WorldWideScience

Sample records for intelligence based optimization

  1. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  2. Intelligent fault recognition strategy based on adaptive optimized multiple centers

    Science.gov (United States)

    Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong

    2018-06-01

    For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.

  3. Optimization of chemical composition in the manufacturing process of flotation balls based on intelligent soft sensing

    Directory of Open Access Journals (Sweden)

    Dučić Nedeljko

    2016-01-01

    Full Text Available This paper presents an application of computational intelligence in modeling and optimization of parameters of two related production processes - ore flotation and production of balls for ore flotation. It is proposed that desired chemical composition of flotation balls (Mn=0.69%; Cr=2.247%; C=3.79%; Si=0.5%, which ensures minimum wear rate (0.47 g/kg during copper milling is determined by combining artificial neural network (ANN and genetic algorithm (GA. Based on the results provided by neuro-genetic combination, a second neural network was derived as an ‘intelligent soft sensor’ in the process of white cast iron production. The proposed ANN 12-16-12-4 model demonstrated favourable prediction capacity, and can be recommended as a ‘intelligent soft sensor’ in the alloying process intended for obtaining favourable chemical composition of white cast iron for production of flotation balls. In the development of intelligent soft sensor data from the two real production processes was used. [Projekat Ministarstva nauke Republike Srbije, br. TR35037 i br. TR35015

  4. Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization

    International Nuclear Information System (INIS)

    Zhou, Quan; Zhang, Wei; Cash, Scott; Olatunbosun, Oluremi; Xu, Hongming; Lu, Guoxiang

    2017-01-01

    Highlights: • A novel algorithm for hybrid electric powertrain intelligent sizing is introduced and applied. • The proposed CAPSO algorithm is capable of finding the real optimal result with much higher reputation. • Logistic mapping is the most effective strategy to build CAPSO. • The CAPSO gave more reliable results and increased the efficiency by 1.71%. - Abstract: This paper firstly proposed a novel HEV sizing method using the Chaos-enhanced Accelerated Particle Swarm Optimization (CAPSO) algorithm and secondly provided a demonstration on sizing a series hybrid electric powertrain with investigations of chaotic mapping strategies to achieve the global optimization. In this paper, the intelligent sizing of a series hybrid electric powertrain is formulated as an integer multi-objective optimization issue by modelling the powertrain system. The intelligent sizing mechanism based on APSO is then introduced, and 4 types of the most effective chaotic mapping strategy are investigated to upgrade the standard APSO into CAPSO algorithms for intelligent sizing. The evaluation of the intelligent sizing systems based on standard APSO and CAPSOs are then performed. The Monte Carlo analysis and reputation evaluation indicate that the CAPSO outperforms the standard APSO for finding the real optimal sizing result with much higher reputation, and CAPSO with logistic mapping strategy is the most effective algorithm for HEV powertrain components intelligent sizing. In addition, this paper also performs the sensitivity analysis and Pareto analysis to help engineers customize the intelligent sizing system.

  5. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    International Nuclear Information System (INIS)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok

    2015-01-01

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design

  6. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  7. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    Science.gov (United States)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  8. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  9. Hybrid Optimization-Based Approach for Multiple Intelligent Vehicles Requests Allocation

    Directory of Open Access Journals (Sweden)

    Ahmed Hussein

    2018-01-01

    Full Text Available Self-driving cars are attracting significant attention during the last few years, which makes the technology advances jump fast and reach a point of having a number of automated vehicles on the roads. Therefore, the necessity of cooperative driving for these automated vehicles is exponentially increasing. One of the main issues in the cooperative driving world is the Multirobot Task Allocation (MRTA problem. This paper addresses the MRTA problem, specifically for the problem of vehicles and requests allocation. The objective is to introduce a hybrid optimization-based approach to solve the problem of multiple intelligent vehicles requests allocation as an instance of MRTA problem, to find not only a feasible solution, but also an optimized one as per the objective function. Several test scenarios were implemented in order to evaluate the efficiency of the proposed approach. These scenarios are based on well-known benchmarks; thus a comparative study is conducted between the obtained results and the suboptimal results. The analysis of the experimental results shows that the proposed approach was successful in handling various scenarios, especially with the increasing number of vehicles and requests, which displays the proposed approach efficiency and performance.

  10. A Workflow-based Intelligent Network Data Movement Advisor with End-to-end Performance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Michelle M. [Southern Illinois Univ., Carbondale, IL (United States); Wu, Chase Q. [Univ. of Memphis, TN (United States)

    2013-11-07

    Next-generation eScience applications often generate large amounts of simulation, experimental, or observational data that must be shared and managed by collaborative organizations. Advanced networking technologies and services have been rapidly developed and deployed to facilitate such massive data transfer. However, these technologies and services have not been fully utilized mainly because their use typically requires significant domain knowledge and in many cases application users are even not aware of their existence. By leveraging the functionalities of an existing Network-Aware Data Movement Advisor (NADMA) utility, we propose a new Workflow-based Intelligent Network Data Movement Advisor (WINDMA) with end-to-end performance optimization for this DOE funded project. This WINDMA system integrates three major components: resource discovery, data movement, and status monitoring, and supports the sharing of common data movement workflows through account and database management. This system provides a web interface and interacts with existing data/space management and discovery services such as Storage Resource Management, transport methods such as GridFTP and GlobusOnline, and network resource provisioning brokers such as ION and OSCARS. We demonstrate the efficacy of the proposed transport-support workflow system in several use cases based on its implementation and deployment in DOE wide-area networks.

  11. Intelligent flame analysis for an optimized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Peper; Dirk Schmidt [ABB Utilities GmbH, Mainheimm (Germany)

    2003-07-01

    One of the primary challenges in the area of process control is to ensure that many competing optimization goals are accomplished at the same time and be considered in time. This paper describes a successful approach through the use of an advanced pattern recognition technology and intelligent optimization tool modeling combustion processes more precisely and optimizing them based on a holistic view. 17 PowerPoint slides are also available in the proceedings. 5 figs., 1 tab.

  12. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    Science.gov (United States)

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.

  13. Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Gilberto Bojorquez

    2007-08-01

    Full Text Available The development of smart sensors involves the design of reconfigurable systemscapable of working with different input sensors. Reconfigurable systems ideally shouldspend the least possible amount of time in their calibration. An autocalibration algorithmfor intelligent sensors should be able to fix major problems such as offset, variation of gainand lack of linearity, as accurately as possible. This paper describes a new autocalibrationmethodology for nonlinear intelligent sensors based on artificial neural networks, ANN.The methodology involves analysis of several network topologies and training algorithms.The proposed method was compared against the piecewise and polynomial linearizationmethods. Method comparison was achieved using different number of calibration points,and several nonlinear levels of the input signal. This paper also shows that the proposedmethod turned out to have a better overall accuracy than the other two methods. Besides,experimentation results and analysis of the complete study, the paper describes theimplementation of the ANN in a microcontroller unit, MCU. In order to illustrate themethod capability to build autocalibration and reconfigurable systems, a temperaturemeasurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.

  14. Computational intelligence-based optimization of maximally stable extremal region segmentation for object detection

    Science.gov (United States)

    Davis, Jeremy E.; Bednar, Amy E.; Goodin, Christopher T.; Durst, Phillip J.; Anderson, Derek T.; Bethel, Cindy L.

    2017-05-01

    Particle swarm optimization (PSO) and genetic algorithms (GAs) are two optimization techniques from the field of computational intelligence (CI) for search problems where a direct solution can not easily be obtained. One such problem is finding an optimal set of parameters for the maximally stable extremal region (MSER) algorithm to detect areas of interest in imagery. Specifically, this paper describes the design of a GA and PSO for optimizing MSER parameters to detect stop signs in imagery produced via simulation for use in an autonomous vehicle navigation system. Several additions to the GA and PSO are required to successfully detect stop signs in simulated images. These additions are a primary focus of this paper and include: the identification of an appropriate fitness function, the creation of a variable mutation operator for the GA, an anytime algorithm modification to allow the GA to compute a solution quickly, the addition of an exponential velocity decay function to the PSO, the addition of an "execution best" omnipresent particle to the PSO, and the addition of an attractive force component to the PSO velocity update equation. Experimentation was performed with the GA using various combinations of selection, crossover, and mutation operators and experimentation was also performed with the PSO using various combinations of neighborhood topologies, swarm sizes, cognitive influence scalars, and social influence scalars. The results of both the GA and PSO optimized parameter sets are presented. This paper details the benefits and drawbacks of each algorithm in terms of detection accuracy, execution speed, and additions required to generate successful problem specific parameter sets.

  15. Artificial-intelligence-based optimization of the management of snow removal assets and resources.

    Science.gov (United States)

    2002-10-01

    Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent : snow removal asset management system (SRAMS). The system has been evaluated through a case study examining : snow removal from the ...

  16. An intelligent hybrid scheme for optimizing parking space: A Tabu metaphor and rough set based approach

    Directory of Open Access Journals (Sweden)

    Soumya Banerjee

    2011-03-01

    Full Text Available Congested roads, high traffic, and parking problems are major concerns for any modern city planning. Congestion of on-street spaces in official neighborhoods may give rise to inappropriate parking areas in office and shopping mall complex during the peak time of official transactions. This paper proposes an intelligent and optimized scheme to solve parking space problem for a small city (e.g., Mauritius using a reactive search technique (named as Tabu Search assisted by rough set. Rough set is being used for the extraction of uncertain rules that exist in the databases of parking situations. The inclusion of rough set theory depicts the accuracy and roughness, which are used to characterize uncertainty of the parking lot. Approximation accuracy is employed to depict accuracy of a rough classification [1] according to different dynamic parking scenarios. And as such, the hybrid metaphor proposed comprising of Tabu Search and rough set could provide substantial research directions for other similar hard optimization problems.

  17. Artificial Intelligence-Based Models for the Optimal and Sustainable Use of Groundwater in Coastal Aquifers

    Science.gov (United States)

    Sreekanth, J.; Datta, Bithin

    2011-07-01

    Overexploitation of the coastal aquifers results in saltwater intrusion. Once saltwater intrusion occurs, it involves huge cost and long-term remediation measures to remediate these contaminated aquifers. Hence, it is important to have strategies for the sustainable use of coastal aquifers. This study develops a methodology for the optimal management of saltwater intrusion prone aquifers. A linked simulation-optimization-based management strategy is developed. The methodology uses genetic-programming-based models for simulating the aquifer processes, which is then linked to a multi-objective genetic algorithm to obtain optimal management strategies in terms of groundwater extraction from potential well locations in the aquifer.

  18. Intelligent structural optimization: Concept, Model and Methods

    International Nuclear Information System (INIS)

    Lu, Dagang; Wang, Guangyuan; Peng, Zhang

    2002-01-01

    Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented

  19. Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin

    2015-01-01

    Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models

  20. On the Idea of a New Artificial Intelligence Based Optimization Algorithm Inspired From the Nature of Vortex

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2015-07-01

    Full Text Available In this paper, the idea of a new artificial intelligence based optimization algorithm, which is inspired from the nature of vortex, has been provided briefly. As also a bio-inspired computation algorithm, the idea is generally focused on a typical vortex flow / behavior in nature and inspires from some dynamics that are occurred in the sense of vortex nature. Briefly, the algorithm is also a swarm-oriented evolutional problem solution approach; because it includes many methods related to elimination of weak swarm members and trying to improve the solution process by supporting the solution space via new swarm members. In order have better idea about success of the algorithm; it has been tested via some benchmark functions. At this point, the obtained results show that the algorithm can be an alternative to the literature in terms of single-objective optimizationsolution ways. Vortex Optimization Algorithm (VOA is the name suggestion by the authors; for this new idea of intelligent optimization approach.

  1. The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-01-01

    Full Text Available Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR. According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO, which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability.

  2. Multipeak Mean Based Optimized Histogram Modification Framework Using Swarm Intelligence for Image Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    P. Babu

    2015-01-01

    Full Text Available A novel approach, Multipeak mean based optimized histogram modification framework (MMOHM is introduced for the purpose of enhancing the contrast as well as preserving essential details for any given gray scale and colour images. The basic idea of this technique is the calculation of multiple peaks (local maxima from the original histogram. The mean value of multiple peaks is computed and the input image’s histogram is segmented into two subhistograms based on this multipeak mean (mmean value. Then, a bicriteria optimization problem is formulated and the subhistograms are modified by selecting optimal contrast enhancement parameters. While formulating the enhancement parameters, particle swarm optimization is employed to find optimal values of them. Finally, the union of the modified subhistograms produces a contrast enhanced and details preserved output image. This mechanism enhances the contrast of the input image better than the existing contemporary HE methods. The performance of the proposed method is well supported by the contrast enhancement quantitative metrics such as discrete entropy, natural image quality evaluator, and absolute mean brightness error.

  3. Intelligent Fault Diagnosis of HVCB with Feature Space Optimization-Based Random Forest.

    Science.gov (United States)

    Ma, Suliang; Chen, Mingxuan; Wu, Jianwen; Wang, Yuhao; Jia, Bowen; Jiang, Yuan

    2018-04-16

    Mechanical faults of high-voltage circuit breakers (HVCBs) always happen over long-term operation, so extracting the fault features and identifying the fault type have become a key issue for ensuring the security and reliability of power supply. Based on wavelet packet decomposition technology and random forest algorithm, an effective identification system was developed in this paper. First, compared with the incomplete description of Shannon entropy, the wavelet packet time-frequency energy rate (WTFER) was adopted as the input vector for the classifier model in the feature selection procedure. Then, a random forest classifier was used to diagnose the HVCB fault, assess the importance of the feature variable and optimize the feature space. Finally, the approach was verified based on actual HVCB vibration signals by considering six typical fault classes. The comparative experiment results show that the classification accuracy of the proposed method with the origin feature space reached 93.33% and reached up to 95.56% with optimized input feature vector of classifier. This indicates that feature optimization procedure is successful, and the proposed diagnosis algorithm has higher efficiency and robustness than traditional methods.

  4. Optimal Management Of Renewable-Based Mgs An Intelligent Approach Through The Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mehdi Nafar

    2015-08-01

    Full Text Available Abstract- This article proposes a probabilistic frame built on Scenario fabrication to considerate the uncertainties in the finest action managing of Micro Grids MGs. The MG contains different recoverable energy resources such as Wind Turbine WT Micro Turbine MT Photovoltaic PV Fuel Cell FC and one battery as the storing device. The advised frame is based on scenario generation and Roulette wheel mechanism to produce different circumstances for handling the uncertainties of altered factors. It habits typical spreading role as a probability scattering function of random factors. The uncertainties which are measured in this paper are grid bid alterations cargo request calculating error and PV and WT yield power productions. It is well-intentioned to asset that solving the MG difficult for 24 hours of a day by considering diverse uncertainties and different constraints needs one powerful optimization method that can converge fast when it doesnt fall in local optimal topic. Simultaneously single Group Search Optimization GSO system is presented to vision the total search space globally. The GSO algorithm is instigated from group active of beasts. Also the GSO procedure one change is similarly planned for this algorithm. The planned context and way is applied o one test grid-connected MG as a typical grid.

  5. Artificial intelligence in power system optimization

    CERN Document Server

    Ongsakul, Weerakorn

    2013-01-01

    With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.

  6. PARALLEL IMPLEMENTATION OF CROSS-LAYER OPTIMIZATION - A PERFORMANCE EVALUATION BASED ON SWARM INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    Vanaja Gokul

    2012-01-01

    Full Text Available In distributed systems real time optimizations need to be performed dynamically for better utilization of the network resources. Real time optimizations can be performed effectively by using Cross Layer Optimization (CLO within the network operating system. This paper presents the performance evaluation of Cross Layer Optimization (CLO in comparison with the traditional approach of Single-Layer Optimization (SLO. In the parallel implementation of the approaches the experimental study carried out indicates that the CLO results in a significant improvement in network utilization when compared to SLO. A variant of the Particle Swarm Optimization technique that utilizes Digital Pheromones (PSODP for better performance has been used here. A significantly higher speed up in performance was observed from the parallel implementation of CLO that used PSODP on a cluster of nodes.

  7. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    Science.gov (United States)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  8. A New Dimension of Business Intelligence: Location-based Intelligence

    OpenAIRE

    Zeljko Panian

    2012-01-01

    Through the course of this paper we define Locationbased Intelligence (LBI) which is outgrowing from process of amalgamation of geolocation and Business Intelligence. Amalgamating geolocation with traditional Business Intelligence (BI) results in a new dimension of BI named Location-based Intelligence. LBI is defined as leveraging unified location information for business intelligence. Collectively, enterprises can transform location data into business intelligence applic...

  9. Modeling of biological intelligence for SCM system optimization.

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  10. Modeling of Biological Intelligence for SCM System Optimization

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  11. Modeling of Biological Intelligence for SCM System Optimization

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  12. Routing Optimization of Intelligent Vehicle in Automated Warehouse

    Directory of Open Access Journals (Sweden)

    Yan-cong Zhou

    2014-01-01

    Full Text Available Routing optimization is a key technology in the intelligent warehouse logistics. In order to get an optimal route for warehouse intelligent vehicle, routing optimization in complex global dynamic environment is studied. A new evolutionary ant colony algorithm based on RFID and knowledge-refinement is proposed. The new algorithm gets environmental information timely through the RFID technology and updates the environment map at the same time. It adopts elite ant kept, fallback, and pheromones limitation adjustment strategy. The current optimal route in population space is optimized based on experiential knowledge. The experimental results show that the new algorithm has higher convergence speed and can jump out the U-type or V-type obstacle traps easily. It can also find the global optimal route or approximate optimal one with higher probability in the complex dynamic environment. The new algorithm is proved feasible and effective by simulation results.

  13. Configurable intelligent optimization algorithm design and practice in manufacturing

    CERN Document Server

    Tao, Fei; Laili, Yuanjun

    2014-01-01

    Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorit

  14. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm

    Science.gov (United States)

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  15. Optimizing acoustical conditions for speech intelligibility in classrooms

    Science.gov (United States)

    Yang, Wonyoung

    High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with

  16. Competing intelligent search agents in global optimization

    Energy Technology Data Exchange (ETDEWEB)

    Streltsov, S.; Vakili, P. [Boston Univ., MA (United States); Muchnik, I. [Rutgers Univ., Piscataway, NJ (United States)

    1996-12-31

    In this paper we present a new search methodology that we view as a development of intelligent agent approach to the analysis of complex system. The main idea is to consider search process as a competition mechanism between concurrent adaptive intelligent agents. Agents cooperate in achieving a common search goal and at the same time compete with each other for computational resources. We propose a statistical selection approach to resource allocation between agents that leads to simple and efficient on average index allocation policies. We use global optimization as the most general setting that encompasses many types of search problems, and show how proposed selection policies can be used to improve and combine various global optimization methods.

  17. Hybrid intelligent optimization methods for engineering problems

    Science.gov (United States)

    Pehlivanoglu, Yasin Volkan

    quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.

  18. Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem

    Directory of Open Access Journals (Sweden)

    S Sarathambekai

    2017-03-01

    Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.

  19. Interactive analysis of geodata based intelligence

    Science.gov (United States)

    Wagner, Boris; Eck, Ralf; Unmüessig, Gabriel; Peinsipp-Byma, Elisabeth

    2016-05-01

    When a spatiotemporal events happens, multi-source intelligence data is gathered to understand the problem, and strategies for solving the problem are investigated. The difficulties arising from handling spatial and temporal intelligence data represent the main problem. The map might be the bridge to visualize the data and to get the most understand model for all stakeholders. For the analysis of geodata based intelligence data, a software was developed as a working environment that combines geodata with optimized ergonomics. The interaction with the common operational picture (COP) is so essentially facilitated. The composition of the COP is based on geodata services, which are normalized by international standards of the Open Geospatial Consortium (OGC). The basic geodata are combined with intelligence data from images (IMINT) and humans (HUMINT), stored in a NATO Coalition Shared Data Server (CSD). These intelligence data can be combined with further information sources, i.e., live sensors. As a result a COP is generated and an interaction suitable for the specific workspace is added. This allows the users to work interactively with the COP, i.e., searching with an on board CSD client for suitable intelligence data and integrate them into the COP. Furthermore, users can enrich the scenario with findings out of the data of interactive live sensors and add data from other sources. This allows intelligence services to contribute effectively to the process by what military and disaster management are organized.

  20. Performance improvement of an active vibration absorber subsystem for an aircraft model using a bees algorithm based on multi-objective intelligent optimization

    Science.gov (United States)

    Zarchi, Milad; Attaran, Behrooz

    2017-11-01

    This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.

  1. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

  2. Design of intelligent power consumption optimization and visualization management platform for large buildings based on internet of things

    Directory of Open Access Journals (Sweden)

    Gong Shulan

    2017-01-01

    Full Text Available The buildings provide a significant contribution to total energy consumption and CO2 emission. It has been estimated that the development of an intelligent power consumption monitor and control system will result in about 30% savings in energy consumption. This design innovatively integrates the advanced technologies such as the internet of things, the internet, intelligent buildings and intelligent electricity which can offer open, efficient, convenient energy consumption detection platform in demand side and visual management demonstration application platform in power enterprises side. The system was created to maximize the effective and efficient the use of energy resource. It was development around sensor networks and intelligent gateway and the monitoring center software. This will realize the highly integration and comprehensive application in energy and information to meet the needs with intelligent buildings

  3. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics

    International Nuclear Information System (INIS)

    Chen, Zhicong; Wu, Lijun; Cheng, Shuying; Lin, Peijie; Wu, Yue; Lin, Wencheng

    2017-01-01

    Highlights: •An improved Simulink based modeling method is proposed for PV modules and arrays. •Key points of I-V curves and PV model parameters are used as the feature variables. •Kernel extreme learning machine (KELM) is explored for PV arrays fault diagnosis. •The parameters of KELM algorithm are optimized by the Nelder-Mead simplex method. •The optimized KELM fault diagnosis model achieves high accuracy and reliability. -- Abstract: Fault diagnosis of photovoltaic (PV) arrays is important for improving the reliability, efficiency and safety of PV power stations, because the PV arrays usually operate in harsh outdoor environment and tend to suffer various faults. Due to the nonlinear output characteristics and varying operating environment of PV arrays, many machine learning based fault diagnosis methods have been proposed. However, there still exist some issues: fault diagnosis performance is still limited due to insufficient monitored information; fault diagnosis models are not efficient to be trained and updated; labeled fault data samples are hard to obtain by field experiments. To address these issues, this paper makes contribution in the following three aspects: (1) based on the key points and model parameters extracted from monitored I-V characteristic curves and environment condition, an effective and efficient feature vector of seven dimensions is proposed as the input of the fault diagnosis model; (2) the emerging kernel based extreme learning machine (KELM), which features extremely fast learning speed and good generalization performance, is utilized to automatically establish the fault diagnosis model. Moreover, the Nelder-Mead Simplex (NMS) optimization method is employed to optimize the KELM parameters which affect the classification performance; (3) an improved accurate Simulink based PV modeling approach is proposed for a laboratory PV array to facilitate the fault simulation and data sample acquisition. Intensive fault experiments are

  4. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data

    Science.gov (United States)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-01

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.

  5. Global optimization of minority game by intelligent agents

    Science.gov (United States)

    Xie, Yan-Bo; Wang, Bing-Hong; Hu, Chin-Kun; Zhou, Tao

    2005-10-01

    We propose a new model of minority game with intelligent agents who use trail and error method to make a choice such that the standard deviation σ2 and the total loss in this model reach the theoretical minimum values in the long time limit and the global optimization of the system is reached. This suggests that the economic systems can self-organize into a highly optimized state by agents who make decisions based on inductive thinking, limited knowledge, and capabilities. When other kinds of agents are also present, the simulation results and analytic calculations show that the intelligent agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority games proposed by Challet and Zhang.

  6. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  7. Optimizing radiologic workup: An artificial intelligence approach

    International Nuclear Information System (INIS)

    Swett, H.A.; Rothschild, M.; Weltin, G.G.; Fisher, P.R.; Miller, P.L.

    1987-01-01

    The increasing complexity of diagnostic imaging is presenting an ever-expanding variety of radiologic test options to referring clinicians, making it more difficult for them to plan efficient workup. Diagnosis-oriented reimbursement systems are providing new incentives for hospitals and radiologists to use imaging modalities judiciously. This paper describes DxCON, a developmental artificial intelligence-based computer system, which gives advice to physicians about the optimum sequencing of radiologic tests. DxCON analyzes a physician's proposed workup plan and discusses its strengths and weaknesses. The domain chosen for this research is the imaging workup of obstructive jaundice

  8. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  9. Intelligent and robust optimization frameworks for smart grids

    Science.gov (United States)

    Dhansri, Naren Reddy

    A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic

  10. Machine intelligence and knowledge bases

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, K

    1981-09-01

    The basic functions necessary in machine intelligence are a knowledge base and a logic programming language such as PROLOG using deductive reasoning. Recently inductive reasoning based on meta knowledge and default reasoning have been developed. The creative thought model of Lenit is reviewed and the concept of knowledge engineering is introduced. 17 references.

  11. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    Science.gov (United States)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  12. Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.

    Science.gov (United States)

    2015-05-01

    This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network : Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected : Vehicle Program. ...

  13. Procreative Beneficence, Intelligence, and the Optimization Problem.

    Science.gov (United States)

    Saunders, Ben

    2015-12-01

    According to the Principle of Procreative Beneficence, reproducers should choose the child, of those available to them, expected to have the best life. Savulescu argues reproducers are therefore morally obligated to select for nondisease traits, such as intelligence. Carter and Gordon recently challenged this implication, arguing that Savulescu fails to establish that intelligence promotes well-being. This paper develops two responses. First, I argue that higher intelligence is likely to contribute to well-being on most plausible accounts. Second, I argue that, even if it does not, one can only resist the conclusion that reproducers should select on the basis of intelligence if its expected net effect is neutral. If intelligence reduces expected well-being, then reproducers should select offspring of low intelligence. More likely, the effect of increased intelligence on expected well-being varies at different levels, which makes identifying an optimum for well-being more complex than hitherto appreciated. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2012-07-01

    Full Text Available In this paper, a new algorithm is presented for unsupervised learning of finite mixture models (FMMs using data set with missing values. This algorithm overcomes the local optima problem of the Expectation-Maximization (EM algorithm via integrating the EM algorithm with Particle Swarm Optimization (PSO. In addition, the proposed algorithm overcomes the problem of biased estimation due to overlapping clusters in estimating missing values in the input data set by integrating locally-tuned general regression neural networks with Optimal Completion Strategy (OCS. A comparison study shows the superiority of the proposed algorithm over other algorithms commonly used in the literature in unsupervised learning of FMM parameters that result in minimum mis-classification errors when used in clustering incomplete data set that is generated from overlapping clusters and these clusters are largely different in their sizes.

  15. Enhanced intelligence through optimized TCPED concepts for airborne ISR

    Science.gov (United States)

    Spitzer, M.; Kappes, E.; Böker, D.

    2012-06-01

    Current multinational operations show an increased demand for high quality actionable intelligence for different operational levels and users. In order to achieve sufficient availability, quality and reliability of information, various ISR assets are orchestrated within operational theatres. Especially airborne Intelligence, Surveillance and Reconnaissance (ISR) assets provide - due to their endurance, non-intrusiveness, robustness, wide spectrum of sensors and flexibility to mission changes - significant intelligence coverage of areas of interest. An efficient and balanced utilization of airborne ISR assets calls for advanced concepts for the entire ISR process framework including the Tasking, Collection, Processing, Exploitation and Dissemination (TCPED). Beyond this, the employment of current visualization concepts, shared information bases and information customer profiles, as well as an adequate combination of ISR sensors with different information age and dynamic (online) retasking process elements provides the optimization of interlinked TCPED processes towards higher process robustness, shorter process duration, more flexibility between ISR missions and, finally, adequate "entry points" for information requirements by operational users and commands. In addition, relevant Trade-offs of distributed and dynamic TCPED processes are examined and future trends are depicted.

  16. A New Hybrid Model Based on Data Preprocessing and an Intelligent Optimization Algorithm for Electrical Power System Forecasting

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2015-01-01

    Full Text Available The establishment of electrical power system cannot only benefit the reasonable distribution and management in energy resources, but also satisfy the increasing demand for electricity. The electrical power system construction is often a pivotal part in the national and regional economic development plan. This paper constructs a hybrid model, known as the E-MFA-BP model, that can forecast indices in the electrical power system, including wind speed, electrical load, and electricity price. Firstly, the ensemble empirical mode decomposition can be applied to eliminate the noise of original time series data. After data preprocessing, the back propagation neural network model is applied to carry out the forecasting. Owing to the instability of its structure, the modified firefly algorithm is employed to optimize the weight and threshold values of back propagation to obtain a hybrid model with higher forecasting quality. Three experiments are carried out to verify the effectiveness of the model. Through comparison with other traditional well-known forecasting models, and models optimized by other optimization algorithms, the experimental results demonstrate that the hybrid model has the best forecasting performance.

  17. Artificial Intelligence based technique for BTS placement

    Science.gov (United States)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  18. Artificial Intelligence based technique for BTS placement

    International Nuclear Information System (INIS)

    Alenoghena, C O; Emagbetere, J O; 1 Minna (Nigeria))" data-affiliation=" (Department of Telecommunications Engineering, Federal University of Techn.1 Minna (Nigeria))" >Aibinu, A M

    2013-01-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out

  19. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Su, Zhongyue; Wang, Jianzhou; Lu, Haiyan; Zhao, Ge

    2014-01-01

    Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily

  20. Optimization of Transformation Coefficients Using Direct Search and Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Manusov V.Z.

    2017-04-01

    Full Text Available This research considers optimization of tap position of transformers in power systems to reduce power losses. Now, methods based on heuristic rules and fuzzy logic, or methods that optimize parts of the whole system separately, are applied to this problem. The first approach requires expert knowledge about processes in the network. The second methods are not able to consider all the interrelations of system’s parts, while changes in segment affect the entire system. Both approaches are tough to implement and require adjustment to the tasks solved. It needs to implement algorithms that can take into account complex interrelations of optimized variables and self-adapt to optimization task. It is advisable to use algorithms given complex interrelations of optimized variables and independently adapting from optimization tasks. Such algorithms include Swarm Intelligence algorithms. Their main features are self-organization, which allows them to automatically adapt to conditions of tasks, and the ability to efficiently exit from local extremes. Thus, they do not require specialized knowledge of the system, in contrast to fuzzy logic. In addition, they can efficiently find quasi-optimal solutions converging to the global optimum. This research applies Particle Swarm Optimization algorithm (PSO. The model of Tajik power system used in experiments. It was found out that PSO is much more efficient than greedy heuristics and more flexible and easier to use than fuzzy logic. PSO allows reducing active power losses from 48.01 to 45.83 MW (4.5%. With al, the effect of using greedy heuristics or fuzzy logic is two times smaller (2.3%.

  1. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  2. Introducing artificial intelligence into structural optimization programs

    International Nuclear Information System (INIS)

    Jozwiak, S.F.

    1987-01-01

    Artificial Intelligence /AI/ is defined as the branch of the computer science concerned with the study of the ideas that enable computers to be intelligent. The main purpose of the application of AI in engineering is to develop computer programs which function better as tools for engineers and designers. Many computer programs today have properties which make them inconvenient to their final users and the research carried within the field of AI provides tools and techniques so that these restriction can be removed. The continuous progress in computer technology has lead to developing efficient computer systems which can be applied to more than simple solving sets of equations. (orig.)

  3. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  4. Optimizing managerial effectiveness through emotional intelligence

    NARCIS (Netherlands)

    Hur, Y.H.

    2009-01-01

    The idea that emotional competence is crucial for adaptation in various realms of life has fuelled numerous studies and social learning programs. Nonetheless, leadership research on emotional intelligence contexts is still limited and the construct is controversial on several grounds and includes a

  5. Hybrid intelligent control concepts for optimal data fusion

    Science.gov (United States)

    Llinas, James

    1994-02-01

    In the post-Cold War era, Naval surface ship operations will be largely conducted in littoral waters to support regional military missions of all types, including humanitarian and evacuation activities, and amphibious mission execution. Under these conditions, surface ships will be much more isolated and vulnerable to a variety of threats, including maneuvering antiship missiles. To deal with these threats, the optimal employment of multiple shipborne sensors for maximum vigilance is paramount. This paper characterizes the sensor management problem as one of intelligent control, identifies some of the key issues in controller design, and presents one approach to controller design which is soon to be implemented and evaluated. It is argued that the complexity and hierarchical nature of problem formulation demands a hybrid combination of knowledge-based methods and scheduling techniques from 'hard' real-time systems theory for its solution.

  6. Students’ thinking level based on intrapersonal intelligence

    Science.gov (United States)

    Sholikhati, Rahadian; Mardiyana; Retno Sari Saputro, Dewi

    2017-12-01

    This research aims to determine the students’ thinking level based on bloom taxonomy guidance and reviewed from students' Intrapersonal Intelligence. Taxonomy bloom is a taxonomy that classifies the students' thinking level into six, ie the remembering, understanding, applying, analyzing, creating, and evaluating levels. Students' Intrapersonal Intelligence is the intelligence associated with awareness and knowledge of oneself. The type of this research is descriptive research with qualitative approach. The research subject were taken by one student in each Intrapersonal Intelligence category (high, moderate, and low) which then given the problem solving test and the result was triangulated by interview. From this research, it is found that high Intrapersonal Intelligence students can achieve analyzing thinking level, subject with moderate Intrapersonal Intelligence being able to reach the level of applying thinking, and subject with low Intrapersonal Intelligence able to reach understanding level.

  7. Scalable Clustering of High-Dimensional Data Technique Using SPCM with Ant Colony Optimization Intelligence

    Directory of Open Access Journals (Sweden)

    Thenmozhi Srinivasan

    2015-01-01

    Full Text Available Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM, with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets.

  8. Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains

    International Nuclear Information System (INIS)

    Dutta, Rajdeep; Ganguli, Ranjan; Mani, V

    2011-01-01

    Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures

  9. Fixed Point Learning Based Intelligent Traffic Control System

    Science.gov (United States)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  10. Intelligent interaction based on holographic personalized portal

    Directory of Open Access Journals (Sweden)

    Yadong Huang

    2017-06-01

    Full Text Available Purpose – The purpose of this paper is to study the architecture of holographic personalized portal, user modeling, commodity modeling and intelligent interaction. Design/methodology/approach – In this paper, the authors propose crowd-science industrial ecological system based on holographic personalized portal and its interaction. The holographic personality portal is based on holographic enterprises, commodities and consumers, and the personalized portal consists of accurate ontology, reliable supply, intelligent demand and smart cyberspace. Findings – The personalized portal can realize the information acquisition, characteristic analysis and holographic presentation. Then, the intelligent interaction, e.g. demand decomposition, personalized search, personalized presentation and demand prediction, will be implemented within the personalized portal. Originality/value – The authors believe that their work on intelligent interaction based on holographic personalized portal, which has been first proposed in this paper, is innovation focusing on the interaction between intelligence and convenience.

  11. Applications of intelligent optimization in biology and medicine current trends and open problems

    CERN Document Server

    Grosan, Crina; Tolba, Mohamed

    2016-01-01

    This volume provides updated, in-depth material on the application of intelligent optimization in biology and medicine. The aim of the book is to present solutions to the challenges and problems facing biology and medicine applications. This Volume comprises of 13 chapters, including an overview chapter, providing an up-to-date and state-of-the research on the application of intelligent optimization for bioinformatics applications, DNA based Steganography, a modified Particle Swarm Optimization Algorithm for Solving Capacitated Maximal Covering Location Problem in Healthcare Systems, Optimization Methods for Medical Image Super Resolution Reconstruction and breast cancer classification. Moreover, some chapters that describe several bio-inspired approaches in MEDLINE Text Mining, DNA-Binding Proteins and Classes, Optimized Tumor Breast Cancer Classification using Combining Random Subspace and Static Classifiers Selection Paradigms, and Dental Image Registration. The book will be a useful compendium for a broad...

  12. Artificial Intelligence Based Optimization for the Se(IV) Removal from Aqueous Solution by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron Composites.

    Science.gov (United States)

    Cao, Rensheng; Fan, Mingyi; Hu, Jiwei; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui

    2018-03-15

    Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms.

  13. An intelligent agent for optimal river-reservoir system management

    Science.gov (United States)

    Rieker, Jeffrey D.; Labadie, John W.

    2012-09-01

    A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.

  14. Speech Intelligibility Prediction Based on Mutual Information

    DEFF Research Database (Denmark)

    Jensen, Jesper; Taal, Cees H.

    2014-01-01

    This paper deals with the problem of predicting the average intelligibility of noisy and potentially processed speech signals, as observed by a group of normal hearing listeners. We propose a model which performs this prediction based on the hypothesis that intelligibility is monotonically related...... to the mutual information between critical-band amplitude envelopes of the clean signal and the corresponding noisy/processed signal. The resulting intelligibility predictor turns out to be a simple function of the mean-square error (mse) that arises when estimating a clean critical-band amplitude using...... a minimum mean-square error (mmse) estimator based on the noisy/processed amplitude. The proposed model predicts that speech intelligibility cannot be improved by any processing of noisy critical-band amplitudes. Furthermore, the proposed intelligibility predictor performs well ( ρ > 0.95) in predicting...

  15. Optimal model of economic diplomacy of Republic of Croatia in the contexst of global intelligence revolution

    Directory of Open Access Journals (Sweden)

    Zdravko Bazdan

    2010-12-01

    Full Text Available The aim of this study is to point to the fact that economic diplomacy is a relatively new practice in international economics, specifically the expansion of the occurrence of Intelligence Revolution. The history in global relations shows that without economic diplomacy there is no optimal economic growth and social development. It is important to note that economic diplomacy should be important for our country and the political elite, as well as for the administration of Croatian economic subjects that want to compete in international market economy. Comparative analysis are particularly highlighted by French experience. Therefore, Croatia should copy the practice of those countries that are successful in economic diplomacy. And in the curricula - especially of our economic faculties - we should introduce the course of Economic Diplomacy. It is important to note, that in order to form our optimal model of economic diplomacy which would be headed by the President of Republic of Croatia formula should be based on: Intelligence Security Agency (SOA, Intelligence Service of the Ministry of Foreign Affairs and European Integration, Intelligence Service of the Croatian Chamber of Commerce and the Intelligence Service of the Ministry of Economy, Labor and Entrepreneurship. Described model would consist of intelligence subsystem with at least twelve components.

  16. GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Praghnesh [Department of Electrical Engineering, Charotar Institute of Technology, Changa 388 421, Gujarat (India); Roy, Ranjit [Department of Electrical Engineering, S.V. National Institute of Technology, Surat 395 007, Gujarat (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur 713 209, West Bengal (India)

    2010-05-15

    This paper presents the comparative performance analysis of the two specific varieties of controller devices for optimal transient performance of automatic generation control (AGC) of an interconnected two-area power system, having multiple thermal-hydro-diesels mixed generating units. The significant improvement of optimal transient performance is observed with the addition of a thyristor-controlled phase shifter (TCPS) in the tie-line or capacitive energy storage (CES) units fitted in both the areas. Three different optimization algorithms are adopted for the sake of comparison of optimal performances and obtaining the optimal values of the gain settings of the devices independently. Craziness based particle swarm optimization (CRPSO) proves to be moderately fast algorithm and yields true optimal gains and minimum overshoot, minimum undershoot and minimum settling time of the transient response for any system. Comparative studies of TCPS and CES by any algorithm reveals that the CES units fitted in both the areas improve the transient performance to a greater extent following small load disturbance(s) in both the areas. (author)

  17. Business intelligence and capacity planning: web-based solutions.

    Science.gov (United States)

    James, Roger

    2010-07-01

    Income (activity) and expenditure (costs) form the basis of a modern hospital's 'business intelligence'. However, clinical engagement in business intelligence is patchy. This article describes the principles of business intelligence and outlines some recent developments using web-based applications.

  18. Intelligent Search Optimization using Artificial Fuzzy Logics

    OpenAIRE

    Manral, Jai

    2015-01-01

    Information on the web is prodigious; searching relevant information is difficult making web users to rely on search engines for finding relevant information on the web. Search engines index and categorize web pages according to their contents using crawlers and rank them accordingly. For given user query they retrieve millions of webpages and display them to users according to web-page rank. Every search engine has their own algorithms based on certain parameters for ranking web-pages. Searc...

  19. Expectation-based intelligent control

    International Nuclear Information System (INIS)

    Zak, Michail

    2006-01-01

    New dynamics paradigms-negative diffusion and terminal attractors-are introduced to control noise and chaos. The applied control forces are composed of expectations governed by the associated Fokker-Planck and Liouville equations. The approach is expanded to a general concept of intelligent control via expectations. Relevance to control in livings is emphasized and illustrated by neural nets with mirror neurons

  20. Multiple Intelligences - Based Planning of EFL Classes

    Directory of Open Access Journals (Sweden)

    Sanan Shero Malo Zebari

    2018-04-01

    Full Text Available The present study aimed to set a plan for teaching EFL classes based on the identification of university students’ dominant multiple intelligences in EFL classes, and the differences in the types of intelligence between female and male students in terms of their gender. The problem the present study aimed to address is that the traditional concept that “one size fits all” is still adopted by many EFL teachers, and that EFL students’ differences and preferences are noticeably unheeded. It is believed that identifying students’ dominant intelligences is a sound remedial solution for such a problem before embarking on any teaching program. Moreover, getting students aware of their different types of intelligence will motivate and encourage them in the classroom. The researchers used a questionnaire as a research instrument for data collection.  The results arrived at showed that there were no significant differences in the types of intelligence between female and male students in terms of their gender, except for bodily- kinesthetic intelligence. They also showed that the dominant intelligences were ranked from the highest to the lowest as follows interpersonal, linguistic, spatial, logical-mathematical, bodily kinesthetic, intrapersonal, musical, and naturalistic.

  1. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    Science.gov (United States)

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  2. SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH THE SWARM INTELLIGENCE METHODS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available An important stage in problem solving process for aerospace and aerostructures designing is calculating their main charac- teristics optimization. The results of the four constrained optimization problems related to the design of various technical systems: such as determining the best parameters of welded beams, pressure vessel, gear, spring are presented. The purpose of each task is to minimize the cost and weight of the construction. The object functions in optimization practical problem are nonlinear functions with a lot of variables and a complex layer surface indentations. That is why using classical approach for extremum seeking is not efficient. Here comes the necessity of using such methods of optimization that allow to find a near optimal solution in acceptable amount of time with the minimum waste of computer power. Such methods include the methods of Swarm Intelligence: spiral dy- namics algorithm, stochastic diffusion search, hybrid seeker optimization algorithm. The Swarm Intelligence methods are designed in such a way that a swarm consisting of agents carries out the search for extremum. In search for the point of extremum, the parti- cles exchange information and consider their experience as well as the experience of population leader and the neighbors in some area. To solve the listed problems there has been designed a program complex, which efficiency is illustrated by the solutions of four applied problems. Each of the considered applied optimization problems is solved with all the three chosen methods. The ob- tained numerical results can be compared with the ones found in a swarm with a particle method. The author gives recommenda- tions on how to choose methods parameters and penalty function value, which consider inequality constraints.

  3. Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems

    International Nuclear Information System (INIS)

    Luo, Yugong; Zhu, Tao; Wan, Shuang; Zhang, Shuwei; Li, Keqiang

    2016-01-01

    The widespread use of electric vehicles (EVs) is becoming an imminent trend. Research has been done on the scheduling of EVs from the perspective of the charging characteristic, improvement in the safety and economy of the power grid, or the traffic jams in the transport system caused by a large number of EVs driven to charging stations. There is a lack of systematic studies considering EVs, the power grid, and the transport system all together. In this paper, a novel optimal charging scheduling strategy for different types of EVs is proposed based on not only transport system information, such as road length, vehicle velocity and waiting time, but also grid system information, such as load deviation and node voltage. In addition, a charging scheduling simulation platform suitable for large-scale EV deployment is developed based on actual charging scenarios. The simulation results show that the improvements in both the transport system efficiency and the grid system operation can be obtained by using the optimal strategy, such as the node voltage drop is decreased, the power loss is reduced, and the load curve is optimized. - Highlights: • A novel optimal charging scheduling strategy is proposed for different electric vehicles (EVs). • A simulation platform suitable for large-scale EV deployment is established. • The traffic congestion near the charging and battery-switch stations is relieved. • The safety and economy problems of the distribution network are solved. • The peak-to-valley load of the distribution system is reduced.

  4. An intelligent stochastic optimization routine for nuclear fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1990-01-01

    A simulated annealing (Metropolis algorithm) optimization routine named AMETROP, which has been developed for use on realistic nuclear fuel cycle problems, is introduced. Each stage of the algorithm is described and the means by which it overcomes or avoids the difficulties posed to conventional optimization routines by such problems are explained. Special attention is given to innovations that enhance AMETROP's performance both through artificial intelligence features, in which the routine uses the accumulation of data to influence its future actions, and through a family of simple performance aids, which allow the designer to use his heuristic knowledge to guide the routine's essentially random search. Using examples from a typical fuel cycle optimization problem, the performance of the stochastic Metropolis algorithm is compared to that of the only suitable deterministic routine in a standard software library, showing AMETROP to have many advantages

  5. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    Science.gov (United States)

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  6. Operation optimization of distributed generation using artificial intelligent techniques

    Directory of Open Access Journals (Sweden)

    Mahmoud H. Elkazaz

    2016-06-01

    Full Text Available Future smart grids will require an observable, controllable and flexible network architecture for reliable and efficient energy delivery. The use of artificial intelligence and advanced communication technologies is essential in building a fully automated system. This paper introduces a new technique for online optimal operation of distributed generation (DG resources, i.e. a hybrid fuel cell (FC and photovoltaic (PV system for residential applications. The proposed technique aims to minimize the total daily operating cost of a group of residential homes by managing the operation of embedded DG units remotely from a control centre. The target is formed as an objective function that is solved using genetic algorithm (GA optimization technique. The optimal settings of the DG units obtained from the optimization process are sent to each DG unit through a fully automated system. The results show that the proposed technique succeeded in defining the optimal operating points of the DGs that affect directly the total operating cost of the entire system.

  7. Intelligent Transportation and Evacuation Planning A Modeling-Based Approach

    CERN Document Server

    Naser, Arab

    2012-01-01

    Intelligent Transportation and Evacuation Planning: A Modeling-Based Approach provides a new paradigm for evacuation planning strategies and techniques. Recently, evacuation planning and modeling have increasingly attracted interest among researchers as well as government officials. This interest stems from the recent catastrophic hurricanes and weather-related events that occurred in the southeastern United States (Hurricane Katrina and Rita). The evacuation methods that were in place before and during the hurricanes did not work well and resulted in thousands of deaths. This book offers insights into the methods and techniques that allow for implementing mathematical-based, simulation-based, and integrated optimization and simulation-based engineering approaches for evacuation planning. This book also: Comprehensively discusses the application of mathematical models for evacuation and intelligent transportation modeling Covers advanced methodologies in evacuation modeling and planning Discusses principles a...

  8. Dynamic mobility applications policy analysis : policy and institutional issues for intelligent network flow optimization (INFLO).

    Science.gov (United States)

    2014-12-01

    The report documents policy considerations for the Intelligent Network Flow Optimization (INFLO) connected vehicle applications : bundle. INFLO aims to optimize network flow on freeways and arterials by informing motorists of existing and impen...

  9. Application of Artificial Intelligence for Optimization in Pavement Management

    Directory of Open Access Journals (Sweden)

    Reus Salini

    2015-07-01

    Full Text Available Artificial intelligence (AI is a group of techniques that have quite a potential to be applied to pavement engineering and management. In this study, we developed a practical, flexible and out of the box approach to apply genetic algorithms to optimizing the budget allocation and the road maintenance strategy selection for a road network. The aim is to provide an alternative to existing software and better fit the requirements of an important number of pavement managers. To meet the objectives, a new indicator, named Road Global Value Index (RGVI, was created to contemplate the pavement condition, the traffic and the economic and political importance for each and every road section. This paper describes the approach and its components by an example confirming that genetic algorithms are very effective for the intended purpose.

  10. A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Daqing Wu

    2012-01-01

    Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.

  11. Intelligent stochastic optimization routine for in-core fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1988-01-01

    Any reactor fuel management strategy must specify the fuel design, batch sizes, loading configurations, and operational procedures for each cycle. To permit detailed design studies, the complex core characteristics must necessarily be computer modeled. Thus, the identification of an optimal fuel cycle design represents an optimization problem with a nonlinear objective function (OF), nonlinear safety constraints, many control variables, and no direct derivative information. Most available library routines cannot tackle such problems; this paper introduces an intelligent stochastic optimization routine that can. There has been considerable interest recently in the application of stochastic methods to difficult optimization problems, based on the statistical mechanics algorithms originally attributed to Metropolis. Previous work showed that, in optimizing the performance of a British advanced gas-cooled reactor fuel stringer, a rudimentary version of the Metropolis algorithm performed as efficiently as the only suitable routine in the Numerical Algorithms Group library. Since then the performance of the Metropolis algorithm has been considerably enhanced by the introduction of self-tuning capabilities by which the routine adjusts its control parameters and search pattern as it progresses. Both features can be viewed as examples of artificial intelligence, in which the routine uses the accumulation of data, or experience, to guide its future actions

  12. A hybrid bird mating optimizer algorithm with teaching-learning-based optimization for global numerical optimization

    Directory of Open Access Journals (Sweden)

    Qingyang Zhang

    2015-02-01

    Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.

  13. GA based CNC turning center exploitation process parameters optimization

    Directory of Open Access Journals (Sweden)

    Z. Car

    2009-01-01

    Full Text Available This paper presents machining parameters (turning process optimization based on the use of artificial intelligence. To obtain greater efficiency and productivity of the machine tool, optimal cutting parameters have to be obtained. In order to find optimal cutting parameters, the genetic algorithm (GA has been used as an optimal solution finder. Optimization has to yield minimum machining time and minimum production cost, while considering technological and material constrains.

  14. An Innovative Thinking-Based Intelligent Information Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Huimin Lu

    2013-01-01

    Full Text Available This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.

  15. Agent-Based Optimization

    CERN Document Server

    Jędrzejowicz, Piotr; Kacprzyk, Janusz

    2013-01-01

    This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve  difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.

  16. Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Oliveira, Iona Maghali, E-mail: ioliveira@con.ufrj.br [Nuclear Engineering Program, Federal University of Rio de Janeiro, P.O. Box 68509, Zip Code 21945-970, Rio de Janeiro, RJ (Brazil); Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Nuclear Engineering Program, Federal University of Rio de Janeiro, P.O. Box 68509, Zip Code 21945-970, Rio de Janeiro, RJ (Brazil)

    2011-05-15

    Research highlights: > We present Artificial Bee Colony with Random Keys (ABCRK) for In-Core Fuel Management Optimization. > Its performance is examined through the optimization of a Brazilian '2-loop' PWR. > Feasibility of using ABCRK is shown against some well known population-based algorithms. > Additional advantage includes the utilization of fewer control parameters. - Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new member of swarm intelligence. ABC tries to simulate the intelligent behavior of real honey bees in food foraging and can be used for solving continuous optimization and multi-dimensional numeric problems. This paper introduces the Artificial Bee Colony with Random Keys (ABCRK), a modified ABC algorithm for solving combinatorial problems such as the In-Core Fuel Management Optimization (ICFMO). The ICFMO is a hard combinatorial optimization problem in Nuclear Engineering which during many years has been solved by expert knowledge. It aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. As a consequence, the operation cost decreases and money is saved. In this study, ABCRK is used for optimizing the ICFMO problem of a Brazilian '2-loop' Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP) and the results obtained with the proposed algorithm are compared with those obtained by Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The results show that the performance of the ABCRK algorithm is better than or similar to that of other population-based algorithms, with the advantage of employing fewer control parameters.

  17. Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization

    International Nuclear Information System (INIS)

    Santos de Oliveira, Iona Maghali; Schirru, Roberto

    2011-01-01

    Research highlights: → We present Artificial Bee Colony with Random Keys (ABCRK) for In-Core Fuel Management Optimization. → Its performance is examined through the optimization of a Brazilian '2-loop' PWR. → Feasibility of using ABCRK is shown against some well known population-based algorithms. → Additional advantage includes the utilization of fewer control parameters. - Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new member of swarm intelligence. ABC tries to simulate the intelligent behavior of real honey bees in food foraging and can be used for solving continuous optimization and multi-dimensional numeric problems. This paper introduces the Artificial Bee Colony with Random Keys (ABCRK), a modified ABC algorithm for solving combinatorial problems such as the In-Core Fuel Management Optimization (ICFMO). The ICFMO is a hard combinatorial optimization problem in Nuclear Engineering which during many years has been solved by expert knowledge. It aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. As a consequence, the operation cost decreases and money is saved. In this study, ABCRK is used for optimizing the ICFMO problem of a Brazilian '2-loop' Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP) and the results obtained with the proposed algorithm are compared with those obtained by Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The results show that the performance of the ABCRK algorithm is better than or similar to that of other population-based algorithms, with the advantage of employing fewer control parameters.

  18. Artificial intelligence search techniques for optimization of the cold source geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Most optimization studies of cold neutron sources have concentrated on the numerical prediction or experimental measurement of the cold moderator optimum thickness which produces the largest cold neutron leakage for a given thermal neutron source. Optimizing the geometrical shape of the cold source, however, is a more difficult problem because the optimized quantity, the cold neutron leakage, is an implicit function of the shape which is the unknown in such a study. We draw an analogy between this problem and a state space search, then we use a simple Artificial Intelligence (AI) search technique to determine the optimum cold source shape based on a two-group, r-z diffusion model. We implemented this AI design concept in the computer program AID which consists of two modules, a physical model module and a search module, which can be independently modified, improved, or made more sophisticated. 7 refs., 1 fig

  19. Artificial intelligence search techniques for the optimization of cold source geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Most optimization studies of cold neutron sources have concentrated on the numerical prediction or experimental measurement of the cold moderator optimum thickness that produces the largest cold neutron leakage for a given thermal neutron source. Optimizing the geometric shape of the cold source, however, is a more difficult problem because the optimized quantity, the cold neutron leakage, is an implicit function of the shape, which is the unknown in such a study. An analogy is drawn between this problem and a state space search, then a simple artificial intelligence (AI) search technique is used to determine the optimum cold source shape based on a two-group, r-z diffusion model. This AI design concept was implemented in the computer program AID, which consists of two modules, a physical model module, and a search module, which can be independently modified, improved, or made more sophisticated

  20. Smart Waste Collection System Based on Location Intelligence

    DEFF Research Database (Denmark)

    Lopez, Jose Manuel Guterrez Lopez; Jensen, Michael; Andreasen, Morten Henius

    2015-01-01

    (IoT) integration with data access networks, Geographic Information Systems (GIS), combinatorial optimization, and electronic engineering can contribute to improve cities’ management systems. We present a waste collection solution based on providing intelligence to trashcans, by using an IoT prototype...... to contribute and develop Smart city solutions.......Cities around the world are on the run to become smarter. Some of these have seen an opportunity on deploying dedicated municipal access networks to support all types of city management and maintenance services requiring a data connection. This paper practically demonstrates how Internet of Things...

  1. A genetic-neural artificial intelligence approach to resins optimization

    International Nuclear Information System (INIS)

    Cabral, Denise C.; Barros, Marcio P.; Lapa, Celso M.F.; Pereira, Claudio M.N.A.

    2005-01-01

    This work presents a preliminary study about the viability and adequacy of a new methodology for the definition of one of the main properties of ion exchange resins used for isotopic separation. Basically, the main problem is the definition of pelicule diameter in case of pelicular ion exchange resins, in order to achieve the best performance in the shortest time. In order to achieve this, a methodology was developed, based in two classic techniques of Artificial Intelligence (AI). At first, an artificial neural network (NN) was trained to map the existing relations between the nucleus radius and the resin's efficiency associated with the exchange time. Later on, a genetic algorithm (GA) was developed in order to find the best pelicule dimension. Preliminary results seem to confirm the potential of the method, and this can be used in any chemical process employing ion exchange resins. (author)

  2. An evolutionary algorithm technique for intelligence, surveillance, and reconnaissance plan optimization

    Science.gov (United States)

    Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad

    2008-04-01

    To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology

  3. Concept development and needs identification for intelligent network flow optimization (INFLO) : concept of operations.

    Science.gov (United States)

    2012-06-01

    The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...

  4. Concept development and needs identification for intelligent network flow optimization (INFLO) : test readiness assessment.

    Science.gov (United States)

    2012-11-01

    The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...

  5. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    Science.gov (United States)

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and : Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale : demonstration of ...

  6. Intelligent Mechatronics Systems for Transport Climate Parameters Optimization Using Fuzzy Logic Control

    OpenAIRE

    Beinarts, I; Ļevčenkovs, A; Kuņicina, N

    2007-01-01

    In article interest is concentrated on the climate parameters optimization in passengers’ salon of public electric transportation vehicles. The article presents mathematical problem for using intelligent agents in mechatronics problems for climate parameters optimal control. Idea is to use fuzzy logic and intelligent algorithms to create coordination mechanism for climate parameters control to save electrical energy, and it increases the level of comfort for passengers. A special interest for...

  7. A Dynamic Intelligent Decision Approach to Dependency Modeling of Project Tasks in Complex Engineering System Optimization

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2013-01-01

    Full Text Available Complex engineering system optimization usually involves multiple projects or tasks. On the one hand, dependency modeling among projects or tasks highlights structures in systems and their environments which can help to understand the implications of connectivity on different aspects of system performance and also assist in designing, optimizing, and maintaining complex systems. On the other hand, multiple projects or tasks are either happening at the same time or scheduled into a sequence in order to use common resources. In this paper, we propose a dynamic intelligent decision approach to dependency modeling of project tasks in complex engineering system optimization. The approach takes this decision process as a two-stage decision-making problem. In the first stage, a task clustering approach based on modularization is proposed so as to find out a suitable decomposition scheme for a large-scale project. In the second stage, according to the decomposition result, a discrete artificial bee colony (ABC algorithm inspired by the intelligent foraging behavior of honeybees is developed for the resource constrained multiproject scheduling problem. Finally, a certain case from an engineering design of a chemical processing system is utilized to help to understand the proposed approach.

  8. Fatigue distribution optimization for offshore wind farms using intelligent agent control

    DEFF Research Database (Denmark)

    Zhao, Rongyong; Shen, Wen Zhong; Knudsen, Torben

    2012-01-01

    with its neighbouring downwind turbines and organizes them adaptively into a wind delivery group along the wind direction. The agent attributes and the event structure are designed on the basis of the intelligent agent theory by using the unified modelling language. The control strategy of the intelligent......A novel control approach is proposed to optimize the fatigue distribution of wind turbines in a large‐scale offshore wind farm on the basis of an intelligent agent theory. In this approach, each wind turbine is considered to be an intelligent agent. The turbine at the farm boundary communicates...... coefficient for every wind turbine. The optimization is constrained such that the average fatigue for every turbine is smaller than what would be achieved by conventional dispatch and such that the total power loss of the wind farm is restricted to a few percent of the total power. This intelligent agent...

  9. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Science.gov (United States)

    Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  10. Emotional intelligence and emotions associated with optimal and dysfunctional athletic performance.

    Science.gov (United States)

    Lane, Andrew M; Devonport, Tracey J; Soos, Istvan; Karsai, Istvan; Leibinger, Eva; Hamar, Pal

    2010-01-01

    This study investigated relationships between self-report measures of emotional intelligence and memories of pre-competitive emotions before optimal and dysfunctional athletic performance. Participant-athletes (n = 284) completed a self-report measure of emotional intelligence and two measures of pre-competitive emotions; a) emotions experienced before an optimal performance, and b) emotions experienced before a dysfunctional performance. Consistent with theoretical predictions, repeated MANOVA results demonstrated pleasant emotions associated with optimal performance and unpleasant emotions associated with dysfunctional performance. Emotional intelligence correlated with pleasant emotions in both performances with individuals reporting low scores on the self-report emotional intelligence scale appearing to experience intense unpleasant emotions before dysfunctional performance. We suggest that future research should investigate relationships between emotional intelligence and emotion-regulation strategies used by athletes. Key pointsAthletes reporting high scores of self-report emotional intelligence tend to experience pleasant emotions.Optimal performance is associated with pleasant emotions and dysfunctional performance is associated with unpleasant emotions.Emotional intelligence might help athletes recognize which emotional states help performance.

  11. Data transfer based on intelligent ethernet card

    International Nuclear Information System (INIS)

    Zhu Haitao; Chinese Academy of Sciences, Beijing; Chu Yuanping; Zhao Jingwei

    2007-01-01

    Intelligent Ethernet Cards are widely used in systems where the network throughout is very large, such as the DAQ systems for modern high energy physics experiments, web service. With the example of a commercial intelligent Ethernet card, this paper introduces the architecture, the principle and the process of intelligent Ethernet cards. In addition, the results of several experiments showing the differences between intelligent Ethernet cards and general ones are also presented. (authors)

  12. Optimal fuel loading pattern design using artificial intelligence techniques

    International Nuclear Information System (INIS)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung Ho

    1993-01-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (Author)

  13. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  14. Knowledge based systems for intelligent robotics

    Science.gov (United States)

    Rajaram, N. S.

    1982-01-01

    It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.

  15. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  16. Soft Computing Optimizer For Intelligent Control Systems Design: The Structure And Applications

    Directory of Open Access Journals (Sweden)

    Sergey A. Panfilov

    2003-10-01

    Full Text Available Soft Computing Optimizer (SCO as a new software tool for design of robust intelligent control systems is described. It is based on the hybrid methodology of soft computing and stochastic simulation. It uses as an input the measured or simulated data about the modeled system. SCO is used to design an optimal fuzzy inference system, which approximates a random behavior of control object with the certain accuracy. The task of the fuzzy inference system construction is reduced to the subtasks such as forming of the linguistic variables for each input and output variable, creation of rule data base, optimization of rule data base and refinement of the parameters of the membership functions. Each task by the corresponding genetic algorithm (with an appropriate fitness function is solved. The result of SCO application is the design of Knowledge Base of a Fuzzy Controller, which contains the value information about developed fuzzy inference system. Such value information can be downloaded into the actual fuzzy controller to perform online fuzzy control. Simulations results of robust fuzzy control of nonlinear dynamic systems and experimental results of application on automotive semi-active suspension control are demonstrated.

  17. Mathematics creative thinking levels based on interpersonal intelligence

    Science.gov (United States)

    Kuncorowati, R. H.; Mardiyana; Saputro, D. R. S.

    2017-12-01

    Creative thinking ability was one of student’s ability to determine various alternative solutions toward mathematics problem. One of indicators related to creative thinking ability was interpersonal intelligence. Student’s interpersonal intelligence would influence to student’s creativity. This research aimed to analyze creative thinking ability level of junior high school students in Karanganyar using descriptive method. Data was collected by test, questionnaire, interview, and documentation. The result showed that students with high interpersonal intelligence achieved third and fourth level in creative thinking ability. Students with moderate interpersonal intelligence achieved second level in creative thinking ability and students with low interpersonal intelligence achieved first and zero level in creative thinking ability. Hence, students with high, moderate, and low interpersonal intelligence could solve mathematics problem based on their mathematics creative thinking ability.

  18. Prediction and Optimization of Speech Intelligibility in Adverse Conditions

    NARCIS (Netherlands)

    Taal, C.H.

    2013-01-01

    In digital speech-communication systems like mobile phones, public address systems and hearing aids, conveying the message is one of the most important goals. This can be challenging since the intelligibility of the speech may be harmed at various stages before, during and after the transmission

  19. Optimizing Vector-Quantization Processor Architecture for Intelligent Query-Search Applications

    Science.gov (United States)

    Xu, Huaiyu; Mita, Yoshio; Shibata, Tadashi

    2002-04-01

    The architecture of a very large scale integration (VLSI) vector-quantization processor (VQP) has been optimized to develop a general-purpose intelligent query-search agent. The agent performs a similarity-based search in a large-volume database. Although similarity-based search processing is computationally very expensive, latency-free searches have become possible due to the highly parallel maximum-likelihood search architecture of the VQP chip. Three architectures of the VQP chip have been studied and their performances are compared. In order to give reasonable searching results according to the different policies, the concept of penalty function has been introduced into the VQP. An E-commerce real-estate agency system has been developed using the VQP chip implemented in a field-programmable gate array (FPGA) and the effectiveness of such an agency system has been demonstrated.

  20. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  1. Improved MR breast images by contrast optimization using artificial intelligence

    International Nuclear Information System (INIS)

    Konig, H.; Gohagan, J.; Laub, G.; Bachus, R.; Heywang, S.; Reinhardt, E.R.

    1986-01-01

    The clinical relevance of MR imaging of the breast is mainly related to the modelity's ability to differentiate among normal, benign, and malignant tissue and to yield prognostic information. In addition to the MR imaging parameters, morphologic features of these images are calculated. Based on statistical information of a comprehensive, labeled image and knowledge of a data base system, a numerical classifier is deduced. The application of this classifier to all cases leads to estimations of specific tissue types for each pixel. The method is sufficiently sensitive for grading a recognized tissue class. In this manner images with optimal contrast appropriate to particular diagnostic requirements are generated. The discriminant power of each MR imaging parameter as well as of a combination of parameters can be determined objectively with respect to tissue discrimination

  2. Novel Verification Method for Timing Optimization Based on DPSO

    Directory of Open Access Journals (Sweden)

    Chuandong Chen

    2018-01-01

    Full Text Available Timing optimization for logic circuits is one of the key steps in logic synthesis. Extant research data are mainly proposed based on various intelligence algorithms. Hence, they are neither comparable with timing optimization data collected by the mainstream electronic design automation (EDA tool nor able to verify the superiority of intelligence algorithms to the EDA tool in terms of optimization ability. To address these shortcomings, a novel verification method is proposed in this study. First, a discrete particle swarm optimization (DPSO algorithm was applied to optimize the timing of the mixed polarity Reed-Muller (MPRM logic circuit. Second, the Design Compiler (DC algorithm was used to optimize the timing of the same MPRM logic circuit through special settings and constraints. Finally, the timing optimization results of the two algorithms were compared based on MCNC benchmark circuits. The timing optimization results obtained using DPSO are compared with those obtained from DC, and DPSO demonstrates an average reduction of 9.7% in the timing delays of critical paths for a number of MCNC benchmark circuits. The proposed verification method directly ascertains whether the intelligence algorithm has a better timing optimization ability than DC.

  3. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  4. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  5. Internet-based intelligent information processing systems

    CERN Document Server

    Tonfoni, G; Ichalkaranje, N S

    2003-01-01

    The Internet/WWW has made it possible to easily access quantities of information never available before. However, both the amount of information and the variation in quality pose obstacles to the efficient use of the medium. Artificial intelligence techniques can be useful tools in this context. Intelligent systems can be applied to searching the Internet and data-mining, interpreting Internet-derived material, the human-Web interface, remote condition monitoring and many other areas. This volume presents the latest research on the interaction between intelligent systems (neural networks, adap

  6. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Shan Li

    2014-01-01

    Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  7. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Directory of Open Access Journals (Sweden)

    Lakshmi Pathak

    Full Text Available Cholesterol oxidase (COD is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM, artificial neural network (ANN and genetic algorithm (GA have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  8. Ability-versus skill-based assessment of emotional intelligence.

    Science.gov (United States)

    Bradberry, Travis R; Su, Lac D

    2006-01-01

    Emotional intelligence has received an intense amount of attention in leadership circles during the last decade and continuing debate exists concerning the best method for measuring this construct. This study analyzed leader emotional intelligence scores, measured via skill and ability methodologies, against leader job performance. Two hundred twelve employees from three organizations participated in this study. Scores on the Emotional Intelligence Appraisal, a skill-based assessment, were positively, though not significantly, correlated with scores on the MSCEIT, an ability-based assessment of emotional intelligence. Scores on the MSCEIT did not have a significant relationship with job performance in this study, whereas, scores on the Emotional Intelligence Appraisal had a strong link to leader job performance. The four subcomponents of the Emotional Intelligence Appraisal were examined against job performance. Relationship management was a stronger predictor of leader job performance than the other three subcomponents. Social awareness was the single emotional intelligence skill that did not have a significant link to leader job performance. Factor analyses yielded a two-component model of emotional intelligence encompassing personal and social competence, rather than confirmation of a four-part taxonomy.

  9. An artificial intelligence (AI) NOx/heat rate optimization system for Ontario Hydro`s fossil generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Frank, A.; Bodach, P. [Ontario Hydro, Toronto, ON (Canada); Warriner, G. [Radian International, Tucker, GA (United States); Noblett, J. [Radian International, Austin, TX (United States); Slatsky, M. [Southern Company, Birmingham, AL (United States)

    1999-08-01

    Artificial intelligence (AI)-based software packages which can optimize power plant operations that improves heat rate and also reduces nitrogen oxide emissions are now commonly available for commercial use. This paper discusses the implementation of the AI-based NOx and Heat Rate Optimization System at Ontario Hydro`s generation stations, emphasizing the current AI Optimization Project at Units 5 and 6 of the Lakeview Generating Station. These demonstration programs are showing promising results in NOx reduction and plant performance improvement. The availability of the plant Digital Control System (DCS) in implementing AI optimization in a closed-loop system was shown to be an important criterion for success. Implementation of AI technology at other Ontario Hydro fossil generating units as part of the overall NOx emission reduction system is envisaged to coincide with the retrofit of the original plant control system with the latest DCS systems. 14 refs., 3 figs.

  10. Beyond fluid intelligence and personality traits in social support: the role of ability based emotional intelligence.

    Science.gov (United States)

    Fabio, Annamaria Di

    2015-01-01

    Social support represents an important individual resource that has been associated with multiple indices of adaptive functioning and resiliency. Existing research has also identified an association between emotional intelligence (EI) and social support. The present study builds on prior research by investigating the contributions of ability based EI to social support, beyond the effects of fluid intelligence and personality traits. The Advanced Progressive Matrices, the Big Five Questionnaire, the Mayer Salovey Caruso EI test (MSCEIT), and the Multidimensional Scale of Perceived Social Support were administered to 149 Italian high school students. The results showed that ability based EI added significant incremental variance in explaining perceived social support, beyond the variance due to fluid intelligence and personality traits. The results underline the role of ability based EI in relation to perceived social support. Since ability based EI can be increased through specific training, the results of the present study highlight new possibilities for research and intervention in a preventive framework.

  11. Evolutionary Computing for Intelligent Power System Optimization and Control

    DEFF Research Database (Denmark)

    This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....

  12. Risk Based Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, M.H.; Kroon, I.B.

    1992-01-01

    Optimal fatigue life testing of materials is considered. Based on minimization of the total expected costs of a mechanical component a strategy is suggested to determine the optimal stress range levels for which additional experiments are to be performed together with an optimal value...

  13. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    International Nuclear Information System (INIS)

    Hedayat, Afshin; Davilu, Hadi; Barfrosh, Ahmad Abdollahzadeh; Sepanloo, Kamran

    2009-01-01

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  14. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)

    2009-12-15

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  15. Simulation Study of Swarm Intelligence Based on Life Evolution Behavior

    Directory of Open Access Journals (Sweden)

    Yanmin Liu

    2015-01-01

    Full Text Available Swarm intelligence (SI is a new evolutionary computation technology, and its performance efficacy is usually affected by each individual behavior in the swarm. According to the genetic and sociological theory, the life evolution behavior process is influenced by the external and internal factors, so the mechanisms of external and internal environment change must be analyzed and explored. Therefore, in this paper, we used the thought of the famous American genetic biologist Morgan, “life = DNA + environment + interaction of environment + gene,” to propose the mutation and crossover operation of DNA fragments by the environmental change to improve the performance efficiency of intelligence algorithms. Additionally, PSO is a random swarm intelligence algorithm with the genetic and sociological property, so we embed the improved mutation and crossover operation to particle swarm optimization (PSO and designed DNA-PSO algorithm to optimize single and multiobjective optimization problems. Simulation experiments in single and multiobjective optimization problems show that the proposed strategies can effectively improve the performance of swarm intelligence.

  16. An Optimized Version of a New Absolute Linear Encoder Dedicated to Intelligent Transportation Systems

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2009-01-01

    made in the coding algorithm, in the ruler topology and in the dedicated software. The optimized ALE is a robust device able to work in industrial environment, with a high level of vibrations. By this reason it is ideal for the transport system control in automating manufacturing processes, intelligent...

  17. Intelligent Optimization of Modulation Indexes in Unified Tracking and Communication System

    Science.gov (United States)

    Yang, Wei-wei; Cong, Bo; Huang, Qiong; Zhu, Li-wei

    2016-02-01

    In the unified tracking and communication system, the ranging signal and the telemetry, communication signals are used in the same channel. In the link budget, it is necessary to allocate the power reasonably, so as to ensure the performance of system and reduce the cost. In this paper, the nonlinear optimization problem is studied using intelligent optimization method. Simulation analysis results show that the proposed method is effective.

  18. Event classification and optimization methods using artificial intelligence and other relevant techniques: Sharing the experiences

    Science.gov (United States)

    Mohamed, Abdul Aziz; Hasan, Abu Bakar; Ghazali, Abu Bakar Mhd.

    2017-01-01

    Classification of large data into respected classes or groups could be carried out with the help of artificial intelligence (AI) tools readily available in the market. To get the optimum or best results, optimization tool could be applied on those data. Classification and optimization have been used by researchers throughout their works, and the outcomes were very encouraging indeed. Here, the authors are trying to share what they have experienced in three different areas of applied research.

  19. An Artificial Intelligence-Based Environment Quality Analysis System

    OpenAIRE

    Oprea , Mihaela; Iliadis , Lazaros

    2011-01-01

    Part 20: Informatics and Intelligent Systems Applications for Quality of Life information Services (ISQLIS) Workshop; International audience; The paper describes an environment quality analysis system based on a combination of some artificial intelligence techniques, artificial neural networks and rule-based expert systems. Two case studies of the system use are discussed: air pollution analysis and flood forecasting with their impact on the environment and on the population health. The syste...

  20. Intelligent Traffic Light Based on PLC Control

    Science.gov (United States)

    Mei, Lin; Zhang, Lijian; Wang, Lingling

    2017-11-01

    The traditional traffic light system with a fixed control mode and single control function is contradicted with the current traffic section. The traditional one has been unable to meet the functional requirements of the existing flexible traffic control system. This paper research and develop an intelligent traffic light called PLC control system. It uses PLC as control core, using a sensor module for receiving real-time information of vehicles, traffic control mode for information to select the traffic lights. Of which control mode is flexible and changeable, and it also set the countdown reminder to improve the effectiveness of traffic lights, which can realize the goal of intelligent traffic diversion, intelligent traffic diversion.

  1. An intelligent algorithm for optimizing emergency department job and patient satisfaction.

    Science.gov (United States)

    Azadeh, Ali; Yazdanparast, Reza; Abdolhossein Zadeh, Saeed; Keramati, Abbas

    2018-06-11

    Purpose Resilience engineering, job satisfaction and patient satisfaction were evaluated and analyzed in one Tehran emergency department (ED) to determine ED strengths, weaknesses and opportunities to improve safety, performance, staff and patient satisfaction. The paper aims to discuss these issues. Design/methodology/approach The algorithm included data envelopment analysis (DEA), two artificial neural networks: multilayer perceptron and radial basis function. Data were based on integrated resilience engineering (IRE) and satisfaction indicators. IRE indicators are considered inputs and job and patient satisfaction indicators are considered output variables. Methods were based on mean absolute percentage error analysis. Subsequently, the algorithm was employed for measuring staff and patient satisfaction separately. Each indicator is also identified through sensitivity analysis. Findings The results showed that salary, wage, patient admission and discharge are the crucial factors influencing job and patient satisfaction. The results obtained by the algorithm were validated by comparing them with DEA. Practical implications The approach is a decision-making tool that helps health managers to assess and improve performance and take corrective action. Originality/value This study presents an IRE and intelligent algorithm for analyzing ED job and patient satisfaction - the first study to present an integrated IRE, neural network and mathematical programming approach for optimizing job and patient satisfaction, which simultaneously optimizes job and patient satisfaction, and IRE. The results are validated by DEA through statistical methods.

  2. Resource Optimization of Mobile Intelligent System with heart MPLS network

    Directory of Open Access Journals (Sweden)

    Mohammed Elkoutbi

    2009-10-01

    Full Text Available In this paper, we introduce the original Mobile Intelligent System (MIS in embeded FPGA architecture. This node will allow the construction of autonomous mobile network units which can move in unknowns, inaccessible or hostile environnement for human being, in order to collect data by various sensors and transmits them by routing to a unit of distant process. In the sake of improving the performance of transmission, we propose a global schema of QoS management using DiffServ/MPLS backbones. We provide an evaluation of several scenarios for combining QoS IP networks with MIS access network. We conclude with a study on interoperability between QoS patterns in access and backbone networks.

  3. FPGA Based Intelligent Co-operative Processor in Memory Architecture

    DEFF Research Database (Denmark)

    Ahmed, Zaki; Sotudeh, Reza; Hussain, Dil Muhammad Akbar

    2011-01-01

    benefits of PIM, a concept of Co-operative Intelligent Memory (CIM) was developed by the intelligent system group of University of Hertfordshire, based on the previously developed Co-operative Pseudo Intelligent Memory (CPIM). This paper provides an overview on previous works (CPIM, CIM) and realization......In a continuing effort to improve computer system performance, Processor-In-Memory (PIM) architecture has emerged as an alternative solution. PIM architecture incorporates computational units and control logic directly on the memory to provide immediate access to the data. To exploit the potential...

  4. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  5. The Application Research of Modern Intelligent Cold Chain Distribution System Based on Internet of Things Technology

    Science.gov (United States)

    Fan, Dehui; Gao, Shan

    This paper implemented an intelligent cold chain distribution system based on the technology of Internet of things, and took the protoplasmic beer logistics transport system as example. It realized the remote real-time monitoring material status, recorded the distribution information, dynamically adjusted the distribution tasks and other functions. At the same time, the system combined the Internet of things technology with weighted filtering algorithm, realized the real-time query of condition curve, emergency alarming, distribution data retrieval, intelligent distribution task arrangement, etc. According to the actual test, it can realize the optimization of inventory structure, and improve the efficiency of cold chain distribution.

  6. Intelligence

    Science.gov (United States)

    Sternberg, Robert J.

    2012-01-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain—especially with regard to the functioning in the prefrontal cortex—and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret. PMID:22577301

  7. Intelligence.

    Science.gov (United States)

    Sternberg, Robert J

    2012-03-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain-especially with regard to the functioning in the prefrontal cortex-and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret.

  8. Optimization of fuel exchange machine operation for boiling water reactors using an artificial intelligence technique

    International Nuclear Information System (INIS)

    Sekimizu, K.; Araki, T.; Tatemichi, S.I.

    1987-01-01

    Optimization of fuel assembly exchange machine movements during periodic refueling outage is discussed. The fuel assembly movements during a fuel shuffling were examined, and it was found that the fuel assembly movements consist of two different movement sequences;one is the ''PATH,'' which begins at a discharged fuel assembly and terminates at a fresh fuel assembly, and the other is the ''LOOP,'' where fuel assemblies circulate in the core. It is also shown that fuel-loading patterns during the fuel shuffling can be expressed by the state of each PATH, which is the number of elements already accomplished in the PATH actions. Based on this fact, a scheme to determine a fuel assembly movement sequence within the constraint was formulated using the artificial intelligence language PROLOG. An additional merit to the scheme is that it can simultaneously evaluate fuel assembly movement, due to the control rods and local power range monitor exchange, in addition to normal fuel shuffling. Fuel assembly movements, for fuel shuffling in a 540-MW(electric) boiling water reactor power plant, were calculated by this scheme. It is also shown that the true optimization to minimize the fuel exchange machine movements would be costly to obtain due to the number of alternatives that would need to be evaluated. However, a method to obtain a quasi-optimum solution is suggested

  9. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  10. Intelligent Hypothermia Care System using Ant ‎Colony Optimization for Rules Prediction

    Directory of Open Access Journals (Sweden)

    Hayder Naser Khraibet

    2017-12-01

    Full Text Available Intelligent Hypothermia Care System (IHCS is an intelligence system uses set of methodologies, algorithms, architectures and processes to determine where patients in a postoperative recovery area must be sent. Hypothermia is a significant concern after surgery. This paper utilizes the classification task in data mining to propose an intelligent technique to predict where to send a patient after surgery: intensive care unit, general floor or home. To achieve this goal, this paper evaluates the performance of decision tree algorithm, exemplifying the deterministic approach, against the AntMiner algorithm, exemplifying the heuristic approach, to choose the best approach in detecting the patient’s status. Results show the outperformance of the heuristic approach. The implication of this proposal will be twofold: in hypothermia treatment and in the application of ant colony optimization

  11. Autonomous entropy-based intelligent experimental design

    Science.gov (United States)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  12. Greenhouse intelligent control system based on microcontroller

    Science.gov (United States)

    Zhang, Congwei

    2018-04-01

    As one of the hallmarks of agricultural modernization, intelligent greenhouse has the advantages of high yield, excellent quality, no pollution and continuous planting. Taking AT89S52 microcontroller as the main controller, the greenhouse intelligent control system uses soil moisture sensor, temperature and humidity sensors, light intensity sensor and CO2 concentration sensor to collect measurements and display them on the 12864 LCD screen real-time. Meantime, climate parameter values can be manually set online. The collected measured values are compared with the set standard values, and then the lighting, ventilation fans, warming lamps, water pumps and other facilities automatically start to adjust the climate such as light intensity, CO2 concentration, temperature, air humidity and soil moisture of the greenhouse parameter. So, the state of the environment in the greenhouse Stabilizes and the crop grows in a suitable environment.

  13. Intelligent Optimization of a Mixed Culture Cultivation Process

    Directory of Open Access Journals (Sweden)

    Petia Koprinkova-Hristova

    2015-04-01

    Full Text Available In the present paper a neural network approach called "Adaptive Critic Design" (ACD was applied to optimal tuning of set point controllers of the three main substrates (sugar, nitrogen source and dissolved oxygen for PHB production process. For approximation of the critic and the controllers a special kind of recurrent neural networks called Echo state networks (ESN were used. Their structure allows fast training that will be of crucial importance in on-line applications. The critic network is trained to minimize the temporal difference error using Recursive Least Squares method. Two approaches - gradient and heuristic - were exploited for training of the controllers. The comparison is made with respect to achieved improvement of the utility function subject of optimization as well as with known expert strategy for control the PHB production process.

  14. Multiple intelligences and outcomes based education

    Directory of Open Access Journals (Sweden)

    Elaine Ridge

    2008-08-01

    Full Text Available This article explores the reasons that make it advantageous to develop learning programmes which draw on the theory of multiple intelligences (MI. A unitary view of intelligence privileges analytic/linguisticallygifted learners. The theory of MI, on the other hand, takes account of the diversity of learners and challenges educators to provide opportunities for them to use their varied intelligences.The outline of each of the eight intelligences demonstratesthe many ways in which learners can demonstrate their ability to excel. Application of these insights can complement the kind of transformatoryeducation envisaged in the Department of Education policy documents. MI translated into school practice has taken a variety of forms: project-basedapproaches, interdisciplinarycurriculums, entry points to lesson plans and complex assessments are only some of these. Ordinary classroom teachers can create diverse opportunities for all learners to enjoy a high measure of success.Hierdie artikel ondersoek die redes waarom dit voordelig is om leerprogramme te ontwikkel wal gebaseer is op idees uit die leorie van meervoudige intelligensies (MI.'n Unitêre siening van intelligensiebevoordeel analities- en taalbegaafde-leerders.Die MI-teorie, daarenleen neem die ongelyksoortigheidvan die leerders in ag en daag opvoeders uit om geleenthede te skep vir die leerlinge om verskeie van hulle intelligensies te gebruik. Die omskrywing van elk van die agt soorte intelligensies demonstreer die talryke-maniere waarop leerders hulle vermoë om uit te blink kan bewys.Die toepassing van hierdie insigte kan bydra tot die transformerendeaard van die opvoeding wat met die Departmentvan Opvoedkunde se beleidsdokumentebeoog word.MI toegepas in skoolpraktykneem verskillendevorms aan: projek-gebaseerdebenaderinge;interdissiplinêrekurrikulums; loelreepunte vir lesplanne en veelsydige assessering, om maar 'n paar te noem.Gewone klas-onderwysers kan 'n verskeidenheid geleenthede skep

  15. ARTIFICIAL INTELLIGENCE APPLICATIONS IN THE FINANCIAL SECTOR

    OpenAIRE

    Adrian Cozgarea; Gabriel Cozgarea; Andrei Stanciu

    2008-01-01

    The present paper exposes some of artificial intelligence specific technologies regarding financial sector. Through non-deterministic solutions and simple algorithms, artificial intelligence could become a base alternative for solving financial problems which require complex mathematic calculations or complex optimization.

  16. Crack identification based on synthetic artificial intelligent technique

    International Nuclear Information System (INIS)

    Shim, Mun Bo; Suh, Myung Won

    2001-01-01

    It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a Continuous Evolutionary Algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising

  17. Advances in Reasoning-Based Image Processing Intelligent Systems Conventional and Intelligent Paradigms

    CERN Document Server

    Nakamatsu, Kazumi

    2012-01-01

    The book puts special stress on the contemporary techniques for reasoning-based image processing and analysis: learning based image representation and advanced video coding; intelligent image processing and analysis in medical vision systems; similarity learning models for image reconstruction; visual perception for mobile robot motion control, simulation of human brain activity in the analysis of video sequences; shape-based invariant features extraction; essential of paraconsistent neural networks, creativity and intelligent representation in computational systems. The book comprises 14 chapters. Each chapter is a small monograph, representing resent investigations of authors in the area. The topics of the chapters cover wide scientific and application areas and complement each-other very well. The chapters’ content is based on fundamental theoretical presentations, followed by experimental results and comparison with similar techniques. The size of the chapters is well-ballanced which permits a thorough ...

  18. Intelligent Adaptation Process for Case Based Systems

    International Nuclear Information System (INIS)

    Nassar, A.M.; Mohamed, A.H.; Mohamed, A.H.

    2014-01-01

    Case Based Reasoning (CBR) Systems is one of the important decision making systems applied in many fields all over the world. The effectiveness of any CBR system based on the quality of the storage cases in the case library. Similar cases can be retrieved and adapted to produce the solution for the new problem. One of the main issues faced the CBR systems is the difficulties of achieving the useful cases. The proposed system introduces a new approach that uses the genetic algorithm (GA) technique to automate constructing the cases into the case library. Also, it can optimize the best one to be stored in the library for the future uses. However, the proposed system can avoid the problems of the uncertain and noisy cases. Besides, it can simply the retrieving and adaptation processes. So, it can improve the performance of the CBR system. The suggested system can be applied for many real-time problems. It has been applied for diagnosis the faults of the wireless network, diagnosis of the cancer diseases, diagnosis of the debugging of a software as cases of study. The proposed system has proved its performance in this field

  19. Intelligent Heuristic Techniques for the Optimization of the Transshipment and Storage Operations at Maritime Container Terminals

    Directory of Open Access Journals (Sweden)

    Christopher Expósito-Izquierdo

    2017-02-01

    Full Text Available This paper summarizes the main contributions of the Ph.D. thesis of Christopher Exp\\'osito-Izquierdo. This thesis seeks to develop a wide set of intelligent heuristic and meta-heuristic algorithms aimed at solving some of the most highlighted optimization problems associated with the transshipment and storage of containers at conventional maritime container terminals. Under the premise that no optimization technique can have a better performance than any other technique under all possible assumptions, the main point of interest in the domain of maritime logistics is to propose optimization techniques superior in terms of effectiveness and computational efficiency to previous proposals found in the scientific literature when solving individual optimization problems under realistic scenarios. Simultaneously, these optimization techniques should be enough competitive to be potentially implemented in practice. }}

  20. Optimization of an Intelligent Controller for an Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    M. Fauzi Nor Shah

    2011-08-01

    Full Text Available Underwater environment poses a difficult challenge for autonomous underwater navigation. A standard problem of underwater vehicles is to maintain it position at a certain depth in order to perform desired operations. An effective controller is required for this purpose and hence the design of a depth controller for an unmanned underwater vehicle is described in this paper. The control algorithm is simulated by using the marine guidance navigation and control simulator. The project shows a radial basis function metamodel can be used to tune the scaling factors of a fuzzy logic controller. By using offline optimization approach, a comparison between genetic algorithm and metamodeling has been done to minimize the integral square error between the set point and the measured depth of the underwater vehicle. The results showed that it is possible to obtain a reasonably good error using metamodeling approach in much a shorter time compared to the genetic algorithm approach.

  1. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    Science.gov (United States)

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  2. Integrated Multimedia Based Intelligent Group Decision Support System for Electrical Power Network

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Saxena

    2002-05-01

    Full Text Available Electrical Power Network in recent time requires an intelligent, virtual environment based decision process for the coordination of all its individual elements and the interrelated tasks. Its ultimate goal is to achieve maximum productivity and efficiency through the efficient and effective application of generation, transmission, distribution, pricing and regulatory systems. However, the complexity of electrical power network and the presence of conflicting multiple goals and objectives postulated by various groups emphasized the need of an intelligent group decision support system approach in this field. In this paper, an Integrated Multimedia based Intelligent Group Decision Support System (IM1GDSS is presented, and its main components are analyzed and discussed. In particular attention is focused on the Data Base, Model Base, Central Black Board (CBB and Multicriteria Futuristic Decision Process (MFDP module. The model base interacts with Electrical Power Network Load Forecasting and Planning (EPNLFP Module; Resource Optimization, Modeling and Simulation (ROMAS Module; Electrical Power Network Control and Evaluation Process (EPNCAEP Module, and MFDP Module through CBB for strategic planning, management control, operational planning and transaction processing. The richness of multimedia channels adds a totally new dimension in a group decision making for Electrical Power Network. The proposed IMIGDSS is a user friendly, highly interactive group decision making system, based on efficient intelligent and multimedia communication support for group discussions, retrieval of content and multi criteria decision analysis.

  3. Hybrid Modeling and Optimization of Manufacturing Combining Artificial Intelligence and Finite Element Method

    CERN Document Server

    Quiza, Ramón; Davim, J Paulo

    2012-01-01

    Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. The book is expected to be useful for postgraduate students and researchers, working in the area of modeling and optimization of manufacturing processes.

  4. Optimization of well placement geothermal reservoirs using artificial intelligence

    Science.gov (United States)

    Akın, Serhat; Kok, Mustafa V.; Uraz, Irtek

    2010-06-01

    This research proposes a framework for determining the optimum location of an injection well using an inference method, artificial neural networks and a search algorithm to create a search space and locate the global maxima. A complex carbonate geothermal reservoir (Kizildere Geothermal field, Turkey) production history is used to evaluate the proposed framework. Neural networks are used as a tool to replicate the behavior of commercial simulators, by capturing the response of the field given a limited number of parameters such as temperature, pressure, injection location, and injection flow rate. A study on different network designs indicates that a combination of neural network and an optimization algorithm (explicit search with variable stepping) to capture local maxima can be used to locate a region or a location for optimum well placement. Results also indicate shortcomings and possible pitfalls associated with the approach. With the provided flexibility of the proposed workflow, it is possible to incorporate various parameters including injection flow rate, temperature, and location. For the field of study, optimum injection well location is found to be in the southeastern part of the field. Specific locations resulting from the workflow indicated a consistent search space, having higher values in that particular region. When studied with fixed flow rates (2500 and 4911 m 3/day), a search run through the whole field located two locations which are in the very same region resulting in consistent predictions. Further study carried out by incorporating effect of different flow rates indicates that the algorithm can be run in a particular region of interest and different flow rates may yield different locations. This analysis resulted with a new location in the same region and an optimum injection rate of 4000 m 3/day). It is observed that use of neural network, as a proxy to numerical simulator is viable for narrowing down or locating the area of interest for

  5. Hybrid Taguchi DNA Swarm Intelligence for Optimal Inverse Kinematics Redundancy Resolution of Six-DOF Humanoid Robot Arms

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Huang

    2014-01-01

    Full Text Available This paper presents a hybrid Taguchi deoxyribonucleic acid (DNA swarm intelligence for solving the inverse kinematics redundancy problem of six degree-of-freedom (DOF humanoid robot arms. The inverse kinematics problem of the multi-DOF humanoid robot arm is redundant and has no general closed-form solutions or analytical solutions. The optimal joint configurations are obtained by minimizing the predefined performance index in DNA algorithm for real-world humanoid robotics application. The Taguchi method is employed to determine the DNA parameters to search for the joint solutions of the six-DOF robot arms more efficiently. This approach circumvents the disadvantage of time-consuming tuning procedure in conventional DNA computing. Simulation results are conducted to illustrate the effectiveness and merit of the proposed methods. This Taguchi-based DNA (TDNA solver outperforms the conventional solvers, such as geometric solver, Jacobian-based solver, genetic algorithm (GA solver and ant, colony optimization (ACO solver.

  6. Matrix Completion Optimization for Localization in Wireless Sensor Networks for Intelligent IoT

    Directory of Open Access Journals (Sweden)

    Thu L. N. Nguyen

    2016-05-01

    Full Text Available Localization in wireless sensor networks (WSNs is one of the primary functions of the intelligent Internet of Things (IoT that offers automatically discoverable services, while the localization accuracy is a key issue to evaluate the quality of those services. In this paper, we develop a framework to solve the Euclidean distance matrix completion problem, which is an important technical problem for distance-based localization in WSNs. The sensor network localization problem is described as a low-rank dimensional Euclidean distance completion problem with known nodes. The task is to find the sensor locations through recovery of missing entries of a squared distance matrix when the dimension of the data is small compared to the number of data points. We solve a relaxation optimization problem using a modification of Newton’s method, where the cost function depends on the squared distance matrix. The solution obtained in our scheme achieves a lower complexity and can perform better if we use it as an initial guess for an interactive local search of other higher precision localization scheme. Simulation results show the effectiveness of our approach.

  7. Design of intelligent house system based on Yeelink

    Directory of Open Access Journals (Sweden)

    Lin Zhi-Huang

    2016-01-01

    Full Text Available In order to monitor the security situation of house in real time, an intelligent house remote monitoring system is designed based on Yeelink cloud services and ZigBee wireless communication technology. This system includes three parts, ZigBee wireless sensor networks, intelligent house gateway and Yeelink Cloud Services. Users can access Yeelink website or APP to get real time information in the house, receiving information including gas concentration, temperature. Also, remote commands can be sent from mobile devices to control the household appliances. The user who can monitor and control the house effectively through a simple and convenient user interface, will feel much more safe and comfortable.

  8. Intelligent Shutter Speech Control System Based on DSP

    Directory of Open Access Journals (Sweden)

    Yonghong Deng

    2017-01-01

    Full Text Available Based on TMS320F28035 DSP, this paper designed a smart shutters voice control system, which realized the functions of opening and closing shutters, intelligent switching of lighting mode and solar power supply through voice control. The traditional control mode is converted to voice control at the same time with automatic lighting and solar power supply function. In the convenience of people’s lives at the same time more satisfied with today’s people on the intelligent and environmental protection of the two concepts of the pursuit. The whole system is simple, low cost, safe and reliable.

  9. Machine Learning-based Intelligent Formal Reasoning and Proving System

    Science.gov (United States)

    Chen, Shengqing; Huang, Xiaojian; Fang, Jiaze; Liang, Jia

    2018-03-01

    The reasoning system can be used in many fields. How to improve reasoning efficiency is the core of the design of system. Through the formal description of formal proof and the regular matching algorithm, after introducing the machine learning algorithm, the system of intelligent formal reasoning and verification has high efficiency. The experimental results show that the system can verify the correctness of propositional logic reasoning and reuse the propositional logical reasoning results, so as to obtain the implicit knowledge in the knowledge base and provide the basic reasoning model for the construction of intelligent system.

  10. Personalized E- learning System Based on Intelligent Agent

    Science.gov (United States)

    Duo, Sun; Ying, Zhou Cai

    Lack of personalized learning is the key shortcoming of traditional e-Learning system. This paper analyzes the personal characters in e-Learning activity. In order to meet the personalized e-learning, a personalized e-learning system based on intelligent agent was proposed and realized in the paper. The structure of system, work process, the design of intelligent agent and the realization of intelligent agent were introduced in the paper. After the test use of the system by certain network school, we found that the system could improve the learner's initiative participation, which can provide learners with personalized knowledge service. Thus, we thought it might be a practical solution to realize self- learning and self-promotion in the lifelong education age.

  11. Active Probing Feedback based Self Configurable Intelligent Distributed Antenna System

    DEFF Research Database (Denmark)

    Kumar, Ambuj

    collectively as Place Time Coverage & Capacity (PTC2). The dissertation proves through the concept of the PTC2 that the network performance can severely be degraded by the excessive and unrealistic site demands, the network management inefficiency, and the consequence of the accumulation of subscribers...... challenge through a viable solution that is based on injecting intelligence and services in parallel layers through a Distributed Antenna Systems (DAS) network. This approach would enable the remote sites to acquire intelligence and a resource pool at the same time, thereby managing the network dynamics...... promptly and aptly to absorb the PTC2 wobble. An Active Probing Management System (APMS) is proposed as a supporting architecture, to assist the intelligent system to keep a check on the variations at each and every site by either deploying the additional antenna or by utilising the service antenna...

  12. [Artificial intelligence--the knowledge base applied to nephrology].

    Science.gov (United States)

    Sancipriano, G P

    2005-01-01

    The idea that efficacy efficiency, and quality in medicine could not be reached without sorting the huge knowledge of medical and nursing science is very common. Engineers and computer scientists have developed medical software with great prospects for success, but currently these software applications are not so useful in clinical practice. The medical doctor and the trained nurse live the 'information age' in many daily activities, but the main benefits are not so widespread in working activities. Artificial intelligence and, particularly, export systems charm health staff because of their potential. The first part of this paper summarizes the characteristics of 'weak artificial intelligence' and of expert systems important in clinical practice. The second part discusses medical doctors' requirements and the current nephrologic knowledge bases available for artificial intelligence development.

  13. Enhancing reliable online transaction with intelligent rule-based ...

    African Journals Online (AJOL)

    Enhancing reliable online transaction with intelligent rule-based fraud detection technique. ... These are with a bid to reducing amongst other things the cost of production and also dissuade the poor handling of Nigeria currency. The CBN pronouncement has necessitated the upsurge in transactions completed with credit ...

  14. Towards an Intelligent Planning Knowledge Base Development Environment

    Science.gov (United States)

    Chien, S.

    1994-01-01

    ract describes work in developing knowledge base editing and debugging tools for the Multimission VICAR Planner (MVP) system. MVP uses artificial intelligence planning techniques to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing requests made to the JPL Multimission Image Processing Laboratory.

  15. A generic model for camera based intelligent road crowd control ...

    African Journals Online (AJOL)

    This research proposes a model for intelligent traffic flow control by implementing camera based surveillance and feedback system. A series of cameras are set minimum three signals ahead from the target junction. The complete software system is developed to help integrating the multiple camera on road as feedback to ...

  16. Intelligent Web-Based English Instruction in Middle Schools

    Science.gov (United States)

    Jia, Jiyou

    2015-01-01

    The integration of technology into educational environments has become more prominent over the years. The combination of technology and face-to-face interaction with instructors allows for a thorough, more valuable educational experience. "Intelligent Web-Based English Instruction in Middle Schools" addresses the concerns associated with…

  17. Ontology-based intelligent fuzzy agent for diabetes application

    NARCIS (Netherlands)

    Acampora, G.; Lee, C.-S.; Wang, M.-H.; Hsu, C.-Y.; Loia, V.

    2009-01-01

    It is widely pointed out that classical ontologies are not sufficient to deal with imprecise and vague knowledge for some real world applications, but the fuzzy ontology can effectively solve data and knowledge with uncertainty. In this paper, an ontology-based intelligent fuzzy agent (OIFA),

  18. An Artificial Intelligence-Based Distance Education System: Artimat

    Science.gov (United States)

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  19. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Science.gov (United States)

    Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier

    2017-01-01

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route. PMID:29088087

  20. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Daniel H. De La Iglesia

    2017-10-01

    Full Text Available The use of electric bikes (e-bikes has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  1. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm.

    Science.gov (United States)

    De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier

    2017-10-31

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  2. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  3. Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2014-01-01

    Full Text Available Swarm intelligence (SI is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS as well as the singular spectrum analysis (SSA, time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA and support vector regression (SVR in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

  4. Providing Evidence-Based, Intelligent Support for Flood Resilient Planning and Policy: The PEARL Knowledge Base

    Directory of Open Access Journals (Sweden)

    George Karavokiros

    2016-09-01

    Full Text Available While flood risk is evolving as one of the most imminent natural hazards and the shift from a reactive decision environment to a proactive one sets the basis of the latest thinking in flood management, the need to equip decision makers with necessary tools to think about and intelligently select options and strategies for flood management is becoming ever more pressing. Within this context, the Preparing for Extreme and Rare Events in Coastal Regions (PEARL intelligent knowledge-base (PEARL KB of resilience strategies is presented here as an environment that allows end-users to navigate from their observed problem to a selection of possible options and interventions worth considering within an intuitive visual web interface assisting advanced interactivity. Incorporation of real case studies within the PEARL KB enables the extraction of (evidence-based lessons from all over the word, while the KB’s collection of methods and tools directly supports the optimal selection of suitable interventions. The Knowledge-Base also gives access to the PEARL KB Flood Resilience Index (FRI tool, which is an online tool for resilience assessment at a city level available to authorities and citizens. We argue that the PEARL KB equips authorities with tangible and operational tools that can improve strategic and operational flood risk management by assessing and eventually increasing resilience, while building towards the strengthening of risk governance. The online tools that the PEARL KB gives access to were demonstrated and tested in the city of Rethymno, Greece.

  5. Design of an intelligent materials data base for the IFR

    International Nuclear Information System (INIS)

    Mikaili, R.; Lambert, J.D.B.; Orth, T.D.

    1992-01-01

    In the development of the integral fast reactor (IFR) concept, there is a consensus that materials considerations are an important part of the reactor design, operation, and maintenance and that materials performance is central to liquid-metal reactor reliability and safety. In the design of the IRF materials data base, artificial intelligence techniques are being used to ensure efficient control of information. Intelligent control will provide for the selection of menus to be displayed, efficient data-base searches, and application-dependent guidance through the data base. The development of the IRF data base has progressed to the point of (a) completing the design of the data-base architecture and tables, (b) installing computer hardware for storing large amounts of data, (c) outlining strategies for data transferal, and (d) identifying ways to validate and secure the integrity of data

  6. Geometrical shape optimization of a cold neutron source using artificial intelligence strategies

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1989-01-01

    A new approach is developed for optimizing the geometrical shape of a cold neutron source to maximize its cold neutron outward leakage. An analogy is drawn between the shape optimization problem and a state space search, which is the fundamental problem in Artificial Intelligence applications. The new optimization concept is implemented in the computer code DAIT in which the physical model is represented by a two group, r-z geometry nodal diffusion method, and the state space search is conducted via the Nearest Neighbor algorithm. The accuracy of the nodal diffusion method solution is established on meshes of interest, and is shown to behave qualitatively the same as transport theory solutions. The dependence of the optimum shape and its value on several physical and search parameters is examined via numerical experimentation. 10 refs., 6 figs., 2 tabs

  7. Integration of artificial intelligence and numerical optimization techniques for the design of complex aerospace systems

    International Nuclear Information System (INIS)

    Tong, S.S.; Powell, D.; Goel, S.

    1992-02-01

    A new software system called Engineous combines artificial intelligence and numerical methods for the design and optimization of complex aerospace systems. Engineous combines the advanced computational techniques of genetic algorithms, expert systems, and object-oriented programming with the conventional methods of numerical optimization and simulated annealing to create a design optimization environment that can be applied to computational models in various disciplines. Engineous has produced designs with higher predicted performance gains that current manual design processes - on average a 10-to-1 reduction of turnaround time - and has yielded new insights into product design. It has been applied to the aerodynamic preliminary design of an aircraft engine turbine, concurrent aerodynamic and mechanical preliminary design of an aircraft engine turbine blade and disk, a space superconductor generator, a satellite power converter, and a nuclear-powered satellite reactor and shield. 23 refs

  8. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  9. Brain Emotional Learning Based Intelligent Decoupler for Nonlinear Multi-Input Multi-Output Distillation Columns

    Directory of Open Access Journals (Sweden)

    M. H. El-Saify

    2017-01-01

    Full Text Available The distillation process is vital in many fields of chemical industries, such as the two-coupled distillation columns that are usually highly nonlinear Multi-Input Multi-Output (MIMO coupled processes. The control of MIMO process is usually implemented via a decentralized approach using a set of Single-Input Single-Output (SISO loop controllers. Decoupling the MIMO process into group of single loops requires proper input-output pairing and development of decoupling compensator unit. This paper proposes a novel intelligent decoupling approach for MIMO processes based on new MIMO brain emotional learning architecture. A MIMO architecture of Brain Emotional Learning Based Intelligent Controller (BELBIC is developed and applied as a decoupler for 4 input/4 output highly nonlinear coupled distillation columns process. Moreover, the performance of the proposed Brain Emotional Learning Based Intelligent Decoupler (BELBID is enhanced using Particle Swarm Optimization (PSO technique. The performance is compared with the PSO optimized steady state decoupling compensation matrix. Mathematical models of the distillation columns and the decouplers are built and tested in simulation environment by applying the same inputs. The results prove remarkable success of the BELBID in minimizing the loops interactions without degrading the output that every input has been paired with.

  10. [Control of intelligent car based on electroencephalogram and neurofeedback].

    Science.gov (United States)

    Li, Song; Xiong, Xin; Fu, Yunfa

    2018-02-01

    To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.

  11. An artificial intelligence heat rate/NOx optimization system for Ontario Hydro`s Lambton Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Bachalo, K.; Henrikson, J. [Ontario Hydro, Toronto, ON (Canada); Roland, W.; Booth, R.C.; Parikh, N.; Radl, B. [Pegasus Technologies Ltd., Painesville, OH (United States)

    1998-12-01

    The utilization of artificial Intelligence (AI)-based software programs to optimize power plant operations by simultaneously improving heat rate performance and reducing NOx emissions was discussed. While many AI programs were initially used for demonstration purposes, they are now available for commercial use due to their promising results. In 1996, the Fossil Business Unit of Ontario Hydro initiated a study to evaluate AI technology as a tool for optimizing heat rate and NOx reduction in coal fired stations. Tests were conducted at Units 3 and 4 of the Lambton Generation Station, located just south of Sarnia, Ontario. The tests were conducted to examine three desirable options: (1) achieve at least 0.5 per cent improvement in heat rate concurrently with a NOx reduction of at least 5 per cent, (2) optimize on `heat rate` only with minimum improvement of 2 per cent, and optimize `minimal NOx` only with reduction target of 20 per cent or more, and (3) reach a collaborative agreement with a supplier to further explore and develop AI optimization applications for other advanced and more complex plant processes. Results indicated that NOx reduction and heat rate improvement are not contradictory goals. 15 refs., 1 fig.

  12. Binary cuckoo search based optimal PMU placement scheme for ...

    African Journals Online (AJOL)

    without including zero-injection effect, an Optimal PMU Placement strategy considering ..... in Indian power grid — A case study, Frontiers in Energy, Vol. ... optimization approach, Proceedings: International Conference on Intelligent Systems ...

  13. An Intelligent Agent based Architecture for Visual Data Mining

    OpenAIRE

    Hamdi Ellouzi; Hela Ltifi; Mounir Ben Ayed

    2016-01-01

    the aim of this paper is to present an intelligent architecture of Decision Support System (DSS) based on visual data mining. This architecture applies the multi-agent technology to facilitate the design and development of DSS in complex and dynamic environment. Multi-Agent Systems add a high level of abstraction. To validate the proposed architecture, it is implemented to develop a distributed visual data mining based DSS to predict nosocomial infectionsoccurrence in intensive care units. Th...

  14. Optimizing bi-objective, multi-echelon supply chain model using particle swarm intelligence algorithm

    Science.gov (United States)

    Sathish Kumar, V. R.; Anbuudayasankar, S. P.; Rameshkumar, K.

    2018-02-01

    In the current globalized scenario, business organizations are more dependent on cost effective supply chain to enhance profitability and better handle competition. Demand uncertainty is an important factor in success or failure of a supply chain. An efficient supply chain limits the stock held at all echelons to the extent of avoiding a stock-out situation. In this paper, a three echelon supply chain model consisting of supplier, manufacturing plant and market is developed and the same is optimized using particle swarm intelligence algorithm.

  15. Study of intelligent building system based on the internet of things

    Science.gov (United States)

    Wan, Liyong; Xu, Renbo

    2017-03-01

    In accordance with the problem such as isolated subsystems, weak system linkage and expansibility of the bus type buildings management system, this paper based on the modern intelligent buildings has studied some related technologies of the intelligent buildings and internet of things, and designed system architecture of the intelligent buildings based on the Internet of Things. Meanwhile, this paper has also analyzed wireless networking modes, wireless communication protocol and wireless routing protocol of the intelligent buildings based on the Internet of Things.

  16. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  17. Multiobjective RFID Network Optimization Using Multiobjective Evolutionary and Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2014-01-01

    Full Text Available The development of radio frequency identification (RFID technology generates the most challenging RFID network planning (RNP problem, which needs to be solved in order to operate the large-scale RFID network in an optimal fashion. RNP involves many objectives and constraints and has been proven to be a NP-hard multi-objective problem. The application of evolutionary algorithm (EA and swarm intelligence (SI for solving multiobjective RNP (MORNP has gained significant attention in the literature, but these algorithms always transform multiple objectives into a single objective by weighted coefficient approach. In this paper, we use multiobjective EA and SI algorithms to find all the Pareto optimal solutions and to achieve the optimal planning solutions by simultaneously optimizing four conflicting objectives in MORNP, instead of transforming multiobjective functions into a single objective function. The experiment presents an exhaustive comparison of three successful multiobjective EA and SI, namely, the recently developed multiobjective artificial bee colony algorithm (MOABC, the nondominated sorting genetic algorithm II (NSGA-II, and the multiobjective particle swarm optimization (MOPSO, on MORNP instances of different nature, namely, the two-objective and three-objective MORNP. Simulation results show that MOABC proves to be more superior for planning RFID networks than NSGA-II and MOPSO in terms of optimization accuracy and computation robustness.

  18. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  19. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Science.gov (United States)

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  20. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  1. Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony.

    Science.gov (United States)

    Gao, Lingyun; Ye, Mingquan; Wu, Changrong

    2017-11-29

    Intelligent optimization algorithms have advantages in dealing with complex nonlinear problems accompanied by good flexibility and adaptability. In this paper, the FCBF (Fast Correlation-Based Feature selection) method is used to filter irrelevant and redundant features in order to improve the quality of cancer classification. Then, we perform classification based on SVM (Support Vector Machine) optimized by PSO (Particle Swarm Optimization) combined with ABC (Artificial Bee Colony) approaches, which is represented as PA-SVM. The proposed PA-SVM method is applied to nine cancer datasets, including five datasets of outcome prediction and a protein dataset of ovarian cancer. By comparison with other classification methods, the results demonstrate the effectiveness and the robustness of the proposed PA-SVM method in handling various types of data for cancer classification.

  2. Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems

    Directory of Open Access Journals (Sweden)

    Erdem Demircioglu

    2015-01-01

    Full Text Available This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN. To achieve the best ANN performance, Particle Swarm Optimization (PSO and Differential Evolution (DE are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.

  3. Intelligent Agent Based Semantic Web in Cloud Computing Environment

    OpenAIRE

    Mukhopadhyay, Debajyoti; Sharma, Manoj; Joshi, Gajanan; Pagare, Trupti; Palwe, Adarsha

    2013-01-01

    Considering today's web scenario, there is a need of effective and meaningful search over the web which is provided by Semantic Web. Existing search engines are keyword based. They are vulnerable in answering intelligent queries from the user due to the dependence of their results on information available in web pages. While semantic search engines provides efficient and relevant results as the semantic web is an extension of the current web in which information is given well defined meaning....

  4. Intelligent design optimization of a shape-memory-alloy-actuated reconfigurable wing

    Science.gov (United States)

    Lagoudas, Dimitris C.; Strelec, Justin K.; Yen, John; Khan, Mohammad A.

    2000-06-01

    The unique thermal and mechanical properties offered by shape memory alloys (SMAs) present exciting possibilities in the field of aerospace engineering. When properly trained, SMA wires act as linear actuators by contracting when heated and returning to their original shape when cooled. It has been shown experimentally that the overall shape of an airfoil can be altered by activating several attached SMA wire actuators. This shape-change can effectively increase the efficiency of a wing in flight at several different flow regimes. To determine the necessary placement of these wire actuators within the wing, an optimization method that incorporates a fully-coupled structural, thermal, and aerodynamic analysis has been utilized. Due to the complexity of the fully-coupled analysis, intelligent optimization methods such as genetic algorithms have been used to efficiently converge to an optimal solution. The genetic algorithm used in this case is a hybrid version with global search and optimization capabilities augmented by the simplex method as a local search technique. For the reconfigurable wing, each chromosome represents a realizable airfoil configuration and its genes are the SMA actuators, described by their location and maximum transformation strain. The genetic algorithm has been used to optimize this design problem to maximize the lift-to-drag ratio for a reconfigured airfoil shape.

  5. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  6. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    OpenAIRE

    S.N. Sidek and M.J.E. Salami

    2012-01-01

    An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time ...

  7. Development and validity of mathematical learning assessment instruments based on multiple intelligence

    Directory of Open Access Journals (Sweden)

    Helmiah Suryani

    2017-06-01

    Full Text Available This study was aimed to develop and produce an assessment instrument of mathematical learning results based on multiple intelligence. The methods in this study used Borg & Gall-Research and Development approach (Research & Development. The subject of research was 289 students. The results of research: (1 Result of Aiken Analysis showed 58 valid items were between 0,714 to 0,952. (2 Result of the Exploratory on factor analysis indicated the instrument consist of three factors i.e. mathematical logical intelligence-spatial intelligence-and linguistic intelligence. KMO value was 0.661 df 0.780 sig. 0.000 with valid category. This research succeeded to developing the assessment instrument of mathematical learning results based on multiple intelligence of second grade in elementary school with characteristics of logical intelligence of mathematics, spatial intelligence, and linguistic intelligence.

  8. Ontology-Based Information Extraction for Business Intelligence

    Science.gov (United States)

    Saggion, Horacio; Funk, Adam; Maynard, Diana; Bontcheva, Kalina

    Business Intelligence (BI) requires the acquisition and aggregation of key pieces of knowledge from multiple sources in order to provide valuable information to customers or feed statistical BI models and tools. The massive amount of information available to business analysts makes information extraction and other natural language processing tools key enablers for the acquisition and use of that semantic information. We describe the application of ontology-based extraction and merging in the context of a practical e-business application for the EU MUSING Project where the goal is to gather international company intelligence and country/region information. The results of our experiments so far are very promising and we are now in the process of building a complete end-to-end solution.

  9. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  10. Intelligent image retrieval based on radiology reports

    Energy Technology Data Exchange (ETDEWEB)

    Gerstmair, Axel; Langer, Mathias; Kotter, Elmar [University Medical Center Freiburg, Department of Diagnostic Radiology, Freiburg (Germany); Daumke, Philipp; Simon, Kai [Averbis GmbH, Freiburg (Germany)

    2012-12-15

    To create an advanced image retrieval and data-mining system based on in-house radiology reports. Radiology reports are semantically analysed using natural language processing (NLP) techniques and stored in a state-of-the-art search engine. Images referenced by sequence and image number in the reports are retrieved from the picture archiving and communication system (PACS) and stored for later viewing. A web-based front end is used as an interface to query for images and show the results with the retrieved images and report text. Using a comprehensive radiological lexicon for the underlying terminology, the search algorithm also finds results for synonyms, abbreviations and related topics. The test set was 108 manually annotated reports analysed by different system configurations. Best results were achieved using full syntactic and semantic analysis with a precision of 0.929 and recall of 0.952. Operating successfully since October 2010, 258,824 reports have been indexed and a total of 405,146 preview images are stored in the database. Data-mining and NLP techniques provide quick access to a vast repository of images and radiology reports with both high precision and recall values. Consequently, the system has become a valuable tool in daily clinical routine, education and research. (orig.)

  11. Intelligent image retrieval based on radiology reports

    International Nuclear Information System (INIS)

    Gerstmair, Axel; Langer, Mathias; Kotter, Elmar; Daumke, Philipp; Simon, Kai

    2012-01-01

    To create an advanced image retrieval and data-mining system based on in-house radiology reports. Radiology reports are semantically analysed using natural language processing (NLP) techniques and stored in a state-of-the-art search engine. Images referenced by sequence and image number in the reports are retrieved from the picture archiving and communication system (PACS) and stored for later viewing. A web-based front end is used as an interface to query for images and show the results with the retrieved images and report text. Using a comprehensive radiological lexicon for the underlying terminology, the search algorithm also finds results for synonyms, abbreviations and related topics. The test set was 108 manually annotated reports analysed by different system configurations. Best results were achieved using full syntactic and semantic analysis with a precision of 0.929 and recall of 0.952. Operating successfully since October 2010, 258,824 reports have been indexed and a total of 405,146 preview images are stored in the database. Data-mining and NLP techniques provide quick access to a vast repository of images and radiology reports with both high precision and recall values. Consequently, the system has become a valuable tool in daily clinical routine, education and research. (orig.)

  12. Tablet based distributed intelligent load management

    Science.gov (United States)

    Lu, Yan; Zhou, Siyuan

    2018-01-09

    A facility is connected to an electricity utility and is responsive to Demand Response Events. A plurality of devices is each individually connected to the electricity grid via an addressable switch connected to a secure network that is enabled to be individually switched off by a server. An occupant of a room in control of the plurality of devices provides via a Human Machine Interface on a tablet a preferred order of switching off the plurality of devices in case of a Demand Response Event. A configuration file based at least partially on the preferred order and on a severity of the Demand Response Events determines which devices which of the plurality devices will be switched off. The server accesses the configuration file and switches off the devices included in the configuration file.

  13. Intelligent Furniture Design in the Elderly Based on the Cognitive Situation

    Directory of Open Access Journals (Sweden)

    Lu Xinhui

    2017-01-01

    Full Text Available This paper analyzes the present situation of Chinese elderly furniture and the elderly has cognitive characteristics that consciousness experiences and recognitions recede, cognitive fuzzy from Information processing. Expounds the elderly intelligent furniture design elements: functional elements required the elderly furniture is easy and simple to handle; Size and shape elements should be biased towards low, light type, reduce multifunction or fold function; colour collocation should use low lightness and low purity natural materials; Emotional elements design should meet the demand of the elderly social emotion. Introduction of intelligent furniture make up the cognitive decline in the elderly, Furniture judge the elderly demand by the inductor, Supplement by hardware control module to solve the special needs of the elderly life. Build design thinking based on the cognitive process and explore the elderly intelligent furniture design. This paper discusses the design process, for example and concludes the design rules: 1.The Operating Experience Pleasure. It is the height matching of user expectation and furniture function. Pleasure in the design of the operating parts mainly embodies in two aspects. Firstly, the Fitts Law; Secondly, it’s The Movement Optimization. 2.”Unconscious” Design. Intelligent furniture need to delete unnecessary operation module, make it easy to understand, furniture function and cognitive scene match with each other. 3. Modularity Design. Modularization can indirectly regulate the scale and specification of the design. Under the premise of individual character, customization, the compression of the cost, Designer should make the elderly intelligent furniture consistent with the user action.4.Design Consistency. The consistency principle reflected in the appearance, color and operation way consistency.

  14. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

    Directory of Open Access Journals (Sweden)

    Aydin Azizi

    2017-01-01

    Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

  15. Lifecycle-Based Swarm Optimization Method for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Hai Shen

    2014-01-01

    Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.

  16. Intelligent-based Structural Damage Detection Model

    International Nuclear Information System (INIS)

    Lee, Eric Wai Ming; Yu, K.F.

    2010-01-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  17. Intelligent-based Structural Damage Detection Model

    Science.gov (United States)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  18. Experiments with microcomputer-based artificial intelligence environments

    Science.gov (United States)

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  19. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Directory of Open Access Journals (Sweden)

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  20. Intelligent model-based diagnostics for vehicle health management

    Science.gov (United States)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  1. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...

  2. Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement

    Science.gov (United States)

    Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.

    In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.

  3. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  4. Intelligent optimization of common water treatment plant for the removal of organic carbon

    International Nuclear Information System (INIS)

    Ahmadzadeh, T.; Mehrdadi, N.; Ardestani, M.; Baghvand, A.

    2016-01-01

    Intelligent model optimization is a key factor in the improvement of water treatment. In the current study, we applied artificial neural networks modelling for the optimization of the coagulation and flocculation processes to achieve sufficient water quality control over the total organic carbon parameter. The ANN network consisted of a multilayer feed-forward structure with a back propagation learning algorithm with the output layer of ferric chloride and cationic polymer dosages. The results were simultaneously compared with the nonlinear multiple regression model. The model validation phase was performed using 94 unknown samples for which the prediction result was in good agreement with the observed values. Analysis of the results showed a determination coefficient of 0.85 for the cationic polymer and 0.97 for the ferric chloride models, respectively. He mean absolute percentage error and root mean square errors were calculated, consequently, as 5.8% and 0.96 for the polymer and 3.1% and 1.97 for the ferric chloride models, respectively. According to the results, artificial neural networks proved to be very promising for the optimization of water treatment processes.

  5. Intelligent multi-objective optimization for building energy and comfort management

    Directory of Open Access Journals (Sweden)

    Pervez Hameed Shaikh

    2018-04-01

    Full Text Available The rapid economic and population growth in developing countries, effective and efficient energy usage has turned out to be crucial due to the rising concern of depleting fossil fuels, of which, one-third of primary energy is consumed in buildings and expected to rise by 53% up to 2030. This roaring sector posing a challenge, due to 90% of people spend most of their time in buildings, requires enhanced well-being of indoor environment and living standards. Therefore, building operations require more energy because most of the energy is consumed to make the indoor environment comfortable. Consequently, there is the need of improved energy efficiency to decrease energy consumption in buildings. In relation to this, the primary challenge of building control systems is the energy consumption and comfort level are generally conflicting to each other. Therefore, an important problem of sustainable smart buildings is to effectively manage the energy consumption and comfort and attain the trade-off between the two. Thus, smart buildings are becoming a trend of future construction that facilitates intelligent control in buildings for the fulfillment of occupant’s comfort level. In this study, an intelligent multi-objective system has been developed with evolutionary multi-objective genetic algorithm (MOGA optimization method. The corresponding case study simulation results for the effective management of users’ comfort and energy efficiency have been carried out. The case study results show the management of energy supply for each comfort parameter and maintain high comfort index achieving balance between the energy consumption and comfort level. Keywords: Energy, Buildings, Comfort, Management, Optimization, Trade-off

  6. Artificial Intelligence in Civil Engineering

    OpenAIRE

    Lu, Pengzhen; Chen, Shengyong; Zheng, Yujun

    2012-01-01

    Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applicati...

  7. Intercluster Connection in Cognitive Wireless Mesh Networks Based on Intelligent Network Coding

    Science.gov (United States)

    Chen, Xianfu; Zhao, Zhifeng; Jiang, Tao; Grace, David; Zhang, Honggang

    2009-12-01

    Cognitive wireless mesh networks have great flexibility to improve spectrum resource utilization, within which secondary users (SUs) can opportunistically access the authorized frequency bands while being complying with the interference constraint as well as the QoS (Quality-of-Service) requirement of primary users (PUs). In this paper, we consider intercluster connection between the neighboring clusters under the framework of cognitive wireless mesh networks. Corresponding to the collocated clusters, data flow which includes the exchanging of control channel messages usually needs four time slots in traditional relaying schemes since all involved nodes operate in half-duplex mode, resulting in significant bandwidth efficiency loss. The situation is even worse at the gateway node connecting the two colocated clusters. A novel scheme based on network coding is proposed in this paper, which needs only two time slots to exchange the same amount of information mentioned above. Our simulation shows that the network coding-based intercluster connection has the advantage of higher bandwidth efficiency compared with the traditional strategy. Furthermore, how to choose an optimal relaying transmission power level at the gateway node in an environment of coexisting primary and secondary users is discussed. We present intelligent approaches based on reinforcement learning to solve the problem. Theoretical analysis and simulation results both show that the intelligent approaches can achieve optimal throughput for the intercluster relaying in the long run.

  8. Intelligent monitoring-based safety system of massage robot

    Institute of Scientific and Technical Information of China (English)

    胡宁; 李长胜; 王利峰; 胡磊; 徐晓军; 邹雲鹏; 胡玥; 沈晨

    2016-01-01

    As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic project. Traditionally, robot safety is defined as follows: robots should not collide with humans, or robots should not harm humans when they collide. Based on this definition of robot safety, researchers have proposed ex ante and ex post safety standards and safety strategies and used the risk index and risk level as the evaluation indexes for safety methods. A massage robot realizes its massage therapy function through applying a rhythmic force on the massage object. Therefore, the traditional definition of safety, safety strategies, and safety realization methods cannot satisfy the function and safety requirements of massage robots. Based on the descriptions of the environment of massage robots and the tasks of massage robots, the present study analyzes the safety requirements of massage robots; analyzes the potential safety dangers of massage robots using the fault tree tool; proposes an error monitoring-based intelligent safety system for massage robots through monitoring and evaluating potential safety danger states, as well as decision making based on potential safety danger states; and verifies the feasibility of the intelligent safety system through an experiment.

  9. Hot complaint intelligent classification based on text mining

    Directory of Open Access Journals (Sweden)

    XIA Haifeng

    2013-10-01

    Full Text Available The complaint recognizer system plays an important role in making sure the correct classification of the hot complaint,improving the service quantity of telecommunications industry.The customers’ complaint in telecommunications industry has its special particularity which should be done in limited time,which cause the error in classification of hot complaint.The paper presents a model of complaint hot intelligent classification based on text mining,which can classify the hot complaint in the correct level of the complaint navigation.The examples show that the model can be efficient to classify the text of the complaint.

  10. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  11. Knowledge-based dialogue in Intelligent Decision Support Systems

    International Nuclear Information System (INIS)

    Hollnagel, E.

    1987-01-01

    The overall goal for the design of Intelligent Decision Support Systems (IDSS) is to enhance understanding of the process under all operating conditions. For an IDSS to be effective, it must: select or generate the right information; produce reliable and consistent information; allow flexible and effective operator interaction; relate information presentation to current plant status and problems; and make the presentation at the right time. Several ongoing R and D programs try to design and build IDSSs. A particular example is the ESPRIT project Graphics and Knowledge Based Diaglogue for Dynamic Systems (GRADIENT). This project, the problems it addresses, and its uses, are discussed here

  12. Intelligence and the brain: a model-based approach

    NARCIS (Netherlands)

    Kievit, R.A.; van Rooijen, H.; Wicherts, J.M.; Waldorp, L.J.; Kan, K.-J.; Scholte, H.S.; Borsboom, D.

    2012-01-01

    Various biological correlates of general intelligence (g) have been reported. Despite this, however, the relationship between neurological measurements and g is not fully clear. We use structural equation modeling to model the relationship between behavioral Wechsler Adult Intelligence Scale (WAIS)

  13. Environmental optimal control strategies based on plant canopy photosynthesis responses and greenhouse climate model

    Science.gov (United States)

    Deng, Lujuan; Xie, Songhe; Cui, Jiantao; Liu, Tao

    2006-11-01

    It is the essential goal of intelligent greenhouse environment optimal control to enhance income of cropper and energy save. There were some characteristics such as uncertainty, imprecision, nonlinear, strong coupling, bigger inertia and different time scale in greenhouse environment control system. So greenhouse environment optimal control was not easy and especially model-based optimal control method was more difficult. So the optimal control problem of plant environment in intelligent greenhouse was researched. Hierarchical greenhouse environment control system was constructed. In the first level data measuring was carried out and executive machine was controlled. Optimal setting points of climate controlled variable in greenhouse was calculated and chosen in the second level. Market analysis and planning were completed in third level. The problem of the optimal setting point was discussed in this paper. Firstly the model of plant canopy photosynthesis responses and the model of greenhouse climate model were constructed. Afterwards according to experience of the planting expert, in daytime the optimal goals were decided according to the most maximal photosynthesis rate principle. In nighttime on plant better growth conditions the optimal goals were decided by energy saving principle. Whereafter environment optimal control setting points were computed by GA. Compared the optimal result and recording data in real system, the method is reasonable and can achieve energy saving and the maximal photosynthesis rate in intelligent greenhouse

  14. Reliability-based optimization of engineering structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization...... problems are generalized to the following extensions: interactive optimization, inspection and repair costs, systematic reconstruction, re-assessment of existing structures. Illustrative examples are presented including a simple introductory example, a decision problem related to bridge re...

  15. Intelligible Artificial Intelligence

    OpenAIRE

    Weld, Daniel S.; Bansal, Gagan

    2018-01-01

    Since Artificial Intelligence (AI) software uses techniques like deep lookahead search and stochastic optimization of huge neural networks to fit mammoth datasets, it often results in complex behavior that is difficult for people to understand. Yet organizations are deploying AI algorithms in many mission-critical settings. In order to trust their behavior, we must make it intelligible --- either by using inherently interpretable models or by developing methods for explaining otherwise overwh...

  16. The Ontology of Knowledge Based Optimization

    OpenAIRE

    Nasution, Mahyuddin K. M.

    2012-01-01

    Optimization has been becoming a central of studies in mathematic and has many areas with different applications. However, many themes of optimization came from different area have not ties closing to origin concepts. This paper is to address some variants of optimization problems using ontology in order to building basic of knowledge about optimization, and then using it to enhance strategy to achieve knowledge based optimization.

  17. Comparison of intelligent fuzzy based AGC coordinated PID controlled and PSS controlled AVR system

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)

    2007-11-15

    This paper attempts to investigate the performance of intelligent fuzzy based coordinated control of the Automatic Generation Control (AGC) loop and the excitation loop equipped with Proportional Integral Derivative (PID) controlled Automatic Voltage Regulator (AVR) system and Power System Stabilizer (PSS) controlled AVR system. The work establishes that PSS controlled AVR system is much more robust in dynamic performance of the system over a wide range of system operating configurations. Thus, it is revealed that PSS equipped AVR is much more superior than PID equipped AVR in damping the oscillation resulting in improved transient response. The paper utilizes a novel class of Particle Swarm Optimization (PSO) termed as Craziness based Particle Swarm Optimization (CRPSO) as optimizing tool to get optimal tuning of PSS parameters as well as the gains of PID controllers. For on-line, off-nominal operating conditions Takagi Sugeno Fuzzy Logic (TSFL) has been applied to obtain the off-nominal optimal gains of PID controllers and parameters of PSS. Implementation of TSFL helps to achieve very fast dynamic response. Fourth order model of generator with AVR and high gain thyristor excitation system is considered for PSS controlled system while normal gain exciter is considered for PID controlled system. Simulation study also reveals that with high gain exciter, PID control is not at all effective. Transient responses are achieved by using modal analysis. (author)

  18. PSO Based Optimal Design of Fractional Order Controller for Industrial Application

    OpenAIRE

    Rohit Gupta; Ruchika

    2016-01-01

    In this paper, a PSO based fractional order PID (FOPID) controller is proposed for concentration control of an isothermal Continuous Stirred Tank Reactor (CSTR) problem. CSTR is used to carry out chemical reactions in industries, which possesses complex nonlinear dynamic characteristics. Particle Swarm Optimization algorithm technique, which is an evolutionary optimization technique based on the movement and intelligence of swarm is proposed for tuning of the controller for this system. Compa...

  19. Recent Progress on Data-Based Optimization for Mineral Processing Plants

    Directory of Open Access Journals (Sweden)

    Jinliang Ding

    2017-04-01

    Full Text Available In the globalized market environment, increasingly significant economic and environmental factors within complex industrial plants impose importance on the optimization of global production indices; such optimization includes improvements in production efficiency, product quality, and yield, along with reductions of energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelligence optimization methods and technologies in improving the performance of global production indices in mineral processing. First, we provide the problem description. Next, we summarize recent progress in data-based optimization for mineral processing plants. This optimization consists of four layers: optimization of the target values for monthly global production indices, optimization of the target values for daily global production indices, optimization of the target values for operational indices, and automation systems for unit processes. We briefly overview recent progress in each of the different layers. Finally, we point out opportunities for future works in data-based optimization for mineral processing plants.

  20. Development of Android Based Powered Intelligent Wheelchair for Quadriplegic Persons

    Science.gov (United States)

    Gupta, Ashutosh; Ghosh, Tathagata; Kumar, Pradeep; Bhawna, Shruthi. S.

    2017-08-01

    Several surveys give us the view that both children and adults benefit substantially from access towards independent mobility. With the inventions of technology, no individuals are satisfied with traditional manual operated machines. To accommodate population, researchers are using technology, originally developed for mobile robots to create ‘intelligent wheelchairs’. It’s a major challenge for quadriplegic persons as they really find it difficult to manipulate powered wheelchair during the activities of their daily living. As the Smartphone era has evolved with innovative android based applications, engineers are improving and trying to make such machines simple and cheap to the next level. In this paper, we present a development of android based powered intelligent wheelchair to assist the quadriplegic person by making them self sufficient in controlling the wheelchair. The wheels of the chair can be controlled by the voice or gesture movement or by touching the screen of the android app by the challenged persons. The system uses the Bluetooth communication to interface the microcontroller and the inbuilt sensors in the android Smartphone. According to the commands received from android phone, the kinematics of the wheels are controlled.

  1. Intelligent Lighting Control System

    OpenAIRE

    García, Elena; Rodríguez González, Sara; de Paz Santana, Juan F.; Bajo Pérez, Javier

    2014-01-01

    This paper presents an adaptive architecture that allows centralized control of public lighting and intelligent management, in order to economise on lighting and maintain maximum comfort status of the illuminated areas. To carry out this management, architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA and a Service Oriented Aproach (SOA). It performs optim...

  2. 3Es System Optimization under Uncertainty Using Hybrid Intelligent Algorithm: A Fuzzy Chance-Constrained Programming Model

    Directory of Open Access Journals (Sweden)

    Jiekun Song

    2016-01-01

    Full Text Available Harmonious development of 3Es (economy-energy-environment system is the key to realize regional sustainable development. The structure and components of 3Es system are analyzed. Based on the analysis of causality diagram, GDP and industrial structure are selected as the target parameters of economy subsystem, energy consumption intensity is selected as the target parameter of energy subsystem, and the emissions of COD, ammonia nitrogen, SO2, and NOX and CO2 emission intensity are selected as the target parameters of environment system. Fixed assets investment of three industries, total energy consumption, and investment in environmental pollution control are selected as the decision variables. By regarding the parameters of 3Es system optimization as fuzzy numbers, a fuzzy chance-constrained goal programming (FCCGP model is constructed, and a hybrid intelligent algorithm including fuzzy simulation and genetic algorithm is proposed for solving it. The results of empirical analysis on Shandong province of China show that the FCCGP model can reflect the inherent relationship and evolution law of 3Es system and provide the effective decision-making support for 3Es system optimization.

  3. Artificial Intelligence Techniques to Optimize the EDC/NHS-Mediated Immobilization of Cellulase on Eudragit L-100

    Directory of Open Access Journals (Sweden)

    Min-Chao He

    2012-06-01

    Full Text Available Two artificial intelligence techniques, namely artificial neural network (ANN and genetic algorithm (GA were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl carbodiimide (EDC concentration, N-hydroxysuccinimide (NHS concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R2 = 0.99. Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful.

  4. The Construction of Intelligent English Teaching Model Based on Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Xiaoguang Li

    2017-12-01

    Full Text Available In order to build a modernized tool platform that can help students improve their English learning efficiency according to their mastery of knowledge and personality, this paper develops an online intelligent English learning system that uses Java and artificial intelligence language Prolog as the software system. This system is a creative reflection of the thoughts of expert system in artificial intelligence. Established on the Struts Spring Hibernate lightweight JavaEE framework, the system modules are coupled with each other in a much lower degree, which is convenient to future function extension. Combined with the idea of expert system in artificial intelligence, the system developed appropriate learning strategies to help students double the learning effect with half the effort; Finally, the system takes into account the forgetting curve of memory, on which basis the knowledge that has been learned will be tested periodically, intending to spare students’ efforts to do a sea of exercises and obtain better learning results.

  5. Advanced Emergency Braking Control Based on a Nonlinear Model Predictive Algorithm for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2017-05-01

    Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.

  6. Artificial intelligence based modeling and optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: a genetic algorithm paradigm.

    Science.gov (United States)

    Zafar, Mohd; Kumar, Shashi; Kumar, Surendra; Dhiman, Amit K

    2012-01-01

    The present work describes the optimization of medium variables for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by Azohydromonas lata MTCC 2311 using cane molasses supplemented with propionic acid. Genetic algorithm (GA) has been used for the optimization of P(3HB-co-3HV) production through the simulation of artificial neural network (ANN) and response surface methodology (RSM). The predictions by ANN are better than those of RSM and in good agreement with experimental findings. The highest P(3HB-co-3HV) concentration and 3HV content have been reported as 7.35 g/l and 16.84 mol%, respectively by hybrid ANN-GA. Upon validation, 7.20 g/l and 16.30 mol% of P(3HB-co-3HV) concentration and 3HV content have been found in the shake flask, whereas 6.70 g/l and 16.35 mol%, have been observed in a 3 l bioreactor, respectively. The specific growth rate and P(3HB-co-3HV) accumulation rate of 0.29 per h and 0.16 g/lh determined with cane molasses are comparable to those observed on pure substrates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    Science.gov (United States)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  8. AN ARTIFICIAL INTELLIGENCE-BASED DISTANCE EDUCATION SYSTEM: Artimat

    Directory of Open Access Journals (Sweden)

    Vasif NABIYEV

    2013-04-01

    Full Text Available The purpose of this study is to evaluate the artificial intelligence-based distance education system called as ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed with 4 teachers and 59 students in 10th grade in an Anatolian High School in Trabzon. Many institutions and organizations in the world approach seriously to distance education besides traditional education. It is inevitable to use the distance education in teaching the problem solving skills in this different dimension of the education. In the studies in Turkey and abroad in the field of mathematics teaching, problem solving skills are generally stated not to be at the desired level and often expressed to have difficulty in teaching. For this reason, difficulties of the students in problem solving have initially been evaluated and the system has been prepared utilizing artificial intelligence algorithms according to the obtained results. In the evaluation of the findings obtained from the application, it has been concluded that the system is responsive to the needs of the students and is successful in general, but that conceptual changes should be made in order that students adapt to the system quickly.

  9. Intelligent community management system based on the devicenet fieldbus

    Science.gov (United States)

    Wang, Yulan; Wang, Jianxiong; Liu, Jiwen

    2013-03-01

    With the rapid development of the national economy and the improvement of people's living standards, people are making higher demands on the living environment. And the estate management content, management efficiency and service quality have been higher required. This paper in-depth analyzes about the intelligent community of the structure and composition. According to the users' requirements and related specifications, it achieves the district management systems, which includes Basic Information Management: the management level of housing, household information management, administrator-level management, password management, etc. Service Management: standard property costs, property charges collecting, the history of arrears and other property expenses. Security Management: household gas, water, electricity and security and other security management, security management district and other public places. Systems Management: backup database, restore database, log management. This article also carries out on the Intelligent Community System analysis, proposes an architecture which is based on B / S technology system. And it has achieved a global network device management with friendly, easy to use, unified human - machine interface.

  10. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  11. The optimal design support system for shell components of vehicles using the methods of artificial intelligence

    Science.gov (United States)

    Szczepanik, M.; Poteralski, A.

    2016-11-01

    The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.

  12. Optimization of multiple-module thermoelectric coolers using artificial-intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K. [University of Utah (United States). Dept. of Mechanical Engineering; Lin, G.T. [National Taiwan University of Science and Technology, Taipei (China). Dept. of Mechanical Engineering

    2002-07-01

    Genetic algorithm (GA) and simulated annealing (SA) methods were employed to optimize the current distribution of a cooler made up of a large number of thermoelectric (TE) modules. The TE modules were grouped into several clusters in the flow direction, and the electric currents supplied to different clusters were adjusted separately to achieve maximum energy efficiency or minimum refrigeration temperature for different,operating conditions and cooling requirements. Optimization results based on the design parameters of a large TE cooler showed considerable improvements in energy efficiency and refrigeration temperature when compared to the results of uniform current for the parallel-flow arrangement. On the other hand, results of the counter-flow arrangement showed only slight differences between uniform- and non-uniform-current optimizations. The optimization results of GA and SA were very close to each other. SA converged faster and was more computationally economical than GA for TE system optimization. (author)

  13. Robust Bio-Signal Based Control of an Intelligent Wheelchair

    Directory of Open Access Journals (Sweden)

    Dongyi Chen

    2013-09-01

    Full Text Available In this paper, an adaptive human-machine interaction (HMI method that is based on surface electromyography (sEMG signals is proposed for the hands-free control of an intelligent wheelchair. sEMG signals generated by the facial movements are obtained by a convenient dry electrodes sensing device. After the signals features are extracted from the autoregressive model, control data samples are updated and trained by an incremental online learning algorithm in real-time. Experimental results show that the proposed method can significantly improve the classification accuracy and training speed. Moreover, this method can effectively reduce the influence of muscle fatigue during a long time operation of sEMG-based HMI.

  14. Price Comparisons on the Internet Based on Computational Intelligence

    Science.gov (United States)

    Kim, Jun Woo; Ha, Sung Ho

    2014-01-01

    Information-intensive Web services such as price comparison sites have recently been gaining popularity. However, most users including novice shoppers have difficulty in browsing such sites because of the massive amount of information gathered and the uncertainty surrounding Web environments. Even conventional price comparison sites face various problems, which suggests the necessity of a new approach to address these problems. Therefore, for this study, an intelligent product search system was developed that enables price comparisons for online shoppers in a more effective manner. In particular, the developed system adopts linguistic price ratings based on fuzzy logic to accommodate user-defined price ranges, and personalizes product recommendations based on linguistic product clusters, which help online shoppers find desired items in a convenient manner. PMID:25268901

  15. Intelligent Home Control System Based on Single Chip Microcomputer

    Science.gov (United States)

    Yang, Libo

    2017-12-01

    Intelligent home as a way to achieve the realization of the family information has become an important part of the development of social information, Internet of Things because of its huge application prospects, will be smart home industry in the development process of a more realistic breakthrough in the smart home industry development has great significance. This article is based on easy to implement, easy to operate, close to the use of the design concept, the use of STC89C52 microcontroller as the control core for the control terminal, and including infrared remote control, buttons, Web interface, including multiple control sources to control household appliances. The second chapter of this paper describes the design of the hardware and software part of the specific implementation, the fifth chapter is based on the design of a good function to build a specific example of the environment.

  16. Impacts of Intelligent Automated Quality Control on a Small Animal APD-Based Digital PET Scanner

    Science.gov (United States)

    Charest, Jonathan; Beaudoin, Jean-François; Bergeron, Mélanie; Cadorette, Jules; Arpin, Louis; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2016-10-01

    Stable system performance is mandatory to warrant the accuracy and reliability of biological results relying on small animal positron emission tomography (PET) imaging studies. This simple requirement sets the ground for imposing routine quality control (QC) procedures to keep PET scanners at a reliable optimal performance level. However, such procedures can become burdensome to implement for scanner operators, especially taking into account the increasing number of data acquisition channels in newer generation PET scanners. In systems using pixel detectors to achieve enhanced spatial resolution and contrast-to-noise ratio (CNR), the QC workload rapidly increases to unmanageable levels due to the number of independent channels involved. An artificial intelligence based QC system, referred to as Scanner Intelligent Diagnosis for Optimal Performance (SIDOP), was proposed to help reducing the QC workload by performing automatic channel fault detection and diagnosis. SIDOP consists of four high-level modules that employ machine learning methods to perform their tasks: Parameter Extraction, Channel Fault Detection, Fault Prioritization, and Fault Diagnosis. Ultimately, SIDOP submits a prioritized faulty channel list to the operator and proposes actions to correct them. To validate that SIDOP can perform QC procedures adequately, it was deployed on a LabPET™ scanner and multiple performance metrics were extracted. After multiple corrections on sub-optimal scanner settings, a 8.5% (with a 95% confidence interval (CI) of [7.6, 9.3]) improvement in the CNR, a 17.0% (CI: [15.3, 18.7]) decrease of the uniformity percentage standard deviation, and a 6.8% gain in global sensitivity were observed. These results confirm that SIDOP can indeed be of assistance in performing QC procedures and restore performance to optimal figures.

  17. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    Science.gov (United States)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  18. Celestial Navigation Fix Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tsou Ming-Cheng

    2015-09-01

    Full Text Available A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.

  19. Intelligent Aggregation Based on Content Routing Scheme for Cloud Computing

    Directory of Open Access Journals (Sweden)

    Jiachen Xu

    2017-10-01

    Full Text Available Cloud computing has emerged as today’s most exciting computing paradigm for providing services using a shared framework, which opens a new door for solving the problems of the explosive growth of digital resource demands and their corresponding convenience. With the exponential growth of the number of data types and data size in so-called big data work, the backbone network is under great pressure due to its transmission capacity, which is lower than the growth of the data size and would seriously hinder the development of the network without an effective approach to solve this problem. In this paper, an Intelligent Aggregation based on a Content Routing (IACR scheme for cloud computing, which could reduce the amount of data in the network effectively and play a basic supporting role in the development of cloud computing, is first put forward. All in all, the main innovations in this paper are: (1 A framework for intelligent aggregation based on content routing is proposed, which can support aggregation based content routing; (2 The proposed IACR scheme could effectively route the high aggregation ratio data to the data center through the same routing path so as to effectively reduce the amount of data that the network transmits. The theoretical analyses experiments and results show that, compared with the previous original routing scheme, the IACR scheme can balance the load of the whole network, reduce the amount of data transmitted in the network by 41.8%, and reduce the transmission time by 31.6% in the same network with a more balanced network load.

  20. SII-Based Speech Prepocessing for Intelligibility Improvement in Noise

    DEFF Research Database (Denmark)

    Taal, Cees H.; Jensen, Jesper

    2013-01-01

    filter sets certain frequency bands to zero when they do not contribute to intelligibility anymore. Experiments show large intelligibility improvements with the proposed method when used in stationary speech-shaped noise. However, it was also found that the method does not perform well for speech...... corrupted by a competing speaker. This is due to the fact that the SII is not a reliable intelligibility predictor for fluctuating noise sources. MATLAB code is provided....

  1. An Integrated Conceptual Environment based on Collective Intelligence and Distributed Artificial Intelligence for Connecting People on Problem Solving

    Directory of Open Access Journals (Sweden)

    Vasile MAZILESCU

    2012-12-01

    Full Text Available This paper aims to analyze the different forms of intelligence within organizations in a systemic and inclusive vision, in order to conceptualize an integrated environment based on Distributed Artificial Intelligence (DAI and Collective Intelligence (CI. In this way we effectively shift the classical approaches of connecting people with people using collaboration tools (which allow people to work together, such as videoconferencing or email, groupware in virtual space, forums, workflow, of connecting people with a series of content management knowledge (taxonomies and documents classification, ontologies or thesauri, search engines, portals, to the current approaches of connecting people on the use (automatic of operational knowledge to solve problems and make decisions based on intellectual cooperation. The best way to use collective intelligence is based on knowledge mobilization and semantic technologies. We must not let computers to imitate people but to support people think and develop their ideas within a group. CI helps people to think together, while DAI tries to support people so as to limit human error. Within an organization, to manage CI is to combine instruments like Semantic Technologies (STs, knowledge mobilization methods for developing Knowledge Management (KM strategies, and the processes that promote connection and collaboration between individual minds in order to achieve collective objectives, to perform a task or to solve increasingly economic complex problems.

  2. Evaluation of Intelligent Grouping Based on Learners' Collaboration Competence Level in Online Collaborative Learning Environment

    Science.gov (United States)

    Muuro, Maina Elizaphan; Oboko, Robert; Wagacha, Waiganjo Peter

    2016-01-01

    In this paper we explore the impact of an intelligent grouping algorithm based on learners' collaborative competency when compared with (a) instructor based Grade Point Average (GPA) method level and (b) random method, on group outcomes and group collaboration problems in an online collaborative learning environment. An intelligent grouping…

  3. Implementation of Multiple Intelligences Supported Project-Based Learning in EFL/ESL Classrooms

    Science.gov (United States)

    Bas, Gokhan

    2008-01-01

    This article deals with the implementation of Multiple Intelligences supported Project-Based learning in EFL/ESL Classrooms. In this study, after Multiple Intelligences supported Project-based learning was presented shortly, the implementation of this learning method into English classrooms. Implementation process of MI supported Project-based…

  4. Methods for Model-Based Reasoning within Agent-Based Ambient Intelligence Applications

    NARCIS (Netherlands)

    Bosse, T.; Both, F.; Gerritsen, C.; Hoogendoorn, M.; Treur, J.

    2012-01-01

    Within agent-based Ambient Intelligence applications agents react to humans based on information obtained by sensoring and their knowledge about human functioning. Appropriate types of reactions depend on the extent to which an agent understands the human and is able to interpret the available

  5. How People Interact with Technology based on Natural and Artificial Intelligence

    OpenAIRE

    Vasile MAZILESCU

    2017-01-01

    This paper aims to analyse the different forms of intelligence within organizations in a systemic and inclusive vision, in order to design an integrated environment based on Artificial Intelligence (AI) and Collective Intelligence (CI). This way we effectively shift the classical approaches of connecting people with people using collaboration tools (which allow people to work together, such as videoconferencing or email, groupware in virtual space, forums, workflow), of connecting people with...

  6. Network-based modeling and intelligent data mining of social media for improving care.

    Science.gov (United States)

    Akay, Altug; Dragomir, Andrei; Erlandsson, Bjorn-Erik

    2015-01-01

    Intelligently extracting knowledge from social media has recently attracted great interest from the Biomedical and Health Informatics community to simultaneously improve healthcare outcomes and reduce costs using consumer-generated opinion. We propose a two-step analysis framework that focuses on positive and negative sentiment, as well as the side effects of treatment, in users' forum posts, and identifies user communities (modules) and influential users for the purpose of ascertaining user opinion of cancer treatment. We used a self-organizing map to analyze word frequency data derived from users' forum posts. We then introduced a novel network-based approach for modeling users' forum interactions and employed a network partitioning method based on optimizing a stability quality measure. This allowed us to determine consumer opinion and identify influential users within the retrieved modules using information derived from both word-frequency data and network-based properties. Our approach can expand research into intelligently mining social media data for consumer opinion of various treatments to provide rapid, up-to-date information for the pharmaceutical industry, hospitals, and medical staff, on the effectiveness (or ineffectiveness) of future treatments.

  7. Intelligent Growth Automaton of Virtual Plant Based on Physiological Engine

    Science.gov (United States)

    Zhu, Qingsheng; Guo, Mingwei; Qu, Hongchun; Deng, Qingqing

    In this paper, a novel intelligent growth automaton of virtual plant is proposed. Initially, this intelligent growth automaton analyzes the branching pattern which is controlled by genes and then builds plant; moreover, it stores the information of plant growth, provides the interface between virtual plant and environment, and controls the growth and development of plant on the basis of environment and the function of plant organs. This intelligent growth automaton can simulate that the plant growth is controlled by genetic information system, and the information of environment and the function of plant organs. The experimental results show that the intelligent growth automaton can simulate the growth of plant conveniently and vividly.

  8. Intelligent PID controller based on ant system algorithm and fuzzy inference and its application to bionic artificial leg

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 曾庆冬; 李文斌

    2004-01-01

    A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.

  9. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  10. Intelligent perception control based on a blackboard architecture

    International Nuclear Information System (INIS)

    Taibi, I.; Koenig, A.; Vacherand, F.

    1991-01-01

    In this paper, is described the intelligent perception control system GESPER which is presently equipped with a set of three cameras, a telemeter and a camera associated with a structured strip light. This system is of great interest for all our robotic applications as it is capable of autonomously planning, triggering acquisitions, integrating and interpreting multisensory data. The GESPER architecture, based on the blackboard model, provides a generic development method for indoor and outdoor perception. The modularity and the independence of the knowledge sources make the software evolving easily without breaking down the architecture. New sensors and/or new data processing can be integrated by the addition of new knowledge sources that modelize them. At present, first results are obtained in our testbed hall which simulates the nuclear plant as gives similar experimental conditions. Our ongoing research concerns the improvement of fusion algorithms and the embedding of the whole system (hardware and software) on target robots and distributed architecture

  11. Intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization.

    Science.gov (United States)

    Li, Ke; Chen, Peng

    2011-01-01

    Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called "relative ratio symptom parameters" are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks.

  12. Artificial intelligence versus statistical modeling and optimization of continuous bead milling process for bacterial cell lysis

    Directory of Open Access Journals (Sweden)

    Shafiul Haque

    2016-11-01

    Full Text Available AbstractFor a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD was studied in a continuous bead milling process. A full factorial Response Surface Model (RSM design was employed and compared to Artificial Neural Networks coupled with Genetic Algorithm (ANN-GA. Significant process variables, cell slurry feed rate (A, bead load (B, cell load (C and run time (D, were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v, cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN coupled with GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h: 258.08, bead loading (%, v/v: 80%, cell loading (OD600 nm: 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN in combination with evolutionary optimization (GA for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  13. JOYO operation support system 'JOYCAT' based on intelligent alarm handling

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Yamamoto, Hiroki; Sato, Masuo; Yoshida, Megumu; Kaneko, Tomoko; Terunuma, Seiichi; Takatsuto, Hiroshi; Morimoto, Makoto.

    1992-01-01

    An operation support system for the experimental fast reactor 'JOYO' was developed based on an intelligent alarm-handling. A specific feature of this system, called JOYCAT (JOYO Consulting and Analyzing Tool), is in its sequential processing structure that a uniform treatment by using design knowledge base is firstly applied for all activated alarms, and an exceptional treatment by using heuristic knowledge base is then applied only for the former results. This enables us to achieve real-time and flexible alarm-handling. The first alarm-handling determines the candidates of causal alarms, important alarms with which the operator should firstly cope, through identifying the cause-consequence relations among alarms based on the design knowledge base in which importance and activating conditions are described for each of 640 alarms in a frame format. The second alarm-handling makes the final judgement with the candidates by using the heuristic knowledge base described as production rules. Then, operation manuals concerning the most important alarms are displayed to operators. JOYCAT has been in commission since September of 1990, after a wide scope of validation tests by using an on-site full-scope training simulator. (author)

  14. Bare-Bones Teaching-Learning-Based Optimization

    Directory of Open Access Journals (Sweden)

    Feng Zou

    2014-01-01

    Full Text Available Teaching-learning-based optimization (TLBO algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms.

  15. A constraint-based approach to intelligent support of nuclear reactor design

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    1993-01-01

    Constraint is a powerful representation to formulate and solve problems in design; a constraint-based approach to intelligent support of nuclear reactor design is proposed. We first discuss the features of the approach, and then present the architecture of a nuclear reactor design support system under development. In this design support system, the knowledge base contains constraints useful to structure the design space as object class definitions, and several types of constraint resolvers are provided as design support subsystems. The adopted method of constraint resolution are explained in detail. The usefulness of the approach is demonstrated using two design problems: Design window search and multiobjective optimization in nuclear reactor design. (orig./HP)

  16. Towards artificial intelligence based diesel engine performance control under varying operating conditions using support vector regression

    Directory of Open Access Journals (Sweden)

    Naradasu Kumar Ravi

    2013-01-01

    Full Text Available Diesel engine designers are constantly on the look-out for performance enhancement through efficient control of operating parameters. In this paper, the concept of an intelligent engine control system is proposed that seeks to ensure optimized performance under varying operating conditions. The concept is based on arriving at the optimum engine operating parameters to ensure the desired output in terms of efficiency. In addition, a Support Vector Machines based prediction model has been developed to predict the engine performance under varying operating conditions. Experiments were carried out at varying loads, compression ratios and amounts of exhaust gas recirculation using a variable compression ratio diesel engine for data acquisition. It was observed that the SVM model was able to predict the engine performance accurately.

  17. Cyclotron operating mode determination based on intelligent methods

    International Nuclear Information System (INIS)

    Ouda, M.M.E.M.

    2011-01-01

    Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to

  18. Fast DCNN based on FWT, intelligent dropout and layer skipping for image retrieval.

    Science.gov (United States)

    ElAdel, Asma; Zaied, Mourad; Amar, Chokri Ben

    2017-11-01

    Deep Convolutional Neural Network (DCNN) can be marked as a powerful tool for object and image classification and retrieval. However, the training stage of such networks is highly consuming in terms of storage space and time. Also, the optimization is still a challenging subject. In this paper, we propose a fast DCNN based on Fast Wavelet Transform (FWT), intelligent dropout and layer skipping. The proposed approach led to improve the image retrieval accuracy as well as the searching time. This was possible thanks to three key advantages: First, the rapid way to compute the features using FWT. Second, the proposed intelligent dropout method is based on whether or not a unit is efficiently and not randomly selected. Third, it is possible to classify the image using efficient units of earlier layer(s) and skipping all the subsequent hidden layers directly to the output layer. Our experiments were performed on CIFAR-10 and MNIST datasets and the obtained results are very promising. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Concept development and needs identification for intelligent network flow optimization (INFLO) : functional and performance requirements, and high-level data and communication needs.

    Science.gov (United States)

    2012-11-01

    The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...

  20. An Intelligent Fleet Condition-Based Maintenance Decision Making Method Based on Multi-Agent

    OpenAIRE

    Bo Sun; Qiang Feng; Songjie Li

    2012-01-01

    According to the demand for condition-based maintenance online decision making among a mission oriented fleet, an intelligent maintenance decision making method based on Multi-agent and heuristic rules is proposed. The process of condition-based maintenance within an aircraft fleet (each containing one or more Line Replaceable Modules) based on multiple maintenance thresholds is analyzed. Then the process is abstracted into a Multi-Agent Model, a 2-layer model structure containing host negoti...

  1. Feature-based tolerancing for intelligent inspection process definition

    International Nuclear Information System (INIS)

    Brown, C.W.

    1993-07-01

    This paper describes a feature-based tolerancing capability that complements a geometric solid model with an explicit representation of conventional and geometric tolerances. This capability is focused on supporting an intelligent inspection process definition system. The feature-based tolerance model's benefits include advancing complete product definition initiatives (e.g., STEP -- Standard for Exchange of Product model dam), suppling computer-integrated manufacturing applications (e.g., generative process planning and automated part programming) with product definition information, and assisting in the solution of measurement performance issues. A feature-based tolerance information model was developed based upon the notion of a feature's toleranceable aspects and describes an object-oriented scheme for representing and relating tolerance features, tolerances, and datum reference frames. For easy incorporation, the tolerance feature entities are interconnected with STEP solid model entities. This schema will explicitly represent the tolerance specification for mechanical products, support advanced dimensional measurement applications, and assist in tolerance-related methods divergence issues

  2. Endurance Enhancement and High Speed Set/Reset of 50 nm Generation HfO2 Based Resistive Random Access Memory Cell by Intelligent Set/Reset Pulse Shape Optimization and Verify Scheme

    Science.gov (United States)

    Higuchi, Kazuhide; Miyaji, Kousuke; Johguchi, Koh; Takeuchi, Ken

    2012-02-01

    This paper proposes a verify-programming method for the resistive random access memory (ReRAM) cell which achieves a 50-times higher endurance and a fast set and reset compared with the conventional method. The proposed verify-programming method uses the incremental pulse width with turnback (IPWWT) for the reset and the incremental voltage with turnback (IVWT) for the set. With the combination of IPWWT reset and IVWT set, the endurance-cycle increases from 48 ×103 to 2444 ×103 cycles. Furthermore, the measured data retention-time after 20 ×103 set/reset cycles is estimated to be 10 years. Additionally, the filamentary based physical model is proposed to explain the set/reset failure mechanism with various set/reset pulse shapes. The reset pulse width and set voltage correspond to the width and length of the conductive-filament, respectively. Consequently, since the proposed IPWWT and IVWT recover set and reset failures of ReRAM cells, the endurance-cycles are improved.

  3. ARTIFICIAL INTELLIGENCE IN DETERMINATION OF MARKETING CUSTOMER STRATEGY

    OpenAIRE

    Markić, Brano; Bijakšić, Sanja; Šantić, Marko

    2015-01-01

    Artificial intelligence is a computer-based analytical process that tends to create computational systems which we would incline to be called intelligent. Expert systems are the most important part of the artificial intelligence from economic perspective. Expert systems attempt to mimic the human thought process including reasoning and optimization. “Knowledge” is represented by a set of “if-then” rules in a form of knowledge base. The results of artificial intelligence system implementation ...

  4. ARTIFICIAL INTELLIGENCE IN DETERMINATION OF MARKETING CUSTOMER STRATEGY

    OpenAIRE

    Markić, Brano; Bijakšić, Sanja; Šantić, Marko

    2016-01-01

    Artificial intelligence is a computer-based analytical process that tends to create computational systems which we would incline to be called intelligent. Expert systems are the most important part of the artificial intelligence from economic perspective. Expert systems attempt to mimic the human thought process including reasoning and optimization. “Knowledge” is represented by a set of “if-then” rules in a form of knowledge base. The results of artificial intelligence system implementation ...

  5. The Actualization of Literary Learning Model Based on Verbal-Linguistic Intelligence

    Science.gov (United States)

    Hali, Nur Ihsan

    2017-01-01

    This article is inspired by Howard Gardner's concept of linguistic intelligence and also from some authors' previous writings. All of them became the authors' reference in developing ideas on constructing a literary learning model based on linguistic intelligence. The writing of this article is not done by collecting data empirically, but by…

  6. The Relationship between Emotional Intelligence and Attitudes toward Computer-Based Instruction of Postsecondary Hospitality Students

    Science.gov (United States)

    Behnke, Carl; Greenan, James P.

    2011-01-01

    This study examined the relationship between postsecondary students' emotional-social intelligence and attitudes toward computer-based instructional materials. Research indicated that emotions and emotional intelligence directly impact motivation, while instructional design has been shown to impact student attitudes and subsequent engagement with…

  7. Approaches to optimal aquifer management and intelligent control in a multiresolutional decision support system

    Science.gov (United States)

    Orr, Shlomo; Meystel, Alexander M.

    2005-03-01

    Despite remarkable new developments in stochastic hydrology and adaptations of advanced methods from operations research, stochastic control, and artificial intelligence, solutions of complex real-world problems in hydrogeology have been quite limited. The main reason is the ultimate reliance on first-principle models that lead to complex, distributed-parameter partial differential equations (PDE) on a given scale. While the addition of uncertainty, and hence, stochasticity or randomness has increased insight and highlighted important relationships between uncertainty, reliability, risk, and their effect on the cost function, it has also (a) introduced additional complexity that results in prohibitive computer power even for just a single uncertain/random parameter; and (b) led to the recognition in our inability to assess the full uncertainty even when including all uncertain parameters. A paradigm shift is introduced: an adaptation of new methods of intelligent control that will relax the dependency on rigid, computer-intensive, stochastic PDE, and will shift the emphasis to a goal-oriented, flexible, adaptive, multiresolutional decision support system (MRDS) with strong unsupervised learning (oriented towards anticipation rather than prediction) and highly efficient optimization capability, which could provide the needed solutions of real-world aquifer management problems. The article highlights the links between past developments and future optimization/planning/control of hydrogeologic systems. Malgré de remarquables nouveaux développements en hydrologie stochastique ainsi que de remarquables adaptations de méthodes avancées pour les opérations de recherche, le contrôle stochastique, et l'intelligence artificielle, solutions pour les problèmes complexes en hydrogéologie sont restées assez limitées. La principale raison est l'ultime confiance en les modèles qui conduisent à des équations partielles complexes aux paramètres distribués (PDE) à une

  8. Improvement of Base and Soil Construction Quality by Using Intelligent Compaction Technology : Final Report.

    Science.gov (United States)

    2017-08-01

    Intelligent Compaction (IC) technique is a fast-developing technology for base and soil compaction quality control. Proof-rolling subgrades and bases using IC rollers upon completion of compaction can identify the less stiff spots and significantly i...

  9. A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics.

    Science.gov (United States)

    Gomaa Haroun, A H; Li, Yin-Ya

    2017-11-01

    In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by

  10. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    Science.gov (United States)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  11. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    Science.gov (United States)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  12. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  13. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    Science.gov (United States)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  14. Predicting Couples’ Happiness Based on Spiritual Intelligence and Lovemaking Styles: The Mediating Role of Marital adjustment

    Directory of Open Access Journals (Sweden)

    ZAHRA KERMANI MAMAZANDI

    2017-02-01

    Full Text Available The purpose of this study was to predict couples’ happiness based on spiritual intelligence and lovemaking styles with the mediating role of marital adjustment. Therefore 360 male and female, married students living in Tehran University dormitory were randomly selected and were asked to answer the items of Sternberg’s Love Questionnaire, King’s Spiritual Intelligence Scale, Oxford’s Happiness Questionnaire and Spanier’s Marital Adjustment Questionnaire. Structural equation modeling (path analysis was used for data analysis. The results  of path analysis showed  that spiritual intelligence and lovemaking styles have direct effects on couples’ happiness, and the spiritual intelligence did not have an indirect effect on couples’ happiness whereas lovemaking styles had indirect effects on couples’ happiness through martial satisfaction. Altogether the results of this research show that marital adjustment has a mediating role in predicting couples’ happiness based on spiritual intelligence and lovemaking styles.

  15. Home Automation System Based on Intelligent Transducer Enablers

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Dapena, Adriana; González-López, Miguel

    2016-01-01

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet. PMID:27690031

  16. Home Automation System Based on Intelligent Transducer Enablers.

    Science.gov (United States)

    Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Dapena, Adriana; González-López, Miguel

    2016-09-28

    This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  17. Home Automation System Based on Intelligent Transducer Enablers

    Directory of Open Access Journals (Sweden)

    Manuel Suárez-Albela

    2016-09-01

    Full Text Available This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers, which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

  18. Predicting chick body mass by artificial intelligence-based models

    Directory of Open Access Journals (Sweden)

    Patricia Ferreira Ponciano Ferraz

    2014-07-01

    Full Text Available The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks - with the variables dry-bulb air temperature, duration of thermal stress (days, chick age (days, and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs and neuro-fuzzy networks (NFNs. The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

  19. Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft

    Science.gov (United States)

    McManus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.

  20. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  1. Simulated Annealing-Based Krill Herd Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Gai-Ge Wang

    2013-01-01

    Full Text Available Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH, for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH method is proposed for optimization tasks. A new krill selecting (KS operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA. In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.

  2. Fractured reservoir history matching improved based on artificial intelligent

    Directory of Open Access Journals (Sweden)

    Sayyed Hadi Riazi

    2016-12-01

    Full Text Available In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (PSO and Imperialist Competitive Algorithm (ICA. In automatic history matching, sensitive analysis is often performed on full simulation model. In this work, to get new range of the uncertain parameters (matching parameters in which the objective function has a minimum value, sensitivity analysis is also performed on the proxy model. By applying the modified ranges to the optimization methods, optimization of the objective function will be faster and outputs of the optimization methods (matching parameters are produced in less time and with high precision. This procedure leads to matching of history of the field in which a set of reservoir parameters is used. The final sets of parameters are then applied for the full simulation model to validate the technique. The obtained results show that the present procedure in this work is effective for history matching process due to its robust dependability and fast convergence speed. Due to high speed and need for small data sets, LSSVM is the best tool to build a proxy model. Also the comparison of PSO and ICA shows that PSO is less time-consuming and more effective.

  3. An intelligent clustering based methodology for confusable diseases ...

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application ... In this paper, an intelligent system driven by fuzzy clustering algorithm and Adaptive Neuro-Fuzzy Inference System for ... Data on patients diagnosed and confirmed by laboratory tests of viral ...

  4. Classifiers based on optimal decision rules

    KAUST Repository

    Amin, Talha

    2013-11-25

    Based on dynamic programming approach we design algorithms for sequential optimization of exact and approximate decision rules relative to the length and coverage [3, 4]. In this paper, we use optimal rules to construct classifiers, and study two questions: (i) which rules are better from the point of view of classification-exact or approximate; and (ii) which order of optimization gives better results of classifier work: length, length+coverage, coverage, or coverage+length. Experimental results show that, on average, classifiers based on exact rules are better than classifiers based on approximate rules, and sequential optimization (length+coverage or coverage+length) is better than the ordinary optimization (length or coverage).

  5. Classifiers based on optimal decision rules

    KAUST Repository

    Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    Based on dynamic programming approach we design algorithms for sequential optimization of exact and approximate decision rules relative to the length and coverage [3, 4]. In this paper, we use optimal rules to construct classifiers, and study two questions: (i) which rules are better from the point of view of classification-exact or approximate; and (ii) which order of optimization gives better results of classifier work: length, length+coverage, coverage, or coverage+length. Experimental results show that, on average, classifiers based on exact rules are better than classifiers based on approximate rules, and sequential optimization (length+coverage or coverage+length) is better than the ordinary optimization (length or coverage).

  6. TOWARDS MEASURES OF INTELLIGENCE BASED ON SEMIOTIC CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    C. JOSLYN

    2000-08-01

    We address the question of how to identify and measure the degree of intelligence in systems. We define the presence of intelligence as equivalent to the presence of a control relation. We contrast the distinct atomic semioic definitions of models and controls, and discuss hierarchical and anticipatory control. We conclude with a suggestion about moving towards quantitative measures of the degree of such control in systems.

  7. The design of remote intelligent terminal based on ARM

    International Nuclear Information System (INIS)

    Zhang Bin; Liu Zixin

    2014-01-01

    This paper introduces the function and principle of the remote intelligent terminal. It was designed on SmartARM 2200, uses uC/OS-II operating system and MiniGUI. And then,it gives a method to realize it. Introduces the work flow of remote intelligent terminal, and the function module of the system are analyzed in detail, and then the terminal of the principle has carried on the preliminary study. (authors)

  8. Computational intelligence-based polymerase chain reaction primer selection based on a novel teaching-learning-based optimisation.

    Science.gov (United States)

    Cheng, Yu-Huei

    2014-12-01

    Specific primers play an important role in polymerase chain reaction (PCR) experiments, and therefore it is essential to find specific primers of outstanding quality. Unfortunately, many PCR constraints must be simultaneously inspected which makes specific primer selection difficult and time-consuming. This paper introduces a novel computational intelligence-based method, Teaching-Learning-Based Optimisation, to select the specific and feasible primers. The specified PCR product lengths of 150-300 bp and 500-800 bp with three melting temperature formulae of Wallace's formula, Bolton and McCarthy's formula and SantaLucia's formula were performed. The authors calculate optimal frequency to estimate the quality of primer selection based on a total of 500 runs for 50 random nucleotide sequences of 'Homo species' retrieved from the National Center for Biotechnology Information. The method was then fairly compared with the genetic algorithm (GA) and memetic algorithm (MA) for primer selection in the literature. The results show that the method easily found suitable primers corresponding with the setting primer constraints and had preferable performance than the GA and the MA. Furthermore, the method was also compared with the common method Primer3 according to their method type, primers presentation, parameters setting, speed and memory usage. In conclusion, it is an interesting primer selection method and a valuable tool for automatic high-throughput analysis. In the future, the usage of the primers in the wet lab needs to be validated carefully to increase the reliability of the method.

  9. Intelligent Home Control System Based on ARM10

    Science.gov (United States)

    Chen, G. X.; Jiang, J.; Zhong, L. H.

    2017-10-01

    Intelligent home is becoming the hot spot of social attention in the 21st century. When it is in China, it is a really new industry. However, there is no doubt that Intelligent home will become a new economic growth point of social development; it will change the life-style of human being. To develop the intelligent home, we should keep up with the development trend of technology. This is the reason why I talk about the intelligent home control system here. In this paper, intelligent home control system is designed for alarm and remote control on gas- leaking, fire disaster, earthquake prediction, etc., by examining environmental changes around house. When the Intelligent home control system has detected an accident occurs, the processor will communicate with the GSM module, informing the house keeper the occurrence of accident. User can receive and send the message to the system to cut the power by mobile phone. The system can get access to DCCthrough ARM10 JTAG interface, using DCC to send and receive messages. At the same time, the debugger on the host is mainly used to receive the user’s command and send it to the debug component in the target system. The data that returned from the target system is received and displayed to the user in a certain format.

  10. The Actualization of Literary Learning Model Based on Verbal-Linguistic Intelligence

    Directory of Open Access Journals (Sweden)

    Nur Ihsan Halil

    2017-10-01

    Full Text Available This article is inspired by Howard Gardner's concept of linguistic intelligence and also from some authors' previous writings. All of them became the authors' reference in developing ideas on constructing a literary learning model based on linguistic intelligence. The writing of this article is not done by collecting data empirically, but by developing and constructing an existing concept, namely the concept of linguistic intelligence, which is disseminated into a literature-based learning of verbal-linguistic intelligence. The purpose of this paper is to answer the question of how to apply the literary learning model based on the verbal-linguistic intelligence. Then, regarding Gardner's concept, the author formulated a literary learning model based on the verbal-linguistic intelligence through a story-telling learning model with five steps namely arguing, discussing, interpreting, speaking, and writing about literary works. In short, the writer draw a conclusion that learning-based models of verbal-linguistic intelligence can be designed with attention into five components namely (1 definition, (2 characteristics, (3 teaching strategy, (4 final learning outcomes, and (5 figures.

  11. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.

  12. Multi-Working Modes Product-Color Planning Based on Evolutionary Algorithms and Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Man Ding

    2010-01-01

    Full Text Available In order to assist designer in color planning during product development, a novel synthesized evaluation method is presented to evaluate color-combination schemes of multi-working modes products (MMPs. The proposed evaluation method considers color-combination images in different working modes as evaluating attributes, to which the corresponding weights are assigned for synthesized evaluation. Then a mathematical model is developed to search for optimal color-combination schemes of MMP based on the proposed evaluation method and two powerful search techniques known as Evolution Algorithms (EAs and Swarm Intelligence (SI. In the experiments, we present a comparative study for two EAs, namely, Genetic Algorithm (GA and Difference Evolution (DE, and one SI algorithm, namely, Particle Swarm Optimization (PSO, on searching for color-combination schemes of MMP problem. All of the algorithms are evaluated against a test scenario, namely, an Arm-type aerial work platform, which has two working modes. The results show that the DE obtains the superior solution than the other two algorithms for color-combination scheme searching problem in terms of optimization accuracy and computation robustness. Simulation results demonstrate that the proposed method is feasible and efficient.

  13. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  14. Artificial intelligence-based condition monitoring for practical electrical drives

    OpenAIRE

    Ashari, Djoni; Pislaru, Crinela; Ball, Andrew; Gu, Fengshou

    2012-01-01

    The main types of existing Condition Monitoring methods (MCSA, GA, IAS) for electrical drives are\\ud described. Then the steps for the design of expert systems are presented: problem identification and analysis, system specification, development tool selection, knowledge based, prototyping and testing. The employment of SOMA (Self-Organizing Migrating Algorithm) used for the optimization of ambient\\ud vibration energy harvesting is analyzed. The power electronics devices are becoming smaller ...

  15. Reliability Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1987-01-01

    The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...

  16. Implementation Of CAN Based Intelligent Driver Alert System

    Directory of Open Access Journals (Sweden)

    Yin Mar Win Kyaw Myo Maung Maung

    2015-08-01

    Full Text Available This system is an attempt to analyze Intelligent Driver Alert System Using CAN Protocol. CAN Controller Area Network offer an efficient communication protocol among sensors actuators controllers and other nodes in real-time applications and is known for its simplicity reliability and high performance. It has given an effective way by which can increase the car and driver safety. This system presents the development and implementation of a digital driving system for a semi-autonomous vehicle to improve the driver-vehicle interface using microcontroller based data acquisition system that uses ADC to bring all control data from analog to digital format. In this system the signal information like temperature LM35 sensor if the temperature increase above the 60 o C and ultrasonic sensor is adapted to measure the distance between the object and vehicle if obstacle is detected within 75cm from the vehicle the controller gives buzzer to the driver speed measure using RPM sensor if revolution increase up to 1200 per minute controller act and to avoid the maximum revolution and to check the fuel level continuously and display in the percentage if fuel level below 20 percent the controller also gives buzzer to the driver and distance fuel level and temperature continuously display on the LCD.

  17. a New Architecture for Intelligent Systems with Logic Based Languages

    Science.gov (United States)

    Saini, K. K.; Saini, Sanju

    2008-10-01

    People communicate with each other in sentences that incorporate two kinds of information: propositions about some subject, and metalevel speech acts that specify how the propositional information is used—as an assertion, a command, a question, or a promise. By means of speech acts, a group of people who have different areas of expertise can cooperate and dynamically reconfigure their social interactions to perform tasks and solve problems that would be difficult or impossible for any single individual. This paper proposes a framework for intelligent systems that consist of a variety of specialized components together with logic-based languages that can express propositions and speech acts about those propositions. The result is a system with a dynamically changing architecture that can be reconfigured in various ways: by a human knowledge engineer who specifies a script of speech acts that determine how the components interact; by a planning component that generates the speech acts to redirect the other components; or by a committee of components, which might include human assistants, whose speech acts serve to redirect one another. The components communicate by sending messages to a Linda-like blackboard, in which components accept messages that are either directed to them or that they consider themselves competent to handle.

  18. Domain-based Teaching Strategy for Intelligent Tutoring System Based on Generic Rules

    Science.gov (United States)

    Kseibat, Dawod; Mansour, Ali; Adjei, Osei; Phillips, Paul

    In this paper we present a framework for selecting the proper instructional strategy for a given teaching material based on its attributes. The new approach is based on a flexible design by means of generic rules. The framework was adapted in an Intelligent Tutoring System to teach Modern Standard Arabic language to adult English-speaking learners with no pre-knowledge of Arabic language is required.

  19. Artificial intelligence-based modeling and control of fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, E.; Leppaekoski, K. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: enso.ikonen@oulu.fi

    2009-07-01

    AI-inspired techniques have a lot to offer when developing methods for advanced identification, monitoring, control and optimization of industrial processes, such as power plants. Advanced control methods have been extensively examined in the research of the Power Plant Automation group at the Systems Engineering Laboratory, e.g., in fuel inventory modelling, combustion power control, modelling and control of flue gas oxygen, drum control, modelling and control of superheaters, or in optimization of flue-gas emissions. Most engineering approaches to artificial intelligence (AI) are characterized by two fundamental properties: the ability to learn from various sources and the ability to deal with plant complexity. Learning systems that are able to operate in uncertain environments based on incomplete information are commonly referred to as being intelligent. A number of other approaches exist, characterized by these properties, but not easily categorized as AI-systems. Advanced control methods (adaptive, predictive, multivariable, robust, etc.) are based on the availability of a model of the process to be controlled. Hence identification of processes becomes a key issue, leading to the use of adaptation and learning techniques. A typical learning control system concerns a selection of learning techniques applied for updating a process model, which in turn is used for the controller design. When design of learning control systems is complemented with concerns for dealing with uncertainties or vaguenesses in models, measurements, or even objectives, particularly close connections exist between advanced process control and methods of artificial intelligence and machine learning. Needs for advanced techniques are typically characterized by the desire to properly handle plant non-linearities, the multivariable nature of the dynamic problems, and the necessity to adapt to changing plant conditions. In the field of fluidized bed combustion (FBC) control, the many promising

  20. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges

    Science.gov (United States)

    Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel

    2016-01-01

    The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well. PMID:26861345

  1. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges.

    Science.gov (United States)

    Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel

    2016-02-06

    The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.

  2. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges

    Directory of Open Access Journals (Sweden)

    Yuanfang Chen

    2016-02-01

    Full Text Available The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases is an important research issue in the industrial applications of the Internet of Things (IoT. An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.

  3. Intelligent energy management of optimally located renewable energy systems incorporating PHEV

    International Nuclear Information System (INIS)

    El-Zonkoly, Amany

    2014-01-01

    Highlights: • The algorithm optimally selects the number, locations and sizes of DGs. • Wind units, PV units, diesel units and PHEV parking lots are considered as DGs. • The algorithm determines the corresponding energy scheduling of resources. • The problem is formulated as an optimization problem solved using ABC. • The objective is to minimize the overall energy cost of the system. - Abstract: The recent interest in plug-in-hybrid electric vehicles (PHEV) results in the increase in the utilization of vehicles batteries for grid support. In addition, the integration of renewable energy systems (RES) into electricity grid is a promising technique for addressing the environmental concerns. This paper presents a multi-objective algorithm to optimally allocate a number of renewable energy systems including parking lots for PHEV in a distribution system. The proposed algorithm determines the number, locations and sizes of the RES and parking lots. In addition, a rule based expert system is used to find the corresponding energy scheduling of the system resources. The objective of the proposed algorithm is to minimize the overall energy cost of the system. The problem is formulated as an optimization problem which is solved using artificial bee colony (ABC) algorithm taking into consideration the power system and PHEV operational constraints. The proposed algorithm is applied to a 45-bus distribution network of Alexandria, Egypt. The test results indicate an improvement in the operational conditions of the system

  4. Reliability Based Optimization of Fire Protection

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    fire protection (PFP) of firewalls and structural members. The paper is partly based on research performed within the EU supported research project B/E-4359 "Optimized Fire Safety of Offshore Structures" and partly on research supported by the Danish Technical Research Council (see Thoft-Christensen [1......]). Special emphasis is put on the optimization software developed within the project.......It is well known that fire is one of the major risks of serious damage or total loss of several types of structures such as nuclear installations, buildings, offshore platforms/topsides etc. This paper presents a methodology and software for reliability based optimization of the layout of passive...

  5. An Intelligent Consumables Management System Development Framework based on Artificial Intelligence Techniques, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation, called the Management of consumables Adaptive Execution, SynchronizaTion, Replanning/rescheduling, Optimization system (MAESTRO), would...

  6. The Intelligent Technologies of Electronic Information System

    Science.gov (United States)

    Li, Xianyu

    2017-08-01

    Based upon the synopsis of system intelligence and information services, this paper puts forward the attributes and the logic structure of information service, sets forth intelligent technology framework of electronic information system, and presents a series of measures, such as optimizing business information flow, advancing data decision capability, improving information fusion precision, strengthening deep learning application and enhancing prognostic and health management, and demonstrates system operation effectiveness. This will benefit the enhancement of system intelligence.

  7. Intelligent IPv6 based iot network monitoring and altering system on ...

    African Journals Online (AJOL)

    Intelligent IPv6 based iot network monitoring and altering system on Cooja framework. ... Journal of Fundamental and Applied Sciences. Journal Home · ABOUT THIS ... Keywords: IoT; Cooja framework; Contiki OS; packet monitoring.

  8. Intelligent vehicle based traffic monitoring – exploring application in South Africa

    CSIR Research Space (South Africa)

    Labuschagne, FJJ

    2010-08-01

    Full Text Available The paper details the anticipated benefits of an intelligent vehicle based traffic monitoring approach holds. The approach utilises advanced technology with the potential to reduce crashes and includes the monitor of vehicle speeds and flows...

  9. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  10. Challenges facing the distribution of an artificial-intelligence-based system for nursing.

    Science.gov (United States)

    Evans, S

    1985-04-01

    The marketing and successful distribution of artificial-intelligence-based decision-support systems for nursing face special barriers and challenges. Issues that must be confronted arise particularly from the present culture of the nursing profession as well as the typical organizational structures in which nurses predominantly work. Generalizations in the literature based on the limited experience of physician-oriented artificial intelligence applications (predominantly in diagnosis and pharmacologic treatment) must be modified for applicability to other health professions.

  11. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.

    2008-01-01

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  12. Design of Underwater Robot Lines Based on a Hybrid Automatic Optimization Strategy

    Institute of Scientific and Technical Information of China (English)

    Wenjing Lyu; Weilin Luo

    2014-01-01

    In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body’s minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.

  13. Design and realization of intelligent tourism service system based on voice interaction

    Science.gov (United States)

    Hu, Lei-di; Long, Yi; Qian, Cheng-yang; Zhang, Ling; Lv, Guo-nian

    2008-10-01

    Voice technology is one of the important contents to improve the intelligence and humanization of tourism service system. Combining voice technology, the paper concentrates on application needs and the composition of system to present an overall intelligent tourism service system's framework consisting of presentation layer, Web services layer, and tourism application service layer. On the basis, the paper further elaborated the implementation of the system and its key technologies, including intelligent voice interactive technology, seamless integration technology of multiple data sources, location-perception-based guides' services technology, and tourism safety control technology. Finally, according to the situation of Nanjing tourism, a prototype of Tourism Services System is realized.

  14. Development of GPT-based optimization algorithm

    International Nuclear Information System (INIS)

    White, J.R.; Chapman, D.M.; Biswas, D.

    1985-01-01

    The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme

  15. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  16. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... tasks, namely finite element analyses, sensitivity analyses, reliability analyses and application of an optimization algorithm. In the paper it is shown how these four tasks can be linked effectively and how existing information on design variables, Lagrange multipliers and the Hessian matrix can...

  17. Improving General Intelligence with a Nutrient-Based Pharmacological Intervention

    Science.gov (United States)

    Stough, Con; Camfield, David; Kure, Christina; Tarasuik, Joanne; Downey, Luke; Lloyd, Jenny; Zangara, Andrea; Scholey, Andrew; Reynolds, Josh

    2011-01-01

    Cognitive enhancing substances such as amphetamine and modafinil have become popular in recent years to improve acute cognitive performance particularly in environments in which enhanced cognition or intelligence is required. Nutraceutical nootropics, which are natural substances that have the ability to bring about acute or chronic changes in…

  18. Artificial intelligence based decision support for trumpeter swan management

    Science.gov (United States)

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988

  19. Incentivizing intelligent customer behavior in smart-grids: a risk-sharing tariff & optimal strategies

    NARCIS (Netherlands)

    G. Methenitis (Georgios); M. Kaisers (Michael); J.A. La Poutré (Han)

    2016-01-01

    textabstractCurrent electricity tariffs for retail rarely provide incentives for intelligent demand response of flexible customers. Such customers could otherwise contribute to balancing supply and demand in future smart grids. This paper proposes an innovative risk-sharing tariff to incentivize

  20. An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis

    International Nuclear Information System (INIS)

    Jiang Li; Shi Tielin; Xuan Jianping

    2012-01-01

    Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.

  1. Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms

    CERN Document Server

    Siddique, Nazmul

    2014-01-01

    Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.  The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...

  2. Assessing the accuracy of perceptions of intelligence based on heritable facial features

    OpenAIRE

    Lee, Anthony J.; Hibbs, Courtney; Wright, Margaret J.; Martin, Nicholas G.; Keller, Matthew C.; Zietsch, Brendan P.

    2017-01-01

    Perceptions of intelligence based on facial features can have a profound impact on many social situations, but findings have been mixed as to whether these judgements are accurate. Even if such perceptions were accurate, the underlying mechanism is unclear. Several possibilities have been proposed, including evolutionary explanations where certain morphological facial features are associated with fitness-related traits (including cognitive development), or that intelligence judgements are ove...

  3. Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers

    Directory of Open Access Journals (Sweden)

    Bin Li

    2011-10-01

    Full Text Available Computer-aided detection(CAD system for lung nodules plays the important role in the diagnosis of lung cancer. In this paper, an improved intelligent recognition method of lung nodule in HRCT combing rule-based and costsensitive support vector machine(C-SVM classifiers is proposed for detecting both solid nodules and ground-glass opacity(GGO nodules(part solid and nonsolid. This method consists of several steps. Firstly, segmentation of regions of interest(ROIs, including pulmonary parenchyma and lung nodule candidates, is a difficult task. On one side, the presence of noise lowers the visibility of low-contrast objects. On the other side, different types of nodules, including small nodules, nodules connecting to vasculature or other structures, part-solid or nonsolid nodules, are complex, noisy, weak edge or difficult to define the boundary. In order to overcome the difficulties of obvious boundary-leak and slow evolvement speed problem in segmentatioin of weak edge, an overall segmentation method is proposed, they are: the lung parenchyma is extracted based on threshold and morphologic segmentation method; the image denoising and enhancing is realized by nonlinear anisotropic diffusion filtering(NADF method;candidate pulmonary nodules are segmented by the improved C-V level set method, in which the segmentation result of EM-based fuzzy threshold method is used as the initial contour of active contour model and a constrained energy term is added into the PDE of level set function. Then, lung nodules are classified by using the intelligent classifiers combining rules and C-SVM. Rule-based classification is first used to remove easily dismissible nonnodule objects, then C-SVM classification are used to further classify nodule candidates and reduce the number of false positive(FP objects. In order to increase the efficiency of SVM, an improved training method is used to train SVM, which uses the grid search method to search the optimal parameters

  4. Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers

    Directory of Open Access Journals (Sweden)

    Bin Li

    2012-02-01

    Full Text Available Computer-aided detection(CAD system for lung nodules plays the important role in the diagnosis of lung cancer. In this paper, an improved intelligent recognition method of lung nodule in HRCT combing rule-based and cost-sensitive support vector machine(C-SVM classifiers is proposed for detecting both solid nodules and ground-glass opacity(GGO nodules(part solid and nonsolid. This method consists of several steps. Firstly, segmentation of regions of interest(ROIs, including pulmonary parenchyma and lung nodule candidates, is a difficult task. On one side, the presence of noise lowers the visibility of low-contrast objects. On the other side, different types of nodules, including small nodules, nodules connecting to vasculature or other structures, part-solid or nonsolid nodules, are complex, noisy, weak edge or difficult to define the boundary. In order to overcome the difficulties of obvious boundary-leak and slow evolvement speed problem in segmentatioin of weak edge, an overall segmentation method is proposed, they are: the lung parenchyma is extracted based on threshold and morphologic segmentation method; the image denoising and enhancing is realized by nonlinear anisotropic diffusion filtering(NADF method; candidate pulmonary nodules are segmented by the improved C-V level set method, in which the segmentation result of EM-based fuzzy threshold method is used as the initial contour of active contour model and a constrained energy term is added into the PDE of level set function. Then, lung nodules are classified by using the intelligent classifiers combining rules and C-SVM. Rule-based classification is first used to remove easily dismissible nonnodule objects, then C-SVM classification are used to further classify nodule candidates and reduce the number of false positive(FP objects. In order to increase the efficiency of SVM, an improved training method is used to train SVM, which uses the grid search method to search the optimal

  5. Simulation-based optimization of thermal systems

    International Nuclear Information System (INIS)

    Jaluria, Yogesh

    2009-01-01

    This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results

  6. Coverage-based constraints for IMRT optimization

    Science.gov (United States)

    Mescher, H.; Ulrich, S.; Bangert, M.

    2017-09-01

    Radiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities q(\\hat{d}, \\hat{v}) of covering a specific target volume fraction \\hat{v} with a certain dose \\hat{d} . Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target volume objectives.

  7. Multimodal Detection of Music Performances for Intelligent Emotion Based Lighting

    DEFF Research Database (Denmark)

    Bonde, Esben Oxholm Skjødt; Hansen, Ellen Kathrine; Triantafyllidis, Georgios

    2016-01-01

    Playing music is about conveying emotions and the lighting at a concert can help do that. However, new and unknown bands that play at smaller venues and bands that don’t have the budget to hire a dedicated light technician have to miss out on lighting that will help them to convey the emotions...... of what they play. In this paper it is investigated whether it is possible or not to develop an intelligent system that through a multimodal input detects the intended emotions of the played music and in realtime adjusts the lighting accordingly. A concept for such an intelligent lighting system...... is developed and described. Through existing research on music and emotion, as well as on musicians’ body movements related to the emotion they want to convey, a row of cues is defined. This includes amount, speed, fluency and regularity for the visual and level, tempo, articulation and timbre for the auditory...

  8. CFD-based optimization in plastics extrusion

    Science.gov (United States)

    Eusterholz, Sebastian; Elgeti, Stefanie

    2018-05-01

    This paper presents novel ideas in numerical design of mixing elements in single-screw extruders. The actual design process is reformulated as a shape optimization problem, given some functional, but possibly inefficient initial design. Thereby automatic optimization can be incorporated and the design process is advanced, beyond the simulation-supported, but still experience-based approach. This paper proposes concepts to extend a method which has been developed and validated for die design to the design of mixing-elements. For simplicity, it focuses on single-phase flows only. The developed method conducts forward-simulations to predict the quasi-steady melt behavior in the relevant part of the extruder. The result of each simulation is used in a black-box optimization procedure based on an efficient low-order parameterization of the geometry. To minimize user interaction, an objective function is formulated that quantifies the products' quality based on the forward simulation. This paper covers two aspects: (1) It reviews the set-up of the optimization framework as discussed in [1], and (2) it details the necessary extensions for the optimization of mixing elements in single-screw extruders. It concludes with a presentation of first advances in the unsteady flow simulation of a metering and mixing section with the SSMUM [2] using the Carreau material model.

  9. Research Algorithm on Building Intelligent Transportation System based on RFID Technology

    Directory of Open Access Journals (Sweden)

    Chuanqi Chen

    2013-05-01

    Full Text Available Intelligent transportation system to all aspects of organic integration of human, vehicle, road and environment of the transport system, so that the operation of functional integration and intelligent vehicle, road. Intelligent transportation system (ITS to improve the efficiency of traffic system by increasing the effective use and management of traffic information is mainly composed of information collection and input, output, control strategy, implementation of the subsystems of data transmission and communication subsystem. The RFID reader to wireless communication through the antenna and RFID tag can achieve a write operation on the tag identification codes and memory read data. The paper proposes research on building intelligent transportation system based on RFID technology. Experimental results show that ITS system can effectively improve the traffic situation, improve the utilization rate of the existing road resource and save social cost.

  10. Activity-Based Intelligence prevedere il futuro osservando il presente con gli strumenti Hexagon Geospatial

    Directory of Open Access Journals (Sweden)

    Massimo Zotti

    2015-06-01

    Full Text Available The intelligence of human activities on the earth's surface, obtained through the analysis of earth observation data and other geospatial information, is vital for the planning and execution of any military action, for peacekeeping or for humanitarian emergencies. The success of these actions largely depends on the ability to analyze timely data from multiple sources. However, the proliferation of new sources of intelligence in a Geospatial big data scenario increasingly complicate the analysis of such activities by human analysts. Modern technologies solve these problems by enabling the Activity Based Intelligence, a methodology that improves the efficiency and timeliness of intelligence through the analysis of historical, current and future activity, to identify patterns, trends and relationships hidden in large data collections from different sources.

  11. Location Prediction-Based Data Dissemination Using Swarm Intelligence in Opportunistic Cognitive Networks

    Directory of Open Access Journals (Sweden)

    Jie Li

    2014-01-01

    Full Text Available Swarm intelligence is widely used in the application of communication networks. In this paper we adopt a biologically inspired strategy to investigate the data dissemination problem in the opportunistic cognitive networks (OCNs. We model the system as a centralized and distributed hybrid system including a location prediction server and a pervasive environment deploying the large-scale human-centric devices. To exploit such environment, data gathering and dissemination are fundamentally based on the contact opportunities. To tackle the lack of contemporaneous end-to-end connectivity in opportunistic networks, we apply ant colony optimization as a cognitive heuristic technology to formulate a self-adaptive dissemination-based routing scheme in opportunistic cognitive networks. This routing strategy has attempted to find the most appropriate nodes conveying messages to the destination node based on the location prediction information and intimacy between nodes, which uses the online unsupervised learning on geographical locations and the biologically inspired algorithm on the relationship of nodes to estimate the delivery probability. Extensive simulation is carried out on the real-world traces to evaluate the accuracy of the location prediction and the proposed scheme in terms of transmission cost, delivery ratio, average hops, and delivery latency, which achieves better routing performances compared to the typical routing schemes in OCNs.

  12. Simulation Study of Swarm Intelligence Based on Life Evolution Behavior

    OpenAIRE

    Yanmin Liu; Ying Bi; Changling Sui; Yuanfeng Luo; Zhuanzhou Zhang; Rui Liu

    2015-01-01

    Swarm intelligence (SI) is a new evolutionary computation technology, and its performance efficacy is usually affected by each individual behavior in the swarm. According to the genetic and sociological theory, the life evolution behavior process is influenced by the external and internal factors, so the mechanisms of external and internal environment change must be analyzed and explored. Therefore, in this paper, we used the thought of the famous American genetic biologist Morgan, “life = DN...

  13. Reviewing the development of an artificial intelligence based risk program

    International Nuclear Information System (INIS)

    Dixon, B.W.; Hinton, M.F.

    1985-01-01

    A successful application of nonconventional programming methods has been achieved in computer-assisted probabilistic risk assessment (PRA). The event tree sequence importance calculator, SQUIMP, provides for prompted data entry, generic expansion, on-line pruning, boolean reductions, and importance factor selection. SQUIMP employs constructs typically found in artificial intelligence (AI) programs. The development history of SQUIMP is outlined and its internal structure described as background for a discussion on the applicability of symbolic programming methods in PRA

  14. Neuro-Based Artificial Intelligence Model for Loan Decisions

    OpenAIRE

    Shorouq F. Eletter; Saad G. Yaseen; Ghaleb A. Elrefae

    2010-01-01

    Problem statement: Despite the increase in consumer loans defaults and competition in the banking market, most of the Jordanian commercial banks are reluctant to use artificial intelligence software systems for supporting loan decisions. Approach: This study developed a proposed model that identifies artificial neural network as an enabling tool for evaluating credit applications to support loan decisions in the Jordanian Commercial banks. A multi-layer feed-forward neural network with backpr...

  15. A novel AIDS/HIV intelligent medical consulting system based on expert systems.

    Science.gov (United States)

    Ebrahimi, Alireza Pour; Toloui Ashlaghi, Abbas; Mahdavy Rad, Maryam

    2013-01-01

    The purpose of this paper is to propose a novel intelligent model for AIDS/HIV data based on expert system and using it for developing an intelligent medical consulting system for AIDS/HIV. In this descriptive research, 752 frequently asked questions (FAQs) about AIDS/HIV are gathered from numerous websites about this disease. To perform the data mining and extracting the intelligent model, the 6 stages of Crisp method has been completed for FAQs. The 6 stages include: Business understanding, data understanding, data preparation, modelling, evaluation and deployment. C5.0 Tree classification algorithm is used for modelling. Also, rational unified process (RUP) is used to develop the web-based medical consulting software. Stages of RUP are as follows: Inception, elaboration, construction and transition. The intelligent developed model has been used in the infrastructure of the software and based on client's inquiry and keywords related FAQs are displayed to the client, according to the rank. FAQs' ranks are gradually determined considering clients reading it. Based on displayed FAQs, test and entertainment links are also displayed. The accuracy of the AIDS/HIV intelligent web-based medical consulting system is estimated to be 78.76%. AIDS/HIV medical consulting systems have been developed using intelligent infrastructure. Being equipped with an intelligent model, providing consulting services on systematic textual data and providing side services based on client's activities causes the implemented system to be unique. The research has been approved by Iranian Ministry of Health and Medical Education for being practical.

  16. Aerial robot intelligent control method based on back-stepping

    Science.gov (United States)

    Zhou, Jian; Xue, Qian

    2018-05-01

    The aerial robot is characterized as strong nonlinearity, high coupling and parameter uncertainty, a self-adaptive back-stepping control method based on neural network is proposed in this paper. The uncertain part of the aerial robot model is compensated online by the neural network of Cerebellum Model Articulation Controller and robust control items are designed to overcome the uncertainty error of the system during online learning. At the same time, particle swarm algorithm is used to optimize and fix parameters so as to improve the dynamic performance, and control law is obtained by the recursion of back-stepping regression. Simulation results show that the designed control law has desired attitude tracking performance and good robustness in case of uncertainties and large errors in the model parameters.

  17. Research on application of intelligent computation based LUCC model in urbanization process

    Science.gov (United States)

    Chen, Zemin

    2007-06-01

    own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.

  18. Virtual Power Plant and Microgrids controller for Energy Management based on optimization techniques

    Directory of Open Access Journals (Sweden)

    Maher G. M. Abdolrasol

    2017-06-01

    Full Text Available This paper discuss virtual power plant (VPP and Microgrid controller for energy management system (EMS based on optimization techniques by using two optimization techniques namely Backtracking search algorithm (BSA and particle swarm optimization algorithm (PSO. The research proposes use of multi Microgrid in the distribution networks to aggregate the power form distribution generation and form it into single Microgrid and let these Microgrid deal directly with the central organizer called virtual power plant. VPP duties are price forecast, demand forecast, weather forecast, production forecast, shedding loads, make intelligent decision and for aggregate & optimizes the data. This huge system has been tested and simulated by using Matlab simulink. These paper shows optimizations of two methods were really significant in the results. But BSA is better than PSO to search for better parameters which could make more power saving as in the results and the discussion.

  19. Research on crude oil storage and transportation based on optimization algorithm

    Science.gov (United States)

    Yuan, Xuhua

    2018-04-01

    At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.

  20. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran

    Science.gov (United States)

    Fijani, Elham; Nadiri, Ata Allah; Asghari Moghaddam, Asghar; Tsai, Frank T.-C.; Dixon, Barnali

    2013-10-01

    Contamination of wells with nitrate-N (NO3-N) poses various threats to human health. Contamination of groundwater is a complex process and full of uncertainty in regional scale. Development of an integrative vulnerability assessment methodology can be useful to effectively manage (including prioritization of limited resource allocation to monitor high risk areas) and protect this valuable freshwater source. This study introduces a supervised committee machine with artificial intelligence (SCMAI) model to improve the DRASTIC method for groundwater vulnerability assessment for the Maragheh-Bonab plain aquifer in Iran. Four different AI models are considered in the SCMAI model, whose input is the DRASTIC parameters. The SCMAI model improves the committee machine artificial intelligence (CMAI) model by replacing the linear combination in the CMAI with a nonlinear supervised ANN framework. To calibrate the AI models, NO3-N concentration data are divided in two datasets for the training and validation purposes. The target value of the AI models in the training step is the corrected vulnerability indices that relate to the first NO3-N concentration dataset. After model training, the AI models are verified by the second NO3-N concentration dataset. The results show that the four AI models are able to improve the DRASTIC method. Since the best AI model performance is not dominant, the SCMAI model is considered to combine the advantages of individual AI models to achieve the optimal performance. The SCMAI method re-predicts the groundwater vulnerability based on the different AI model prediction values. The results show that the SCMAI outperforms individual AI models and committee machine with artificial intelligence (CMAI) model. The SCMAI model ensures that no water well with high NO3-N levels would be classified as low risk and vice versa. The study concludes that the SCMAI model is an effective model to improve the DRASTIC model and provides a confident estimate of the

  1. Reliability-Based Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2004-01-01

    Reliability-based optimization of the main tower and monopile foundation of an offshore wind turbine is considered. Different formulations are considered of the objective function including benefits and building and failure costs of the wind turbine. Also different reconstruction policies in case...

  2. Performance-based Pareto optimal design

    NARCIS (Netherlands)

    Sariyildiz, I.S.; Bittermann, M.S.; Ciftcioglu, O.

    2008-01-01

    A novel approach for performance-based design is presented, where Pareto optimality is pursued. Design requirements may contain linguistic information, which is difficult to bring into computation or make consistent their impartial estimations from case to case. Fuzzy logic and soft computing are

  3. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lian, Jijian; He, Longjun; Ma, Bin; Peng, Wenxiang; Li, Huokun

    2013-01-01

    Research on optimal sensor placement (OSP) has become very important due to the need to obtain effective testing results with limited testing resources in health monitoring. In this study, a new methodology is proposed to select the best sensor locations for large structures. First, a novel fitness function derived from the nearest neighbour index is proposed to overcome the drawbacks of the effective independence method for OSP for large structures. This method maximizes the contribution of each sensor to modal observability and simultaneously avoids the redundancy of information between the selected degrees of freedom. A hybrid algorithm combining the improved discrete particle swarm optimization (DPSO) with the clonal selection algorithm is then implemented to optimize the proposed fitness function effectively. Finally, the proposed method is applied to an arch dam for performance verification. The results show that the proposed hybrid swarm intelligence algorithm outperforms a genetic algorithm with decimal two-dimension array encoding and DPSO in the capability of global optimization. The new fitness function is advantageous in terms of sensor distribution and ensuring a well-conditioned information matrix and orthogonality of modes, indicating that this method may be used to provide guidance for OSP in various large structures. (paper)

  4. PWR [pressurized water reactor] optimal reload configuration with an intelligent workstation

    International Nuclear Information System (INIS)

    Greek, K.J.; Robinson, A.H.

    1990-01-01

    In a previous paper, the implementation of a pressurized water reactor (PWR) refueling expert system that combined object-oriented programming in Smalltalk and a FORTRAN power calculation to evaluate loading patterns was discussed. The expert system applies heuristics and constraints that lead the search toward an optimal configuration. Its rate of improvement depends on the expertise coded for a search and the loading pattern from where the search begins. Due to its complexity, however, the solution normally cannot be served by a rule-based expert system alone. A knowledge base may take years of development before final acceptance. Also, the human pattern-matching capability to view a two-dimensional power profile, recognize an imbalance, and select an appropriate response has not yet been surpassed by a rule-based system. The user should be given the ability to take control of the search if he believes the solution needs a new direction and should be able to configure a loading pattern and resume the search. This paper introduces the workstation features of Shuffle important to aid the user to manipulate the configuration and retain a record of the solution

  5. Prediction of speech intelligibility based on a correlation metric in the envelope power spectrum domain

    DEFF Research Database (Denmark)

    Relano-Iborra, Helia; May, Tobias; Zaar, Johannes

    A powerful tool to investigate speech perception is the use of speech intelligibility prediction models. Recently, a model was presented, termed correlation-based speechbased envelope power spectrum model (sEPSMcorr) [1], based on the auditory processing of the multi-resolution speech-based Envel...

  6. An Occupancy Based Cyber-Physical System Design for Intelligent Building Automation

    Directory of Open Access Journals (Sweden)

    Kottarathil Eashy Mary Reena

    2015-01-01

    Full Text Available Cyber-physical system (CPS includes the class of Intelligent Building Automation System (IBAS which increasingly utilizes advanced technologies for long term stability, economy, longevity, and user comfort. However, there are diverse issues associated with wireless interconnection of the sensors, controllers, and power consuming physical end devices. In this paper, a novel architecture of CPS for wireless networked IBAS with priority-based access mechanism is proposed for zones in a large building with dynamically varying occupancy. Priority status of zones based on occupancy is determined using fuzzy inference engine. Nondominated Sorting Genetic Algorithm-II (NSGA-II is used to solve the optimization problem involving conflicting demands of minimizing total energy consumption and maximizing occupant comfort levels in building. An algorithm is proposed for power scheduling in sensor nodes to reduce their energy consumption. Wi-Fi with Elimination-Yield Nonpreemptive Multiple Access (EY-NPMA scheme is used for assigning priority among nodes for wireless channel access. Controller design techniques are also proposed for ensuring the stability of the closed loop control of IBAS in the presence of packet dropouts due to unreliable network links.

  7. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  8. Intelligent Energy Management Control for Extended Range Electric Vehicles Based on Dynamic Programming and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihe Xi

    2017-11-01

    Full Text Available The extended range electric vehicle (EREV can store much clean energy from the electric grid when it arrives at the charging station with lower battery energy. Consuming minimum gasoline during the trip is a common goal for most energy management controllers. To achieve these objectives, an intelligent energy management controller for EREV based on dynamic programming and neural networks (IEMC_NN is proposed. The power demand split ratio between the extender and battery are optimized by DP, and the control objectives are presented as a cost function. The online controller is trained by neural networks. Three trained controllers, constructing the controller library in IEMC_NN, are obtained from training three typical lengths of the driving cycle. To determine an appropriate NN controller for different driving distance purposes, the selection module in IEMC_NN is developed based on the remaining battery energy and the driving distance to the charging station. Three simulation conditions are adopted to validate the performance of IEMC_NN. They are target driving distance information, known and unknown, changing the destination during the trip. Simulation results using these simulation conditions show that the IEMC_NN had better fuel economy than the charging deplete/charging sustain (CD/CS algorithm. More significantly, with known driving distance information, the battery SOC controlled by IEMC_NN can just reach the lower bound as the EREV arrives at the charging station, which was also feasible when the driver changed the destination during the trip.

  9. Parameter optimization toward optimal microneedle-based dermal vaccination.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Yu, Huixin; Romeijn, Stefan; Jiskoot, Wim; Bouwstra, Joke

    2014-11-20

    Microneedle-based vaccination has several advantages over vaccination by using conventional hypodermic needles. Microneedles are used to deliver a drug into the skin in a minimally-invasive and potentially pain free manner. Besides, the skin is a potent immune organ that is highly suitable for vaccination. However, there are several factors that influence the penetration ability of the skin by microneedles and the immune responses upon microneedle-based immunization. In this study we assessed several different microneedle arrays for their ability to penetrate ex vivo human skin by using trypan blue and (fluorescently or radioactively labeled) ovalbumin. Next, these different microneedles and several factors, including the dose of ovalbumin, the effect of using an impact-insertion applicator, skin location of microneedle application, and the area of microneedle application, were tested in vivo in mice. The penetration ability and the dose of ovalbumin that is delivered into the skin were shown to be dependent on the use of an applicator and on the microneedle geometry and size of the array. Besides microneedle penetration, the above described factors influenced the immune responses upon microneedle-based vaccination in vivo. It was shown that the ovalbumin-specific antibody responses upon microneedle-based vaccination could be increased up to 12-fold when an impact-insertion applicator was used, up to 8-fold when microneedles were applied over a larger surface area, and up to 36-fold dependent on the location of microneedle application. Therefore, these influencing factors should be considered to optimize microneedle-based dermal immunization technologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optimization of hydraulic turbine governor parameters based on WPA

    Science.gov (United States)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  11. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Science.gov (United States)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  12. Intelligent Agent Based Traffic Signal Control on Isolated Intersections

    Directory of Open Access Journals (Sweden)

    Daniela Koltovska

    2014-08-01

    Full Text Available The purpose of this paper is to develop an adaptive signal control strategy on isolated urban intersections. An innovative approach to defining the set of states dependent on the actual and primarily observed parameters has been introduced. ?he Q–learning algorithm has been applied. The developed self-learning adaptive signal strategy has been tested on a re?l intersection. The intelligent agent results have been compared to those in cases of fixed-time and actuated control. Regarding the average total delay, the total number of stops and the total throughput, the best results have been obtained for unknown traffic demand and over-capacity.

  13. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhang Qian

    2018-01-01

    Full Text Available This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  14. Artificial intelligence for optimal anemia management in end-stage renal disease.

    Science.gov (United States)

    Brier, Michael E; Gaweda, Adam E

    2016-08-01

    Computational intelligence for the prediction of hemoglobin to guide the selection of erythropoiesis-stimulating agent dose results in improved anemia management. The models used for the prediction result from the use of individual patient data and help to increase the number of hemoglobin observations within the target range. The benefits of using these modeling techniques appear to be a decrease in erythropoiesis-stimulating agent use and a decrease in the number of transfusions. This study confirms the results of previous smaller studies and suggests that additional beneficial results may be achieved. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    Directory of Open Access Journals (Sweden)

    Naser El-Sheimy

    2012-09-01

    Full Text Available Inertial Navigation Systems (INS consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth’s magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS applications.

  16. Fault diagnosis of an intelligent hydraulic pump based on a nonlinear unknown input observer

    Directory of Open Access Journals (Sweden)

    Zhonghai MA

    2018-02-01

    Full Text Available Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more and more widely. Efficient fault diagnosis plays an important role in improving the reliability and performance of hydraulic systems. In this paper, a fault diagnosis method of an intelligent hydraulic pump system (IHPS based on a nonlinear unknown input observer (NUIO is proposed. Different from factors of a full-order Luenberger-type unknown input observer, nonlinear factors of the IHPS are considered in the NUIO. Firstly, a new type of intelligent pump is presented, the mathematical model of which is established to describe the IHPS. Taking into account the real-time requirements of the IHPS and the special structure of the pump, the mechanism of the intelligent pump and failure modes are analyzed and two typical failure modes are obtained. Furthermore, a NUIO of the IHPS is performed based on the output pressure and swashplate angle signals. With the residual error signals produced by the NUIO, online intelligent pump failure occurring in real-time can be detected. Lastly, through analysis and simulation, it is confirmed that this diagnostic method could accurately diagnose and isolate those typical failure modes of the nonlinear IHPS. The method proposed in this paper is of great significance in improving the reliability of the IHPS. Keywords: Fault diagnosis, Hydraulic piston pump, Model-based, Nonlinear unknown input observer (NUIO, Residual error

  17. Simulation-Based Cryosurgery Intelligent Tutoring System Prototype.

    Science.gov (United States)

    Sehrawat, Anjali; Keelan, Robert; Shimada, Kenji; Wilfong, Dona M; McCormick, James T; Rabin, Yoed

    2016-04-01

    As a part of an ongoing effort to develop computerized training tools for cryosurgery, the current study presents a proof of concept for a computerized tool for cryosurgery tutoring. The tutoring system lists geometrical constraints of cryoprobes placement, simulates cryoprobe insertion, displays a rendered shape of the prostate, enables distance measurements, simulates the corresponding thermal history, and evaluates the mismatch between the target region shape and a preselected planning isotherm. The quality of trainee planning is measured in comparison with a computer-generated planning, created for each case study by previously developed planning algorithms. The following two versions of the tutoring system have been tested in the current study: (1) an unguided version, where the trainee can practice cases in unstructured sessions and (2) an intelligent tutoring system, which forces the trainee to follow specific steps, believed by the authors to potentially shorten the learning curve. Although the tutoring level in this study aims only at geometrical constraints on cryoprobe placement and the resulting thermal histories, it creates a unique opportunity to gain insight into the process outside the operation room. Post-test results indicate that the intelligent tutoring system may be more beneficial than the nonintelligent tutoring system, but the proof of concept is demonstrated with either system. © The Author(s) 2015.

  18. A systematic profile/feature-based intelligence for spectral sensors

    International Nuclear Information System (INIS)

    Vogt, M.C.

    2000-01-01

    Argonne National Laboratory (ANL) has been creating a special-purpose software-engineering tool to support research and development of spectrum-output-type [chemical] sensors. The modular software system is called SAGE, the Sensor Algorithm Generation Environment and includes general-purpose signal conditioning algorithms (GP/SAGE) as well as intelligent classifiers, pattern recognizes, response accelerators, and sensitivity analyzers. GP/SAGE is an implementation of an approach for delivering a level of encapsulated intelligence to a wide range of sensors and instruments. It capitalizes on the genene classification and analysis needed to process most profile-type data. The GP/SAGE native data format is a generalized one-dimensional vector, signature, or spectrum. GP/SAGE modules form a computer-aided software engineering (CASE) workbench where users can experiment with various conditioning, filtering, and pattern recognition stages, then automatically generate final algorithm source code for data acquisition and analysis systems. SAGE was designed to free the [chemical] sensor developer from the signal processing allowing them to focus on understanding and improving the basic sensing mechanisms. The SAGE system's strength is its creative application of advanced neural computing techniques to response-vector and response-surface data, affording new insight and perspectives with regard to phenomena being studied for sensor development

  19. Biogeography-Based Optimization with Orthogonal Crossover

    Directory of Open Access Journals (Sweden)

    Quanxi Feng

    2013-01-01

    Full Text Available Biogeography-based optimization (BBO is a new biogeography inspired, population-based algorithm, which mainly uses migration operator to share information among solutions. Similar to crossover operator in genetic algorithm, migration operator is a probabilistic operator and only generates the vertex of a hyperrectangle defined by the emigration and immigration vectors. Therefore, the exploration ability of BBO may be limited. Orthogonal crossover operator with quantization technique (QOX is based on orthogonal design and can generate representative solution in solution space. In this paper, a BBO variant is presented through embedding the QOX operator in BBO algorithm. Additionally, a modified migration equation is used to improve the population diversity. Several experiments are conducted on 23 benchmark functions. Experimental results show that the proposed algorithm is capable of locating the optimal or closed-to-optimal solution. Comparisons with other variants of BBO algorithms and state-of-the-art orthogonal-based evolutionary algorithms demonstrate that our proposed algorithm possesses faster global convergence rate, high-precision solution, and stronger robustness. Finally, the analysis result of the performance of QOX indicates that QOX plays a key role in the proposed algorithm.

  20. Installation and evaluation of a nuclear power plant operator advisor based on artificial intelligence technology

    International Nuclear Information System (INIS)

    Hajek, B.K.; Miller, D.W.

    1989-01-01

    This report discusses the following topics on a Nuclear Power Plant operator advisor based on artificial Intelligence Technology; Workstation conversion; Software Conversion; V ampersand V Program Development Development; Simulator Interface Development; Knowledge Base Expansion; Dynamic Testing; Database Conversion; Installation at the Perry Simulator; Evaluation of Operator Interaction; Design of Man-Machine Interface; and Design of Maintenance Facility

  1. Application of instrument platform based embedded Linux system on intelligent scaler

    International Nuclear Information System (INIS)

    Wang Jikun; Yang Run'an; Xia Minjian; Yang Zhijun; Li Lianfang; Yang Binhua

    2011-01-01

    It designs a instrument platform based on embedded Linux system and peripheral circuit, by designing Linux device driver and application program based on QT Embedded, various functions of the intelligent scaler are realized. The system architecture is very reasonable, so the stability and the expansibility and the integration level are increased, the development cycle is shorten greatly. (authors)

  2. The application of artificial intelligence in the optimal design of mechanical systems

    Science.gov (United States)

    Poteralski, A.; Szczepanik, M.

    2016-11-01

    The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.

  3. A novel method for the production of core-shell microparticles by inverse gelation optimized with artificial intelligent tools.

    Science.gov (United States)

    Rodríguez-Dorado, Rosalia; Landín, Mariana; Altai, Ayça; Russo, Paola; Aquino, Rita P; Del Gaudio, Pasquale

    2018-03-01

    Numerous studies have been focused on hydrophobic compounds encapsulation as oils. In fact, oils can provide numerous health benefits as synergic ingredient combined with other hydrophobic active ingredients. However, stable microparticles for pharmaceutical purposes are difficult to achieve when commonly techniques are used. In this work, sunflower oil was encapsulated in calcium-alginate capsules by prilling technique in co-axial configuration. Core-shell beads were produced by inverse gelation directly at the nozzle using a w/o emulsion containing aqueous calcium chloride solution in sunflower oil pumped through the inner nozzle while an aqueous alginate solution, coming out from the annular nozzle, produced the beads shell. To optimize process parameters artificial intelligence tools were proposed to optimize the numerous prilling process variables. Homogeneous and spherical microcapsules with narrow size distribution and a thin alginate shell were obtained when the parameters as w/o constituents, polymer concentrations, flow rates and frequency of vibration were optimized by two commercial software, FormRules® and INForm®, which implement neurofuzzy logic and Artificial Neural Networks together with genetic algorithms, respectively. This technique constitutes an innovative approach for hydrophobic compounds microencapsulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Application of intelligence based uncertainty analysis for HLW disposal

    International Nuclear Information System (INIS)

    Kato, Kazuyuki

    2003-01-01

    Safety assessment for geological disposal of high level radioactive waste inevitably involves factors that cannot be specified in a deterministic manner. These are namely: (1) 'variability' that arises from stochastic nature of the processes and features considered, e.g., distribution of canister corrosion times and spatial heterogeneity of a host geological formation; (2) 'ignorance' due to incomplete or imprecise knowledge of the processes and conditions expected in the future, e.g., uncertainty in the estimation of solubilities and sorption coefficients for important nuclides. In many cases, a decision in assessment, e.g., selection among model options or determination of a parameter value, is subjected to both variability and ignorance in a combined form. It is clearly important to evaluate both influences of variability and ignorance on the result of a safety assessment in a consistent manner. We developed a unified methodology to handle variability and ignorance by using probabilistic and possibilistic techniques respectively. The methodology has been applied to safety assessment of geological disposal of high level radioactive waste. Uncertainties associated with scenarios, models and parameters were defined in terms of fuzzy membership functions derived through a series of interviews to the experts while variability was formulated by means of probability density functions (pdfs) based on available data set. The exercise demonstrated applicability of the new methodology and, in particular, its advantage in quantifying uncertainties based on expert's opinion and in providing information on dependence of assessment result on the level of conservatism. In addition, it was also shown that sensitivity analysis could identify key parameters in reducing uncertainties associated with the overall assessment. The above information can be used to support the judgment process and guide the process of disposal system development in optimization of protection against

  5. An intelligent service-based layered architecture for e learning and assessment

    International Nuclear Information System (INIS)

    Javaid, Q.; Arif, F.

    2017-01-01

    The rapid advancement in ICT (Information and Communication Technology) is causing a paradigm shift in eLearning domain. Traditional eLearning systems suffer from certain shortcomings like tight coupling of system components, lack of personalization, flexibility, and scalability and performance issues. This study aims at addressing these challenges through an MAS (Multi Agent System) based multi-layer architecture supported by web services. The foremost objective of this study is to enhance learning process efficiency by provision of flexibility features for learning and assessment processes. Proposed architecture consists of two sub-system namely eLearning and eAssesssment. This architecture comprises of five distinct layers for each sub-system, with active agents responsible for miscellaneous tasks including content handling, updating, resource optimization, load handling and provision of customized environments for learners and instructors. Our proposed architecture aims at establishment of a facilitation level to learners as well as instructors for convenient acquisition and dissemination of knowledge. Personalization features like customized environments, personalized content retrieval and recommendations, adaptive assessment and reduced response time, are believed to significantly enhance learning and tutoring experience. In essence characteristics like intelligence, personalization, interactivity, usability, laidback accessibility and security, signify aptness of proposed architecture for improving conventional learning and assessment processes. Finally we have evaluated our proposed architecture by means of analytical comparison and survey considering certain quality attributes. (author)

  6. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed.......A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  7. Intelligent Evaluation Method of Tank Bottom Corrosion Status Based on Improved BP Artificial Neural Network

    Science.gov (United States)

    Qiu, Feng; Dai, Guang; Zhang, Ying

    According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status are confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information, and online testing information are established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information is 94 %. The evaluation model can evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.

  8. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  9. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm

    Science.gov (United States)

    Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai

    2018-02-01

    An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.

  10. Applications of artificial intelligence 1993: Knowledge-based systems in aerospace and industry; Proceedings of the Meeting, Orlando, FL, Apr. 13-15, 1993

    Science.gov (United States)

    Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)

    1993-01-01

    The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.

  11. T-Spline Based Unifying Registration Procedure for Free-Form Surface Workpieces in Intelligent CMM

    Directory of Open Access Journals (Sweden)

    Zhenhua Han

    2017-10-01

    Full Text Available With the development of the modern manufacturing industry, the free-form surface is widely used in various fields, and the automatic detection of a free-form surface is an important function of future intelligent three-coordinate measuring machines (CMMs. To improve the intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs. A unified model of the free-form surface is proposed based on T-splines. A discretization method of the T-spline surface formula model is proposed. Under this discretization, the position and orientation of the workpiece would be recognized by point cloud registration. A high accuracy evaluation method is proposed between the measured point cloud and the T-spline surface formula. The experimental results demonstrate that the proposed method has the potential to realize the automatic detection of different free-form surfaces and improve the intelligence of CMMs.

  12. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    International Nuclear Information System (INIS)

    Dehkordi, Behzad Mirzaeian; Parsapoor, Amir; Moallem, Mehdi; Lucas, Caro

    2011-01-01

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  13. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    Energy Technology Data Exchange (ETDEWEB)

    Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Parsapoor, Amir, E-mail: amirparsapoor@yahoo.co [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.i [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Lucas, Caro, E-mail: lucas@ut.ac.i [Centre of Excellence for Control and Intelligent Processing, Electrical and Computer Engineering Faculty, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  14. Exploring the role of emotional intelligence in behavior-based safety coaching.

    Science.gov (United States)

    Wiegand, Douglas M

    2007-01-01

    Safety coaching is an applied behavior analysis technique that involves interpersonal interaction to understand and manipulate environmental conditions that are directing (i.e., antecedent to) and motivating (i.e., consequences of) safety-related behavior. A safety coach must be skilled in interacting with others so as to understand their perspectives, communicate a point clearly, and be persuasive with behavior-based feedback. This article discusses the evidence-based "ability model" of emotional intelligence and its relevance to the interpersonal aspect of the safety coaching process. Emotional intelligence has potential for improving safety-related efforts and other aspects of individuals' work and personal lives. Safety researchers and practitioners are therefore encouraged to gain an understanding of emotional intelligence and conduct and support research applying this construct toward injury prevention.

  15. Particle swarm optimization algorithm based low cost magnetometer calibration

    Science.gov (United States)

    Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.

    2011-12-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments

  16. Optimal depth-based regional frequency analysis

    Directory of Open Access Journals (Sweden)

    H. Wazneh

    2013-06-01

    Full Text Available Classical methods of regional frequency analysis (RFA of hydrological variables face two drawbacks: (1 the restriction to a particular region which can lead to a loss of some information and (2 the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors. In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  17. Optimal depth-based regional frequency analysis

    Science.gov (United States)

    Wazneh, H.; Chebana, F.; Ouarda, T. B. M. J.

    2013-06-01

    Classical methods of regional frequency analysis (RFA) of hydrological variables face two drawbacks: (1) the restriction to a particular region which can lead to a loss of some information and (2) the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA) approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors). In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA) method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  18. Effectiveness of artificial intelligence methods in applications to burning optimization and coal mills diagnostics on the basis of IASE's experiences in Turow Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, J.; Wozniak, A.W.; Dynia, Z.; Lipanowicz, T.

    2004-07-01

    Modern methods referred to as 'artificial intelligence' have been applied to combustion optimization and implementation of selected diagnostic functions for the milling system of a pulverized lignite-fired boiler. The results of combustion optimization have shown significant improvement of efficiency and reduction of NO, emission. Fuzzy logic has been used to develop, among other things, a fan mill overload detection system.

  19. HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems.

    Directory of Open Access Journals (Sweden)

    Shouheng Tuo

    Full Text Available Harmony Search (HS and Teaching-Learning-Based Optimization (TLBO as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.

  20. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  1. DIAGNOSIS WINDOWS PROBLEMS BASED ON HYBRID INTELLIGENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    SAFWAN O. HASOON

    2013-10-01

    Full Text Available This paper describes the artificial intelligence technologies by integrating Radial Basis Function networks with expert systems to construct a robust hybrid system. The purpose of building the hybrid system is to give recommendations to repair the operating system (Windows problems and troubleshoot the problems that can be repaired. The neural network has unique characteristics which it can complete the uncompleted data, the expert system can't deal with data that is incomplete, but using the neural network individually has some disadvantages which it can't give explanations and recommendations to the problems. The expert system has the ability to explain and give recommendations by using the rules and the human expert in some conditions. Therefore, we have combined the two technologies. The paper will explain the integration methods between the two technologies and which method is suitable to be used in the proposed hybrid system.

  2. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    Science.gov (United States)

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  3. International Conference on Frontiers of Intelligent Computing : Theory and Applications

    CERN Document Server

    Udgata, Siba; Biswal, Bhabendra

    2014-01-01

    This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc  for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.

  4. In the Context of Multiple Intelligences Theory, Intelligent Data Analysis of Learning Styles Was Based on Rough Set Theory

    Science.gov (United States)

    Narli, Serkan; Ozgen, Kemal; Alkan, Huseyin

    2011-01-01

    The present study aims to identify the relationship between individuals' multiple intelligence areas and their learning styles with mathematical clarity using the concept of rough sets which is used in areas such as artificial intelligence, data reduction, discovery of dependencies, prediction of data significance, and generating decision…

  5. Intelligent judgements over health risks in a spatial agent-based model.

    Science.gov (United States)

    Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana

    2018-03-20

    Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of

  6. Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey

    Directory of Open Access Journals (Sweden)

    Lefeng Cheng

    2018-04-01

    Full Text Available Compared with conventional methods of fault diagnosis for power transformers, which have defects such as imperfect encoding and too absolute encoding boundaries, this paper systematically discusses various intelligent approaches applied in fault diagnosis and decision making for large oil-immersed power transformers based on dissolved gas analysis (DGA, including expert system (EPS, artificial neural network (ANN, fuzzy theory, rough sets theory (RST, grey system theory (GST, swarm intelligence (SI algorithms, data mining technology, machine learning (ML, and other intelligent diagnosis tools, and summarizes existing problems and solutions. From this survey, it is found that a single intelligent approach for fault diagnosis can only reflect operation status of the transformer in one particular aspect, causing various degrees of shortcomings that cannot be resolved effectively. Combined with the current research status in this field, the problems that must be addressed in DGA-based transformer fault diagnosis are identified, and the prospects for future development trends and research directions are outlined. This contribution presents a detailed and systematic survey on various intelligent approaches to faults diagnosing and decisions making of the power transformer, in which their merits and demerits are thoroughly investigated, as well as their improvement schemes and future development trends are proposed. Moreover, this paper concludes that a variety of intelligent algorithms should be combined for mutual complementation to form a hybrid fault diagnosis network, such that avoiding these algorithms falling into a local optimum. Moreover, it is necessary to improve the detection instruments so as to acquire reasonable characteristic gas data samples. The research summary, empirical generalization and analysis of predicament in this paper provide some thoughts and suggestions for the research of complex power grid in the new environment, as

  7. A Model of Intelligent Fault Diagnosis of Power Equipment Based on CBR

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2015-01-01

    Full Text Available Nowadays the demand of power supply reliability has been strongly increased as the development within power industry grows rapidly. Nevertheless such large demand requires substantial power grid to sustain. Therefore power equipment’s running and testing data which contains vast information underpins online monitoring and fault diagnosis to finally achieve state maintenance. In this paper, an intelligent fault diagnosis model for power equipment based on case-based reasoning (IFDCBR will be proposed. The model intends to discover the potential rules of equipment fault by data mining. The intelligent model constructs a condition case base of equipment by analyzing the following four categories of data: online recording data, history data, basic test data, and environmental data. SVM regression analysis was also applied in mining the case base so as to further establish the equipment condition fingerprint. The running data of equipment can be diagnosed by such condition fingerprint to detect whether there is a fault or not. Finally, this paper verifies the intelligent model and three-ratio method based on a set of practical data. The resulting research demonstrates that this intelligent model is more effective and accurate in fault diagnosis.

  8. Business Intelligence & Knowledge Management - Technological Support for Strategic Management in the Knowledge Based Economy

    Directory of Open Access Journals (Sweden)

    Dorel PARASCHIV

    2008-01-01

    Full Text Available The viability and success of modern enterprises are subject to the increasing dynamic of the economic environment, so they need to adjust rapidly their policies and strategies in order to respond to sophistication of competitors, customers and suppliers, globalization of business, international competition. Perhaps the most critical component for success of the modern enterprise is its ability to take advantage of all available information - both internal and external. Making sense of all this information, gaining value and competitive advantage through represents real challenges for the enterprise. The IT solutions designed to address these challenges have been developed in two different approaches: structured data management (Business Intelligence and unstructured content management (Knowledge Management. Integrating Business Intelligence and Knowledge Management in new software applications designated not only to store highly structured data and exploit it in real time but also to interpret the results and communicate them to decision factors provides real technological support for Strategic Management. Integrating Business Intelligence and Knowledge Management in order to respond to the challenges the modern enterprise has to deal with represents not only a "new trend" in IT, but a necessity in the emerging knowledge based economy. These hybrid technologies are already widely known in both scientific and practice communities as Competitive Intelligence. In the end of paper,a competitive datawarehouse design is proposed, in an attempt to apply business intelligence technologies to economic environment analysis making use of romanian public data sources.

  9. The association between intelligence and telomere length: a longitudinal population based study.

    Directory of Open Access Journals (Sweden)

    Eva M Kingma

    Full Text Available Low intelligence has been associated with poor health and mortality, but underlying mechanisms remain obscure. We hypothesized that low intelligence is associated with accelerated biological ageing as reflected by telomere length; we suggested potential mediation of this association by unhealthy behaviors and low socioeconomic position. The study was performed in a longitudinal population-based cohort study of 895 participants (46.8% males. Intelligence was measured with the Generalized Aptitude-Test Battery at mean age 52.8 years (33-79 years, SD=11.3. Leukocyte telomere length was measured by PCR. Lifestyle and socioeconomic factors were assessed using written self-report measures. Linear regression analyses, adjusted for age, sex, and telomere length measured at the first assessment wave (T1, showed that low intelligence was associated with shorter leukocyte telomere length at approximately 2 years follow-up (beta= .081, t=2.160, p= .031. Nearly 40% of this association was explained by an unhealthy lifestyle, while low socioeconomic position did not add any significant mediation. Low intelligence may be a risk factor for accelerated biological ageing, thereby providing an explanation for its association with poor health and mortality.

  10. Representation of Students in Solving Simultaneous Linear Equation Problems Based on Multiple Intelligence

    Science.gov (United States)

    Yanti, Y. R.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    This study described representation of students who have musical, logical-mathematic and naturalist intelligence in solving a problem. Subjects were selected on the basis of multiple intelligence tests (TPM) consists of 108 statements, with 102 statements adopted from Chislet and Chapman and 6 statements equal to eksistensial intelligences. Data were analyzed based on problem-solving tests (TPM) and interviewing. See the validity of the data then problem-solving tests (TPM) and interviewing is given twice with an analyzed using the representation indikator and the problem solving step. The results showed that: the stage of presenting information known, stage of devising a plan, and stage of carrying out the plan those three subjects were using same form of representation. While he stage of presenting information asked and stage of looking back, subject of logical-mathematic was using different forms of representation with subjects of musical and naturalist intelligence. From this research is expected to provide input to the teacher in determining the learning strategy that will be used by considering the representation of students with the basis of multiple intelligences.

  11. “TOTTO-CHAN”: INSIGHTS INTO MULTIPLE INTELLIGENCES-BASED ENGLISH TEACHING TO YOUNG LEARNERS

    Directory of Open Access Journals (Sweden)

    K. M. Widi Hadiyanti

    2017-04-01

    Full Text Available Children are unique individuals who have their own ways to learn about the world and solve problems. It is supported by Gardner‘s ideas about multiple intelligences. Gardner (1993, 1998 suggested several kinds of intelligences. In their attempt to learn about the world, children make use of all resources, including their multiple intelligences. The application of multiple intelligences in teaching young learner seems to be apparent in Tetsuko Kuroyanagi‘s autobiographical memoir, ―Totto-chan: The Little Girl at the Window‖. This study identified and analyzed the techniques used to apply multiple intelligences in teaching young learners in Totto-chan‘s elementary school, Tomoe Gakuen. Based on the identification and analysis conducted in ―Totto-chan‖, this study elaborated the techniques in teaching English for young learners. In particular, this study proposed teaching techniques for four language skills. This study will be of great benefit for English teachers for young learners to enrich their teaching techniques that accord with the children nature of development.

  12. Metacognitive experience of mathematics education students in open start problem solving based on intrapersonal intelligence

    Science.gov (United States)

    Sari, D. P.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe metacognitive experience of mathematics education students with strong, average, and weak intrapersonal intelligence in open start problem solving. Type of this research was qualitative research. The research subject was mathematics education students in Muhammadiyah University of Surakarta in academic year 2017/2018. The selected students consisted of 6 students with details of two students in each intrapersonal intelligence category. The research instruments were questionnaire, open start problem solving task, and interview guidelines. Data validity used time triangulation. Data analyses were done through data collection, data reduction, data presentation, and drawing conclusion. Based on findings, subjects with strong intrapersonal intelligence had high self confidence that they were able to solve problem correctly, able to do planning steps and able to solve the problem appropriately. Subjects with average intrapersonal intelligence had high self-assessment that they were able to solve the problem, able to do planning steps appropriately but they had not maximized in carrying out the plan so that it resulted incorrectness answer. Subjects with weak intrapersonal intelligence had high self confidence in capability of solving math problem, lack of precision in taking plans so their task results incorrectness answer.

  13. Eye gaze in intelligent user interfaces gaze-based analyses, models and applications

    CERN Document Server

    Nakano, Yukiko I; Bader, Thomas

    2013-01-01

    Remarkable progress in eye-tracking technologies opened the way to design novel attention-based intelligent user interfaces, and highlighted the importance of better understanding of eye-gaze in human-computer interaction and human-human communication. For instance, a user's focus of attention is useful in interpreting the user's intentions, their understanding of the conversation, and their attitude towards the conversation. In human face-to-face communication, eye gaze plays an important role in floor management, grounding, and engagement in conversation.Eye Gaze in Intelligent User Interfac

  14. A mircocontroller MC68HC908GP32 based intelligent scalar

    International Nuclear Information System (INIS)

    Liu Huiying

    2001-01-01

    A Mircocontroller MC68HC908GP32 based intelligent scalar is presented. By replacing traditional IC modular with Mircocontroller, the new type scalar can provide new functions, such as countering rate measurement, control signal output, LCD display, PC control, etc., in addition to traditional functions of normal scalar. This intelligent scalar achieved comprehensive technical innovation to the traditional nuclear electronic instrument, with regard to the design methodology, structure and functions. In this way, the overall technical performance of the new type scalar, such as counting rate, accuracy, volume, cost and operation, etc., has been improved obviously, with bright prospects for application and dissemination

  15. System Design and Implementation of Intelligent Fire Engine Path Planning based on SAT Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAI Li-sha[1; ZENG Wei-peng[1; HAN Bao-ru[1

    2016-01-01

    In this paper, in order to make intelligent fi re car complete autonomy path planning in simulation map. Proposed system design of intelligent fi re car path planning based on SAT. The system includes a planning module, a communication module, a control module. Control module via the communication module upload the initial state and the goal state to planning module. Planning module solve this planning solution,and then download planning solution to control module, control the movement of the car fi re. Experiments show this the system is tracking short time, higher planning effi ciency.

  16. Risk-based optimization of land reclamation

    International Nuclear Information System (INIS)

    Lendering, K.T.; Jonkman, S.N.; Gelder, P.H.A.J.M. van; Peters, D.J.

    2015-01-01

    Large-scale land reclamations are generally constructed by means of a landfill well above mean sea level. This can be costly in areas where good quality fill material is scarce. An alternative to save materials and costs is a ‘polder terminal’. The quay wall acts as a flood defense and the terminal level is well below the level of the quay wall. Compared with a conventional terminal, the costs are lower, but an additional flood risk is introduced. In this paper, a risk-based optimization is developed for a conventional and a polder terminal. It considers the investment and residual flood risk. The method takes into account both the quay wall and terminal level, which determine the probability and damage of flooding. The optimal quay wall level is found by solving a Lambert function numerically. The terminal level is bounded by engineering boundary conditions, i.e. piping and uplift of the cover layer of the terminal yard. It is found that, for a representative case study, the saving of reclamation costs for a polder terminal is larger than the increase of flood risk. The model is applicable to other cases of land reclamation and to similar optimization problems in flood risk management. - Highlights: • A polder terminal can be an attractive alternative for a conventional terminal. • A polder terminal is feasible at locations with high reclamation cost. • A risk-based approach is required to determine the optimal protection levels. • The depth of the polder terminal yard is bounded by uplifting of the cover layer. • This paper can support decisions regarding alternatives for port expansions.

  17. A Novel Architecture of Metadata Management System Based on Intelligent Cache

    Institute of Scientific and Technical Information of China (English)

    SONG Baoyan; ZHAO Hongwei; WANG Yan; GAO Nan; XU Jin

    2006-01-01

    This paper introduces a novel architecture of metadata management system based on intelligent cache called Metadata Intelligent Cache Controller (MICC). By using an intelligent cache to control the metadata system, MICC can deal with different scenarios such as splitting and merging of queries into sub-queries for available metadata sets in local, in order to reduce access time of remote queries. Application can find results patially from local cache and the remaining portion of the metadata that can be fetched from remote locations. Using the existing metadata, it can not only enhance the fault tolerance and load balancing of system effectively, but also improve the efficiency of access while ensuring the access quality.

  18. Structural invariance of multiple intelligences, based on the level of execution.

    Science.gov (United States)

    Almeida, Leandro S; Prieto, María Dolores; Ferreira, Arístides; Ferrando, Mercedes; Ferrandiz, Carmen; Bermejo, Rosario; Hernández, Daniel

    2011-11-01

    The independence of multiple intelligences (MI) of Gardner's theory has been debated since its conception. This article examines whether the one- factor structure of the MI theory tested in previous studies is invariant for low and high ability students. Two hundred ninety-four children (aged 5 to 7) participated in this study. A set of Gardner's Multiple Intelligence assessment tasks based on the Spectrum Project was used. To analyze the invariance of a general dimension of intelligence, the different models of behaviours were studied in samples of participants with different performance on the Spectrum Project tasks with Multi-Group Confirmatory Factor Analysis (MGCFA). Results suggest an absence of structural invariance in Gardner's tasks. Exploratory analyses suggest a three-factor structure for individuals with higher performance levels and a two-factor structure for individuals with lower performance levels.

  19. Improved Optimization for Wastewater Treatment and Reuse System Using Computational Intelligence

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2018-01-01

    Full Text Available River water pollution by wastewater can cause significant negative impact on the aquatic sustainability. Hence, accurate modeling of this complicated system and its cost-effective treatment and reuse decision is very important because this optimization process is related to economic expenditure, societal health, and environmental deterioration. In order to optimize this complex system, we may consider three treatment or reuse options such as microscreening filtration, nitrification, and fertilization-oriented irrigation on top of two existing options such as settling and biological oxidation. The objective of this environmental optimization is to minimize the economic expenditure of life cycle costs while satisfying the public health standard in terms of groundwater quality and the environmental standard in terms of river water quality. Particularly, this study improves existing optimization model by pinpointing the critical deficit location of dissolved oxygen sag curve by using analytic differentiation. Also, the proposed formulation considers more practical constraints such as maximal size of irrigation area and minimal amount of filtration treatment process. The results obtained by using an evolutionary algorithm, named a parameter-setting-free harmony search algorithm, show that the proposed model successfully finds optimal solutions while conveniently locating the critical deficit point.

  20. Optimization of freeform surfaces using intelligent deformation techniques for LED applications

    Science.gov (United States)

    Isaac, Annie Shalom; Neumann, Cornelius

    2018-04-01

    For many years, optical designers have great interests in designing efficient optimization algorithms to bring significant improvement to their initial design. However, the optimization is limited due to a large number of parameters present in the Non-uniform Rationaly b-Spline Surfaces. This limitation was overcome by an indirect technique known as optimization using freeform deformation (FFD). In this approach, the optical surface is placed inside a cubical grid. The vertices of this grid are modified, which deforms the underlying optical surface during the optimization. One of the challenges in this technique is the selection of appropriate vertices of the cubical grid. This is because these vertices share no relationship with the optical performance. When irrelevant vertices are selected, the computational complexity increases. Moreover, the surfaces created by them are not always feasible to manufacture, which is the same problem faced in any optimization technique while creating freeform surfaces. Therefore, this research addresses these two important issues and provides feasible design techniques to solve them. Finally, the proposed techniques are validated using two different illumination examples: street lighting lens and stop lamp for automobiles.

  1. Knowledge Based Artificial Augmentation Intelligence Technology: Next Step in Academic Instructional Tools for Distance Learning

    Science.gov (United States)

    Crowe, Dale; LaPierre, Martin; Kebritchi, Mansureh

    2017-01-01

    With augmented intelligence/knowledge based system (KBS) it is now possible to develop distance learning applications to support both curriculum and administrative tasks. Instructional designers and information technology (IT) professionals are now moving from the programmable systems era that started in the 1950s to the cognitive computing era.…

  2. A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree

    Science.gov (United States)

    de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel

    2017-01-01

    Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…

  3. Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: A review

    International Nuclear Information System (INIS)

    Laghari, J.A.; Mokhlis, H.; Karimi, M.; Bakar, A.H.A.; Mohamad, Hasmaini

    2014-01-01

    Highlights: • Unintentional and intentional islanding, their causes, and solutions are presented. • Remote, passive, active and hybrid islanding detection techniques are discussed. • The limitation of these techniques in accurately detect islanding are discussed. • Computational intelligence techniques ability in detecting islanding is discussed. • Review of ANN, fuzzy logic control, ANFIS, Decision tree techniques is provided. - Abstract: Accurate and fast islanding detection of distributed generation is highly important for its successful operation in distribution networks. Up to now, various islanding detection technique based on communication, passive, active and hybrid methods have been proposed. However, each technique suffers from certain demerits that cause inaccuracies in islanding detection. Computational intelligence based techniques, due to their robustness and flexibility in dealing with complex nonlinear systems, is an option that might solve this problem. This paper aims to provide a comprehensive review of computational intelligence based techniques applied for islanding detection of distributed generation. Moreover, the paper compares the accuracies of computational intelligence based techniques over existing techniques to provide a handful of information for industries and utility researchers to determine the best method for their respective system

  4. Design of embedded hardware platform in intelligent γ-spectrometry instrument based on ARM9

    International Nuclear Information System (INIS)

    Hong Tianqi; Fang Fang

    2008-01-01

    This paper described the design of embedded hardware platform based on ARM9 S3C2410A, emphases are focused on analyzing the methods of design the circuits of memory, LCD and keyboard ports. It presented a new solution of hardware platform in intelligent portable instrument for γ measurement. (authors)

  5. The Effect of Teaching Strategy Based on Multiple Intelligences on Students' Academic Achievement in Science Course

    Science.gov (United States)

    Abdi, Ali; Laei, Susan; Ahmadyan, Hamze

    2013-01-01

    The purpose of this study was to investigate the effects of Teaching Strategy based on Multiple Intelligences on students' academic achievement in sciences course. Totally 40 students from two different classes (Experimental N = 20 and Control N = 20) participated in the study. They were in the fifth grade of elementary school and were selected…

  6. Artificial intelligence in process control: Knowledge base for the shuttle ECS model

    Science.gov (United States)

    Stiffler, A. Kent

    1989-01-01

    The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.

  7. Predicting speech intelligibility based on a correlation metric in the envelope power spectrum domain

    DEFF Research Database (Denmark)

    Relaño-Iborra, Helia; May, Tobias; Zaar, Johannes

    2016-01-01

    A speech intelligibility prediction model is proposed that combines the auditory processing front end of the multi-resolution speech-based envelope power spectrum model [mr-sEPSM; Jørgensen, Ewert, and Dau (2013). J. Acoust. Soc. Am. 134(1), 436–446] with a correlation back end inspired by the sh...

  8. MamMoeT : An intelligent agent-based communication support platform for multimodal transport

    NARCIS (Netherlands)

    Dullaert, Wout; Neutens, Tijs; Vanden Berghe, Greet; Vermeulen, Tijs; Vernimmen, Bert; Witlox, Frank

    In this paper, an intelligent agent-based communication support platform for multimodal transport is developed. The rationale for doing so is found in the potential of such a system to increase cost efficiency, service and safety for different transport-related actors. Although, at present several

  9. An Autonomous Learning System of Bengali Characters Using Web-Based Intelligent Handwriting Recognition

    Science.gov (United States)

    Khatun, Nazma; Miwa, Jouji

    2016-01-01

    This research project was aimed to develop an intelligent Bengali handwriting education system to improve the literacy level in Bangladesh. Due to the socio-economical limitation, all of the population does not have the chance to go to school. Here, we developed a prototype of web-based (iPhone/smartphone or computer browser) intelligent…

  10. Vedic Science Based Education and Nonverbal Intelligence: A Preliminary Longitudinal Study in Cambodia.

    Science.gov (United States)

    Fergusson, Lee C.; And Others

    1996-01-01

    A study investigated the effects on students' nonverbal intelligence of implementing an approach to higher education based on Vedic science, developed by Maharishi Mahesh Yogi and including transcendental meditation. The approach was implemented in two Cambodian universities and its effects assessed in 70 undergraduate students. An increase in…

  11. Effects of an Intelligent Web-Based English Instruction System on Students' Academic Performance

    Science.gov (United States)

    Jia, J.; Chen, Y.; Ding, Z.; Bai, Y.; Yang, B.; Li, M.; Qi, J.

    2013-01-01

    This research conducted quasi-experiments in four middle schools to evaluate the long-term effects of an intelligent web-based English instruction system, Computer Simulation in Educational Communication (CSIEC), on students' academic attainment. The analysis of regular examination scores and vocabulary test validates the positive impact of CSIEC,…

  12. An Agent-Based Model for the Development of Intelligent Mobile Services

    NARCIS (Netherlands)

    Koch, F.L.

    2009-01-01

    The next generation of mobile services must invisible, convenient, and useful. It requires new techniques to design and develop mobile computing applications, based on user-centred, environment-aware, adaptive behaviour. I propose an alternative technology for the development of intelligent mobile

  13. Outcome measures based on classification performance fail to predict the intelligibility of binary-masked speech

    DEFF Research Database (Denmark)

    Kressner, Abigail Anne; May, Tobias; Rozell, Christopher J.

    2016-01-01

    To date, the most commonly used outcome measure for assessing ideal binary mask estimation algorithms is based on the difference between the hit rate and the false alarm rate (H-FA). Recently, the error distribution has been shown to substantially affect intelligibility. However, H-FA treats each...... evaluations should not be made solely on the basis of these metrics....

  14. A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    M. AKBARI

    2013-12-01

    Full Text Available Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that UO2–PUO2 (MOX is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the UO2 fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of H2O moderated UO2–PuO2 (MOX lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

  15. Swarm intelligence for multi-objective optimization of synthesis gas production

    Science.gov (United States)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  16. Pixel-based OPC optimization based on conjugate gradients.

    Science.gov (United States)

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  17. Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources

    Science.gov (United States)

    Hortos, William S.

    2006-05-01

    A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the

  18. Simulation-Based Cryosurgery Intelligent Tutoring System (ITS) Prototype

    Science.gov (United States)

    Sehrawat, Anjali; Keelan, Robert; Shimada, Kenji; Wilfong, Dona M.; McCormick, James T.; Rabin, Yoed

    2015-01-01

    As a part of an ongoing effort to develop computerized training tools for cryosurgery, the current study presents a proof-of-concept for a computerized tool for cryosurgery tutoring. The tutoring system lists geometrical constraints of cryoprobes placement, simulates cryoprobe insertion, displays a rendered shape of the prostate, enables distance measurements, simulates the corresponding thermal history, and evaluates the mismatch between the target region shape and a pre-selected planning isotherm. The quality of trainee planning is measured in comparison with a computer-generated planning, created for each case study by previously developed planning algorithms. Two versions of the tutoring system have been tested in the current study: (i) an unguided version, where the trainee can practice cases in unstructured sessions, and (ii) an intelligent tutoring system (ITS), which forces the trainee to follow specific steps, believed by the authors to potentially shorten the learning curve. While the tutoring level in this study aims only at geometrical constraints on cryoprobe placement and the resulting thermal histories, it creates a unique opportunity to gain insight into the process outside of the operation room. Posttest results indicate that the ITS system maybe more beneficial than the non-ITS system, but the proof-of-concept is demonstrated with either system. PMID:25941163

  19. Intelligent energy buildings based on RES and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, S., E-mail: kaplanis@teipat.gr; Kaplani, E. [R.E.S. Laboratory, Mechanical Engineering Dept., Technological Educational Institute of Western Greece M. Alexandrou 1, Koukouli 26 334, Patra (Greece)

    2015-12-31

    The paper presents the design features, the energy modelling and optical performance details of two pilot Intelligent Energy Buildings, (IEB). Both are evolution of the Zero Energy Building (ZEB) concept. RES innovations backed up by signal processing, simulation models and ICT tools were embedded into the building structures in order to implement a new predictive energy management concept. In addition, nano-coatings, produced by TiO2 and ITO nano-particles, were deposited on the IEB structural elements and especially on the window panes and the PV glass covers. They exhibited promising SSP values which lowered the cooling loads and increased the PV modules yield. Both pilot IEB units were equipped with an on-line dynamic hourly solar radiation prediction model, implemented by sensors and the related software to manage effectively the energy source, the loads and the storage or the backup system. The IEB energy sources covered the thermal loads via a south façade embedded in the wall and a solar roof which consists of a specially designed solar collector type, while a PV generator is part of the solar roof, like a compact BIPV in hybrid configuration to a small wind turbine.

  20. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  1. Data driven model generation based on computational intelligence

    Science.gov (United States)

    Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus

    2010-05-01

    The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion

  2. Optimization of intelligent infusion pump technology to minimize vasopressor pump programming errors.

    Science.gov (United States)

    Vadiei, Nina; Shuman, Carrie A; Murthy, Manasa S; Daley, Mitchell J

    2017-08-01

    There is a lack of data evaluating the impact of hard limit implementation into intelligent infusion pump technology (IIPT). The purpose of this study was to determine if incorporation of vasopressor upper hard limits (UHL) into IIPT increases efficacy of alerts by preventing pump programming errors. Retrospective review from five hospitals within a single healthcare network between April 1, 2013 and May 31, 2014. A total of 65,680 vasopressor data entries were evaluated; 19,377 prior to hard limit implementation and 46,303 after hard limit implementation. The primary outcome was the percent of effective alerts. The secondary outcome was the proportional dose increase from the soft limit provided. A reduction in alert rate occurred after incorporation of hard limits to the IIPT drug library (pre-UHL 4.7% vs. post-UHL 4.0%) with a subsequent increase in the number of errors prevented as represented by a higher effective alert rate (pre-UHL 23.0% vs. post-UHL 37.3%; p < 0.001). The proportional dose increase was significantly reduced (pre-UHL 188% ± 380%] vs. post-UHL 95% ± 128%; p < 0.001). Incorporation of UHLs into IIPT in a multi-site health system with varying intensive care unit and emergency department acuity increases alert effectiveness, reduces dosing errors, and reduces the magnitude of dosing errors that reach the patient.

  3. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sanam Shahla Rizvi

    2009-12-01

    Full Text Available Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS. This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  4. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    Science.gov (United States)

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  5. PRODUCT OPTIMIZATION METHOD BASED ON ANALYSIS OF OPTIMAL VALUES OF THEIR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Constantin D. STANESCU

    2016-05-01

    Full Text Available The paper presents an original method of optimizing products based on the analysis of optimal values of their characteristics . Optimization method comprises statistical model and analytical model . With this original method can easily and quickly obtain optimal product or material .

  6. Robust optimization based upon statistical theory.

    Science.gov (United States)

    Sobotta, B; Söhn, M; Alber, M

    2010-08-01

    Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose

  7. Development and evaluation of intelligent machine tools based on knowledge evolution in M2M environment

    International Nuclear Information System (INIS)

    Kim, Dong Hoon; Song, Jun Yeob; Lee, Jong Hyun; Cha, Suk Keun

    2009-01-01

    In the near future, the foreseen improvement in machine tools will be in the form of a knowledge evolution-based intelligent device. The goal of this study is to develop intelligent machine tools having knowledge-evolution capability in Machine to Machine (M2M) wired and wireless environment. The knowledge evolution-based intelligent machine tools are expected to be capable of gathering knowledge autonomously, producing knowledge, understanding knowledge, applying reasoning to knowledge, making new decisions, dialoguing with other machines, etc. The concept of the knowledge-evolution intelligent machine originated from the process of machine control operation by the sense, dialogue and decision of a human expert. The structure of knowledge evolution in M2M and the scheme for a dialogue agent among agent-based modules such as a sensory agent, a dialogue agent and an expert system (decision support agent) are presented in this paper, and work-offset compensation from thermal change and recommendation of cutting condition are performed on-line for knowledge-evolution verification

  8. STEM-based science learning implementation to identify student’s personal intelligences profiles

    Science.gov (United States)

    Wiguna, B. J. P. K.; Suwarma, I. R.; Liliawati, W.

    2018-05-01

    Science and technology are rapidly developing needs to be balanced with the human resources that have the qualified ability. Not only cognitive ability, but also have the soft skills that support 21st century skills. Science, Technology, Engineering, and Mathematics (STEM) Education is a solution to improve the quality of learning and prepare students may be able to trained 21st century skills. This study aims to analyse the implementation of STEM-based science learning on Newton’s law of motion by identifying the personal intelligences profile junior high school students. The method used in this research is pre experiment with the design of the study one group pre-test post-test. Samples in this study were 26 junior high school students taken using Convenience Sampling. Students personal intelligences profile after learning STEM-based science uses two instruments, self-assessment and peer assessment. Intrapersonal intelligence profile based self-assessment and peer assessment are respectively 69.38; and 64.08. As for interpersonal intelligence for self-assessment instrument is 73 and the peer assessment is 60.23.

  9. Study on virtual instrument developing system based on intelligent virtual control

    International Nuclear Information System (INIS)

    Tang Baoping; Cheng Fabin; Qin Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described

  10. Study on virtual instrument developing system based on intelligent virtual control

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Cheng Fabin; Qin Shuren [Test Center, College of Mechanical Engineering, Chongqing University , Chongqing 400030 (China)

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  11. Intelligent indexing

    International Nuclear Information System (INIS)

    Farkas, J.

    1992-01-01

    In this paper we discuss the relevance of artificial intelligence to the automatic indexing of natural language text. We describe the use of domain-specific semantically-based thesauruses and address the problem of creating adequate knowledge bases for intelligent indexing systems. We also discuss the relevance of the Hilbert space ι 2 to the compact representation of documents and to the definition of the similarity of natural language texts. (author). 17 refs., 2 figs

  12. Intelligent indexing

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J

    1993-12-31

    In this paper we discuss the relevance of artificial intelligence to the automatic indexing of natural language text. We describe the use of domain-specific semantically-based thesauruses and address the problem of creating adequate knowledge bases for intelligent indexing systems. We also discuss the relevance of the Hilbert space {iota}{sup 2} to the compact representation of documents and to the definition of the similarity of natural language texts. (author). 17 refs., 2 figs.

  13. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmet Demir

    2017-01-01

    Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions. 

  14. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    Science.gov (United States)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land

  15. Intelligent Search Method Based ACO Techniques for a Multistage Decision Problem EDP/LFP

    Directory of Open Access Journals (Sweden)

    Mostefa RAHLI

    2006-07-01

    Full Text Available The implementation of a numerical library of calculation based optimization in electrical supply networks area is in the centre of the current research orientations, thus, our project in a form given is centred on the development of platform NMSS1. It's a software environment which will preserve many efforts as regards calculations of charge, smoothing curves, losses calculation and economic planning of the generated powers [23].The operational research [17] in a hand and the industrial practice in the other, prove that the means and processes of simulation reached a level of very appreciable reliability and mathematical confidence [4, 5, 14]. It is of this expert observation that many processes make confidence to the results of simulation.The handicaps of this approach or methodology are that it makes base its judgments and handling on simplified assumptions and constraints whose influence was deliberately neglected to be added to the cost to spend [14].By juxtaposing the methods of simulation with artificial intelligence techniques, gathering set of numerical methods acquires an optimal reliability whose assurance can not leave doubt.Software environment NMSS [23] can be a in the field of the rallying techniques of simulation and electric network calculation via a graphic interface. In the same software integrate an AI capability via a module expert system.Our problem is a multistage case where are completely dependant and can't be performed separately.For a multistage problem [21, 22], the results obtained from a credible (large size problem calculation, makes the following question: Could choice of numerical methods set make the calculation of a complete problem using more than two treatments levels, a total error which will be the weakest one possible? It is well-known according to algorithmic policy; each treatment can be characterized by a function called mathematical complexity. This complexity is in fact a coast (a weight overloading

  16. Intelligent monitoring system for real-time geologic CO2 storage, optimization and reservoir managemen

    Science.gov (United States)

    Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.

    2017-12-01

    Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.

  17. An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Chinmaya P. Mohanty

    2017-04-01

    Full Text Available Although significant research has gone into the field of electrical discharge machining (EDM, analysis related to the machining efficiency of the process with different electrodes has not been adequately made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential electrode material due to its high melting point temperature and good electrical conductivity. In view of this, the present work attempts to compare the machinability of copper, graphite and brass electrodes while machining Inconel 718 super alloy. Taguchi’s L27 orthogonal array has been employed to collect data for the study and analyze effect of machining parameters on performance measures. The important performance measures selected for this study are material removal rate, tool wear rate, surface roughness and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental analysis, it is observed that electrode material, discharge current and pulse-on-time are the important parameters for all the performance measures. Utility concept has been implemented to transform a multiple performance characteristics into an equivalent performance characteristic. Non-linear regression analysis is carried out to develop a model relating process parameters and overall utility index. Finally, the quantum behaved particle swarm optimization (QPSO and particle swarm optimization (PSO algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting obtained through both the approaches is validated by conducting confirmation experiments.

  18. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  19. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    Science.gov (United States)

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  20. How People Interact with Technology based on Natural and Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Vasile MAZILESCU

    2017-04-01

    Full Text Available This paper aims to analyse the different forms of intelligence within organizations in a systemic and inclusive vision, in order to design an integrated environment based on Artificial Intelligence (AI and Collective Intelligence (CI. This way we effectively shift the classical approaches of connecting people with people using collaboration tools (which allow people to work together, such as videoconferencing or email, groupware in virtual space, forums, workflow, of connecting people with a series of content management knowledge (taxonomies and documents classification, ontologies or thesauri, search engines, portals, to the current approaches of connecting people on the use (automatic of operational knowledge to solve problems and make decisions based on intellectual cooperation. Few technologies have the big potential to review how we live, move, and work. Artificial intelligence (AI is nowdays equivalent of electricity and the Internet. AI is expected to bring massive shifts in how people perceive and interact with technology, with machines performing a wider range of tasks, in many cases doing a better job than humans.

  1. Facile preparation of luminescent and intelligent gold nanodots based on supramolecular self-assembly

    International Nuclear Information System (INIS)

    Shi Yunfeng; Li Sujuan; Zhou Yahui; Zhai Qingpan; Hu Mengyue; Cai Fensha; Du Jimin; Liang Jiamiao; Zhu Xinyuan

    2012-01-01

    A new strategy for preparing luminescent and intelligent gold nanodots based on supramolecular self-assembly is described in this paper. The supramolecular self-assembly was initiated through electrostatic interactions and ion pairing between palmitic acid and hyperbranched poly(ethylenimine). The resulting structures not only have the dynamic reversible properties of supramolecules but also possess torispherical and highly branched architectures. Thus they can be regarded as a new kind of ideal nanoreactor for preparing intelligent Au nanodots. By preparing Au nanodots within this kind of supramolecular self-assembly, the environmental sensitivity of intelligent polymers and the optical, electrical properties of Au nanodots can be combined, endowing the Au nanodots with intelligence. In this paper, a supramolecular self-assembly process based on dendritic poly(ethylenimine) and palmitic acid was designed and then applied to prepare fluorescent and size-controlled Au nanodots. The pH response of Au nanodots embodied by phase transfer from oil phase to water phase was also investigated. (paper)

  2. Business Intelligence Approach In A Business Performance Context

    OpenAIRE

    Muntean, Mihaela; Cabau, Liviu Gabriel

    2011-01-01

    Subordinated to performance management, Business Intelligence approaches help firms to optimize business performance. Key performance indicators will be added to the multidimensional model grounding the performance perspectives. With respect to the Business Intelligence value chain, a theoretical approach was introduced and a practice example, based on Microsoft SQL Server specific services, for the customer perspective was implemented.

  3. Optimization of the Case Based Reasoning Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Intrusion Detection System (IDS) have a great importance in saving the authority of the information widely spread all over the world through the networks. Many Case Based Systems concerned on the different methods of the unauthorized users/hackers that face the developers of the IDS. The proposed system introduces a new hybrid system that uses the genetic algorithm to optimize an IDS - case based system. It can detect the new anomalies appeared through the network and use the cases in the case library to determine the suitable solution for their behavior. The suggested system can solve the problem either by using an old identical solution or adapt the optimum one till have the targeted solution. The proposed system has been applied to block unauthorized users / hackers from attach the medical images for radiotherapy of the cancer diseases during their transmission through web. The proposed system can prove its accepted performance in this manner

  4. An Intelligent Fleet Condition-Based Maintenance Decision Making Method Based on Multi-Agent

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2012-01-01

    Full Text Available According to the demand for condition-based maintenance online decision making among a mission oriented fleet, an intelligent maintenance decision making method based on Multi-agent and heuristic rules is proposed. The process of condition-based maintenance within an aircraft fleet (each containing one or more Line Replaceable Modules based on multiple maintenance thresholds is analyzed. Then the process is abstracted into a Multi-Agent Model, a 2-layer model structure containing host negotiation and independent negotiation is established, and the heuristic rules applied to global and local maintenance decision making is proposed. Based on Contract Net Protocol and the heuristic rules, the maintenance decision making algorithm is put forward. Finally, a fleet consisting of 10 aircrafts on a 3-wave continuous mission is illustrated to verify this method. Simulation results indicate that this method can improve the availability of the fleet, meet mission demands, rationalize the utilization of support resources and provide support for online maintenance decision making among a mission oriented fleet.

  5. Optimization of surface condensate production from natural gases using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Al-Farhan, Farhan A.; Ayala, Luis F. [Petroleum and Natural Gas Engineering Program, The Pennsylvania State University 122 Hosler Building, University Park, PA 16802-5001 (United States)

    2006-08-15

    The selection of operating pressures in surface separators can have a remarkable impact on the quantity and quality of the oil produced at the stock tank. In the case of a three-stage separation process, where the operating pressures of the first and third stage (stock tank) are usually set by process considerations, the middle-stage separator pressure becomes the natural variable that lends itself to optimization. Middle-stage pressure is said to be optimum when it maximizes liquid yield in the production facility (i.e., CGR value reaches a maximum) while enhancing the quality of the produced oil condensate (i.e., API is maximized). Accurate thermodynamic and phase equilibrium calculations, albeit elaborate and computer-intensive, represent the more rigorous and reliable way of approaching this optimization problem. Nevertheless, empirical and quasi-empirical approaches are typically the norm when it comes to the selection of the middle-stage surface separation pressure in field operations. In this study, we propose the implementation of Artificial Neural Network (ANN) technology for the establishment of an expert system capable of learning the complex relationship between the input parameters and the output response of the middle-stage optimization problems via neuro-simulation. During the neuro-simulation process, parametric studies are conducted to identify the most influential variables in the thermodynamic optimization protocol. This study presents a powerful optimization tool for the selection of the optimum middle-stage separation pressure, for a variety of natural gas fluid mixtures. The developed ANN is able to predict operating conditions for optimum surface condensate recovery from typical natural gases with condensate contents between 10

  6. Quantum computation and swarm intelligence applied in the optimization of identification of accidents in a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Nicolau, Andressa; Schirru, Roberto; Medeiros, Jose A.C.C.

    2009-01-01

    This work presents the results of a performance evaluation study of the quantum based algorithms, QEA (Quantum Inspired Evolutionary Algorithm) and QSE (Quantum Swarm Evolutionary), when applied to the transient identification optimization problem of a nuclear power station operating at 100% of full power. For the sake of evaluation of the algorithms 3 benchmark functions were used. When compared to other similar optimization methods QEA showed that it can be an efficient optimization tool, not only for combinatorial problems but also for numerical problems, particularly for complex problems as the identification of transients in a nuclear power station. (author)

  7. A development framework for artificial intelligence based distributed operations support systems

    Science.gov (United States)

    Adler, Richard M.; Cottman, Bruce H.

    1990-01-01

    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.

  8. A Study on SVM Based on the Weighted Elitist Teaching-Learning-Based Optimization and Application in the Fault Diagnosis of Chemical Process

    Directory of Open Access Journals (Sweden)

    Cao Junxiang

    2015-01-01

    Full Text Available Teaching-Learning-Based Optimization (TLBO is a new swarm intelligence optimization algorithm that simulates the class learning process. According to such problems of the traditional TLBO as low optimizing efficiency and poor stability, this paper proposes an improved TLBO algorithm mainly by introducing the elite thought in TLBO and adopting different inertia weight decreasing strategies for elite and ordinary individuals of the teacher stage and the student stage. In this paper, the validity of the improved TLBO is verified by the optimizations of several typical test functions and the SVM optimized by the weighted elitist TLBO is used in the diagnosis and classification of common failure data of the TE chemical process. Compared with the SVM combining other traditional optimizing methods, the SVM optimized by the weighted elitist TLBO has a certain improvement in the accuracy of fault diagnosis and classification.

  9. Analysis in nuclear power accident emergency based on random network and particle swarm optimization

    International Nuclear Information System (INIS)

    Gong Dichen; Fang Fang; Ding Weicheng; Chen Zhi

    2014-01-01

    The GERT random network model of nuclear power accident emergency was built in this paper, and the intelligent computation was combined with the random network based on the analysis of Fukushima nuclear accident in Japan. The emergency process was divided into the series link and parallel link, and the parallel link was the part of series link. The overall allocation of resources was firstly optimized, and then the parallel link was analyzed. The effect of the resources for emergency used in different links was analyzed, and it was put forward that the corresponding particle velocity vector was limited under the condition of limited emergency resources. The resource-constrained particle swarm optimization was obtained by using velocity projection matrix to correct the motion of particles. The optimized allocation of resources in emergency process was obtained and the time consumption of nuclear power accident emergency was reduced. (authors)

  10. A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Shaolong Chen

    2016-01-01

    Full Text Available Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.

  11. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    Directory of Open Access Journals (Sweden)

    S.N. Sidek and M.J.E. Salami

    2012-08-01

    Full Text Available An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time duration, cost, efficiency and comfortability. The impact of such design and development will cater for the need of contemporary society that aspires to a quality drive as well as to accommodate the advancement of technology especially in the area of smart sensors and actuators.  The emergence of digital signal processor enhances the capacity and features of universal microcontroller.  This paper introduces the use of TI DSP, TMS320LF2407 as an engine of the system. The overall system is designed so that the value of inter-vehicle distance from infrared laser sensor and speed of follower car from speedometer are fed into the DSP for processing, resulting in the DSP issuing commands to the actuator to function appropriately.Key words:  Smart Vehicle, Digital Signal Processor, Fuzzy Controller, and Infra Red Laser Sensor

  12. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  13. A cyber kill chain based taxonomy of banking Trojans for evolutionary computational intelligence

    OpenAIRE

    Kiwia, D; Dehghantanha, A; Choo, K-KR; Slaughter, J

    2017-01-01

    Malware such as banking Trojans are popular with financially-motivated cybercriminals. Detection of banking Trojans remains a challenging task, due to the constant evolution of techniques used to obfuscate and circumvent existing detection and security solutions. Having a malware taxonomy can facilitate the design of mitigation strategies such as those based on evolutionary computational intelligence. Specifically, in this paper, we propose a cyber kill chain based taxonomy of banking Trojans...

  14. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    Directory of Open Access Journals (Sweden)

    Jingwen Tian

    2013-02-01

    Full Text Available Since the control system of the welding gun pose in whole-position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro-mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real-time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.

  15. Intelligence in Artificial Intelligence

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  16. Support vector machine based diagnostic system for breast cancer using swarm intelligence.

    Science.gov (United States)

    Chen, Hui-Ling; Yang, Bo; Wang, Gang; Wang, Su-Jing; Liu, Jie; Liu, Da-You

    2012-08-01

    Breast cancer is becoming a leading cause of death among women in the whole world, meanwhile, it is confirmed that the early detection and accurate diagnosis of this disease can ensure a long survival of the patients. In this paper, a swarm intelligence technique based support vector machine classifier (PSO_SVM) is proposed for breast cancer diagnosis. In the proposed PSO-SVM, the issue of model selection and feature selection in SVM is simultaneously solved under particle swarm (PSO optimization) framework. A weighted function is adopted to design the objective function of PSO, which takes into account the average accuracy rates of SVM (ACC), the number of support vectors (SVs) and the selected features simultaneously. Furthermore, time varying acceleration coefficients (TVAC) and inertia weight (TVIW) are employed to efficiently control the local and global search in PSO algorithm. The effectiveness of PSO-SVM has been rigorously evaluated against the Wisconsin Breast Cancer Dataset (WBCD), which is commonly used among researchers who use machine learning methods for breast cancer diagnosis. The proposed system is compared with the grid search method with feature selection by F-score. The experimental results demonstrate that the proposed approach not only obtains much more appropriate model parameters and discriminative feature subset, but also needs smaller set of SVs for training, giving high predictive accuracy. In addition, Compared to the existing methods in previous studies, the proposed system can also be regarded as a promising success with the excellent classification accuracy of 99.3% via 10-fold cross validation (CV) analysis. Moreover, a combination of five informative features is identified, which might provide important insights to the nature of the breast cancer disease and give an important clue for the physicians to take a closer attention. We believe the promising result can ensure that the physicians make very accurate diagnostic decision in

  17. Intelligent design of waste heat recovery systems using thermoelectric generators and optimization tools

    DEFF Research Database (Denmark)

    Goudarzi, A. M.; Mozaffari, Ahmad; Samadian, Pendar

    2014-01-01

    design to maximize the electricity demand of Damavand power plant as the biggest thermal system in Middle East sited in Iran. The idea of designing is laid behind applying a number of thermoelectric modules within the condenser in order to recover the waste heat of the thermal systems. Besides......Optimal design of thermal systems that effectively use energy resources is one of the foremost challenges that researchers almost confront. Until now, several researches have been made to enhance the performance of major thermal systems. In this investigation, the authors try to make a conceptual...

  18. Compression in Working Memory and Its Relationship With Fluid Intelligence.

    Science.gov (United States)

    Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien

    2018-06-01

    Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.

  19. Performance-based shape optimization of continuum structures

    International Nuclear Information System (INIS)

    Liang Qingquan

    2010-01-01

    This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.

  20. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2011-01-01

    A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data. The ...... process provides a key measure of speech intelligibility. © 2011 Acoustical Society of America.......A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data....... The model estimates the speech-to-noise envelope power ratio, SNR env, at the output of a modulation filterbank and relates this metric to speech intelligibility using the concept of an ideal observer. Predictions were compared to data on the intelligibility of speech presented in stationary speech...

  1. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  2. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    Science.gov (United States)

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  3. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    Directory of Open Access Journals (Sweden)

    Gaining Han

    2017-05-01

    Full Text Available The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS, the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  4. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    Directory of Open Access Journals (Sweden)

    Fengmei Li

    2015-12-01

    Full Text Available Dissolved oxygen (DO is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  5. Resource Allocation Optimization Model of Collaborative Logistics Network Based on Bilevel Programming

    Directory of Open Access Journals (Sweden)

    Xiao-feng Xu

    2017-01-01

    Full Text Available Collaborative logistics network resource allocation can effectively meet the needs of customers. It can realize the overall benefit maximization of the logistics network and ensure that collaborative logistics network runs orderly at the time of creating value. Therefore, this article is based on the relationship of collaborative logistics network supplier, the transit warehouse, and sellers, and we consider the uncertainty of time to establish a bilevel programming model with random constraints and propose a genetic simulated annealing hybrid intelligent algorithm to solve it. Numerical example shows that the method has stronger robustness and convergence; it can achieve collaborative logistics network resource allocation rationalization and optimization.

  6. An intelligent human-machine system based on an ecological interface design concept

    International Nuclear Information System (INIS)

    Naito, N.

    1995-01-01

    It seems both necessary and promising to develop an intelligent human-machine system, considering the objective of the human-machine system and the recent advance in cognitive engineering and artificial intelligence together with the ever-increasing importance of human factor issues in nuclear power plant operation and maintenance. It should support human operators in their knowledge-based behaviour and allow them to cope with unanticipated abnormal events, including recovery from erroneous human actions. A top-down design approach has been adopted based on cognitive work analysis, and (1) an ecological interface, (2) a cognitive model-based advisor and (3) a robust automatic sequence controller have been established. These functions have been integrated into an experimental control room. A validation test was carried out by the participation of experienced operators and engineers. The results showed the usefulness of this system in supporting the operator's supervisory plant control tasks. ((orig.))

  7. A Solution-Based Intelligent Tutoring System Integrated with an Online Game-Based Formative Assessment: Development and Evaluation

    Science.gov (United States)

    Hooshyar, Danial; Ahmad, Rodina Binti; Yousefi, Moslem; Fathi, Moein; Abdollahi, Abbas; Horng, Shi-Jinn; Lim, Heuiseok

    2016-01-01

    Nowadays, intelligent tutoring systems are considered an effective research tool for learning systems and problem-solving skill improvement. Nonetheless, such individualized systems may cause students to lose learning motivation when interaction and timely guidance are lacking. In order to address this problem, a solution-based intelligent…

  8. A genetic-neural artificial intelligence approach to resins optimization; Uma metodologia baseada em inteligencia artificial para otimizacao de resinas

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Denise C.; Barros, Marcio P.; Lapa, Celso M.F.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: lapa@ien.gov.br; mbarros@ien.gov.br

    2005-07-01

    This work presents a preliminary study about the viability and adequacy of a new methodology for the definition of one of the main properties of ion exchange resins used for isotopic separation. Basically, the main problem is the definition of pelicule diameter in case of pelicular ion exchange resins, in order to achieve the best performance in the shortest time. In order to achieve this, a methodology was developed, based in two classic techniques of Artificial Intelligence (AI). At first, an artificial neural network (NN) was trained to map the existing relations between the nucleus radius and the resin's efficiency associated with the exchange time. Later on, a genetic algorithm (GA) was developed in order to find the best pelicule dimension. Preliminary results seem to confirm the potential of the method, and this can be used in any chemical process employing ion exchange resins. (author)

  9. Reliability-Based Optimization of Structural Elements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...

  10. Improving Emotional Intelligence through Personality Development: The Effect of the Smart Phone Application based Dharma Life Program on Emotional Intelligence

    Science.gov (United States)

    Poonamallee, Latha; Harrington, Alex M.; Nagpal, Manisha; Musial, Alec

    2018-01-01

    Emotional intelligence is established to predict success in leadership effectiveness in various contexts and has been linked to personality factors. This paper introduces Dharma Life Program, a novel approach to improving emotional intelligence by targeting maladaptive personality traits and triggering neuroplasticity through the use of a smart-phone application and mentoring. The program uses neuroplasticity to enable users to create a more adaptive application of their maladaptive traits, thus improving their emotional intelligence. In this study 26 participants underwent the Dharma Life Program in a leadership development setting. We assessed their emotional and social intelligence before and after the Dharma Life Program intervention using the Emotional and Social Competency Inventory (ESCI). The study found a significant improvement in the lowest three competencies and a significant improvement in almost all domains for the entire sample. Our findings suggest that the completion of the Dharma Life Program has a significant positive effect on Emotional and Social Competency scores and offers a new avenue for improving emotional intelligence competencies. PMID:29527182

  11. Improving Emotional Intelligence through Personality Development: The Effect of the Smart Phone Application based Dharma Life Program on Emotional Intelligence

    Directory of Open Access Journals (Sweden)

    Latha Poonamallee

    2018-02-01

    Full Text Available Emotional intelligence is established to predict success in leadership effectiveness in various contexts and has been linked to personality factors. This paper introduces Dharma Life Program, a novel approach to improving emotional intelligence by targeting maladaptive personality traits and triggering neuroplasticity through the use of a smart-phone application and mentoring. The program uses neuroplasticity to enable users to create a more adaptive application of their maladaptive traits, thus improving their emotional intelligence. In this study 26 participants underwent the Dharma Life Program in a leadership development setting. We assessed their emotional and social intelligence before and after the Dharma Life Program intervention using the Emotional and Social Competency Inventory (ESCI. The study found a significant improvement in the lowest three competencies and a significant improvement in almost all domains for the entire sample. Our findings suggest that the completion of the Dharma Life Program has a significant positive effect on Emotional and Social Competency scores and offers a new avenue for improving emotional intelligence competencies.

  12. Improving Emotional Intelligence through Personality Development: The Effect of the Smart Phone Application based Dharma Life Program on Emotional Intelligence.

    Science.gov (United States)

    Poonamallee, Latha; Harrington, Alex M; Nagpal, Manisha; Musial, Alec

    2018-01-01

    Emotional intelligence is established to predict success in leadership effectiveness in various contexts and has been linked to personality factors. This paper introduces Dharma Life Program, a novel approach to improving emotional intelligence by targeting maladaptive personality traits and triggering neuroplasticity through the use of a smart-phone application and mentoring. The program uses neuroplasticity to enable users to create a more adaptive application of their maladaptive traits, thus improving their emotional intelligence. In this study 26 participants underwent the Dharma Life Program in a leadership development setting. We assessed their emotional and social intelligence before and after the Dharma Life Program intervention using the Emotional and Social Competency Inventory (ESCI). The study found a significant improvement in the lowest three competencies and a significant improvement in almost all domains for the entire sample. Our findings suggest that the completion of the Dharma Life Program has a significant positive effect on Emotional and Social Competency scores and offers a new avenue for improving emotional intelligence competencies.

  13. Multi-objective genetic algorithm based innovative wind farm layout optimization method

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Hua; He, Bang; Wang, Pengcheng; Jin, Kai

    2015-01-01

    Highlights: • Innovative optimization procedures for both regular and irregular shape wind farm. • Using real wind condition and commercial wind turbine parameters. • Using multiple-objective genetic algorithm optimization method. • Optimize the selection of different wind turbine types and their hub heights. - Abstract: Layout optimization has become one of the critical approaches to increase power output and decrease total cost of a wind farm. Previous researches have applied intelligent algorithms to optimizing the wind farm layout. However, those wind conditions used in most of previous research are simplified and not accurate enough to match the real world wind conditions. In this paper, the authors propose an innovative optimization method based on multi-objective genetic algorithm, and test it with real wind condition and commercial wind turbine parameters. Four case studies are conducted to investigate the number of wind turbines needed in the given wind farm. Different cost models are also considered in the case studies. The results clearly demonstrate that the new method is able to optimize the layout of a given wind farm with real commercial data and wind conditions in both regular and irregular shapes, and achieve a better result by selecting different type and hub height wind turbines.

  14. Optimal truss and frame design from projected homogenization-based topology optimization

    DEFF Research Database (Denmark)

    Larsen, S. D.; Sigmund, O.; Groen, J. P.

    2018-01-01

    In this article, we propose a novel method to obtain a near-optimal frame structure, based on the solution of a homogenization-based topology optimization model. The presented approach exploits the equivalence between Michell’s problem of least-weight trusses and a compliance minimization problem...... using optimal rank-2 laminates in the low volume fraction limit. In a fully automated procedure, a discrete structure is extracted from the homogenization-based continuum model. This near-optimal structure is post-optimized as a frame, where the bending stiffness is continuously decreased, to allow...

  15. Intelligent Tools for Planning Knowledge base Development and Verification

    Science.gov (United States)

    Chien, Steve A.

    1996-01-01

    A key obstacle hampering fielding of AI planning applications is the considerable expense of developing, verifying, updating, and maintaining the planning knowledge base (KB). Planning systems must be able to compare favorably in terms of software lifecycle costs to other means of automation such as scripts or rule-based expert systems.

  16. Intelligent wear mode identification system for marine diesel engines based on multi-level belief rule base methodology

    Science.gov (United States)

    Yan, Xinping; Xu, Xiaojian; Sheng, Chenxing; Yuan, Chengqing; Li, Zhixiong

    2018-01-01

    Wear faults are among the chief causes of main-engine damage, significantly influencing the secure and economical operation of ships. It is difficult for engineers to utilize multi-source information to identify wear modes, so an intelligent wear mode identification model needs to be developed to assist engineers in diagnosing wear faults in diesel engines. For this purpose, a multi-level belief rule base (BBRB) system is proposed in this paper. The BBRB system consists of two-level belief rule bases, and the 2D and 3D characteristics of wear particles are used as antecedent attributes on each level. Quantitative and qualitative wear information with uncertainties can be processed simultaneously by the BBRB system. In order to enhance the efficiency of the BBRB, the silhouette value is adopted to determine referential points and the fuzzy c-means clustering algorithm is used to transform input wear information into belief degrees. In addition, the initial parameters of the BBRB system are constructed on the basis of expert-domain knowledge and then optimized by the genetic algorithm to ensure the robustness of the system. To verify the validity of the BBRB system, experimental data acquired from real-world diesel engines are analyzed. Five-fold cross-validation is conducted on the experimental data and the BBRB is compared with the other four models in the cross-validation. In addition, a verification dataset containing different wear particles is used to highlight the effectiveness of the BBRB system in wear mode identification. The verification results demonstrate that the proposed BBRB is effective and efficient for wear mode identification with better performance and stability than competing systems.

  17. Principles and tools for collaborative entity-based intelligence analysis.

    Science.gov (United States)

    Bier, Eric A; Card, Stuart K; Bodnar, John W

    2010-01-01

    Software tools that make it easier for analysts to collaborate as a natural part of their work will lead to better analysis that is informed by more perspectives. We are interested to know if software tools can be designed that support collaboration even as they allow analysts to find documents and organize information (including evidence, schemas, and hypotheses). We have modified the Entity Workspace system, described previously, to test such designs. We have evaluated the resulting design in both a laboratory study and a study where it is situated with an analysis team. In both cases, effects on collaboration appear to be positive. Key aspects of the design include an evidence notebook optimized for organizing entities (rather than text characters), information structures that can be collapsed and expanded, visualization of evidence that emphasizes events and documents (rather than emphasizing the entity graph), and a notification system that finds entities of mutual interest to multiple analysts. Long-term tests suggest that this approach can support both top-down and bottom-up styles of analysis.

  18. Realization of Intelligent Household Appliance Wireless Monitoring Network Based on LEACH Protocol

    Directory of Open Access Journals (Sweden)

    Weilong ZHOU

    2014-06-01

    Full Text Available The intelligent household appliance wireless monitoring network can real-time monitor the apparent power and power factor of various household appliances in different indoor regions, and can realize the real-time monitoring on the household appliance working status and performance. The household appliance wireless monitoring network based on LEACH protocol is designed in the paper. Firstly, the basic idea of LEACH routing algorithm is proposed. Aiming at the node-distribution feature of intelligent home, the selection of cluster head in the routing algorithm and the data transmission method at the stable communication phase is modified. Moreover, the hardware circuit of power acquisition and power factor measurement is designed. The realization of wireless monitoring network based on CC2530 is described, each module and the whole system were conducted the on-line debugging. Finally, the system is proved to meet the practical requirement through the networking test.

  19. Intelligent transportation systems 802 11-based vehicular communications

    CERN Document Server

    Hasan, Syed Faraz; Chakraborty, Shyam

    2017-01-01

    This book begins by describing a mathematical model that represents disruption in WLAN-based Vehicular Communications. Secondly, it sets out to reduce the handover latency for establishing quick connections between the mobile nodes and the roadside WLAN APs.

  20. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing

    Science.gov (United States)

    Hu, Yu-Chen

    2018-01-01

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved