIS)

    Snipes, J.A.

    1993-01-01

    Initial experiments have been performed with the Single Pellet INjector (SPIN) on FTU. SPIN is a two-stage cryogenic deuterium pellet injector capable of injection,a pellets with velocities up to 2.5 km/s. The nominal pellet mass for these experiments was approximately 1 x 10 20 atoms. These initial pellet experiments concentrated on studying pellet penetration under a variety of plasma conditions to compare with code predictions and to examine toroidal particle transport. The principal diagnostics used were two fast (∼1 μsec) photomultiplier tubes at nearly opposite toroidal locations with H α (D α ) interference filters (λ = 656 nm), a microwave cavity for pellet mass and velocity, a vertical array of soft x ray diodes without filters looking down onto the pellet, a DCN interferometer for electron density profiles, and a Michelson ECE system for electron temperature profiles. The time integral of the absolutely calibrated fast H α signal appears to give reasonable agreement with the expected pellet mass. Toroidal transport of deuterium ions from the pellet to nearly the opposite side of the tokamak agrees with calculated thermal deuterium velocities near the plasma edge. Comparison of the experimental results with code calculations using the Neutral Gas Shielding model show good agreement for the post-pellet electron temperature and density profiles and the H α profiles in some cases. Calculated penetration distances agree within 20%

  7. Deuterium-depleted water. Romanian achievements and perspective

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Saros-Rogobete, Irina; Titescu, Gheorghe

    2001-01-01

    Deuterium-depleted water has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Beginning with 1996 ICSI Rm. Valcea, deuterium-depleted water producer, co-operated with Romanian specialized institutes for biological effect's evaluation of deuterium-depleted water. These investigations lead to the following conclusions: - Deuterium-depleted water caused a tendency towards the increase of the basal tonus, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tonus and vascular reactivity produced by the deuterium-depleted water persist after the removal of the vascular endothelium; - Animals treated with deuterium-depleted water showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action; - Deuterium-depleted water stimulates immune defence reactions and increases the numbers of polymorphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with deuterium-depleted water fecundated solutions confirmed favourable influence in embryo growth stage and resistance in subsequent growth stages; - It was studied germination, growth and quantitative character's variability in plants; one can remark the favourable influence of deuterium-depleted water on biological process in plants in various ontogenetic stages; - The deuterium depletion in seawater produces the diminution of the water spectral energy related to an increased metabolism of Tetraselmis Suecica. (authors)

  8. Desorption dynamics of deuterium in CuCrZr alloy

    Science.gov (United States)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  9. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  10. Deuterium as a tracer in coal liquefaction. Pt. 1

    International Nuclear Information System (INIS)

    Wilson, M.A.; Collin, P.J.; Barron, P.F.; Vassallo, A.M.

    1982-01-01

    Deuterium has been used to trace the pathways by which hydrogen reacts with an Australian bituminous coal (Liddell) in the presence of a nickel/molybdenum catalyst. The results show that at 400 0 C extensive scrambling of hydrogen and deuterium occurs among aromatic and α to aromatic aliphatic hydrogen and deuterium substituents. Deuterium can enter all structural groups in both asphaltene and hexane-soluble fractions of the coal-derived liquids, but it enters aromatic and α to aromatic groups in preference to alkyl groups remote from aromatic rings. Thus the results indicate that hydrogen atoms are very mobile during coal hydrogenation. Deuterium from deuterium oxide generated during conversion can also be incorporated into the coal-derived liquids. During coal hydrogenation, the eventual fate of much of the hydrogen in the gas phase is to substitute for hydrogen already in the coal. (Auth.)

  11. Deuterium ion irradiation induced blister formation and destruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaemin; Kim, Nam-Kyun; Kim, Hyun-Su; Jin, Younggil; Roh, Ki-Baek; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-11-01

    Highlights: • The areal number density of blisters on the grain with (1 1 1) plane orientation increased with increasing ion fluence. • No more blisters were created above the temperature about 900 K due to high thermal mobility of ions and inactivity of traps. • The destruction of blister at the boundary induced by sputtering is proposed. • The blisters were destructed at the position about the boundary by high sputtering yield of oblique incident ions and thin thickness due to plastic deformation at the boundary. - Abstract: The blisters formation and destruction induced by the deuterium ions on a polycrystalline tungsten were investigated with varying irradiation deuterium ion fluence from 3.04 × 10{sup 23} to 1.84 × 10{sup 25} D m{sup −2} s{sup −1} and an fixed irradiated ion energy of 100 eV in an electron cyclotron resonance plasma source, which was similar to the far-scrape off layer region in the nuclear fusion reactors. Target temperature was monitored during the irradiation. Most of blisters formed easily on the grain with (1 1 1) plane orientation which had about 250 nm in diameter. In addition, the areal number density of blisters increased with increasing the ion fluence under the surface temperature reaching to about 900 K. When the fluence exceeded 4.6 × 10{sup 24} D m{sup −2}, the areal number density of the blister decreased. It could be explained that the destruction of the blister was initiated by erosion at the boundary region where the thickness of blister lid was thin and the sputtering yield was high by oblique incident ions, resulting in remaining the lid open, e.g., un-eroded center dome. It is possible to work as a tungsten dust formation from the plasma facing divertor material at far-SOL region of fusion reactor.

  12. Multiple Paths of Deuterium Fractionation in Protoplanetary Disks

    Science.gov (United States)

    Aikawa, Yuri; Furuya, Kenji; Hincelin, Ugo; Herbst, Eric

    2018-03-01

    We investigate deuterium chemistry coupled with the nuclear spin-state chemistry of H2 and {{{H}}}3+ in protoplanetary disks. Multiple paths of deuterium fractionation are found; exchange reactions with D atoms, such as HCO+ + D, are effective in addition to those with HD. In a disk model with grain sizes appropriate for dark clouds, the freeze-out of molecules is severe in the outer midplane, while the disk surface is shielded from UV radiation. Gaseous molecules, including DCO+, thus become abundant at the disk surface, which tends to make their column density distribution relatively flat. If the dust grains have grown to millimeter size, the freeze-out rate of neutral species is reduced and the abundances of gaseous molecules, including DCO+ and N2D+, are enhanced in the cold midplane. Turbulent diffusion transports D atoms and radicals at the disk surface to the midplane, and stable ice species in the midplane to the disk surface. The effects of turbulence on chemistry are thus multifold; while DCO+ and N2D+ abundances increase or decrease depending on the regions, HCN and DCN in the gas and ice are greatly reduced at the innermost radii, compared to the model without turbulence. When cosmic rays penetrate the disk, the ortho-to-para ratio (OPR) of H2 is found to be thermal in the disk, except in the cold (≲10 K) midplane. We also analyze the OPR of {{{H}}}3+ and H2D+, as well as the main reactions of H2D+, DCO+, and N2D+, in order to analytically derive their abundances in the cold midplane.

  13. Pebble bed blanket design for deuterium burning tandem mirror reactors

    International Nuclear Information System (INIS)

    Grotz, S.P.; Dhir, V.K.

    1983-01-01

    The UCLA tandem mirror reactor, SATYR, was developed around the capability of tandem mirrors with thermal barriers to burn deuterium at reasonable efficiency levels. The pebble bed concept has been incorporated into our blanket design for the following reasons: 1) Large area-to-volume ratio for purposes of heat removal; 2) Large volume of structure for high thermal capacity thus increasing the safety margin during off-normal incidents; 3) Relatively inexpensive manufacturing costs because of large acceptable tolerances and lack of exotic materials (i.e., lithium). A simplified stress analysis of the blanket module was performed to optimize and simplify the design. The pre-specified stress intensity limitations used were based upon a 30-year predicted lifetime for each module. Along with stress analysis of the vessel a detailed thermal hydraulic analysis of the pebble bed has been completed. Parameters affecting the pebble bed design are fluidization velocity, pressure drop, heat transfer coefficient, thermally induced stress in the spheres and spatial variation of the power density. Although reasonable gross thermal efficiencies of the 2 designs has been achieved (28% for H 2 O and 39% for He) the high net recirculating power fraction for heating and neutral beams results in relatively low net plant efficiencies (21% and 27%). The results show that a blanket can be designed with good thermal efficiency and a relative-ly simple configuration. However, application of this concept to the high Q deuterium-tritium fuel cycle would have difficulties resulting from the need for continuous removal of the tritium. (orig./HP)

  14. Fine target of deuterium; Blanco fino de deuterio

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Diaz, J; Granados Gonzalez, C E; Gutierrez Bernal, R

    1959-07-01

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 {mu} gr/cm{sup 2} thick is obtained. (Author) 1 refs.

  15. Deuterium trapping in carbon fiber composites under high fluence

    International Nuclear Information System (INIS)

    Airapetov, A.A.; Begrambekov, L.B.; Kuzmin, A.A.; Shigin, P.A.; Zakharov, A.M.

    2010-01-01

    The paper is devoted to investigation of deuterium trapping in CFC, dance graphite MPG-8 and pyrolytic graphite (PG) under plasma ion- and electron irradiation. Number of specific features of deuterium trapping and retention under plasma ion and electron irradiation is presented and discussed. In particular it is shown that 1) deuterium trapping takes place even when energy of impinging ions approaches zero; 2) deuterium is trapped under irradiation by plasma electrons; 3) under irradiation at equal fluences deuterium trapping is higher, when ion flux is smaller. High energy ion penetrating the surfaces are trapped in the traps created at the expense of their kinetic energy. The process may be named 'kinetic trapping'. Under low energy (smaller than 200 eV) electron and/or ion irradiation the energy of inelastic interaction on the surface provides creation of active centers, which initiate dissociation of deuterium sorbed on the surface, penetration of deuterium atoms into graphite and their trapping in specific low energy traps. The term 'potential trapping' is proposed for this type of trapping. Under high energy irradiation such atoms can fill the traps formed through kinetic mechanism. Origination of moveable deuterium atoms from the layer of surface sorption seems to be time dependent process and it is a reason of increase of trapping along with irradiation time. New features of deuterium trapping and retention in graphite evaluated in this study offer new opportunities for analysis and correct estimation of hydrogen isotope trapping and retention in tokamaks having graphite tiles. (authors)

  16. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    Science.gov (United States)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 μJ/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  17. Intense non-linear soft X-ray emission from a hydride target during pulsed D bombardment

    International Nuclear Information System (INIS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    2006-01-01

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm 2 and a dose of 3.3 μJ/cm 2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved. (author)

  18. Use of deuterium oxide to measure breast-milk intake in children aged 7 to 12 months receiving complementary foods

    International Nuclear Information System (INIS)

    Creed-Kanashiro, H.

    1999-01-01

    The present study is being conducted to pilot the use of the deuterium oxide method for the measurement of breast-milk intake in children 7 - 12 months of age receiving complementary foods. This will be applied to a community efficacy study to determine the effects on total energy and nutrient intake and on breast-milk consumption of an intensive education intervention using locally available, culturally acceptable complementary foods. In order to apply the methodology to this evaluation the washout period of deuterium from the mother and the child after the administration of a dose to the mother is being determined and the comparison of this methodology with the test weighing technique for breast-milk intake. The measurement of deuterium oxide using the infrared spectrometer of the Instituto de Investigacion Nutricional [IIN] is being compared with the IR Mass Spectrometer of INTA Chile. During the present period we have conducted a pilot study to measure breast-milk intake using deuterium oxide in 9 mother-child pairs of children aged 7 - 11 months of age; samples of saliva have been taken for analyses. One child has completed the 28 days of the study and 8 children are in process. Test weighing for 48 hours has been conducted on 5 children; unadjusted breast-milk intake ranges from 589 to 682 g per 24 hours. The samples are awaiting analysis for deuterium oxide. (author)

  19. Use of deuterium oxide to measure breast-milk intake in children aged 7 to 12 months receiving complementary foods

    Energy Technology Data Exchange (ETDEWEB)

    Creed-Kanashiro, H [Instituto de Investigacion Nutricional, La Molina, Lima (Peru)

    1999-09-01

    The present study is being conducted to pilot the use of the deuterium oxide method for the measurement of breast-milk intake in children 7 - 12 months of age receiving complementary foods. This will be applied to a community efficacy study to determine the effects on total energy and nutrient intake and on breast-milk consumption of an intensive education intervention using locally available, culturally acceptable complementary foods. In order to apply the methodology to this evaluation the washout period of deuterium from the mother and the child after the administration of a dose to the mother is being determined and the comparison of this methodology with the test weighing technique for breast-milk intake. The measurement of deuterium oxide using the infrared spectrometer of the Instituto de Investigacion Nutricional [IIN] is being compared with the IR Mass Spectrometer of INTA Chile. During the present period we have conducted a pilot study to measure breast-milk intake using deuterium oxide in 9 mother-child pairs of children aged 7 - 11 months of age; samples of saliva have been taken for analyses. One child has completed the 28 days of the study and 8 children are in process. Test weighing for 48 hours has been conducted on 5 children; unadjusted breast-milk intake ranges from 589 to 682 g per 24 hours. The samples are awaiting analysis for deuterium oxide. (author) 37 refs, 3 tabs

  20. Analysis of hydrogen-deuterium mixtures and of mixtures of heavy-water and light-water by means of a mass spectrometer

    International Nuclear Information System (INIS)

    Chenouard, J.; Gueron, J.; Roth, E.

    1951-07-01

    The differences between hydrogen and deuterium with respect to the capture of thermal neutrons (hydrogen = 0.31 barn; deuterium 0.00065 barn) explains the interest of detecting small variations of the isotopic composition of the heavy waters used in the Chatillon nuclear pile. The aim of this report is to describe and discuss the method used since more than a year for the dosimetry of heavy waters. After a recall of the principle of mass spectroscopy analysis of deuterium-hydrogen mixtures, the preciseness of the results is presented and the balancing method used for the determination of the isotopic composition of hydrogen-deuterium mixtures is explained in detail. Finally, a brief comparison of the preciseness of mass spectroscopy measurements with the analyses made with other methods is performed. Some calculations and the tables of results are presented in appendixes. (J.S.)

  1. Biological effects of deuterium - depleted water

    International Nuclear Information System (INIS)

    Stefanescu, I.; Titescu, Gh.; Croitoru, Cornelia; Saros-Rogobete, Irina

    2000-01-01

    Deuterium-depleted water (DDW) is represented by water that has an isotopic content smaller than 145 ppm D/(D + H). DDW production technique consists in the separation of deuterium from water by a continuous distillation process under pressure of about 133.3 mbar. The water used as raw material has a isotopic content of 145 ppm D/(D + H) and can be demineralized water, distillated water or condensed-steam. DDW results as a distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 the Institute of Cryogenics and Isotopic Technologies, DDW producer, co-operated with Romanian specialized institutes for studying the biological effects of DDW. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. These investigations led to the following conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the DDW persists after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defense mechanisms; - DDW stimulates immuno-defense reactions represented by the opsonic, bactericidal and phagocyte capacity of the immune system together with an increase in the number of poly-morphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance and following growth stages; - It was studied germination, growth and quantitative character variability in plants; one can remark the favorable influence of DDW on biological processes in plants in various ontogenetic stages. (authors)

  2. Hydrogen/deuterium exchange in mass spectrometry.

    Science.gov (United States)

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  3. Erosion and deuterium retention of CLF-1 steel exposed to deuterium plasma

    Science.gov (United States)

    Qiao, L.; Wang, P.; Hu, M.; Gao, L.; Jacob, W.; Fu, E. G.; Luo, G. N.

    2017-12-01

    In recent years reduced activation ferritic martensitic steel has been proposed as the plasma-facing material in remote regions of the first wall. This study reports the erosion and deuterium retention behaviours in CLF-1 steel exposed to deuterium (D) plasma in a linear experimental plasma system as function of incident ion energy and fluence. The incident D ion energy ranges from 30 to 180 eV at a flux of 4 × 1021 D m-2 s-1 up to a fluence of 1025 D m-2. SEM images revealed a clear change of the surface morphology as functions of incident fluence and impinging energy. The mass loss results showed a decrease of the total sputtering yield of CLF-1 steel with increasing incident fluence by up to one order of magnitude. The total sputtering yield of CLF-1 steel after 7.2 × 1024 D m-2 deuterium plasma exposure reduced by a factor of 4 compared with that of pure iron, which can be attributed to the enrichment of W at the surface due to preferential sputtering of iron and chromium. After D plasma exposure, the total deuterium retention in CLF-1 steel samples measured by TDS decreased with increasing incident fluence and energy, and a clear saturation tendency as function of incident fluence or energy was also observed.

  4. Liquid hydrogen and deuterium targets; Cibles a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Bougon, M; Marquet, M; Prugne, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [French] Description de: 1) Cible a pression atmospherique; hydrogene liquide, 400 mm d'epaisseur; l'isolement thermique: styrofoam; on utilise les vapeurs d'hydrogene pour ameliorer le refroidissement de la cible; hublots en Mylar. 2) Cible sous vide; contenance 12 litres; hydrogene ou deuterium; epaisseur du liquide 400 mm; l'isolement thermique est assure par une cuve a vide et un ecran d'azote liquide. Recuperation et liquefaction des vapeurs de deuterium sont effectuees dans la cuve a vide contenant la cible. Le systeme de vidange pour la cible est concu pour fonctionner en quelques minutes. (auteur)

  5. Initial research of np scattering with polarized deuterium target at ANKE/COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Modern Physics, Chinese Academy of Sciences, 73000 Lanzhou (China); Collaboration: ANKE-Collaboration

    2014-07-01

    With the goal of understanding the nuclear forces, the ANKE collaboration has been working on a systematic NN spin program for many years. Due to the lack of free neutron sources experimental data of np scattering are very rare, especially at higher energies. It has been shown that using phase shift analysis (PSA) it is possible to reconstruct np scattering amplitudes from the spin observables of pd → {pp}{sub {sup 1}S{sub 0}}n charge-exchange reaction. So far experiments were conducted using polarized deuteron beams and hydrogen target, which led to valuable results. To extend the research up to the highest nucleon energy available at COSY (2.8 GeV), proton beam and polarized deuterium target will be used. This talk presents the results of the commissioning experiment of a deuterium target at ANKE with emphasis on the initial research of charge-exchange reaction.

  6. A Reexamination of Deuterium Fractionation on Mars

    Science.gov (United States)

    Pathare, A.; Paige, D. A.

    1997-07-01

    The ratio of deuterium to hydrogen in the Martian atmosphere is enhanced by a factor of 5 with respect to the terrestrial value, probably due to fractionation associated with thermal Jeans escape from the top of the atmosphere. Theoretical analyses of the relative efficiency of H and D escape have suggested that the deuterium enrichment implies Mars has outgassed the vast majority of its H2O and that the Martian atmosphere is presently not exchanging water with a juvenile reservoir. However, measurements of high and variable D/H values within hydrous minerals in SNC meteorites strongly suggest that mixing between the atmosphere and juvenile water has taken place. Furthermore, the lack of any observed enrichment of atmospheric (18) O with respect to (16) O, in spite of fractionating nonthermal escape mechanisms, indicates buffering by some juvenile source of oxygen, most probably in the form of a surface or subsurface reservoir of water. We propose that this apparent paradox in the interpretation of isotopic hydrogen and oxygen fractionation --or lack thereof-- can be resolved by re-examining the standard model of deuterium fractionation efficiency on Mars. Specifically, we demonstrate the importance of using upper atmospheric temperatures more representative of the range experienced by the Martian exosphere over the course of the solar cycle. Preliminary calculations involving changes in effusion velocity and diffusive separation as a function of exospheric temperature indicate that incorporating these more representative lower exospheric temperatures will reduce the relative efficiency of D escape, in which case the observed enrichment of deuterium can indeed result from exchange with a juvenile source of water. We are in the process of confirming these computations with a one-dimensional upper atmospheric photochemical model that considers the effects of changing solar activity and exospheric temperature on ionospheric composition. If our initial calculations are

  7. Novel PEFC Application for Deuterium Isotope Separation

    Directory of Open Access Journals (Sweden)

    Hisayoshi Matsushima

    2017-03-01

    Full Text Available The use of a polymer electrolyte fuel cell (PEFC with a Nafion membrane for isotopic separation of deuterium (D was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H in H2O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased.

  8. Apparatus and process for deuterium exchange

    International Nuclear Information System (INIS)

    Ergenc, M.S.

    1976-01-01

    The deuterium exchange plant is combined with an absorption refrigeration plant in order to improve the exchange process and to produce refrigeration. The refrigeration plant has a throttling means for expanding and cooling a portion of the liquid exchange medium separated in the exchange plant as well as an evaporator, in which the said liquid exchange medium is brought into heat exchange with a cold consumer device, absorption means for forming a solution of the used exchange medium and fresh water and a pump for pumping the solution into the exchange plant

  9. Synthesis of deuterium labelled cocaine and pseudococaine

    Energy Technology Data Exchange (ETDEWEB)

    Casale, J.F.; Raney, H.T. (State Bureau of Investigation, Raleigh, NC (USA). Drug Chemistry Lab.); Lewin, A.H. (Research Triangle Inst., Research Triangle Park, NC (USA)); Cooper, D.A. (Drug Enforcement Administration, McLean, VA (USA))

    1991-03-01

    Cocaine and pseudococaine were mass-labelled with deuterium at various positions on the tropane ring. The synthetic procedures followed were adaptations of those previously published for the unlabelled compounds. The isotopic purity was greater than 95% for 2-({sup 2}H)-, 4,4-({sup 2}H2)-, and 1,5,6,6,7,7-({sup 2}H6)-cocaine and 3-({sup 2}H)-, 4,4-({sup 2}H2)-, and 1,5,6,6,7,7-({sup 2}H6)-pseudococaine, while that of 3-({sup 2}H)-cocaine exceeded 90%. (author).

  10. Synthesis of deuterium labelled cocaine and pseudococaine

    International Nuclear Information System (INIS)

    Casale, J.F.; Raney, H.T.; Cooper, D.A.

    1991-01-01

    Cocaine and pseudococaine were mass-labelled with deuterium at various positions on the tropane ring. The synthetic procedures followed were adaptations of those previously published for the unlabelled compounds. The isotopic purity was greater than 95% for 2-[ 2 H]-, 4,4-[ 2 H2]-, and 1,5,6,6,7,7-[ 2 H6]-cocaine and 3-[ 2 H]-, 4,4-[ 2 H2]-, and 1,5,6,6,7,7-[ 2 H6]-pseudococaine, while that of 3-[ 2 H]-cocaine exceeded 90%. (author)

  11. Deuterium ion irradiation damage and deuterium trapping mechanism in candidate stainless steel material (JPCA2) for fusion reactor

    International Nuclear Information System (INIS)

    Ashizuka, Norihiro; Kurita, Takaaki; Yoshida, Naoaki; Fujiwara, Tadashi; Muroga, Takeo

    1987-01-01

    An improved austenitic stainless steel (JPCA), a candidate material for fusion reactor, is irradiated at room temperature with deuterium ion beams. Desorption spectra of deuterium gas is measured at various increased temperatures and defects formed under irradiation are observed by transmission electron microscopy to determine the mechanism of the thermal release of deuteriums and the characteristics of irradiation-induced defects involved in the process. In the deuterium deportion spectra observed, five release stages are found to exist at 90 deg C, 160 deg C, 220 deg C, 300 deg C and 400 deg C, referred to as Stage I, II, III, IV and V, respectively. Stage I is interpreted as representing the release of deuteriums trapped in point defects (presumably vacancies) formed under irradiation. The energy of desorption from the trapping sites is estimated at 0.8 eV. Stage II is concluded to be associated with the release of deuteriums trapped in a certain kind of existing defects. Stage III involves the release of deuteriums that are trapped in dislocations, dislocation loops or dislocated portions of stacking fault tetrahedra. This release occurs significantly in processed materials and other materials irradiated with high energy ion beams that may cause cascade damage. Stage IV is interpreted in terms of thermal decomposition of small deuterium clusters. Stage V is associated with the decomposition of rather large deuterium clusters grown on the {111} plane. (Nogami, K.)

  12. In-medium modification of pion-pairs on deuterium

    International Nuclear Information System (INIS)

    Lugert, Stefan

    2007-01-01

    In this thesis the quasi free photo production of pion pairs on bound nucleons γ+A→ ππ(A-1)+N is analyzed for liquid Deuterium. A pioneering experiment with a photon beam was performed by the TAPS collaboration at the accelerator facility MAMI-B in Mainz in 1999. This measurement observed an invariant mass shift of the isoscalar π 0 π 0 channel with increasing atomic number as well. Due to the poor statistics, the significance of the data was however limited. The experiment described in this work reached a much higher statistical significance, allowing a review of the old data. In this experiment, the TAPS detector was used as a forward wall in combination with the Crystal Ball detector to achieve almost the complete 4π solid angle coverage for particle detection at the MAMI accelerator facility. The installation of the experimental setup started at the end of 2003. The new readout electronics for the BaF 2 crystals was used for the first time. Between June 2004 and April 2005 measurements on several targets were performed, including the lD 2 data which has been analyzed in this work. The analysis of the Deuterium data is an essential contribution to understanding the ongoing processes for two reasons. Firstly, there is the possibility to compare the solid targets and Hydrogen to the lightest nucleus having Fermi motion included but the lowest possible nuclear volume, the Deuterium. For the second reason, there are no data for the mass differential cross section on the neutron available for the mentioned channels. Analyzing the Deuterium data and subtracting the published proton data, the cross section on the neutron gets accessible. An essential question for the theory is whether the cross section on neutron and proton are the same or how much they differ in the relevant energy regime. To determine the absolute cross section, the efficiency of the detector system is required. To provide this efficiency, I also developed the MonteCarlo simulation using a

  13. In-medium modification of pion-pairs on deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Lugert, Stefan

    2007-11-23

    In this thesis the quasi free photo production of pion pairs on bound nucleons {gamma}+A{yields} {pi}{pi}(A-1)+N is analyzed for liquid Deuterium. A pioneering experiment with a photon beam was performed by the TAPS collaboration at the accelerator facility MAMI-B in Mainz in 1999. This measurement observed an invariant mass shift of the isoscalar {pi}{sup 0}{pi}{sup 0} channel with increasing atomic number as well. Due to the poor statistics, the significance of the data was however limited. The experiment described in this work reached a much higher statistical significance, allowing a review of the old data. In this experiment, the TAPS detector was used as a forward wall in combination with the Crystal Ball detector to achieve almost the complete 4{pi} solid angle coverage for particle detection at the MAMI accelerator facility. The installation of the experimental setup started at the end of 2003. The new readout electronics for the BaF{sub 2} crystals was used for the first time. Between June 2004 and April 2005 measurements on several targets were performed, including the lD{sub 2} data which has been analyzed in this work. The analysis of the Deuterium data is an essential contribution to understanding the ongoing processes for two reasons. Firstly, there is the possibility to compare the solid targets and Hydrogen to the lightest nucleus having Fermi motion included but the lowest possible nuclear volume, the Deuterium. For the second reason, there are no data for the mass differential cross section on the neutron available for the mentioned channels. Analyzing the Deuterium data and subtracting the published proton data, the cross section on the neutron gets accessible. An essential question for the theory is whether the cross section on neutron and proton are the same or how much they differ in the relevant energy regime. To determine the absolute cross section, the efficiency of the detector system is required. To provide this efficiency, I also

  14. Permeation behavior of deuterium implanted into beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; O' hira, Shigeru; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    Study on Implantation Driven Permeation (IDP) behavior of deuterium through pure beryllium was investigated as a part of the research to predict the tritium permeation through the first wall components ITER (International Thermonuclear Experimental Reactor). The permeation experiments were carried out with two beryllium specimens, one was an unannealed specimen and the other was that annealed at 1173 K. The permeation flux was measured as a function of specimen temperature and incident ion flux. Surface analysis of specimen was also carried out after the permeation experiment. Permeation was observed only with the annealed specimen and no significant permeation was observed with unannealed specimen under the present experimental condition (maximum temperature: 685 K, detection limit: 1x10{sup 13} D atoms/m{sup 2}s). It could be attributed that the intrinsic lattice defects, which act as diffusion preventing site, decreased with the specimen annealing. Based on the result of steady and transient permeation behavior and surface analysis, it was estimated that the deuterium permeation implanted into annealed beryllium was controlled by surface recombination due to the oxide layer on the surface of the permeated side. (author)

  15. Thermal desorption of deuterium implanted into beryllium

    International Nuclear Information System (INIS)

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P.

    1995-01-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, Φ, from 1x10 20 D/m 2 to 1x10 21 D/m 2 proceeds in one high temperature stage B, while at Φ ≥ 1.2x10 21 D/m 2 one more stage A is added. The desorption maximum A is narrow and consists of two peaks A 1 and A 2 at about 460 K and 490 K, respectively. Peak A 1 is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak A 2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences

  16. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  17. Deuterium fractionation mechanisms in interstellar clouds

    International Nuclear Information System (INIS)

    Dalgarno, A.; Lepp, S.

    1984-01-01

    The theory of the fractionation of deuterated molecules is extended to include reactions with atomic deuterium. With the recognition that dissociative recombination of H + 3 is not rapid, observational data can be used in conjunction with the theory to derive upper and lower bounds to the cosmic deuterium-hydrogen abundance ratio. We find that [D]/[H] is at least 3.4 x 10 -6 and at most 4.0 x 10 -5 with a probable value of 1 x 10 -5 . Because of the reaction HCO + +D→DCO + +H, upper limits can be derived for the fractional ionization which depend only weakly on the cosmic ray flux, zeta. In four clouds, the upper limits to the fractional ionization lie between 1.1 x 10 -6 and 1.5 x 10 -6 if zeta = 10 -7 s -1 and between 3.1 x 10 -6 and 1.8 x 10 -6 if zeta = 10 -16 s -1

  18. Sputtering of solid deuterium by He-ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Stenum, B.; Pedrys, R.

    2001-01-01

    Sputtering of solid deuterium by bombardment of 3He+ and 4He+ ions was studied. Some features are similar to hydrogen ion bombardment of solid deuterium, but for the He-ions a significant contribution of elastic processes to the total yield can be identified. The thin-film enhancement is more pro...... pronounced than that for hydrogen projectiles in the same energy range....

  19. Confinement and heating of a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.

    1994-03-01

    The Tokamak Fusion Test Reactor (TFTR) has performed initial high-power experiments with the plasma fueled by deuterium and tritium to nominally equal densities. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ∼20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α-particles

  20. Deuterium exchange between liquid water and gaseous hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The overall separation factors for the deuterium exchange between liquid water and gaseous hydrogen have been calculated over a wide range of temperature, pressure and deuterium concentrations. These data would be useful in the design and other considerations for heavy water production, based on hydrogen-water exchange. (author)

  1. Consumption of potassium permanganate by impurities in deuterium oxide

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The titrimetric measurement of the consumption of potassium permanganate by impurities in deuterium oxide is one of the required methods intended for use in establishing whether the deuterium oxide is of sufficient purity to meet specifications. The method includes a discussion of reagents, procedure, and calculation

  2. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    Science.gov (United States)

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  3. Intensive aquaculture of tilapia (Sarotherodon niloticus) in the thermal effluents of a nuclear power plant in Belgium

    International Nuclear Information System (INIS)

    Melard, Ch.; Philippart, J.C.

    1981-01-01

    This paper presents the results of three years of experiments in cultivating S. niloticus in the cooling waters of the nuclear power station at Tihange on the Meuse. The research station infrastructure consists of three earthen ponds measuring 150m 2 (volume: 200m 3 ) and 16 fibreglass tanks of 4m 2 (2m 3 ). These are fed by a pumping system (70m 3 /h) at the outlet point of the power station condenser. A regulation system ensures that the feed-water is kept at a safe thermal level (17-32 deg. C). The Meuse has a high biological productivity potential at Tihange; there is no chemical pollution of any significance, although moderate organic pollution exists. The thermal conditions in the river make it possible to count on nine months (March to December) during which the average utilizable water temperature for tilapia culture exceeds 20 deg. C. Under conditions of intensive-tank culture, it was possible to maintain a maximum biomass (with 150g fish) of 120kg/m 3 of tank with a water renewal rate of about 3.5 times per hour (loading: 2.1kg/liter per minute). A figure is provided showing the relation to weight of oxygen consumption and optimal loading at a temperature of 30-32 deg. C. The highest yields recorded are 21.1q/m 3 per hour and 25.7kg/m 3 of tank/month; with an average yield of 12g/m 3 per hour, a volume of 85m 3 of heated water is required to produce 1kg of S. niloticus from 20g of male fry. The fish are suitable for marketing (trial offer to restaurants) if they weigh 300-350g. Analysis shows that their heavy metals and radionuclide content is below the level permitted by law. (author)

  4. Site occupation state of deuterium atoms in fcc Fe

    International Nuclear Information System (INIS)

    Aoki, Katsutoshi; Machida, Akihiko; Saitoh, Hiroyuki; Hattori, Takanori; Sano-Furukawa, Asami

    2015-01-01

    The deuterization process of fcc Fe to form solid-solution fcc FeD x was investigated by in situ neutron diffraction measurements at high temperature and high pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy the octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal-lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å 3 per deuterium atom. The minor occupation of tetrahedral site is likely driven by the intersite movement of deuterium atoms along the <111> direction in the fcc metal lattice. These results provide implications for the light elements in the Earth's core and the mechanism of hydrogen embrittlement of ferrous metals. (author)

  5. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and

  6. Sources of high energy particles obtained with intense lasers for applications in nuclear physics; Sources de particules de hautes energies obtenues avec des lasers intenses pour applications a la physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Gerbaux, M

    2007-12-15

    This experimental study concerns the characterization of the beams of electrons and protons with energies above a few MeV produced in the interaction of an ultra-intense (10{sup 19} W/cm{sup 2}) laser beam with a 10 {mu}m thick solid target. This work was issued in the framework to use these beams in nuclear physics experiments. It was hence necessary to know quantitatively the characteristics of these particle beams. Laser accelerated particle beams have very different characteristics from conventional ones produced in accelerators, especially on account of their transience and intensity as well as their continuous energy distribution. These properties make their characterization complex and led us to develop methods combining measurements with diodes spectrometers, radiochromic films, nuclear activation of chosen materials and Monte-Carlo simulations. These methods have been employed on 2 different facilities but with similar characteristics for the study of the electron beams as a function of the target material. The angular aperture of the electron beam appears to be strongly dependent on the atomic number of the target. An experiment was also carried out to characterize at each shot the proton beam produced with the LULI 100 TW laser facility. This experiment also proved the possibility to induce nuclear reactions in plasma and to measure quantitatively the reaction rate in order to scale an experiment on the perturbation of the nucleus electronic-shells coupling via a strong electromagnetic field due to the laser. (author)

  7. Analysis of hydrogen-deuterium mixtures and of mixtures of heavy-water and light-water by means of a mass spectrometer; Analyse des melanges hydrogene-deuterium et des melanges d'eau lourde et d'eau legere au moyen du spectrometre de masse

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J; Gueron, J; Roth, E

    1951-07-01

    The differences between hydrogen and deuterium with respect to the capture of thermal neutrons (hydrogen = 0.31 barn; deuterium 0.00065 barn) explains the interest of detecting small variations of the isotopic composition of the heavy waters used in the Chatillon nuclear pile. The aim of this report is to describe and discuss the method used since more than a year for the dosimetry of heavy waters. After a recall of the principle of mass spectroscopy analysis of deuterium-hydrogen mixtures, the preciseness of the results is presented and the balancing method used for the determination of the isotopic composition of hydrogen-deuterium mixtures is explained in detail. Finally, a brief comparison of the preciseness of mass spectroscopy measurements with the analyses made with other methods is performed. Some calculations and the tables of results are presented in appendixes. (J.S.)

  8. Influence of temperature and plasma composition on deuterium retention in refractory metals

    International Nuclear Information System (INIS)

    Alves, E.; Alves, L.C.; Barradas, N.P.; Mateus, R.; Carvalho, P.A.; Wright, G.M.

    2010-01-01

    Refractory materials are being considered potential candidates to build the first wall of the fusion reactor chamber. This work reports on the results of the study of tungsten and molybdenum metals exposed to high flux densities (∼10 24 D/m 2 s) and low temperature (T e ∼ 3 eV) deuterium plasmas in Pilot-PSI irradiation facility. The hydrogenic retention in poly-crystalline W and Mo targets was studied with 3 He nuclear reaction analyses (NRA). The NRA results clearly show a two-dimensional radial distribution of the deuterium with a minimum at the center and a maximum close to the edge. These distribution correlates well with the thermal profile of the sample surface, where a maximum of ∼1600 K was measured at the center decreasing to ∼1000 K in the edges. A maximum deuterium fluence retention of 5 x 10 15 D/cm 2 was measured. The values of the retained fractions ranging from 10 -5 to 10 -6 D retained /D incident were measured with thermal desorption spectroscopy (TDS) and compares well with IBA results. Moreover, the presence of C in the plasma and its co-deposition increases the D retention in the region where a C film is formed. Both NRA and TDS results show no clear dependence of retention on incident fluence suggesting the absence of plasma related traps in W under these conditions.

  9. Deuterium pellet injection in the TFR Tokamak

    International Nuclear Information System (INIS)

    Lazare, O.

    1985-07-01

    Injecting fresh fuel deep inside the plasma of a thermonuclear reactor appears to be necessary; the only way to do that is to inject fast solid deuterium pellets. The existing theoretical, technical and experimental aspects of this method are presented. The experiments on TFR have confirmed that injecting pellets is technically feasible; a new kind of injector is presented. The injection does not degrade stability nor confinement of the plasma. The study of the transient phenomena occuring during the injection has proved to be an efficient way to investigate particles and energy transport in the discharge; in particular, a fast transport phenomenon, similar to those occuring during disruptions, has been studied in details. Conclusions about disruptions are drawn. (Ref 101) [fr

  10. Deuterium permeation through Flibe facing materials

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Smolik, G.R.

    2004-01-01

    Experiment of deuterium permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment has been proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 , permeation experiment without Flibe, (iii) a dual-probe Ar/Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ar/Ni/Flibe/Ni/D 2 permeation experiment using the dual Ni probe, and (vii) Ar/Ni/Flibe/Ni/HT permeation experiment. The present paper describe results until the Ar/Ni/Flibe/Ni/D 2 permeation experiment in detail. (author)

  11. Development of a powerful discharge in deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Komelkov, V S; Skvortsov, U V; Tserevitinov, S S [Institute of Atomic Energy, Academy of Sciences of the USSR, Moscow (USSR)

    1958-07-01

    The investigations carried out at the Institute of Atomic Energy of the Academy of Sciences of the USSR resulted in the discovery of both neutron and hard X-ray radiation occurring under certain conditions in a powerful pulse discharge in deuterium. In the present work, the investigations in this field were continued with a view to studying these processes at greater currents and higher rates of increase of the current, by minimizing the circuit inductance and the size of the discharge chambers. Studies were made of the current distribution in the chamber, neutron radiation, electrode-metal vapour movement, and the effect of pre-ionization on the initial stages of the process.

  12. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  13. Does cold nuclear fusion exist?

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Bystritskij, V.M.; Egorov, V.G.; Shamsutdinov, S.G.; Shyshkin, A.L.; Stolupin, V.A.; Yutlandov, I.A.

    1989-01-01

    The results of investigation of cold nuclear fusion on palladium are given both for electrolysis of heavy water D 2 O and mixture D 2 O + H 2 O) (1:1) and for palladium saturation with gaseous deuterium. The possibility of existance of this phenomenon was examined by detection of neutrons and gamma quanta from reactions: d + d → 3 He + n + 3.27 MeV, p + d → 3 He + γ + 5.5 MeV. Besides these reactions were identified by measuring the characteristic X radiation of palladium due to effect of charged products 3 He, p, t. The upper limits of the intensities of hypothetical sources of neutrons and gamma quanta at the 95% confidence level were obtained to be Q n ≤ 2x10 -2 n/sxcm 3 Pd, Q γ ≤ 2x10 -3 γ/sxcm 3 Pd. 2 refs.; 4 figs.; 2 tabs

  14. Deuterium Liner and Multiparameter Investigation of the Inverse Z-Pinch Formation Process

    CERN Document Server

    Bystritskii, Vyach M; Grebenyuk, V M; Parzhitsky, S S; Penkov, F M; Stolupin, V A; Boznyak, J; Gula, E; Dudkin, G N; Nechaev, B A; Padalko, V M; Mesyats, G A; Ratakhin, N A; Sorokin, S A

    2001-01-01

    A description of the methods and results of the measurements of the ion energy distribution of the deuterium liner accelerated in the inverse Z-pinch configuration are presented - the liner plasma is radially accelerated from the outward small radius. The knowledge of the experiment deuteron energy distribution is crucially important for correct interpretation of the results on the study of the dd-reaction at infralow collision energies using the liner plasma. Experiments were fulfilled in the HCEI (Tomsk, Russia) at a nanosecond pulsed high current generator (I=950 kA, pulse duration \\tau=80 ns). The hollow deuterium liner of 20 mm length was accelerated from the initial radius of \\sim 15 mm to 45 mm. Measurement of the liner characteristics was produced by means of the light detectors (detection of H_\\alpha and H_\\beta deuterium lines) and magnetic B-dot probes, placed on the various radii of the expanding liner. Besides, the measurement of the neutron radiation intensity due to reaction d+d\\to^{3}He+n was ...

  15. A polarized hydrogen/deuterium atomic beam source for internal target experiments

    International Nuclear Information System (INIS)

    Szczerba, D.; Buuren, L.D. van; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.; Poolman, H.R.; Simani, M.C.

    2000-01-01

    A high-brightness hydrogen/deuterium atomic beam source is presented. The apparatus, previously used in electron scattering experiments with tensor-polarized deuterium (Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Zhou et al., Phys. Rev. Lett. 82 (1998) 687; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 3755), was configured as a source for internal target experiments to measure single- and double-polarization observables, with either polarized hydrogen or vector/tensor polarized deuterium. The atomic beam intensity was enhanced by a factor of ∼2.5 by optimizing the Stern-Gerlach focusing system using high tip-field (∼1.5 T) rare-earth permanent magnets, and by increasing the pumping speed in the beam-formation chamber. Fluxes of (5.9±0.2)x10 16 1 H/s were measured in a diameter 12 mmx122 mm compression tube with its entrance at a distance of 27 cm from the last focusing element. The total output flux amounted to (7.6±0.2)x10 16 1 H/s

  16. Point design for deuterium-deuterium compact reversed-field pinch reactors

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Dobrott, D.R.; Gurol, H.; Schnack, D.D.

    1984-01-01

    A deuterium-deuterium (D-D) reversed-field pinch (RFP) reactor may be made comparable in size and cost to a deuterium-tritium (D-T) reactor at the expense of high-thermal heat load to the first wall. This heat load is the result of the larger percentage of fusion power in charged particles in the D-D reaction as compared to the D-T reaction. The heat load may be reduced by increasing the reactor size and hence the cost. In addition to this ''degraded'' design, the size may be kept small by means of a higher heat load wall, or by means of a toroidal divertor, in which case most of the heat load seen by the wall is in the form of radiation. Point designs are developed for these approaches and cost studies are performed and compared with a D-T reactor. The results indicate that the cost of electricity of a D-D RFP reactor is about20% higher than a D-T RFP reactor. This increased cost could be offset by the inherent safety features of the D-D fuel cycle

  17. Deuterium depleted water. Romanian achievements and prospects

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Steflea, Dumitru; Titescu, Gheorghe; Tamaian, Radu

    2002-01-01

    The deuterium depleted water (DDW) is microbiologically pure distilled water with a deuterium content lower than that of natural waters which amounts to 140 - 150 ppm D/(D+H); variations depend on geographical zone and altitude. The procedure of obtaining DDW is based on isotopic separation of natural water by vacuum distillation. Isotope concentration can be chosen within 20 to 120 ppm D/(D+H). The ICSI at Rm. Valcea has patented the procedure and equipment for the production of DDW. According to the document SF-01-2002/INC-DTCI - ICSI Rm. Valcea, the product has a D/(D+H) isotope concentration of 25 ± 5. Studies and research for finding the effects and methods of application in different fields were initiated and developed in collaboration with different institutes in Romania. The following important results obtained so far could be mentioned: - absence of toxicity upon organisms; - activation of vascular reactivity; - enhancement of defence capacity of the organism through non-specific immunity activation; - increase of salmonid reproduction capacity and enhancement of the adaptability of alevins to the environmental conditions; - radioprotective effect to ionizing radiation; - maintaining meat freshness through osmotic shock; - stimulation of growth of aquatic macrophytes; - enhancement of culture plant development in certain ontogenetic stages. Mostly, the results and practical applications of the research were patented and awarded with gold medals at international invention fairs. At present, research-development programmes are undergoing to find active biological features of DDW in fighting cancer, on one hand, and its applicability as food additive of pets or performing animals, on the other hand

  18. Complete photo-fragmentation of the deuterium molecule

    International Nuclear Information System (INIS)

    Weber, Thorsten; Czasch, Achim O.; Jagutzki, Ottmar; Muller, Alkis K.; Mergel, Volker; Kheifets, A.; Rotenberg, Eli; Meigs, George; Prior, Mike H.; Daveau, Sebastian; Landers, Allen; Cocke, C.L.; Osipov, Timur; Diez Muino, Ricardo; Schmidt-Bocking, Horst; Dorner, Reinhard

    2004-01-01

    All properties of molecules, from binding and excitation energies to their geometry, are determined by the highly correlated initial state wavefunction of the electrons and nuclei. Perhaps surprisingly, details of these correlations can be revealed by studying the break-up of these systems into their constituents. The fragmentation might be initiated by the absorption of a single photon [1, 2, 3, 4, 5, 6], collision with a charged particle [7, 8] or exposure to a strong laser pulse [9, 10]. If the exciting interaction is sufficiently understood, one can use the fragmentation process as a tool to learn about the bound initial state [11, 12]. However, often the interaction and the fragment motions pose formidable challenges to quantum theory [13, 14, 15]. Here we report the coincident measurement of the momenta of both nuclei and both electrons from the single photon induced fragmentation of the deuterium molecule. The results reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption

  19. Deuterium-tritium fuel self-sufficiency in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.; Vold, E.L.; Gung, C.Y.; Youssef, M.Z.; Shin, K.

    1986-01-01

    Conditions necessary to achieve deuterium-tritium fuel self-sufficiency in fusion reactors are derived through extensive modeling and calculations of the required and achievable tritium breeding ratios as functions of the many reactor parameters and candidate design concepts. It is found that the excess margin in the breeding potential is not sufficient to cover all present uncertainties. Thus, the goal of attaining fuel self-sufficiency significantly restricts the allowable parameter space and design concepts. For example, the required breeding ratio can be reduced by (A) attaining high tritium fractional burnup, >5%, in the plasma, (B) achieving very high reliability, >99%, and very short times, <1 day, to fix failures in the tritium processing system, and (C) ensuring that nonradioactive decay losses from all subsystems are extremely low, e.g., <0.1% for the plasma exhaust processing system. The uncertainties due to nuclear data and calculational methods are found to be significant, but they are substantially smaller than those due to uncertainties in system definition

  20. NMR analysis of t-butyl-catalyzed deuterium exchange at unactivated arene localities.

    Science.gov (United States)

    Stack, Douglas E; Eastman, Rachel

    2016-10-01

    Regioselective labelling of arene rings via electrophilic exchange is often dictated by the electronic environment caused by substituents present on the aromatic system. Previously, we observed the presence of a t-butyl group, either covalently bond or added as an external reagent, could impart deuterium exchange to the unactivated, C1-position of estrone. Here, we provide nuclear magnetic resonance analysis of this exchange in a solvent system composed of 50:50 trifluoroacetic acid and D 2 O with either 2-t-butylestrone or estrone in the presence of t-butyl alcohol has shed insights into the mechanism of this t-butyl-catalyzed exchange. Fast exchange of the t-butyl group concurrent with the gradual reduction of the H1 proton signal in both systems suggest a mechanism involving ipso attack of the t-butyl position by deuterium. The reversible addition/elimination of the t-butyl group activates the H1 proton towards exchange by a mechanism of t-butyl incorporation, H1 activation and exchange, followed by eventual t-butyl elimination. Density functional calculations are consistent with the observation of fast t-butyl exchange concurrent with slower H1 exchange. The σ-complex resulting from ipso attack of deuterium at the t-butyl carbon was 6.6 kcal/mol lower in energy than that of the σ-complex resulting from deuterium attack at C1. A better understanding of the t-butyl-catalyzed exchange could help in the design of labelling recipes for other phenolic metabolites. Copyright © 2016 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons, Ltd.

  1. Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere

    Science.gov (United States)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2017-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  2. Method for measuring deuterium in erbium deuteride films

    International Nuclear Information System (INIS)

    Brangan, J.R.; Thornberg, S.M.; Keenan, M.R.

    1997-09-01

    Determining the quantity of deuterium in an erbium deuteride (ErD 2 ) film is essential for assessing the quality of the hydriding process but is a challenging measurement to make. First, the ideal gas law cannot be applied directly due to high temperature (950 degrees C) and low temperature (25 degrees C) regions in the same manifold. Additionally, the metal hydride does not release all of the deuterium rapidly upon heating and metal evaporation occurs during extended heating periods. Therefore, the method developed must provide a means to compensate for temperature inhomogeneities and the amount of deuterium retained in the metal film while heating for a minimal duration. This paper presents two thermal desorption methods used to evaluate the kinetics and equilibria of the deuterium desorption process at high temperatures (950 degrees C). Of primary concern is the evaluation of the quantity of deuterium remaining in these films at the high temperature. A multiple volume expansion technique provided insight into the kinetics of the deuterium evolution and metal evaporation from the film. Finally a repeated pump-down approach yielded data that indicated approximately 10% of the deuterium is retained in the metal film at 950 degrees C and approximately 1 Torr pressure. When the total moles of deuterium determined by this method were divided by the moles of erbium determined by ICP/AES, nearly stochiometric values of 2:1 were obtained for several erbium dideuteride films. Although this work presents data for erbium and deuterium, these methods are applicable to other metal hydrides as well

  3. New directions in the theory of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.

    1988-01-01

    The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs

  4. Process for the production of high purity deuterium

    International Nuclear Information System (INIS)

    Arrathoon, R.

    1977-01-01

    A process for the electrolysis of heavy water which results in the production of high purity deuterium without periodic replenishment of the electrolyte with additional deuterated compounds is defined. Electrolysis is effected through the use of an inexpensive cation-action permselective membrane which is essentially a solid polymer electrolyte and which is capable of automatically separating the evolved deuterium and oxygen gas. This cation-active permselective membrane does not introduce any intrinsic impurities or tritium contamination in the generated deuterium gas, does not require periodic revitalization with deuterated compounds or other chemical compounds, and is characterized by an unusually high electrical efficiency

  5. Viscosity and attenuation of sound wave in high density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1985-01-01

    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  6. Electromigration of hydrogen and deuterium in vanadium, niobium, and tantalum

    International Nuclear Information System (INIS)

    Jensen, C.L.

    1977-10-01

    The electric mobility and effective valence of hydrogen and deuterium in vanadium, niobium, tantalum and three niobium-tantalum alloys were measured. A resistance technique was used to directly determine the electric mobility of hydrogen and deuterium at 30 0 C while a steady-state method was used to measure the effective valence. The use of mass spectrographic techniques on a single specimen which contained both hydrogen and deuterium greatly increased the precision with which the isotope effect in the effective valence could be measured

  7. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, V.N.; Karpov, S.A.; Kopanets, I.E.; Ruzhytskyi, V.V. [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA (United States)

    2016-01-15

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D({sup 3}He,p){sup 4}He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  8. The H+3 + H2 isotopic system. Origin of deuterium astrochemistry

    International Nuclear Information System (INIS)

    Hugo, Edouard Jean-Marie

    2008-01-01

    Dense cold molecular clouds reckoned to be stellar nurseries are the scene of an extreme molecular deuteration. Despite the cosmic D/H ratio of ∝10 -5 , molecular species in prestellar cores are observed to contain nearly as much deuterium as hydrogen. This astonishing deuterium enrichment promoted by low temperatures is the work of H + 3 . It is the key species which unlocks the deuterium from its HD reservoir via reactions like H + 3 +HD ↔ H 2 D + +H 2 and drags it further to other species in successive reactions. For this reason, the H + 3 +H 2 isotopic system is outstandingly critical for the astrochemistry of cold environments. However, its understanding is yet incomplete and insufficient. This thesis thus focuses on the H + 3 +H 2 isotopic system from a theoretical, experimental and astronomical point of view giving a particular look into the role of nuclear spins. As a first step, the stringent nuclear spin selection rules in associative, dissociative and reactive collisions are investigated. This purely theoretical study zooms into the details of the nuclear spin wavefunctions and shows that their permutation symmetry representation is necessary and sufficient, contrary to their angular momentum representation. Additionally, a new deterministic interpretation of nuclear spins in chemical reactions is proposed. Based on these considerations, a complete set of state-to-state rate coefficients for all H + 3 + H 2 isotopic variants is calculated using a microcanonical model leaned on phase space theory. An experimental study is conducted in parallel with a 22-pole ion trap apparatus in order to inspect the influences of temperature and H 2 ortho-to-para ratio. The good overall agreement between experimental and theoretical results supports the validity and utility of the calculated set of rate coefficients. Furthermore, the potentiality of the 22-pole ion trap apparatus is explored via the Laser Induced Reaction (LIR) technique applied to our system of

  9. Parameters of the luminous region surrounding deuterium pellets in the PLT tokamak

    International Nuclear Information System (INIS)

    McNeill, D.H.; Greene, G.J.; Schuresko, D.D.

    1985-08-01

    The luminous region of the plasma cloud surrounding deuterium pellets injected into a tokamak is studied spectroscopically. At the time of peak luminosity the average electron density is 2.4 x 10 17 cm -3 to within 30% and the temperature is at most 2.0 eV. The intensity ratio of the Balmer alpha and beta light from the pellets, the total number of emitted photons, and the apparent size of the radiating region are consistent with local thermodynamic equilibrium at this temperature and density

  10. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    Czech Academy of Sciences Publication Activity Database

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubeš, P.; Labetsky, A. Yu.; Řezáč, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtová, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravařík, J.; Kurmaev, N. E.; Orčíková, Hana; Padalko, V. N.; Ratakhin, N. A.; Šíla, O.; Turek, Karel; Varlachev, V. A.

    2015-01-01

    Roč. 57, č. 4 (2015), s. 044005 ISSN 0741-3335 R&D Projects: GA ČR GAP205/12/0454; GA MŠk(CZ) LD14089; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) LH13283 Institutional support: RVO:61389005 Keywords : z-pinch * gas puff * deuterium * fast neutrons * plasma guns Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.404, year: 2015

  11. Cytology is advanced by studying effects of deuterium environment

    Science.gov (United States)

    Bose, S.; Crespi, H. L.; Flaumenhaft, E.; Katz, J. J.

    1967-01-01

    Research of deuterium effects on biological systems shows deuteriation is not incompatible with life. With the successful cultivation of deuteriated bacteria, work is now being done on extraction of deuterio-compounds from bacteria.

  12. Chemical behavior of energetic deuterium implanted into silicon carbide

    International Nuclear Information System (INIS)

    Iguchi, Kazunari; Morimoto, Yasutomi; Shimada, Asako; Inuduka, Nobuo; Okuno, Kenji; Nakamura, Hirohumi; Nishi, Masataka

    2000-01-01

    Studies on chemical behavior of energetic deuterium (D) ions implanted into SiC were carried out by means of X-ray Photoelectron Spectroscopy (XPS) and Thermal Desorption Spectroscopy (TDS). From XPS results, it was suggested that the implanted D was attracted strongly to Si and/or C. From TDS results, two peaks corresponding to D 2 release appeared near 470 K (1st peak) and 1080 K (2nd peak). The activation energies for the two D 2 release processes were also determined. It was found from these experimental results that the 1st peak seemed to be attributed to deuterium that existed in interstitial. The 2nd peak was considered to be caused by deuterium trapped in lattice defects produced through deuterium ion implantation. (author)

  13. Pneumatic injector of deuterium macroparticles for TORE-SUPRA tokamak

    International Nuclear Information System (INIS)

    Vinyar, I.V.; Umov, A.P.; Lukin, A.Ya.; Skoblikov, S.V.; Reznichenko, P.V.; Krasil'nikov, I.A.

    2006-01-01

    The pneumatic injector for periodic injection of fuel-solid-deuterium pellets into the plasma of the TORE-SUPRA tokamak in a steady-state mode is described. The deuterium pellet injection with an unlimited duration is ensured by a screw extruder in which gaseous deuterium is frozen and squeezed outwards in the form of a rod with a rectangular cross section. A cutter installed on the injector's barrel cuts a cylinder with a diameter of 2 mm and a length of 1.0-3.5 mm out from this rod. The movement of the cutter is controlled by a pulsed electromagnetic drive at a pulse repetition rate of 10 Hz. In the injector's barrel, a compressed gas accelerates a deuterium pellet to a velocity of 100-650 m/s [ru

  14. Infrared presensitization photography at deuterium fluoride laser wavelengths

    International Nuclear Information System (INIS)

    Geary, J.M.; Ross, K.; Suter, K.

    1989-01-01

    Near-field irradiance distributions of a deuterium flouride laser system are obtained using infrared presensitization photography. This represents the shortest wavelength region to employ this technique thus far

  15. Synthesis of deuterium labeled ketamine metabolite dehydronorketamine-d₄.

    Science.gov (United States)

    Sulake, Rohidas S; Chen, Chinpiao; Lin, Huei-Ru; Lua, Ahai-Chang

    2011-10-01

    A convenient synthesis of ketamine metabolite dehydronorketamine-d(4), starting from commercially available deuterium labeled bromochlorobenzene, was achieved. Key steps include Grignard reaction, regioselective hydroxybromination, Staudinger reduction, and dehydrohalogenation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. High intensity linear accelerator development topics for panel discussion on ''Nuclear Energy Research and Accelerators: Future Prospects''

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1989-01-01

    Two companion papers at this meeting have introduced the subject of high intensity linacs for materials research and for radioactive waste transmutation; Prof. Kaneko's paper ''Intense Proton Accelerator,'' and my paper ''Accelerator-Based Intense Neutron Source for Materials R ampersand D.'' I will expand on those remarks to briefly outline some of the extensive work that has been done at Los Alamos toward those two application areas, plus a third --- the production of tritium in an accelerator-based facility (APT--Accelerator Production of Tritium). 1 ref., 11 figs

  17. Plasma nuclear fusion method

    International Nuclear Information System (INIS)

    Yamazaki, Shunpei; Miyanaga, Shoji; Wakaizumi, Kazuhiro; Takemura, Yasuhiko.

    1990-01-01

    Nuclear fusion reactions are attained by plasma gas phase reactions using magnetic fields and microwaves, and the degree of the reactions is controlled. That is, deuterium (D 2 ) is introduced into a plasma container by utilizing the resonance of microwaves capable of generating plasmas at high density higher by more than 10 - 10 3 times as compared with the high frequency and magnetic fields, and an electric energy is applied to convert gaseous D 2 into plasmas and nuclear fusion is conducted. Further, the deuterium ions in the plasmas are attracted to a surface of a material causing nuclear fusion under a negatively biased electric field from the outside (typically represented by Pd or Ti). Then, deuterium nuclei (d) or deuterium ions collide to the surface of the cathode on the side of palladium to conduct nuclear reaction at the surface or the inside (vicinity) thereof. However, a DC bias is applied as an external bias with the side of the palladium being negative. The cold nuclear fusion was demonstrated by placing a neutron counter in the vicinity of the container and confirming neutrons generated there. (I.S.)

  18. Deuterium content on surface waters VI to X Chile regions

    International Nuclear Information System (INIS)

    Aravena C, R; Pollastri J, A.; Suzuki S, O.

    1984-01-01

    One important parameter on any sitting study for a heavy water plant installation is the deuterium content of the feed water. Deuterium data on surface waters from differents areas located in the south of Chile, are presented. These results allow to idently some potential areas for a future heavy water plant. One of these areas, Lago Llanquihue, was sampled more in detail to study the vertical distribution and spatial variations. (Author)

  19. Synthesis of regio- and stereospecifically deuterium labelled 2-benzylindanes

    International Nuclear Information System (INIS)

    Kuck, D.

    1984-01-01

    2-Benzylindenes (1, 1a) are hydrogenated to 2-benzylindanes (2) using tris-(triphenylphosphine)-rhodium(I)-chloride in benzene by a strict cis-1,2 addition of hydrogen to the double bond. Thus, stereo- and regio-specific deuterium labelling at the five-membered ring of various 2-benzylindanes has been carried out. The high selectivity of deuterium incorporation is shown independently by 1 H NMR and mass (MIKEsup(*)) spectrometry of selected 2-benzylindanes. (orig.)

  20. Implanted deuterium retention and release in carbon-coated beryllium

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Oates, M.A.

    1997-01-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 angstrom. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 angstrom revealed that exposure to a temperature of 400 degrees C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400 degrees C and an incident deuterium flux of approximately 6 X 10 19 D/m 2 sec), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples. 4 refs., 8 figs., 1 tab

  1. Implanted Deuterium Retention and Release in Carbon-Coated Beryllium

    Science.gov (United States)

    Anderl, R. A.; Longhurst, G. R.; Pawelko, R. J.; Oates, M. A.

    1997-06-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 Å. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 Å revealed that exposure to a temperature of 400°C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400°C and an incident deuterium flux of approximately 6 × 1019 D/m2-s), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples.

  2. Equations of state for hydrogen and deuterium.

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, Gerald Irwin (Kerley Technical Services, Appomattox, VA)

    2003-12-01

    This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixture models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.

  3. Deuterium accumulation in tungsten at high fluences

    Energy Technology Data Exchange (ETDEWEB)

    Zibrov, Mikhail [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Balden, Martin; Matej, Matej [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Bystrov, Kirill; Morgan, Thomas [FOM Institute DIFFER, De Zaale 20, 5612 AJ Eindhoven (Netherlands)

    2016-07-01

    The data on the deuterium (D) retention in tungsten (W) at high fluences (≥ 10{sup 27} D/m{sup 2}) are scarce and the existing results are contradictory. Since retention in W is known to be flux-dependent, the laboratory experiments addressing this issue should be carried out in reactor-relevant conditions (high fluxes of low-energy ions). In this work the samples made of polycrystalline W were exposed to D plasmas in the linear plasma generator Pilot-PSI at temperatures ranging from 360 K to 1140 K to fluences in the range of 0.3-8.7 x 10{sup 27} D/m{sup 2}. It was observed that at exposure temperatures of 360 K and 580 K the D retention was only slightly dependent on the ion fluence. In addition, the presence of blister-like structures was found after the exposures, and their density and size distributions were also only weakly dependent on the fluence. In the case of exposure at 1140 K no surface modifications of the samples after plasma exposure were detected and the concentrations of retained D were very small. At all temperatures used the total amounts of retained D were smaller compared to those obtained by other researchers at lower ion flux densities, which indicates that the incident ion flux may play an important role in the total D retention in W.

  4. Kinetic studies on the hafnium nad deuterium

    International Nuclear Information System (INIS)

    Bing Wenzeng; Long Xinggui; Zhu Zuliang

    2009-04-01

    Through the method of reaction rate analysis in a constant volume reactor, the time dependence of the pressure drop of the hafnium deuteride formation are studied over a temperature range 573-873 K on a metal hydride thermodynamic and kinetic parameters measuring apparatus. The rate constants of the hafnium deuteride formation, which are 0.0530 s -1 , 0.0452 s -1 , 0.0319 s -1 , 0.0261 s -1 , are calculated at a serial temperatures of 573 K, 673 K, 773 K, 873 K and the initial pressure of 13 kPa. The activation energy of the reaction is (-10.1±1.5) kJ·mol -1 . Comparing the above results with those of titanium deuteride formation on the same measuring apparatus, the kinetic mechanism of the deuteride formation of hafnium and titanium is considered different. It is concluded that the reaction rate of hafnium absorbing deuterium may be controlled by phase transformation and surface oxidation. (authors)

  5. Capabilities of nitrogen admixed cryogenic deuterium pellets

    Energy Technology Data Exchange (ETDEWEB)

    Sharov, Igor; Sergeev, Vladimir [SPU, Saint-Petersburg (Russian Federation); Lang, Peter; Ploeckl, Bernhard; Cavedon, Marco [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kocsis, Gabor; Szepesi, Tamas [Wigner RCP RMI, Budapest (Hungary); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Operation at high core density with high energy confinement - as foreseen in a future fusion reactor like DEMO - is being investigated at ASDEX Upgrade tokamak. The efficiency of pellet fuelling from the high-field side usually increases with increasing injection speed. Due to the fragile nature of the deuterium ice, however, the increment of pellet mass losses and subsequent pellet fragmentations take place when the speed is increased. Studies show, that admixing of a small amount of nitrogen (N{sub 2}) into D{sub 2} gas can be favorable for the mechanical stability of pellets. This might be helpful for deeper pellet penetration. Besides, seeding by N{sub 2} can enhance plasma performance due to both increasing the energy confinement time and reducing the divertor heat load in the envisaged ELMy H-mode plasma scenario. Fuelling efficiency of N{sub 2}-admixed solid D{sub 2} pellets and their nitrogen seeding capabilities were investigated. It was found that both the overall plasma density increase and the measured averaged pellet penetration depth were smaller in case of the admixed (1% mol. in the gas resulting in about 0.8% in the ice) pellet fuelling. Possibility of the N{sub 2}-seeding by admixed pellets was confirmed by CXRS measurements of N{sup 7+} content in plasma.

  6. What controls deuterium excess in global precipitation?

    Directory of Open Access Journals (Sweden)

    S. Pfahl

    2014-04-01

    Full Text Available The deuterium excess (d of precipitation is widely used in the reconstruction of past climatic changes from ice cores. However, its most common interpretation as moisture source temperature cannot directly be inferred from present-day water isotope observations. Here, we use a new empirical relation between d and near-surface relative humidity (RH together with reanalysis data to globally predict d of surface evaporation from the ocean. The very good quantitative agreement of the predicted hemispherically averaged seasonal cycle with observed d in precipitation indicates that moisture source relative humidity, and not sea surface temperature, is the main driver of d variability on seasonal timescales. Furthermore, we review arguments for an interpretation of long-term palaeoclimatic d changes in terms of moisture source temperature, and we conclude that there remains no sufficient evidence that would justify to neglect the influence of RH on such palaeoclimatic d variations. Hence, we suggest that either the interpretation of d variations in palaeorecords should be adapted to reflect climatic influences on RH during evaporation, in particular atmospheric circulation changes, or new arguments for an interpretation in terms of moisture source temperature will have to be provided based on future research.

  7. Radiative corrections in neutrino-deuterium disintegration

    International Nuclear Information System (INIS)

    Kurylov, A.; Ramsey-Musolf, M.J.; Vogel, P.

    2002-01-01

    The radiative corrections of order α for the charged- and neutral-current neutrino-deuterium disintegration for energies relevant to the SNO experiment are evaluated. Particular attention is paid to the issue of the bremsstrahlung detection threshold. It is shown that the radiative corrections to the total cross section for the charged current reaction are independent of that threshold, as they must be for consistency, and amount to a slowly decreasing function of the neutrino energy E ν , varying from about 4% at low energies to 3% at the end of the 8 B spectrum. The differential cross section corrections, on the other hand, do depend on the bremsstrahlung detection threshold. Various choices of the threshold are discussed. It is shown that for a realistic choice of the threshold and for the actual electron energy threshold of the SNO detector, the deduced 8 B ν e flux should be decreased by about 2%. The radiative corrections to the neutral-current reaction are also evaluated

  8. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  9. Compared studies of natural and artificial deuterium depleted water

    International Nuclear Information System (INIS)

    Butnaru, Gallia; Mihacea, Sorina; Sirbovan, Alina; Butnariu, H.; Titescu, Gh.

    2001-01-01

    The biological influence of the deuterium on animals was studied insensitively in the last years. When animal cell cultures were analyzed it turned out an inhibition of the development, due to the reduced deuterium concentration. In the in vivo experiments a decreasing of the number of tumoral cells was pointed out when performing the depleted water treatment. It is obvious that the presence of deuterium in water is necessary for the development, especially for the tumoral cell proliferation. The aim of this work was to establish influence of the natural and artificial deuterium depleted water on the vegetal organisms development. For this purpose, the developmental stages of Lactuca sativa L. growth were followed. The experimental data were compared with the data obtained with distilled water. The birch, wine sap and some fruit juices are considered 'natural depleted' water sources because their deuterium content is smaller in comparison to natural water (D 2 =150 ppm). The effect of artificial deuterium depleted water (29 ppm D 2 ) was analyzed in comparison to three types of wine saps, which also have a reduced deuterium concentration (125-130 ppm D 2 ). If the deuterium depleted water was used, the germination percent and the root and shoot length were higher compared to control in the first stages. In wine sap it had a negative effect on germination and development. After three days the plants were transferred to soil and their development was followed. The foliage area was larger for all of the experimental variants compared to control. The differences were without significance when deuterium depleted water was tested but they were high and very significant in case of wine sap. The experiment pointed out a stimulative effect of the artificial deuterium depleted water. In case of wine sap the effect was negative when the contact was direct, but the growth was stimulated after the stress cessation. The first ontogenetic stages were represented by direct action

  10. Deuterium trapping in tungsten deposition layers formed by deuterium plasma sputtering

    International Nuclear Information System (INIS)

    Alimov, V.Kh.; Roth, J.; Shu, W.M.; Komarov, D.A.; Isobe, K.; Yamanishi, T.

    2010-01-01

    A study of the influence of the deposition conditions on the surface morphology and deuterium (D) concentration in tungsten (W) deposition layers formed by magnetron sputtering and in the linear plasma generator has been carried out. Thick W layers (≥0.4 μm) deposited onto copper substrates demonstrate areas of pilling and, after post-deposition heating to 1300 K, flaking-off and fracturing. For thin W layers (≤80 nm) deposited onto stainless steel (SS) and W substrates, no areas of flaking-off and fracturing exist both after deposition and after post-deposition heating to 673 K for the SS substrate and to 1300 K for the W substrate. The concentration of deuterium in the W layers was found to decrease with increasing substrate temperature and with increasing tungsten deposition rate. For layers with relatively high concentration of oxygen (0.20-0.60 O/W), a decrease of the D concentration with increasing substrate temperature is more pronounced than that for layers deposited in good vacuum conditions. To describe the evolution of the D/W ratio with the substrate temperature and the tungsten deposition rate, an empirical equation proposed by De Temmerman and Doerner [J. Nucl. Mater. 389 (2009) 479] but with alternative parameters has been used.

  11. Measurement of the deuterium concentration in water samples using a CW chemical deuterium fluoride laser

    International Nuclear Information System (INIS)

    Trautmann, M.

    1979-10-01

    In this study a new method for the determination of the deuterium content in water samples is described. The absorption of the radiation of a CW deuterium fluoride laser by the isotope HDO in the water vapor of the sample is measured by means of an optoacoustic detector (spectrophone). Thereby advantage is taken of the fact that H 2 O hardly absorbs the laser radiation and that D 2 O only exists in negligible concentrations. The isotope ratio of hydrogen can be calculated from the measured relative concentration of HDO. In the course of this investigation the relative absorption cross sections of HDO for the different laser lines were determined. It was thereby established that there exists a very good coincidence of an HDO absorption line with the 2P2 laser line. Using a very sensitive nonresonant spectrophone the relative concentration of HDO in natural water samples could be determined with an accuracy of about 10%. The experiments also demonstrated that with appropriate improvements made to the apparatus and using a second spectrophone as a reference it should be possible to increase this accuracy to 0,1%. (orig.)

  12. Stabilization of atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Walraven, J.T.M.

    1982-01-01

    This thesis deals with the first of a series of experiments done at the University of Amsterdam to study the properties of spin polarized atomic hydrogen (spa H) and deuterium (spa D) at very low temperatures (T approximately 0.3 K) and in high magnetic fields (B approximately 10 T). The experiments show that spa H and spa D may be subjected to experimental investigation like any normal (i.e. stable) gas. Chapter 2 deals with the experimental apparatus and in particular the development of a reliable method to cool atomic hydrogen to very low temperatures which turned out to be decisive for the experiments. An account of the first experiments with spa H can be found in chapter 3. These experiments showed that spa H can be stabilized for extended periods of time (at low temperature and in high magnetic fields) by covering all surfaces with a superfluid film of 4 He. The gas was detected by triggering recombination by locally breaking the helium film and measuring the heat of recombination. This method turned out to be very sensitive and easy to implement. In chapter 4 the physical picture of the gas is discussed. This includes a discussion of the density profile and the phenomenon of thermal leakage from the open structured sample cell. The density profile may be used to detect Bose-Einstein condensation. A second series of experiments is discussed in chapter 5. These measurements were aimed at achieving high densities and to study the limiting processes. They demonstrate that spa H behaves as a gas. Recombination measurements with spa D at low temperatures are discussed in chapter 6 and show that recombination predominantly occurs on the surface of the helium film. (Auth.)

  13. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    International Nuclear Information System (INIS)

    Alejo, A.; Kar, S.; Ahmed, H.; Doria, D.; Green, A.; Jung, D.; Lewis, C. L. S.; Nersisyan, G.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Green, J. S.; Notley, M.; Fernandez, J.; Fuchs, J.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.

    2014-01-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C 6+ , O 8+ , etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser

  14. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Science.gov (United States)

    Alejo, A.; Kar, S.; Ahmed, H.; Krygier, A. G.; Doria, D.; Clarke, R.; Fernandez, J.; Freeman, R. R.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Lewis, C. L. S.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Nersisyan, G.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Ruiz, J. A.; Vassura, L.; Zepf, M.; Borghesi, M.

    2014-09-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6 +, O8 +, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  15. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Doria, D.; Green, A.; Jung, D.; Lewis, C. L. S.; Nersisyan, G. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Krygier, A. G.; Freeman, R. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Clarke, R.; Green, J. S.; Notley, M. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fernandez, J. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, 28006 Madrid (Spain); Fuchs, J. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); and others

    2014-09-15

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C{sup 6+}, O{sup 8+}, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  16. Initial investigations of (np)-scattering with a polarized deuterium target at ANKE-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing

    2015-07-01

    The understanding of the forces among nucleons is fundamental to the whole of nuclear and hadronic physics. The nucleon-nucleon (NN) scattering is the ideal probe to study the nuclear forces. The scattering amplitudes for the complete description of the NN interactions can be reconstructed from phase-shift analyses (PSA), which requires measurements with polarized experiments. The existing data allow to extract unambiguous proton-proton (pp) amplitudes below 2 GeV. However, there is very little known about the neutron-proton (np) system above 800 MeV nucleon energy. THE ANKE-COSY collaboration has embarked on a systematic program which aims to extract the np scattering amplitudes through the deuteron-proton charge-exchange process dp→{pp}{sub s}n. First part of the program via polarized deuteron beam and hydrogen target allowed successful measurement of np amplitudes up to 1.135 GeV nucleon energy, which is the maximum nucleon energy that can be accessed with deuteron beam at COSY. Via inverse kinematics, i.e. using a proton beam incident on a polarized deuterium target will allow to enhance the np study up to 2.8 GeV, the highest energy available at COSY. The method of inverse kinematics has to be validated prior to the production experiment. As the proof-of-principle (POP) experiment, the initial research has been conducted at proton energy T{sub p}=600 MeV using a polarized deuterium target. The projectiles were measured by two silicon tracking telescopes (STT) placed closed to the target and by the ANKE sub-detection systems. Four polarization modes of the deuterium target were employed. In order to increase the effective target thickness, polarized deuterium atoms produced by the atomic beam source (ABS) was filled into a storage cell, where the circulating COSY beam collides with the target. The target polarizations were measured using the proton-deuteron elastic reaction. The vector and tensor analyzing powers A{sub y} and A{sub yy} of pvector d

  17. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.

    2005-01-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented

  18. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Peking University, Beijing

    2004-08-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented. (orig.)

  19. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Directory of Open Access Journals (Sweden)

    Vilémová Monika

    2015-06-01

    Full Text Available Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS and by water stabilized plasma spraying (WSP technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns. Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.

  20. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B

    Directory of Open Access Journals (Sweden)

    Yuhan Tang

    2016-01-01

    Full Text Available The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw. Intense exercise and thapsigargin- (Tg- induced ERS (glucose-regulated protein 78, GRP78 and inflammatory cytokines levels (IL-6 and TNF-α were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK, activating transcription factor 6 (ATF6 and especially NF-κB (p65 and p50 nuclear translocation. A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor, AEBSF (ATF6 inhibitor, and especially PDTC (NF-κB inhibitor enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals.

  1. Recent experimental results on solutions of deuterium in lithium

    International Nuclear Information System (INIS)

    Ihle, H.R.; Wu, C.H.

    1976-01-01

    The existence of a number of stable molecules containing lithium and hydrogen isotopes in the saturated vapor over dilute solutions of hydrogen isotopes in lithium causes an unexpectedly high density of hydrogen isotopes in the vapor at high temperature. An evaluation of the partial pressures of the gas species Li, Li 2 , LiD, Li 2 D, LiD 2 and D 2 over solutions of deuterium in lithium measured in the temperature range 770 to 970 0 K, and extrapolation to higher temperatures, leads to the conclusion that the ratio of the atom fraction of deuterium in the gas to its atom fraction in the liquid exceeds unity above approximately 1240 0 K; this ratio is independent of the deuterium atom fraction in the liquid at low concentrations. Therefore the thermodynamic supposition that hydrogen isotopes can be separated from lithium by fractional distillation even at extremely low concentration exists. A direct verification of this phenomenon was made by Rayleigh distillation of Li-D solutions in the temperature range 970 to 1600 0 K. These measurements yield also the ratio of the deuterium atom fraction in the gas to that in the liquid and are in good agreement with the data obtained by extrapolation of partial pressures. The enrichment and depletion of deuterium in dependence on the number of theoretical plates of a distillation column at total reflux is calculated using the results

  2. Thermodynamic and electrical properties of laser-shocked liquid deuterium

    Science.gov (United States)

    He, Zhiyu; Jia, Guo; Zhang, Fan; Luo, Kui; Huang, Xiuguang; Shu, Hua; Fang, Zhiheng; Ye, Junjian; Xie, Zhiyong; Xia, Miao; Fu, Sizu

    2018-01-01

    Liquid deuterium at high pressure and temperature has been observed to undergo significant electronic structural changes. Reflectivity and temperature measurements of liquid deuterium up to around 70 GPa were obtained using a quartz standard. The observed specific heat of liquid deuterium approaches the Dulong-Petit limit above 1 eV. Discussions on specific heat indicate a molecular dissociation below 1 eV and fully dissociated above 1.5 eV. Also, the electrical conductivity of deuterium estimated from reflectivity reaches 1.3 × 105 (Ωṡm)-1, proving that deuterium in this condition is a conducting degenerate liquid metal and undergo an insulator-metal transition. The results from specific heat, carrier density and conductivity agreed well with each other, which might be a reinforcement of the insulator-metal transition and the molecular dissociation. In addition, a new correction method of reflectivity in temperature calculation was proposed to improve the accuracy of temperature results. A new "dynamic calibration" was introduced in this work to make the experiments simpler and more accurate.

  3. A measurement of deuterium neutral by the Balmer-series in the STP-2 high beta screw pinch tokamak

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Hirano, K.

    1980-06-01

    The Balmer-alpha and beta are measured with a calibrated spectrograph in STP-2 screw pinch tokamak operated under the maximum toroidal field being 9.2 kG, peak plasma current 30 kA and filling pressure 5 mtorr. The electron temperature and density profiles are obtained by ruby laser Thomson scattering. It is shown that electron temperature is about 10 eV and density is of the order of 10 14 /cm 3 . A non-cylindrical symmetric Abel-inversion technique is used to deduce the emission coefficient profiles from that of the line intensity of the Balmer's. In the present parameter range the neutral deuterium density is almost equal to the population density of the ground state, so that it is obtainable from measured intensities of D sub(α) and D sub(β) which give the population densities of the upper levels i = 3 and 4. The Collisional Radiative (CR) model is applied to the rate equations to estimate the ground state population density. It is found that at 4 μsec from the start of the discharge the deuterium neutral density may be approximately 2 x 10 12 /cm 3 at the center of plasma and 2 x 10 14 /cm 3 at the periphery. These values may contain an error of about factor two. Time history of neutral deuterium density is consistent with the increase of plasma density. (author)

  4. Distribution of deuterium and hydrogen in Zr and Ti foil assemblies under the action of a pulsed deuterium high-temperature plasma

    Science.gov (United States)

    Bondarenko, G. G.; Volobuev, I. V.; Eriskin, A. A.; Kobzev, A. P.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Borovitskaya, I. V.

    2017-09-01

    Deuteron and proton elastic recoil detection analysis is used to study the accumulation and redistribution of deuterium and hydrogen in assemblies of two high-pure zirconium or titanium foils upon pulsed action of high-temperature deuterium plasma (PHTDP) in a plasma-focus installation PF-4. It is noted that, under the action of PHTDP, an implanted deuterium and hydrogen gas impurity are redistributed in the irradiated foils in large depths, which are significantly larger than the deuterium ion free paths (at their maximum velocity to 108 cm/s). The observed phenomenon is attributed to the carrying out of implanted deuterium and hydrogen under the action of powerful shock waves formed in the metallic foils under the action of PHTDP and/or the acceleration of diffusion of deuterium and hydrogen atoms under the action of a compression-rarefaction shock wave at the shock wave front with the redistribution of deuterium and hydrogen to large depths.

  5. Effect of periodic deuterium ion irradiation on deuterium retention and blistering in Tungsten

    Directory of Open Access Journals (Sweden)

    M. Oya

    2017-08-01

    Full Text Available The effect of periodic irradiation on Deuterium (D retention and blistering in Tungsten (W was investigated. W samples were exposed to D plasma at a fixed fluence while varying the irradiation cycle number (1-shot, 2-shots and 3-shots. Exposure energy and flux were ∼50eV and ∼1 ×1022 D m−2 s−1, respectively. Sample temperatures were 537K and 643K. At 573K, D retention and blister density decreased with increasing number of irradiation cycle. In contrast at 643K, D retention showed no dependence on number of irradiation cycle. Therefore, sample temperature during irradiation is an important parameter in comparing the results of continuous and periodic irradiation, especially in studies involving extremely-high-flux (>1024 D m−2 s−1 irradiation and fluence dependency of D retention.

  6. A GREAT search for Deuterium in Comets

    Science.gov (United States)

    Mumma, Michael

    2013-10-01

    Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only eight comets. Seven were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.

  7. Deposition of deuterium and metals on divertor tiles in the DIII--D tokamak

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Jackson, G.L.

    1992-01-01

    Hydrogen recycling and impurity influx are important issues in obtaining high confinement discharges in the DIII--D tokamak. To reduce metallic impurities in DIII--D, 40% of the wall area, including the highest heat flux zones, have been covered with graphite tiles. However, erosion, redeposition, and hydrogen retention in the tiles, as well as metal transport from the remaining Inconel walls, can lead to enhanced recycling and impurity influx. Hydrogen and metal retention in divertor floor tiles have been measured using external ion beam analysis techniques following four campaigns where tiles were exposed to several thousand tokamak discharges. The areal density of deuterium retained following exposure to tokamak plasmas was measured with external nuclear reaction analysis. External proton-induced x-ray emission analysis was used to measure the areal densities of metallic impurities deposited upon the divertor tiles either by sputtering of metallic components during discharges or as contamination during tile fabrication. Measurements for both deuterium and metallic impurities were taken on both the tile surfaces which face the operating plasma and the surfaces on the sides of the tiles which form the small gaps separating each of the tiles in the divertor. The highest areal densities of both deuterium (from 2 to 8 x 10 18 atoms/cm 2 ) and metals (from 0.2 to 1 x 10 18 atoms/cm 2 ) were found on the plasma-facing surface near the inner strike point region of each set of divertor tiles. Significant deposits, extending as far as 1 cm from the plasma-facing surface and containing up to 40% of the total divertor deposition, were also observed on the gap-forming surfaces of the tiles

  8. Deposition of deuterium and metals on divertor tiles in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Jackson, G.L.

    1991-01-01

    Hydrogen recycling and impurity influx are important issues in obtaining high confinement discharges in the D3-D tokamak. To reduce metallic impurities in D3-D, 40% of the wall area, including the highest heat flux zones, have been covered with graphite tiles. However erosion, redeposition and hydrogen retention in the tiles, as well as metal transport from the remaining Inconel walls can lead to enhanced recycling and impurity influx. Hydrogen and metal retention in divertor floor tiles have been measured using external ion beam analysis techniques following four campaigns where tiles were exposed to several thousand tokamak discharges. The areal density of deuterium retained following exposure to tokamak plasmas was measured with external nuclear reaction analysis. External proton-induced x-ray emission analysis was used to measure the areal densities of metallic impurities deposited upon the divertor tiles either by sputtering of metallic components during discharges or as contamination during tile fabrication. Measurements for both deuterium and metallic impurities were taken on both the tile surfaces which face the operating plasma and the surfaces on the side of the tiles which form the small gaps separating each of the tiles in the divertor. The highest areal densities of both deuterium and metals were found on the plasma-facing surface near the inner strike point region of each set of divertor tiles. Significant deposits, extending as fast a 1 cm from the plasma-facing and containing up to forty percent of the total divertor deposition, were also observed on the gap-forming surfaces of the tiles

  9. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    International Nuclear Information System (INIS)

    Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.

    2011-01-01

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  10. Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy.

    Science.gov (United States)

    Khirich, Gennady; Holliday, Michael J; Lin, Jasper C; Nandy, Aditya

    2018-03-01

    One-dimensional heteronuclear relaxation dispersion NMR spectroscopy at 13 C natural abundance successfully characterized the dynamics of the hydrogen-deuterium exchange reaction occurring at the N ε position in l-arginine by monitoring C δ in varying amounts of D 2 O. A small equilibrium isotope effect was observed and quantified, corresponding to ΔG = -0.14 kcal mol -1 . A bimolecular rate constant of k D = 5.1 × 10 9 s -1 M -1 was determined from the pH*-dependence of k ex (where pH* is the direct electrode reading of pH in 10% D 2 O and k ex is the nuclear spin exchange rate constant), consistent with diffusion-controlled kinetics. The measurement of ΔG serves to bridge the millisecond time scale lifetimes of the detectable positively charged arginine species with the nanosecond time scale lifetime of the nonobservable low-populated neutral arginine intermediate species, thus allowing for characterization of the equilibrium lifetimes of the various arginine species in solution as a function of fractional solvent deuterium content. Despite the system being in fast exchange on the chemical shift time scale, the magnitude of the secondary isotope shift due to the exchange reaction at N ε was accurately measured to be 0.12 ppm directly from curve-fitting D 2 O-dependent dispersion data collected at a single static field strength. These results indicate that relaxation dispersion NMR spectroscopy is a robust and general method for studying base-catalyzed hydrogen-deuterium exchange chemistry at equilibrium.

  11. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    Science.gov (United States)

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  12. Some factors in the calculation of the neutron intensity from (α,n) reactions with reference to the assay of special nuclear materials

    International Nuclear Information System (INIS)

    West, D.

    1985-07-01

    The application of neutron coincidence counting to the assay of special nuclear material involves a major correction for neutron multiplication. The correction commonly used at present requires an accurate knowledge of the intensity ratio of neutrons from (α,n) reactions to those from spontaneous fission. This paper covers various factors, which need to be evaluated in order to assess their importance, in the calculation of (α,n) neutron production using measured thick target yields. They include: accuracy of (α,n) thick target yield measurements; errors introduced by deriving yields in compounds from the measured yields in the constituents and vice-versa; the likely effect of neglecting the difference of α-particle stopping power between Pu and U on the calculated neutron yield from mixed oxide fuel pellets; the intensity of neutrons produced from 1 to 2% of Al used to alloy plutonium metal; the intensity of neutrons produced in Al, used as canning material, from α-particles escaping from the surface layers of oxide or metal fuel; and neutron production from oxygen in the air spaces of powdered PuO 2 prior to sintering. (author)

  13. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  14. Thermodynamic properties of solid deuterium in premelting region

    International Nuclear Information System (INIS)

    Udovichenko, B.G.; Esel'son, V.B.; Manzhelij, V.G.

    1984-01-01

    Thermal expansion and isothermal compressibility of solid normal deuterium are measured near the melting line under pressures up to 500 atm. The earlier measurement method is improved to operate in a wider range of working pressures. The effects are discussed which are produced by zero trranslational oscillations in the thermodynamic properties of deuterium. The change in the molar volume in the range from T=0 to the melting temperature is considered as a quantum characteristic of the crystal. The molar volumes of solid deuterium observed at the melting line at moderate P are compared and specified. At P=O and T=0 the molar volume of o-D 2 is found to be V 00 =(20.03+-0.07) cm 3 /mole which follows from the thermodynamic experiment

  15. TFTR L mode energy confinement related to deuterium influx

    International Nuclear Information System (INIS)

    Strachan, J.D.

    1999-01-01

    Tokamak energy confinement scaling in TFTR L mode and supershot regimes is discussed. The main result is that TFTR L mode plasmas fit the supershot scaling law for energy confinement. In both regimes, plasma transport coefficients increased with increased edge deuterium influx. The common L mode confinement scaling law on TFTR is also inversely proportional to the volume of wall material that is heated to a high temperature, possibly the temperature at which the deuterium sorbed in the material becomes detrapped and highly mobile. The deuterium influx is increased by: (a) increased beam power due to a deeper heated depth in the edge components and (b) decreased plasma current due to an increased wetted area as governed by the empirically observed dependence of the SOL width upon plasma current. (author). Letter-to-the-editor

  16. Vibrational modes of deuterium in KD2PO4

    International Nuclear Information System (INIS)

    Mizoguchi, Kohji; Agui, Akane; Tominaga, Yasunori; Nakai, Yusuke; Ikeda, Susumu.

    1993-01-01

    In order to study the deuteration effect in hydrogen-bonded compounds such as KH 2 PO 4 , hydrogen and deuterium modes in KH 2 PO 4 and K(D x H 1-x ) 2 PO 4 (x = 95 %) were investigated by means of inelastic neutron-scattering measurements over a wide energy range. By comparing Raman spectra of KH 2 PO 4 and KD 2 PO 4 with neutron-scattering spectra, the vibrational modes of deuterium and those of PO 4 tetrahedrons in the energy range of 30 < ε < 150 meV have been investigated. At least two deuterium modes have been found at 87 meV and 106 meV. (author)

  17. Selective deuterium ion acceleration using the Vulcan petawatt laser

    Science.gov (United States)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  18. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  19. Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments

    International Nuclear Information System (INIS)

    Sheehey, P.T.

    1994-02-01

    Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ''cold-start'' initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ''plasma-on-wire'' (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches

  20. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  1. Intensive neutron source based on powerful electron linear accelerator LIA-30 and pulsed nuclear reactor FR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bossamykin, V S; Koshelev, A S; Gerasimov, A I; Gordeev, V S; Grishin, A V; Averchenkov, V Ya; Lazarev, S A; Maslov, G N; Odintsov, Yu M [All-Russian Scientific Research Institute of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    Some results are given of investigations on joint operation modes of the linear induction electron accelerator LIA-30 ({approx} 40 MeV, {approx} 100 kA, {approx} 20 ns) and the pulsed reactor FR-1 with a compact metal core, aimed at achieving high intensity neutron fluxes. The multiplication factor Q for prompt neutrons in the FR-1 booster mode operation increased from 100 to 4500. The total output of prompt neutrons from FR-1 at Q = 2570 was 1.4 x 10{sup 16} 1/pulse with a pulse half width of {approx} 25 {mu}s. (author). 4 figs., 4 refs.

  2. A proposal to extend the intensity frontier of nuclear and particle physics to 45 GeV (LAMPF 2)

    International Nuclear Information System (INIS)

    1984-12-01

    It is proposed to construct and operate a high-intensity, medium energy synchrotron addition to the Clinton P. Anderson Meson Physics Facility. The addition is to consist of a 6-GeV, 170-μA booster and a 45-GeV, 34-μA, 3-Hz main synchrotron with 50% duty factor. The physics of strong and electroweak interactions to be studied at the facility is discussed, as well as accelerator design, scope of experimental area facilities, and cost estimates and schedule

  3. Production of secondary Deuterium in the atmosphere at various latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    Secondary deuterium in the atmosphere are produced in interactions by primary cosmic rays. The shape of their energy spectrum depends on the primary cosmic ray spectrum incident at the top of the atmosphere. At high energies, the spectral shape depends on the primary spectrum of helium and heavy nuclei. However, at very low energies, specially below the geomagnetic cut-off, the spectral shape depends on the evaporation and recoil processes and hence almost independent of the spectral shape of the primary radiation. It is undertaken a calculation of the secondary deuterium spectrum at small atmospheric depths at various latitudes and the results will be presented.

  4. Transport of recycled deuterium to the plasma core in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Bell, M.G.; Budny, R.V.; Jassby, D.L.; Park, H.; Ramsey, A.T.; Stotler, D.P.; Strachan, J.D.

    1997-10-01

    The authors report a study of the fueling of the plasma core by recycling in the Tokamak Fusion Test Reactor (TFTR). They have analyzed discharges fueled by deuterium recycled from the limiter and tritium-only neutral beam injection. In these plasmas, the DT neutron rate provides a measure of the deuterium influx into the core plasma. They find a reduced influx with plasmas using lithium pellet conditioning and with plasmas of reduced major (and minor) radius. Modeling with the DEGAS neutrals code shows that the dependence on radius can be related to the penetration of neutrals through the scrape-off layer

  5. Reemission and permeation of deuterium implanted into metals

    International Nuclear Information System (INIS)

    Tanabe, T.; Furuyama, Y.; Imoto, S.

    1984-01-01

    Focusing on the marked depression of deuterium permeation rate during the deuteron bombardment, implantation experiments coupled with gaseous permeation experiments are performed on pure Ni and Ni with evaporated MnO. It is concluded that the reemission of implanted deuterium is initially depressed, but it soon becomes enhanced with increase of fluence leading to a rapid decrease of permeation rate at the intermediate temperatures 600-1000 K, which is attributed to the formation of short diffusion paths from the projected range to the front surface. (orig.)

  6. Commissioning status of the Continuous Wave Deuterium Demonstrator

    International Nuclear Information System (INIS)

    Hartog, P.D.; Dooling, J.; Lorello, M.; Rathke, J.; Carwardine, J.; Godden, D.; Pile, G.; Yule, T.; Zinneman, T.

    1993-01-01

    Grumman Aerospace Corporation, Argonne National Laboratory, and Culham Laboratory are commissioning the Continuous Wave Deuterium Demonstrator (CWDD) in a facility at Argonne National Laboratory. CWDD is a high-brightness, high-current, 7.5-MeV negative deuterium accelerator. The 352-MHz rf accelerating cavities are cryogenically cooled with supercritical neon to reduce the rf power requirements. Installation of the accelerator into the Argonne facility began in May 1991, and first beam from the injector was extracted in February 1992. The accelerator and facility and described, and current status and future plans are discussed

  7. Deuterium isotope effects on the ring inversion equilibrium in cyclohexane: the A value of deuterium and its origin

    International Nuclear Information System (INIS)

    Anet, F.A.L.; Kopelevich, M.

    1986-01-01

    It has been reported recently that the deuterium in cyclohexane-d 1 prefers the equatorial over the axial position by about 200 J/mol (i.e., ca. 50 cal/mol), as shown by three different kinds of NMR measurements. Such an isotope effect is unexpectedly large, and this has led the authors to reinvestigate the problem using Saunder's isotopic perturbation method. The authors thereby established that the free energy difference (the A value for deuterium) is 6.3 +/- 1.5 cal/mol, with deuterium more stable equatorial than axial. This value is supported by molecular mechanics calculations based in part on experimental vibrational frequencies. 17 references, 1 figure

  8. Analysis of gamma ray intensity on the S/C vent pipes area in the unit 2 reactor building of the Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The robot is equipped with cameras, a dosimeter, and 2 DOF (degree of freedom) manipulation arms. It loads a small vehicle equipped with a camera that can access and inspect narrow areas. TEPCO is using the four-legged walking robot to inspect the suppression chamber (S/C) area of the unit 2 reactor building basement in the Fukushima Daiichi Nuclear Power Plant. The robot carried out 6 missions for about four months, from 11 December, 2012 to 15 March, 2013, where it examined an evidence of a leakage of radioactivity contaminated water in the S/C area of unit 2 reactor building. When a camera's signal processing unit, which is consist of ASIC and FPGA devices manufactured by a CMOS fabrication process, is exposed to a higher dose rate gamma ray, the speckle distribution in the camera image increase more. From the inspection videos, released by TEPCO, of the underground 8 vent pipes in the unit 2 reactor building, we analyzed the speckle distribution from the high dose-rate gamma rays. Based on the distribution of the speckle, we attempted to characterize the vent pipe with much radioactivity contaminated materials among the eight vent pipes connected to the PCV. The numbers of speckles viewed in the image of a CCD (or CMOS) camera are related to an intensity of the gamma ray energy emitted by a nuclear fission reaction from radioactivity materials. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. Therefore, calculating the speckles counts, we can determine the vent pipe with relatively most radioactivity-contaminated materials among the other vent pipes. From the comparison of speckles counts calculated in the inspection image of the vent pipe with the speckles counts extracted by gamma ray irradiation experiment of the same small vehicle camera model loaded with the four-legged walking robot, we can qualitatively estimate the gamma ray dose-rate in the S/C vent pipe area of the

  9. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    International Nuclear Information System (INIS)

    Buuren, L.D. van; Szczerba, D.; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a high-density polarized hydrogen/deuterium gas target internal to a medium-energy electron storage ring is presented. Compared to our previous electron scattering experiments with tensor-polarized deuterium at NIKHEF (Zhou et al., Nucl. Instr. and Meth. A 378 (1996) 40; Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; Van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 687; Zhou et al., Phys. Rev. Lett. 82 (1999) 687) the target figure of merit, (polarization) 2 xluminosity, was improved by more than an order of magnitude. The target density was increased by upgrading the flux of nuclear-polarized atoms injected into the storage cell and by using a longer (60 cm) and colder (∼70 K) storage cell. A maximal target thickness of 1.2 (1.1)±0.1x10 14 nuclei/cm 2 was achieved with deuterium (hydrogen). With typical beam currents of 110 mA, this corresponds to a luminosity of about 8.4 (7.8)±0.8x10 31 e - nuclei cm -2 s -1 . By reducing the molecular background and using a stronger target guide field, a higher polarization was achieved. The target was used in combination with a 720 MeV polarized electron beam stored in the AmPS ring (NIKHEF) to measure spin observables in electron-proton and electron-deuteron scattering. Scattered electrons were detected in a large acceptance magnetic spectrometer. Ejected hadrons were detected in a single time-of-flight scintillator array. The product of beam and target vector polarization, P e P t , was determined from the known spin-correlation parameters of e'p quasi-elastic (or elastic) scattering. With the deuterium (hydrogen) target, values up to P e P t =0.49±0.03 (0.32±0.03) were obtained with an electron beam polarization of P e =0.62±0.04 (0.56±0.03) as measured with a Compton backscattering polarimeter (Passchier et al., Nucl. Instr. and Meth. A 414 (1998) 4988). From this, we deduce a cell-averaged target polarization of P t =0.78±0.07 (0.58±0

  10. Reply to ''Comment on enhancement of forbidden nuclear beta decay by high-intensity radio-frequency fields''

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1984-01-01

    The negative conclusion in the Comment of Becker, Schlicher, and Scully about electromagnetic enhancement of beta decay is shown to be faulty. They have found an algebraic oversight in my paper, but correction of that oversight yields results strongly resembling the original. Becker, Schlicher, and Scully fail to find this. They then conduct an analysis which is highly implicit and incomplete. In attempting to analyze their very complicated expressions they claim not to find significant electromagnetic effects. Yet they also lose completely the electron retardation term of conventional forbidden beta decay. When they attempt to explain the difference between their results and mine, they misconstrue the momentum-translation technique and end up in a logical contradiction. They attempt also to apply a ''no-go'' theorem applicable only to plane-wave particles to my theory, which is built around the use of bound-state nuclear wave functions. This makes the no-go theorem inapplicable

  11. Some nuclear physics aspects of BBN

    Science.gov (United States)

    Coc, Alain

    2017-09-01

    Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7 Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Nuclear physics solutions to this lithium problem have been investigated by experimental means. Other solutions which were considered involve exotic sources of extra neutrons which inevitably leads to an increase of the deuterium abundance, but this seems now excluded by recent deuterium observations.

  12. Far from the intermediate nuclear field

    International Nuclear Information System (INIS)

    Dietrich, K.; Wagner, G.J.; Gregoire, C.; Campi, X.; Silvestre-Brac, B.; Platchkov, S.; Mayer, B.; Abgrall, Y.; Bohigas, O.; Grange, P.; Signarbieux, C.

    1988-01-01

    Pairing correlations in nuclear physics; the BCS state and quasi-particles; the layer model; collision effects on nuclear dynamics; the theory of cluster formation (application to nucleus fragmentation); short range correlations (few-particle systems); deuterium electron scattering; dibaryonic resonances; traditional and exotic hadron probes of nuclear structure; spectral fluctuations and chaotic motion; corrections to the intermediate nuclear field (nonrelativistic and other effects); and heavy nuclei splitting and nuclear superfluidity are introduced [fr

  13. The deuterium depleted water effects on germination, growth and respiration processes in Zea Mays culture

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Fleancu, Monica; Giosanu, Daniela; Iorga-Siman, Ion

    2002-01-01

    The aim of this paper is to study the influence of deuterium depleted water (DDW) on the germination, growth and respiration processes in Zea Mays culture. The DDW is produced by the Institute of Cryogenics and Isotope Separation, Rm. Valcea (Romania). We used moist seeds in three experimental lots: L-1 (control), using distillated water (because the quality of DDW, excepting the deuterium content, is similar to that of distillated water); L-2, using a mixture of DDW and H 2 O in 1:1 proportion; L-3, germination in light water (DDW). Reported to the control lot, the germinative energy was higher in L-2 and L-3, but it was no significant difference between faculty of germination of variants. The length of main root was higher in L-2 and L-3 as compared to control lot. The intensity process of respiration was stimulated when DDW was used in both cases (L-2 or L-3). So, we can remark a favorable influence of light water on some biological processes in Zea mays plants (authors)

  14. A spectrometrical method to measure the deuterium content in 2H-enriched water

    International Nuclear Information System (INIS)

    Dumke, I.

    1980-04-01

    A test method and spectrometer has been developed for emission-spectrometrical measurement of the deuterium content in water enriched with deuterium. The water sample is melted into a previously evacuated glas tube and a gas discharge is excited in vapour over the cooled sample to adjust to a low vapour pressure with high frequency. The intensities of the H(α) and D(α) lines appearing in the spectrum determine the D-content. Both lines were resolved by a Fabry-Perot interferometer and geometrically separated fed to two photodetectors. The remaining spectrum is filtered off. Following electronic calculation of the signals, the measured value is indicated which has to be corrected by a standard curve. The relative measuring accuracy is about +-1% for enrichments of over 1% D and less than +-5% in the region of 0.3-1% D. The detection limit is about 0.03% D (sample amount: 50 μl, average of 5 samples). (orig./HP) [de

  15. The excess flux in the cosmic submillimeter background radiation and the primordial deuterium abundance

    International Nuclear Information System (INIS)

    Dermer, C.D.; Guessoum, N.; National Aeronautics and Space Administration, Greenbelt, MD

    1989-01-01

    Recent measurements of the cosmic background radiation (CBR) show an enhanced flux in the submillimeter regime, compared to the spectrum of a 2.7 K blackbody. Thermal Comptonization of the relic radiation by a hot nonrelativistic plasma has long been known to produce distortions in the CBR spectrum, similar to what has now been observed. Heating of the primeval plasma to temperatures T ∼ 10 6 - 10 8 K could result from the injection of subcosmic ray protons at epoch z ∼ 10--100. The intensity of the subcosmic ray flux that provide conditions needed to explain the submillimeter excess by thermal Comptonization also leads to the production of cosmologically significant amounts of deuterium in collisions between subcosmic ray protons and primordial protons and α-particles. However, the amount of lithium produced through α-α reactions is in conflict with the observed Li abundance. If lithium is depleted, for example, by processing through Population II stars, arguments for the baryon content of the universe based on primordial deuterium and He abundances are weakened. 12 refs., 1 fig., 1 tab

  16. Thermal desorption spectroscopy of boron/carbon films after keV deuterium irradiation

    International Nuclear Information System (INIS)

    Yamaki, T.; Gotoh, Y.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.

    1994-01-01

    Thermal desorption spectroscopy (TDS) of D 2 and CD 4 was done on boron/carbon films (B/(B+C)=0-74%), after 3 keV D 3 + irradiation to 4.5x10 17 D/cm 2 at 473 K. The D 2 desorption peaks were observed at 1050, 850 and 650 K. For a sputter B/C film (0%), only the 1050 K peak was observed. With increasing boron concentration to 3%, a sharp peak appeared at 850 K, the intensity of which was found to increase with increasing boron concentration to 23%, and then to decrease at 74%. The 650 K shoulder, which was observed for high boron concentration specimens, was speculated to be deuterium trapped by boron atoms in the boron clusters. The relative amount of CD 4 desorption was found to decrease with increasing boron concentration, which was attributed to the decrease in the trapped deuterium concentration in the implantation layer at temperatures at which CD 4 desorption proceeds. ((orig.))

  17. Determination of gluconeogenesis in man by the use of deuterium-NMR-spectroscopy

    International Nuclear Information System (INIS)

    Rosian, E.

    2000-03-01

    The aim of this dissertation is the quantification of the deuterium--distribution in human glucose by the use of the deuterium NMR spectroscopy of deuteriated water. The glucose production in human organism is composed of gluconeogenesis and glycolysis. The quantification of the part of gluconeogenesis on the total glucose production was determined by the use of deuterium NMR spectroscopy. (boteke)

  18. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  19. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  20. Permeation of deuterium implanted into V-15Cr-5Ti

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1987-01-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4x10 -8 exp(-0.11 eV/kT)(m 2 /s), over the temperature range 723 K to 823 K. (orig.)

  1. Permeation of deuterium implanted into V-15Cr-5Ti

    Science.gov (United States)

    Anderl, R. A.; Longhurst, G. R.; Struttmann, D. A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3+ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4 × 10 -8 exp( -0.11 eV/ kT) (m 2/s), over the temperature range 723 K to 823 K.

  2. Permeation of deuterium implanted into V-15Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D/sub 3//sup +/ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4x10/sup -8/ exp(-0.11 eVkT)(m/sup 2/s), over the temperature range 723 K to 823 K.

  3. Annihilation of antiprotons stopped in liquid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Dalkarov, O.D.; Kerbikov, B.O.; Markushin, V.E.

    1976-01-01

    Detailed analysis is given of stopping antiproton annihilation in liquid hydrogen and deuterium. Connection between capture schedule and properties of bound states in nucleon-antinucleon system is established. The theoretical predictions are compared with experimental data which appeared in 1971-75

  4. Use of 60 ppm deuterium depleted water in companionship animals

    International Nuclear Information System (INIS)

    Balint, Emilia; Manolescu, N.; Cranganu, D.; Militaru, Manuela; Pop, Aneta; Codreanu, M.; Panait, Marieta; Lastofka, D.

    2004-01-01

    There are presented the results of studies on the effects of deuterium depleted water in companionship animals. Based on these results, a new product was realized, 'Aqua Forte' that is a deuterium depleted potable water (60 ppm deuterium) with beneficial effects in animal's health maintaining. Aqua forte has prophylactic properties (in preventing diseases related to immune system) and therapeutic properties, as adjuvant in various therapeutic programs. The mechanism of action takes place at the cellular metabolism level by replacing the constitutional and free water of 150 ppm deuterium, this resulting in the stimulation of the immune cellular system and also of resistance at the onset of some pathological states. The non-specific stimulation implies performing both the humoral mediated immune reactions and of those cellularly mediated. Aqua forte is recommended in: - the feeding of the young weaned animals, the action being of growth stimulation, and increasing of the resistance against some diseases specific to the age; - as an adjuvant in some chronic diseases (hepatitis, pancreatitis, dermatological diseases, osteoarthropaties, hepato-renal syndrome, renal insufficiency, after surgical interventions, in antitumoral therapy); - in the feeding of the old animals for the quality of life improvement. (authors)

  5. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    Science.gov (United States)

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  6. Deuterium labelling studies with unsaturated acids and nitriles

    International Nuclear Information System (INIS)

    Desai, U.V.; Mane, R.B.

    1986-01-01

    α-Deuteriated α,β-unsaturated acids have been prepared by Knoevenagel condensation of aldehydes with deuteriated malonic acid. The decarboxylation of α,β-unsaturated cyano acid with pyridine/D 2 O yields α- and γ-labelled nitriles. The deuterium incorporation is studied by pmr spectroscopy. (author). 8 refs

  7. Deuterium absorption property of Al/Zr-V/Mo multifilms

    International Nuclear Information System (INIS)

    Wang Haifeng; Peng Shuming; Zhang Xiaohong; Long Xinggui; Yang Benfu

    2005-01-01

    Deuterium absorption property of Al/Zr-V/Mo multifilms was studied experimentally to explore the effect of Al film. There is only one desorption peak at 320 degree C for Al film, two desorption peaks at 220 degree C and 350 degree C for Zr-V film. When the average thickness of Al film is less than 0.6 μm, the desorption property of Al/Zr-V multifilms is just as Zr-V film, when it is more than 0.6 μm, just as Al film. Deuterium absorption by Al/Zr-V multifilms decreases as the thickness of Al film increases until 0.7 μm, then the deuterium absorption no longer changes significantly. The Al film of multifilms cracks on desorbing, so the absorption rate varies as Zr-V film when the thickness of Al film is less than 0.6 μ. When the thickness of Al film is more than 0.6 μm, the deuterium absorption rate of multifilm does not change with the thickness of Al film. (author)

  8. Sputtering of Thick Deuterium Films by KeV Electrons

    DEFF Research Database (Denmark)

    Thestrup Nielsen, Birgitte; Svendsen, Winnie Edith; Schou, Jørgen

    1994-01-01

    Sputtering of thick films of solid deuterium up to several μm by keV electrons is reported for the first time. The sputtering yield increases within a narrow range of thicknesses around 1.6 μm by about 2 orders of magnitude for 1.5 keV electrons. A similar behavior has not been observed for ion...

  9. The Continuous Wave Deuterium Demonstrator (CWDD) design and status

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Space and Electronics Corp., Princeton, NJ (United States)); Nightingale, M.P.S. (AEA Industrial Technology, Culham (United Kingdom)); Yule, T.J. (Argonne National Lab., IL (United States))

    1992-01-01

    The design of the Continuous Wave Deuterium Demonstrator (CWDD) and the status of the fabricated hardware is presented. The CWDD is a high brightness, 352 MHz, CW linear accelerator designed to deliver a 7.54 MeV, 80 mA D[sup [minus

  10. Laser separation of hydrogen isotopes: Tritium-from-deuterium recovery

    International Nuclear Information System (INIS)

    Magnotta, F.; Herman, I.P.; Aldridge, F.T.; Maienschein, J.L.

    1984-01-01

    Single-step enrichment factors exceeding 15,000 have been observed in the removal of tritium-from-deuterium by 12 μm laser multiple-photon dissociation of chloroform. The photochemistry and photophysics of this process is discussed along with prospects for implementation of this method in practical heavy water reactor detritiation. 7 refs., 7 figs., 1 tab

  11. Deuterium secondary isotope kinetic effects in imine formation reactions

    International Nuclear Information System (INIS)

    Amaral, L. do; Rossi, M.H.

    1986-01-01

    The kinetic α-deuterium isotope effects, K D /K H , for reaction mechanisms is studied. The reaction of pH function to m-bromobenzaldehyde, semicarbazide nucleophile, methoxy-amine and hydroxylamine are analysed. (M.J.C.) [pt

  12. Lattice dynamics of solid deuterium by inelastic neutron scattering

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans

    1971-01-01

    The dispersion relations for phonons in solid ortho-deuterium have been measured at 5 °K by inelastic neutron scattering. The results are in good agreement with recent calculations in which quantum effects are taken into account. The data have been fitted to a third-neighbor general force model...

  13. Biotechnological Patents Applications of the Deuterium Oxide in Human Health.

    Science.gov (United States)

    da S Mariano, Reysla M; Bila, Wendell C; Trindade, Maria Jaciara F; Lamounier, Joel A; Galdino, Alexsandro S

    2017-01-01

    Deuterium oxide is a molecule that has been used for decades in several studies related to human health. Currently, studies on D2O have mobilized a "Race for Patenting" worldwide. Several patents have been registered from biomedical and technological studies of D2O showing the potential of this stable isotope in industry and health care ecosystems. Most of the patents related to the applications of the deuterium oxide in human health have been summarized in this review. The following patents databases were consulted: European Patent Office (Espacenet), the United States Patent and Trademark Office (USPTO), the United States Latin America Patents (LATIPAT), Patent scope -Search International and National Patent Collections (WIPO), Google Patents and Free Patents Online. With this review, the information was collected on recent publications including 22 patents related to deuterium oxide and its applications in different areas. This review showed that deuterium oxide is a promising component in different areas, including biotechnology, chemistry and medicine. In addition, the knowledge of this compound was covered, reinforcing its importance in the field of biotechnology and human health. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Measurement of strong interaction parameters in antiprotonic hydrogen and deuterium

    CERN Document Server

    Augsburger, M A; Borchert, G L; Chatellard, D; Egger, J P; El-Khoury, P; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Siems, T; Simons, L M

    1999-01-01

    In the PS207 experiment at CERN, X-rays from antiprotonic hydrogen and deuterium have been measured at low pressure. The strong interaction shift and the broadening of the K/sub alpha / transition in antiprotonic hydrogen were $9 determined. Evidence was found for the individual hyperfine components of the protonium ground state. (7 refs).

  15. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  16. Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO-1 in Human Myofibres

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    2016-04-01

    Full Text Available Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE. Skeletal muscle biopsies were taken at baseline (PRE, 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01, declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise.

  17. Physics and a plan for a 45 GeV facility that extends the high-intensity capability in nuclear and particle physics

    International Nuclear Information System (INIS)

    1986-05-01

    A proposed program of physics research to be carried out at a 45 GeV high-intensity proton accelerator is discussed. In addition to a general discussion of the potentially most productive research directions, specific experiments in strong and flavor physics are presented. The proposed strong interaction physics deals with investigation of nonperturbative QCD through the study of exotic hadrons and measurement of nuclear medium effects on flavor-specific quark momentum distribution. The major part of the proposed program in flavor interaction physics probes possible physics beyond the minimal standard model. A design using two synchrotrons produces a 45 GeV proton beam by increasing the energy of the present LAMPF 800 MeV beam. A booster operating at 60 Hz accelerates 144 μA from 800 MeV to 6 GeV while the main ring operating at 3.33 Hz accelerates 32 μA from 6 GeV to 45 GeV. The 112 μA at 6 GeV which is not further accelerated is used to create intense beams of neutrinos and pulsed muons. The 32 μA of 45 GeV beam is slow extracted into an existing experimental area in which a large number of high-intensity, high-purity kaon and other secondary beams will be produced. A proposed layout of the experimental areas along with the characteristics of the secondary beams is also presented. The report concludes with a cost estimate to construct such a facility at Los Alamos

  18. Interaction of atomic and low-energy deuterium with tungsten pre-irradiated with self-ions

    International Nuclear Information System (INIS)

    Ogorodnikova, O. V.; Markelj, S.; Toussaint, U. von

    2016-01-01

    Polycrystalline tungsten (W) specimens were pre-irradiated with self-ions to create identical samples with high density of defects up to ∼2.5 μm near the surface. Then, W specimens were exposed to either thermal atomic deuterium (D) beam with an incident energy of ∼0.2 eV or low energy D plasma with the incident energy varied between 5 and 200 eV at different sample temperatures. Each sample was exposed once at certain temperature and fluence. The D migration and accumulation in W were studied post-mortem by nuclear reaction method. It was shown that the rate of the D to occupy radiation-induced defects increases with increasing the incident energy, ion flux, and temperature. Experimental investigation was accompanied by modelling using the rate-equation model. Moreover, the analytical model was developed and benchmarked against numerical model. The calculations of the deuterium diffusion with trapping at radiation-induced defects in tungsten by analytical model are consistent with numerical calculations using rate-equation model. The data of reflection and penetration of atomic and low-energy D were taking from calculations using molecular dynamics (MD) with Juslin interatomic potentials and a binary collision code TRIM. MD calculations show an agreement with a binary collision code TRIM only in a very narrow range of deuterium energies between 1 and 20 eV. Incorporation of the data of reflection and penetration of deuterium in the macroscopic modelling has been done to verify the range of validity of calculations using MD and binary collision code TRIM by comparison of modelling results with experimental data. Modelling results are consistent with experiments using reflection and penetration data of D obtained from TRIM code for incident ion energy above 1 eV. Otherwise, the parameters obtained from MD should be incorporated in the rate-equation model to have a good agreement with the experiments

  19. Synthesis of deuterium-labeled plant sterols and analysis of their side-chain mobility by solid state deuterium NMR

    International Nuclear Information System (INIS)

    Marsan, M.P.; Muller, I.; Milon, A.

    1996-01-01

    Sitosterol and stigmasterol, plant sterols, were deuterated at specific positions. Orientation and mobility of the deuterated sitosterol and stigmasterol (and two of their diasteromers) on oriented lipid bilayers were analyzed by deuterium NMR spectroscopy. Orientation and mobility of the side chains was revealed by these studies

  20. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  1. Compact deuterium-tritium neutron generator using a novel field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S.; Sanchez, J.; Tang, V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Wang, H. [Department of Computer Science, Stanford University, Stanford, California 94305 (United States)

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  2. The H{sup +}{sub 3} + H{sub 2} isotopic system. Origin of deuterium astrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Edouard Jean-Marie

    2008-07-01

    Dense cold molecular clouds reckoned to be stellar nurseries are the scene of an extreme molecular deuteration. Despite the cosmic D/H ratio of {proportional_to}10{sup -5}, molecular species in prestellar cores are observed to contain nearly as much deuterium as hydrogen. This astonishing deuterium enrichment promoted by low temperatures is the work of H{sup +}{sub 3}. It is the key species which unlocks the deuterium from its HD reservoir via reactions like H{sup +}{sub 3}+HD {r_reversible} H{sub 2}D{sup +}+H{sub 2} and drags it further to other species in successive reactions. For this reason, the H{sup +}{sub 3}+H{sub 2} isotopic system is outstandingly critical for the astrochemistry of cold environments. However, its understanding is yet incomplete and insufficient. This thesis thus focuses on the H{sup +}{sub 3}+H{sub 2} isotopic system from a theoretical, experimental and astronomical point of view giving a particular look into the role of nuclear spins. As a first step, the stringent nuclear spin selection rules in associative, dissociative and reactive collisions are investigated. This purely theoretical study zooms into the details of the nuclear spin wavefunctions and shows that their permutation symmetry representation is necessary and sufficient, contrary to their angular momentum representation. Additionally, a new deterministic interpretation of nuclear spins in chemical reactions is proposed. Based on these considerations, a complete set of state-to-state rate coefficients for all H{sup +}{sub 3} + H{sub 2} isotopic variants is calculated using a microcanonical model leaned on phase space theory. An experimental study is conducted in parallel with a 22-pole ion trap apparatus in order to inspect the influences of temperature and H{sub 2} ortho-to-para ratio. The good overall agreement between experimental and theoretical results supports the validity and utility of the calculated set of rate coefficients. Furthermore, the potentiality of the 22-pole

  3. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    International Nuclear Information System (INIS)

    Marling, J.B.

    1981-01-01

    A deuterium-enriched material is produced by selective photoinduced dissociation of a gas phase organic carbonyl compound containing at least one hydrogen atom bonded to an atom adjacent to a carbonyl group. Alkyl carbonyl compounds such as acetone, acetaldehyde, trifluoroacetic acid, cyclobutanone, cyclopentanone, methyl acetate, 3,3-dimethyl-2-butanone, 2,4-pentanedione, and 4-methyl-2-pentanone are preferred. The carbonyl compound is subjected to intense infrared radiation from one laser, or two lasers operating at different frequencies, to selectively dissociate the deuterated molecules into stable products. The undissociated compound may be redeuterated by direct aqueous liquid phase H/D exchange, or by indirect liquid phase exchange using an alkanol in an intermediate step

  4. Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, B. A.; Pablant, N. A.; Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.; Van Zeeland, M. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Chrystal, C. [University of California San Diego, La Jolla, California 92093 (United States); Heidbrink, W. W. [University of California Irvine, Irvine, California 92697 (United States); Munoz Burgos, J. M. [Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37831-0117 (United States)

    2012-10-15

    The neutral-beam induced D{sub {alpha}} emission spectrum contains a wealth of information such as deuterium ion temperature, toroidal rotation, density, beam emission intensity, beam neutral density, and local magnetic field strength magnitude Double-Vertical-Line B Double-Vertical-Line from the Stark-split beam emission spectrum, and fast-ion D{sub {alpha}} emission (FIDA) proportional to the beam-injected fast ion density. A comprehensive spectral fitting routine which accounts for all photoemission processes is employed for the spectral analysis. Interpretation of the measurements to determine physically relevant plasma parameters is assisted by the use of an optimized viewing geometry and forward modeling of the emission spectra using a Monte-Carlo 3D simulation code.

  5. Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited).

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Heidbrink, W W; Muñoz Burgos, J M; Pablant, N A; Solomon, W M; Van Zeeland, M A

    2012-10-01

    The neutral-beam induced D(α) emission spectrum contains a wealth of information such as deuterium ion temperature, toroidal rotation, density, beam emission intensity, beam neutral density, and local magnetic field strength magnitude |B| from the Stark-split beam emission spectrum, and fast-ion D(α) emission (FIDA) proportional to the beam-injected fast ion density. A comprehensive spectral fitting routine which accounts for all photoemission processes is employed for the spectral analysis. Interpretation of the measurements to determine physically relevant plasma parameters is assisted by the use of an optimized viewing geometry and forward modeling of the emission spectra using a Monte-Carlo 3D simulation code.

  6. Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma

    Directory of Open Access Journals (Sweden)

    C. N. Taylor

    2017-05-01

    Full Text Available Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. A ∼46 μm depth profile revealed that the deuterium content decreased precipitously in the first 7 μm, and detectable amounts were observed to depths in excess of 20 μm. The large probing depth of GD-OES (up to 100s of μm enables studies not previously accessible to the more conventional techniques for investigating deuterium retention. Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high deuterium concentration in the bulk material is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.

  7. Observation of neutron bursts in saturation of titanium with deuterium by means of D2O electrolysis

    International Nuclear Information System (INIS)

    Artyukhov, V.I.; Bystritskij, V.M.; Gilev, A.I.

    1991-01-01

    The paper describes a correlation experiment on investigation of low-temperature nuclear dd-fusion during saturation of titanium with deuterium through electrolysis of heavy water D 2 O. The experiments with cathodes of chemically pure titanium and of titanium coated with a 0.4μm nickel layer (mass of titanium 26 g) were carried out. Emission of neutrons in the form of separate bursts was observed in the experiments with the nickel-coated cathode. The neutron emission density in the burst was found to be I n =(3.6±0.9)x10 4 s -1 . 17 refs.; 6 figs

  8. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-01-01

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr 2 Fe phase with secondary phases of ZrFe 2 , Zr 5 FeSn, α-Zr, and Zr 6 Fe 3 O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10 -4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K 0e -(ΔH α /RT)=PD 2 q 2 /(q*-q) 2 where ΔHα and K 0 have values of 101.8 kJ·mole -1 and 3.24x10 -8 Pa -1 , and q* is 15.998 kPa·L -1 ·g -1 . At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D 2 from the gas phase. XRD suggests these reactions to be: 2 Zr 2 FeD x → x ZrD 2 + x/3 ZrFe 2 + (2 - 2/3x) Zr 2 Fe and Zr 2 FeD x + (2 -1/2x) D 2 → ZrD 2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  9. Preparation and comparitive analysis of MCNP thermal libraries for liquid hydrogen and deuterium using NJOY97 on 32 bit and 64 bit computers

    International Nuclear Information System (INIS)

    Jo, Y. S.; Kim, J. D.; Kil, C. S.; Jang, J. H.

    1999-01-01

    The scattering laws and MCNP thermal libraries for liquid hydrogen and deuterium are comparatively calculated on HP715 (32-bit computer) and SGI IP27 (64-bit computer) using NJOY97. The results are also compared with the experimental data. In addition, MCNP calculations for the nuclear design of a cold neutron source at HANARO are performed with the newly generated MCNP thermal libraries from two different computers and the results are compared

  10. Nuclear fission with inertial confinement

    CERN Document Server

    Koshkarev, D G

    2002-01-01

    The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed

  11. Neutronics investigation of CANDU deuterium uranium 6 reactor fueled (transuranic-TH) O-2 using a computational method

    Energy Technology Data Exchange (ETDEWEB)

    Gholamzadeh, Zohreh; Mirvakili, Seyed Mohammad; Khalafi, Hossein [Reactor Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2015-02-15

    241Am, 243Am, and 237Np isotopes are among the most radiotoxic components of spent nuclear fuel. Recently, researchers have planned different incineration scenarios for the highly radiotoxic elements of nuclear waste in critical reactors. Computational methods are widely used to predict burnup rates of such nuclear wastes that are used under fuel matrixes in critical reactors. In this work, the Monte Carlo N-particle transport code was used to calculate the neutronic behavior of a transuranic (TRU)-bearing CANada Deuterium Uranium 6 reactor. The computational data showed that the 1.0% TRU-containing thorium-based fuel matrix presents higher proliferation resistance and TRU depletion rate than the other investigated fuel Matrixes. The fuel matrix includes higher negative temperature reactivity coefficients as well. The investigated thorium-based fuel matrix can be successfully used to decrease the production of highly radiotoxic isotopes.

  12. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    International Nuclear Information System (INIS)

    Deslandes, Alec; Guenette, Mathew C.; Corr, Cormac S.; Karatchevtseva, Inna; Thomsen, Lars; Ionescu, Mihail; Lumpkin, Gregory R.; Riley, Daniel P.

    2014-01-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10 24 ions m −2 . Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four

  13. Direct drive acceleration of planar liquid deuterium targets

    International Nuclear Information System (INIS)

    Sethian, J.D.; Bodner, S.E.; Colombant, D.G.; Dahlburg, J.P.; Obenschain, S.P.; Pawley, C.J.; Serlin, V.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Deniz, A.V.; Lehecka, T.; Klapisch, M.

    1999-01-01

    The Nike laser (∼2 - 3 kJ, ∼10 14 W/cm 2 ) has been used to ablatively accelerate planar liquid deuterium targets. These experiments are designed to test some aspects of a high gain direct drive target design. The target consists of a low-density foam that is filled with liquid deuterium and covered with a thin polyimide membrane. The measured target trajectory agrees well with one-dimensional (1D) simulations. The growth of the areal mass modulations were measured with a new, 1.26 keV x-ray backlighter. The modulations appear later and grow to a smaller amplitude when the foot of the laser pulse is made spatially smoother. A thin layer of gold on the front of the target reduces the modulations. The results are compared with 2D modeling

  14. Deuterium-depleted water. Short history and news

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Tamaian, Radu; Titescu, Gheorghe

    2002-01-01

    Deuterium-depleted water represents water that has an isotopic content lower than 144 ppm D/(D+H) which is the natural isotopic content of water. DDW is a non-toxic product. Knowing that deuterium content of water has a significant influence on living organisms, since 1996 NIR-DCIT ICSTI at Rm. Valcea cooperated with Romanian specialized instititutes for biological effects' evaluation of DDW. The investigations lead to the conclusion that DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects. Animals teated with DDW showed an increase of the resistance both to sub lethal and to lethal gamma radiation doses. DDW stimulates immune defense reactions. Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance in next growth stages. One can remark the favourable influence of DDW on biological process in plants in various ontogenetic stages. (authors)

  15. Warm water deuterium fractionation in IRAS 16293-2422

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm; Jørgensen, Jes Kristian; van Dishoeck, E. F.

    2013-01-01

    observations reveal the physical and chemical structure of water vapor close to the protostars on solar-system scales. The red-shifted absorption detected toward source B is indicative of infall. The excitation temperature is consistent with the picture of water ice evaporation close to the protostar. The low......Context. Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength...... interferometers have the potential to shed light on this matter. Aims: To measure the water deuterium fractionation in the warm gas of the deeply-embedded protostellar binary IRAS 16293-2422. Methods: Observations toward IRAS 16293-2422 of the 53,2 - 44,1 transition of H218O at 692.07914 GHz from Atacama Large...

  16. Thermal x-rays and deuterium production in stellar flares

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The x-ray spectrum of flares is shown to be necessarily thermal up to greater than or equal to 200 keV because the self magnetic field of any electron stream required for a thick or thin target source is inconsistently large. The resulting flare model can then be related to stellar luminosity, convection and magnetic fields to result in a maximum possible γ-burst (Mullan, 1976) and continuous x-ray flux. One of the most striking isotopic anomalies observed is the extreme enrichment of Helium (3) in some solar flares and the mysterious depletion of deuterium. It is discussed how deuterium may be produced and emitted in the largest flares associated with γ-bursts but in amounts insufficient to support the tentative conclusion of Colemen and Worden

  17. Activation analysis for LHD experiments with deuterium gases

    International Nuclear Information System (INIS)

    Nishimura, Kiyohiko; Yamanishi, Hirokuni; Komori, Akio; Hayashi, Katsumi

    2008-01-01

    Identification of radionuclides obtained from deuterium experiments and evaluation of dose rate level were performed on the structural materials of the Large Helical Device and the Experimental Hall. Energies of neutron sources are 2.45 MeV (D-D reaction) and 14 MeV (D-T reaction). Neutron fluence was calculated using the two-dimensional transport code DOT-3.5. Generation of radionuclides was calculated using the CINAC code. Radionuclides of 93m Nb, 63 Ni, and 60 Co for helical coils, 55 Fe and 60 Co for stainless steel, 55 Fe, 60 Co, and 93m Nb for poloidal coils, and 40 K and 55 Fe for floor concrete were dominant after a series of experiments with deuterium gases. Evaluation of dose rate level for the structural materials and air were performed taking into account a current experimental schedule. (author)

  18. Deuterium permeation and diffusion in high-purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.; Riehm, M.P.; Thompson, D.A.; Smeltzer, W.W.

    1990-01-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. Using multilayer permeation theory the effects of surface oxide were eliminated and the diffusion coefficients of the bulk beryllium determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 =6.7x10 -9 m 2 /s and E D =28.4 kJ/mol. For the high-grade beryllium samples (99%) the parameters are D 0 =8.0x10 -9 m 2 /s and E D =35.1 kJ/mol. (orig.)

  19. Deuterium permeation and diffusion in high purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.

    1990-05-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. A multilayer permeation theory was used in order to eliminate the surface oxide effects and the diffusion coefficients of the bulk beryllium were determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 = 6.7 x 10 -9 [m 2 /s] and E D = 28.4 [KJ/mol]; and for the high-grade beryllium samples (99%) the parameters are D 0 = 8.0 x 10 -9 [m 2 /s] and E D = 35.1 [KJ/mol

  20. Results from deuterium-tritium tokamak confinement experiments

    International Nuclear Information System (INIS)

    Hawryluk, R.J.

    1997-02-01

    Recent scientific and technical progress in magnetic fusion experiments has resulted in the achievement of plasma parameters (density and temperature) which enabled the production of significant bursts of fusion power from deuterium-tritium fuels and the first studies of the physics of burning plasmas. The key scientific issues in the reacting plasma core are plasma confinement, magnetohydrodynamic (MHD) stability, and the confinement and loss of energetic fusion products from the reacting fuel ions. Progress in the development of regimes of operation which have both good confinement and are MHD stable have enabled a broad study of burning plasma physics issues. A review of the technical and scientific results from the deuterium-tritium experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) is given with particular emphasis on alpha-particle physics issues

  1. Near-threshold photoproduction of {phi} mesons from deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Qian, X., E-mail: xqian@caltech.ed [Duke University, Durham, NC 27708 (United States); Kellogg Radiation Laboratory, California Institute of Technology, CA 91125 (United States); Chen, W.; Gao, H. [Duke University, Durham, NC 27708 (United States); Hicks, K. [Ohio University, Athens, OH 45701 (United States); Kramer, K. [Duke University, Durham, NC 27708 (United States); Laget, J.M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Mibe, T. [Ohio University, Athens, OH 45701 (United States); Qiang, Y. [Duke University, Durham, NC 27708 (United States); Stepanyan, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Tedeschi, D.J. [University of South Carolina, Columbia, SC 29208 (United States); Xu, W. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Adhikari, K.P.; Amaryan, M. [Old Dominion University, Norfolk, VA 23529 (United States); Anghinolfi, M. [INFN, Sezione di Genova, 16146 Genova (Italy); Ball, J. [CEA, Centre de Saclay, Irfu/Service de Physique Nucleaire, 91191 Gif-sur-Yvette (France); Battaglieri, M. [INFN, Sezione di Genova, 16146 Genova (Italy); Batourine, V. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bedlinskiy, I. [Institute of Theoretical and Experimental Physics, Moscow 117259 (Russian Federation); Bellis, M. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Biselli, A.S. [Fairfield University, Fairfield, CT 06824 (United States); Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2011-02-07

    We report the first, kinematically-complete measurement of the differential cross section of {phi}-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, K{sup +} and K{sup -} near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections (d{sigma})/(dt) for the initial photon energy range of 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. Our finding is different from recent LEPS results on {phi}-meson photoproduction from deuterium in a similar incident photon energy range, but in a different momentum transfer region.

  2. Deuterium retention in molten salt electrodeposition tungsten coatings

    International Nuclear Information System (INIS)

    Zhou, Hai-Shan; Xu, Yu-Ping; Sun, Ning-Bo; Zhang, Ying-Chun; Oya, Yasuhisa; Zhao, Ming-Zhong; Mao, Hong-Min; Ding, Fang; Liu, Feng; Luo, Guang-Nan

    2016-01-01

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  3. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  4. Design of a cryogenic deuterium gas target for neutron therapy

    International Nuclear Information System (INIS)

    Kuchnir, F.T.; Waterman, F.M.; Forsthoff, H.; Skaggs, L.S.; Vander Arend, P.C.; Stoy, S.

    1976-01-01

    A cryogenic deuterium gas target operating at 80 0 K and 10 atm pressure has been designed for use with a small cyclotron; the D(d,n) reaction is used to produce a neutron beam suitable for radiation therapy. The target is cooled by circulation of the gas in a closed loop between the target and an external heat exchanger immersed in liquid nitrogen

  5. Synthesis of deuterium-labelled compounds for FOTEK project

    International Nuclear Information System (INIS)

    Joergensen, O.; Egsgaard, H.; Larsen, E.

    1996-01-01

    In the FoTech project there have been utilized labelled compounds of stable isotopes as internal standards. Some of these compounds are commercially available ( 13 C-labelled PCB congeners, 13 C-labelled diethylstilbestrol for determination of anabolic steroids). Others, like D 9 -clenbuterol, D 3 -clenbuterol, D 3 -zeramol and D 3 -dimetridazol have been synthesized. General aspects of deuterium compounds labelling are considered. (EG)

  6. Effects of deuterium depleted water on reproduction of Rainbow fish

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Saros-Rogobete, Irina; Titescu, Gheorghe; Caraus, Ion; Pricop, Ferdinand

    2001-01-01

    The paper refers to an isotopic composition used to prepare fecundating solutions for artificial reproduction of fish. The solution is constituted as a mixture of deuterium depleted water and natural water (whose isotopic concentration is of 85-90 ppm D/(D+H)) in which we can add activating and energizing substances. This fecundating solution ensures an improved fecundating level of fish roe, increase life index in the next growth up stages and increase fish resistance at special medium conditions. (authors)

  7. Influence of deuterium-depleted water on living organisms

    International Nuclear Information System (INIS)

    Stefanescu, I.; Titescu, Gh.; Croitoru, Cornelia; Saros-Rogobete, Irina

    2000-01-01

    Deuterium-depleted water (DDW) production technique consists in the separation of deuterium from water by means of an continuos distillation process under a pressure value of about 133,3 mbar. Water that is used as basic material has an isotopic content of 144 ppm D/(D+H). DDW results as distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 NIR and DCIT Rm. Valcea, which is a DDW producer, co-operated with Romanian specialised institutes for biological effects' evaluation of DDW. These investigations led to the next conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tonus and vascular reactivity produced by the DDW persist after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defence mechanisms; - DDW stimulate immune defence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the numbers of polymorphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favourable influence in embryo growth stage and resistance in next growth stages; - It was studied germination, growth and quantitative characters' variability at plants; one can remark the favourable influence of DDW on biological process at plants in various ontogenic stages. Further investigations are needed in order to establish the influence of deuterium-depleted water on living organisms. (authors)

  8. Thermodynamics of hydrogen and deuterium solutions in α-zirconium

    International Nuclear Information System (INIS)

    Vinokurov, Yu.V.; Mogutnov, B.M.

    1979-01-01

    Interaction of H 2 and D 2 with α-Zr are studied in the 700-890 K temperature range using a high-temperature colorimeter. It is shown that hydrogen and deuterium partial enthalpies in zirconium do not depend on the temperature and concentration and compose -48.9+-1.0 and -46.2+-1.2 kJ/g-at. Calculated is an excess entropy of hydrogen in a solution and analyzed are contributions composing it

  9. Deuterium Lamb shift via quenching-radiation anisotropy measurements

    International Nuclear Information System (INIS)

    van Wijngaarden, A.; Drake, G.W.F.

    1978-01-01

    The Lamb shift of a hydrogenic ion can be deduced from the anisotropy in the angular distribution of the 2s/sub 1/2/-1s/sub 1/2/ electric field quenching radiation. The accuracy of our previous anisotropy measurement for deuterium is improved to about +- 150 ppm. The derived Lamb shift is (1059.36 +- 0.16) MHz. The sources of error are carefully analyzed and the prospects for further improvements in the accuracy are discussed

  10. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Biologic influence of deuterium (D) on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О). The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of ...

  11. Magnetic electron scattering from deuterium at low-momentum transfer

    International Nuclear Information System (INIS)

    Jones, E.C. Jr.; Bendel, W.L.; Fagg, L.W.; Lindgren, R.A.

    1980-01-01

    The elastic and inelastic cross sections of deuterium for 56.4 MeV electrons scattered at 180 0 , have been measured up to an excitation energy of 19 MeV. The experimental cross sections are compared with those calculated by Miller, by Durand, and by Arenhoevel and Fabian, and also with the sum rules of O'Connell. The results indicate that the contribution of meson exchange currents at this low-momentum transfer is significant

  12. Determination of deuterium in water by a thermometric method

    International Nuclear Information System (INIS)

    Gabicar, J.

    1976-01-01

    A simple and rapid method for the determination of deuterium in water has been developed. The method is based on the change of the thermal effect of the solubility of sodium sulphate in the presence of D 2 O. The procedure is based on the measurement of the temperature of phase transition Na 2 SO 4 . 10 H 2 O reversible Na 2 SO 4 + 10 H 2 O. The sensitivity of the method proposed is comparable with mass spectrometry. (author)

  13. Laser-driven polarized sources of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Young, L.; Holt, R.J.; Green, M.C.; Kowalczyk, R.S.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin exchange optical pumping is described. The advantages of this method over conventional polarized sources for internal target experiments are presented. Technological difficulties which prevent ideal source operation are outlined along with proposed solutions. At present, the laser-driven polarized hydrogen source delivers 8 /times/ 10 16 atoms/s with a polarization (P/sub z/) of 24%. 9 refs., 2 figs

  14. Exploring the Origins of Deuterium Enrichments in Solar Nebular Organics

    Science.gov (United States)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; O'D. Alexander, Conel M.; Du, Fujun; Graninger, Dawn; Öberg, Karin I.; Harries, Tim J.

    2016-03-01

    Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies generally have higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to (1) the availability of additional chemical fractionation pathways for organics beyond that for water, and (2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic-ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH2D+/CH3+. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from ˜20-40 au, CH4 can reach {{D}}/{{H}}˜ 2× {10}-3, while D/H in CH3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.

  15. Deuterium Excess of Waters in Slovenia. Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Brencic, M.; Torkar, A. [Faculty of Natural Sciences and Engineering, University of Ljubljana, Ljubljana (Slovenia); Vreca, P. [Jozef Stefan Institut, Department of Environmental Sciences, Ljubljana (Slovenia)

    2013-07-15

    In climatic and hydrological studies, deuterium excess has proven to be a useful parameter; therefore this parameter has been investigated in the waters of slovenia - positioned in central europe. All the data were acquired from publicly available data sources (e.g. journals, databases). Data were collected for four different parts of the water cycle: precipitation, surface water, groundwater and water in the unsaturated zone. For precipitation the value for deuterium excess ranges between -19.9 per mille and 28.8 per mille with the median at 10.1 per mille. Surface water has the minimum at 2.9 per mille, the maximum at 22.4 per mille and the median at 13.2 per mille. Values for groundwater vary between -17.7 per mille and 34.9 per mille with the median at 11.8 per mille. Median for deuterium excess for the unsaturated zone is 15.1 per mille and the values are between -2.8 per mille and 17.6 per mille. (author)

  16. Fractionation of deuterium and protium between water and methanol

    International Nuclear Information System (INIS)

    Rolston, J.H.; Gale, K.L.

    1984-01-01

    The overall deuterium-protium separation factor, α, between hydrogen gas and aqueous methanol mixtures has been measured over the full composition range at temperatures between 25 and 55 0 C. At each temperature α increases smoothly with increasing mole fraction of methanol but the values fall significantly below the straight line joining the separation factors for the methanol-hydrogen and water-hydrogen systems. The equilibrium constant, K 1 (1), for exchange of a deuterium atom tracer between the hydroxyl groups of methanol and liquid water, calculated from the values of α for each solution, is independent of composition within experimental error. The value of K 1 (1) at 25 0 C is 0.54 +/- 0.02, so that deuterium favors the methanol environment rather than water. The dependence of k 1 (1) on absolute temperature, T, is given by the expression 1n K 1 (1) = -0.776 + 52.6/T, which corresponds to a reaction enthalpy of -0.43 kJ mol -1 . 24 references, 2 figures, 2 tables

  17. Deuterium depth profiles in metals using imaging field desorption

    International Nuclear Information System (INIS)

    Panitz, J.A.

    1976-01-01

    Depth profiles of 80 eV deuterium ions implanted in-situ into (110) tungsten have been measured by Imaging, Field-Desorption Mass Spectrometry. The relative abundance of deuterium was measured from the surface to a depth of 300A with less than 3A depth resolution by controlled field-evaporation of the specimen, and time-of-flight mass spectroscopy. The position of the depth distribution maximum (57 +- 3A from the surface) is shown to be in close agreement with that predicted theoretically for low energy deuterium implants using an amorphous-solid model. Structure in the distribution is attributed to surface morphology and channeling phenomena in the near surface region. Implanted impurity species from the ion source and tungsten surface have also been observed. For C + , C 2+ and 0 + , penetration is limited to less than 30A, with abundance decreasing exponentially from the surface. These results are interpreted in the context of the CTR first-wall impurity problem, and are used to suggest a novel method for in-situ characterization of low energy plasma species in operating CTR devices

  18. Molecular deuterium behaviour in tungsten divertor on JET

    Energy Technology Data Exchange (ETDEWEB)

    Sergienko, G., E-mail: g.sergienko@fz-juelich.de [Institute of Energy and Climate Research –Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Arnoux, G. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Brezinsek, S.; Clever, M.; Huber, A.; Kruezi, U. [Institute of Energy and Climate Research –Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Meigs, A.G. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Mertens, Ph.; Samm, U. [Institute of Energy and Climate Research –Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Stamp, M. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2013-07-15

    Molecular spectroscopy was used to observe molecular deuterium at the outer strike point of the new bulk tungsten JET divertor. The rotational and vibrational populations of the deuterium molecules in the ground state were determined from the deuterium Q-branches of Fulcher-α band emission (d{sup 3}Π{sub u}{sup -}→a{sup 3}Σ{sub g}{sup +}) in the 600–640 nm spectral range. For L-mode plasmas in the low recycling regime the molecular emission maximum is located in the vicinity of the strike point. The spatial profile of the emission was strongly modified during plasma detachment in both L- and H-mode plasmas. The rotational temperature of excited molecules reached 2760 K in L-mode. The vibrational population has a peculiarity: a remarkably high population of the d{sup 3}Π{sub u}{sup -}(v = 0) vibrational level indicating a non-Boltzmann vibrational distribution of D{sub 2} in tungsten environment.

  19. Results of neutron irradiation of liquid lithium saturated with deuterium

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Mazzitelli, Giuseppe

    2017-01-01

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(−144/RT). • The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10 −13 cm −2 s −1 . The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(-144/RT). The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  20. Determination of deuterium concentration by falling drop method

    International Nuclear Information System (INIS)

    Kawai, Hiroshi; Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Fujii, Takashi.

    1976-01-01

    Falling drop method for determination of deuterium concentration in water sample was studied. The principle is the same as that developed by Kirshenbaum, I. in 1932. One drop of water sample falls down through a column filled with o-fluorotoluene at temperature of nearly 25 0 C. The falling time is, instead of using a stop-watch, measured with two light pulses led to a photomultiplier with mirrors, which make two pulse marks on moving chart paper. Distance between the two pulse marks is proportional to falling time. Instead of water filled double chambers of constant temperature equipped with heaters, thermostats and propellers for stirring, the column is dipped in circulating water supplied from a ''Thermoelectric'' made by ''Sharp'' company, which can circulate constant temperature water cooled or heated with thermoelements. Variation of the temperature is about 0.01 0 C. The range of deuterium concentration in our case was 20 -- 60D%. Sensitivity increased as the medium temperature decreased and as deuterium concentration of water sample increased. (auth.)

  1. Temperature dependence of deuterium retention mechanisms in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Roszell, J.P. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Davis, J.W., E-mail: jwdavis@starfire.utias.utoronto.ca [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Ontario, M3H 5T6 (Canada)

    2012-10-15

    The retention of 500 eV D{sup +} was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of {approx}2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  2. Temperature dependence of deuterium retention mechanisms in tungsten

    International Nuclear Information System (INIS)

    Roszell, J.P.; Davis, J.W.; Haasz, A.A.

    2012-01-01

    The retention of 500 eV D + was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ∼2 orders of magnitude over the temperature range of 350–550 K in SCW and a decrease of an order of magnitude over the temperature range of 600–700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  3. Temperature dependence of deuterium retention mechanisms in tungsten

    Science.gov (United States)

    Roszell, J. P.; Davis, J. W.; Haasz, A. A.

    2012-10-01

    The retention of 500 eV D+ was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ˜2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  4. Measurement of the deuterium Balmer series line emission on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C. R.; Xu, Z.; Jin, Z.; Zhang, P. F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230031 (China); Huang, J., E-mail: juan.huang@ipp.ac.cn; Gao, W.; Gao, W.; Chang, J. F.; Xu, J. C.; Duan, Y. M.; Chen, Y. J.; Zhang, L.; Wu, Z. W.; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Hou, Y. M. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-11-15

    Volume recombination plays an important role towards plasma detachment for magnetically confined fusion devices. High quantum number states of the Balmer series of deuterium are used to study recombination. On EAST (Experimental Advanced Superconducting Tokamak), two visible spectroscopic measurements are applied for the upper/lower divertor with 13 channels, respectively. Both systems are coupled with Princeton Instruments ProEM EMCCD 1024B camera: one is equipped on an Acton SP2750 spectrometer, which has a high spectral resolution ∼0.0049 nm with 2400 gr/mm grating to measure the D{sub α}(H{sub α}) spectral line and with 1200 gr/mm grating to measure deuterium molecular Fulcher band emissions and another is equipped on IsoPlane SCT320 using 600 gr/mm to measure high-n Balmer series emission lines, allowing us to study volume recombination on EAST and to obtain the related line averaged plasma parameters (T{sub e}, n{sub e}) during EAST detached phases. This paper will present the details of the measurements and the characteristics of deuterium Balmer series line emissions during density ramp-up L-mode USN plasma on EAST.

  5. Selective deuterium ion acceleration using the Vulcan petawatt laser

    Energy Technology Data Exchange (ETDEWEB)

    Krygier, A. G. [Laboratoire pour l' Utilisation des Lasers Intenses, École Polytechnique, 91128 Palasiseau (France); Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Alejo, A.; Green, A.; Jung, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Clarke, R.; Notley, M. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fuchs, J.; Vassura, L. [Laboratoire pour l' Utilisation des Lasers Intenses, École Polytechnique, 91128 Palasiseau (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Najmudin, Z.; Nakamura, H. [The John Adams Institute, Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Norreys, P. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Oliver, M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Zepf, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Helmholtz Institute Jena, D-07743 Jena (Germany); Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic); Freeman, R. R. [Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-15

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  6. Selective deuterium ion acceleration using the Vulcan petawatt laser

    International Nuclear Information System (INIS)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Green, A.; Jung, D.; Clarke, R.; Notley, M.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-01-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10 20 W/cm 2 laser pulse by cryogenically freezing heavy water (D 2 O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%

  7. Counter-diffusion and -permeation of deuterium and hydrogen through metals

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Tanabe,; Tetsuo, [Nagoya Univ. (Japan)

    1998-03-01

    The first experiments for counter-diffusion and -permeation of deuterium and hydrogen through palladium were performed. Deuterium permeation rates against D{sub 2} pressure were measured under the condition where hydrogen permeated to opposite direction by supplying H{sub 2} gas at the permeated side of D{sub 2}. It was found that not a small amount of deuterium was clearly permeated even if the deuterium pressure was much smaller than the hydrogen pressure. Deuterium permeation rate was gradually reduced by increasing the counter H permeation. The deuterium permeation rate under the counter H permeation is well represented by a simple model in which the ratio of the deuterium permeation rates with and without the counter H permeation was proportional to the fractional concentration of deuterium in the bulk. As increasing the hydrogen counter flow, however, the deuterium permeation rate deviates from the model. This means that adsorption (absorption) of D{sub 2} from gas phase is inhibited and surface recombination of deuterium is blocked by hydrogen. (author)

  8. Extremely Intensive and Conservative Fault Capability Studies on Nuclear Facilities in Japan after the 2011 Tohoku Earthquake and Fukushima Daiichi Incident

    Science.gov (United States)

    Okumura, K.

    2013-12-01

    . Many of the Japanese critical nuclear facilities are built on bedrocks with faults, fractures, and joints. They were not regarded as capable when the facilities were built in 1970's to 1990's. In many cases it was not possible to know about Late Pleistocene movement owing to the lack of young sediments on bedrocks. In a few cases, geologist studied past movement and found nothing. Some very cautious researchers on nuclear safety overturned previous evaluation easily. The capability studies by the utility companies then became very serious. The young sediments that may indicate the timing of faulting were completely removed during construction. Within bedrock, it is almost impossible to demonstrate that there was no recent displacement. The regulators are very rigid and relentless to require perfect evidence of incapability. Now several utility companies are opening huge trenches, digging beside a reactor, or drilling many cores from bedrock in the site spending billions of Yen. The results of extremely intensive studies brought a lot of information on the geologic structures and their capabilities. This paper will summarize the scientific finding and their meaning on the seismic safety of critical nuclear facilities.

  9. Deuterium retention and desorption behavior in an advanced reduced-activation alloy

    Energy Technology Data Exchange (ETDEWEB)

    Noh, S.J., E-mail: sjnoh@dankook.ac.kr [Department of Applied Physics, Dankook University, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of); Kim, H.S.; Byeon, W.J.; Shin, H.W. [Department of Applied Physics, Dankook University, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of); Lee, Cheol Eui [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Lee, S.K. [Nuclear Fusion Development Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2017-07-15

    We present the first experimental results of the deuterium retention and desorption behavior in an advanced reduced-activation alloy (ARAA) under development in Korea. For the in-situ measurement of desorbed gases from samples immediately after irradiation, a thermal desorption spectroscopy (TDS) system clustered with an inductively coupled plasma ion source has been built. Samples were and were not irradiated with helium ions at energies of 1.4, 3.5, and 5.0 keV and then continuously irradiated with 1.7-keV deuterium ions. TDS measurements were performed in situ immediately after deuterium irradiation and after exposure to air for one week. The amount of desorbed deuterium is the largest for the sample without helium irradiation from the TDS results measured in situ immediately after irradiation. Further, the amount of desorbed deuterium is significantly lowered when the helium energy is increased to 3.5 keV with no significant changes thereafter, indicating that the layer formed by implanted helium at near or deeper than the stopping range for 1.7-keV deuterium ions effectively acts as a barrier against deuterium diffusion into the depth. Because of the strong diffusivity of deuterium into the ambient atmosphere, the amounts of desorbed deuterium are greatly reduced for the samples without helium irradiation and with 1.4-keV helium irradiation after exposure to air for one week. In addition, our deuterium results for the ARAA are also compared with the results for F82H by other authors. - Highlights: •The first result of the deuterium retention and desorption in an ARAA is presented. •The ARAA was irradiated with helium and then continuously irradiated with deuterium. •TDS measurements were performed in situ immediately after deuterium irradiation. •TDS measurements were performed after exposure to air for one week. •The effects of helium irradiation and exposure to air were investigated.

  10. Nuclear

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)

  11. Effects of transient and non-uniform distribution of heat flux on intensity of heat transfer and burnout conditions in the channels of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vitaly Osmachkin [Russian Research Center ' Kurchatov Institute' 1, Kurchatov sq, Moscow 123182 (Russian Federation)

    2005-07-01

    Full text of publication follows: The influence of power transient, changes of flow rate, inlet temperatures or pressure in cores of nuclear reactors on heat transfer and burnout conditions in channels depend on rate of such violations. Non-uniform distribution of the heat flux is also important factor for heat transfer and development of crisis phenomenon. Such effects may be significant for NPPs safety. But they have not yet generally accepted interpretation. Steady state approach is often recommended for use in calculations. In the paper a review of experimental observed so-called non-equilibrium effects is presented. The effects of space and time factors are displaying due delay in reformation turbulence intensity, velocity, temperatures or void fraction profiles, water film flow on the surface of heated channels. For estimation of such effect different methods are used. Modern computer codes based on two or three fluids approaches are considered as most effective. But simple and clear correlations may light up the mechanics of effects on heat transfer and improve general understanding of scale and significance of the transient events. In the paper the simplified methods for assessment the influence of lags in the development of distributions of parameters of flow, the relaxation of temporal or space violations are considered. They are compared with more sophisticated approaches. Velocities of disturbance fronts moving along the channels are discussed also. (author)

  12. Synthesis of deuterium-labelled compounds for FOTEK project; Syntese af deuterium-maerkede forbindelser til FOeTEK projektet

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, O.; Egsgaard, H.; Larsen, E. [Forskningscenter Risoe, Roskilde (Denmark)

    1996-06-01

    In the FoTech project there have been utilized labelled compounds of stable isotopes as internal standards. Some of these compounds are commercially available ({sup 13}C-labelled PCB congeners, {sup 13}C-labelled diethylstilbestrol for determination of anabolic steroids). Others, like D{sub 9}-clenbuterol, D{sub 3}-clenbuterol, D{sub 3}-zeramol and D{sub 3}-dimetridazol have been synthesized. General aspects of deuterium compounds labelling are considered. (EG).

  13. High Intensity, Pulsed, D-D Neutron Generator

    International Nuclear Information System (INIS)

    Williams, D.L.; Vainionpaa, J.H.; Jones, G.; Piestrup, M.A.; Gary, C.K.; Harris, J.L.; Fuller, M.J.; Cremer, J.T.; Ludewigt, Bernhard A.; Kwan, J.W.; Reijonen, J.; Leung, K.-N.; Gough, R.A.

    2008-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  14. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Ghent University (Belgium); Temmerman, Greg de [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Reinhart, Michael; Matveev, Dmitry; Unterberg, Bernhard; Wienhold, Peter; Breuer, Uwe; Kreter, Arkadi [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); Oost, Guido van [Ghent University (Belgium)

    2014-07-01

    Tungsten is to be used as plasma-facing material for the ITER divertor due to its favourable thermal properties, low erosion and fuel retention. Bombardment of tungsten by low energy ions of hydrogen isotopes, at different surface temperature, can lead to surface modifications and influence the fuel accumulation in the material. This contribution will assess the impact of material microstructure and the correlation between the particle flux, surface modifications and deuterium retention in tungsten. Tungsten samples were exposed to deuterium plasma at a surface temperature of 510 K, 670 K and 870 K, ion energy of 40 eV and ion fluence of 10{sup 26} m{sup -2}. The high and low ion flux ranges were in the order 10{sup 24} m{sup -2}s{sup -1} and 10{sup 22} m{sup -2}s{sup -1}. Depth profiling of deuterium in all the samples was done by secondary ion mass spectroscopy technique and a scanning electron microscope was used to investigate the surface modifications. Modelling of the D desorption spectra with the coupled reaction diffusion system model will be also presented.

  15. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Colorado School of Mines low energy nuclear physics project

    International Nuclear Information System (INIS)

    Cecil, F.E.

    1991-01-01

    A major accomplishment of this project in the past year is the completion of a fairly comprehensive paper describing the survey of radiative capture reactions of protons on light nuclei at low energies. In addition we have completed a preliminary set of measurements of (d,p)/(d,α) cross section ratios on the charge symmetric nuclei 6 Li and 10 B as a test of the Oppenheimer-Phillips effect. While the 6 Li data remain inconclusive, the 10 B data show solid evidence for the Oppenheimer-Phillips enhancement of the (d,p) reaction relative to the (d,α) reaction for deuteron bombarding energies below about 100 keV. We have continued our investigation of fusion reaction products from deuterium-metal systems at room temperatures with the startling observation of intense burst of energetic charged particles from deuterium gas loaded thin titaium foils subject to non-equilibrium thermal and electrical conditions. We have completed two projects involving the application of the low energy particle accelerator to material science problems; firstly a study of the transformation of crystalline to amorphous Fe-Zr systems by proton irradiation and secondly the effects of ion bombardment on the critical temperature of YBCO high-temperature superconductors. Finally we have made progress in several instrumentation projects which will be used in some of the up-coming measurements of nuclear cross sections at very low energies

  17. Deuterium gas-driven permeation and subsequent retention in rolled tungsten foils

    International Nuclear Information System (INIS)

    Liu, Feng; Zhou, Haishan; Li, Xiao-Chun; Xu, Yuping; An, Zhongqing; Mao, Hongmin; Xing, Wenjing; Hou, Qing; Luo, Guang-Nan

    2014-01-01

    Experiments concerning deuterium gas-driven permeation through rolled tungsten foils in the temperature range of 850–950 K and subsequent deuterium retention have been performed. The steady state permeation flux of deuterium is proportional to the square root of the driving pressure. The permeability of deuterium is in an order of 10 −14 mol m −1 s −1 Pa −1/2 in this temperature range and the activation energy for permeation is 1.21 eV. Measurements of diffusivity are significantly affected by the driving pressure, which can be well explained by a saturable-trap model. Thermal desorption spectra of samples feature a single deuterium release peak at about 873 K. TMAP 4 modeling of this peak gives a detrapping energy of 1.70 eV, which fits the dissociation enthalpy of deuterium desorbing from the inner wall of vacancy clusters or pores in tungsten

  18. Deuterium gas-driven permeation and subsequent retention in rolled tungsten foils

    Science.gov (United States)

    Liu, Feng; Zhou, Haishan; Li, Xiao-Chun; Xu, Yuping; An, Zhongqing; Mao, Hongmin; Xing, Wenjing; Hou, Qing; Luo, Guang-Nan

    2014-12-01

    Experiments concerning deuterium gas-driven permeation through rolled tungsten foils in the temperature range of 850-950 K and subsequent deuterium retention have been performed. The steady state permeation flux of deuterium is proportional to the square root of the driving pressure. The permeability of deuterium is in an order of 10-14 mol m-1 s-1 Pa-1/2 in this temperature range and the activation energy for permeation is 1.21 eV. Measurements of diffusivity are significantly affected by the driving pressure, which can be well explained by a saturable-trap model. Thermal desorption spectra of samples feature a single deuterium release peak at about 873 K. TMAP 4 modeling of this peak gives a detrapping energy of 1.70 eV, which fits the dissociation enthalpy of deuterium desorbing from the inner wall of vacancy clusters or pores in tungsten.

  19. Conformational analysis of g protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Li, Sheng; Lee, Su Youn; Chung, Ka Young

    2015-01-01

    Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system. © 2015 Elsevier Inc. All rights reserved.

  20. SAIDE: A Semi-Automated Interface for Hydrogen/Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Villar, Maria T; Miller, Danny E; Fenton, Aron W; Artigues, Antonio

    2010-01-01

    Deuterium/hydrogen exchange in combination with mass spectrometry (DH MS) is a sensitive technique for detection of changes in protein conformation and dynamics. Since temperature, pH and timing control are the key elements for reliable and efficient measurement of hydrogen/deuterium content in proteins and peptides, we have developed a small, semiautomatic interface for deuterium exchange that interfaces the HPLC pumps with a mass spectrometer. This interface is relatively inexpensive to build, and provides efficient temperature and timing control in all stages of enzyme digestion, HPLC separation and mass analysis of the resulting peptides. We have tested this system with a series of standard tryptic peptides reconstituted in a solvent containing increasing concentration of deuterium. Our results demonstrate the use of this interface results in minimal loss of deuterium due to back exchange during HPLC desalting and separation. For peptides reconstituted in a buffer containing 100% deuterium, and assuming that all amide linkages have exchanged hydrogen with deuterium, the maximum loss of deuterium content is only 17% of the label, indicating the loss of only one deuterium molecule per peptide.

  1. Correlation between abnormal deuterium flux and heat flow in a D/Pd system

    International Nuclear Information System (INIS)

    Li Xingzhong; Liu Bin; Tian Jian; Wei Qingming; Zhou Rui; Yu Zhiwu

    2003-01-01

    Deuterium flux through the thin wall of a palladium tube has been studied by monitoring gas pressure and temperature. A high-precision calorimeter (Calvet) was used to detect heat flow when the heater was shut down and the palladium tube was cooling down slowly. At certain temperatures an abnormal deuterium flux appeared. This deuterium flux reached a peak when the temperature of the palladium was decreasing. This abnormal deuterium flux differs from the monotonic feature of a normal diffusive flux and is accompanied by a heat flow

  2. Neutron production with mixture of deuterium and krypton in Sahand Filippov type plasma focus facility

    International Nuclear Information System (INIS)

    Mohammadi, M.A.; Sobhanian, S.; Rawat, R.S.

    2011-01-01

    This Letter reports the order of magnitude enhancement in neutron yield from Sahand plasma focus device with krypton seeded deuterium operation. The highest average neutron yield of 2.2x10 9 neutrons per shot was achieved at 1.00 Torr deuterium with 3% krypton which is higher than the best average neutron yield of 3.18x10 8 neutrons per shot for pure deuterium operation. Estimation of average neutron energy showed that the maximum and minimum average energies are 2.98±0.6 MeV at 16 kV in 0.25 Torr deuterium with 3% Kr and 2.07±0.2 MeV at 18 kV operation in 0.5 Torr deuterium with 3% Kr, respectively. The anisotropy of neutron emission from Sahand DPF showed that the neutrons are produced mainly by beam-target mechanisms. -- Highlights: → The highest average neutron yield of 2.2x10 9 neutrons per shot was achieved at mixture of deuterium and krypton. → In the krypton seeding of deuterium also anisotropy of neutron emission deuterium is found. → The krypton seeding of deuterium made the neutron emission more reliable over wider operating pressure ranges.

  3. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    International Nuclear Information System (INIS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-01-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240 Pu . On the other hand, identification of shielded uranium requires active methods using neutron or photon sources . Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials . In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers . Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1x10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2x10 4 n/cm 2 s.

  4. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions

  5. Electron scattering from high-momentum neutrons in deuterium

    International Nuclear Information System (INIS)

    Klimenko, A.V.; Kuhn, S.E.; Bueltmann, S.; Careccia, S.L.; Dharmawardane, K.V.; Dodge, G.E.; Guler, N.; Hyde-Wright, C.E.; Klein, A.; Tkachenko, S.; Weinstein, L.B.; Zhang, J.; Butuceanu, C.; Griffioen, K.A.; Baillie, N.; Fersch, R.G.; Funsten, H.; Egiyan, K.S.; Asryan, G.; Dashyan, N.B.

    2006-01-01

    We report results from an experiment measuring the semiinclusive reaction 2 H(e,e ' p s ) in which the proton p s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p → s , and momentum transfer Q 2 . The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a 'bound neutron structure function' F 2n eff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For p s >0.4 GeV/c, where the neutron is far off-shell, the model overestimates the value of F 2n eff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's 'off-shell-ness' is one possible effect that can cause the observed deviation

  6. Results of neutron irradiation of liquid lithium saturated with deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Mazzitelli, Giuseppe [ENEA, RC Frascati, Frascati (Italy)

    2017-04-15

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(−144/RT). • The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10{sup −13} cm{sup −2} s{sup −1}. The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(-144/RT). The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  7. Upper limit to the deuterium abundance and a measurement of the pickering-β line in the low excitation planetary IC 418

    International Nuclear Information System (INIS)

    Le Vaux, H.A.

    1977-01-01

    The problem of detecting a weak spectrum line, deuterium alpha, very near in wavelength to H/sub alpha/, assumed to be thousands of times as strong, is discussed from the point of view of optimizing the signal-to-noise ratio. A spectrometer consisting of three pressure scanning Fabry-Perot etalons with low reflectivity coatings was found to be the best instrument for this experiment. While no feature attributable to deuterium was detected in the planetary nebula IC 418, an upper limit relative to hydrogen of 3.4 x 10 -5 was established at the 95% confidence level. The significance of this result is discussed in light of the role played by deuterium in cosmology. The intensity ratio of the Pickering beta line (n'' = 6, n' = 4 transition of ionized helium) relative to H/sub alpha/ was measured to be 6.5 x 10 -5 . Observations of the nebular continuum made at five wavelengths in the red and near infrared are summarized and compared with predicted intensities

  8. Process and device for stage by stage enrichment of deuterium and/or tritium in a material suitable for isotope exchange of deuterium and tritium with hydrogen

    International Nuclear Information System (INIS)

    Iniotakis, N.; Decken, C.B. von der.

    1983-01-01

    Water containing deuterium and/or tritium is first introduced into a carrier gas flow and reduced for the stage by stage enrichment of deuterium and/or tritium. A hydrogen partial pressure of a maximum of 100 millibar is set in the carrier gas flow. The carrier gas flow is taken along the primary side of an exchange wall suitable for the permeation of hydrogen, and a further carrier gas flow flows on its secondary side, which contains water or hydrogen. Reaction products formed after isotope exchange of deuterium and/or tritium with hydrogen are removed by the secondary carrier gas flow. (orig./HP) [de

  9. Hot muonic deuterium and tritium from cold targets

    International Nuclear Information System (INIS)

    Marshall, G.M.; Beveridge, J.L.; Bailey, J.M.; Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A.; Brewer, J.H.; Forster, B.M.; Huber, T.M.; Pippitt, B.; Jacot-Guillarmod, R.; Schellenberg, L.; Martoff, C.J.; Petitjean, C.

    1992-01-01

    Experiments are described which use a solid hydrogen layer to form muonic hydrogen isotopes in vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to study the energy dependence of transfer and muon molecular formation

  10. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Helium and deuterium permeability in O-rings

    International Nuclear Information System (INIS)

    Lakner, J.F.

    1976-01-01

    To obtain more information on gas permeation through elastomeric O-rings, studies were performed on Parker Seal Company O-rings, Nos. 2-113, 2-006, 3-904, and 3-906, all made of a nitrile rubber. Also included in the tests was a valve packing (Autoclave Engineers) encased in AE Valve 20A-2142. Permeation experiments were run usually in duplicate to 82.7 MPa (12,000 psi) with helium and deuterium at room temperature. The data are extrapolated to give values for tritium

  12. Isotopic scaling of transport in deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Scott, S.D.; Adler, H.; Bell, M.G.; Bell, R.; Budny, R.V.; Bush, C.E.; Chang, Z.; Duong, H.

    1995-01-01

    Both global and thermal energy confinement improve in high-temperature supershot plasmas in the Tokamak Fusion Test Reactor (TFTR) when deuterium beam heating is partially or wholly replaced by tritium beam heating. For the same heating power, the tritium-rich plasmas obtain up to 22% higher total energy, 30% higher thermal ion energy, and 20-25% higher central ion temperature. Kinetic analysis of the temperature and density profiles indicates a favorable isotopic scaling of ion heat transport and electron particle transport, with τ Ei (a/2) ∝ (A) 0.7-0.8 and τ pe (a) ∝ (A) 0.8

  13. Relativistic description of the Fermi motion effects on deuterium targets

    International Nuclear Information System (INIS)

    Kusno, D.

    1979-12-01

    A comprehensive analysis of the inconsistencies of the conventional, non-relativistic approach, which has been used so far in the extraction of neutron data from deuterium targets, is given. A new approach dealing with the smearing effects, due to the nucleon's Fermi motion inside the deuteron, is developed as an alternative to the conventional one. This new approach is a spin-less, relativistic, simple and consistent approach. A new covariant model of the elastic electromagnetic form factors of the deuteron in the impulse approximation is also presented. The treatment includes spin and allows for a possibility of determining completely the two elastic structure functions

  14. Pontecorvo reactions of two-body antiproton annihilation in deuterium

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Sapozhnikov, M.G.

    1988-01-01

    Rare annihilation reactions for stopped antiprotons in deuterium, p-bard→π - p; K + Σ - ; K 0 Λ, are considered using the two-step model described by the triangle diagram. It was found that the probabilities, W, of these processes are very sensitive to the behaviour of the deuteron wave function at small distances as well as to the meson form factors. It appears that the ratios R(KX)=W(KX)/W(π - p) are much less model-dependent and are about 10 -2 for R(K 0 λ) and 10 -4 for R(K + Σ - ). 17 refs.; 1 fig.; 3 tabs

  15. Thermodynamics of hydrogen and deuterium solutions in. cap alpha. -zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Vinokurov, Yu V; Mogutnov, B M [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1979-09-01

    Interaction of H/sub 2/ and D/sub 2/ with ..cap alpha..-Zr are studied in the 700-890 K temperature range using a high-temperature colorimeter. It is shown that hydrogen and deuterium partial enthalpies in zirconium do not depend on the temperature and concentration and compose -48.9+-1.0 and -46.2+-1.2 kJ/g-at. Calculated is an excess entropy of hydrogen in a solution and analyzed are contributions composing it.

  16. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    Science.gov (United States)

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  17. Rapid deuterium exchange-in time for probing conformational change

    International Nuclear Information System (INIS)

    Dharmasiri, K.; Smith, D.L.

    1995-01-01

    Isotopic exchange of protein backbone amide hydrogens has been used extensively as a sensitive probe of protein structure. One of the salient features of hydrogen exchange is the vast range of exchange rates in one protein. Isotopic exchange methods have been used to study the structural features including protein folding and unfolding (1), functionally different forms of proteins (2), protein-protein complexation (3), and protein stability parameter. Many backbone amide protons that are surface accessible and are not involved in hydrogen bonding undergo rapid deuterium exchange. In order to study, fast exchanging amide protons, fast exchange-in times are necessary

  18. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota; Al-Kassab, Talaat; Kirchheim, Reiner; Pundt, Astrid A.

    2012-01-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Interaction of graphite with a hot, dense deuterium plasma

    International Nuclear Information System (INIS)

    Desko, J.C. Jr.

    1980-01-01

    The erosion of ATJ-S graphite caused by a hot, dense deuterium plasma has been investigated experimentally. The plasma was produced in an electromagnetic shock tube. Plasma characteristics were typically: ion temperature approx. = 800 eV (approx. 1 x 10 7 0 K), number density approx. = 10 16 /cm 3 , and transverse magnetic field approx. = 1 tesla. The energetic ion flux, phi, to the sample surfaces was approx. 10 23 ions/cm 2 -sec for a single pulse duration of approx. 0.1 usec. Sample surfaces were metallographically prepared and examined with a scanning electron microscope before and after exposure

  20. Thermonuclear reaction rates in a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    Beckman, L.

    1978-12-01

    In a deuterium-tritium plasma six thermonuclear reactions take place between the deuterons, tritons and the 3 He-particles formed in about half of the d-d-reactions. The rate constants for these six reactions have been calculated from the latest evaluations of the reaction cross sections which were available. In some cases, notably the reactions t+t, t+ 3 He and 3 He+ 3 He, the number of published cross section measurements is small, and the uncertainty in the calculated rate constants consequently large. Analytical expressions for the rate constants as functions of the plasma temperature have been set up. (author)

  1. Measurement and interpretation of triton burnup in Jet deuterium plasmas

    International Nuclear Information System (INIS)

    Jarvis, O.N.; Kallne, J.; Sadler, G.; van Belle, P.; Gorini, G.; Conroy, S.; Verschuur, K.

    1989-01-01

    The confinement and slowing down of fast tritons in JET deuterium plasmas is investigated. The ratio of 14 MeV and 2.5 MeV neutron production rates is measured. This ratio is equal to the fraction of tritons which burnup. The 2.5 MeV neutron emission is obtained from a set of fission chambers for which the calibration uncertainty is about 10%. The absolute calibration of the activation technique is calculated. The comparison between experimental and theoretical burnup ratios, for JET 1987 data, is shown. The range of conditions over which measurements of triton burnup fraction were obtained, is illustrated

  2. Cold nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, E.N., E-mail: edward.tsyganov@coldfusion-power.com [Cold Fusion Power, International (United States); Bavizhev, M.D. [LLC “Radium”, Moscow (Russian Federation); Buryakov, M.G. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Dabagov, S.B. [RAS P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Golovatyuk, V.M.; Lobastov, S.P. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction’s theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300–700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of {sup 4}He{sup ∗}.

  3. Cluster dynamics transcending chemical dynamics toward nuclear fusion.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-07-11

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 10(15)-10(20) W.cm(-2)). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C(4+)(D(+))(4))(n) and (D(+)I(22+))(n) at I(M) = 10(18) W.cm(-2), that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. The laser intensity and the cluster size dependence of the dynamics and energetics of CE of (D(2))(n), (HT)(n), (CD(4))(n), (DI)(n), (CD(3)I)(n), and (CH(3)I)(n) clusters were explored by electrostatic models and molecular dynamics simulations, quantifying energetic driving effects, and kinematic run-over effects. The optimization of table-top dd nuclear fusion driven by CE of deuterium containing heteroclusters is realized for light-heavy heteroclusters of the largest size, which allows for the prevalence of cluster vertical ionization at the highest intensity of the laser field. We demonstrate a 7-orders-of-magnitude enhancement of the yield of dd nuclear fusion driven by CE of light-heavy heteroclusters as compared with (D(2))(n) clusters of the same size. Prospective applications for the attainment of table-top nucleosynthesis reactions, e.g., (12)C(P,gamma)(13)N driven by CE of (CH(3)I)(n) clusters, were explored.

  4. Structural transformations in austenitic stainless steel induced by deuterium implantation: irradiation at 100 K.

    Science.gov (United States)

    Morozov, Oleksandr; Zhurba, Volodymyr; Neklyudov, Ivan; Mats, Oleksandr; Rud, Aleksandr; Chernyak, Nikolay; Progolaieva, Viktoria

    2015-01-01

    Deuterium thermal desorption spectra were investigated on the samples of austenitic stainless steel 18Cr10NiTi preimplanted at 100 K with deuterium ions in the dose range from 3 × 10(15) to 5 × 10(18) D/cm(2). The kinetics of structural transformation development in the implantation steel layer was traced from deuterium thermodesorption spectra as a function of implanted deuterium concentration. At saturation of austenitic stainless steel 18Cr10NiTi with deuterium by means of ion implantation, structural-phase changes take place, depending on the dose of implanted deuterium. The maximum attainable concentration of deuterium in steel is C = 1 (at.D/at.met. = 1/1). The increase in the implanted dose of deuterium is accompanied by the increase in the retained deuterium content, and as soon as the deuterium concentration attains C ≈ 0.5 the process of shear martensitic structural transformation in steel takes place. It includes the formation of bands, body-centered cubic (bcc) crystal structure, and the ferromagnetic phase. Upon reaching the deuterium concentration C > 0.5, the presence of these molecules causes shear martensitic structural transformations in the steel, which include the formation of characteristic bands, bcc crystal structure, and the ferromagnetic phase. At C ≥ 0.5, two hydride phases are formed in the steel, the decay temperatures of which are 240 and 275 K. The hydride phases are formed in the bcc structure resulting from the martensitic structural transformation in steel.

  5. Experimental Determination of the Possible Deuterium - Deuterium Fusion Reaction Originated in a Single Cavitation Bubble Luminescence System Using CDCL3 and D2 O

    International Nuclear Information System (INIS)

    Barbaglia, Mario; Florido, Pablo; Mayer, Roberto; Bonetto, Fabian

    2003-01-01

    We focus this work on the measurement of the possible Deuterium - Deuterium reaction in a SCBL (Single Cavitation Bubble Luminescence) system.We measure the possible reaction at the bubble generation time and at the bubble collapse time. We use a Nd:YAG laser and CDCl 3 and D 2 O as a medium to generate the bubble. Since CDCl 3 accommodation coefficient is best than that of D 2 O, it is expected a greater collapse force than using D 2 O.To benefit the bubble collapse violence, we diminish the temperature of the liquids.To avoid false neutron detection, we developed a measuring system with high background reject using the characteristic experiment times.No neutrons attributable to Deuterium - Deuterium fusion reaction were measured

  6. Transport of deuterium, tritium and helium in a tokamak

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.

    1984-02-01

    A one-dimensional numerical model for determining steady-state radial profiles of the densities of the particles, including neutrals, in a multispecies toroidal plasma is described. For prescribed temperature profiles, the coupled momentum and particle balances of the ions are solved numerically with a newly developed compact finite difference scheme for a non-equidistant mesh. Neutral densities are obtained by solving the Boltzmann equations, using a collocation method. The model is applied to deuterium-tritium plasmas without and with a helium admixture. For the charged particles, Pfirsch-Schlueter transport, including the highly collisional extension, and either of two anomalous transport models are adopted. For equal densities of deuterons and tritons in the plasma centre, the neutral tritium density in front of the wall is found to be 1.3 to 1.6 times higher than that of deuterium, depending on the plasma density, the temperature profile and the transport model. Secondly, it is found that pumping neutral helium, originating from fusion alpha particles, out of a cold plasma/gas blanket surrounding the hot plasma is not feasible, as the helium gas density, corresponding to a relative abundance of alpha-particles in the plasma core below 10%, is very low. Although depending strongly on the ion transport model and being increased by elastic collisions between neutral helium and charged hydrogen isotopes, the neutral helium enrichment ratio is always much less than unity. (Auth.)

  7. Deuterium lamps as transfer standards for spectral radiance measurements

    International Nuclear Information System (INIS)

    Key, P.J.; Nettleton, D.H.

    1985-01-01

    This report describes the work carried out at NPL and PTB to improve the performance of a low pressure deuterium discharge lamp, so that it can be used as a transfer standard in the spectral range 120 to 350 nm. To this end it was necessary: - to replace the original quartz windows by magnesium fluoride single crystal plates, which were cut perpendicular to the c-axis of the crystal and which had to be free of impurities, - to construct the lamps in that way that the directional uniformity of the emitted radiation is within the demands, - to age the lamps and to preselect only those of which the irradiance was stable within ± 1% during a thirty minute period after warm-up, - to improve the commercially available electrical power supply to meet the operational needs of the lamps. Thus, the deuterium lamps drifted by about 3% over a period of 100 h at all wavelengths except at 250 nm, where the ageing increased to 4.5%. A liquid nitrogen trap has been developed which can be installed between the vacuum system and the lamp. This reduced to about 2% the decrease of the window's transmission during the first hour of operation, caused by the deposition of oil from the vacuum system

  8. Method to separate and enrich molecules containing deuterium

    International Nuclear Information System (INIS)

    Benson, S.W.

    1978-01-01

    Organic molecules having a normal H and D content and the general formula RX, in which R is chosen from ethyl, isopropyl, tert. butyl or cyclopentenyl groups and X is a functional group such as F, Cl, Br or OH and can even be H in the special case of cyclopentene, are exposed to an infra-red laser radiation. By careful adjustment, bundling and pulsing of an infrared laser, D-contained RX molecules exposed to the laserbeam, can dissociate or decompose. A D-contained olefin and HX is formed under suitable conditions after exposure to laser radiation. The D-contained olefin is drawn off and combusted to obtain D-contained water or D-contained hydrogen. The non-decomposed or non-reacted RX molecules which are deuterium-impoverished can be decomposed to deuterium impoverished olefins and HX in a further process step by heating on a catalyst. The latter products can then be separated off and be catylytically exchanged with normal water in order to reproduce the normal isotopic composition. They may then where necessary be catalytically recombined to form normal RX which can be recycled. (GG) [de

  9. Codeposition of deuterium ions with beryllium oxide at elevated temperatures

    CERN Document Server

    Markin, A V; Gorodetsky, A E; Negodaev, M A; Rozhanskii, N V; Scaffidi-Argentina, F; Werle, H; Wu, C H; Zalavutdinov, R K; Zakharov, A P

    2000-01-01

    Deuterium-loaded BeO films were produced by sputtering the beryllium target with 10 keV Ne ions in D sub 2 gas at a pressure of approximately 1 Pa. The sputtered beryllium reacts - on the substrate surface - with the residual oxygen, thus forming a beryllium oxide layer. Biasing the substrate negatively with respect to the target provides the simultaneous bombardment of the growing film surface with D ions formed by Ne-D sub 2 collisions. Substrate potential governs the maximum energy of ions striking the growing film surface while its size governs the flux density. According to X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and reflection high energy electron diffraction (RHEED) data, the beryllium is deposited in the form of polycrystalline hcp-BeO layers with negligible (about 1 at.%) carbon and neon retention. Thermal desorption spectroscopy (TDS) data shows a strong deuterium bonding, with a desorption peak at 950 K, in the films deposited at -50 and -400 V substrate potentia...

  10. Measurement of anomalous neutron from deuterium/solid system

    International Nuclear Information System (INIS)

    Zhu Rongbao; Wang Xiaozhong; Lu Feng; Luo Longjun; He Jianyu; Ding Dazhao; Menlove, H.O.

    1991-01-01

    A series of experiments on both D 2 O electrolysis and thermal cycle of deuterium absorbed Ti Turnings are designed to examine the anomalous phenomena in Deuterium/Solid System. A neutron detector containing 16 BF 3 tubes with a detection limit of 0.38 n/s for two hour counting is used for electrolysis experiments. No neutron counting rate statistically higher than detection limit is observed from Fleischmann and Pons type experiments. An HLNCC-II neutron detector equipped with 18 3 He tubes and JSR-11 shift register unit with a detection limit of 0.20 n/s for a two hour run are employed to study the neutron signals in D 2 gas experiments. Ten batches of dry fusion samples are tested, among them, seven batches with neutron burst signals occur roughly at the temperature from -100 degrees centigrade to near room temperature. In the first four runs of a typical sample batch, seven neutron bursts are observed with neutron numbers from 15 to 482, which are 3 and 75 times, respectively, higher than the uncertainty of background. However, no bursts happened for H 2 dummy samples running in-between and afterwards and for sample batch after certain runs

  11. A laser-driven source of polarized hydrogen and deuterium

    International Nuclear Information System (INIS)

    Young, L.; Holt, R.J.; Gilman, R.A.; Kowalczyk, R.; Coulter, K.

    1989-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin-exchange optical pumping is being developed. This source is designed to operate as an internal target in an electron storage ring for fundamental studies of spin-dependent structure of nuclei. It has the potential to exceed the flux from existing conventional sources (3 times 10 16/ s) by an order of magnitude. Currently, the source delivers hydrogen at a flux of 8 times 10 16 atoms/s with an atomic polarization of 24% and deuterium at 6 times 10 16 atoms/s with a polarization of 29%. Technical obstacles which have been overcome, with varying degrees of success are complete Doppler-coverage in the optical-pumping stage without the use of a buffer gas, wall-induced depolarization and radiation-trapping. Future improvements should allow achievement of the design goals of 4 times 10 17 atoms/s with a polarization of 50%. 8 refs., 2 figs

  12. A study of inclusive charged current neutrino interactions in deuterium

    International Nuclear Information System (INIS)

    Visser, C.P.

    1986-01-01

    In this thesis the results of an analysis of inclusive neutrino and antineutrino interaction on deuterium nuclei are presented. The use of deuterium as a target provides a mean to study proton and neutron scattering separately. The presently accepted theory of electro-weak interactions is reviewed. Applications of the quark-parton model in the context of deep-inelastic neutrino interactions on nucleons are summarized. The concept of scaling and its consequences are treated, together with some sources of violation of scaling. The properties of the CERN wide-band neutrino beam and an overview of the elements of this beam are given. The method to determine the energy distribution and the composition of the neutrino and antineutrino beam is described. The technique employed to separate neutrino interactions on protons and neutrons is discussed. Results of the measurement of the total nucleon charged-current cross-sections and differential cross-sections are presented. The relative contributions of quarks and antiquarks to the neutrino cross-sections are deduced from y-distributions and compared to those obtained from the total cross-section measurements. Finally, the analysis of the structure functions is given. (Auth.)

  13. A high deuterium abundance at redshift z = 0.7.

    Science.gov (United States)

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

  14. Spin-polarized hydrogen, deuterium, and tritium : I

    International Nuclear Information System (INIS)

    Haugen, M.; Ostgaard, E.

    1989-01-01

    The ground-state energy of spin-polarized hydrogen, deuterium and tritium is calculated by means of a modified variational lowest order constrained-variation method, and the calculations are done for five different two-body potentials. Spin-polarized H is not self-bound according to our theoretical results for the ground-state binding energy. For spin-polarized D, however, we obtain theoretical results for the ground-state binding energy per particle from -0.4 K at an equilibrium particle density of 0.25 σ -3 or a molar volume of 121 cm 3 /mol to +0.32 K at an equilibrium particle density of 0.21 σ -3 or a molar volume of 142 cm 3 /mol, where σ = 3.69 A (1A = 10 -10 m). It is, therefore, not clear whether spin-polarized deuterium should be self-bound or not. For spin-polarized T, we obtain theoretical results for the ground-state binding energy per particle from -4.73 K at an equilibrium particle density of 0.41 σ -3 or a molar volume of 74 cm 3 /mol to -1.21 K at an equilibrium particle density of 0.28 σ -3 or a molar volume of 109 cm 3 /mol. (Author) 27 refs., 9 figs., tab

  15. Deuterium isotope composition of palaeoinfiltration water trapped in speleothems

    International Nuclear Information System (INIS)

    Rozanski, K.

    1987-05-01

    Analytical and methodological aspects of combined isotope investigations of carbonate cave deposits are thoroughly discussed in the report. Weight is put on isotope analyses of fluid inclusions (D and 18 O content) extracted from speleothems of known age. Dating was done by the 230 Th/ 234 U ratio method. Isotopic analyses of speleothems originating from European caves allowed some important conclusions to be formulated regarding past climatic and environmental conditions prevailing over the European continent during the last 300,000 yrs: a) δD values of fluid inclusions suggest a remarkable constancy of the heavy-isotope content of European palaeoinfiltration waters recharged during interglacial periods, b) a climate-induced, long-term changes in isotopic composition of precipitation and surface air temperature over Europe can be characterized by the deuterium gradient of ca.1 4 deg./oo/deg. C, c) an apparent constancy of the continental gradient in deuterium content of European palaeoinfiltration waters as judged from the fluid inclusion data suggests that atmospheric circulation over Europe did not undergo substantial changes for at least 300,000 years

  16. 3400 m/s deuterium pellet injector for Tore Supra

    International Nuclear Information System (INIS)

    Perin, J.P.; Geraud, A.

    1995-01-01

    This paper reports on the Tore Supra high velocity pellet injector which was built in Grenoble and after qualification tests installed on Tore Supra Tokomak where it is used for plasma and ablation studies. By using a two stage light gas gun (TSG) and two cells (φ = 3 mm or 4 mm), unsupported pellets pellets (1 to 3.5 10 21 atoms) made directly in the gun by > [1] have been launched into Tore Supra plasma at speeds between 2400m/s and 3400m/s with a reliability of 80%. These higher pellets velocities (> 2500 m/s) [2] are obtained by the optimization of a TSG and the search for the cryogenic conditions of freezing deuterium with good mechanical properties. In particular, the impurities concentration in deuterium during the condensation process has been studied. Several tens pellets have been injected into ohmically and ICR heated plasma and during LH current drive experiments with a good reliability in the range of 3000m/s. These experiments allowed us to extend significantly the ablation data base. Central penetrations can be reached even for high temperatures plasma (3-5 keV) and very peaked density profiles have been obtained in ohmically and ICR heated plasmas A transient improved confinement regime is then observed, which presents some features similar to the PEP regime obtained on JET. (orig.)

  17. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  18. Hydrogen, deuterium, and tritium isotope exchange experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.D.; Andrew, P.; Bracco, G.; Conroy, S.; Corti, S.; Ehrenberg, J.; Goodall, D.H.J.; Jarvis, O.N.; Lomas, P.; Loughlin, M.; Peacock, A.T.; Saibene, G.; Sadler, G.; Sartori, R.; Stamp, M.F.; Thomas, P.R.; Belle, P. van (JET Joint Untertaking, Abingdon, Oxfordshire (United Kingdom))

    1992-12-01

    Isotope exchange experiments have been performed in JET using hydrogen, deuterium, and, in the recent preliminary tritium experiment (PTE), tritium. The rate of change-over from one isotope to another involves two quite different time constants. We have modelled this behaviour using a multireservoir model which splits the accessible hydrogenic particles into two groups, each having a different rate of exchange of particles with the plasma. By applying this model to the sequence of discharges during and after the PTE, we can determine the parameters in the model. The resulting fit also gives a good representation of hydrogen/deuterium change-over experiments, indicating that the tritium behaves in the same manner as other hydrogen isotopes, at least as far as recycling is concerned. Discrepancies between the model and the actual measurements of tritium recovery after the PTE lead us to conclude that isotope exchange processes resulting from collisions of molecules with the vessel walls play a significant role in spreading tritrium around the machine. (orig.).

  19. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Shimada, M.; Merrill, B.J. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Akers, D.W. [Experimental Programs, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan)

    2015-08-15

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  20. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    Science.gov (United States)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  1. Measurement of gluconeogenesis using glucose fragments and mass spectrometry after ingestion of deuterium oxide

    NARCIS (Netherlands)

    Chacko, Shaji K.; Sunehag, Agneta L.; Sharma, Susan; Sauer, Pieter J. J.; Haymond, Morey W.

    We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of

  2. Measurement of gluconeogenesis using glucose fragments and mass spectrometry after ingestion of deuterium oxide.

    Science.gov (United States)

    We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of gluc...

  3. Synthesis of seven deuteromethyl-caffeine analogues observation of deuterium isotope effects on CMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Falconnet, J.B.; Brazier, J.L.; Desage, M.

    1986-03-01

    The synthesis of all 7 N-trideuteromethyl isotopomers of caffeine by reaction of trideuteromethyl iodide (C/sup 2/H/sub 3/I) with the appropriate xanthine molecules is described. The use of proton, deuterium and carbon-13-NMR as a first step in purity assessment revealed /sup 13/C-NMR deuterium isotope effects on the resonance of perdeuteromethyl carbons.

  4. Atmospheric influence on the deuterium excess signal in polar firn - implications for ice core interpretation

    NARCIS (Netherlands)

    Schlosser, Elisabeth; Oerter, H.; Masson-Delmotte, V.; Reijmer, C.H.

    2008-01-01

    The seasonal deuterium excess signal of fresh snow samples from Neumayer station, coastal Dronning Maud Land, Antarctica, was studied to investigate the relationship between deuterium excess and precipitation origin. An isotope model was combined with a trajectory model to determine the relative

  5. Effect of noble gas ion pre-irradiation on deuterium retention in tungsten

    NARCIS (Netherlands)

    Cheng, L.; Zhao, Z. H.; De Temmerman, G.; Yuan, Y.; Morgan, T. W.; Guo, L. P.; Wang, B.; Zhang, Y.; Wang, B. Y.; Zhang, P.; Cao, X. Z.; Lu, G. H.

    2016-01-01

    Impurity seeding of noble gases is an effective way of decreasing the heat loads onto the divertor targets in fusion devices. To investigate the effect of noble gases on deuterium retention, tungsten targets have been implanted by different noble gas ions and subsequently exposed to deuterium

  6. The sensitizing phenomenon of X-ray film in the experiment of metals loaded with deuterium

    International Nuclear Information System (INIS)

    Chen Suhe; Wang Dalun; Chen Wenjang; Li Yijun; Fu Yibei; Zhang Xinwei

    1993-01-01

    The sensitizing phenomenon of X-ray film was studied, in metals loaded with deuterium, by a cycle method of temperature and pressure (CMTP). The experimental results showed that the sensitization of X-ray film was derived from the chemical reaction and the anomalous effect of metals loaded with deuterium. (author)

  7. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  8. The need for accurate deuterium analysis in a heavy water plant and its achievement

    International Nuclear Information System (INIS)

    Singh, R.R.; Pradhan, D.G.

    1979-01-01

    Importance of Mass Spectrometer as an analytical tool for deuterium analysis in heavy water plants is discussed. Some of the important requirements such as memory effect and H 3 + correction are described with reference to the Mass Spectrometer used at HWP (Talcher). For achieving the accuracy required, use of international deuterium standards and error estimation found by intercalibration are discussed. (auth.)

  9. Evidence of emission of neutrons from a titanium-deuterium system

    International Nuclear Information System (INIS)

    Ninno, A. de; Frattolillo, A.; Lollobattista, G.; Martinis, L.; Martone, M.; Mori, L.; Podda, S.; Scaramuzzi, F.

    1989-01-01

    The interaction of deuterium gas with titanium has produced a flow of neutrons in two experiments reported here. This seems to show that it is not necessary to use electrolysis in order to obtain a low-temperature fusion reaction between deuterium nuclei. The experiment confirms also that nonequilibrium conditions are necessary in order to produce such a phenomenon

  10. Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; van den Berg, A.H.J.; Smithers, Mark A.; Smithers, M.A.

    2006-01-01

    The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material,

  11. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N. [Fusion Safety Program, Idaho National Laboratory, P.O. Box 1625-7113, Idaho Falls, Idaho 83415 (United States); School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Illinois 61801 (United States); Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Institute for Advanced Computational Science, Stony Brook University, New York 11794 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); TheoretiK, Knoxville, Tennessee 379XX (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-05-15

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to ∼16% and then bombarded with deuterium. X-ray photoelectron spectroscopy showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  12. Deuterium trapping at vacancy clusters in electron/neutron-irradiated tungsten studied by positron annihilation spectroscopy

    Science.gov (United States)

    Toyama, T.; Ami, K.; Inoue, K.; Nagai, Y.; Sato, K.; Xu, Q.; Hatano, Y.

    2018-02-01

    Deuterium trapping at irradiation-induced defects in tungsten, a candidate material for plasma facing components in fusion reactors, was revealed by positron annihilation spectroscopy. Pure tungsten was electron-irradiated (8.5 MeV at ∼373 K and to a dose of ∼1 × 10-3 dpa) or neutron-irradiated (at 573 K to a dose of ∼0.3 dpa), followed by post-irradiation annealing at 573 K for 100 h in deuterium gas of ∼0.1 MPa. In both cases of electron- or neutron-irradiation, vacancy clusters were found by positron lifetime measurements. In addition, positron annihilation with deuterium electrons was demonstrated by coincidence Doppler broadening measurements, directly indicating deuterium trapping at vacancy-type defects. This is expected to cause significant increase in deuterium retention in irradiated-tungsten.

  13. Some experiments on cold fusion by deuterium hydrogen gas infusion in titanium metal alloy

    International Nuclear Information System (INIS)

    Mestnik Filho, J.; Geraldo, L.P.; Pugliese, R.; Saxena, R.N.; Morato, S.P.; Fulfaro, R.

    1990-05-01

    New results on cold fusion are reported where three different experimental situations have been tried: a) deuterium gas loaded titanium; b) deuterium gas loaded Ti 0.8 Zr 0.2 CrMn alloy and c) titanium and the Ti 0.8 Zr 0.2 CrMn alloy loaded with a mixture of deuterium and hydrogen gases. With these experiments, new thermodynamical non equilibrium conditions were achieved and the possibility of cold fusion between protons and deuterons was also tested. Three independent neutron detectors and one NaI(Tl) were utilized. Despite some large values reported in the literature for the fusion rate, an upper limit of only 8 x 10 -24 fusions/sper deuterium pair or per deuterium-hydrogen pair was determined within the attained accuracy. (author) [pt

  14. Deuterium trapping in ion implanted and co-deposited beryllium oxide layers

    International Nuclear Information System (INIS)

    Markin, A.V.; Gorodetsky, A.E.; Zakharov, A.P.; Wu, C.H.

    2000-01-01

    Deuterium trapping in beryllium oxide films irradiated with 400 eV D ions has been studied by thermal desorption spectroscopy (TDS). It has been found that for thermally grown BeO films implanted in the range 300 - 900 K the total deuterium retention doesn't depend whereas TDS spectra do markedly on irradiation temperature. For R.T. implantation the deuterium is released in a wide range from 500 to 1100 K. At implantation above 600 K the main portion of retained deuterium is released in a single peak centered at about 1000 K. The similar TDS peak is measured for D/BeO co-deposited layer. In addition we correlate our implantation data on BeO with the relevant data on beryllium metal and carbon. The interrelations between deuterium retention and microstructure are discussed. (orig.)

  15. Partial molar volumes of hydrogen and deuterium in niobium and vanadium

    International Nuclear Information System (INIS)

    Herro, H.M.

    1979-01-01

    Lattice dilation studies and direct pressure experiments gave comparable values for the partial molar volumes of hydrogen and deuterium in niobium and vanadium. Small isotope effects in the partial molar volume of hydrogen were measured in both metals by the differential isotope method. Hydrogen had a larger partial molar volume than deuterium in niobium, but the reverse was true in vanadium. The isotope effect measured in niobium can be represented as being due to the larger amplitude of vibration of the hydrogen atom than the deuterium atom in the metal lattice. Since hydrogen has a larger mean displacement from the equilibrium position than does deuterium, the average force hydrogen exerts on the metal atoms is greater than the force deuterium exerts. The isotope effect in vanadium is likely a result of anharmonic effects in the lattice and local vibrational modes

  16. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  17. Electrons for Neutrinos: Using Electron Scattering to Develop New Energy Reconstruction for Future Deuterium-Based Neutrino Detectors

    Science.gov (United States)

    Silva, Adrian; Schmookler, Barak; Papadopoulou, Afroditi; Schmidt, Axel; Hen, Or; Khachatryan, Mariana; Weinstein, Lawrence

    2017-09-01

    Using wide phase-space electron scattering data, we study a novel technique for neutrino energy reconstruction for future neutrino oscillation experiments. Accelerator-based neutrino oscillation experiments require detailed understanding of neutrino-nucleus interactions, which are complicated by the underlying nuclear physics that governs the process. One area of concern is that neutrino energy must be reconstructed event-by-event from the final-state kinematics. In charged-current quasielastic scattering, Fermi motion of nucleons prevents exact energy reconstruction. However, in scattering from deuterium, the momentum of the electron and proton constrain the neutrino energy exactly, offering a new avenue for reducing systematic uncertainties. To test this approach, we analyzed d (e ,e' p) data taken with the CLAS detector at Jefferson Lab Hall B and made kinematic selection cuts to obtain quasielastic events. We estimated the remaining inelastic background by using d (e ,e' pπ-) events to produce a simulated dataset of events with an undetected π-. These results demonstrate the feasibility of energy reconstruction in a hypothetical future deuterium-based neutrino detector. Supported by the Paul E. Gray UROP Fund, MIT.

  18. Neutron cross-sections of deuterium in the energy range 0.0001eV-15MeV

    International Nuclear Information System (INIS)

    Bazazyants, N.O.; Zabrodskaya, A.S.; Larina, A.F.; Nikolaev, M.N.

    1978-08-01

    The paper describes the evaluation of deuterium neutron cross-sections, the spectra of neutrons from the reaction D(n,2n)P and the angular distributions of neutrons from this reaction and of neutrons elastically scattered on deuterium. The evaluation results are presented in the SOCRATOR format. The 26-group system of constants for deuterium is also presented. (author)

  19. Mass Producing Targets for Nuclear Fusion

    Science.gov (United States)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  20. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    Science.gov (United States)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  1. Deuterium sputtering of Li and Li-O films

    Science.gov (United States)

    Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce

    2017-10-01

    Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.

  2. Activation analysis for LHD experiments with deuterium gases

    International Nuclear Information System (INIS)

    Nishimura, Kiyohiko; Yamanishi, Hirokuni; Komori, Akio

    2008-01-01

    Identification of radionuclides and evaluation of dose rate level have been carried out on the structural materials of the Large Helical Device and the Experimental Hall. The neutron fluence was calculated using two-dimensional transport code DOT-3.5. Energies of neutron sources are 2.45 MeV (D-D reaction) and 14 MeV (D-T reaction). Generations of radionuclides were calculated using CINAC code. Radionuclides of 93m Nb, 63 Ni and 60 Co for helical coils, 55 Fe and 60 Co for stainless steel, 55 Fe, 60 Co and 93m Nb for poloidal coils, 40 K and 55 Fe for floor concrete were dominant after a series of experiments with deuterium gases. Evaluation of dose rate level for the structural materials and air were calculated taking account a present experimental schedule. (author)

  3. Θ"+ search at HERMES with deuterium and hydrogen targets

    International Nuclear Information System (INIS)

    Wang Siguang; Schnell, Gunar

    2016-01-01

    The previous search at HERMES for narrow baryon states excited in quasi-real photo-production, decaying through the channel Θ"+ → pK_S"0 → pπ"+ π"-, has been extended. Improved decay-particle reconstruction, more advanced particle identification, and increased event samples are employed. The structure that was observed earlier at an invariant mass of 1528 MeV shifts to 1522 MeV in the new analysis of data with a deuterium target, with a drop of statistical significance to about 2σ. The number of events above background is 68_-_3_1"+"9"8(stat)±13(sys). No such structure is observed in the hydrogen data set. (author)

  4. Deuterium Abundance in the Local ISM and Possible Spatial Variations

    Science.gov (United States)

    Linsky, Jeffrey L.

    1998-01-01

    Excellent HST/GHRS spectra of interstellar hydrogen and deuterium Lyman-(alpha) absorption toward nearby stars allow us to identify systematic errors that have plagued earlier work and to measure accurate values of the D/H ratio in local interstellar gas. Analysis of 12 sightlines through the Local Interstellar Cloud leads to a mean value of D/H = (1.50 +/- 0.10) x 10(exp -5) with all data points lying within +/- l(delta) of the mean. Whether or not the D/H ratio has different values elsewhere in the Galaxy and beyond is a very important open question that will be one of the major objectives of the Far Ultraviolet Spectroscopic Explorer (FUSE) mission.

  5. Diffusion of hydrogen, deuterium, and tritium in niobium

    International Nuclear Information System (INIS)

    Matusiewicz, G.R.

    1981-01-01

    The diffusion of hydrogen in niobium was investigated over the temperature range 148 to 500 degrees Kelvin, using measurements of the elastic after effect caused by long range diffusion (the Gorsky Effect). Relaxation curves for pure annealed niobium were generally not of the single exponential form expected from the Gorsky Effect theory, but were described well by a sum of two exponential curves with different amplitudes and relaxation times. The effects of oxygen and nitrogen interstitials on the diffusion were studied and were not in agreement with conventional trapping models. Deuterium and tritium diffusion in niobium were also studied, and a non-classical isotope effect was observed. Hydrogen diffusion coefficients in several Nb-Ta alloys were measured, and the diffusivity in all these alloys exhibited a non-Arrhenius temperature dependence. Experimental results were compared to several models for diffusion and trapping. A model is presented which can account for the form of the relaxation curves observed in pure, annealed niobium

  6. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  7. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    Dobrott, D.

    1985-01-01

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  8. Isotopic scaling of transport in deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Scott, S.D.; Murakami, M.; Adler, H.; Chang, Z.; Duong, H.; Grisham, L.R.; Fredrickson, E.D.; Grek, B.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jassby, D.L.; Johnson, D.W.; Johnson, L.C.; Loughlin, M.J.; Mansfield, D.K.; McGuire, K.M.; Meade, D.M.; Mikkelsen, D.M.; Murphy, J.; Park, H.K.; Ramsey, A.T.; Schivell, J.; Skinner, C.H.; Strachan, J.D.; Synakowski, E.J.; Taylor, G.; Thompson, M.E.; Wieland, R.; Zarnstorff, M.C.

    1995-01-01

    Both global and thermal energy confinement improve in high-temperature supershot plasmas in the Tokamak Fusion Test Reactor (TFTR) when deuterium beam heating is partially or wholly replaced by tritium beam heating. For the same heating power, the tritium-rich plasmas obtain up to 22% higher total energy, 30% higher thermal ion energy, and 20-25% higher central ion temperature. Kinetic analysis of the temperature and density profiles indicates a favorable isotopic scaling of ion heat transport and electron particle transport, with τ Ei (a/2) ∝ left angle A right angle 0.7-0.8 and τ pe (a) ∝ left angle A right angle 0.8 . (orig.)

  9. Ion-driven deuterium permeation through tungsten at high temperatures

    Science.gov (United States)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  10. Ion-driven deuterium permeation through tungsten at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, Yu.M., E-mail: yury.gasparyan@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Golubeva, A.V. [RRC ' Kurchatov Institute' , Ac. Kurchatov sq., 1/1, Moscow RU-123182 (Russian Federation); Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Pisarev, A.A. [Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Roth, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany)

    2009-06-15

    The ion-driven permeation (IDP) through 50 mum thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D{sup +} ion beam with a flux of 10{sup 17}-10{sup 18} D/m{sup 2}s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 +- 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  11. Ion-driven deuterium permeation through tungsten at high temperatures

    International Nuclear Information System (INIS)

    Gasparyan, Yu.M.; Golubeva, A.V.; Mayer, M.; Pisarev, A.A.; Roth, J.

    2009-01-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17 -10 18 D/m 2 s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  12. Hydrogen/deuterium substitution methods: understanding water structure in solution

    International Nuclear Information System (INIS)

    Soper, A.K.

    1993-01-01

    The hydrogen/deuterium substitution method has been used for different applications, such as the short range order between water molecules in a number of different environments (aqueous solutions of organic molecules), or to study the partial structure factors of water at high pressure and temperature. The absolute accuracy that can be obtained remains uncertain, but important qualitative information can be obtained on the local organization of water in aqueous solution. Some recent results with pure water, methanol and dimethyl sulphoxide (DMSO) solutions are presented. It is shown that the short range water structure is not greatly affected by most solutes except at high concentrations and when the solute species has its own distinctive interaction with water (such as a dissolved small ion). 3 figs., 14 refs

  13. Experiments regarding organism behaviour under deuterium-depleted water influence

    International Nuclear Information System (INIS)

    Stefanescu, I.; Steflea, D.; Titescu, Gh.

    1999-01-01

    Deuterium-depleted water (DDW) is water that has an deuterium content D/(D+H) lower than 145 ppm. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. The DDW significantly decreased the growth rate of the L 929 fibroblast cell line and also inhibited the tumour growth. These suggest that the naturally occurring D has a central role in signal transduction involved in cell cycle regulation. Beginning with 1996, Institute of Cryogenics and Isotopic Separation, a DDW producer, co-operated with Romanian specialized institutes for evaluation of biological effects of DDW. These investigation lead to the following conclusions: 1. DDW caused a tendency of increasing the basal tone, accompanied by intensification of vasoconstrictor effects of phenylephrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by DDW persists after removing the vascular in endothelium. 2. DDW stimulates immunodefence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the number of polymorphonuclear neutrophils. 3. Animals treated with DDW showed an increase of the resistance both to the sublethal and to lethal gamma radiation doses, suggesting a radioprotective action. 4. Investigation regarding artificial reproduction of fish with DDW fecundated solutions confirmed favourable influence both in embryo growth stage and resistance in the following growing stages. 5. It was studied germination, growth and quantitative character variability of two genotypes of Avena Sativa; one can remark the favourable influence of DDW on biological process in plants in various ontogenetic stages. (authors)

  14. Physics of high performance deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    McGuire, K.M.; Batha, S.

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I i ) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I i discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed

  15. Residual stress in deuterium implanted nominal copper coatings

    International Nuclear Information System (INIS)

    Inal, M. Y.; Alam, M.; Peascoe, R. A.; Watkins, T. R.

    2000-01-01

    The effects of deuterium (D) implantation on the residual stresses in Cu and CuAl 2 phases present in nominal Cu coatings (containing Al) deposited on Al-alloy (Al-6061) substrates were measured using an x-ray diffraction technique. The coatings were deposited by radio frequency magnetron sputtering of a pure Cu target under identical conditions and Al was incorporated in the coatings during growth by diffusion from the substrate. Deuterium was implanted in the coatings at energies of 40 or 40+120 keV with fluences of 1x10 21 , 2x10 21 , or 3x10 21 D + /m 2 . Pole figures of the Cu phase in the coatings prior to and after implantation indicated no effect of implantation on the fibrous texture. Triaxial stress analysis indicated the surface normal stress component to be negligible in Cu and slightly tensile in CuAl 2 under all conditions. Furthermore, under all conditions, the in-plane residual stresses in both phases were found to be compressive and nearly isotropic. The magnitude of the isotropic compressive stress was always higher in CuAl 2 as compared to Cu. The compressive residual stresses in the Cu phase changed only mildly with increasing coating weight, ion energy, and fluence. However, in the CuAl 2 phase the compressive residual stresses changed markedly with increasing ion energy (initial decrease followed by leveling off) and increasing ion fluence (initial decrease followed by an increase), but remained unaffected by increasing coating weight. (c) 2000 American Institute of Physics

  16. Corrosion and deuterium uptake of Zr-based alloys in supercritical water

    International Nuclear Information System (INIS)

    Khatamian, D.

    2010-01-01

    To increase the thermodynamic efficiency above 40% in nuclear power plants, the use of supercritical water as the heat transport fluid has been suggested. Zircaloy-2, -4, Zr-Cr-Fe, Zr-1Nb and Zr-2.5Nb were tested as prospective fuel cladding materials in 30 MPa D 2 O at 500 o C. Zircaloy-2 showed the highest rates of corrosion and hydriding. Although Zr-Cr-Fe initially showed a very low corrosion rate, it displayed breakaway corrosion kinetics after 50 h exposure. The best-behaved material both from a corrosion and hydrogen uptake point of view was Zr-2.5Nb. However, the Zr-2.5Nb oxide growth rate was still excessive and beyond the current CANDU design allowance. Similar coupons, coated with Cr, were also tested. The coated layer effectively prevented oxidation of the coupons except on the edges, where the coating was thinner and had some flaws. In addition, the Cr-coated Zr-2.5Nb coupons had the lowest deuterium pickup of all the alloys tested and showed no signs of accelerated or nonuniform corrosion. (author)

  17. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    Science.gov (United States)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Establishment and application of deuterium dilution method for measuring breast milk intake of Pakistani infants

    International Nuclear Information System (INIS)

    Bilal, R.

    1999-01-01

    This project will be a collaborative study between the Pakistan Institute for Nuclear Science and Technology (PINSTECH) and Department of Pediatrics, Pakistan Institute of Medical Sciences (PIMS). It may also involve the Polyclinic, Islamabad. Pediatricians who have had experience in lactation management clinic and hence breast-milk intake studies by conventional methods (test weighing) will be formally involved in the study. Human milk intake and growth performance of exclusively breast-fed infants will be monitored over the first six months of life. The deuterium dilution method will be used for measuring breast-milk intake and will be compared with the test weighing method. The growth of exclusively breast-fed children will be compared with the NCH growth standards. Records of illnesses that may lead to suboptimal growth will be kept. Episodes of diarrhoea, in particular, will be correlated with growth faltering. Acquisition of Helicobacter pylori detected by the use of the 13 C Urea breath test at three month intervals during the study period examined for relationships with diarrhoea. Thus, this study will not only provide preliminary data on breast-milk intake (based on a more accurate isotopic method as compared to test weighing) but also on the growth patterns of exclusively breast-fed infants. Further, information on the significance of Helicobacter pylori to infection with episodes of diarrhoeal infection and growth faltering. (author)

  19. Deuterium permeation measurements on tungsten using ion-beam-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Kapser, Stefan [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Physik-Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany); Manhard, Armin; Toussaint, Udo von [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-07-01

    Tungsten (W) is promising for the inner wall of a future fusion reactor, where it will be exposed to high fluxes of hydrogen (H) isotopes. Knowledge of their diffusion in W is important for safety and economic considerations, particularly concerning tritium. A common method to investigate H diffusion in metals are permeation experiments. Typically, gas loading and mass-spectrometric detection are used. Information about the diffusion can be gained from the temporal evolution of the permeation flux, whose magnitude is determined by the permeability (product of diffusivity and solubility). However, for low-permeability metals, the permeation flux can be unmeasurably small. For W this is the case near room temperature. We present a method that circumvents this problem. It is an improved version of experiments on nickel and stainless steel. The W is exposed to deuterium (D) plasma on one side and the permeating D is accumulated in a getter on the other side. A cover prevents D gettering from the gas phase. The amount in the getter is analysed by the nuclear reaction D({sup 3}He,p){sup 4}He.

  20. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta, E-mail: l.buzi@fz-juelich.de [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Université de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Temmerman, Greg De [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany); Oost, Guido Van [Ghent University, Department of Applied Physics, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Möller, Sören [Institut für Energie und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Leo-Brandt-Straße, 52425 Jülich (Germany)

    2014-12-15

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10{sup 23} D{sup +}/m{sup 2} s and low: 9 · 10{sup 21} D{sup +}/m{sup 2} s). Particle fluence and ion energy, respectively 10{sup 26} D{sup +}/m{sup 2} and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion.